
The PAL Programming Language
by

Martin Richards and others

mr10@cl.cam.ac.uk

http://www.cl.cam.ac.uk/users/mr10/

Computer Laboratory

University of Cambridge

Revision date: Wed Aug 21 07:06:05 AM BST 2024

Abstract

PAL was a programming language designed and implemented at MIT for use in
a course to introduce first year students to how to write computer programs. [1]

This document is based on the sourse of the BCPL manual. Its main purpos is
to provide the transition diagram for the syntax of PAL accepted by the PAL com-
piler and interpreter implemented by the program BCPL/cintcode/com/pal.b.

2

Contents

Preface iii

1 The System Overview 1

2 The PAL Language 3

Bibliography 5

A PAL Syntax Diagrams 7

i

ii CONTENTS

Preface

iii

iv CONTENTS

Chapter 1

The System Overview

1

2 CHAPTER 1. THE SYSTEM OVERVIEW

Chapter 2

The PAL Language

3

4 CHAPTER 2. THE PAL LANGUAGE

Bibliography

[1] M. Richards. The Implementation of CPL-like programming languages. Phd
thesis, Cambridge University, 1966.

5

6 BIBLIOGRAPHY

Appendix A

PAL Syntax Diagrams

This appendix gives the precise syntax of PAL as compiled by pal.b. It closely
follows the syntax of PAL as implemented and maintained by Richard Mabee for
the IBM 370, except curly brackets ({ and } not parentheses are used to group
declarations and command sequences. This greatly simplifies the syntax rules.

The syntax of programming languages is often specified using Backus Naur
Form or BNF. Mathematicians like BNF notation because of its simplicity, power
and interesting properties, while language designers like it because the rules just
confirm their understanding of the language grammar they are designing. For
users, understanding a grammar from its BNF specification is harder. There are
typically a hundred or more of syntactic categories, many with rather artificial
names, and a greater number of rules. Understanding the rules is hard because
they mostly depend on each other. There is also sometimes a problem noticing
whether a BNF grammar is ambiguous. Indeed it is not possible, in general,
to write a program that can determine whether a BNF grammar is ambiguous,
and it is also not always easy to write a parser that precisely agrees with the
BNF specification. BNF was first used in the Algol 60 report and it suprisingly
contained an ambiguity not noticed by the designers of that language.

Even though much research has been done in this area resulting in packages
such as Lex and Yacc, I have decided to specify the grammar of PAL using a
method based on transition diagrams. This method gives a precise specification
of the parsing algorithm. The diagrams are easy to understand and have the
advantage that the grammar is guaranteed to be unambiguous. It is also easy
to check that the parser in a compiler comforms precisely with this specification.
These diagrams can also be used as the basis of a program to find a minimum
cost syntactic repairs, resulting in better error messages.

The PAL syntax is given using the diagrams shown in figures A.1, A.2, A.3,
A.4 and A.5 for the syntactic categories Prog, D, C, Bexp and En. In the di-

agrams these categories are represented by the rounded boxes: ,

, , , and , respectively.

7

8 APPENDIX A. PAL SYNTAX DIAGRAMS

A rectangular box is called a test box and may contain a terminal symbol as
in or , or a label representing a set of terminal symbols or some
other condition. These test box labels are specified in the following table.

Label Possible symbols or condition
name A name not preceded by FLT

number Integer or floating point constant
const Integer or floating point constant,

TRUE or FALSE
string A string constant
mulop * /

posop + -

addop + -

relop = ~= < <= > >=

iscall This is only satisfied if the most recent construct
was a function

isname This is only satisfied if the most recent construct
was a name not enclosed in parentheses

eof This is only satisfied if the program file is exhausted

A test box that specifies one or more terminal symbols can only be traversed if it
matches the current symbol in the program. Some test boxes have side conditions
such as n<5 which must also be satisfied. When a box successfully matches a
terminal symbol, input is advanced to the next symbol of the program.

Test and category boxes are connected by paths which may contain branch
points where paths diverge, and join points where paths converge. Each diagram
has an entry point and an exit point, and every path in it has an implied direction.

The diagrams specify an infinite extended flow graph obtained by starting

with the category and repeatedly replacing category boxes by their
definitions, substituting the parameter n where necessary. Every test box in the
extended graph having a side condition will now compare two explicit integers
and so is either equivalent to a test box without a side condition if the comparison
is successful, otherwise the box will never succeed and can be eliminated. The
extended graph thus only contains test boxes without side conditions.

The parsing algorithm searches through the extended flow graph trying to
find a path containing a sequence of test boxes that match the terminal symbols
of the program. Whenever a branch point is encountered, the left branch is
tested first, only trying the right branch when all test boxes reachable from the
left branch have failed. If a test box is successful and all boxes reachable from
it fail, the program is syntactically incorrect. Parsing is thus done without any
need to backtrack. A program is only syntactically correct if the exit point of
the extended graph can be reached. The transition diagrams ensure that every
loop in the extended graph contains at least one test block requiring a terminal

9

symbol to be read from the program. Parsing can therefore never be stack in an
infinite loop.

For compatibility with older versions of PAL some terminal symbols have
synonyms as follow.

Symbol Possible synonyms
NOT ~

= ~= EQ NE

< <= LS LE

> >= GR GE

<< >> LSHIFT RSHIFT

& | LOGAND LOGOR

> -*

Figure A.1: The definition of

10 APPENDIX A. PAL SYNTAX DIAGRAMS

Figure A.2: The definition of

11

Figure A.3: The definition of

12 APPENDIX A. PAL SYNTAX DIAGRAMS

Figure A.4: The definition of

13

Figure A.5: The definition of

14 APPENDIX A. PAL SYNTAX DIAGRAMS

