
Specification of Programming
Language Syntax

by

Martin Richards

mr10@cl.cam.ac.uk

http://www.cl.cam.ac.uk/users/mr10/

Computer Laboratory

University of Cambridge

Revision date: Sun Dec 29 05:41:56 AM GMT 2024

Abstract

Normally Backus Naur Form (BNF) or extended BNF (EBNF) is used to specify
the syntax of programming languages. Users typically find such specifications
hard to interpret and it is often not easy to check whether a parser the conforms
precisely with the BNF specification. There is also the problem that the BNF
may be ambiguous.

This document suggests way to specify the syntax of programming languages
that is concise and easily understood by users. It essentially specifies a recursive
descent parsing algorithm making it easy to implement a parser that conforms
precisely to the specification. Syntax specified in this way is guaranteed to be
unambiguous.

Keywords: BNF, EBNF, transition diagrams, ambiguity.

Chapter 1

Introduction

Backus Naur Form (BNF) was first used in the Algol 60 Report to give a precise
description of its syntax.

John Backus and Peter Naur were members of the committee that developed
Algol 60.

Since then almost all programming languages have had their syntax specified
using BNF or Extended BNF(EBNF). EBNF is a slightly more compact notation
to specify a BNF grammar.

Algol 60 was a tour de force since at that time the most popular languages were
COBOL, FORTRAN 66, LISP and various Autcodes.

1

2 CHAPTER 1. INTRODUCTION

1.1 Example BNF grammar for expressions

Bexp ::= name

number

(E)

+ E

- E

E ::= Bexp

E ^ E

E * E

E / E

E + E

E - E

An example mathematical expression

x ∗ 2−n2 − 16/−2 ∗ 3
can be written satisfying the above grammar as follows:

x * 2 ^ -n^2 - 16 / -2 * 3

1.2. SYNTAX IS DIFFICULT 3

1.2 Syntax is difficult

At about the age of 7 we are taught that multiplication is more binding than
addition. So 1 + 2× 3 evaluates to 7 not 9.

I was told to remember the word BODMAS which stands for

Brackets Of Division Multiplication Addition and Subtraction

indicating that, for instance, multiplication is more binding than addition.

Unfortunately BODMAS is just wrong and misleading. For instance, what does
it say about:

24× 6÷ 2 + 1− 5 + 6

Or even:

x+ y + z

Consider the following two assignments:

s = x + z;

t = x + y + z;

4 CHAPTER 1. INTRODUCTION

Bexp := name

number

(E0)

+ E1

- E1

E2 ::= Bexp

Bexp ^ E2

E1 ::= E2

E1 * E2

E1 / E2

E0 ::= E1

E0 + E1

E0 - E1

Prog ::= E0 <eof>

1.2. SYNTAX IS DIFFICULT 5

This grammar could be written using category names similar to
those in the C++ grammar given in the ISO/IEC 14882:1998(E)
specification

<basic expression> ::=

<name>

<number>

(<additive expression>)

+ <multiplicative expression>

- <multiplicative expression>

<power expression> ::=

<basic expression>

<basic expression> ^ <power expression>

<multipicative expression> ::=

<power expressio>

<multipicative expression> * <power expression>

<multipicative expression> / <power expression>

<additive expression> ::=

<multipicative expression>

<additive expression> + <multipicative expression>

<additive expression> - <multipicative expression>

<program> ::=

<additive expression> <eof>

This grammar has
6 syntactic categories, 14 productions and 10 terminal symbols.

The ISO/IEC 14882:1998(E) grammar for C++ has
196 categories, 640 productions and 192 terminal symbols.

6 CHAPTER 1. INTRODUCTION

1.3 The transition diagrams

The definition of

A more compact definition of

Definition of

1.4. THE COMPACTED TRANSITION DIAGRAMS 7

1.4 The compacted transition diagrams

A more compact definition of

A more compact definition of

Definition of

8 CHAPTER 1. INTRODUCTION

1.5 Implementing the Parser

LET rbexp() = VALOF

{ // Read a basic expression returning the corresponding parse tree

LET op = token

LET res = 0

SWITCHON op INTO

{ DEFAULT:

synerr("Bad token at the start of an expression")

lex()

RESULTIS 0

CASE s_name:

CASE s_number:

res := mk2(op, lexval)

lex()

RESULTIS res

CASE s_lparen:

res := rnexp(0)

checkfor(s_rparen, "’)’ expected")

RESULTIS res

CASE s_add:

CASE s_sub:

res := rnexp(1)

IF op=s_sub RESULTIS mk2(s_neg, res)

RESULTIS res

}

}

AND rnexp(n) = VALOF

{ lex()

RESULTIS rexp(n)

}

1.5. IMPLEMENTING THE PARSER 9

AND rexp(n) = VALOF

{ LET res = rbexp()

{ LET op = token

SWITCHON op INTO

{ DEFAULT:

RESULTIS res

CASE s_power:

UNLESS n<3 RESULTIS res

res := mk3(op, res, rnexp(2))

LOOP

CASE s_mul:

CASE s_div:

UNLESS n<2 RESULTIS res

res := mk3(op, res, rnexp(2))

LOOP

CASE s_add:

CASE s_sub:

UNLESS n<1 RESULTIS res

res := mk3(op, res, rnexp(1))

LOOP

}

} REPEAT

RESULTIS res

}

10 CHAPTER 1. INTRODUCTION

1.6 How to draw the flow graphs

Code to draw the items at level y4

drawcatboxL (y4, x1, x2, x5, "Bexp")

drawtestboxL(y4, x5, x5, x6, "n<3 ^")

drawcatboxL (y4, x6, x6, x7-r, "E2")

rndcorner(2, x3, y4, r)

rndcorner(0, x4, y4, r)

rndcorner(3, x7, y4, r)

moveto(x4, y4-r)

drawto(x4, y1+r)

1.7. SYNTACTIC AMBIGUITY 11

1.7 Syntactic ambiguity

The rules associated with the flow graphs are:

1) Backtracking through a test box that matches a lexical token is not permitted.

2) At a path division point the left hand branch is always tried first.

The rules ensure the grammar specified by the flow graphs contains no ambigui-
tites.

It is easy to create flow graphs in which every loop will match at least one lexical,
and it is easy to check that this poperty holds.

Note that BNF grammars can contain ambiguties.

12 CHAPTER 1. INTRODUCTION

1.8 BNF Ambiguities

From the Web BNF I have obtained BNF specifications for the languages C, C++
and Java. All three essential contain the following productions.

<selection-statement> ::= if (<expression>) <statement>

<selection-statement> ::= if (<expression>) <statement> else <statement>

<statement> ::= <selection-statement>

This contains an ambiguity since there are two way to parse the following:

res = 0;

if (x>0) if (y>0) res=2; else res = 1;

If x is zero this code will set res to either zero of one depending on how the
author of the compiler interpreted the grammar.

This is exactly the same ambiguity that was present in the Algol 60 Report 64
years ago.

My conclusion is that language designers and/or people who write programming
languae manuals choose to specify the grammar using BNF but don’t notice or
care if the BNF specification is ambiguous.

