
Process Control using Cintpos
Tasks and Coroutines

by

Martin Richards

mr@cl.cam.ac.uk

http://www.cl.cam.ac.uk/users/mr10/

Computer Laboratory

University of Cambridge

Revision date: Mon Dec 21 14:17:19 GMT 2015

This document is still a DRAFT and so feel free to scribble all over it pointing
out typos, errors, etc and any comments and advice you may have.

Thank you.

Abstract

This document describes in detail the BCPL implementation of a benchmark
program that aims to demonstrate that Cintpos tasks and BCPL style corou-
tines can be used effectively to implement process control style applications. The
benchmark will be translated into other languages such as C and java for com-
parison.

Keywords

Benchmark, Process Control, BCPL, Cintpos, Coroutines

2

Contents

1 Introduction 1

2 The Controller 11

3 The stats Task 24

4 The bounce and printer Tasks 36

5 The Read and Write Clients 40

6 The Read and Write Servers 50

7 The Multiplexor Tasks 67

8 Miscellaneous Functions 83

8.1 Multi-event Tasks . 83
8.2 Occam Channels . 88
8.3 Locks . 90
8.4 Condition Variables . 91
8.5 Random Numbers . 93

A Java Translation 95

i

ii CONTENTS

Chapter 1

Introduction

This is one of the benchmark programs freely available via my Tcobench
distribution (tcobench.tgz or tcobench.zip) from my home page
(www.cl.cam.ac.uk/users/mr10). The program is also available as
cintpos/com/tcobench.b in the Cintpos distribution. The BCPL and
Cintpos manual is available as bcplman.pdf, also available from my home page.

This benchmark is designed to demonstrate that Cintpos tasks using corou-
tines can be used effectively to implement process control style applications. It
is a complete rewrite of an earlier version written in 2004.

It is designed to be language independent and will be translated into other
languages, such as C or Java, for comparison. One such translation is in
java-colib/Tcobench.java in this Tcobench distribution, but this is still in
the early stages of development.

The program creates several Cintpos tasks (equivalent to threads) that run
under the control of the Cintpos scheduler. The tasks share the same address
space but have their own run time stacks and global vectors. The program
performs a long sequence of operations involving task to task and coroutine to
coroutine communication and occasional real time delays.

There are several write client tasks that send data to write server tasks. The
server tasks have several worker coroutines to process these these requests. The
worker coroutines pass the data on to multiplexor tasks that each control of a
number of channels used to pass the data to the reading half of the benchmark
program. Each channel has a buffer holding data waiting to be transferred. When
the buffer is full, a write request to that channel fails and the multiplexor reports
this to its server which, in turn, reports it to the write client. After a short delay,
the write client tries sending data via a typically different server-multiplexor-
channel route.

The reading half of the benchmark contains several read client tasks that send
requests to read server tasks. Each read server has several worker coroutines to
process these requests, and they send requests to specified multiplexor tasks to
read data from specified channels. If the channel buffer is empty, the request fails

1

2 CHAPTER 1. INTRODUCTION

and the multiplexor reports this to its server which, in turn, reports it to the read
client. After a short delay, the read client tries sending another read request via
a typically different server-multiplexor-channel route.

Each read and write client repeatedly creates and performs schedules of work
items invoking each possible server-multiplex-channel path. If there are s servers,
m multiplexors and c channels, there will be s×m×c items in each schedule. One
of the items is marked to cause a real time delay after the client has successfully
processed the request, another item is marked to cause a similar delay in a worker
coroutine of its server after successfully processing the request, and a third item
causes a delay after data has been successfully transferred to or from the specified
channel buffer. The items in the schedules are processed by clients in random
order.

The clients are synchronised so that none can create and process its next
schedule until all the others have completed their previous schedules.

Each server has worker coroutines to process requests and one logger corou-
tine. When a server receives a request it passes it to a worker for processing,
but there is the constraint that the busiest worker must not process more than 5
requests more than the least busy worker. This constraint is included to demon-
strate the use of condition variables and, in particular, the functions condwait,
notify and notifyAll. After a worker coroutine has successfully processed a
request, it sends two random numbers to the logger coroutine. These numbers
are sent separately and so mutex style locking and unlocking is necessary, but
since the locking occurs between coroutines within the same task, its implemen-
tation is simple and efficient. To check that the locking mechanism works, the
logger returns the sum of two numbers back to the originating worker for check-
ing. The communication between worker coroutines and the logger is by means of
coroutine based Occum style channels using the functions cowrite and coread.

The program creates one low priority printer task, and each logger occasion-
ally sends a message to the printer task. It also occasionally delays for a short
period. This allows other tasks within the benchmark to gain control, helping to
demonstate that the locking mechanism works properly.

Condition variables are also used by worker coroutines when waiting for re-
quest packets to process.

Each multiplexor task has one read and one write coroutine per channel to
process multiplexor requests. If a write request is received when its channel buffer
is full, it is immediately returned to the server with an indication of failure.
Otherwise, the data is copied into the channel’s buffer and after a possible delay
the request packet is returned to the server. If a read request finds that the
specified channel buffer is empty, the packet is immediately returned to its server
with an indication of failure. The server then returns the packet to is client
which after a short delay sends another request normally involving a different
server-multiplexor-channel route.

3

If a read or write request specifies a multiplexor delay, only the appropriate
channel coroutine is held up. Requests involving other channels are not affected.

The stats task performs various jobs. One is to receive and accumulate
data about the frequency of various operations such as calls of qpkt, taskwait,
callco and cowait. It also performs synchronisation operations involving sync,
rddone and wrdone packets. Thirdly it continually measures the CPU utilisation
by counting how often it can bounce a packet off the bounce task in each 100
msec period. Since the bounce task has the lowest priority, it can only return a
packet when all the other tcobench tasks are suspended.

At the end of the run, the stats task outputs a summary of the statistics it
has gathered. Typical output is the following.

0.000 1> tcobench

Thread and Coroutine Benchmark

loopmax = 2 (k)

climax = 20 (n)

srvmax = 15 (s)

workmax = 14 (w)

mpxmax = 10 (m)

chnmax = 10 (c)

chnbufsize = 35 (b)

delaymsecs = 500 (d)

Requests per schedule = 1500

maxcountdiff = 5

Start time: 05-Oct-2015 09:36:00

Finish time: 05-Oct-2015 09:36:35

All clients have finished their work

Number of calls of qpkt: 7077796

Number of calls of taskwait: 7073234

Number of calls of callco: 34771561

Number of calls of cowait: 34771561

Number of calls of resumeco: 172311

Number of calls of condwait(..): 268106

Number of calls of notify(..): 124024

Number of calls of notifyAll(..): 8524

Number of increments: 120000

4 CHAPTER 1. INTRODUCTION

increment had to wait: 27268

Number of calls of lock(..): 120000

lock had to wait: 33111

Number of 500 msec delays: 240

Print task counter: 2400

Calls to logger: 120000

Send fail count: 3185

Read fail count: 839

Bounce task counter: 3276007

Read checksum: 811018

Write checksum: 811018

Read count: 60000

Write count: 60000

Approximate CPU utilisation over 339 periods of 100 msecs

0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%

82 204 51 0 1 1 0 0 0 0

Tcobench completed

35.440 1>

Note that this output indicates that there were 240 delays each of 500 msecs
amounting to a total of 120 seconds. But since the total running time was about
36 seconds, many of these delays must have been done in parallel.

The benchmark program is in the file tcobench.b which starts as follows.

SECTION "TCOBENCH"

GET "libhdr"

MANIFEST {

// Packet types

act_startstats=100 // Controller to stats task

act_startrdclient // Controller to client to start it reading

act_startwrclient // Controller to client to start it writing

act_startrdserver // Controller to server

act_startwrserver // Controller to server

act_startmpx // Controller to mpx

act_startbounce // Controller to bounce task

act_startprinter // Controller to printer task

act_clock // Stats task to clock device

act_bounce // Stats task to bounce task

act_print // Server to printer task

act_read // A read request from a client or server

5

act_write // A write request from a client or server

act_sync // Client to stats task to synchronise with other clients

act_rddone // Read client to stats task to synchronise end of run.

act_wrdone // Write client to stats task to synchronise end of run.

act_die // Controller to most tasks to cause them

// to return to DEAD state ready for deletion

act_calibrate // Controller to the stats task

act_run // Controller to stats task to release

// the clients. It is returned when all

// clients have completed all their schedules.

act_addstats // Send statistics counts to the stats task

act_prstats // Output the accumulated statistics

// Positions of the counters in the statistics vector.

// These are in the same order as those in the global vector.

p_qpkt=0

p_taskwait

p_callco

p_resumeco

p_cowait

p_condwait

p_notify

p_notifyAll

p_inc

p_incwait

p_lock

p_lockw

p_delaylong

p_bounce

p_print

p_logger

p_readfail

p_sendfail

p_rdchecksum

p_wrchecksum

p_rdcount

p_wrcount

statvupb // Actually one larger than necessary

}

The manifest constants with names starting act are types (or operators) used in
Cintpos packets sent from one task to another, and those constants with names
starting p are offsets in the vector containing statistics counters. The program

6 CHAPTER 1. INTRODUCTION

continues as follows.

STATIC {

// These static quantites are shared by all tasks in the benchmark,

// once initialised these variables remain constant.

rdclientv = 0 // For read client task ids

wrclientv = 0 // For write client task ids

rdserverv = 0 // For read server task ids

wrserverv = 0 // For write server task ids

mpxv = 0 // For multiplexor task ids

controllertaskid = 0 // To hold the controller task id

statstaskid = 0 // To hold the stats task id

bouncetaskid = 0 // To hold the bounce task id

printertaskid = 0 // To hold the printer task id

// Default settings

loopmax

climax // Upb of rdclintv and wrclientv

srvmax // Upb of rdserverv and wrserverv

workmax // Number of work coroutines per server

mpxmax // Number of mpx tasks

chnmax // Number of buffers per mpx task

chnbufsize // The size of each channel buffer

delaymsecs // Delay time for read and write delay requests

maxcountdiff // maximum allowable value of wrkcount-minwrkcount

requestvupb // Number of requests per schedule

tracing

}

These static variables are accessible by all tasks in the benchmark and once
initialised they remain constant and so can be safely accessed without the need of
synchronisation primitives. The program continues with some global declarations
as follows.

GLOBAL {

// Each task has its own set of global variables that other tasks

// cannot access. Note that the counter c_qpkt of how many times

// this task call qpkt can be incremented efficiently. Such counters

// are sent to the stats task at the end of the run where they are

// accumulated and output.

7

c_qpkt:ug // These are the statistics counters and they must

c_taskwait // be in the same order as the p_ declarations.

c_callco

c_resumeco

c_cowait

c_condwait

c_notify

c_notifyAll

c_inc

c_incwait

c_lock

c_lockw

c_delaylong

c_bounce

c_print

c_logger

c_readfail

c_sendfail

c_rdchecksum

c_wrchecksum

c_rdcount

c_wrcount

modech // Mode of a client or server, ’R’ or ’W’.

pktlist

gomultievent

multi_done // Used to cause gomultievent to return

// to single event mode

mainco_ready // If this is FALSE gomultievent puts new request packets

// in a queue rather than giving them to the main coroutine.

startuppkt // The startup packet received by servers and mpx tasks

// from the controller task. Not returned until the server

// or mpx task is fully initialised and ready to process

// requests.

diepkt // The die packet received by servers and mpx tasks to

// cause them to return to DEAD state.

condwait // function to wait on a condition variable

// eg condwait(@countcondvar)

notify // wakeup first coroutine waiting on a condition variable

// eg notify(@pktcondvar)

notifyAll // wakeup all coroutines waiting on a condition variable

// eg notifyAll(@countwaitlist)

8 CHAPTER 1. INTRODUCTION

lock // eg lock(@loggerlock)

unlock // eg unlock(@loggerlock)

startstats

startbounce

startprinter

startclient

startserver

startmpx

// Client task globals

clino // Number of this client

// Server task globals

serno // Number of this server

wkq // Queue of packet waiting to be processed by

// worker coroutines. Servers place packets in this

// list when all worker coroutines are busy.

busycount // Number of server worker coroutines currently

// processing requests.

wrkcov // Vector of this server’s worker coroutines

countv // Vector of this server’s worker workcounts

// ie the number of requests successfully processed

// by each worker.

minwrkcount // The work count of the this server’s least busy worker

countcondvar // The condition variable for condition:

// wrkcount-minwrkcount <= maxcountdiff | diepkt

pktcondvar // condition variable used by work coroutines waiting

// for a request packet.

loggerco // The logger coroutine for this server task

loggerlock // List of coroutines waiting for the logger

loggerin // Occam style channel for logger input

loggerout // Occam style channel for logger output

// Multiplexor task globals

mpxno // Number of this mpx task

mpxrdcov // Vector of multiplexor channel read coroutines

mpxwrcov // Vector of multiplexor channel write coroutines

rdbusyv // rdbusyv!chnno is TRUE if the read coroutine

9

// for channel chnno is busy.

wrbusyv // wrbusyv!chnno is TRUE if the write coroutine

// for channel chnno is busy.

rdwkqv // rdwkqv!chnno is a list of pending mpx read packets

// for channel chnno.

wrwkqv // wrwkqv!chnno is a list of pending mpx write packets

// for channel chnno.

bufv // bufv!chnno is the mpx circular buffer for its channel.

// These buffers each have climax*srvmax+1 elements.

bufpv // bufpv!chnno is the subscript into bufv!chnno where

// the next write data will be written.

bufqv // bufqv!i is the subscript into bufv!i where the next

// data value will be read from.

// If bufpv!i=bufqv!i, there is no pending write data

// within the mpx task for client i.

mpxbusycount // Count of the number of channel read and write

// coroutines that are busy.

// Language independent random number generator

seed // Seed for the machine/language independent

nextrnd // random number generator.

setseed

}

These global variables are private to each task and are not normally accessible
by other tasks. Again, this means that they can be accessed without the need of
synchronisation primitives. The globals whose names start with c are used to
hold counters of how often functions such as qpkt and taskwait are called by
the task that owns the globals. Clearly incrementing these counters can be done
efficiently. At the end of the run these counters are sent to the stats task where
they are accumulated with the counters from the other tasks and finally output.

The function start is the main function of the benchmark program and is
called with an argument of zero when tcobench it is being executed by the
Command Language Interpreter (CLI). However, it is also the main function of
every other task of the benchmark and, as will be seen, such tasks are started
by sending them startup packets telling them their role and often provide extra
information depending on what the task is meant to do. Startup packets appear
as the argument (pkt) of start.

A tasks in Cintpos is a process that can be pre-empted by an interrupt from
a device such as the clock which may cause the task to become suspended and
control given to another task. All Cintpos tasks share the same address space,
and so, using modern terminology, they would be called threads. Every task has
a distinct priority and the Cintpos scheduler ensures that the highest priority

10 CHAPTER 1. INTRODUCTION

task that is not suspended has control. Every tasks has a numerical identifier
held in the variable taskid in its global vector. Communication between tasks
is done by sending a receiving packets using qpkt and taskwait. A packet is
typically of the form:

[link,taskid,type,r1,r2,a1,a2,a3,a4,a5,a6]

where link is used to chain packets together, taskid is the identifier of the task
or device to which the packet will be sent. The type field specifies the purpose
of the packet and is often specified using a manifest constant starting with act ,
such as act startprinter or act sync. When a packet is returned to the task
that originally sent it, the r1 and r2 fields normally hold result information. The
fields a1 to a6 are arguments that may be needed by the destination task. Some
functions such as sendpkt assume that there are always six arguments, but in
general any number of arguments are allowed. At the lowest level, a packet is
sent to a destination task using qpkt as in qpkt(pkt) where pkt points to the
link field of the packet to be sent. This causes the packet to be appended to work
queue of the destination task. To simplify returning a packet to its sender, the
taskid field is automatically replaced by the identifier of the sending task.

A task can extract a packet from its work queue by calling taskwait(). If the
work queue is empty, the task becomes suspended waiting for a packet to arrive.
But note that, if a task is suspended in taskwait and a new packet arrives, it
will only gain control when all higher priority tasks are suspended.

Chapter 2

The Controller

The benchmark has many tasks. One is called the controller and its task number
is that of the CLI executing the tcobench command. The controller creates all
the other tasks and causes them to run. When the benchmark completes its work,
it deletes all the tcobench tasks and workspace and returns control the the CLI.

We are now ready to see the definition of start which is as follows.

LET start(pkt) = VALOF

{ // If pkt=0, this code is being run as the Cintpos command that

// creates, runs and finally deletes all the tasks of the benchmark.

// If pkt is non zero it is the startup packet for one of the

// benchmark tasks.

initstats() // Initialise this task’s statistics counters.

// Bear in mind this might be any one of the

// tcobench tasks.

UNLESS pkt DO

{ // start is being called from the CLI.

tcobenchcom() // Execute the tcobench CLI command.

// This will be the controller task.

RESULTIS 0

}

// start is also the main function of every tcobench task,

// and pkt is the startup packet.

SWITCHON pkt_type!pkt INTO

{ DEFAULT:

sawritef("T%z2 Controller:*

* System Error: Unexpected packet from %n type %n*n",

taskid, pkt!pkt_id, pkt!pkt_type)

abort(999)

c_qpkt := c_qpkt+1

11

12 CHAPTER 2. THE CONTROLLER

qpkt(pkt)

RESULTIS 0

CASE act_startstats: startstats(pkt); ENDCASE

CASE act_startbounce: startbounce(pkt); ENDCASE

CASE act_startprinter: startprinter(pkt); ENDCASE

CASE act_startrdclient: startclient(pkt); ENDCASE

CASE act_startwrclient: startclient(pkt); ENDCASE

CASE act_startrdserver: startserver(pkt); ENDCASE

CASE act_startwrserver: startserver(pkt); ENDCASE

CASE act_startmpx: startmpx(pkt); ENDCASE

}

RESULTIS 0

}

The function initstats, defined below, initialises this task’s statistics coun-
ters held in the global vector. These counters occupy consecutive locations of
the global vector so can all be accessed via the pointer @c_qpkt, as used in the
definition of sendstats defined below. At the end of the run that stats task is
told to output the accumulated statistics by the call prstats(), defined below.

AND initstats() BE

{ // Initialize this tasks statistics counters

c_qpkt := 0

c_taskwait := 0

c_callco := 0

c_resumeco := 0

c_cowait := 0

c_condwait := 0

c_notify := 0

c_notifyAll := 0

c_inc := 0

c_incwait := 0

c_lock := 0

c_lockw := 0

c_delaylong := 0

c_bounce := 0

c_print := 0

c_logger := 0

c_readfail := 0

c_sendfail := 0

c_rdchecksum := 0

c_wrchecksum := 0

c_rdcount := 0

13

c_wrcount := 0

}

AND sendstats() BE

{ // Send this tasks statistics to the stats task.

LET sv = @c_qpkt

sendpkt(notinuse, statstaskid, act_addstats, 0,0, sv)

}

AND prstats() BE

{ // Cause the stats task to print the accumulated statistics.

sendpkt(notinuse, statstaskid, act_prstats)

}

The main program of the controller is called tcobenchcom and is defined
below. As it is quite long it will be described in sections.

AND tcobenchcom() BE

{ // This performs the tcobench CLI command.

// It is the body of the controller task.

// Build a segment list containing KLIB, BLIB and this module.

LET upb, klib, blib, module =

3, rootnode!rtn_klib, rootnode!rtn_blib, cli_module

LET segv = @upb

// segv is used in all the calls of createtask below.

LET argv = VEC 100

UNLESS rdargs("-k/N,-n/N,-s/N,-w/N,-m/N,-c/N,-b/N,-d/N,*

*-t/S,-x/S,-y/S,-z/S",

argv, 100) DO

{ sawritef("Bad arguments for TCOBENCH*n")

RETURN

}

// The default parameters

loopmax := 2

climax := 20

srvmax := 15

workmax := 14

mpxmax := 10

chnmax := 10

chnbufsize := 0 // Will be set later

14 CHAPTER 2. THE CONTROLLER

delaymsecs := 500

tracing := argv!8 // -t/S

IF argv!9 DO // -x/S

{ // Alternate setting of the parameters

loopmax := 1

climax := 2

srvmax := 2

workmax := 3

mpxmax := 2

chnmax := 3

}

IF argv!10 DO // -y/S

{ // Alternate setting of the parameters

loopmax := 2

climax := 5

srvmax := 3

workmax := 3

mpxmax := 2

chnmax := 3

}

IF argv!11 DO // -z/S

{ // Alternate setting of the parameters

loopmax := 3

climax := 10

srvmax := 4

workmax := 7

mpxmax := 3

chnmax := 4

}

// Conditionally override the default or alternate settings

IF argv!0 DO loopmax := !argv!0 // -k/N

IF argv!1 DO climax := !argv!1 // -n/N

IF argv!2 DO srvmax := !argv!2 // -s/N

IF argv!3 DO workmax := !argv!3 // -w/N

IF argv!4 DO mpxmax := !argv!4 // -m/N

IF argv!5 DO chnmax := !argv!5 // -c/N

IF argv!6 DO chnbufsize := !argv!6 // -b/N

IF argv!7 DO delaymsecs := !argv!7 // -d/N

requestvupb := srvmax*mpxmax*chnmax

15

IF requestvupb<3 DO

{ sawritef("The request schedule must have at least three elements*n")

abort(999)

}

UNLESS chnbufsize DO

{ // Set the channel buffer size to about one tenth of the

// number of values sent to each channel on each iteration.

chnbufsize := (climax*srvmax)/10 + 5

}

sawritef("*nThread and Coroutine Benchmark*n*n")

sawritef("loopmax = %i4 (k)*n", loopmax)

sawritef("climax = %i4 (n)*n", climax)

sawritef("srvmax = %i4 (s)*n", srvmax)

sawritef("workmax = %i4 (w)*n", workmax)

sawritef("mpxmax = %i4 (m)*n", mpxmax)

sawritef("chnmax = %i4 (c)*n", chnmax)

sawritef("chnbufsize = %i4 (b)*n", chnbufsize)

sawritef("delaymsecs = %i4 (d)*n", delaymsecs)

sawrch(’*n’)

sawritef("Requests per schedule = %i4*n", requestvupb)

sawritef("maxcountdiff = %i4*n", maxcountdiff)

sawrch(’*n’)

This function starts by creating a segment list of code modules composed of
four consecutive local variables upb, klib, blib and module and setting segv to
point to it. Note that module points to the loaded tcobench program itself. Every
tcobench task shares the same segment list. The function goes on to read the
command arguments using rdargs allowing the user to specify the benchmark
parameters. There is a default set of parameters, but alternative setting are
available using the arguments -x, -y and -z. These can be further modified
by the arguments -k, -n, -s, -w, -m, -c, -b and -d. The argument -t sets
tracing to TRUE causing the program to generate a detailed trace of the actions
it performs. After setting the parameters they are output using the standalone
functions sawritef and sawrch.

The program contines as follows.

rdclientv := getvec(climax)

wrclientv := getvec(climax)

rdserverv := getvec(srvmax)

wrserverv := getvec(srvmax)

16 CHAPTER 2. THE CONTROLLER

mpxv := getvec(mpxmax)

IF rdclientv FOR i = 0 TO climax DO rdclientv!i := 0

IF wrclientv FOR i = 0 TO climax DO wrclientv!i := 0

IF rdserverv FOR i = 0 TO srvmax DO rdserverv!i := 0

IF wrserverv FOR i = 0 TO srvmax DO wrserverv!i := 0

IF mpxv FOR i = 0 TO mpxmax DO mpxv!i := 0

bouncetaskid := 0

printertaskid := 0

statstaskid := 0

// This test is delayed until it is safe to jump to fin.

UNLESS rdclientv & wrclientv &

rdserverv & wrserverv &

mpxv DO

{ sawritef("More memory needed*n")

GOTO fin

}

// The main cli task is the controller task for the benchmark

controllertaskid := taskid

// We now create all the tcobench tasks.

c_taskwait := c_taskwait+1

statstaskid := createtask(segv, 1000, 9000) // The highest priority

UNLESS statstaskid DO

{ sawritef("Unable to create the stats task*n")

abort(999)

}

IF tracing DO sawritef("T%z2 Stats: Task created*n", taskid)

c_taskwait := c_taskwait+1

bouncetaskid := createtask(segv, 1000, 10) // Very low priority

UNLESS bouncetaskid DO

{ sawritef("Unable to create the bounce task*n")

abort(999)

}

IF tracing DO sawritef("T%z2 Bounce: Task created*n", taskid)

c_taskwait := c_taskwait+1

printertaskid := createtask(segv, 1000, 11) // Priority just greater than

UNLESS printertaskid DO // that of the bounce task

{ sawritef("Unable to create the printer task*n")

abort(999)

17

}

IF tracing DO sawritef("T%z2 Printer: Task created*n", taskid)

FOR clino = 1 TO climax DO

{ LET id = createtask(segv, 1000, 4000+clino)

c_taskwait := c_taskwait+1

UNLESS id DO

{ sawritef("Unable to create RC%z2*n", clino)

abort(999)

}

rdclientv!clino := id

IF tracing DO sawritef("T%z2 RC%z2: Task created*n", taskid, clino)

id := createtask(segv, 1000, 5000+clino)

c_taskwait := c_taskwait+1

UNLESS id DO

{ sawritef("Unable to create WC%z2*n", clino)

abort(999)

}

wrclientv!clino := id

IF tracing DO sawritef("T%z2 WC%z2: Task created*n", taskid, clino)

}

FOR serno = 1 TO srvmax DO

{ LET id = createtask(segv, 1000, 6000+serno) // Priorities higher than the

// read and write clients

c_taskwait := c_taskwait+1

UNLESS id DO

{ sawritef("Unable to create RS%z2*n", serno)

abort(999)

}

rdserverv!serno := id

IF tracing DO sawritef("T%z2 RS%z2: Task created*n", taskid, serno)

}

FOR serno = 1 TO srvmax DO

{ LET id = createtask(segv, 1000, 7000+serno) // Priority higher than

// read servers

c_taskwait := c_taskwait+1

UNLESS id DO

{ sawritef("Unable to create WS%z2*n", serno)

abort(999)

}

wrserverv!serno := id

IF tracing DO sawritef("T%z2 WS%x2: Task created*n", taskid, serno)

18 CHAPTER 2. THE CONTROLLER

}

FOR mpxno = 1 TO mpxmax DO

{ LET id = createtask(segv, 1000, 8000+mpxno) // Even higher priority

c_taskwait := c_taskwait+1

UNLESS id DO

{ sawritef("Unable to create M%z2*n", mpxno)

abort(999)

}

mpxv!mpxno := id

IF tracing DO

sawritef("T%z2 M%z2: Task created*n", taskid, mpxno)

}

// All tcobench tasks have been created but left in DEAD state

sawrch(’*n’)

Vectors are allocated to hold the task identifiers of all the read and write client
tasks, the read and write servers and the multiplexor tasks. The tasks are then
created using createtask giving them all the same segment list and a runtime
stack size of 1000 words, but they are all given distinct priorities. The bounce,
printer and stats tasks have task numbers held in bouncetaskid, printertaskid
and statstaskid. At this stage all the tcobench tasks except the controller have
been created but left in DEAD state, waiting to be started.

The program goes on as follows.

// Send startup packets to all the tcobench tasks.

sendpkt(notinuse, statstaskid, act_startstats)

sendpkt(notinuse, bouncetaskid, act_startbounce)

sendpkt(notinuse, printertaskid, act_startprinter)

// Send startup packets to all the multiplexor tasks

FOR mpxno = 1 TO mpxmax DO

sendpkt(notinuse, mpxv!mpxno, act_startmpx, 0, 0, mpxno)

// Send startup packets to all the read server tasks

FOR serno = 1 TO srvmax DO

sendpkt(notinuse, rdserverv!serno, act_startrdserver, 0, 0, serno)

// Send startup packets to all the write server tasks

FOR serno = 1 TO srvmax DO

sendpkt(notinuse, wrserverv!serno, act_startwrserver, 0, 0, serno)

19

// Send startup packets to all the read client tasks

FOR clino = 1 TO climax DO

sendpkt(notinuse, rdclientv!clino, act_startrdclient, 0, 0, clino)

// Send startup packets to all the write client tasks

FOR clino = 1 TO climax DO

sendpkt(notinuse, wrclientv!clino, act_startwrclient, 0, 0, clino)

At this stage all the tcobench task have received their startup packets which
have told them their roles, but the main work of the benchmark has not yet
started since all the clients are waiting for permission to start their schedules of
work. The servers and multiplexors will be waiting for their first request packets.

The program continues as follows.

// Perform calibration before the clients are started

IF tracing DO

sawritef("T%z2 Controller:*

* Sending a calibrate packet to the stats task*n",

taskid)

sendpkt(notinuse, statstaskid, act_calibrate)

// Finally the controller sends a run packet to the stats task to

// release all the clients. This packet is only returned to the

// controller when all clients have finished all their schedules.

// It is important that calibration is done before sending the run

// packet to the stats task.

IF tracing DO

sawritef("T%z2 Controller:*

* Sending run packet to the stats task*n",

taskid)

wrtime("*nStart time: ")

sendpkt(notinuse, statstaskid, act_run)

wrtime("*nFinish time: ")

sawritef("*nAll clients have finished their work*n")

// Send die packets to all clients, servers and multiplexor tasks,

// and the bounce and printer tasks.

// Send die packets to all the write client tasks

FOR clino = 1 TO climax DO

sendpkt(notinuse, wrclientv!clino, act_die)

20 CHAPTER 2. THE CONTROLLER

// Send die packets to all the read client tasks

FOR clino = 1 TO climax DO

sendpkt(notinuse, rdclientv!clino, act_die)

// Send die packets to all the read server tasks

FOR serno = 1 TO srvmax DO

sendpkt(notinuse, rdserverv!serno, act_die)

// Send die packets to all the write server tasks

FOR serno = 1 TO srvmax DO

sendpkt(notinuse, wrserverv!serno, act_die)

// Send startup packets to all the mpx tasks

FOR mpxno = 1 TO mpxmax DO

sendpkt(notinuse, mpxv!mpxno, act_die)

sendpkt(notinuse, printertaskid, act_die)

sendpkt(notinuse, bouncetaskid, act_die)

// All tcobench tasks except the stats task should be returning to

// DEAD state.

IF tracing DO

sawritef("T%z2 Controller: *

*All tcobench tasks except the stats task *

*should be returning to DEAD state*n",

taskid)

This code sends a run packet to the stats task to release all the clients, but
this only happens when all the read and write clients have sent sync packets to
the stats task. The stats task returns the run packet to the controller when all
the read and write clients have finished all their schedules of work. This causes
the controller to send die packets to all the tcobench tasks except the stats

task, causing them to send their own statistics counters to the stats task before
returning to DEAD status, ready for deletion.

The program continues as follows.

// Arrive here when the benchmark has completed all its work.

// Send the controller’s statistics counters to the stats task.

sendstats()

// Cause the accumulated statistics counters to be output.

prstats()

21

// Cause the stats task to return to DEAD state.

sendpkt(notinuse, statstaskid, act_die)

fin:

// Delete all the tasks created by the controller.

IF tracing DO

sawritef("T%z2: Attempting to delete all tcobench tasks*n", taskid)

IF mpxv FOR mpxno = 1 TO mpxmax WHILE mpxv!mpxno DO

{ TEST deletetask(mpxv!mpxno)

THEN { IF tracing DO

sawritef("T%z2 Controller: M%z2 deleted*n", taskid, mpxno)

mpxv!mpxno := 0

}

ELSE { IF tracing DO

sawritef("T%z2 Controller: M%z2 NOT deleted*n", taskid, mpxno)

delay(100)

}

}

IF rdserverv FOR serno = 1 TO srvmax WHILE rdserverv!serno DO

{ TEST deletetask(rdserverv!serno)

THEN { IF tracing DO

sawritef("T%z2 Controller: RS%z2 deleted*n", taskid, serno)

rdserverv!serno := 0

}

ELSE { IF tracing DO

sawritef("T%z2 Controller: RS%z2 NOT deleted*n", taskid, serno)

delay(100)

}

}

IF wrserverv FOR serno = 1 TO srvmax WHILE wrserverv!serno DO

{ TEST deletetask(wrserverv!serno)

THEN { IF tracing DO

sawritef("T%z2 Controller: WS%z2 deleted*n", taskid, serno)

wrserverv!serno := 0

}

ELSE { IF tracing DO

sawritef("T%z2 Controller: WS%z2 NOT deleted*n", taskid, serno)

delay(100)

}

}

22 CHAPTER 2. THE CONTROLLER

IF rdclientv FOR clino = 1 TO climax WHILE rdclientv!clino DO

{ TEST deletetask(rdclientv!clino)

THEN { IF tracing DO

sawritef("T%z2 Controller: RC%z2 deleted*n", taskid, clino)

rdclientv!clino := 0

}

ELSE { IF tracing DO

sawritef("T%z2 Controller: RC%z2 NOT deleted*n", taskid, clino)

delay(100)

}

}

IF wrclientv FOR clino = 1 TO climax WHILE wrclientv!clino DO

{ TEST deletetask(wrclientv!clino)

THEN { IF tracing DO

sawritef("T%z2 Controller: WC%z2 deleted*n", taskid, clino)

wrclientv!clino := 0

}

ELSE { IF tracing DO

sawritef("T%z2 Controller: WC%z2 NOT deleted*n", taskid, clino)

delay(100)

}

}

WHILE bouncetaskid DO

{ TEST deletetask(bouncetaskid)

THEN { IF tracing DO

sawritef("T%z2 Controller: bounce deleted*n", taskid)

bouncetaskid := 0

}

ELSE { IF tracing DO

sawritef("T%z2 Controller: bounce NOT deleted*n", taskid)

delay(100)

}

}

WHILE printertaskid DO

{ TEST deletetask(printertaskid)

THEN { IF tracing DO

sawritef("T%z2 Controller: printer deleted*n", taskid)

printertaskid := 0

}

ELSE { IF tracing DO

sawritef("T%z2 Controller: printer NOT deleted*n", taskid)

delay(100)

23

}

}

WHILE statstaskid DO

{ TEST deletetask(statstaskid)

THEN { IF tracing DO

sawritef("T%z2 Controller: stats task deleted*n", taskid)

statstaskid := 0

}

ELSE { IF tracing DO

sawritef("T%z2 Controller: stats task NOT deleted*n", taskid)

delay(100)

}

}

// All tcobench tasks have now been deleted.

IF rdclientv DO freevec(rdclientv)

IF wrclientv DO freevec(wrclientv)

IF rdserverv DO freevec(rdserverv)

IF wrserverv DO freevec(wrserverv)

IF mpxv DO freevec(mpxv)

// The test is now complete

sawritef("*nTcobench completed*n")

} // End of tcobenchcom

This code causes the accumulated statistcs counters to be output before finally
deleting all the tcobench tasks and workspace.

AND wrtime(mess) BE

{ LET v = VEC 14 // Write mess followed by the current date and time.

datstring(v)

sawritef("%s %s %s*n", mess, v, v+5)

}

This function is used to output the time of day at the start and end of the
run.

Chapter 3

The stats Task

The main function of the stats task starts as follows.

AND startstats(pkt) BE

{ LET synclist, synclistlen = 0, 0

LET donelist, donelistlen = 0, 0

LET calibratepkt = 0

LET runpkt, alldone = 0, FALSE

LET bounces = 0 // Number of bounces, zeroed at the start of each period

LET bouncesmax = 0 // The maximum number of bounces in one clock period

LET bouncing = FALSE // TRUE if the bounce pkt has been sent to the bounce task.

LET clocking = FALSE // TRUE if the clock pkt has been sent to the clock

LET clockpkt = TABLE notinuse,

-1, // The clock device number

act_clock, 0, 0,

100 // Return after 100 msec

LET bouncepkt = TABLE notinuse, ?, act_bounce, 0, 0

LET utilisationv = VEC 9

LET cycle = 1

diepkt := 0

bouncepkt!pkt_id := bouncetaskid

FOR i = 0 TO 9 DO utilisationv!i := 0

set_process_name("Stats")

IF tracing DO

sawritef("T%z2 Stats: Task ready*n", taskid)

c_qpkt := c_qpkt+1

qpkt(pkt) // Return the startup packet

24

25

The stats task starts by declaring several variables. These are as follows.
The variable synclist is used to hold the list of sync packets sent by the read
and write clients asking for permission to create and process their next schedules.
The length of the list is held in synclistlen. When this length is climax*2,
all the clients are ready create and process their next schedules, and the stats

task releases them by returning all the sync packets to their clients. Similarly,
donelist holds the list of rddone and wrdone packets that clients send when
they have finished processing their final schedules. When the length of this list
is climax*2, alldone is set to TRUE indicating that it is time to close down the
benchmark.

The calibratepkt variable is set when the calibrate packet is received.
This indicates that the stats task should calibrate the maximum bounce rate
as soon as it is safe to do so. That is when synclistlen is equal to climax*2.
Once calibration is completed, the calibrate packet is returned to the controller
which then sends a run packet to cause the stats task to let the clients start
their first schedules. The run packet is held in runpkt, ready to be returned to
the controller when alldone becomes TRUE.

The variable bounces holds the count of how many times the bounce packet
has been returned from the bounce task during each 100 msec time period, and
bouncesmax holds the maximum number of bounces in any time period. The
variable bouncing is only TRUE when the bounce packet has been sent to the
bounce task but not yet returned. Similarly, clocking is only TRUE while it
is with the clock. The variables clockpkt and bouncepkt hold the clock and
bounce packets.

The vector utilisationv is used to hold the CPU utilisation histogram that
is computed during the run of the benchmark.

Finally the startup packet is returned to the controller, before entering the
main loop of the stats task which deals with packets of the following types:
calibrate, run, sync, rddone, wrdone, addstats, prstats and die. The loop
starts as follows.

{ // Start of stats task event loop.

c_taskwait := c_taskwait+1

pkt := taskwait()

SWITCHON pkt!pkt_type INTO

{ DEFAULT:

sawritef("T%z2 Stats: Unexpected packet from %n type %n*n",

taskid, pkt!pkt_id, pkt!pkt_type)

c_qpkt := c_qpkt + 1

qpkt(pkt) // Return this unexpected packet

ENDCASE

26 CHAPTER 3. THE STATS TASK

CASE act_calibrate:

// Calibrate the maximum bounce rate.

calibratepkt := pkt

UNLESS synclistlen = climax+climax LOOP

// Only perform calibration when all read and write clients

// are ready to run their first schedules.

calibrate:

// We may arrive here from CASE act_sync:

IF tracing DO

sawritef("*nT%z2 Stats: Calibrating the bounce counter*n", taskid)

{ LET cycles = 10 // The number of 100msec time periods to use

// when calibrating tha bounce rate.

bounces := 0

clocking := TRUE // Start clocking

c_qpkt := c_qpkt+1

qpkt(clockpkt)

bouncing := TRUE // Start bouncing

c_qpkt := c_qpkt+1

qpkt(bouncepkt) // This returns as soon as the bounce task can return it.

WHILE clocking | bouncing DO

{ LET pkt = ?

c_taskwait := c_taskwait+1

//Wait for a packet from either the clock or bounce task.

pkt := taskwait()

SWITCHON pkt!pkt_type INTO

{ DEFAULT:

sawritef("T%z2 Stats:*

* System Error: Unexpected packet from %n type %n*n",

taskid, pkt!pkt_id, pkt!pkt_type)

abort(999)

CASE act_clock:

clocking := FALSE

IF bouncesmax=0 DO bounces := 1 // Ignore first time period

IF bouncesmax < bounces DO bouncesmax := bounces

bounces := 0

cycles := cycles - 1

IF cycles DO

27

{ // Start another 100 msecs time period.

c_qpkt := c_qpkt+1

qpkt(clockpkt)

clocking := TRUE

}

LOOP

CASE act_bounce:

bounces := bounces+1

bouncing := FALSE

UNLESS cycles BREAK // Both clk and bounce pkts are back

c_qpkt := c_qpkt+1

qpkt(bouncepkt)

bouncing := TRUE

LOOP

}

}

}

// Calibration is complete and both the clock and bounce

// packets have been returned.

IF tracing DO

sawritef("*nT%z2 Stats: bouncesmax = %n*n*n", taskid, bouncesmax)

pkt := calibratepkt

calibratepkt := 0

c_qpkt := c_qpkt+1

qpkt(pkt) // Give the calibrate packet back to the controller.

LOOP

This loop waits for the next packet by calling taskwait and the switches on its
type. If the packet had type calibrate it is a request from the controller to cali-
brate the maximum rate a which packets can be bounced off the bounce task when
no other tasks as active. The code to do this is at label CASE act_calibrate:

where the packet is placed in the variable calibratepkt. Notice that there is a
check to see whether all the client tasks have requested permission to create and
process their first schedules. If this is not the case, calibration cannot yet take
place and will be activated by a jump to label calibrate when the final sync
packet arrives. During calibration all the other tasks will be suspended.

Calibration runs for 10 time periods of 100 msecs discovering the maximum
number of bounces in any one of these periods. This is placed in bouncesmax.
The variable cycles which is initially 10 is decremented every time the clock

packet is received and when zero the next bounce packet causes the calibration

28 CHAPTER 3. THE STATS TASK

loop to exit. At this point the calibration packet is returned to the controller and
calibratepkt set to zero.

The program continues as follows.

CASE act_run:

runpkt := pkt

// Start the clock

c_qpkt := c_qpkt+1

qpkt(clockpkt)

clocking := TRUE

// Start bouncing

c_qpkt := c_qpkt+1

qpkt(bouncepkt)

bouncing := TRUE

// Fall through in CASE act_sync:

CASE act_sync:

IF pkt!pkt_type=act_sync DO

{ // Request from a client to start the next schedule.

// It is returned when all clients have sent sync packets.

pkt!0 := synclist

synclist := pkt

synclistlen := synclistlen+1

IF tracing DO

sawritef("T%z2 Stats:*

* Sync received from T%z2*n",

taskid, pkt!pkt_id, synclistlen)

}

UNLESS synclistlen = climax+climax LOOP

IF calibratepkt GOTO calibrate

// Note that controller only sends the run packet after

// calibration has been completed.

IF runpkt DO

{ // Run packet and all sync packets received

// so return the sync packets to their clients.

LET p = synclist

IF tracing DO

sawritef("T%z2 Stats: %i2 Releasing all clients*n",

taskid, cycle)

29

cycle := cycle + 1

synclist, synclistlen := 0, 0

WHILE p DO

{ pkt := p

p := p!0

pkt!0 := notinuse

c_qpkt := c_qpkt+1

qpkt(pkt)

}

}

LOOP

Since the code for run and sync packets have much in common, they appear
together. When the run packet arrives it is placed in runpkt and if synclistlen
equals climax*2 all the clients can be release by returning their sync packets to
them. But if some clients have not yet asked permission to create and run their
next schedule, the other clients must remain suspended until the last sync packet
has been received. As stated earlier the controller does not send the run packet
until the calibrate packet has been returned. If the last sync packet is received
when calibratepkt is non zero execution jumps to the calibration code.

The next two cases deal with the clock and bounce packets. Their code is
as follows.

CASE act_clock:

// Keep clocking until alldone=TRUE

UNLESS alldone DO

{ LET u = ?

c_qpkt := c_qpkt+1

qpkt(pkt) // Immediately send the packet back to the clock

// Even after calibration bouncesmax might still increase.

IF bouncesmax < bounces DO bouncesmax := bounces

u := 999 * (bouncesmax-bounces) / bouncesmax / 100

// 0 <= u <= 9

IF tracing DO

sawritef("T%z2 Stats: clock packet received, bounces=%n u=%n*n",

taskid, bounces, u)

UNLESS 0<=u<=9 DO

{ sawritef("T%z2 Controller:*

* System error -- Utilisation u=%n out of range*n",

taskid, u)

abort(999)

30 CHAPTER 3. THE STATS TASK

}

utilisationv!u := utilisationv!u + 1

//IF tracing DO

// sawritef("T%z2 Controller:*

// * Utilisation = %i3 bounces = %i5 bouncesmax = %i5*n",

// taskid, u, bounces, bouncesmax)

bounces := 0

LOOP

}

// alldone=TRUE so we have reached the end of the final

// time period.

clocking := FALSE

// Do not send the packet to the clock device.

IF tracing DO

sawritef("T%z2 Stats:*

* clocking set to FALSE*n",

taskid)

LOOP

CASE act_bounce:

bounces := bounces+1

IF clocking DO

{ // Still in a time period so bounce again

c_qpkt := c_qpkt+1

qpkt(pkt)

LOOP

}

// clocking=FALSE so the end of the final time period

// has been reached. This only happens when a clock packet

// is received when alldone=TRUE.

// We have thus just received the first bounce packet

// after the end of the final time period. It is therefore

// time to return the run packet to the controller.

bouncing := FALSE

IF tracing DO

{ sawritef("T%z2 Stats:*

* bouncing set to FALSE*n",

taskid)

}

31

c_qpkt := c_qpkt+1

qpkt(runpkt)

// We still need to process addstats packets from dying tasks,

// the prstats packet from the controller and the final die

// packet which will cause the stats task to return to DEAD

// state.

LOOP

The clock packet has an argument of 100 causing it to stay with the clock de-
vice for 100 msecs before returning. So receiving the clock packet indicates that
a 100 msec time period has just completed. At this moment the value in bounces

gives an indication of the CPU utilisation in the period just finished. This is con-
verted to a percentage value and the appropriate entry in utilisationv incre-
mented. When alldone becomes TRUE the stats task stops sending the clock

packet to the clock device and sets clocking to FALSE. In this state the next
bounce packet to arrive leaves both clocking and bouncing set to FALSE and
so no more bounce or clock packets will be received and it is time to return the
run packet to the controller. Note that the stats task must continue its event
loop waiting of addstats packets followed by a prstats packet and finally the
die packet.

The next two cases deal with rddone and wrdone packets received from clients.
These indicate that a client has completed processing its last schedule and so has
finished work. The code is as follows.

CASE act_rddone:

CASE act_wrdone:

{ // Client has finished all its schedules.

TEST pkt!pkt_type=act_rddone

THEN { IF tracing DO

sawritef("T%z2 Stats:*

* rddone packet received from T%z2*n",

taskid, pkt!pkt_id)

}

ELSE { IF tracing DO

sawritef("T%z2 Stats:*

* wrdone packet received from T%z2*n",

taskid, pkt!pkt_id)

}

pkt!0 := donelist

donelist := pkt

donelistlen := donelistlen+1

32 CHAPTER 3. THE STATS TASK

IF donelistlen = climax+climax DO

{ // All the rddone and wrdone packets have been received

// so return them to their clients.

LET p = donelist

donelist, donelistlen := 0, 0

WHILE p DO

{ pkt := p

p := p!0

pkt!0 := notinuse

c_qpkt := c_qpkt+1

qpkt(pkt)

}

alldone := TRUE

IF tracing DO

sawritef("T%z2 Stats:*

* alldone set to TRUE*n",

taskid)

}

LOOP

}

As can be seen it stores the rddone and wrdone packets in the list donelist,
maintaining its length in donelistlen. When this length reaches climax*2 all
clients have completed all their schedules and so alldone is set to TRUE. However,
the run packet in runpkt in not returned to the controller until the first bounce
packet is received after the final time period. This ensures that both clocking

and bouncing are both FALSE.
The next two cases deal with addstats and prstats packets. A task’s statis-

tics counters are held in consecutive global locations starting at c qpkt and are
passed to the stats task as a pointer to c qpkt in the a1 field of the addstats

packet. The code for these two cases are as follows and require no further expla-
nation.

CASE act_addstats:

{ // Add the stats from another task.

LET sv = pkt!pkt_a1

c_qpkt := c_qpkt + 1 // Because of qpkt below

// Add a task’s statistics counters to the stats task’s

// own counters.

c_qpkt := sv!p_qpkt + c_qpkt

c_taskwait := sv!p_taskwait + c_taskwait

c_callco := sv!p_callco + c_callco

c_resumeco := sv!p_resumeco + c_resumeco

33

c_cowait := sv!p_cowait + c_cowait

c_condwait := sv!p_condwait + c_condwait

c_notify := sv!p_notify + c_notify

c_notifyAll := sv!p_notifyAll + c_notifyAll

c_inc := sv!p_inc + c_inc

c_incwait := sv!p_incwait + c_incwait

c_lock := sv!p_lock + c_lock

c_lockw := sv!p_lockw + c_lockw

c_delaylong := sv!p_delaylong + c_delaylong

c_bounce := sv!p_bounce + c_bounce

c_print := sv!p_print + c_print

c_logger := sv!p_logger + c_logger

c_readfail := sv!p_readfail + c_readfail

c_sendfail := sv!p_sendfail + c_sendfail

c_rdchecksum := (sv!p_rdchecksum + c_rdchecksum) MOD 1_000_000

c_wrchecksum := (sv!p_wrchecksum + c_wrchecksum) MOD 1_000_000

c_rdcount := sv!p_rdcount + c_rdcount

c_wrcount := sv!p_wrcount + c_wrcount

c_qpkt := c_qpkt+1

qpkt(pkt) // Return the addstats pkt to its task

ENDCASE

}

CASE act_prstats:

// Output the statistics counters that have been accumulated in

// the stats task.

c_qpkt := c_qpkt + 1 // Because of qpkt below

sawritef("*n")

sawritef("Number of calls of qpkt: %i9*n", c_qpkt)

sawritef("Number of calls of taskwait: %i9*n", c_taskwait)

sawritef("Number of calls of callco: %i9*n", c_callco)

sawritef("Number of calls of cowait: %i9*n", c_cowait)

sawritef("Number of calls of resumeco: %i9*n", c_resumeco)

sawritef("Number of calls of condwait(..): %i9*n", c_condwait)

sawritef("Number of calls of notify(..): %i9*n", c_notify)

sawritef("Number of calls of notifyAll(..): %i9*n", c_notifyAll)

sawritef("Number of increments: %i9*n", c_inc)

sawritef(" increment had to wait: %i9*n", c_incwait)

sawritef("Number of calls of lock(..): %i9*n", c_lock)

sawritef(" lock had to wait: %i9*n", c_lockw)

sawritef("Number of %i4 msec delays: %i9*n", delaymsecs, c_delaylong)

34 CHAPTER 3. THE STATS TASK

sawritef("Print task counter: %i9*n", c_print)

sawritef("Calls to logger: %i9*n", c_logger)

sawritef("Send fail count: %i9*n", c_sendfail)

sawritef("Read fail count: %i9*n", c_readfail)

sawritef("Bounce task counter: %i9*n", c_bounce)

sawritef("Read checksum: %i9*n", c_rdchecksum)

sawritef("Write checksum: %i9*n", c_wrchecksum)

sawritef("Read count: %i9*n", c_rdcount)

sawritef("Write count: %i9*n", c_wrcount)

sawritef("*n")

{ LET total = 0

FOR i = 0 TO 9 DO total := total + utilisationv!i

UNLESS total DO total := 1

sawritef(" Approximate CPU utilisation over %n periods of 100 msecs*n*n",

total)

sawritef(" 0-10%% 10-20%% 20-30%% 30-40%% 40-50%% 50-60%%*

* 60-70%% 70-80%% 80-90%% 90-100%%*n")

FOR i = 0 TO 9 DO sawritef("%i5 ", utilisationv!i)

sawritef("*n")

c_qpkt := c_qpkt+1

qpkt(pkt)

ENDCASE

}

The stats task body ends as follows.

CASE act_die:

IF tracing DO

sawritef("T%z2 Stats:*

* Die packet received*n",

taskid)

diepkt := pkt

BREAK

}

} REPEAT

// This point is only reached when when the stats task should

// return to DEAD state, ready for deletion.

35

IF tracing DO

sawritef("T%z2 Stats: Returning the die packet to controller*n", taskid)

c_qpkt := c_qpkt+1

qpkt(diepkt)

IF tracing DO

sawritef("T%z2 Stats: Returning to DEAD state*n", taskid)

RETURN // Return the stats task to DEAD state

// ready for deletion by the controller.

}

The controller sends a die packet to the stats task when all its work is done
telling it to return to DEAD state ready for deletion. The die packet is the only
one that causes an exit from the task’s event loop, which otherwise repeatedly
waits for packets to process.

Chapter 4

The bounce and printer Tasks

The bounce task is created with the lowest priority of any of the tcobench tasks
and so only gain control when all the other tasks are suspended. Its main purpose
is to return bounce packets to the stats task allowing it to estimate the CPU
utilisation. Its code is as follows.

AND startbounce(pkt) BE

{ LET echoco = createco(echofn, 300)

set_process_name("Bounce")

IF tracing DO

sawritef("T%z2 Bounce: Task ready*n", taskid)

c_qpkt := c_qpkt+1

qpkt(pkt) // Return the startup packet

{ c_taskwait := c_taskwait+1

pkt := taskwait()

SWITCHON pkt!pkt_type INTO

{ DEFAULT:

sawritef("T%z2 Bounce: Unexpected packet from %n type %n*n",

taskid, pkt!pkt_id, pkt!pkt_type)

CASE act_bounce:

c_bounce := c_bounce+1

// The following loop is to keep the ratio of

// callcos to qpkts high even when the bounce

// count is high.

FOR i = 1 TO 10 DO

{ c_callco := c_callco+1

callco(echoco, i)

}

36

37

c_qpkt := c_qpkt+1

qpkt(pkt) // Return the packet

LOOP

CASE act_die:

IF tracing DO

sawritef("T%z2 Bounce: die packet received*n", taskid)

// Delete the echo coroutine

IF echoco DO { deleteco(echoco); echoco := 0 }

// Send the bounce statistics to the stats task

sendstats()

IF tracing DO

sawritef("T%z2 Bounce: Returning to DEAD state*n", taskid)

c_qpkt := c_qpkt+1

qpkt(pkt) // Return the die packet to the controller.

RETURN // Return to DEAD state ready for deletion.

}

} REPEAT

}

The bounce task creates an echo coroutine that it repeated calls to keep the
ratio of calls of callco to qpkt roughly the same as if the bounce task was not
being used. The body of the echo coroutine is as follows, and as can be seen is
trivial.

AND echofn(x) BE // The body of echoco

{ c_cowait := c_cowait+1

x := cowait(x)

} REPEAT

The printer task has a priority just greater than the bounce task. It is
occasionally sent packets by server tasks logger coroutines. This usually lets
other tasks gain control while a logger is processing its request.

AND startprinter(pkt) BE

{ LET delaypkt = TABLE notinuse,

-1, // The clock device

act_clock,

0,0, // Result fields

38 CHAPTER 4. THE BOUNCE AND PRINTER TASKS

10 // Delay for 10 msecs

LET q = 0 // List of pending print packets while delaying.

LET printpkt = 0 // Current print packet, if any.

set_process_name("Printer")

IF tracing DO

sawritef("T%z2 Printer: Task ready*n", taskid)

c_qpkt := c_qpkt+1

qpkt(pkt) // Return the startup packet

{ // Start of the printer event loop.

TEST q

THEN { // Dequeue a pending print packet.

pkt := q

q := !q

!pkt := notinuse

IF tracing DO

sawritef("T%z2 Printer: Pending packet %n type %n dequeued*n",

taskid, pkt, pkt!pkt_type)

}

ELSE { // Wait for a print or die packet

c_taskwait := c_taskwait+1

pkt := taskwait()

IF tracing DO

sawritef("T%z2 Printer: Packet %n type %n received*n",

taskid, pkt, pkt!pkt_type)

}

SWITCHON pkt!pkt_type INTO

{ DEFAULT:

sawritef("T%z2 Printer: Unexpected packet from task %n*n",

taskid, pkt!pkt_id)

abort(999)

CASE act_print: // arg1: modech arg2: serno

{ LET modech = pkt!pkt_arg1

LET serno = pkt!pkt_arg2

c_print := c_print+1

IF tracing DO

sawritef("T%z2 Printer: act_print received from %cS%z2*n",

taskid, modech, serno)

39

printpkt := pkt // Save the print packet to be returned after

// 10 msecs.

IF tracing DO

sawritef("T%z2 Printer: sending a delay packet to the clock*n",

taskid)

c_qpkt := c_qpkt+1

qpkt(delaypkt)

{ // Wait for the delay packet to return, queueing any

// other packets that arrive in the mean time.

pkt := taskwait()

IF pkt=delaypkt BREAK

// Insert the packet in q.

!pkt := q

q := pkt

} REPEAT

// The 10 msecs delay has now ended, so return the print

// packet and process another (possibly pending) request.

c_qpkt := c_qpkt+1

qpkt(printpkt) // Return the print packet

printpkt := 0

LOOP

}

CASE act_die:

IF tracing DO

sawritef("T%z2 Printer: die packet received*n", taskid)

// Send the printer statistics to the stats task

sendstats()

c_qpkt := c_qpkt+1

qpkt(pkt) // Send die packet back to the controller

IF tracing DO

sawritef("T%z2 Printer: Returning to DEAD state*n", taskid)

RETURN // Return printer task to DEAD state.

}

} REPEAT

}

Chapter 5

The Read and Write Clients

The read and write client tasks have much in common and so share the same
main function. A read client is started by being given a startrdclient startup
packet and a write client is given a startwrclient packet. These clients repeat-
edly create and perform schedules of requests. Each request specifies a server,
a multiplexor and a channel number, and, for write clients, what data is to be
sent. Requests also contain a flag indicating whether there should be a real time
delay after data has been successfully read from or written to its channel buffer.
The flag could be one of the following letters: c, s, m, indicating a delay in a
client, a server, a multiplexor, respectively. If the flag letter was n then no delay
is specified.

The body of read and write clients start as follows.

AND startclient(pkt) BE

{ // Body of a client task which runs in single-event mode.

// pkt is the startup packet or one of the following

// act_startrdclient a1:clino

// or act_startwrclient a1:clino

// or act_die

LET serverv = 0 // Will hold the vector of read or write servers

// for this client.

LET requestv = getvec(requestvupb)

LET datav = getvec(requestvupb)

// Distinquish between read and write clients.

TEST pkt!pkt_type=act_startrdclient

THEN modech, serverv := ’R’, rdserverv

ELSE modech, serverv := ’W’, wrserverv

clino := pkt!pkt_arg1 // From the startup packet

40

41

UNLESS requestv & datav DO

{ sawritef("T%z2 %cC%z2: Unable to allocate requestv and datav*n",

taskid, modech, clino)

GOTO fin

}

set_process_name("%cC%z2", modech, clino)

setseed(clino+modech*100)

//IF tracing DO

// sawritef("T%z2 %cC%z2: Started*n", taskid, modech, clino)

c_qpkt := c_qpkt+1

qpkt(pkt) // Return the start up packet to the controller

The argument pkt is the startup packet for the client and its type field will
be act startrdclient or act startwrclient depending on whether a read or
write client is being started. The first argument in field arg1 of the packet holds
the client number which will be in the range 1 to climax. For convenience and
efficiency the local variable serverv is set to point to the vector of read or write
servers, as appropriate. The variable modech is set to ’R’ or ’W’ depending on
whether this task is a read or write client.

The schedule is represented by two vectors requestv and datav. Both have
elements ranging from 1 to requestvupb. Request i of the schedule has it flag,
server number, multiplexor number and channel number packed in requestv!i,
and datav!i holds the data to send if the schedule belongs to a write client. For
read clients this field is zero. Clients process the items in their schedules in ran-
dom order using random numbers generated by the call nextrnd(requestvupb).
The call setseed(clino+modech*100) ensures that every client starts with a
different random number seed.

After all this initialisation the startup packet is returned to the controller
allowing it to start another task. The client is now ready to repeatedly create
and perform its schedules. The program to do this starts as follows.

FOR count = 1 TO loopmax DO

{ // Create the schedule of requests for this client in requestv

// and datav (for write client data).

// Each request a specifies different server-multiplexor-channel

// combination and so requestv will contain servmax*mpxmax*chnmax

// items. One will be randomly chosen to have a delay in this

// client, a different one will be randomly chosen to cause

// a delay in server, and a third different one will delay in

42 CHAPTER 5. THE READ AND WRITE CLIENTS

// a multiplexor.

LET pos = 0

LET rqstvupb = requestvupb

LET clidelayitem = 0 // This will be the subscript of requestv of

// the request to delay in this client.

LET srvdelayitem = 0 // This will be the subscript of requestv of

// the request to delay in its server.

LET mpxdelayitem = 0 // This will be the subscript of requestv of

// the request to delay in its multiplexor.

// This client will not create its next schedule until all other

// read and write clients are ready to do the same. This is achieved

// by sending a sync packet to the stats task which is only returned

// when all client sync packets have been received.

sendpkt(notinuse, statstaskid, act_sync, 0,0)

It will perform the iteration loopmax times, but first it must ask permission
to create the next schedule. This is done by sending a sync packet to the stats
task. The sync packet is only returned when all other clients are similarly ready.
The program continues as follows.

// This point is reached when all read and write clients have sent

// sync packets to the stats task.

// This client can now start, create and run its next schedule.

IF tracing DO

{ sawritef("T%z2 %cC%z2: Starting iteration %n out of %n*n",

taskid, modech, clino, count, loopmax)

//abort(1000)

}

// Create a list of requests to be processed.

// Choose three distinct requests to cause real time delays.

clidelayitem := nextrnd(rqstvupb) // In range 1..requestvupb

srvdelayitem := nextrnd(rqstvupb) // In range 1..requestvupb

REPEATWHILE srvdelayitem=clidelayitem

mpxdelayitem := nextrnd(rqstvupb) // In range 1..requestvupb

REPEATWHILE mpxdelayitem=clidelayitem |

mpxdelayitem=srvdelayitem

43

FOR serno = 1 TO srvmax DO

FOR mpxno = 1 TO mpxmax DO

FOR chnno = 1 TO chnmax DO

{ LET flag = ’n’

pos := pos+1

IF pos=clidelayitem DO flag := ’c’ // Client delay

IF pos=srvdelayitem DO flag := ’s’ // Server delay

IF pos=mpxdelayitem DO flag := ’m’ // Multiplexor delay

requestv!pos := flag<<24 | serno<<16 | mpxno<<8 | chnno

datav!pos := modech=’R’ -> 0,

nextrnd(9999) // Range 1 to 9999

}

IF tracing DO

{ sawritef("*nT%z2 %cC%z2: Schedule of work*n",

taskid, modech, clino)

FOR i = 1 TO requestvupb DO

{ // Output the schedule as a debugging aid.

LET req = requestv!i

LET flag = req>>24 & 255

LET serno = req>>16 & 255

LET mpxno = req>>8 & 255

LET chnno = req & 255

LET data = datav!i

sawritef(" %c%cS%z2M%z2C%z2:%z4",

flag, modech, serno, mpxno, chnno, data)

IF i MOD 5 = 0 DO sawritef("*n")

}

UNLESS requestvupb MOD 9 = 0 DO sawritef("*n")

sawritef("*n")

}

It chooses three distinct random positions in the schedule for the client, server
and multiplexor delay requests. It then creates requests for every server, mul-
tiplexor, channel triplet, and creates suitable data values. Note that, although
these requests are in a systematic order, they willactually be processed in random
order.

It tracing is set, the schedule will be output as a debugging aid. The program
continues as follows.

// Now process the requests in the schedule in random order.

WHILE rqstvupb DO

{ LET i = nextrnd(rqstvupb) // Choose a random request from

LET req = requestv!i // the schedule.

44 CHAPTER 5. THE READ AND WRITE CLIENTS

LET data = datav!i // Data for a write client

LET flag = req>>24 & 255 // =’c’ delay in this client,

// =’s’ delay in a server

// =’m’ delay in a multiplexor

// =’n’ no delay

LET serno = req>>16 & 255

LET mpxno = req>>8 & 255

LET chnno = req & 255

The variable rqstvupb was inititially set to requestvupb, the number of
requests in the schedule, but it is decremented every time a request has been
successfully processed. When it reaches zero all the items in the schedule have
been successfully processed and so it is time to leave the loop.

The random subscript position of the next request to process is chosen by the
call nextrnd(rqstvupb), and its fields placed in local variables. What happens
next depends on whether a read or write client is running. The program continues
as follows.

TEST modech=’R’

THEN { // Code for a read client

IF tracing DO

sawritef("T%z2 RC%z2:*

* %c%cC%z2S%z2M%z2C%z2:%z4*

* Sending read request to server*n",

taskid, clino, flag,

modech, clino, serno, mpxno, chnno, data)

data := sendpkt(notinuse, serverv!serno, act_read,

0, 0, flag, clino, serno, mpxno, chnno, data)

IF tracing DO

sawritef("T%z2 RC%z2:*

* %c%cC%z2S%z2M%z2C%z2:%z4*

* Packet returned from server*n",

taskid, clino, flag,

modech, clino, serno, mpxno, chnno, data)

IF data=0 DO

{ // Read was not successful since its channel buffer

// was empty.

IF tracing DO

sawritef("T%z2 RC%z2:*

* %c%cC%z2S%z2M%z2C%z2:%z4 read failed*n*n",

taskid, clino, flag,

modech, clino, serno, mpxno, chnno, data)

45

c_readfail := c_readfail+1

// Delay for 200 msecs to give other tasks a chance to run,

// hopefully allowing write clients to put more data in

// the channels buffers.

delay(200)

LOOP // Try sending another random request from the schedule.

}

// The read request was successful.

IF tracing DO

sawritef("T%z2 RC%z2:*

* %c%cC%z2S%z2M%z2C%z2:%z4 read successful*n",

taskid, clino, flag,

modech, clino, serno, mpxno, chnno, data)

c_rdchecksum := (c_rdchecksum + data) MOD 1_000_000

c_rdcount := c_rdcount+1

}

This is the code for a read client. as can be seen it uses sendpkt to send
a packet to its server. The packet has six arguments completely specifying the
request. The type field of the packet is act read since we are running as a read
client. When this packet returns its result in the res1 field is placed in data.

If data was zero, the read request had failed because the specified channel
buffer was empty, and the client delays for 200 msecs giving write clients a chance
to run hopefully putting more data values in the channel buffers. After this delay
the read client tries again selecting another random request to process.

If data was non zero, it is the data that was successfully extracted from
the specified channel buffer. The read checksum is updated appropriately and
c rdcount is incremented.

The code for a write client is as follows.

ELSE { // Code for a write client.

LET rc = ? // Return code

IF tracing DO

sawritef("T%z2 WC%z2: %c%cC%z2S%z2M%z2C%z2:%z4*

* Sending write request to server*n",

taskid, clino, flag,

modech, clino, serno, mpxno, chnno, data)

rc := sendpkt(notinuse, serverv!serno, act_write,

0, 0, flag, clino, serno, mpxno, chnno, data)

IF rc=0 DO

46 CHAPTER 5. THE READ AND WRITE CLIENTS

{ // Write was not successful since its channel buffer

// was full.

IF tracing DO

sawritef("T%z2 WC%z2:*

* %c%cC%z2S%z2M%z2C%z2:%z4 send failed*n*n",

taskid, clino, flag,

modech, clino, serno, mpxno, chnno, data)

c_sendfail := c_sendfail+1

// Delay for 20 msecs to give other tasks a chance to run.

delay(20)

LOOP // Try sending another random request from the schedule.

}

// The write request was successful in that the data was

// written by the specified multiplexor in the specified

// channel buffer. The data may not have been read yet by

// a read client.

IF tracing DO

sawritef("T%z2 WC%z2:*

* %c%cC%z2S%z2M%z2C%z2:%z4 Data sent*n",

taskid, clino, flag,

modech, clino, serno, mpxno, chnno, data)

c_wrchecksum := (c_wrchecksum + data) MOD 1_000_000

c_wrcount := c_wrcount+1

}

Just as for a read client, a packet is sent to its server containing all the
information about the request. But this time its is being sent to a write server
with a type field of act write. The return code is place in rc and, if it is
zero, the request failed because the specified channel buffer was full. In which
case the write server delays for a short time (20 msecs) before trying again with
another random request. If the write request was successful, the write checksum
is updated and c wrcount incremented.

Both read and write clients then go on to obey the following.

// The read or write request has been successfully processed.

// Delay for delaymsecs if a client delay is specified.

IF flag=’c’ DO

{ IF tracing DO

sawritef("T%z2 WC%z2:*

47

* %c%cC%z2S%z2M%z2C%z2:%z4 Client delay*n",

taskid, clino, flag,

modech, clino, serno, mpxno, chnno, data)

c_delaylong := c_delaylong+1

delay(delaymsecs)

IF tracing DO

sawritef("T%z2 WC%z2:*

* %c%cC%z2S%z2M%z2C%z2:%z4 Client delay ended*n",

taskid, clino, flag,

modech, clino, serno, mpxno, chnno, data)

}

// Remove the read or write request from the schedule.

requestv!i := requestv!rqstvupb

datav!i := datav!rqstvupb

rqstvupb := rqstvupb-1

// Process another request of the schedule, if any.

}

// Create and perform the next schedule.

}

IF tracing DO

sawritef("T%z2 %cC%z2:*

* All iterations completed*n",

taskid, modech, clino)

If the flag field was set to ’c’ then a client delay (typically of 500 msecs) is
performed by calling delay(delaymsecs). Before starting on the next randomly
selected request from the schedule, the current request is overwritten by the
request at the end of the schedule and rqstvupb decremented.

Execution eventually falls out of both nested loops, indicating that the client
has completed all its schedules. The following code then closes down the client.

fin:

IF requestv DO freevec(requestv)

IF datav DO freevec(datav)

// Tell the stats task that this client has finished its

// final schedule.

TEST modech=’R’

THEN { IF tracing DO

sawritef("T%z2 %cC%z2:*

48 CHAPTER 5. THE READ AND WRITE CLIENTS

* Sending act_rddone to the stats task*n",

taskid, modech, clino)

sendpkt(notinuse, statstaskid, act_rddone)

}

ELSE { IF tracing DO

sawritef("T%z2 %cC%z2:*

* Sending act_wrdone to the stats task*n",

taskid, modech, clino)

sendpkt(notinuse, statstaskid, act_wrdone)

}

// Wait for the act_die packet from the controller

IF tracing DO

sawritef("T%z2 %cC%z2:*

* waiting for die packet from the controller*n",

taskid, modech, clino)

c_taskwait := c_taskwait+1

pkt := taskwait()

UNLESS pkt!pkt_type=act_die DO

{ sawritef("T%z2 %cC%z2:*

* System error -- act_die packet expected*n", taskid)

abort(999)

}

IF tracing DO

sawritef("T%z2 %cC%z2:*

* die packet received*n",

taskid, modech, clino)

// Send this client’s statistics to the stats task

sendstats()

IF tracing DO

sawritef("T%z2 %cC%z2:*

* Returning the die packet to the controller*n",

taskid, modech, clino)

c_qpkt := c_qpkt+1 // For qpkt below

qpkt(pkt)

IF tracing DO

49

sawritef("T%z2 %cC%z2: Returning to DEAD state*n",

taskid, modech, clino)

RETURN // Return this Client to DEAD state

}

This code returns the vectors requestv and datav to free store, then sends
a act rddone or act wrdone, as appropriate, to the stats task. These are only
returned from the stats task when all other clients have reached the same state.
The client then waits in taskwait for the die packet from the controller. This
causes the client to send its statistics counts to the stats task before returning the
die packet to the controller, and finally returning from the task’s main function
causing the task to return to DEAD state, ready for deletion by the controller.

Chapter 6

The Read and Write Servers

The read and and write servers receive requests from read and write clients
and pass them on to multiplexor tasks. They run in multi-event mode (using
gomultievent) allowing them to service several requests at the same time. In
this mode requests are processed by worker coroutines. If a worker is held up
for any reason other workers are able to gain control. Worker coroutines have
access to the global vector of the task they belong to. Only one worker can be
executing at any moment and it has control over when it hands over control to an-
other coroutine. This greatly reduces the need to use synchronisation primitives
to control access to shared data. On some occasions synchronisation primitive
are needed and these are provided by the functions lock, unlock, condwait,
notify, notifyAll, coread and cowrite, described below. Each server has a
logger coroutine that workers communicate with after a request has been success-
fully processed, and loggers occasional send requests to the printer task.

Read and write servers have much in common and so share the same main
function which starts as follows.

AND startserver(pkt) BE

{ // This is the body of a read or write server task most of which runs

// in multi-event mode using gomultievent.

// pkt is the startup packet of the form:

// act_startrdserver a1:serno

// or act_startwrserver a1:serno

// This initialises the task as either a read or write server and

// sets its own identity in id.

startuppkt := pkt // Used by servermaincofn

serno := pkt!pkt_arg1 // The read or write server number

modech := pkt!pkt_type=act_startrdserver -> ’R’, ’W’

50

51

set_process_name("%cS%z2", modech, serno)

// Set random number seed for random values to send

// by worker coroutines to the logger.

setseed(serno+modech*100)

gomultievent(servermaincofn, 1000)

The argument pkt) is the startup packet and its type field will be either
act startrdserver or act startwrserver depending on the kind of server being
started. In either case the arg1 field holds the server number to be copied into
the global srvno. The variable modech, the task’s name and the random number
seed are then set before calling gomultievent to enter multi-event mode. This
function is described in detail in section 8.1 below. It enters multi-event mode
and creates a coroutine who main function is servermaincofn which is then given
control. This coroutine allocated some work space and creates and initialises the
logger coroutine and the workers, finally suspending itself waiting for a packet
typically from a client task.

The server will only leave its event loop in gomultievent when it receives a
die packet from the controller task after the client tasks have finished all they
have to do. When this happens execution falls into the following code.

fin:

IF tracing DO

sawritef("T%z2 %cS%z2: dying*n", taskid, modech, serno)

// Send this server’s statistics to the stats task.

IF tracing DO

sawritef("T%z2 %cS%z2:*

* Sending server statistics to stats task*n",

taskid, modech, serno)

sendstats()

// Return the die packet to the controller.

c_qpkt := c_qpkt+1

qpkt(diepkt)

IF tracing DO

sawritef("T%z2 %cS%z2: returning to DEAD state*n",

taskid, modech, serno)

RETURN // Return server to DEAD state

}

52 CHAPTER 6. THE READ AND WRITE SERVERS

The event loop has been exited from as a result of receiving a die packet
which is placed in diepkt for later use. The server’s statistics counters are then
sent to the stats task and the die packet returned to the controller task by
the call qpkt(diepkt). Control then returns from startserver causing the task
to return to DEAD state ready for deletion by the controller.

Before describing of servermanicofn it is worth looking at the functions used
by logger coroutine. The main function is as follows.

AND loggercofn(arg) BE

{ LET i = 0

IF tracing DO

sawritef("T%z2 %cS%z2Log: Ready*n", taskid, modech, serno)

{ // Start of logger loop.

LET a, b = ?, ?

a := coread(@loggerin)

//IF tracing DO

// sawritef("T%z2 %cS%z2log: Received a=%n*n",

// taskid, modech, serno, a)

c_logger := c_logger + 1

i := i+1

// Occasionally the logger sends a message to the printer task

IF i MOD 50 = 0 DO

{ //IF tracing DO

// sawritef("T%z2 %cS%z2log:*

// * logger sending pkt to printer*n",

// taskid, modech, serno)

sendpkt(notinuse, printertaskid, act_print, 0, 0, modech, serno)

//IF tracing DO

// sawritef("T%z2 %cS%z2log:*

// * pkt returned from printer*n",

// taskid, modech, serno)

}

// Occasionally the logger delays briefly

IF i MOD 7 = 0 DO delay(2)

b := coread(@loggerin)

//IF tracing DO

// sawritef("T%z2 %cS%z2log: Received b=%n*n",

// taskid, modech, serno, b)

{ LET x = a+b

//IF tracing DO

53

// sawritef("T%z2 %cS%z2log: Replying %n*n",

// taskid, modech, serno, x, x)

wrpn(x)

cowrite(@loggerout, -1)

}

} REPEAT

}

A logger has a main loop that processes communication with worker corou-
tines. This involves receiving two numbers from a worker and sending back their
sum. Communication is done using the Occam style channel functions coread

and cowrite, described in Section 8.2 below. There is, however, the complication
that between reading the first and second numbers, the logger may communicate
with the printer task or executes a brief real time delay. Worker coroutines will
thus need to uses the synchronisation primitives lock and unlock described in
Section 8.3 below.

Each server has global variables loggerin and loggerout represent-
ing Occam style channels, and uses calls such as coread(@loggerin) and
cowrite(@loggerin,x) to transmit a value through a channel. The logger places
the first value in the local variable a then possibly sends a request to the printer
task using sendpkt followed by possibly delaying for 2 msecs before reading the
second values into b. It then sends the sum a+b to the worker in binary as a
sequence of 0s and 1s terminated by a -1.

This conversion to binary is performed by the function wrpn whose definition
is as follows.

AND wrpn(x) BE IF x DO

{ wrpn(x>>1)

cowrite(@loggerout, x&1)

}

The conversion from binary back to a number is done by the function
getloggerval, defined below. This funtion is used by worker coroutines.

AND getloggerval() = VALOF

{ LET res = 0

{ LET dig = coread(@loggerout)

IF dig<0 RESULTIS res

res := res+res+dig

} REPEAT

}

We are now ready to look at the definition of servermaincofn which starts
as follows.

54 CHAPTER 6. THE READ AND WRITE SERVERS

AND servermaincofn() BE

{ // This is a server’s main coroutine running in multi-event mode under

// the control of gomultievent.

LET pkt, type = ?, ?

// mainco_ready is initially set to FALSE by gomultievent.

diepkt := 0 // Only non zero when the die packet has been received.

// Condition variables are held in this server’s globals and shared

// by this server’s worker coroutines.

// When a work coroutine wishes to process a request it must increment

// its count but may have to wait, using condwait(@countwaitlist),

// if wrkcount-minwrkcount has grown too large. When it increments its

// count and it is possible that minwrkcount must also be incremented.

// If this happens all coroutine waiting on condcondvar should be

// released. This is done by the call: notifyAll(@countwaitlist).

countcondvar := 0 // Used by workers wishing to increment wrkcount.

pktcondvar := 0 // Used by workers waiting for packets to service.

wkq := 0 // List of packets waiting to be served by worker

// coroutines.

wrkcov := getvec(workmax) // Vector of worker coroutines.

countv := getvec(workmax) // Vector of workcounts.

UNLESS wrkcov & countv DO

{ sawritef("T%z2 %cS%z2: Unable to allocate vectors*n",

taskid, modech, serno)

GOTO fin

}

// There are currently no worker coroutines and all counts are zero.

FOR i = 0 TO workmax DO wrkcov!i, countv!i := 0, 0

minwrkcount := 0

busycount := 0 // Count of worker coroutines that are busy

// A worker coroutine is busy when it is processing

// a request packet. It is not busy when waiting on

// countcondvar or pktcondvar.

loggerlock := 0 // The logger mutex

55

loggerin := 0 // Occam style channel for logger input

loggerout := 0 // Occam style channel for logger output

// Create the logger coroutine for this server.

loggerco := initco(loggercofn, 1000)

UNLESS loggerco DO

{ sawritef("T%z2 %cS%z2:*

* Unable to create logger coroutine*n",

taskid, modech, serno)

GOTO fin

}

c_callco := c_callco+1 // Because of callco in initco above

// Create the server work coroutines that will process read or

// write requests

FOR wkno = 1 TO workmax DO

{ LET co = initco(workcofn, 1000, wkno)

UNLESS co DO

{ sawritef("T%z2 %cS%z2W%z2: Unable to create worker coroutine*n",

taskid, modech, serno, wkno)

GOTO fin

}

c_callco := c_callco+1 // Because of callco in initco above

wrkcov!wkno := co

IF tracing DO sawritef("T%z2 %cS%z2W%z2: Worker coroutine ready*n",

taskid, modech, serno, wkno)

}

//IF tracing DO

// sawritef("T%z2 %cS%z2: Ready*n", taskid, modech, serno)

c_qpkt := c_qpkt+1

qpkt(startuppkt)

This coroutine initialises the variables used by this server. The two condition
variables countcondvar and pktcondvar are both set to zero. The variable wkq
holds the list of read or write requests received that have not yet been given to
worker coroutines because, at the time they were received, all workers were busy
with other requests. The vectors wrkcov and countv range from 1 to workmax

and hold the worker coroutine pointers and their counts.
The variables minwrkcount and busycount hold the count value of the least

busy worker and the count of how many workers are currently busy processing
requests. They are thus both initialised to zero.

56 CHAPTER 6. THE READ AND WRITE SERVERS

Worker coroutines communicate with the logger coroutine using the Occam
style channels loggerin and loggerout. To access these channels, workers must
obtain the loggerlock lock. This ensures that a worker can complete all its
interactions with the logger without other workers interfering. The logger corou-
tine is held in loggerco and the workers and their counts are held in successive
elements of wrkcov and countv.

After initialisation has been completed, the startup packet is returned to the
controller and the coroutine enters its event loop whose code is follows.

{ // Start of this server’s event loop

LET chnno, data = ?, ?

// Get a new request from gomultievent.

// It should be a read, write or die packet.

// Bounce or clock packets belonging to worker

// coroutines will be delivered automatically

// to their coroutines by gomultievent.

IF tracing DO

sawritef("T%z2 %cS%z2:*

* Waiting for a request packet from a client*n*n",

taskid, modech, serno)

mainco_ready := TRUE

c_cowait := c_cowait+1

pkt := cowait()

mainco_ready := FALSE

SWITCHON pkt!pkt_type INTO

{ DEFAULT:

sawritef("T%z2 %cS%z2:*

* Unexpected packet received from %cC%z2*n",

taskid, modech, serno, modech, clino)

abort(999)

CASE act_read:

CASE act_write:

type := pkt!pkt_type

clino := pkt!pkt_arg1

//This work coroutine already knows its serno (and modech).

mpxno := pkt!pkt_arg3

chnno := pkt!pkt_arg4

data := pkt!pkt_arg5 // If it is a write request

{ // Append the packet onto the end of the server’s wkq

// and release the first coroutine, if any, waiting on

57

// pktcondvar

LET p = @wkq

WHILE !p DO p := !p

!p, !pkt := pkt, 0

//IF tracing DO

// sawritef("T%z2 %cS%z2:*

// * Calling notify(%n) for condition pktcondvar*n",

// taskid, modech, serno, @pktcondvar)

// Wake up a worker, if any, waiting for a request.

notify(@pktcondvar)

LOOP

}

CASE act_die: // From the controller task.

// Cause this server to return to DEAD state.

IF tracing DO

sawritef("T%z2 %cS%z2: Die packet received*n",

taskid, modech, serno)

diepkt := pkt

// Release all workers on countcondvar.

// They will all notice that diepkt is non zero.

notifyAll(@countcondvar)

BREAK // Ie go to fin

}

} REPEAT

fin:

// Delete all worker coroutines and the logger.

IF tracing DO

sawritef("T%z2 %cS%z2: Deleting worker coroutines*n",

taskid, modech, serno)

FOR wkno = 1 TO workmax IF wrkcov!wkno DO deleteco(wrkcov!wkno)

IF tracing DO

sawritef("T%z2 %cS%z2: Deleting logger coroutine*n",

taskid, modech, serno)

IF loggerco DO deleteco(loggerco)

IF tracing DO

sawritef("T%z2 %cS%z2: Freeing the work space*n",

taskid, modech, serno)

IF wrkcov DO freevec(wrkcov)

IF countv DO freevec(countv)

58 CHAPTER 6. THE READ AND WRITE SERVERS

IF tracing DO

sawritef("T%z2 %cS%z2:*

* Cause gomultievent to return to single event mode*n",

taskid, modech, serno)

multi_done := TRUE

c_cowait := c_cowait+1

cowait() // Return to the controller.

// This point should not be reached.

sawritef("T%z2 %cS%z2: servermaincofn: System error*n",

taskid, modech, serno)

abort(999)

}

The server receives packets using the taskwait call in gomultievent and
those that do not belong to workers are passed to the main coroutine using
callco. The main coroutine thus uses cowait to receive packets. When the
main coroutine is ready to process a packet it sets mainco ready to TRUE and as
soon as it receives one it sets it back to FALSE.

A packet received by gomultievent that does not belong to multi-event corou-
tines is normally given to mainco, but, if mainco ready is FALSE, gomultievent
appends it to the end of queue. If mainco ready is TRUE such a packet is given
to mainco.

The event loop in mainco only expects read, write and die packets and these
are processed by cases in the SWITCHON command.

A read or write request is appended it to wkq by mainco which then calls
notify to wake up a worker, if any, that is ready to process the request. Note
that it is the worker not servermaincofn that dequeues the packet from wkq.

When a die packet is received, it is placed in diepkt and all workers waiting
on pktcondvar and countcondvar are woken up by the call of notifyAll. After
this call all workers will have closed down. The die packet causes mainco to
leave its event loop, where it deletes the logger and worker coroutines and frees
the wrkcov and countv vectors, before setting multi done to TRUE and returning
control to the controller.

Worker coroutines process the requests received by servers. There are several
ways in which a worker might be delayed while processing a request. For instance,
if the worker has already successfully processed five more requests than the least
busy worker, it will suspend itself until minwrkcount is incremented. It may also
be delayed when communicating with the logger and if the request specified that
there should be a delay in the server it will suspend itself in delay(delaymsecs).
So that other workers can run while one is susspended, the server runs in multi-
event mode using gomultievent.

59

When a server receives a request from a client it passes it on to the server’s
main coroutine which, in turn, passes to a worker to do the work. Since read and
write workers have much in common they share the same main function. It is
called workcofn and its definition starts as follows.

AND workcofn(args) BE

{ // This is the body of a server work coroutine.

LET wkno = args!0 // As supplied by initco in servermaincofn

// The server number is already set in serno and

// modech is ’R’ if the work coroutine belongs to a read server.

// If modech is ’W’ the work coroutine belongs to a write server.

// Once initialised, the work coroutine is only given read, write

// or die packets or replies from previous calls it made using

// sendpkt

{ // Start of this worker’s main loop.

// First check that this worker’s work count is small enough to

// allow a request to be service.

LET wrkcount = countv!wkno

// workcount is the number of read or write packets this worker

// has successfully processed. It may never exceed the work count

// of the least busy work coroutine plus maxcountdiff

// (typically=5).

UNLESS wrkcount <= minwrkcount+maxcountdiff DO

c_incwait := c_incwait+1

// Suspend this worker if necessary.

UNTIL wrkcount <= minwrkcount+maxcountdiff | diepkt DO

condwait(@countcondvar)

The worker already knows the number (srvno) of its server and whether it is
a read or write worker (modech). But it must set its own worker number wkno
obtained from args. It then enters the the worker’s event loop where it first
checks to see if its wrkcount is small enough for its to proceed by repeatedly
calling condwait(@countcondvar)} until minwrkcount is large enough or a die

packet has been received. The program continues as follows.

IF diepkt DO

{ c_cowait := c_cowait + 1

60 CHAPTER 6. THE READ AND WRITE SERVERS

cowait() // Return control to servermaincofn

abort(9999) // We should never reach this point

}

// Wait for a read or write request

UNTIL wkq DO

{ c_condwait := c_condwait+1

condwait(@pktcondvar)

// wkq now contains at least one request packet so this

// worker can start processing it.

busycount := busycount + 1

}

If the server receives a die packet, it is placed in diepkt and all workers
waiting on countcondvar are woken up including this one. The controller only
sends a die packet when all read and write clients have completed their work,
and all workers are no longer busy. At which time wkq and countcondvar will be
both be zero. If a die packet has been received the worker immediately returns
control to the server’s main coroutine.

If a die packet has not been received the worker waits for a request packet to
be placed in wkq calling condwait(@pktcondvar), if necessary.

The following code is obeyed when wkq is known to hold a request packet.

{ // Extract the first packet from wkq

LET pkt = VALOF

{ LET p = wkq

wkq := !p

!p:= notinuse

RESULTIS p

}

LET type = pkt!pkt_type

LET flag = pkt!pkt_arg1

LET clino = pkt!pkt_arg2

//This work coroutine already knows its serno (and modech).

LET mpxno = pkt!pkt_arg4

LET chnno = pkt!pkt_arg5

LET data = pkt!pkt_arg6 // Non zero, if it is a write request

IF tracing DO

sawritef("T%z2 %cS%z2W%z2:*

* Processing %c%cC%z2S%z2M%z2C%z2:%z4*n",

taskid, modech, serno, wkno,

flag, modech, clino, serno, mpxno, chnno, data)

61

This code dequeues the first packet from wkq and extracts it parameters into
the variables type, flag, clino, mpxno, chnno and data. The program then
attempts to process the request using the following code.

TEST modech=’R’

THEN { // Read request.

// Send the request to a multiplexor

IF tracing DO

sawritef("T%z2 RS%z2W%z2: %cRC%z2S%z2M%z2C%z2:%z4*

* Sending read request to multiplexor*n",

taskid, serno, wkno,

flag, clino, serno, mpxno, clino, 0)

data := sendpkt(notinuse, mpxv!mpxno, type,

0, 0, flag, clino, serno, mpxno, chnno, 0)

// data=0 if the specified channel buffer was empty

UNLESS data DO

{ // The read failed so immediately return the read

// request to the client.

IF tracing DO

sawritef("T%z2 RS%z2W%z2: %cRC%z2S%z2M%z2C%z2:%z4*

* Returning failed read request to client*n",

taskid, serno, wkno,

flag, clino, serno, mpxno, clino, data)

pkt!pkt_r1 := 0 // Indicate failure.

c_qpkt := c_qpkt+1

qpkt(pkt) // Return the read packet to the read client.

busycount := busycount - 1 // This worker is no longer busy.

LOOP

}

IF tracing DO

sawritef("T%z2 RS%z2W%z2: %cRC%z2S%z2M%z2C%z2:%z4*

* Read request returned from multiplexor with data*n",

taskid, serno, wkno,

flag, clino, serno, mpxno, clino, data)

}

ELSE { // Write request

LET rc = ?

// Then send the request to the specified multiplexor

62 CHAPTER 6. THE READ AND WRITE SERVERS

IF tracing DO

sawritef("T%z2 WS%z2W%z2: %cWC%z2S%z2M%z2C%z2:%z4*

* Sending write request to multiplexor %z2*n",

taskid, serno, wkno,

flag, clino, serno, mpxno, clino, data, mpxno)

rc := sendpkt(notinuse, mpxv!mpxno, type,

0, 0,

flag, clino, serno, mpxno, chnno, data)

// rc = TRUE if successful write

// rc = FALSE if the channel was full

UNLESS rc DO

{ // The write failed so immediately return the write

// request to the client.

IF tracing DO

sawritef("T%z2 WS%z2W%z2: %cWC%z2S%z2M%z2C%z2:%z4*

* Returning failed write request to client*n",

taskid, serno, wkno,

flag, clino, serno, mpxno, clino, data)

pkt!pkt_r1 := FALSE // Indicate failure.

c_qpkt := c_qpkt+1

qpkt(pkt) // Return the write packet.

busycount := busycount - 1 // This worker is no longer busy.

LOOP

}

}

Read and write requests are deal with separately by testing the value of
modech.

A read request causes the worker to send a packet to the specified multiplexor
task and wait for the reply which it then places in data. This is normally a non
zero data value extracted from the specified channel buffer. But if the buffer was
empty, zero was returned indicating failure. In which case the request packet is
returned to the client with an indication of failure and the worker jumps back to
the start of its main loop to process another request. Otherwise execution falls
through to code deals with server actions after a after a successful request.

A write request causes the worker to send a packet to the specified multiplexor
task and wait for the return code which it places in rc. This is normally a non zero
indicating that data was successfully inserted into the specified channel buffer.
But if the buffer was full, rc will be zero indicating failure. In which case the
request packet is returned to the client with an indication of failure and the worker
jumps back to the start of its main loop to process another request. Otherwise
execution falls through to code deals with server actions after a successful request.

63

The program continues as follows.

// The request was successful.

IF flag=’s’ DO

{ // This request specified a server delay, so do it.

IF tracing DO

sawritef("T%z2 %cS%z2W%z2: %c%cC%z2S%z2M%z2C%z2:%z4*

* Start server delay*n",

taskid, modech, serno, wkno,

flag, modech, clino, serno, mpxno, chnno, data)

c_delaylong := c_delaylong+1

delay(delaymsecs)

IF tracing DO

sawritef("T%z2 %cS%z2W%z2: %c%cC%z2S%z2M%z2C%z2:%z4*

* Server delay done*n",

taskid, modech, serno, wkno,

flag, modech, clino, serno, mpxno, chnno, data)

}

This code performs a delay of typically 500 msecs if the request requires a
delay in the server. It is triggered by the flag field of the request being set to
s. The delay function sends an appropriate packet to the clock device using
sendpkt which in multi-event mode only returns when the packet comes back
from the clock. See the definition of gomultievent and sndpkt for more details.

The program continues as follows.

// A request has been successfully processed, so send a message

// to the server’s logger coroutine and check its reply.

lock(@loggerlock)

// Send two random numbers in succession to the logger.

{ LET x = nextrnd(99)

LET y = nextrnd(99)

IF tracing DO

sawritef("T%z2 %cS%z2W%z2: Sending %z2 and %z2 to logger*n",

taskid, modech, serno, wkno, x, y)

cowrite(@loggerin, x)

// Send a pkt to the bounce task to give other tasks a chance

// to run.

sendpkt(notinuse, bouncetaskid, act_bounce, 0,0)

64 CHAPTER 6. THE READ AND WRITE SERVERS

IF tracing DO

sawritef("T%z2 %cS%z2W%z2: Sending %z2 to logger, waiting for reply*n",

taskid, modech, serno, wkno, y)

cowrite(@loggerin, y)

// Check the logger’s reply is x+y.

{ LET reply = getloggerval()

TEST reply=x+y

THEN { IF tracing DO

sawritef("T%z2 %cS%z2W%z2:*

* Reply from logger = %n -- Correct*n",

taskid, modech, serno, wkno, reply)

}

ELSE { sawritef("T%z2 %cS%z2W%z2:*

* Reply from logger = %n -- Bad, should be %n*n",

taskid, modech, serno, wkno, reply, x+y)

abort(999)

}

}

}

unlock(@loggerlock)

This code is only obeyed if a read or write request was successfully performed.
It sends two random numbers separately to the logger coroutine then waits for
the logger’s reply. It is necessary to call lock before starting this communication
and unlock at the end. See the definition below of these function for more
details. The communication is done using the Occam style channels loggerin

and loggerout implemented by the functions cowrite and coread. See their
definitions below for more details. The value returned by the logger is the sum
of the two random numbers, but this is sent in binary as a sequence of 0s and 1s
terminated by -1.

The program continues as follows.

// Now increment wrkcount, incrementing minwrkcount if necessary.

countv!wkno := wrkcount + 1

c_inc := c_inc + 1

IF wrkcount=minwrkcount DO

{ // minwrkcount must be incremented if this worker is the

// only worker with wrkcount=mincount

minwrkcount := minwrkcount+1

65

FOR wrkn = 1 TO workmax IF countv!wrkn < minwrkcount DO

{ // Restore previous minwrkcount

minwrkcount := minwrkcount-1

BREAK

}

wrkcount := wrkcount+1

IF tracing DO

{ sawritef("T%z2 %cS%z2W%z2: Wrkcount=%n minwrkcount=%n*n",

taskid, modech, serno, wkno, wrkcount, minwrkcount)

prcounts()

}

IF wrkcount = minwrkcount DO

{ // minwrkcount has just been incremented so

// wake up all coroutines waiting on countcondvar

IF tracing DO

sawritef("T%z2 %cS%z2W%z2:*

* minwrkcount incremented so calling notifyAll %n*n*n",

taskid, modech, serno, wkno, @loggerlock)

notifyAll(@countcondvar)

}

}

At this stage the worker coroutine must increment it count of how many
requests it has successfully processed. This count is held in the local vari-
able wrkcount and countv!wkno. The only complication is that incrementing
wrkcount may require minwrkcount to be incremented. This only happens if
wrkcount and minwrkcount are equal and all other worker counts are greater
than minwrkcount. If minwrkcount is incremented, all workers waiting for this
to happen are woken up by the call notifyAll(@countcondvar). This code is
thus another demonstration of condition variables.

The program continues as follows.

// The request has been successfully processed, so

// return the request packet to the client.

IF tracing DO

sawritef("T%z2 WS%z2W%z2: %cWC%z2S%z2M%z2C%z2:%z4*

* Returning successful request to client*n",

taskid, serno, wkno,

flag, clino, serno, mpxno, clino, data)

TEST modech=’R’

THEN pkt!pkt_res1 := data // Return the data value, or

ELSE pkt!pkt_res1 := TRUE // indicate a successful write.

66 CHAPTER 6. THE READ AND WRITE SERVERS

c_qpkt := c_qpkt+1

qpkt(pkt) // Return the request packet to the client.

busycount := busycount - 1 // This worker is no longer busy.

}

} REPEAT

}

This code just returns the request packet to its client after filling in a suitable
result in its res1 field. It then goes back to the start of the event loop ready to
process another request. Notice that it decrements busycount since this worker
is no longer processing a request. Notice also that this is done without the need
synchronisation primitives since it is only coroutines in this task that accesses
busycount and only one of them can run at any time and they give up control
voluntarily.

AND prcounts() BE IF tracing DO

{ sawritef("T%z2 %cS%z2: Wrkcounts ",

taskid, modech, serno)

FOR wkno = 1 TO workmax DO

sawritef(" W%z2/%n", wkno, countv!wkno)

sawritef(" minwrkcount=%n*n", minwrkcount)

}

This function is used as a debugging aid to output the worker’s counts allowing
them to be checked than none exceed minwrkcount by more than 5.

Chapter 7

The Multiplexor Tasks

Unlike servers which always process either read or write requests, multiplexors
process both read and write requests and expect them in random order. A multi-
plexor controls several channels which each has an associated buffer to hold data
that has been written but not yet read. Each channel is controlled by a read
and a write worker coroutine, both of which may perform a real time delays. So
that other workers are not held up, the task runs in multi-event mode under the
control of gomultievent.

AND startmpx(pkt) BE

{ // pkt is the startup packet giving the mpx number in its arg1 field.

// Its type field should be {\tt act_startmpx}.

UNLESS pkt!pkt_type=act_startmpx DO

{ sawritef("T%z2: ERROR: startmpx packet expected*n")

abort(999)

}

mpxno := pkt!pkt_arg1 // The number of this mpx task.

mpxbusycount := 0 // The number of channel corroutines

// that are currently busy (ie not

// waiting for requests).

startuppkt := pkt // This global variable allows

// mpxmaincofn to return the startup

// packet to the controller when

// initialisation is complete.

diepkt := 0 // This will contain the die packet

// when it is received.

set_process_name("M%z2", mpxno)

67

68 CHAPTER 7. THE MULTIPLEXOR TASKS

//IF tracing DO

// sawritef("T%z2 M%z2: Calling gomultievent*n", taskid, mpxno)

gomultievent(mpxmaincofn, 1000)

This code processes the multiplexor startup packet. It sets the multiplexor
number obtained from the arg1 field and initialises mpxbusycount and diepkt

to zero. The startup packet is placed in to global startuppkt for use by
mpxmaincofn. It then enters multi-event mode by calling gomultievent. This
creates and enters the main coroutine whose body is mpxmaincofn. It only re-
turns from gomultievent after receiving a die packet indicating that all data
transfers have been completed. At this moment it falls into the following code.

fin:

IF tracing DO

sawritef("T%z2 M%z2: Sending stats data to the stats task*n",

taskid, mpxno)

// Send this multiplexor’s statistics to the stats task

sendstats()

IF tracing DO

sawritef("T%z2 M%z2:*

* Returning the die packet to the controller*n",

taskid, mpxno)

c_qpkt := c_qpkt+1

qpkt(diepkt)

IF tracing DO

sawritef("T%z2 M%z2: Returning to DEAD state*n",

taskid, mpxno)

RETURN // Return this multiplexor to DEAD state

}

This code just sends the multiplexors statistics counts to the stats task
before returning the die packet to the controller. It then returns from startmpx

causing the task to return to DEAD state ready for deletion. The real work of
the multiplexor is controlled by its main coroutine whose body starts as follows.

AND mpxmaincofn() BE

{ // Allocate all the multiplexor work space.

mpxrdcov := getvec(chnmax)

69

mpxwrcov := getvec(chnmax)

rdbusyv := getvec(chnmax)

wrbusyv := getvec(chnmax)

rdwkqv := getvec(chnmax)

wrwkqv := getvec(chnmax)

bufv := getvec(chnmax)

bufpv := getvec(chnmax)

bufqv := getvec(chnmax)

// waiting fo data.

UNLESS mpxrdcov & mpxwrcov &

rdbusyv & wrbusyv &

rdwkqv & wrwkqv &

bufpv & bufqv &

bufv DO

{ sawritef("T%z2 M%z2: getvec failure*n", taskid, mpxno)

GOTO fin

}

FOR chnno = 1 TO chnmax DO

{ mpxrdcov!chnno, mpxwrcov!chnno := 0, 0

rdbusyv!chnno, wrbusyv!chnno := FALSE, FALSE

rdwkqv!chnno, wrwkqv!chnno := 0, 0

bufv!chnno := 0

bufpv!chnno, bufqv!chnno, bufv!chnno := 0, 0, 0

}

// Allocate all the channel buffers

FOR chnno = 1 TO chnmax DO

{ LET buf = getvec(chnbufsize)

UNLESS buf DO

{ sawritef("T%z2 M%z2C%z2: Unable to allocate a buffer*n",

taskid, mpxno, chnno)

GOTO fin

}

bufv!chnno := buf

IF tracing DO

sawritef("T%z2 M%z2C%z2: Allocated buffer size=%n*n",

taskid, mpxno, chnno, chnbufsize)

}

// Create and initialise all the channel read coroutines.

FOR chnno = 1 TO chnmax DO

{ // The following call will create a channel read coroutine

70 CHAPTER 7. THE MULTIPLEXOR TASKS

// leaving it waiting for a read request.

LET co = initco(mpxrdcofn, 1000, mpxno, chnno)

UNLESS co DO

{ sawritef("T%z2 M%z2RC%z2: Unable to create read coroutine*n",

taskid, mpxno, chnno)

GOTO fin

}

c_callco := c_callco+1 // Because of callco in initco above

mpxrdcov!chnno := co

IF tracing DO

sawritef("T%z2 M%z2RC%z2:*

* Created and waiting for a read packet*n",

taskid, mpxno, chnno)

}

// Create and initialise all the channel write coroutines.

FOR chnno = 1 TO chnmax DO

{ // This creates a channel write coroutine leaving it

// waiting in cowait for a multiplexor write packet delivered

// by gomultievent.

LET co = initco(mpxwrcofn, 1000, mpxno, chnno)

UNLESS co DO

{ sawritef("T%z2 M%z2WC%z2: Unable to create write coroutine*n",

taskid, mpxno, chnno)

GOTO fin

}

c_callco := c_callco+1 // Because of callco in initco above

mpxwrcov!chnno := co

IF tracing DO

sawritef("T%z2 M%z2WC%z2:*

* Created and waiting for a write packet*n",

taskid, mpxno, chnno)

}

IF tracing DO

sawritef("T%z2 M%z2:*

* All read and write coroutines created and ready*n*n",

taskid, mpxno)

c_qpkt := c_qpkt+1

qpkt(startuppkt)

It starts by allocating several vectors. They all have elements that range
from 1 to chnmax corresponding to one element per channel. The read and

71

write coroutines for each channel are held in mpxrdcov and mpxwrcov. The
vectors rdbusyv and wrbusyv indicate which read and write coroutines are busy
processing requests, and rdwkqv and wrwkqv hold lists of requests for channel
coroutines that cannot yet be processed because, at the time they were received,
their coroutines were busy. Each channel has a buffer held in bufv and two
pointers into each buffer held in bufpv and bufqv. The buffers are circular and
capable of holding chnbufsize values.

bufpv!chnno is the next available write position in the specified buffer, and
bufqv!chnno is the position in the specified buffer of the next value to be read.
If bufpv!chnno=bufqv!chnno the circular buffer for channel chnno is empty.

After all these vectors have been initialised the startup packet is returned to
the controller, and execution enters the multiplexor’s event loop which starts as
follows. It deals with packets of type act read, act write and act die.

{ // Start of this multiplexor’s event loop

// Get next packet from a server via gomultievent

LET pkt = ?

LET type = ?

// Get a new request from gomultievent

mainco_ready := TRUE

// mainco_ready is TRUE when this multiplexor is ready to

// accept a read, write or die packets.

c_cowait := c_cowait+1

pkt := cowait() // Wait for a read or write from a server

// via gomultievent(...),

// or a die packet from the controller.

type := pkt!pkt_type

mainco_ready := FALSE

SWITCHON type INTO

{ DEFAULT:

sawritef("T%z2 %cS%z2:*

* Unexpected packet received from %cC%z2*n",

taskid, modech, serno, modech, clino)

abort(999)

CASE act_read:

// arguments: a1:flag a2:clino a3:servno a4:mpxno a5:chnno.

{ LET flag = pkt!pkt_arg1

72 CHAPTER 7. THE MULTIPLEXOR TASKS

LET clino = pkt!pkt_arg2

LET serno = pkt!pkt_arg3

LET mpxno = pkt!pkt_arg4

LET chnno = pkt!pkt_arg5

LET data = pkt!pkt_arg6 // =0 for read requests

IF tracing DO

sawritef("T%z2 M%z2:*

* %cRC%z2S%z2M%z2C%z2:%z4 Read request received*n",

taskid, mpxno,

flag, clino, serno, mpxno, chnno, data)

// Insert this packet at head of the queue of

// read work queue for this channel.

pkt!pkt_link := rdwkqv!chnno

rdwkqv!chnno := pkt

IF tracing DO

sawritef("T%z2 M%z2RC%z2:*

* Inserting read request at head of its rdwkq*n",

taskid, mpxno, chnno)

UNLESS rdbusyv!chnno DO

{ c_callco := c_callco+1

callco(mpxrdcov!chnno) // Wake up the channel read coroutine

// if it was not busy.

}

// Process next read, write or die request.

LOOP

}

If the read coroutine for this channel is currently busy, this request is inserted
in its rdwkq queue, otherwise it is given to the read coroutine for this channel. A
read coroutine is busy when it is processing a read packet for its channel, and is
only not busy when it is waiting for another request.

CASE act_write:

// Arguments: a1:flag a2:clino a3:serno a4:mpxno a5:chnno a6:data.

{ LET flag = pkt!pkt_arg1

LET clino = pkt!pkt_arg2

LET serno = pkt!pkt_arg3

LET mpxno = pkt!pkt_arg4

LET chnno = pkt!pkt_arg5

73

LET data = pkt!pkt_arg6 // =0 for read requests

IF tracing DO

sawritef("T%z2 M%z2:*

* %cWC%z2S%z2M%z2C%z2:%z4 Write request received*n",

taskid, mpxno,

flag, clino, serno, mpxno, chnno, data)

// Insert this packet at head of the queue of

// write work queue for this channel.

pkt!pkt_link := wrwkqv!chnno

wrwkqv!chnno := pkt

IF tracing DO

sawritef("T%z2 M%z2WC%z2:*

* Inserting a write request at head of its wrwkq*n",

taskid, mpxno, chnno)

UNLESS wrbusyv!chnno DO

{ c_callco := c_callco+1

callco(mpxwrcov!chnno) // Wake up the channel write coroutine

// if it was not busy.

}

// Process next read, write or die request.

LOOP

}

If the write coroutine for this channel is currently busy, this request is inserted
in its wrwkq queue, otherwise it is passed to its write coroutine. If the buffer for
the specified channel is not full, the write coroutine transfers the data into the
buffer. If the buffer was empty, it wakes up a waiting read coroutine, if any. If a
delay is specified it performs the delay. Finally, it returns the request packet to
its server and waits for the next request. If the buffer is full, the write packet is
immediately returned to its write server with an indication of failure in its res1
field. A write coroutine is only busy while it is processing a request, and only
not busy when it is waiting for another request.

CASE act_die: // From the controller task

// This packet has no arguments.

IF tracing DO

sawritef("T%z2 M%z2:*

* Die packet received*n",

taskid, mpxno)

74 CHAPTER 7. THE MULTIPLEXOR TASKS

diepkt := pkt

BREAK

}

} REPEAT

fin:

// For safety check that none of the read or write

// coroutines are busy and that their work queues are

// empty, and that all channel buffers are empty.

FOR chnno = 1 TO chnmax DO

{ IF bufpv & bufqv UNLESS bufpv!chnno=bufqv!chnno DO

{ sawritef("T%z2 M%z2C%z2: Channel buffer is not empty*n",

taskid, mpxno, chnno)

prbufs()

abort(999)

}

IF rdwkqv & rdwkqv!chnno DO

{ sawritef("T%z2 M%z2C%z2: Read work queue is not empty*n",

taskid, mpxno, chnno)

abort(999)

}

IF wrwkqv & wrwkqv!chnno DO

{ sawritef("T%z2 M%z2C%z2: Write work queue is not empty*n",

taskid, mpxno, chnno)

abort(999)

}

IF rdbusyv & rdbusyv!chnno DO

{ sawritef("T%z2 M%z2C%z2: A read coroutine is still busy*n",

taskid, mpxno, chnno)

abort(999)

}

IF wrbusyv & wrbusyv!chnno DO

{ sawritef("T%z2 M%z2C%z2: A write coroutine is still busy*n",

taskid, mpxno, chnno)

abort(999)

}

}

// Delete all the read and write coroutines

FOR chnno = 1 TO chnmax DO

{ IF mpxrdcov & mpxrdcov!chnno DO deleteco(mpxrdcov!chnno)

IF mpxwrcov & mpxwrcov!chnno DO deleteco(mpxwrcov!chnno)

75

}

// Free all the channel buffers

IF bufv FOR chnno = 1 TO chnmax IF bufv!chnno DO

freevec(bufv!chnno)

// Free all the vectors

IF mpxrdcov DO freevec(mpxrdcov)

IF mpxwrcov DO freevec(mpxwrcov)

IF rdbusyv DO freevec(rdbusyv)

IF wrbusyv DO freevec(wrbusyv)

IF rdwkqv DO freevec(rdwkqv)

IF wrwkqv DO freevec(wrwkqv)

IF bufv DO freevec(bufv)

IF bufpv DO freevec(bufpv)

IF bufqv DO freevec(bufqv)

IF tracing DO

sawritef("T%z2 M%z2:*

* Cause gomultievent to return to single event mode*n",

taskid, mpxno)

multi_done := TRUE // Leave multi event mode

c_cowait := c_cowait+1

cowait() // Return to mpxserver in single event mode.

// This point should not be reached.

sawritef("T%z2 M%z2: mpxmaincofn: System error*n", taskid, mpxno)

abort(999)

}

A die packet only arrives when all client tasks have completed all iterations
of their schedules. It causes the multiplexor to leave its event loop and fall into
the code that sends its accumulated statistics to the stats task, deletes all the
multiplexor coroutines and work space and returns to DEAD state, after returning
the die packet.

Channel read and write coroutines have main functions mpxrdcofn and
mpxwrcofn. The read function starts as follows.

AND mpxrdcofn(arg) BE

{ // This is the main function of a read coroutine for channel chnno.

// It runs in multi-event mode and is woken up by mpxmaincofn when

// there is a request to process and it is not busy.

LET mpxno, chnno = arg!0, arg!1

76 CHAPTER 7. THE MULTIPLEXOR TASKS

LET buf = bufv!chnno

LET p, q = ?, ?

LET flag = ?

LET clino = ?

LET serno = ?

LET data = ?

LET pkt = ?

rdbusyv!chnno := TRUE // Only =FALSE when waiting to be woken up.

mpxbusycount := mpxbusycount+1

It first initialises mpxno and chnno to the multiplexor number and the num-
ber of that channel it is controlling from fields in its startup argument. It also
initialises buf to point to the buffer for the specified channel. It then sets
rdbusyv!chnno to TRUE indicating that this coroutine is currently busy, and
also increments mpxbusycount which hold the count of how many read and write
coroutine of this multiplexor are busy. Execution then falls into the coroutine’s
main loop which starts as follows.

{ // Start of the main loop for the read coroutine for this channel.

// Get the next read packet, waiting if necessary.

UNTIL rdwkqv!chnno DO

{ rdbusyv!chnno := FALSE

mpxbusycount := mpxbusycount-1

IF tracing DO

{ sawritef("T%z2 M%z2RC%z2:*

* Waiting for a read request, busycount=%n*n",

taskid, mpxno, chnno, mpxbusycount)

//abort(1000)

}

c_cowait := c_cowait+1

cowait()

rdbusyv!chnno := TRUE

mpxbusycount := mpxbusycount+1

}

This channel has a list of pending read packets held in rdwkqv!chnno. If the
list is empty, the coroutine must wait until woken up by a call of callco when a
suitable read packet becomes available. When this happens the following code is
executed.

// Dequeue the next read packet

77

pkt := rdwkqv!chnno

rdwkqv!chnno := pkt!pkt_link

pkt!pkt_link := notinuse

// Extract its parameters

flag := pkt!pkt_a1

clino := pkt!pkt_a2

serno := pkt!pkt_a3

data := pkt!pkt_a6

p, q := bufpv!chnno, bufqv!chnno

IF p=q DO

{ // The channel buffer is empty, so return the packet

// to the read server with and indication of failure.

IF tracing DO

{ prbufs()

sawritef("T%z2 M%z2RC%z2: %cRC%z2S%z2M%z2C%z2:%z4*

* Returning failed read packet to its server*n",

taskid, mpxno, chnno, flag,

clino, serno, mpxno, chnno, data)

}

pkt!pkt_r1 := 0 // Indicate failure

c_qpkt := c_qpkt+1

qpkt(pkt)

LOOP

}

This extracts the parameters of the read packet and then tests to see if the
channel buffer is empty. If it is, it fills in the res1 field of the packet to indicate
failure and returns it to its server using qpkt before returning to the start of the
main loop. If the buffer was not empty, execution falls into the following code.

pkt!pkt_r1 := buf!q

bufqv!chnno := (q+1) MOD chnbufsize

IF tracing DO

{ sawritef("T%z2 M%z2RC%z2:*

* Data %z4 extracted from buffer position %n*n",

taskid, mpxno, chnno, buf!q, q)

prbufs()

}

78 CHAPTER 7. THE MULTIPLEXOR TASKS

// Conditionally perform a multiplexor delay

IF flag=’m’ DO

{ IF tracing DO

sawritef("T%z2 M%z2RC%z2: %cRC%z2S%z2M%z2C%z2:%z4*

* Channel delay*n",

taskid, mpxno, chnno, flag,

clino, serno, mpxno, chnno, data)

c_delaylong := c_delaylong+1

delay(delaymsecs)

IF tracing DO

sawritef("T%z2 M%z2RC%z2: %cRC%z2S%z2M%z2C%z2:%z4*

* Channel delay done*n",

taskid, mpxno, chnno, flag,

clino, serno, mpxno, chnno, data)

}

// Return the successful read request packet to its server.

IF tracing DO

sawritef("T%z2 M%z2RC%z2:*

* %cRC%z2S%z2M%z2C%z2:%z4*

* Returning successful read packet to its server*n",

taskid, mpxno, chnno, flag,

clino, serno, mpxno, chnno, data)

c_qpkt := c_qpkt+1

qpkt(pkt) // Return the read request packet to its read server.

// Process the next read packet, if any.

} REPEAT

}

Here it extracts the next data value from the buffer placing in the res1 field
of the packet before incrementing the buffer’s read pointer. Remember that the
buffer is a circular and of size chnbufsize. If flag is set to m, a multiplexor
delay must be performed. This involves a call of delay which in multi-event
mode does not return until the specified delay period has completed. Finally, the
read packet is returned to its server using qpkt.

The main function of write coroutine is similar to mpxrdcofn but is sufficiently
different to deserve its own function which starts as follows.

AND mpxwrcofn(arg) BE

{ LET mpxno, chnno = arg!0, arg!1

LET buf = bufv!chnno

LET p, q = ?, ?

LET r = ?

79

LET flag = ?

LET clino = ?

LET serno = ?

LET data = ?

LET pkt = ?

wrbusyv!chnno := TRUE // Only =FALSE when waiting to be woken up.

mpxbusycount := mpxbusycount+1

As in mpxrdcofn, it intialises mpxno, chnno and buf, mpxbusycount and the
appropriate element of wrbusyv. It then enters its main loop which is as follows.

{ // Start of the main loop for the write coroutine for this channel.

// Get the next write packet, waiting if necessary.

UNTIL wrwkqv!chnno DO

{ wrbusyv!chnno := FALSE

mpxbusycount := mpxbusycount-1

IF tracing DO

{ sawritef("T%z2 M%z2WC%z2:*

* Waiting for a write request*n",

taskid, mpxno, chnno)

//abort(1000)

}

c_cowait := c_cowait+1

cowait()

wrbusyv!chnno := TRUE

mpxbusycount := mpxbusycount+1

}

// Dequeue the next write packet

pkt := wrwkqv!chnno

wrwkqv!chnno := pkt!pkt_link

pkt!pkt_link := notinuse

// Extract its parameters

flag := pkt!pkt_a1

clino := pkt!pkt_a2

serno := pkt!pkt_a3

data := pkt!pkt_a6

IF tracing DO

sawritef("T%z2 M%z2WC%z2: %cWC%z2S%z2M%z2C%z2:%z4*

* Processing a write request*n",

80 CHAPTER 7. THE MULTIPLEXOR TASKS

taskid, mpxno, chnno, flag,

clino, serno, mpxno, chnno, data)

p, q := bufpv!chnno, bufqv!chnno

r := (p + 1) MOD chnbufsize

IF r=q DO

{ // The channel buffer was full, so return the packet

// to the write server with and indication of failure.

IF tracing DO

{ prbufs()

sawritef("T%z2 M%z2WC%z2: %cWC%z2S%z2M%z2C%z2:%z4*

* Returning failed write packet to its server*n",

taskid, mpxno, chnno, flag,

clino, serno, mpxno, chnno, data)

}

pkt!pkt_res1 := FALSE // Indicate failure

c_qpkt := c_qpkt+1

qpkt(pkt)

LOOP

}

It extracts the parameters of the write packet and then tests to see if the
channel buffer is full. If it is, it places 0 in the res1 field to indicate failure, and
returns the packet to its server before jumping back to the start of the main loop.

If the buffer was not full, it falls into the following code.

// Push the data value into the channel buffer

pkt!pkt_res1 := TRUE // Indicate successful write

buf!p := data

bufpv!chnno := r

IF tracing DO

{ sawritef("T%z2 M%z2WC%z2: %cWC%z2S%z2M%z2C%z2:%z4*

* Data pushed into channel buffer*n",

taskid, mpxno, chnno, flag,

clino, serno, mpxno, chnno, data)

prbufs()

}

// Conditionally perform a channel delay

IF flag=’m’ DO

{ IF tracing DO

sawritef("T%z2 M%z2WC%z2: %cWC%z2S%z2M%z2C%z2:%z4*

81

* Multiplexor delay*n",

taskid, mpxno, chnno, flag,

clino, serno, mpxno, chnno, data)

c_delaylong := c_delaylong+1

delay(delaymsecs)

IF tracing DO

sawritef("T%z2 M%z2WC%z2: %cWC%z2S%z2M%z2C%z2:%z4*

* Multiplexor delay done*n",

taskid, mpxno, chnno, flag,

clino, serno, mpxno, chnno, data)

}

// Return the successful write request packet to its server.

IF tracing DO

{ sawritef("T%z2 M%z2WC%z2:*

* %cWC%z2S%z2M%z2C%z2:%z4*

* Returning successful write packet to its server*n",

taskid, mpxno, chnno, flag,

clino, serno, mpxno, chnno, data)

}

c_qpkt := c_qpkt+1

qpkt(pkt)

// Process the next write packet, if any.

} REPEAT

}

Here it pushes its data value into the buffer and sets the res1 to TRUE to
indicate success. If flag is set to m, a multiplexor delay is required and this is
performed by a call of delay. Finally the write packet is returned to its server
before execution jumps back to the start of the main loop.

As a debugging aid the channel buffers can be output using prbufs whose
definition is as follows.

AND prbufs() BE //IF tracing DO

{ FOR chnno = 1 TO chnmax DO

{ LET p = bufpv!chnno

LET q = bufqv!chnno

LET empty = p=q

LET buf = bufv!chnno

sawritef(" M%z2C%z2: Buffer: ", mpxno, chnno)

UNTIL p=q DO

{ LET val = buf!q

sawritef("%z4 ", val) // data

82 CHAPTER 7. THE MULTIPLEXOR TASKS

q := (q+1) MOD chnbufsize

}

sawritef("*n")

IF rdwkqv!chnno DO

{ LET p = rdwkqv!chnno

sawritef(" M%z2C%z2: %s:", mpxno, chnno, empty->"rdrq", "wrrq")

WHILE p DO

{ LET type = p!pkt_type

LET ch = type=act_read -> ’R’,

type=act_write -> ’W’,

’?’

sawritef(" %cS%z2", ch, p!pkt_arg3) // serno

UNLESS empty DO sawritef("/%z4", p!pkt_arg6)

p := !p

}

sawritef("*n")

}

}

}

Chapter 8

Miscellaneous Functions

This chapter covers various functions used by the benchmark program. These
include findpkt, sndpkt, sendpkt and gomultievent used to implement multi-
event tasks. Occam style channels are implemented using cowrite and coread.
Locks are implemented by the functions lock and unlock. Condition variables
are implemented using condwait, notifyAll and notify. Finally, a random
number system is implemented by nextrnd and setseed.

8.1 Multi-event Tasks

Tasks in Cintpos often receive packets asking them to perform some operation
before returning the packet to the client. These requests are usually performed
one at a time, finishing each request before starting work on the next. Such tasks
are said to run in single-event mode, but if servicing a request requires interaction
with other tasks or devices, particularly if this many involve real time delays, it
may be better to allow the task to service more than one request at the same
time. This can be done by passing requests to worker coroutines. If one worker
coroutine is held up for any reason, control can be passed to another worker to
continue servicing a different request. A task organised in this way is said to run
in multi-event mode. One way to setup a multi-event task is to call the function
gomultievent which is described later. But first we will describe some of the
functions it uses.

Multi-event tasks have worker coroutines to service requests. If a worker
wishes to communicate with a device or another task it should call sendpkt. The
arguments of this function hold the fields of the packet to be sent. The normal
version of sendpkt send the packet using qpkt then waits for the packet to be
returned. Its definition is as follows.

AND sendpkt(link,id,type,res1,res2,a1,a2,a3,a4,a5,a6) = VALOF

{ c_qpkt := c_qpkt+1

UNLESS qpkt(@link) DO

83

84 CHAPTER 8. MISCELLANEOUS FUNCTIONS

{ sawritef("T%z2: System error in sendpkt, id=%n type=%n*n", taskid, id, type)

abort(181)

result2 := 0

RESULTIS 0

}

c_taskwait := c_taskwait+1

IF taskwait() = @link DO

{ result2 := res2

RESULTIS res1

}

sawritef("T%z2: System error in sendpkt: Bad packet received*n", taskid)

abort(182)

result2 := 0

RESULTIS 0

}

This version of sendpkt overrides the standard library version, the only differ-
ence being that it has to gather statistics about the usage of qpkt and taskwait.
It fails with abort 181 if the call of qpkt fails or if the wrong packet is returned.

In multi-event mode, the packet sent by sendpkt need not be the next packet
received by the task. It may, for instance, be a packet a different worker coroutine
was expecting or it may be a new request packet. So a different version of sendpkt
is required. This multi-event version is called sndpkt and its definition is as
follows.

AND sndpkt(link, id, act, res1, res2, a1, a2, a3, a4, a5, a6) = VALOF

{ LET next, pkt, co = pktlist, @link, currco

// Safety check -- sndpkt cannot be called from a root coroutine

IF currco!co_parent<=0 DO

{ sawritef("T%z2 sndpkt currco=%n:*

* Can’t sndpkt %n(id=%n,type=%n) from root coroutine*n",

taskid, currco, pkt, id, act)

abort(999)

}

pktlist := @next // Insert the node [next, pkt, co] at the

// head of pktlist.

c_qpkt := c_qpkt+1

UNLESS qpkt(pkt) DO // Send the packet.

{ sawritef("T%z2 sndpkt currco=%n:*

* qpkt failure*n",

8.1. MULTI-EVENT TASKS 85

taskid, currco)

abort(181)

}

{ LET p = ?

c_cowait := c_cowait+1

p := cowait() // Wait for gomultievent to wake up this

// coroutine with the expected packet.

IF p=pkt BREAK // Check it was the right one.

sawritef("T%z2 sndpkt currco=%n:*

* Wrong packet %n received*n",

taskid, currco, pkt)

abort(182)

} REPEAT

result2 := res2

RESULTIS res1

}

The arguments of sndpkt are the same as those of sendpkt being the laid out
fields of a packet. The pointer to this packet (pkt) is therefore set to @link.

There is a list (pktlist) of packet-coroutine pairs that allows gomultievent
to determine whether newly received packet belongs to a waiting a worker corou-
tine. Note that each node in the pktlist contains three fields [next,pkt,co]
formed out of consecutive local variables. Having inserted this node at the head
of pktlist, sndpkt sends the packet using qpkt and waits for its return by call-
ing cowait. It only resumes control when gomultievent receives its expected
packet.

The returned result is the res1 field of the packet and result2 is set to the
res2 field.

The function findpkt, defined below, searches the list of packets belonging
to worker coroutines. If a matching item is found, it is dequeued from pktlist

returning the appropriate coroutine pointer. If no matching item is found, it
returns zero. This function is only used by gomultievent.

AND findpkt(pkt) = VALOF

{ LET a = @pktlist

{ LET p = !a

UNLESS p RESULTIS 0 // Matching item not found

IF p!1 = pkt DO

{ !a := !p // Remove the matching item from pktlist.

RESULTIS p!2 // Return the coroutine pointer.

86 CHAPTER 8. MISCELLANEOUS FUNCTIONS

}

a := p

} REPEAT

}

Note that the length of pktlist is limited to the number of worker coroutines
controlled by gomultievent since each worker can only contribute at most one
item in the list. If the length is large, pktlist could easily be replaced by a hash
table, requiring only small modifications to findpkt, sndpkt and gomultievent.
For this benchmark, a simple list is fine. If the average length of pktlist is sub-
stantially less than the number of worker coroutines, it may be worth allocating
fewer workers.

We can now look at the definition of gomultievent which starts as follows.

AND gomultievent(maincofn, stacksize) BE

{ LET mainco = createco(maincofn, stacksize)

LET oldsendpkt = sendpkt

LET queue = 0 // Queue of packets waiting to be processed by mainco.

UNLESS mainco RETURN

sendpkt, pktlist := sndpkt, 0 // Enter multi-event mode.

multi_done := FALSE // =TRUE when it is time to return to single

// event mode.

mainco_ready := FALSE // =TRUE when mainco is ready to process

// packets. If FALSE, packets are appended

// to queue by gomultievent and given to

// mainco later.

c_callco := c_callco+1

callco(mainco, 0) // Tell mainco to initialise itself

// by allocating workspace and creating

// coroutines as necessary.

This function takes two arguments maincofn, and stacksize that it uses to
create the coroutine mainco which is then given control using callco allowing it
to allocate work space and create worker coroutines. When this initialisation is
complete, gomultievent enters its multi-event loop whose code is as follows.

UNTIL multi_done DO // Multi-event loop

{ LET pkt = taskwait()

LET cptr = findpkt(pkt)

c_taskwait := c_taskwait+1

8.1. MULTI-EVENT TASKS 87

TEST cptr

THEN { // cprt is the multi-event coroutine waiting for this packet.

c_callco := c_callco+1

callco(cptr, pkt) // Give pkt to this coroutine.

}

ELSE { UNLESS mainco_ready DO

{ // This packet does not belong to a multi-event

// coroutine and mainco is busy, so append it

// onto the end of queue and wait for another

// packet.

// Note that this code is only obeyed if mainco

// is suspended waiting for a particular packet,

// as in a call of delay. In tcobench this never

// happens.

LET p = @queue

WHILE !p DO p := !p

!pkt, !p := 0, pkt

LOOP

}

// This packet does not belong to a multi-event

// coroutine and mainco is not busy, so give it

// to mainco.

c_callco := c_callco+1

callco(mainco, pkt) // Give the packet to mainco.

}

// Try to deal with the packets in queue.

WHILE queue & mainco_ready DO

{ pkt := queue // De-queue a pending request packet.

queue := !pkt

!pkt := notinuse

c_callco := c_callco+1

callco(mainco, pkt) // Give it to mainco.

}

} // End of UNTIL multi_done loop.

Packets can be sent to a task using qpkt and these are normally placed in the
wkq field of the task’s control block. They can then be extracted from the queue
one at a time by calls of taskwait. In a multi-event task, the call of taskwait
occurs at the beginning of its event loop in gomultievent, placing the packet
in pkt. The packet is then looked up using findpkt to see if it belongs to a
worker coroutine. If it did, findpkt would have removed its entry in pktlist

and returned a pointer to its coroutine which is placed in cptr. gomultievent

then makes the call callco(cptr,pkt) to give the packet to its waiting worker.

88 CHAPTER 8. MISCELLANEOUS FUNCTIONS

If the packet does not belong to a waiting worker, it will be a request packet to
be processed by mainco, but if mainco is currently busy (mainco ready=FALSE)
it will be appended to the end of the list queue. When mainco finishes process-
ing a packet, it sets mainco ready to TRUE and returns to gomultievent which
immediately gives it the next request packet from queue, if there is one.

When multi done becomes TRUE control will leave the event loop and fall into
the following code.

// All coroutines and work space created by mainco must have

// been deleted.

sendpkt := oldsendpkt // Return to single-event mode.

deleteco(mainco) // Delete the coroutine created

// by gomultievent.

}

This causes the task to return to single event mode before returning from
gomultievent.

In process control applications, worker coroutines typically use little CPU
time before suspending themselves. On the rare occasions where a worker requires
substantial CPU time, it should repeated suspend itself to give other workers a
chance to proceed. This can easily be done by sending a dummy packet to itself
using sendpkt. Since qpkt appends its packet to the end of the task’s work queue,
earlier packets will be processed before this suspended worker resumes execution.

8.2 Occam Channels

Within the servers, communication between worker coroutines and the logger is
done using Occam style channels. This is implemented by the functions coread
and cowrite and these provide a good demonstration of the functions callco,
cowait and resumeco. The definitions of coread and cowrite are as follows.

AND cowrite(ptr, data) BE

{ LET cptr = !ptr

TEST cptr

THEN { !ptr := 0

}

ELSE { !ptr := currco

// Wait for the pointer to the reading coroutine

c_cowait := c_cowait+1

cptr := cowait()

8.2. OCCAM CHANNELS 89

}

// cptr points to the reading coroutine which is

// guaranteed to be inactive.

c_callco := c_callco+1

callco(cptr, data) // Send the data to coread

}

AND coread(ptr) = VALOF

{ LET cptr = !ptr

IF cptr DO

{ !ptr := 0 // Clear the channel word

c_resumeco := c_resumeco+1

RESULTIS resumeco(cptr, currco)

}

!ptr := currco // Set channel word to this coroutine

c_cowait := c_cowait+1

RESULTIS cowait() // Wait for value from cowrite

}

As can be seen, both definitions are short especially if we remove the code to incre-
ment the counters s callco, c cowait and c resumeco, which are only present
to allow tcobench to gather statistics. These functions are somewhat subtle and
so they will be described in detail.

We will name the coroutine that makes the coread call: coroutine R, and
name its parent: coroutine P. So coroutine R will have gained control by a call of
callco within coroutine P, and if coroutine R now executes cowait, control will
return to coroutine P. We will name the coroutine that makes the cowrite call:
coroutine W. The first argument (ptr) of both cowrite and coread is a pointer
to the channel word being used to synchronize the communication, and the second
argument of cowrite holds the data to be transmitted to coread. When neither
R nor W are ready to communicate, the channel word will be zero. The first
coroutine wishing to communicate will find that !ptr is zero and will replace it
by a pointer to its own coroutine. This is done by the assignment !ptr:=currco.
It then calls cowait to wait for the other coroutine to reach the communication
point. When the other coroutine is ready, it will discover that the channel word
is non zero and so must point to the coroutine wishing to communicate with it.
It places this other coroutine pointer in the variable cptr.

If this was done within cowrite, it will know that cptr points to coroutine
R allowing it to immediately transfer the data by the call callco(cptr,data)
causing coread in coroutine R to return with result data. The next time corou-

90 CHAPTER 8. MISCELLANEOUS FUNCTIONS

tine R suspends itself (possibly executing cowait in coread), control will return
to coroutine W causing it to return from its call of cowrite.

If it was coread within coroutine R that discovered the channel word was
non zero, it must give coroutine W the pointer to coroutine R. Unfortunately,
if this was done by the call callco(cptr,currco), it would leave coroutine
R still active and cowrite would be unable to transfer the data it it. How-
ever, coread can, instead, use resumeco(cptr,currco). This call is similar to
callco(cptr,currco) but sets the parent field of coroutine W to P, instead of
R, and, more crucially, it clears the parent field of coroutine R leaving it inactive,
thus allowing cowrite to transfer the data by the call callco(cptr,data).

Since callco, cowait and resumeco are all implemented efficiently, this im-
plementation of Occam channels is efficient.

8.3 Locks

As we have seen, a worker coroutine within a tcobench server communicates
with the logger using Occam style channels. Since the logger occasionally com-
municates with the printer task or perform real time delays, other coroutines
within the server may gain control. Locks are thus necessary to ensure that one
coroutine can complete its interractions with the logger without interference from
others.

A lock is implemented by the functions lock and unlock defined below using
a simple variable to represent the lock, such as loggerlock, normally held in
the task’s global vector. When unlocked, its value will be zero. If it is locked by
just one coroutine and no other coroutines are waiting for it, its value will be -1,
but if a coroutine has obtained the lock and others are waiting for it, the lock
variable will the hold a list of waiting coroutines. Nodes in this list are of the
form [link, cptr] where link is either zero or points to the next node, and
cptr identifies a coroutine waiting for the lock. Note that these nodes are formed
out of consecutive local variables.

The arguments to both lock and unlock are both pointers to lock variables,
for example lock(@loggerlock) and unlock(@loggerlock). The definition of
lock is as follows.

AND lock(ptr) BE

{ c_lock := c_lock+1 // Gather locking statistics

TEST !ptr

THEN { // The lock was locked

LET link, cptr = 0, currco // Create a lock node [link, cptr]

TEST !ptr=-1

THEN { !ptr := @link // It was locked by just one

} // coroutine, so make a unit list.

8.4. CONDITION VARIABLES 91

ELSE { LET p = !ptr // Othewise append the lock node

WHILE !p DO p := !p // to the end of the list.

!p := @link

}

c_lockw := c_lockw+1 // Gather locking statistics

c_cowait := c_cowait+1

cowait() // Suspend until released by unlock(..).

// We now own the lock and !ptr will be non zero

}

ELSE { !ptr := -1 // Mark as locked by just one coroutine

}

}

The definition of unlock is just as simple and is as follows.

AND unlock(ptr) BE

{ LET node = !ptr

UNLESS node DO

{ sawritef("%z2 co %n:*

* Attempt to free a lock that is not locked*n",

taskid, currco)

abort(999)

RETURN

}

TEST node=-1

THEN { !ptr := 0 // The lock was owned by only one

} // coroutine, so free it.

ELSE { // Release a coroutine waiting on this lock

LET next, cptr = node!0, node!1

!ptr := next -> next, -1

c_callco := c_callco+1

callco(cptr)

}

}

8.4 Condition Variables

Sometimes a program must wait until a potential complicated condition is satified.
This facility is made available by the functions condwait, notify and notifyAll.
A typical example is the following.

UNTIL wrkcount <= minwrkcount+maxcountdiff | diepkt DO

condwait(@countcondvar)

92 CHAPTER 8. MISCELLANEOUS FUNCTIONS

Every time the value of a variable changes that could cause the condition to be
satified, either the call notify(@countcondvar) or notifyAll(@countcondvar)
could be called to release one or more of the coroutines waiting on this condition.
The UNTIL loop will immediately call condwait again if the condition is still not
satisfied.

A condition variable, such as countcondvar, is implemented as a list of corou-
tines waiting on the condition. Each node in the list is of the form: [next,cptr]
where next points to the next node in the list, and cptr points to a coroutine.
The end of the list is marked by a null pointer. These nodes are formed out of
consecutive local variables in condwait. The definition of condwait, below, is
particularly simple, especially if we remove the code to implements the counters
c condwait and c cowait.

AND condwait(condvarptr) BE

{ LET next, ptr = !condvarptr, currco // Form a node [next, cptr]

c_condwait := c_condwait+1 // Gather statistics

!condvarptr := @next

c_cowait := c_cowait+1

cowait() // Suspend until woken up by norify

// or notifyAll indicating that the

// waiting condition may now be

} // satisfied.

To wakeup all coroutines waiting on a specified condition we call notifyAll,
defined below. Again this function can be even simpler if we remove the code to
increment statistics counts.

AND notifyAll(condvarptr) BE

{ LET p = !condvarptr

c_notifyAll := c_notifyAll+1

!condvarptr := 0 // Clear the wait list since some of released

// coroutines may immediately wait on the

// same condition.

WHILE p DO { // Give control, int turn, to every coroutine that

// is waiting on this condition.

LET cptr = p!1

p := !p

c_callco := c_callco+1

callco(cptr)

}

}

8.5. RANDOM NUMBERS 93

Sometimes we only wish to release one coroutine waiting on a condition and this
is done using notify, defined as follows.

AND notify(condvarptr) BE

{ LET p = !condvarptr

c_notify := c_notify+1

UNLESS p RETURN // No coroutines waiting on this condition

// There is at least one coroutine waiting on this condition.

!condvarptr := !p // Dequeue the first one.

// Release the first waiting coroutine.

c_callco := c_callco+1

callco(p!1)

}

Note that using consecutive local variables to represent wait list nodes has
the advantage that they are freed automatically at the appropriate moment.

8.5 Random Numbers

This benchmark program uses a language and machine independent random num-
ber generator based on a feedback shift register and modulo arithmetic. For each
task, the current state is held in the global seed which can be set by calling
setseed. The random numbers themselves are generated by calls of nextrnd.
These two functions are defined as follows.

// Return a machine independent random number between 1 and max

AND nextrnd(max) = VALOF

{ MANIFEST {

//feedback = #xD008 // 16 15 13 4 => period 2^16-1

feedback = #x80200003 // 32 22 2 1 => period 2^32-1

// #x80200003 = 1000 0000 0010 0000 0000 0000 0000 0011

// | | ||

// | | |1

// 32 22 2

}

TEST (seed&1)=0

THEN seed := seed>>1

ELSE seed := seed>>1 XOR feedback

RESULTIS (seed>>1) MOD max + 1

}

94 CHAPTER 8. MISCELLANEOUS FUNCTIONS

AND setseed(a) BE

{ seed := a | 1 // Ensure that the seed is non zero.

FOR i = 1 TO nextrnd(50) + 10 DO nextrnd(1000)

}

This random number generator is based on a 32-bit linear feedback shift reg-
ister. Every time nextrnd is called, seed is shifted to the right by one position,
and if seed was previously odd some of the bits of the new value of seed are
complemented by the application of XOR feedback. Provided feedback is well
chosen, seed will cycle through all 232 − 1 possible non zero values in seemingly
random order. Of course, if seed starts at zero it remains at zero for ever. The
following code near the beginning of the function start can be used to check how
many calls of nextrnd are necessary to cause seed to return to one when started
at one.

IF FALSE DO // Comment out this line to test the nextrnd function.

{ LET i = 0

// Find the period of the random number feedback shift register.

// It should be 2^32-1 = #xFFFFFFFF.

seed := 1

{ i := i+1

nextrnd()

IF seed=1 DO

{ sawritef("Random number cycle length = %n %x8*n", i, i)

RESULTIS 0

}

IF (i & #xFFFFFF) = 0 DO

sawritef("i = %x8*n", i)

} REPEAT

}

If you wish to learn more about linear feedback shift registers do a web search
using the keys linear feedback shift register.

Appendix A

Java Translation

This is an early and incomplete draft of a Java translation of tcobench.b. I have
included it mainly to allow me to look at it on my iPad.

//############# UNDER DEVELOPMENT ################################

//############# NOT YET WORKING ################################

/*

This will be a Java translation from BCPL of the new version of the

Tcobench Benchmark. See the file tcobench.pdf available via my home

page (www.cl.cam.ac.uk/users/mr10) for details.

Implemented by Martin Richards (c) December 2015

Change History

01/10/15 Implementation started.

This Java version of the tcobench benchmark program attempts to follow

the logic of the BCPL version as closely as possible. It uses

coroutines implemented by callco, resumeco and cowait, defined as

methods in the abstract class Task. The functions qpkt and taskwait

are also defined in this class. Sub-classes of Task are use different

constructors to model both Tripos tasks and BCPL coroutines.

The class Globals holds environment values, such as climax and

tracing. The variable g is present in every task and coroutine

allowing them to use expressions such as g.climax and g.tracing. Once

initialised these values remain constant and so can be accessed

without using synchronisation features. Declaring all variables in

Globals as volatile may be safer but less efficient.

95

96 APPENDIX A. JAVA TRANSLATION

Tasks and coroutines are not created using createtask or creatco as in

the BCPL, but use new and start typically as follows.

g.clock = new Clock("Clock", g, 10);

g.clock.start();

or

loggerco = new Loggerco("Logger", t);

loggerco.parent = this;

loggerco.value = null;

t.currco = echoco;

loggerco.start();

These both create and start Java threads. The run method defined in

Task causes new tasks to be left waiting in taskwait for a startup

packet, and non root coroutines to be left in the call of cowait in

the coroutine main loop.

while (!dying) c = fn(cowait(c));

For coroutines, t is the owning task. This is assigned to the instance

variable t allowing convenient access to fields of the owning task

such as t.wkq or t.currco. Such values are analogous to BCPL global

variables of the owning task. Note that each task has its own work

queue and current coroutine and these must be accessible to the

methods qpkt, taskwait, callco, resumeco and cowait that are all

method of class Task.

When a new coroutine is created t.currco is the creating coroutine and

so is the initial parent of the newly created coroutine. Coroutine

threads have the same priority as the owning task. The class

representing a non-root coroutine should be a sub-class of class Task

giving direct access to methods such as qpkt, taskwait, callco and

cowait. They should not be sub-classes of the owning task’s class.

The clock device is implemented as a high priority task that models

the Tripos clock device as closely as possible. It uses a priority

queue based on the heap structure used in heapsort.

The Java classes that model the Tripos tasks are: Controller, Clock,

Stats, Bounce, Printer, Client, Server and Multiplexor. The classes

modelling coroutines are: Workerco, Loggerco, Mpxrdco, Mpxwrco and

Echoco. Coroutines belonging to a task can only be created by

coroutines belonging to the same task. The root coroutine is created

97

when the task was created, and is initially suspended in taskwait()

waiting for its startup packet. All other coroutines belonging to a

task are suspended in callco, resumeco or cowait except for the

current coroutine whose thread is held in t.currco. The variable t

always points to the instance variables of the owning task.

*/

//**

//*************************** Tcobench *********************************

//**

public class Tcobench implements Manifests {

// This is the main class of the tcobench benchmark program.

// Its static method main is the first to be entered.

static String coName = "Tcobench";

public static void main(String[] args)

{

// Global variables accessible to all tasks and coroutines

// in the benchmark.

Globals g = new Globals();

g.startmsecs = System.currentTimeMillis(); // Needed by nowmsecs()

System.out.println("\n###### THIS PROGRAM IS UNDER DEVEOPMENT ######\n");

System.out.println("Thread and Coroutine Benchmark");

System.out.println("Implemented in Java using coroutines\n");

// Read the Tcobench parameters and place them in the instance of

// class Globals accessible via g.

g.rdargs(args);

// Create the Controller task

g.controller = new Controller("Controller", g, Thread.MAX_PRIORITY-1);

//if (g.tracing) System.out.println(coName+": Creating task "+g.controller.coName);

//System.out.println(coName+": Giving the controller it startup pkt");

// We would like to perform:

// qpkt(new Pkt(null, g.controller, act_startcontroller));

// but this cannot be done from a static context, so we do it

// by ad hoc means.

98 APPENDIX A. JAVA TRANSLATION

g.controller.wkq = new Pkt(null, g.controller, act_startcontroller);

g.controller.currco = null; // No valid current coroutine yet.

// This will be the parent of the

// Controller coroutine.

//System.out.println(coName+": Starting task "+g.controller.coName);

g.controller.start();

// Note that unwait can be used to resume the execution of taskwait

// as well as suspended coroutines since it is just a synchronized

// method that calls notifyAll().

// The controller will find it has its startup packet in wkq

// and so will immediately return with it from its initial call of

// taskwait(). The startup packet will then be given to the

// controller’s fn method. Returning from fn will cause run to

// return and this caused the controller to die.

//System.out.println(coName+": Wait for the Controller to finish\n");

// Wait for the controller to finish

try { g.controller.join(); }

catch(Exception e) {}

System.out.println(coName+": Controller has finished");

System.out.println("Tcobench has finished");

return;

}

public Object fn(Object x) {

System.out.println(coName+": fn called");

return null;

}

}

//**

//**************************** Cortn ***********************************

//**

abstract class Cortn extends Thread implements Manifests {

// All sub-classes of Cortn must define its main function fn.

// This is a simple class that just defines a few variables

99

// that belong to coroutines.

// All coroutines have names held in coName

String coName;

public Globals g; // The global parameters, accessible to all

// coroutines.

Task t; // The task that owns this coroutine. It used

// by methods such as callco, and cowait defined

// in this class.

// Note the r points to the same set of instance

// variables but is declared in each coroutine class

// with the appropriated type.

// Each coroutine has a parent field which may be null.

public Cortn parent; // This coroutine’s parent.

Object value; // The value passed to this coroutine.

boolean isroot; // =true for root coroutines

boolean dying; // =true if this coroutine is dying.

// Classes defining BCPL style tasks are sub-classes of Task

// which is itself a sub-class of Cortn. The constructor

// for such a class creates and instance with a given name,

// a pointer to its globals, and its thread priority.

// The resulting thread runs as the root coroutine of the task.

// Non-root coroutines are implemented as sub-classes of Cortn

// and have constructors that specified the coroutine name and

// the pointer to the instance variables of the owning BCPL

// style task.

public Cortn(String name, Globals g, int pri) {

// This is used by the constructor in class Task when

// creating a Tripos style task.

isroot = true; // This is a non-root coroutine

coName = name;

setPriority(pri); // Same priority as its owning task.

this.g = g;

// When the thread is started it enters run() defined in

// class Task, not the version of run() defined in this

// class.

}

public Cortn(String name, Task t) {

100 APPENDIX A. JAVA TRANSLATION

// This is used by the constructors in non-root coroutines.

// Task r is the owning task. The code that starts this

// coroutine sets the parent field and changes t.currco.

// It then calls start, immediately followed by currcowait().

// This should leave the coroutine suspended in cowait() of

// the coroutine’s main loop (defined in run).

isroot = false; // This is a non-root coroutine

coName = name;

setPriority(t.pri); // Same priority as its owning task.

this.g = t.g;

this.t = t; // Task t owns this coroutine. It is

// used by callco, cowait etc.

dying = false;

//System.out.println(coName+": Coroutine created t="+t);

// parent and t.currco are set by the calling coroutine.

}

public void run() {

System.out.println(coName+": Coroutine thread entered for the first time");

Object c = null; // Dummy value.

System.out.println(coName+": parent="+parent.coName);

// Enter the standard coroutine loop.

while (!dying) {

//System.out.println(coName+": c="+((Integer)c).toString());

System.out.println(coName+": Calling c=cowait(c)");

c = cowait(c);

System.out.println(coName+": Calling c=fn(c)");

c = fn(c);

//System.out.println(coName+": fn returned "+c);

}

System.out.println(coName+": Dying");

return;

}

abstract public Object fn(Object x);

// Conventional coroutine API

// Their implementation is subtle so some explanation is given here.

101

// BCPL style coroutines each have their own runtime stack and so

// in Java they must be threads. Every coroutine has a corresponding

// a class. Those that define BCPL style tasks are sub-classes

// of the class Task which in turn is a sub-class of Cortn. When such

// a task starts it runs are the root coroutine and has direct access

// all the Tripos style variables such as wkq, currco and parent,

// and can also call qpkt, taskwait, callco, resumeco and cowait

// directly. Classes for non-root coroutines are not sub-classes of

// Task but are just sub-classes of Cortn. They can access the

// variables of the owning task indirectly using t of type Task.

// For specific Tcobench coroutines such as workerco there is another

// pointer r declared with an appropriate type in its own coroutine

// class. For instance, in class Workerco there is the declaration

// Server r. This is initialised to point to the same set of

// instance variables as t but has a type that allows access to

// variables of the BCPL style task that owns the coroutine. So, for

// example, a worker can access its server number using r.srvno.

// Within a non-root coroutine functions such as qpkt and callco can

// be accessed using t, as in t.qpkt. The same function can also be

// accessed by r.qpkt, but this is not recommended since qpkt is

// a method defined in Task.

// For convenience, every coroutine has a variable g giving access

// to all the Tcobench parameters such as g.climax and g.tracing.

// Pointers to all the Tcobench tasks are held in the Globals class.

// So, for instances, the instance variables of the Stats task are

// accessible to any coroutine using g.stats.

// Only one of the coroutines of a Tripos task can be executing at

// any one time. All the others will be in the body of the

// synchronized method currcoWait(), probably suspended in the

// call wait() waiting for currco==this to become true. Note that

// currcowait and unwait are declared in class Cortn.

// When a coroutine transfers control to another coroutine

// target.parent is set appropriately and t.currco is set to the

// target coroutine. The value to be passed to the target is set

// in target.value. These assignments are performed by callco,

// as defined below. It then releases the target thread by the call

// of notifyAll() in target.unwait(). Since unwait is a synchronized

// method the variables parent, currco and value will have been

// flushed to their associated memory locations, ready to be read

// by the target coroutine.

102 APPENDIX A. JAVA TRANSLATION

public Object callco(Cortn target, Object arg) {

// This will simultaneously wakeup the target coroutine

// and suspend the current coroutine.

// Note that there is no need for this method to be

// synchronized, since no other coroutine belonging to

// the current task will be running, so parent, value and

// currco will not be changed by other threads.

target.parent = this;

target.value = arg;

//System.out.println(coName+" callco t="+t);

t.currco = target;

//System.out.println(coName+

// ": callco -- target "+target.coName+

// " target.parent="+target.parent.coName);

// Transfer control to the target coroutine.

// unwait is synchronized so parent, value and currco wiil

// be written out to main memory.

target.unwait();

// Wait until we are again the current coroutine,

// ie until t.currco==this.

currcoWait();

//System.out.println(coName+

// ": callco -- Resumed execution with value "+value);

return value;

}

public Object resumeco(Cortn target, Object arg) {

Cortn p = parent; // Ensure that resumeco can resume itself

parent = null; // ie when target==currco

target.parent = p;

target.value = arg;

t.currco = target;

//System.out.println(coName+": resumeco called => "+target.coName);

// Transfer control to the target coroutine.

target.unwait();

// Wait until we are again the current coroutine,

// ie until t.currco==this.

currcoWait();

103

return value;

}

public Object cowait(Object arg) {

if (t.currco.parent==null)

System.out.println(coName+

": ERROR: current parent is null #################\n");

Cortn from = t.currco;

Cortn to = from.parent;

//System.out.println(coName+": from="+from.coName);

//System.out.println(coName+": Setting to="+to.coName);

//System.out.println(coName+": Setting from.parent=null");

//System.out.println(coName+": Setting r="+to.coName);

//System.out.println(coName+": Setting to.value="+arg);

//System.out.println(coName+": Setting t.currco="+to.coName);

//System.out.println(coName+": Calling to.unwait()");

from.parent = null;

to.value = arg;

t.currco = to;

//System.out.println(coName+": cowait giving control to "+target.coName);

// Transfer control to the target coroutine.

to.unwait();

//System.out.println(coName+": cowait calling from.currcoWait()");

// The from coroutine will now wait until it becomes the

// current coroutine.

from.currcoWait();

return value;

}

// Internal support functions, currcowait and unwait, which must be

// in this class since they synchronize on the coroutine thread.

public synchronized void currcoWait() {

try {

while (t.currco!=this) {

//System.out.println(coName+

104 APPENDIX A. JAVA TRANSLATION

// ": currcoWait -- r.currco!=this, so call wait()");

wait();

}

//System.out.println(coName+

// ": currcoWait -- r.currco==this, so return");

}

catch(Exception e) {}

}

public synchronized void unwait() {

// Release all this object’s threads.

// Note that there may be threads other than the waiting

// coroutine, so notify() alone is not sufficient.

// If in doubt, try it.

//System.out.println(coName+

// ": unwait -- calling notifyAll");

notifyAll();

}

public void delayco(int msecs) {

t.sndpkt(new Pkt(null, g.clock, act_clock, 0, 0, msecs));

}

public static String strz(int n, int d) {

String res = "";

if(n<0) {

d--;

n = -n;

res = res + "-";

}

if (n<10000000 && d>=8) res = res + "0";

if (n<1000000 && d>=7) res = res + "0";

if (n<100000 && d>=6) res = res + "0";

if (n<10000 && d>=5) res = res + "0";

if (n<1000 && d>=4) res = res + "0";

if (n<100 && d>=3) res = res + "0";

if (n<10 && d>=2) res = res + "0";

return res + n;

}

public static String strn(int n, int d) {

String res = "";

if(n<0) d--;

if (n<10000000 && d>=8) res = res + " ";

if (n<1000000 && d>=7) res = res + " ";

105

if (n<100000 && d>=6) res = res + " ";

if (n<10000 && d>=5) res = res + " ";

if (n<1000 && d>=4) res = res + " ";

if (n<100 && d>=3) res = res + " ";

if (n<10 && d>=2) res = res + " ";

return res + n;

}

public static void wrz(int n, int d) {

if(n<0) {

d--;

n = -n;

System.out.print("-");

}

if (n<10000000 && d>=8) System.out.print("0");

if (n<1000000 && d>=7) System.out.print("0");

if (n<100000 && d>=6) System.out.print("0");

if (n<10000 && d>=5) System.out.print("0");

if (n<1000 && d>=4) System.out.print("0");

if (n<100 && d>=3) System.out.print("0");

if (n<10 && d>=2) System.out.print("0");

System.out.print(""+n);

}

public static void wrn(int n, int d) {

if(n<0) d--;

if (n<10000000 && d>=8) System.out.print(" ");

if (n<1000000 && d>=7) System.out.print(" ");

if (n<100000 && d>=6) System.out.print(" ");

if (n<10000 && d>=5) System.out.print(" ");

if (n<1000 && d>=4) System.out.print(" ");

if (n<100 && d>=3) System.out.print(" ");

if (n<10 && d>=2) System.out.print(" ");

System.out.print(""+n);

}

public static String reqstr(char flag, char modech,

int srvno, int mpxno, int chnno, int data) {

// Return a string such as " nRS02M04C01: 7845"

return " "+flag+modech+

"S"+strz(srvno,2)+"M"+strz(mpxno,2)+

"C"+strz(chnno,2)+":"+strz(data,4);

}

public static String reqstr(char flag, char modech,

106 APPENDIX A. JAVA TRANSLATION

int clino, int srvno, int mpxno, int chnno, int data) {

// Return a string such as "RC02 nRS02M04C01: 7845"

return ""+modech+"C"+strz(clino,2)+

" "+flag+modech+

"S"+strz(srvno,2)+"M"+strz(mpxno,2)+

"C"+strz(chnno,2)+":"+strz(data,4);

}

public int nowmsecs() {

// Return msecs since start of the current run.

return (int)(System.currentTimeMillis()-g.startmsecs);

}

public void wrtime(String mess) {

java.util.Date date = new java.util.Date();

System.out.println(mess+" "+date);

}

public void realdelay(int msecs) {

try {

sleep(msecs);

} catch(Exception e) {}

}

}

//**

//**************************** Task ************************************

//**

abstract class Task extends Cortn {

// All sub-classes of Task must define the task’s or

// coroutine’s main function fn.

// This class provides all the usual functionality of Tripos,

// including qpkt, taskwait and the coroutine functions callco,

// resumeco and cowait, plus many others such as wrx and wrn.

// Its sub-classes are either tasks or coroutines depending on

// which constructor is used. Each task has a root coroutine and

// possibly many non-root coroutines that all run with the same

// priority as the root.

// A non-root coroutine can access the variables of the task

107

// to which it belongs using expressions such as t.currco.

// The following variables are directly accessible to all Tcobench tasks

// and are accessible via t by all coroutines.

// Variables, such as clinno, that particular to individual Tcobench

// tasks are declared in their own classes and are accessible via r,

// declared in each Tcobench class that needs it.

public int pri; // The priority of the task and all its coroutines

public int result2=0;

// Variables used by gomultievent.

// They are declared in Task since they are shared by the coroutines

// belonging to a task. For convenience, gomultievent is declared in

// class Cortn so is directly accessible to all coroutines.

public boolean mainco_ready;

public boolean multi_done;

Pktlist pktlist = null; // List of packet-coroutine pairs.

// There is one work queue shared by all coroutines belonging to

// each Tripos style class.

public Pkt wkq=null; // Used if this thread models a task

// There is one current coroutine per Tripos style class. It is

// shared by all coroutines belonging to the task. For convenience

// callco, resumeco and cowait are declared in class Cortn so can

// be accessed directly from anywhere.

public Cortn currco; // The current coroutine of this task,

// normally accessed by t.currco.

// Each task has a current coroutine

// so it is declared in class Task

// and not class Cortn.

// Within a task only one coroutine

// (the current coroutine) can have

// control. All the others will be

// suspended in callco, resumeco or

// cowait.

// Note that parent is declared in

// class Cortn.

// The root coroutine of a task is created when the task is created.

// All other coroutines belonging to a task are created by coroutines

108 APPENDIX A. JAVA TRANSLATION

// belonging to that task.

public Task(String name, Globals g, int pri) {

// This contructor is called by a subclass of Task to

// create a new task thread and its root coroutine.

// When this thread is started it will suspend itself

// in taskwait() waiting for the task’s first packet

// which it will then give to fn. On return from fn

// the task will die.

super(name, g, pri);

this.pri = pri; // Remember the priority for use by

// coroutines belonging to this task.

// This is a Tripos style task and its root coroutine.

// We must set t to point to itself since it is needed

// by callco, etc which are defined in class Cortn.

t = this;

// parent and currco are set by the coroutine that starts this

// thread.

//System.out.println(coName+": Task and root coroutine created");

//System.out.println(coName+": but not yet started");

}

public abstract Object fn(Object arg);

// fn is the body of either the root coroutine of a task or

// the body of a non root coroutine belonging to a task.

// Normally run will be defined in all the sub-classes of Task.

public void run() {

// This is called when the thread first starts. Returning

// from run causes the thread to die.

//System.out.println(coName+": Thread started");

//if (parent!=null)

// System.out.println(coName+": parent="+parent.coName);

//System.out.println(coName+": Root coroutine thread started");

// This thread models the root coroutine of a Tripos task.

// Wait for the startup packet then give it to fn.

//System.out.println(coName+": Calling taskwait() for its startup packet");

Pkt startuppkt = taskwait();

109

//System.out.print(coName+": Received startup pkt from "+startuppkt.task.coName);

//System.out.println(coName+": New task calling fn(startuppkt)");

fn(startuppkt);

// Returned from fn causes the thread to die.

//System.out.println(coName+": This task returned from fn and is now dying");

}

// Locking on a Tripos style task allows qpkt and taskwait

// exclusive access the task’s work queue wkq. A task should

// only modify the fields of a packet when it owns the packet.

// It does not own the packet after calling qpkt until it is

// returned as the result of taskwait. qpkt and taskwait are

// not synchronized and are declared in class Cortn, but putpkt

// is synchronized on its task object so is delared in class

// Task.

public synchronized boolean putpkt(Pkt pkt, Task from) {

//System.out.println("\n"+coName+": Got lock on this thread");

// This runs in the thread corresponding to the current task,

// but has a lock on the destination task’s thread and so

// can modify the detination task’s wkq without interference

// from other tasks.

// This is the normal version of putpkt, but for the Clock task

// it is overridden by a special one that processes packets in

// a different way.

// Note that wkq is the work queue of the destination task.

// If wkq was previously null, a call of notifyAll is required

// since the task may be suspended in wait() in the body of

// taskwait.

String fromName = from==null ? "null"

: from.coName; // Name of the task

//System.out.println(coName+": putpkt type="+pkt.type+" arg1="+pkt.arg1);

//System.out.println(coName+

// ": putpkt appending pkt from "+fromName+" this task’s wkq");

pkt.task = from; // Fill in the return task field.

pkt.link = null;

// Append the packet onto the end of the destination task’s wkq.

110 APPENDIX A. JAVA TRANSLATION

if (wkq==null) {

//System.out.println(coName+": putpkt wkq was null");

wkq = pkt; // Make a unit list.

//System.out.println(coName+": putpkt calling notifyAll()"+

// " since wkq was previously null");

notifyAll();

} else {

//System.out.println(coName+

// ": appending pkt to end of non null wkq");

Pkt p = wkq;

// Find the end of the work queue.

while(p.link!=null) {

// System.out.println(coName+

// ": Skip over wkq pkt from "+p.task.coName);

p = p.link;

}

p.link = pkt; // Place the packet at the end.

}

//System.out.println(coName+": Releasing the lock on this thread\n");

return true;

}

public boolean qpkt(Pkt pkt) {

//System.out.println(coName+

// ": qpkt to "+pkt.task.coName+

// " type "+pkt.type);

// putpkt is a synchronized method that gains the lock on

// the target thread.

return pkt.task.putpkt(pkt, this);

}

public synchronized Pkt taskwait() {

// This must be synchronized on the BCPL style task object since

// it contains wait() and also manipulates wkq.

//System.out.println("\n"+coName+": Got lock on this thread");

// No other threads will be currently manipulating this task’s wkq.

try {

while (wkq==null) {

// We need the while loop since spurious wakeups might happen.

//System.out.println(coName+

// ": taskwait: calling wait() since wkq is null");

wait();

//System.out.println(coName+

111

// ": taskwait: woken up");

}

//System.out.println(coName+

// ": taskwait: wkq non empty");

}

catch(Exception e) {

System.out.println(coName+

": taskwait: exception e="+e.toString());

}

// There is as least one packet in wkq.

Pkt pkt = wkq;

wkq = wkq.link;

//if (pkt.task!=null)

//System.out.println(coName+

// ": taskwait() received pkt from "+pkt.task.coName+

// " type="+pkt.type);

//System.out.println(coName+": Released lock on this thread\n");

return pkt;

}

public int sendpkt(Pkt pkt) {

//System.out.println(coName+": sendpkt calling qpkt\n");

//System.out.println(coName+": dest="+pkt.task.coName);

//System.out.println(coName+": currco="+t.currco);

//System.out.println(coName+": currco="+t.currco.coName);

qpkt(pkt);

Pkt p = taskwait();

if (p!=pkt) {

System.out.println(coName+": System error in sendpkt");

result2 = 0;

return 0;

}

result2 = pkt.res2;

return pkt.res1;

}

public int sndpkt(Pkt pkt) {

if (isroot) {

System.out.println(coName+": Can’t sndpkt from a root coroutine");

}

if (!qpkt(pkt)) {

112 APPENDIX A. JAVA TRANSLATION

System.out.println(coName+": sndpkt -- qpkt failure");

}

while (true) {

Pkt p = (Pkt)cowait(null);

if (p==pkt) {

System.out.println(coName+": sndpkt received the wrong pkt");

continue;

}

break;

}

result2 = pkt.res2;

return pkt.res1;

}

public Cortn findpkt(Pkt pkt) {

Pktlist p = pktlist;

if (p==null) return null; // pktlist was empty

if (p.pkt==pkt) {

// The first item in pktlist matches.

Cortn cptr = p.cptr;

// Dequeue the first element of pktlist

pktlist = p.link;

return cptr;

}

while (true) {

Pktlist q = p.link;

if (q==null) return null; // No matching item found.

// Test an item q in pktlist other than the first.

if (q.pkt == pkt) {

Cortn cptr = q.cptr;

// Remove item q from pktlist

p.link = q.link;

return cptr;

}

p = q;

}

}

public void gomultievent(Cortn mainco) {

113

Pkt queue = null;

//System.out.println(coName+": gomultievent entered");

// Create an empty pktlist.

pktlist = null;

multi_done = false; // =true when it is time to return

// to single event mode.

mainco_ready = true; // =true when mainco is ready to process

// packets. If false, packets are appended

// to queue by gomultievent and given to

// mainco later.

//System.out.println(coName+": gomultievent calling callco(mainco,null)");

callco(mainco, null); // Startup servermainco

//System.out.println(coName+": returned from callco(mainco,null)");

// mainco has completed its initialisation.

//System.out.println(coName+": gomultievent entering its multi-event loop");

while(!multi_done) {

// Start of the multi-event loop.

System.out.println(coName+": gomultievent calling taskwait()");

Pkt pkt = taskwait();

System.out.println(coName+": gomultievent got pkt from "+

pkt.task.coName);

Cortn cptr = findpkt(pkt);

if (cptr!=null) {

// cptr is the multi-event coroutine waiting for this

// packet.

System.out.println(coName+": gomultievent giving pkt to "+cptr.coName);

callco(cptr, pkt); // Give pkt to this coroutine.

} else {

if (!mainco_ready) {

// This packet does not belong to a multi-event

// coroutine and mainco is busy, so append it

// onto the end of queue and wait for another

// packet.

// Note that this code is only obeyed is mainco

// is suspended waiting for a particular packet.

// as in a call of delayco(). In Tcobench this

// never happens.

114 APPENDIX A. JAVA TRANSLATION

pkt.link = null;

if (queue==null) {

queue = pkt;

} else {

Pkt p = queue;

while (p.link!=null) p = p.link;

p.link = pkt;

}

System.out.println(coName+": gomultievent put pkt in queue");

continue;

}

// This packet does not belong to a multi-event

// coroutine and mainco is not busy, so give it

// to mainco.

System.out.println(coName+": gomultievent calling callco(mainco, pkt)");

callco(mainco, pkt);

System.out.println(coName+": gomultievent mainco processed pkt");

}

// try to deal with the packets in queue.

while (queue!=null && mainco_ready) {

Pkt p = queue;

queue = queue.link;

p.link = null;

System.out.println(coName+": gomultievent dequeued pkt from queue");

System.out.println(coName+": then calling callco(mainco, p)");

callco(mainco, p); // Give it to mainco.

}

} // End of while (!multi_done) loop.

}

public void delaytask(int msecs) {

sendpkt(new Pkt(null, g.clock, act_clock, 0, 0, msecs));

}

}

//**

//************************** Manifests *********************************

//**

interface Manifests {

// Packet types

115

public final static int act_startcontroller = 100;

public final static int act_startclock = 101;

public final static int act_startstats = 102;

public final static int act_startbounce = 103;

public final static int act_startrdclient = 104;

public final static int act_startwrclient = 105;

public final static int act_startrdserver = 106;

public final static int act_startwrserver = 107;

public final static int act_startmpx = 108;

public final static int act_startprinter = 110;

public final static int act_clock = 111;

public final static int act_bounce = 112;

public final static int act_print = 113;

public final static int act_read = 114;

public final static int act_write = 115;

public final static int act_sync = 116;

public final static int act_rddone = 117;

public final static int act_wrdone = 118;

public final static int act_die = 119;

public final static int act_calibrate = 120;

public final static int act_run = 121;

public final static int act_addstats = 122;

public final static int act_prstats = 123;

public final static int act_quickbounce = 124;

}

//**

//*************************** Globals **********************************

//**

class Globals {

// Global parameters and constants accessible to every coroutine of

// every task.

// There is one instance of this class and every task can refer to it

// using g. So the global (shared) variables are normally accessed by

// g.<name> as in g.loopmax

// Global variables that change dynamically must be updated using

// synchronised methods.

public int loopmax;

116 APPENDIX A. JAVA TRANSLATION

public int climax;

public int srvmax;

public int workmax;

public int mpxmax;

public int chnmax;

public int chnbufsize;

public int delaymsecs;

public int delayticks;

public int maxcountdiff;

public int requestvupb;

public boolean tracing = true;

long startmsecs = 0;

// Global tasks

public Controller controller;

public Clock clock;

public Stats stats;

public Bounce bounce;

public Printer printer;

public Client rdclientv[];

public Client wrclientv[];

public Server rdserverv[];

public Server wrserverv[];

public Multiplexor mpxv[];

public Globals() {};

public void rdargs(String[] args) {

try {

// Default settings

loopmax = 2;

climax = 20;

srvmax = 15;

workmax = 14;

mpxmax = 10;

chnmax = 10;

delaymsecs = 500;

maxcountdiff = 5;

117

tracing = false;

for (int i = 0; i < args.length; i++) {

//System.out.println("arg["+i+"] = " + args[i]);

if (args[i].equals("-t")) {

tracing = true;

continue;

}

if (args[i].equals("-x")) {

// Alternate setting of the parameters

loopmax = 1;

climax = 2;

srvmax = 2;

workmax = 3;

mpxmax = 2;

chnmax = 3;

loopmax = 1;

climax = 1;

srvmax = 1;

workmax = 3;

mpxmax = 1;

chnmax = 1;

continue;

}

if (args[i].equals("-y")) {

// Alternate setting of the parameters

loopmax = 2;

climax = 5;

srvmax = 3;

workmax = 3;

mpxmax = 2;

chnmax = 3;

continue;

}

if (args[i].equals("-z")) {

// Alternate setting of the parameters

loopmax = 3;

climax = 10;

srvmax = 4;

workmax = 7;

118 APPENDIX A. JAVA TRANSLATION

mpxmax = 3;

chnmax = 4;

continue;

}

if (args[i].equals("-k")) {

loopmax = Integer.parseInt(args[++i]);

continue;

}

if (args[i].equals("-n")) {

climax = Integer.parseInt(args[++i]);

continue;

}

if (args[i].equals("-s")) {

srvmax = Integer.parseInt(args[++i]);

continue;

}

if (args[i].equals("-w")) {

workmax = Integer.parseInt(args[++i]);

continue;

}

if (args[i].equals("-m")) {

mpxmax = Integer.parseInt(args[++i]);

continue;

}

if (args[i].equals("-c")) {

chnmax = Integer.parseInt(args[++i]);

continue;

}

if (args[i].equals("-b")) {

chnbufsize = Integer.parseInt(args[++i]);

continue;

}

if (args[i].equals("-d")) {

delaymsecs = Integer.parseInt(args[++i]);

continue;

}

119

}

}

catch (NumberFormatException e) {

System.err.println("Integer argument expected");

}

requestvupb = srvmax*mpxmax*chnmax;

if(chnbufsize==0) {

// Set the channel buffer size to about one tenth of the

// number of values sent to each channel on each iteration

chnbufsize = (climax*srvmax)/10 + 5;

}

System.out.println("loopmax = "+Task.strn(loopmax,4)+" (k)");

System.out.println("climax = "+Task.strn(climax,4)+" (n)");

System.out.println("srvmax = "+Task.strn(srvmax,4)+" (s)");

System.out.println("workmax = "+Task.strn(workmax,4)+" (w)");

System.out.println("mpxmax = "+Task.strn(mpxmax,4)+" (m)");

System.out.println("chnmax = "+Task.strn(chnmax,4)+" (c)");

System.out.println("chnbufsize = "+Task.strn(chnbufsize,4)+" (b)");

System.out.println("delaymsecs = "+Task.strn(delaymsecs,4)+" (d)\n");

System.out.println("Requests per schedule = "+Task.strn(requestvupb,4));

System.out.println("maxcountdiff = "+Task.strn(maxcountdiff,4)+"\n");

}

}

//**

//*************************** Controller *******************************

//**

class Controller extends Task {

///task

// This models the Controller task

Controller r;

public Controller(String name, Globals g, int pri) {

// This constructor is used to create the Controller task

// and its root coroutine. The Controller task has no

// other coroutines.

super(name, g, pri);

r = this;

System.out.println(coName+": Task created");

120 APPENDIX A. JAVA TRANSLATION

}

public Object fn(Object arg) {

// This is the main function of the root coroutine of

// the Controller.

// arg is the startup packet and it will not be returned to

// the main program.

Pkt startuppkt = (Pkt)arg;

//System.out.println(coName+": Startup pkt received,");

// Create and start all the tcobench tasks but do not send them

// startup packets yet.

// Allocate the vectors

g.rdclientv = new Client[g.climax+1];

g.wrclientv = new Client[g.climax+1];

g.rdserverv = new Server[g.srvmax+1];

g.wrserverv = new Server[g.srvmax+1];

g.mpxv = new Multiplexor[g.mpxmax+1];

//System.out.println(coName+": Creating Clock task");

g.clock = new Clock("Clock", g, 10);

//System.out.println(coName+": Starting task "+g.clock.coName);

g.clock.start();

//realdelay(2000);

// Send a startup packet to the Clock task that models the

// Tripos Clock device. It should now be suspended in taskwait()

// waiting for its startup packet.

//System.out.println(coName+": Sending startup pkt to task "+g.clock.coName);

sendpkt(new Pkt(null, g.clock, act_startclock));

//System.out.println(coName+": The clock startup packet has been returned\n");

if (true) { // Change to if (true) to test the clock task.

// Test the clock device

Rnd r = new Rnd(500);

System.out.println("\n"+coName+": Testing the Clock task\n");

for(int i = 1; i<=20; i++) {

121

int k1 = 7;

int k2 = 20-k1+1;

if (i<=k2) {

int delay = 200 + r.next(1000);

qpkt(new Pkt(null, g.clock, act_clock,

0, 0,

delay, i));

wrn(nowmsecs(), 5);

System.out.print(" "); wrn(i, 2);

System.out.print(": delay for "); wrn(delay, 5);

System.out.print(" until "); wrn(delay+nowmsecs(), 5);

System.out.print(" sent\n");

}

if (i>=k1) {

Pkt p = taskwait();

int delay = p.arg1;

wrn(nowmsecs(), 5);

System.out.print(" "); wrn(p.arg2, 2);

System.out.print(": delay="); wrn(delay,5);

System.out.print(" done\n");

}

}

System.out.println("\nEnd of Clock test\n");

//System.out.println("Sleeping for 1 second\n");

//realdelay(1000);

} // End of while(true) loop

//System.out.println(coName+": Creating the Stats task");

g.stats = new Stats("Stats", g, 9);

g.stats.start();

//System.out.println("\n"+coName+": Creating the other Tcobench tasks\n");

//System.out.println(coName+": Creating and starting the Bounce task");

g.bounce = new Bounce("Bounce", g, 1);

g.bounce.start();

//System.out.println(coName+": Creating and starting the Printer task");

g.printer = new Printer("Printer", g, 2);

g.printer.start();

for (int i=1; i<=g.climax; i++) {

122 APPENDIX A. JAVA TRANSLATION

g.rdclientv[i] = new Client("RC"+strz(i,2), g, 3);

g.rdclientv[i].start();

}

for (int i=1; i<=g.climax; i++) {

g.wrclientv[i] = new Client("WC"+strz(i,2), g, 3);

g.wrclientv[i].start();

}

for (int i=1; i<=g.srvmax; i++) {

g.rdserverv[i] = new Server("RS"+strz(i,2), g, 4);

g.rdserverv[i].start();

}

for (int i=1; i<=g.srvmax; i++) {

g.wrserverv[i] = new Server("WS"+strz(i,2), g, 4);

g.wrserverv[i].start();

}

for (int i=1; i<=g.mpxmax; i++) {

g.mpxv[i] = new Multiplexor("M"+strz(i,2), g, 5);

g.mpxv[i].start();

}

// Send startup packets to all the tcobench tasks.

// Send a startup packet to the Stats task.

// This must not happen until the Clock and Bounce tasks have been

// created but not yet given their startup packets.

//System.out.println("\n"+coName+": Sending startup pkt to the Stats task");

sendpkt(new Pkt(null, g.stats, act_startstats));

//System.out.println(coName+": The Stats startup packet has been returned\n");

//System.out.println(coName+": Calling g.stats.incallco()");

g.stats.inccallco();

// Send a startup packet to the Bounce task.

System.out.println("\n"+coName+": All Tcobench tasks have been created\n");

System.out.println(coName+

": Sending startup packets to all remaining Tcobench tasks\n");

//System.out.println(coName+": Sending startup pkt to the Bounce task");

sendpkt(new Pkt(null, g.bounce, act_startbounce));

//System.out.println(coName+": The Bounce startup packet has been returned\n");

123

//System.out.println(coName+": Sending startup pkt to the Printer task");

sendpkt(new Pkt(null, g.printer, act_startprinter));

//System.out.println(coName+": The Printer startup packet has been returned\n");

for (int mpxno=1; mpxno<=g.mpxmax; mpxno++) {

sendpkt(new Pkt(null, g.mpxv[mpxno], act_startmpx, 0, 0, mpxno));

}

for (int svrno=1; svrno<=g.srvmax; svrno++) {

sendpkt(new Pkt(null, g.rdserverv[svrno], act_startrdserver, 0, 0, svrno));

}

for (int svrno=1; svrno<=g.srvmax; svrno++) {

sendpkt(new Pkt(null, g.wrserverv[svrno], act_startwrserver, 0, 0, svrno));

}

for (int clino=1; clino<=g.climax; clino++) {

sendpkt(new Pkt(null, g.rdclientv[clino], act_startrdclient, 0, 0, clino));

}

for (int clino=1; clino<=g.climax; clino++) {

sendpkt(new Pkt(null, g.wrclientv[clino], act_startwrclient, 0, 0, clino));

}

//System.out.println("Sleeping for 1 second\n");

//realdelay(1000);

if (true) {

Pkt bpkt = new Pkt(null, g.bounce, act_quickbounce);

int startmsecs = nowmsecs();

int cycles = 10000;

//System.out.println(coName+": Test qpkt-taskwait bounce rate, cycles="+cycles+"\n");

for (int i=1; i<=cycles; i++) {

//System.out.println(i+" Sending a bounce packet");

qpkt(bpkt);

//System.out.println(i+" Wait for reply");

taskwait();

}

int diff = nowmsecs() - startmsecs;

System.out.println("\n"+coName+": "+

(cycles*1000/diff)+" qpkt-taskwait bounces per second\n");

}

//System.out.println("\n"+coName+

// ": Sending a calibrate packet to the Stats task\n");

sendpkt(new Pkt(null, g.stats, act_calibrate));

124 APPENDIX A. JAVA TRANSLATION

//System.out.println(coName+": Calibrate packet returned from Stats task\n");

System.out.println(coName+": Start time = "+nowmsecs()+" msecs\n");

System.out.println("\n"+coName+": Sending run packet to the Stats task\n");

sendpkt(new Pkt(null,g.stats,act_run));

// Only gets here when all the clients have complete all their schedules.

System.out.println(coName+": Finish time = "+nowmsecs()+" msecs\n");

//System.out.println(coName+": Sleeping for 1 second");

//realdelay(1000);

g.stats.incqpkt();

g.stats.prstats();

//System.out.println("\n"+coName+": Sending die packets to all tasks\n");

for (int mpxno=1; mpxno<=g.mpxmax; mpxno++) {

sendpkt(new Pkt(null, g.mpxv[mpxno], act_die));

System.out.println(coName+

": Wait for a Multiplexor task "+g.mpxv[mpxno]+" to finish"

);

try { g.mpxv[mpxno].join(); }

catch(Exception e) {}

System.out.println(coName+": Task "+g.mpxv[mpxno]+" task has finished");

}

for (int srvno=1; srvno<=g.srvmax; srvno++) {

sendpkt(new Pkt(null, g.rdserverv[srvno], act_die));

//System.out.println(coName+": Wait for a server task to finish");

// Wait for the clock task to finish

try { g.rdserverv[srvno].join(); }

catch(Exception e) {}

System.out.println(coName+": The RD"+strz(srvno,2)+" task has finished");

}

for (int srvno=1; srvno<=g.srvmax; srvno++) {

sendpkt(new Pkt(null, g.wrserverv[srvno], act_die));

//System.out.println(coName+": Wait for a server task to finish");

// Wait for the clock task to finish

try { g.wrserverv[srvno].join(); }

125

catch(Exception e) {}

System.out.println(coName+": The WS"+strz(srvno,2)+" task has finished");

}

for (int clino=1; clino<=g.climax; clino++) {

sendpkt(new Pkt(null, g.rdclientv[clino], act_die));

//System.out.println(coName+": Wait for a client task to finish");

try { g.rdclientv[clino].join(); }

catch(Exception e) {}

System.out.println(coName+": The RC"+strz(clino,2)+" task has finished");

}

for (int clino=1; clino<=g.climax; clino++) {

sendpkt(new Pkt(null, g.wrclientv[clino], act_die));

//System.out.println(coName+": Wait for a client task to finish");

try { g.wrclientv[clino].join(); }

catch(Exception e) {}

System.out.println(coName+": The WC"+strz(clino,2)+" task has finished");

}

System.out.println("\n"+coName+": Sending die pkt to Printer task");

qpkt(new Pkt(null, g.printer,

act_die));

taskwait();

//System.out.println(coName+": Die pkt returned from Printer task");

//System.out.println(coName+": Wait for the Printer task to finish");

// Wait for the printer task to finish

try { g.printer.join(); }

catch(Exception e) {}

System.out.println(coName+": The Printer task has finished");

System.out.println("\n"+coName+": Sending die pkt to Bounce task");

qpkt(new Pkt(null, g.bounce,

act_die));

taskwait();

//System.out.println(coName+": Die pkt returned from Bounce task");

//System.out.println(coName+": Wait for the Bounce task to finish");

// Wait for the bounce task to finish

try { g.bounce.join(); }

catch(Exception e) {}

System.out.println(coName+": The Bounce task has finished");

126 APPENDIX A. JAVA TRANSLATION

System.out.println("\n"+coName+": Sending die pkt to Stats task");

qpkt(new Pkt(null, g.stats,

act_die));

taskwait();

//System.out.println(coName+": Die pkt returned from Stats task");

//System.out.println(coName+": Wait for the Stats task to finish");

// Wait for the stats task to finish

try { g.stats.join(); }

catch(Exception e) {}

System.out.println(coName+": The Stats task has finished");

System.out.println("\n"+coName+": Sending die pkt to Clock task");

qpkt(new Pkt(null, g.clock,

act_die));

taskwait();

//System.out.println(coName+": Die pkt returned from clock task");

//System.out.println(coName+": Wait for the Clock task to finish");

// Wait for the clock task to finish

try { g.clock.join(); }

catch(Exception e) {}

System.out.println(coName+": The Clock task has finished");

return null;

}

}

//**

//*************************** Stats ************************************

//**

class Stats extends Task {

// This class holds the statistics counters and the method (prstats)

// to output them. It controls the synchronisation of the clients

// involving sync, rddone and wrdone packets. It also estimates the

// CPU usage by repeatedly bouncing packets off the Bounce task.

Stats r;

// Statistics counters

127

public int c_qpkt=0;

public int c_taskwait=0;

public int c_callco=0;

public int c_resumeco=0;

public int c_cowait=0;

public int c_condwait=0;

public int c_notify=0;

public int c_notifyAll=0;

public int c_inc=0;

public int c_incwait=0;

public int c_lock=0;

public int c_lockw=0;

public int c_delaylong=0;

public int c_bounce=0;

public int c_print=0;

public int c_logger=0;

public int c_readfail=0;

public int c_sendfail=0;

public int c_rdchecksum=0;

public int c_wrchecksum=0;

public int c_rdcount=0;

public int c_wrcount=0;

Pkt synclist = null;

int synclistlen = 0;

Pkt donelist = null;

int donelistlen = 0;

Pkt calibratepkt = null;

Pkt runpkt = null;

Pkt diepkt = null;

Boolean alldone = false;

int bounces = 0;

int bouncesmax = 1; // To avaiod division by zero

Boolean bouncing = false;

Boolean clocking = false;

Pkt clockpkt = null;

Pkt bouncepkt = null;

public int utilisationv[];

int cycle = 0;

// This task has no non root coroutines, so only has a

// task constructor.

128 APPENDIX A. JAVA TRANSLATION

public Stats(String name, Globals g, int pri) {

super(name, g, pri);

r = this;

System.out.println(coName+": Task created");

}

public Object fn(Object arg) {

// This is the main function of the root coroutine of

// the stats task. It must not recive its startup

// packet until the Clock and Bounce tasks have been

// created (but not given their statup packets.

Pkt startuppkt = (Pkt)arg;

//System.out.println(coName+": Startup packet received");

clockpkt = new Pkt(null, g.clock, act_clock,

0,0, // res1 res2

100); // 100 msecs delay

bouncepkt = new Pkt(null, g.bounce, act_bounce);

utilisationv = new int[10];

for (int i=0; i<=9; i++) utilisationv[i] = 0;

cycle = 1;

//System.out.println(coName+": Returning the startup packet to task "

// +startuppkt.task.coName);

//c_qpkt++;

qpkt(startuppkt); // Return the startup packet.

//System.out.println(coName+": Entering its main loop");

while (true) {

Pkt pkt = taskwait();

switch (pkt.type) {

default:

System.out.println(coName+

": Unexpected packet received from "+pkt.task.coName);

qpkt(pkt); // Return this unexpected packet.

continue;

case act_calibrate:

calibratepkt = pkt;

//System.out.println(coName+

129

// ": calibrate packet received from "+pkt.task.coName);

//System.out.println(coName+

// ": synclistlen="+synclistlen+

// " 2*climax="+ 2*g.climax);

// Only perform calibration when all read and write clients

// are ready to perform their first schedules.

if (synclistlen != g.climax+g.climax)

continue;

// All clients are ready to start their first schedules.

calibrate();

//System.out.println(coName+

// ": Return the calibrate packet to task "+

// calibratepkt.task.coName);

qpkt(calibratepkt); // Return the calibrate packet to the controller.

calibratepkt = null;

continue;

case act_run:

// act_run will not be received until after calibration has

// been completed, and that will only happen when all clients

// are ready to start their schedules.

//System.out.println(coName+

// ": act_run packet received from "+

// pkt.task.coName);

runpkt = pkt; // Remember the run packet so that it can be

// returned at the end.

// clocking and bouncing should both be false.

if (clocking)

System.out.println(coName+

": ERROR: clocking should be false");

if (bouncing)

System.out.println(coName+

": ERROR: bouncing should be false");

// Start the clock

qpkt(clockpkt);

clocking = true;

// Start bouncing

qpkt(bouncepkt);

130 APPENDIX A. JAVA TRANSLATION

bouncing = true;

// Fall through to allow case act_sync to release

// all the clients.

case act_sync:

if (pkt.type==act_sync) {

// Request from a client to start the next schedule.

// It is returned when all clients have sent sync packets.

pkt.link = synclist;

synclist = pkt;

synclistlen++;

//if (g.tracing) {

// System.out.println(coName+

// ": sync packet received from "+

// pkt.task.coName);

//}

}

//System.out.println(coName+

// ": synclistlen="+synclistlen+

// " climax*2="+2*g.climax);

if (synclistlen != g.climax+g.climax) continue;

System.out.println(coName+

": All sync packet received");

if (calibratepkt!=null) {

//System.out.println(coName+

// ": and calibrate packet received, so call calibrate");

calibrate();

//System.out.println(coName+

// ": Return the calibrate packet to task "+

// calibratepkt.task.coName);

qpkt(calibratepkt);

calibratepkt = null;

// The act_run packet has not yet been received.

continue;

}

// The controller only sends the run packet after

// calibration has been completed.

if (runpkt!=null) {

131

// The run packet and all sync packets have been received

// so return the sync packets to theirmclients.

Pkt p = synclist;

//if (g.tracing) {

System.out.println(coName+

": Releasing all client");

cycle++;

//}

synclist = null;

synclistlen = 0;

while (p!=null) {

pkt = p;

p = p.link;

pkt.link = null;

qpkt(pkt);

}

}

// We must still be waiting for more sync packets or

// a run packet.

continue;

case act_clock:

// Keep clocking until alldone is true

if (!alldone) {

int u;

qpkt(pkt);

// Even after calibration bouncesmax may still increase.

if (bouncesmax < bounces) bouncesmax = bounces;

u = 999 * (bouncesmax-bounces) / bouncesmax / 100;

// 0 <= u <= 9

utilisationv[u]++;

bounces = 0;

continue;

}

// alldone is true

clocking = false;

// Do not send the packet to the clock

continue;

132 APPENDIX A. JAVA TRANSLATION

case act_bounce:

//System.out.println(coName+": bounce pkt received");

if (clocking) {

// Still in a time perios so bounce again

qpkt(pkt);

continue;

}

// clocking is false so the end of the final period

// has been reached. This only happens when a clock packet

// has been received when alldon is true.

// We have just received the first bounce packet

// after the end of the final time period. It is therefore

// time to return the run packet to the controller.

bouncing = false;

qpkt(runpkt);

continue;

case act_rddone:

case act_wrdone:

// A client has finished all its schedules.

if (pkt.type==act_rddone) {

if (g.tracing) {

System.out.println(coName+

": rddone packet received from "+

pkt.task.coName);

}

} else {

if (g.tracing) {

System.out.println(coName+

": wrdone packet received from "+

pkt.task.coName);

}

}

pkt.link = donelist;

donelist = pkt;

donelistlen++;

if(donelistlen == g.climax+g.climax) {

// All the rddone and wrdone packets have been received

// so return them to their clients.

133

Pkt p = donelist;

donelist = null;

donelistlen = 0;

while (p!=null) {

pkt = p;

p = p.link;

pkt.link = null;

qpkt(pkt);

}

alldone = true;

if (g.tracing) {

System.out.println(coName+

": alldone set to true");

}

}

continue;

case act_die:

//System.out.println(coName+": die pkt received");

g.stats.incqpkt();

qpkt(pkt);

return null; // Cause the thread to die

}

}

}

public void calibrate() {

int cycles = 10;

System.out.println(coName+": Calibrating the bounce counter");

bounces = 0; // Start clocking

clocking = true;

qpkt(clockpkt);

bouncing = true; // Start bouncing

qpkt(bouncepkt);

while (clocking || bouncing) {

Pkt pkt= taskwait();

switch (pkt.type) {

default:

System.out.println(coName+": Unexpected packet from "+

134 APPENDIX A. JAVA TRANSLATION

pkt.task.coName);

continue;

case act_clock:

clocking = false;

if (bouncesmax==0) bounces = 0; // ignore first time period

if (bouncesmax<bounces) bouncesmax = bounces;

//System.out.println(coName+

// ": cycles="+cycles+

// " Clock pkt received, bounces="+bounces+

// " bouncesmax="+bouncesmax);

bounces = 0;

cycles--;

if (cycles>0) {

// Start another 100 msecs time period.

qpkt(clockpkt);

}

continue;

case act_bounce:

//System.out.println(coName+": Bounce pkt received "+bounces);

bounces++;

bouncing = false;

if (cycles==0) break; // Both clock and bounce packets are back

qpkt(bouncepkt);

bouncing = true;

continue;

}

}

//

System.out.println("\n"+coName+": bouncesmax = "+bouncesmax+"\n");

}

public synchronized void incqpkt() { c_qpkt++; }

public synchronized void inctaskwait() { c_taskwait++; }

public synchronized void inccallco() { c_callco++; }

public synchronized void incresumeco() { c_resumeco++; }

public synchronized void inccowait() { c_cowait++; }

public synchronized void inccondwait() { c_condwait++; }

public synchronized void incnotify() { c_notify++; }

public synchronized void incnotifyAll() { c_notifyAll++; }

public synchronized void incinc() { c_inc++; }

public synchronized void incincwait() { c_incwait++; }

135

public synchronized void inclock() { c_lock++; }

public synchronized void inclockw() { c_lockw++; }

public synchronized void incdelaylong() { c_delaylong++; }

public synchronized void incbounce() { c_bounce++; }

public synchronized void incprint() { c_print++; }

public synchronized void inclogger() { c_logger++; }

public synchronized void increadfail() { c_readfail++; }

public synchronized void incsendfail() { c_sendfail++; }

public synchronized void incrdchecksum() { c_rdchecksum++; }

public synchronized void incwrchecksum() { c_wrchecksum++; }

public synchronized void incrdcount() { c_rdcount++; }

public synchronized void incwrcount() { c_wrcount++; }

public synchronized void prstats() {

System.out.println("\n");

System.out.println("Number of calls of qpkt: "+Task.strn(c_callco,9));

System.out.println("Number of calls of taskwait: "+Task.strn(c_taskwait,9));

System.out.println("Number of calls of callco: "+Task.strn(c_callco,9));

System.out.println("Number of calls of resumeco: "+Task.strn(c_resumeco,9));

System.out.println("Number of calls of condwait: "+Task.strn(c_condwait,9));

System.out.println("Number of calls of notify: "+Task.strn(c_notify,9));

System.out.println("Number of calls of notifyAll: "+Task.strn(c_notifyAll,9));

System.out.println("Number of increments: "+Task.strn(c_inc,9));

System.out.println(" increment had to wait: "+Task.strn(c_incwait,9));

System.out.println("Number of calls of lock: "+Task.strn(c_lock,9));

System.out.println(" lock had to wait: "+Task.strn(c_lockw,9));

System.out.println("Number of "+Task.strn(g.delaymsecs,4)+

" msec delays: "+Task.strn(c_delaylong,9));

System.out.println("Print task counter: "+Task.strn(c_print,9));

System.out.println("Calls to logger: "+Task.strn(c_print,9));

System.out.println("Send fail count: "+Task.strn(c_sendfail,9));

System.out.println("Read fail count: "+Task.strn(c_readfail,9));

System.out.println("Bounce task counter: "+Task.strn(c_bounce,9));

System.out.println("Read checksum: "+Task.strn(c_rdchecksum,9));

System.out.println("Write checksum: "+Task.strn(c_wrchecksum,9));

System.out.println("Read count: "+Task.strn(c_rdcount,9));

System.out.println("Write count: "+Task.strn(c_wrcount,9));

System.out.println("");

int total = 0;

for(int i = 0; i<=9; i++) total += utilisationv[i];

if (total==0) total++;

System.out.println(

136 APPENDIX A. JAVA TRANSLATION

" Approximate CPU utilisation over "+total+" periods of 100 msecs"

);

System.out.println(" 0-10% 10-20% 20-30% 30-40% 40-50% 50-60%"+

" 60-70% 70-80% 80-90% >90%");

for(int i = 0; i<=9; i++) {

Task.wrn(utilisationv[i], 5);

System.out.print(" ");

}

System.out.println("\n");

}

}

//**

//*************************** Pktlist **********************************

//**

class Pktlist {

// This hold nodes in a list that maps packets to coroutines

// used in gomultievent.

public Pktlist link;

public Pkt pkt;

public Cortn cptr;

public Pktlist(Pktlist link, Pkt pkt, Cortn cptr) {

this.link = link;

this.pkt = pkt;

this.cptr = cptr;

}

}

//**

//*************************** Tasklist *********************************

//**

class Tasklist {

// This holds a list of tasks (typically coroutine).

public Tasklist next;

public Cortn cptr;

public Tasklist(Tasklist next, Cortn cptr) {

this.next = next;

this.cptr = cptr;

}

}

137

//**

//***************************** Pkt ************************************

//**

class Pkt {

// Used in Cintpos-style task to task communication

public Pkt link;

public Task task;

public int type;

public int res1;

public int res2;

public int arg1;

public int arg2;

public int arg3;

public int arg4;

public int arg5;

public int arg6;

public Pkt(Pkt link, Task task, int type) {

this.link = link;

this.task = task;

this.type = type;

}

public Pkt(Pkt link, Task task, int type, int res1, int res2,

int arg1) {

this.link = link;

this.task = task;

this.type = type;

this.res1 = res1;

this.res2 = res2;

this.arg1 = arg1;

}

public Pkt(Pkt link, Task task, int type, int res1, int res2,

int arg1, int arg2) {

this.link = link;

this.task = task;

this.type = type;

this.res1 = res1;

this.res2 = res2;

this.arg1 = arg1;

this.arg2 = arg2;

}

138 APPENDIX A. JAVA TRANSLATION

public Pkt(Pkt link, Task task, int type, int res1, int res2,

int arg1, int arg2, int arg3) {

this.link = link;

this.task = task;

this.type = type;

this.res1 = res1;

this.res2 = res2;

this.arg1 = arg1;

this.arg2 = arg2;

this.arg3 = arg3;

}

public Pkt(Pkt link, Task task, int type, int res1, int res2,

int arg1, int arg2, int arg3, int arg4) {

this.link = link;

this.task = task;

this.type = type;

this.res1 = res1;

this.res2 = res2;

this.arg1 = arg1;

this.arg2 = arg2;

this.arg3 = arg3;

this.arg4 = arg4;

}

public Pkt(Pkt link, Task task, int type, int res1, int res2,

int arg1, int arg2, int arg3, int arg4, int arg5) {

this.link = link;

this.task = task;

this.type = type;

this.res1 = res1;

this.res2 = res2;

this.arg1 = arg1;

this.arg2 = arg2;

this.arg3 = arg3;

this.arg4 = arg4;

this.arg5 = arg5;

}

public Pkt(Pkt link, Task task, int type, int res1, int res2,

int arg1, int arg2, int arg3, int arg4, int arg5, int arg6) {

this.link = link;

this.task = task;

this.type = type;

139

this.res1 = res1;

this.res2 = res2;

this.arg1 = arg1;

this.arg2 = arg2;

this.arg3 = arg3;

this.arg4 = arg4;

this.arg5 = arg5;

this.arg6 = arg6;

}

}

//**

//**************************** OccamChannel ****************************

//**

class OccamChannel {

// This class models an Occam channel. The values that are passed

// through the channel are always integers.

String chnName;

Task t; // To allow access to t.currco etc

public OccamChannel(String name, Task t) {

chnName = name; // Typical name: RS03loggerin

this.t = t;

}

Cortn cptr; // The channel word.

// Remember that when only one of the coroutines belonging to

// a task can have control. Control is passed from one

// conroutine to another using synchronized methods so if

// one coroutine writes to cptr it will be written out to

// memory before another coroutine tries to read it. There

// is thus no need to declare cptr as volatile. There is

// also no need to make coread and cowrite synchronized.

int coread() {

if (cptr!=null) {

return ((Integer)(t.resumeco(cptr, t.currco))).intValue();

}

cptr = t.currco;

return ((Integer)(t.cowait(null))).intValue();

}

140 APPENDIX A. JAVA TRANSLATION

public void cowrite(int x) {

Cortn reader = cptr;

if (reader!=null) {

// reader points to a reader coroutine that is ready

// to read data from this channel, so clear the

// channel word.

cptr = null;

// and fall throug to send the data to the reader.

} else {

// The reader coroutine is not yet ready to read.

// So tell it the identity of the writer

// coroutine.

cptr = (Cortn)t;

// and wait for the reader coroutine to send us

// its identity

reader = (Cortn)(t.cowait(null));

// and then fall through to send the data.

}

t.callco(reader, new Integer(x));

}

public void wrpn(int x) {

if (x!=0) {

wrpn(x>>>1);

cowrite(x&1);

}

}

public int getloggerval() {

int res = 0;

while (true) {

int dig = coread();

if (dig<0) return res;

res = 2*res+dig;

}

}

public synchronized void pr() {

if (cptr==null) {

System.out.println(chnName+": channel is idle");

} else {

System.out.println(chnName+": channel points to "+cptr.coName);

141

}

}

}

//**

//***************************** Lock ***********************************

//**

class Lock {

Tasklist colist;

boolean locked = false;

public Lock() {

colist = null;

}

public synchronized void lock(Task cptr) {

// Usage: eg loggerlock.lock(this);

if (locked) {

Tasklist node = new Tasklist(null, cptr);

if (colist==null) {

// It was locked by just one coroutine,

// so make a unit list.

colist = node;

} else {

// Append the lock node to the end of the list.

Tasklist p = colist;

while (p.next!=null) p = p.next;

p.next = node;

}

cptr.cowait(null); // Suspend until released by unlock().

// We now own the lock.

return;

}

// We can obtain the lock.

locked = true;

return;

}

public synchronized void unlock(Task t) {

// Usage: eg loggerlock.unlock(this);

if (!locked) {

System.out.println(t.coName+

142 APPENDIX A. JAVA TRANSLATION

": Attempt to free a lock that was not locked");

return;

}

if (colist!=null) {

Cortn cptr = colist.cptr;

colist = colist.next;

t.callco(cptr, null);

return;

}

locked = false;

return;

}

}

//**

//**************************** Clock ***********************************

//**

class Clock extends Task {

///task

// An instance of this class models the Tripos clock device.

Clock r;

// Once started it receives act_clock packets and returns them to

// the sender about arg1 msecs later. It will commit suicide when

// given an act_die packet.

// The public variable waiting is only true when the task is waiting

// in a call of wait. It may be waiting because the priority queue

// is empty, or it may be waiting for the time to release the next

// packet from the priority queue. In either case qpkt should call

// notifyAll to wakeup the wait() call when another packet is sent

// to the clock task.

// The arg1 field of a clock packet holds the delay time in msecs,

// and the res1 field is set to the real wakeup time. These packets

// are held in a priority queue implemented using the heap structure

// typically used in heap sort. Each packet in the queue is held in

// an element of heapv. The number of packets in the queue is heapn

// and there is the constraint that the res1 field of the packet

// in heapv[i] is less than or equal to the res1 fields belonging to

// packets heapv[2*i] and heapv[2*i+1], if they exist. This guarantees

// that the packet in heapv[1] is the earliest to be released.

143

// Normally the clock task is suspended in a call of wait waiting

// for a clock packet to arrive. When one comes, it sets the res1

// field and increments heapn. It it then inserts the packet at

// position heapn and successively promotes it using upheap until

// the heap constraint is satisfied, before re-entering the call

// of wait. The argument of wait is the number of msecs until the

// earliest packet should be released and if this time period

// expires before another clock packet arrives, the packet in

// heapv[1] is released and replaced by the packet in heapv[heapn],

// if any. The packet in heapv[1] is then successively demoted using

// downheap until its res1 less than or equal to the res1 fields

// belonging to packets heapv[2*i] and heapv[2*i+1], if they exist,

// where i is the current position of the packet. This mechanism

// assures that both upheap and downheap are reasonably efficient.

public boolean waiting;

public Pkt heapv[];

public Pkt diepkt = null;

public int heapn; // Number of packets in the heap

public int heapnmax; // Current size of the heap

public Clock(String name, Globals g, int pri) {

super(name, g, pri);

r = this;

System.out.println(coName+": Task created");

}

public Object fn(Object arg) {

int delaymsecs;

Pkt startuppkt = (Pkt) arg;

Pkt clockpkt = null;

diepkt = null;

//System.out.println(coName+" : fn entered, pkt type="+strn(startuppkt.type,3));

heapnmax = 10; // Initial heap size.

heapv = new Pkt[heapnmax+1];

heapn = 0; // Nothing in the heap yet.

waiting = false;

//synchronized (g.stats) { g.stats.c_qpkt++; }

//System.out.println(coName+": Returning the startup packet to the "+startuppkt.task.coName);

//System.out.println("Clock: Initialised");

144 APPENDIX A. JAVA TRANSLATION

qpkt(startuppkt); // Return the startup packet to the controller.

while(true) {

// This is running in the clock thread.

// Wait until the earliest packet is the priority queue

// can be released or until a die packet is received

// from the controller.

int now = nowmsecs();

//System.out.print("Clock: heapn="+strn(heapn,3));

//System.out.print(" now="+strn(now,6));

//if (heapn>0) {

// System.out.print(" res1="+strn(heapv[1].res1,6));

//}

//System.out.println("");

while (heapn>0 && now>=heapv[1].res1) {

// Release the packet in heapv[1]

qpkt(heapv[1]);

if (heapn>1) heapv[1] = heapv[heapn];

heapn--;

downheap(); // Demote the new packet in heapv[1]

// See if there are more packets to release.

}

if (diepkt!=null) {

// Release all clock packets now, return the die packet

// to the controller and then die.

//System.out.println("Clock: Clock is dying");

if (heapn!=0)

System.out.println("Clock: ERROR Clock priority queue is not empty");

//System.out.println(coName+": Returning the die packet to the controller");

qpkt(diepkt);

//System.out.println(coName+": Returning from fn to die");

return null;

}

try {

waiting = true;

if (heapn>0) {

int dt = heapv[1].res1 - now;

// Wait for timeout or notify

145

//System.out.println(coName+": Calling wait("+dt+")");

wait(dt);

} else {

//System.out.println(coName+": Calling wait() for the next clock pkt");

// Wait for notify

wait();

}

waiting = false;

} catch(Exception e) {}

// Go back to the start of the while(true) loop

}

}

public synchronized boolean putpkt(Pkt pkt, Task from) {

//System.out.println("\n"+coName+": Got lock on this thread");

// This clock version overrides putpkt in class Task.

// It is running in a client thread (not the clock thread).

pkt.task = from; // Set the return task field.

pkt.link = null;

// This is called in the destination task (the clock),

// It puts the packet into the priority queue then calls

// notifyAll to wakeup the clock thread.

if (pkt.type==act_die) {

//System.out.println("Clock: Die packet received");

diepkt = pkt;

if (waiting) notifyAll();

//System.out.println(coName+": Releasing lock on this thread\n");

return true;

}

if (pkt.type==act_startclock) {

//System.out.println(coName+": Startup packet received");

// Append the packet onto the end of this task’s wkq.

// It is always the first packet so wkq=null.

wkq = pkt; // Make a unit list.

//System.out.println(coName+": putpkt calling notifyAll()"+

// " since wkq was previously null");

notifyAll();

146 APPENDIX A. JAVA TRANSLATION

//System.out.println(coName+": Releasing lock on thread\n");

return true;

}

if (pkt.type!=act_clock) {

System.out.println(coName+": Unexpected packet, type = "+pkt.type);

qpkt(pkt);

System.out.println(coName+": Releasing lock on this thread\n");

return true;

}

pkt.res1 = pkt.arg1 + nowmsecs(); // Time to release.

if (heapn==heapnmax) {

//System.out.println(coName+": About to increase heap size from "+heapnmax);

//prheap();

// The heap is full, so we must enlarge it.

int newnmax = heapnmax*3/2 + 1;

Pkt newheapv[] = new Pkt[newnmax+1];

for(int i = 1; i<=heapn; i++) newheapv[i] = heapv[i];

heapnmax = newnmax;

heapv = newheapv;

//System.out.println(coName+": New heap size "+heapnmax);

//prheap();

}

heapn++;

heapv[heapn] = pkt;

upheap();

if (waiting) notifyAll();

//System.out.println(coName+": Releasing lock on this thread\n");

return true;

}

private void upheap() {

int p = heapn;

Pkt pkt = heapv[p];

int msecs = pkt.res1;

while (p>1) {

int q = p/2; // The parent of p.

if (heapv[q].res1 <= msecs) break;

// Promote the packet

147

heapv[p] = heapv[q];

p = q;

}

heapv[p] = pkt;

//prheap();

}

private void downheap() {

int p = 1;

Pkt pkt = heapv[1];

// p points to a vacant position in the heap,

// initially location 1.

int msecs = pkt.res1; // Release time of pkt.

while (true) {

int q = p+p; // Position of left child

if (q > heapn) break; // No children

// There is at least one child.

if (q < heapn) {

// There are two children, choose the earlier.

if(heapv[q].res1 > heapv[q+1].res1) q++;

}

// q is the position of the earlier child.

if (msecs <= heapv[q].res1) break; // Do not promote.

// Promote the earlier child.

heapv[p] = heapv[q];

p = q;

}

heapv[p] = pkt;

//prheap();

}

public synchronized void prheap() {

if (heapn==0) {

System.out.println("\nThe priority queue is empty");

} else {

System.out.println("\nThe priority queue:");

}

for(int i=1; i<=heapn; i++) {

Pkt pkt = heapv[i];

String pname = pkt.task==null ? "<null>" : pkt.task.coName;

System.out.println(strn(1,2)+

" "+strn(pkt.arg2,2)+

" res1: "+strn(pkt.res1,6)+

148 APPENDIX A. JAVA TRANSLATION

" arg1: "+strn(pkt.arg1,6)+

" from: "+pname);

}

System.out.println("");

}

}

//**

//**************************** Bounce **********************************

//**

class Bounce extends Task {

///task

Bounce r;

public Bounce(String name, Globals g, int pri) {

// This constructor is used to create the Bounce task and its root coroutine.

super(name, g, pri);

r = this;

System.out.println(coName+": Task created");

}

public Object fn(Object arg) {

//System.out.println(coName+": fn entered");

Pkt startuppkt = (Pkt) arg;

int count = 0;

// Create and start the echo coroutine.

//System.out.println(coName+": calling new(Echoco, this)");

Echoco echoco = new Echoco("Echoco", this);

// Transfer control to echoco leaving it suspended in its main loop:

echoco.parent = this;

echoco.value = null;

currco = echoco;

//System.out.println(coName+": calling echoco.start()");

echoco.start();

//System.out.println(coName+": Coroutine "+echoco.coName+" created and thread started");

// Wait until this coroutine is the current coroutine.

currcoWait();

149

if (true) { // =true to test callco and cowait

int cycles = 10000;

System.out.println("\n"+coName+": Calling callco and cowait "+cycles+" times");

int start_time = nowmsecs();

for (int i=1; i<=cycles; i++) {

//System.out.println(coName+

// ": "+strn(i,5)+" Calling callco(echoco,"+i+")");

callco(echoco, (Object)(new Integer(i)));

}

int diff = nowmsecs() - start_time;

if (diff==0) diff=1; // To avoid overflow.

System.out.println("\n"+coName+

": Time taken "+diff+ " msecs"+

" giving "+((cycles*1000)/diff)+

" callco-cowait bounces per second\n");

}

//System.out.println(coName+

// ": Returning the startup packet to "+

// startuppkt.task.coName+"\n");

qpkt(startuppkt); // Return the startup packet

System.out.println(coName+": Ready");

while(true) {

Pkt pkt = taskwait();

switch (pkt.type) {

default:

System.out.println(coName+

": unexpected packet received from "+

pkt.task.coName+

" type "+pkt.type);

continue;

case act_bounce:

count++;

//System.out.println(coName+": bounce pkt received");

for(int i=1; i<=10; i++) callco(echoco, null);

qpkt(pkt);

continue;

case act_quickbounce:

// For calibrating the qpkt-taskwait bounce rate.

150 APPENDIX A. JAVA TRANSLATION

//System.out.println(coName+": quick bounce pkt received");

qpkt(pkt);

continue;

case act_die:

//System.out.println(coName+": die pkt received");

//System.out.println(coName+": Set echoco.dying to true");

echoco.dying = true;

//System.out.println(coName+": Calling callco(echoco, null)");

callco(echoco, null);

//System.out.println(coName+": Return the die packet to the Controller");

pkt.res1 = count;

qpkt(pkt);

return null; // Cause this thread to die

}

}

}

}

//**

//*************************** Echoco ***********************************

//**

class Echoco extends Cortn {

///coroutine

// This is the echo coroutine only used in by the Bounce task. Its

// purpose is to maintain a reasonably high coroutine change to

// thread change ratio.

Globals g;

Bounce r; // Pointer to the owning task’s variables.

boolean dying=false; // When =true this coroutine will die.

public Echoco(String name, Bounce r) {

// Create a non-root coroutine belonging to the Bounce

// task r. By convention r is given the type of the

// owning task. This allows indirect access to all the

// Bounce task’s instance variables such as t.currco,

// and methods such as r.qpkt and r.callco that are

// declared in class Task which is the superclass

// of Bounce.

super(name, r);

coName = name; // Set the coroutine’s name.

this.r = r;

151

System.out.println(coName+": Coroutine created");

// When this coroutine is started, it will enter run defined

// class Cortn which contains the standard non-root

// coroutine main loop. The parent variable will already

// be set appropriately and t.currco will point to its

// this coroutine’s instance variables. This coroutine

// will thus immediately suspend itself in cowait(c) of

// the coroutine main loop. When callco is called the

// value will be passed as the argument of fn. A return from

// fn will cause cowait(c) to be called again.

}

public Object fn(Object x) {

//System.out.println(coName+": received value "+((Integer)x).intValue());

while (!r.dying) x = cowait(x);

return x;

}

}

//**

//*************************** Printer **********************************

//**

class Printer extends Task {

///task

Printer r;

public Printer(String name, Globals g, int pri) {

super(name, g, pri);

r = this;

System.out.println(coName+": Task created");

}

public Object fn(Object c) {

//System.out.println(coName+": fn entered");

Pkt startuppkt = (Pkt) c;

//int count = 0;

Pkt pkt = null;

Pkt delaypkt = new Pkt(null, g.clock, act_clock,

152 APPENDIX A. JAVA TRANSLATION

0,0, // res1 res2

10); // 10 msecs delay

Pkt q = null; // List of pending print packets while delaying

Pkt printpkt = null; // Current print packet, if any.

//System.out.println(coName+

// ": Returning the startup packet to "+

// startuppkt.task.coName);

qpkt(startuppkt); // Return the startup packet

//System.out.println(coName+": Entering main loop");

while (true) {

// Start of printer event loop

if (q!=null) {

// Dequeue a pending print packet.

pkt = q;

q = q.link;

pkt.link = null;

if (g.tracing)

System.out.println(coName+": Packet extracted from q");

} else {

// Wait for a print or die packet.

pkt = taskwait();

if (g.tracing)

System.out.println(coName+": taskwait returned a packet");

}

switch (pkt.type) {

default:

System.out.println(coName+

": Unexpected packet received from "+

pkt.task.coName);

continue;

case act_print:

{ char modech = (char) pkt.arg1;

int serno = pkt.arg2;

if (g.tracing) {

System.out.println(coName+

": act_print packet received from "+

pkt.task.coName);

}

153

printpkt = pkt;

if (g.tracing) {

System.out.println(coName+

": Sending delay packet to Clock");

}

qpkt(delaypkt);

while (true) {

// Wait for the delay pkt to return.

pkt = taskwait();

if (pkt==delaypkt) break;

// Insert the non delaypkt in q

pkt.link = q;

q = pkt;

}

// The delay has now ended, so return the print

// packet and process another (possibly pending)

// request.

qpkt(printpkt);

printpkt = null;

continue;

}

case act_die:

if (g.tracing) {

System.out.println(coName+": Die packet received");

System.out.println(coName+": Return the die packet to task "+

pkt.task.coName);

System.out.println(coName+": This task is now dying");

}

break; // Cause the thread to die

}

}

}

}

//**

//**************************** Client **********************************

154 APPENDIX A. JAVA TRANSLATION

//**

class Client extends Task {

///task

Client r;

public Client(String name, Globals g, int pri) {

super(name, g, pri);

r = this;

System.out.println(coName+": Task created");

}

public Object fn(Object arg) {

//System.out.println(coName+": fn entered");

Pkt startuppkt = (Pkt) arg;

Server serverv[]; // This will hold the vector of read or write servers

// for this client.

Request requestv[] = new Request[g.requestvupb+1];

char modech;

int clino = startuppkt.arg1;

if (startuppkt.type==act_startrdclient) {

modech = ’R’;

serverv = g.rdserverv;

} else {

modech = ’W’;

serverv = g.wrserverv;

}

Rnd rnd = new Rnd(clino+100*modech);

if (false) { // Test the random number generator.

for (int i=1; i<=50; i++) {

int x = rnd.next(9999);

System.out.print(" "+strn(x,5));

if (i %10 == 0) System.out.println("");

}

realdelay(1000);

}

System.out.println(coName+": Initialised");

qpkt(startuppkt); // Return the startup packet

for (int count = 1; count<=g.loopmax; count++) {

155

int pos = 0;

int rqstvupb = g.requestvupb;

int clidelayitem = 0; // This will be the subscript of requestv of

// the request to delay in the client.

int srvdelayitem = 0; // This will be the subscript of requestv of

// the request to delay in the its server.

int mpxdelayitem = 0; // This will be the subscript of requestv of

// the request to delay in its multiplexor.

// This client will not create its next schedule until all other

// read and write clients are ready to do the same. This is achieved

// by sending a sync packet to the Stats task which is only returned

// when all client sync packets have been received.

sendpkt(new Pkt(null, g.stats, act_sync));

System.out.println("\n"+coName+": Creating and processing schedule "+count);

// Create a list of requests.

// Choose three distinct requests to cause real time delays.

if (g.requestvupb>=3) {

while (true) {

clidelayitem = rnd.next(g.requestvupb);

srvdelayitem = rnd.next(g.requestvupb);

if (clidelayitem!=srvdelayitem) break;

}

while (true) {

mpxdelayitem = rnd.next(g.requestvupb);

if (mpxdelayitem!=clidelayitem ||

mpxdelayitem!=srvdelayitem) break;

}

}

for (int srvno=1; srvno<=g.srvmax; srvno++)

for (int mpxno=1; mpxno<=g.mpxmax; mpxno++)

for (int chnno=1; chnno<=g.chnmax; chnno++) {

int data = 0;

if (modech==’W’) data = rnd.next(9999); // Range 1 to 9999

char flag = ’n’;

pos++;

if (pos==clidelayitem) flag = ’c’; // Client delay

if (pos==srvdelayitem) flag = ’s’; // Server delay

156 APPENDIX A. JAVA TRANSLATION

if (pos==mpxdelayitem) flag = ’m’; // Multiplexor delay

requestv[pos] = new Request(flag, srvno, mpxno,

chnno, data);

}

if (g.tracing || true) {

System.out.println("\n"+coName+": Schedule of requests");

for (int i=1; i<=g.requestvupb;i++) {

Request req = requestv[i];

char flag = req.flag;

int srvno = req.srvno;

int mpxno = req.mpxno;

int chnno = req.chnno;

int data = req.data;

System.out.print(" "+flag+modech+

"S"+strz(srvno,2)+

"M"+strz(mpxno,2)+

"C"+strz(chnno,2)+

":"+strz(data,4));

if (i%5==0) System.out.println("");

}

System.out.println("");

}

//System.out.println("\n"+coName+": Starting next schedule ");

while (rqstvupb>0) {

int i = rnd.next(rqstvupb);

Request req = requestv[i];

int data = req.data;

char flag = req.flag;

int srvno = req.srvno;

int mpxno = req.mpxno;

int chnno = req.chnno;

if (modech==’R’) {

// Code for a read client

if (g.tracing) {

System.out.println("RC"+strz(clino,2)+

" "+flag+modech+

"S"+strz(srvno,2)+

"M"+strz(mpxno,2)+

"C"+strz(chnno,2)+

157

":"+strz(data,4)+

" Sending read request to server");

}

data = sendpkt(new Pkt(null,serverv[srvno],act_read,

flag,clino,srvno,mpxno,chnno,data));

if (g.tracing) {

System.out.println("RC"+strz(clino,2)+

" "+flag+modech+

"S"+strz(srvno,2)+

"M"+strz(mpxno,2)+

"C"+strz(chnno,2)+

":"+strz(data,4)+

" Packet returned from server");

}

if (data==0) {

// Read was not successful since its channel buffer

// was empty.

if (g.tracing) {

System.out.print("RC"+strz(clino,2)+

" "+flag+modech+

"S"+strz(srvno,2)+

"M"+strz(mpxno,2)+

"C"+strz(chnno,2)+

":"+strz(data,4)+

" Read failed");

}

//c_readfail++;

// Delay for 200 msecs to give other tasks a chance to run,

// hopefully allowing write clients to put more data in

// the channel buffers.

delaytask(200);

continue; // try sending another random item from the schedule.

}

// The read request was successful.

if (g.tracing) {

System.out.println("RC"+strz(clino,2)+

" "+flag+modech+

"S"+strz(srvno,2)+

158 APPENDIX A. JAVA TRANSLATION

"M"+strz(mpxno,2)+

"C"+strz(chnno,2)+

":"+strz(data,4)+

" Read was successful");

System.out.println(coName+"Realdelay(2000)\n");

realdelay(2000);

//g.c_rdchecksum = (g.rdchecksum+data) % 1000000;

//g.c_rdcount++;

}

} else {

// Code for a write client

if (g.tracing) {

System.out.println("WC"+strz(clino,2)+

" "+flag+modech+

"S"+strz(srvno,2)+

"M"+strz(mpxno,2)+

"C"+strz(chnno,2)+

":"+strz(data,4)+

" Sending write request to server");

}

int rc = sendpkt(new Pkt(null,serverv[srvno],act_write,

flag,clino,srvno,mpxno,chnno,data));

if (g.tracing) {

System.out.println("WC"+strz(clino,2)+

" "+flag+modech+

"S"+strz(srvno,2)+

"M"+strz(mpxno,2)+

"C"+strz(chnno,2)+

":"+strz(data,4)+

" Packet returned from server");

}

if (rc==0) {

// Write was not successful since its channel buffer

// was full.

if (g.tracing) {

System.out.println("WC"+strz(clino,2)+

" "+flag+modech+

"S"+strz(srvno,2)+

"M"+strz(mpxno,2)+

"C"+strz(chnno,2)+

":"+strz(data,4)+

" Send failed");

159

}

//g.c_sendfail++;

// Delay for 20 msecs to give other tasks a chance to run,

// hopefully allowing read clients to remove data from

// the channel buffers.

delaytask(20);

continue; // try sending another random request from the schedule.

}

// The write request was successful in that the data was

// written by the specified multiplexor in the specified

// channel buffer. The data may not have been read yet by

// a read client.

if (g.tracing) {

System.out.println("WC"+strz(clino,2)+

" "+flag+modech+

"S"+strz(srvno,2)+

"M"+strz(mpxno,2)+

"C"+strz(chnno,2)+

":"+strz(data,4)+

" Data sent");

System.out.println(coName+"Realdelay(2000)\n");

realdelay(2000);

//g.c_wrchecksum = (g.c_wrchecksum+data) % 1000000;

//g.c_wrcount++;

}

}

// The read or write request has been successfully processed.

// Delay for delaymsecs if a client delay is specified.

if (flag==’c’) {

if (g.tracing) {

System.out.println(coName+" "+

modech+"C"+strz(clino,2)+

" "+flag+modech+

"S"+strz(srvno,2)+

"M"+strz(mpxno,2)+

"C"+strz(chnno,2)+

160 APPENDIX A. JAVA TRANSLATION

":"+strz(data,4)+

" Client delay");

}

//c_delaylong++;

delaytask(g.delaymsecs);

if (g.tracing) {

System.out.println(coName+" "+

modech+"C"+strz(clino,2)+

" "+flag+modech+

"S"+strz(srvno,2)+

"M"+strz(mpxno,2)+

"C"+strz(chnno,2)+

":"+strz(data,4)+

" Client delay ended");

}

// remove the read or write request from the schedule.

requestv[i] = requestv[rqstvupb];

rqstvupb--;

//Process another request from the schedule.

}

// Create and perform the next schedule.

}

}

// tell the Stats task that this client has finished its

// final schedule.

if (modech==’R’) {

if (g.tracing) {

System.out.println(coName+" "+

modech+"C"+strz(clino,2)+

" Sending act_rddone to the Stats task");

sendpkt(new Pkt(null, g.stats, act_rddone));

}

} else {

if (g.tracing) {

System.out.println(coName+" "+

modech+"C"+strz(clino,2)+

" Sending act_wrdone to the Stats task");

sendpkt(new Pkt(null, g.stats, act_wrdone));

}

}

161

// Wait for the act_die packet from the controller.

if (g.tracing) {

System.out.println(coName+" "+

modech+"C"+strz(clino,2)+

" Waiting for die packet from the controller");

}

//c_taskwait++;

Pkt pkt = taskwait();

if (pkt.type!=act_die) {

System.out.println(coName+" "+

modech+"C"+strz(clino,2)+

" System error -- act_die packet expected");

} else {

if (g.tracing) {

System.out.println(coName+" "+

modech+"C"+strz(clino,2)+

" Die packet received");

}

}

//c_qpkt++;

qpkt(pkt);

if (g.tracing) {

System.out.println(coName+" "+

modech+"C"+strz(clino,2)+

" Client dying");

}

return null;

}

}

class Request {

char flag; // n=no delay c=client delay, s=server delay, m=multiplexor delay

int srvno;

int mpxno;

int chnno;

int data; // Non zero if a write request

public Request(char flag, int srvno, int mpxno, int chnno, int data) {

this.flag = flag;

this.srvno = srvno;

this.mpxno = mpxno;

162 APPENDIX A. JAVA TRANSLATION

this.chnno = chnno;

this.data = data;

}

}

//**

//**************************** Server **********************************

//**

class Server extends Task {

///task

Server r;

// This class is used to model read and write servers which

// run in multievent mode using gomultievent defined in Task.

public Pkt startuppkt = null;

public Pkt diepkt = null; // Set non null when a die pkt is received.

public Pkt serverq = null;

public int srvno;

public char modech;

public OccamChannel loggerin = null;

public OccamChannel loggerout = null;

public Loggerlock loggerlock = null;

public Loggerco loggerco = null;

public Condvar countcondvar = null;

public Condvar pktcondvar = null;

public Workerco wrkcov[] = null; // Vector of worker coroutines.

public int countv[] = null; // Vector of work counts.

public int minwrkcount = 0; // Count of the least busy worker.

public int busycount = 0; // Count of worker coroutines that are busy.

// A worker is busy when it is processing a

// request packet. It is not busy when waiting

// countcondvar or pktcondvar.

public Server(String name, Globals g, int pri) {

// This constructor is used to create a server tasks and their

// root coroutine.

163

super(name, g, pri);

r = this;

System.out.println(coName+": Task created");

}

public Object fn(Object arg) {

// This is the main function of a Server’s root coroutine.

// Method fn is overridden by classes representing non-root

// server coroutines.

//System.out.println(coName+": started");

// arg is the startup packet which has a type field holding

// either act_startrdserver or act_startwrserver.

// In ether cas the arg1 field holds the server number.

int count = 0;

startuppkt = (Pkt) arg; // For use by servermainco

srvno = startuppkt.arg1;

modech = startuppkt.type==act_startrdserver ? ’R’ : ’W’;

//if (g.tracing) {

// System.out.println(coName+": Server started, srvno="+srvno);

//}

Rnd rnd = new Rnd(srvno+100*modech);

Servermainco servermainco =

new Servermainco(coName+"mainco", // This server’s main coroutine

this); // Task

// Start servermainco leaving it suspended in main loop:

// while(!dying) c = fn(cowait());

//if (g.tracing) {

// System.out.println(coName+": Calling servermainco.start()");

// System.out.println(coName+": to leave it in cowait() in the loop");

// System.out.println(coName+": while (!dying)c=fn(cowait(c));");

// System.out.println(coName+": fn will be given the argument null.;");

//}

// Give initial control to servermainco. It should immediately

// return control to this task, leaving it suspended in cowait(c).

servermainco.parent = this;

164 APPENDIX A. JAVA TRANSLATION

currco = servermainco;

servermainco.start();

//if (g.tracing) {

// System.out.println(coName+

// ": Calling currcoWait(), currco="+currco.coName);

//}

// Wait for servermainco to enter its while(!dying) c = fn(cowait(c)) loop.

currcoWait();

//System.out.println(coName+": Calling gomultievent(servermainco)");

gomultievent(servermainco);

//System.out.println(coName+": Returned from gomultievent(servermainco)");

// On return from gomultievent, the diepkt will be set.

//qpkt(diepkt);

if (g.tracing)

System.out.println(coName+": Returning to DEAD state");

return null;

}

}

//**

//*************************** Servermainco *****************************

//**

class Servermainco extends Cortn {

///coroutine

// This is the main coroutine of a read or write server.

// It creates the worker coroutines and the logger, then

// processes requests from client before being closed down

// by a die packet from the Controller.

Server r; // This supercedes Task r delared in class Cortn.

public Servermainco(String name, Server r) {

// This constructor create a non-root coroutine belonging to

// a server task. The only possible coroutines are workers or

// loggers.

super(name, r);

this.r = r;

System.out.println(coName+": Coroutine created");

165

}

public Object fn(Object x) {

// This is the main function of servermainco given control

// by gomultievent. It is the main coroutine of a Server task.

// x will be null and fn will not return.

//System.out.println(coName+": servermainco Coroutine entered, srvno="+r.srvno);

r.diepkt = null;

r.wrkcov = new Workerco[g.workmax+1]; // Vector of worker coroutines.

r.countv = new int[g.workmax+1]; // Vector of work counts.

for (int i=1; i<=g.workmax; i++) {

r.wrkcov[i] = null;

r.countv[i] = 0;

}

r.minwrkcount = 0;

r.busycount = 0; // Count of worker coroutines that are busy.

// A worker is busy when it is processing a

// request packet. It is not busy when waiting

// countcondvar or pktcondvar.

r.loggerlock = new Loggerlock();

r.loggerin = new OccamChannel(r.coName+"loggerin", t);

r.loggerout = new OccamChannel(r.coName+"loggerout", t);

r.loggerco = new Loggerco(r.coName+"log", r);

// Start loggerco leaving it susprnded in main loop:

// while(!dying) c = fn(cowait());

r.loggerco.parent = this;

r.loggerco.value = null;

t.currco = r.loggerco;

r.loggerco.start();

// Wait for it to enter its while(!dying) c = fn(cowait()) loop.

currcoWait();

if (g.tracing) {

166 APPENDIX A. JAVA TRANSLATION

System.out.println(coName+": Coroutine "+r.loggerco.coName+" created");

}

r.countcondvar = new Condvar(r.coName+"countcondvar", t);

if (g.tracing) {

System.out.println(coName+": "+r.countcondvar.name+" created");

}

r.pktcondvar = new Condvar(r.coName+"pktcondvar", t);

if (g.tracing) {

System.out.println(coName+": "+r.pktcondvar.name+" created");

}

for (int wrkno = 1; wrkno<=g.workmax; wrkno++) {

Workerco cptr = new Workerco(""+r.modech+"S"+strz(r.srvno,2)+"W"+strz(wrkno,2), r);

r.wrkcov[wrkno] = cptr;

// Give control to the newly created worker coroutine,

// telling it its worker number.

cptr.parent = this;

// The first value given to a worker coroutine is its worker number.

cptr.value = new Integer(wrkno);

r.currco = cptr;

cptr.start();

// Wait for it to enter its while(!dying) c = fn(cowait()) loop.

currcoWait();

if (g.tracing) {

System.out.println(cptr.coName+": Worker coroutine ready");

}

}

if (g.tracing) {

System.out.println(coName+

": Returning startup packet to the "+

r.startuppkt.task.coName);

}

r.qpkt(r.startuppkt);

if (g.tracing) {

System.out.println(coName+": Initialised");

}

167

while (true) {

// Start of this server’s event loop.

// Get a client request packet via gomultievent.

// It should be a read, write or die packet.

// Bounce and Clock packets belong to worker

// coroutines and will delivered automatically

// to their coroutines by gomultievent.

if (g.tracing) {

System.out.println(coName+

": Waiting for a request from a client via gomultievent");

}

t.mainco_ready = true;

//while (r.serverq==null | !dying) {

//if (g.tracing) {

// System.out.println(coName+

// ": Waiting for a serverq to contain a packet");

// }

// r.pktcondvar.cocondwait();

//}

//if (g.tracing) {

// System.out.println(coName+

// ": Dequeueing a packet from serverq");

//};

//Pkt pkt = r.serverq;

//r.serverq = r.serverq.link;

//pkt.link = null;

System.out.println(coName+

": Calling cowait(null)");

Pkt pkt = (Pkt) cowait(null);

if (pkt==null) {

System.out.println(coName+

": Received null pkt");

continue;

}

t.mainco_ready = false;

if (g.tracing) {

System.out.println(coName+

": Packet received from gomultievent, type="+strn(pkt.type,3));

168 APPENDIX A. JAVA TRANSLATION

}

switch (pkt.type) {

default:

System.out.println(coName+

": Unexpected packet received from "+

pkt.task.coName);

t.qpkt(pkt);

continue;

case act_read:

case act_write:

{ Pkt p = r.serverq;

if (g.tracing) {

System.out.println(coName+

": Append pkt to end of this server’s serverq");

}

pkt.link = null;

if (r.serverq==null) {

// Make a unit list

r.serverq = pkt;

} else {

// Append pkt to the end of this server’s queue

while (p.link!=null) {

p = p.link;

}

p.link = pkt;

}

realdelay(1000);

if (g.tracing) {

System.out.println(coName+

": Calling notifyAll for condition pktcondvar");

r.pktcondvar.conotifyAll();

}

continue;

}

case act_die: // From the Controller task.

// Cause this server to return to DEAD state.

if (g.tracing) {

System.out.println(coName+

": Die packet received");

}

169

r.diepkt = pkt;

// Release all workers on countcondvar.

r.countcondvar.conotifyAll();

// Delete all worker coroutines and the logger.

//for (int i=1; i<=g.workmax; i++) {

// killco(wrkcov[i]);

//}

//killco(loggerco);

if (g.tracing) {

System.out.println(coName+

": Entering single event mode");

}

t.multi_done = true;

cowait(null); // Return to the controller.

return null;

}

}

}

public synchronized Pkt waitforserverpkt() {

while (r.serverq==null | !dying) {

if (g.tracing) {

System.out.println(coName+

": Waiting for a serverq to contain a packet");

}

r.pktcondvar.cocondwait();

}

if (g.tracing) {

System.out.println(coName+

": Dequeueing a packet from serverq");

};

Pkt pkt = r.serverq;

r.serverq = r.serverq.link;

pkt.link = null;

return pkt;

}

}

//**

//*************************** Loggermainco *****************************

170 APPENDIX A. JAVA TRANSLATION

//**

class Loggerco extends Cortn {

///coroutine

// This the logger coroutine of a read or write server.

// It runs in multi-event mode under the control of

// gomultievent.

Server r;

Pkt diepkt = null;

public Loggerco(String name, Server r) {

super(name, r);

this.r = r; // Allow access to the Server’s variables.

}

public Object fn(Object x) {

System.out.println(coName+": Ready ##################################");

while (true) {

// Start of the logger loop.

int i = 0; // Count of values received.

int a = r.loggerin.coread();

if (g.tracing) {

System.out.println(coName+

": Received a="+a);

}

i++;

// occasionally send a message to the printer task.

if ((i % 50) == 0) {

if (g.tracing) {

System.out.println(coName+

": Sending pkt to the Printer task");

}

r.sndpkt(new Pkt(null, g.printer, act_print,

0,0,

r.modech, r.srvno));

if (g.tracing) {

System.out.println(coName+

": pkt returned from the Printer");

}

}

// Occasionally the logger delays briefly.

171

if ((i % 7)==0) {

delayco(2); // 2 msecs

}

int b = r.loggerin.coread();

if (g.tracing) {

System.out.println(coName+

": Received b="+b);

}

{ int sum = a+b;

if (g.tracing) {

System.out.println(coName+

": Replying "+sum);

}

r.loggerout.wrpn(sum);

r.loggerout.cowrite(-1);

}

}

}

}

//**

//*************************** Loggerlock *******************************

//**

class Loggerlock {

// pkt is the list of packets waiting for the lock.

Pkt pkt = null;

}

//**

//*************************** Colist *********************************

//**

class Colist {

// This holds a list coroutines used in Condvar.

public Colist link;

public Cortn cptr;

public Colist(Colist link, Cortn cptr) {

this.link = link;

this.cptr = cptr;

}

}

172 APPENDIX A. JAVA TRANSLATION

//**

//*************************** Condvar **********************************

//**

class Condvar {

Colist list = null;

Task t;

String name;

public Condvar(String name, Task t) {

// Create a new condition variable belonging to Server r.

this.name = name;

this.t = t;

}

public void cocondwait() {

// Typical usage: pktcondvar.condwait();

// Insert a node at the head of list.

list = new Colist(list, t.currco);

System.out.println(name+" Inserted coroutine "+t.currco.coName+" into Condvar list");

System.out.println(name+" Waiting in cocondwait()");

t.cowait(null);

}

public void conotifyAll() {

// Typical usage: pkt=pktcondvar.conotifyAll();

// No need to synchronize since only one coroutine of this

// task can run at a time. Note that local data is flushed

// to main memory when control passed from one coroutine

// to another since this involves the calling of the

// synchronized methods unwait and currcowait.

System.out.println(name+": conotifyAll called");

// Release all the coroutines waiting on this condition.

Colist p = list;

if (p==null) {

System.out.println(name+": conotifyAll p==null");

}

// Clear the list since some may immediately wait on the same

// condition.

list = null;

while (p!=null) {

173

System.out.println(name+": conotifyAll calling callco("+p.cptr.coName+",null)");

t.callco(p.cptr, null);

p = p.link;

}

}

}

//**

//*************************** Workerco *********************************

//**

class Workerco extends Cortn {

///coroutine

// This is the main coroutine of a read or write server worker

// coroutine.

Server r;

int wrkno;

Pkt diepkt = null;

Pkt pkt = null;

public Workerco(String name, Server r) {

super(name, r);

this.r = r;

}

public Object fn(Object x) {

System.out.println(coName+": fn entered ##########################");

// This is the main function of a worker coroutine belonging

// to a server.

// The first value given to a worker coroutine is its worker number,

// so x is the worker number.

wrkno = ((Integer)x).intValue();

System.out.println(coName+": Initialised and ready, ##########################wrkno="+wrkno);

while (true) {

while (r.serverq==null | dying) {

System.out.println(coName+": Worker waiting for next request pkt");

r.pktcondvar.cocondwait();

}

174 APPENDIX A. JAVA TRANSLATION

if (dying) {

System.out.println(coName+": dying is true");

return null;

}

System.out.println(coName+": Extracting pkt from r.serverq");

Pkt pkt = r.serverq;

r.serverq = r.serverq.link;

pkt.link = null;

// Temp fiddle

System.out.println(coName+": Temp fiddle #############################");

System.out.println(coName+": Got pkt from "+pkt.task.coName);

System.out.println(coName+": Returning to pkt to "+pkt.task.coName);

pkt.res1 = 1234; // Indicate success.

r.qpkt(pkt);

// Wait for another request.

}

}

}

//**

//**************************** Multiplexor *****************************

//**

class Multiplexor extends Task {

///task

Multiplexor r; // This is used by the multiplexor

// coroutines to access the multiplexor

// variables such as mpxrdcov or bufv.

Pkt startuppkt = null; // This task variable hold the startup

// packet. It is returned to the

// controller by mpxmainco when

// initialisation is complete.

int mpxno; // The number of this multiplexor

int mpxbusycount = 0; // The number of channel coroutines

// that are currently busy (ie not

// waiting for requests.

Pkt diepkt = null; // This will contain the die packet

// when received from the controller.

175

Mpxrdco mpxrdcov[] = null; // To hold the channel read coroutines.

Mpxwrco mpxwrcov[] = null; // To hold the channel write coroutines.

boolean rdbusyv[] = null;

boolean wrbusyv[] = null;

Pkt rdwkqv[] = null;

Pkt wrwkqv[] = null;

Channelbuf bufv[] = null;

public Multiplexor(String name, Globals g, int pri) {

// This constructor is used to create a multiplexor task and

// its root coroutine.

super(name, g, pri);

r = this;

System.out.println(coName+": Task created");

}

public Object fn(Object arg) {

// This is the main function of a multiplexor root coroutine.

startuppkt = (Pkt) arg; // Used by mpxmainco

mpxno = startuppkt.arg1;

//int count = 0;

//System.out.println(coName+": startup packet received from "+startuppkt.task.coName);

// Create the multiplexor mainco for gomultievent.

Mpxmainco mainco = new Mpxmainco(coName+"mainco", r);

mainco.parent = this;

mainco.value = null;

currco = mainco;

//System.out.println(coName+": Starting coroutine "+mainco.coName);

mainco.start();

// Wait for it to enter its while(!dying) c = fn(cowait()) loop.

currcoWait();

//System.out.println(coName+": Coroutine "+mainco.coName+" created");

gomultievent(mainco);

return null;

176 APPENDIX A. JAVA TRANSLATION

}

}

//**

//**************************** Mpxmainco *****************************

//**

class Mpxmainco extends Cortn {

///coroutine

Multiplexor r;

Pkt diepkt;

public Mpxmainco(String name, Multiplexor r) {

// This constructor creates a non-root coroutine belonging to

// a multiplexor task. The only possible coroutines are channel

// read and write coroutine.

super(name, r);

this.r = r;

}

public Object fn(Object arg) {

// This is the main function of a multiplexor mainco

// called from gomultievent.

//System.out.println(coName+": Multiplexor’s mainco entered");

// Allocate all the multiplexor vectors.

r.mpxrdcov = new Mpxrdco[g.chnmax+1];

r.mpxwrcov = new Mpxwrco[g.chnmax+1];

r.rdbusyv = new boolean[g.chnmax+1];

r.wrbusyv = new boolean[g.chnmax+1];

r.rdwkqv = new Pkt[g.chnmax+1];

r.wrwkqv = new Pkt[g.chnmax+1];

r.bufv = new Channelbuf[g.chnmax+1];

for (int chnno=1; chnno<=g.chnmax; chnno++) {

r.mpxrdcov[chnno] = null;

r.mpxwrcov[chnno] = null;

r.rdbusyv[chnno] = false;

r.wrbusyv[chnno] = false;

r.bufv[chnno] = null;

}

177

// Allocate the channel buffers

for (int chnno=1; chnno<=g.chnmax; chnno++) {

Channelbuf buf = new Channelbuf(g.chnbufsize);

r.bufv[chnno] = buf;

if (g.tracing) {

System.out.println(coName+

": Created channel buffer "+strz(chnno,2)+

", size="+g.chnbufsize);

}

}

// Create the multiplexor read channel coroutines.

for (int chnno=1; chnno<=g.chnmax; chnno++) {

Mpxrdco mpxrdco = new Mpxrdco("M"+strz(r.mpxno,2)+"RC"+strz(chnno,2), r);

// Start mpxrdco leaving it susprnded in main loop:

// while(!dying) c = fn(cowait());

mpxrdco.parent = this;

mpxrdco.value = null;

t.currco = mpxrdco;

mpxrdco.start();

// Wait for it to enter its while(!dying) c = fn(cowait()) loop.

currcoWait();

// Tell mpxrdco what its channel number is.

callco(mpxrdco, new Integer(chnno));

// Wait for it to respond.

//if (g.tracing) {

// System.out.println(mpxrdco.coName+": Read coroutine started for channel "+chnno);

//}

}

// Create the multiplexor write channel coroutines.

for (int chnno=1; chnno<=g.chnmax; chnno++) {

Mpxwrco mpxwrco = new Mpxwrco("M"+strz(r.mpxno,2)+"WC"+strz(chnno,2), r);

// Start mpxwrco leaving it susprnded in main loop:

// while(!dying) c = fn(cowait());

mpxwrco.parent = this;

mpxwrco.value = (Object)(new Integer(123));

t.currco = mpxwrco;

178 APPENDIX A. JAVA TRANSLATION

mpxwrco.start();

// Wait for it to enter its while(!dying) c = fn(cowait()) loop.

currcoWait();

// Tell mpxwrco what its channel number is.

callco(mpxwrco, new Integer(chnno));

//if (g.tracing) {

// System.out.println(mpxwrco.coName+": Write channel coroutine started");

//}

}

//System.out.println(coName+

// ": Returning the startup packet to task "+

// r.startuppkt.task.coName);

r.qpkt(r.startuppkt); // Return the startup packet

if (g.tracing) {

//System.out.println(coName+": All read and write channel coroutines ready");

System.out.println(r.coName+": Initialised");

}

while(true) {

// Get the next request from gomultievent.

t.mainco_ready = true;

// mainco_ready is only true when mainco is waiting for

// a read, write or die request.

Pkt pkt = (Pkt) cowait(null);

t.mainco_ready = false;

switch (pkt.type) {

default:

System.out.println(coName+

": Unexpected packet received from "+pkt.task.coName);

continue;

case act_read:

{ // Packet arguments:

// a1:flag ar:clino a3:serno a4:mpxno a5:chnno

char flag = (char) pkt.arg1;

int clino = pkt.arg2;

int serno = pkt.arg3;

int mpxno = pkt.arg4;

179

int chnno = pkt.arg5;

int data = pkt.arg6; // =0 for read requests

if (g.tracing) {

System.out.println(coName+

": Read request received");

}

// Insert this packet at the head of the read wkq

// for this channel.

pkt.link = r.rdwkqv[chnno];

r.rdwkqv[chnno] = pkt;

if (g.tracing) {

System.out.println(coName+

": Read request inserted at head of its wkq");

}

if (!r.rdbusyv[chnno]) {

// Wake up the channel read coroutine

// if it is not busy.

callco(r.mpxrdcov[chnno], null);

}

// Process another read, write or die request

continue;

}

case act_write:

{ // Packet arguments:

// a1:flag ar:clino a3:serno a4:mpxno a5:chnno

char flag = (char) pkt.arg1;

int clino = pkt.arg2;

int serno = pkt.arg3;

int mpxno = pkt.arg4;

int chnno = pkt.arg5;

int data = pkt.arg6;

if (g.tracing) {

System.out.println(coName+

": Write request received");

}

// Insert this packet at the head of the write wkq

180 APPENDIX A. JAVA TRANSLATION

// for this channel.

pkt.link = r.wrwkqv[chnno];

r.wrwkqv[chnno] = pkt;

if (g.tracing) {

System.out.println(coName+

": write request inserted at head of its wkq");

}

if (!r.wrbusyv[chnno]) {

// Wake up the channel write coroutine

// if it is not busy.

callco(r.mpxwrcov[chnno], null);

}

// Process another read, write or die request

continue;

}

case act_die:

System.out.println(coName+": die pkt received");

diepkt = pkt;

break; // Cause this thread to die

}

// Reach here if a die packet was received

break; // Break out of the while(true) loop

}

// Cause this multiplexor to die by returning control

// to gomultievent with multi_done set to true.

r.multi_done = true;

return null;

}

}

//**

//*************************** Mpxrdco *********************************

//**

class Mpxrdco extends Cortn {

///coroutine

// This models a multiplexor read channel coroutine.

181

Channelbuf buf;

Multiplexor r;

char flag;

int clino;

int serno;

int mpxno;

int chnno;

int data;

Pkt pkt;

public Mpxrdco(String name, Multiplexor r) {

// This constructor creates a non-root read channel coroutine

// belonging to a multiplexor task.

super(name, r);

this.r = r; // Multiplexor t owns this coroutine and

// provides access to variables

// such as mpxrcv and bufv.

//System.out.println(coName+": Multiplexor "+r.coName+" owns this coroutine");

}

public Object fn(Object x) {

// This is the main function of a channel read coroutine

mpxno = r.mpxno;

chnno = ((Integer)x).intValue();

buf = r.bufv[chnno];

//System.out.println(coName+": Channel read coroutine ready for channel "+chnno);

r.rdbusyv[chnno] = true; // ONLY = false when waiting to be woken up.

while (true) {

// Start of the main loop for a read coroutine for this channel.

// Get the next read packet, waiting if necessary.

if (r.rdwkqv[chnno]==null) {

// There are no packets in the queue for this channel

// so wait for one

r.rdbusyv[chnno] = false;

r.mpxbusycount--;

182 APPENDIX A. JAVA TRANSLATION

if (g.tracing) {

System.out.println(coName+": Ready");

}

pkt = (Pkt)cowait(null);

r.rdbusyv[chnno] = true;

r.mpxbusycount++;

} else {

if (g.tracing) {

System.out.println(coName+

": Dequeuing a pkt from "+r.rdwkqv[chnno]);

};

// Dequeue the next read packet

pkt = r.rdwkqv[chnno];

r.rdwkqv[chnno] = pkt.link;

pkt.link = null;

}

// Extract the parameters

flag = (char) pkt.arg1;

clino = pkt.arg2;

serno = pkt.arg3;

data = pkt.arg6;

if (buf.isempty()) {

// The channel buffer is empty, so return the packet

// to the read server with an indication of failure.

if (g.tracing) {

System.out.println(coName+

": Returning failed read request to its server");

}

pkt.res1 = 0; // Indicate failure.

t.qpkt(pkt);

continue;

}

data = buf.get();

if (g.tracing) {

System.out.println(coName+

": data "+strz(data,4)+

" extracted from the channel buffer");

}

// Conditionally perform a multiplexor delay.

183

if (flag==’m’) {

if (g.tracing) {

System.out.println(coName+

": Channel delay*n");

};

delayco(g.delaymsecs);

if (g.tracing) {

System.out.println(coName+

": Channel delay done*n");

}

}

// Return the successful read request packet to its server.

if (g.tracing) {

System.out.println(coName+

": returning successful read packet to its server");

}

t.qpkt(pkt); // Return the successful read packet to its server.

// Process the next read packet, if any.

}

}

}

//**

//*************************** Mpxwrco *********************************

//**

class Mpxwrco extends Cortn {

///coroutine

// This is the main coroutine of a read server

Multiplexor r;

Channelbuf buf; //

char flag;

int clino;

int serno;

int mpxno;

int chnno;

int data;

Pkt pkt;

184 APPENDIX A. JAVA TRANSLATION

public Mpxwrco(String name, Multiplexor r) {

// This constructor creates a non-root write channel coroutine

// belonging to a multiplexor task.

super(name, r);

this.r = r;

}

public Object fn(Object x) {

// This is the main function of a channel write coroutine

mpxno = r.mpxno;

chnno = ((Integer)x).intValue();

buf = r.bufv[chnno];

//System.out.println(coName+": Channel write coroutine ready for channel "+chnno);

r.wrbusyv[chnno] = true; // ONLY = false when waiting to be woken up.

while (true) {

// Start of the main loop for a write coroutine for this channel.

// Get the next write packet, waiting if necessary.

if (r.wrwkqv[chnno]==null) {

// There are no packets in the queue for this channel

// so wait for one

r.wrbusyv[chnno] = false;

r.mpxbusycount--;

if (g.tracing) {

System.out.println(coName+": Ready");

}

pkt = (Pkt) cowait(null);

r.wrbusyv[chnno] = true;

r.mpxbusycount++;

} else {

// Dequeue the next write packet

pkt = r.wrwkqv[chnno];

r.wrwkqv[chnno] = pkt.link;

pkt.link = null;

}

// Extract the parameters

185

flag = (char) pkt.arg1;

clino = pkt.arg2;

serno = pkt.arg3;

data = pkt.arg6;

if (buf.isfull()) {

// The channel buffer is full, so return the packet

// to the write server with an indication of failure.

if (g.tracing) {

System.out.println(coName+

": Returning failed write request to its server");

}

pkt.res1 = 0; // Indicate failure.

t.qpkt(pkt);

continue;

}

buf.put(data);

if (g.tracing) {

System.out.println(coName+

": data "+strz(data,4)+

" put into the channel buffer");

}

// Conditionally perform a multiplexor delay.

if (flag==’m’) {

if (g.tracing) {

System.out.println(coName+

": Channel delay*n");

};

delayco(g.delaymsecs);

if (g.tracing) {

System.out.println(coName+

": Channel delay done*n");

}

}

// Return the successful read request packet to its server.

if (g.tracing) {

System.out.println(coName+

": returning successful write packet to its server");

}

186 APPENDIX A. JAVA TRANSLATION

t.qpkt(pkt); // Return the successful read packet to its server.

// Process the next read packet, if any.

}

}

}

//**

//*************************** Channelbuf *******************************

//**

class Channelbuf {

// This class is used to represent channel buffers.

// It methods are: isempty, isfull, get and put.

// These metods are synchonized since different threads may try

// to access the buffer at the same time.

int chnbufsize;

int buf[];

int p;

int q;

public Channelbuf(int size) {

// This will construct a channel buffer of given size.

this.chnbufsize = size;

this.buf = new int[chnbufsize];

p=0; // Initially empty.

q=0;

}

public synchronized boolean isempty() {

return p==q;

}

public synchronized boolean isfull() {

return (p+1)%chnbufsize == q;

}

public synchronized int get() {

int data = buf[p];

p = (p+1) % chnbufsize;

return data;

}

public synchronized void put(int data) {

187

q = (q+1) % chnbufsize;

buf[q] = data;

}

}

//**

//*************************** Rnd **************************************

//**

class Rnd {

private int seed;

public Rnd(int a) {

seed = a & 0xFFFFFFF | 1; // Ensure seed is not zero

int k = next(50) + 10;

for(int i = 1; i<=k; i++) next(1000);

}

//public final static int feedback = 0xD008; // 16 15 13 4 => period 2^16-1

public final static int feedback = 0x80200003; // 32 22 2 1 => period 2^32-1

// 1000 0000 0010 0000 0000 0000 0000 0011

// | | ||

// | | |1

// 32 22 2

public int next(int max) {

if ((seed&1)==0) {

seed = seed>>>1;

} else {

seed = (seed>>>1) ^ feedback;

}

return (seed>>>1) % max + 1;

}

}

