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Abstract

The Raspberry Pi is a credit card sized computer with versions costing between
£20 and £35. It runs a full version of the Linux Operating System. Its files
are held on an SD card typically holding between 2 and 32 Giga-bytes of data.
When connected to a power supply, a USB keyboard and mouse, and attached
to a TV via an HDMI cable, it behaves like a regular laptop running Linux.
Programs for it can be written in various languages such as Python, C and Java,
and systems such as Squeak and Scratch are fun to use and well worth looking
at. This document is intended to help people with no computing experience to
learn to write, compile and run BCPL programs on the Raspberry Pi in as little
as one or two days, even if they are as young as 10 years old.

Although this document is primarily for the Raspberry Pi, all the programs
it contains run equally well (or better) on any Linux, Windows or OSX system.
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Preface

When a new programming language is designed it is invariably strongly in-
fluenced by languages that preceded it. Ome thread of related languages is:
Algol -> CPL -> BCPL -> B -> C -> C++ -> Java, indicating that BCPL is
just a small link in the chain from the development of Algol in the late 1950s
to Java in the 1980s. BCPL is particularly easy to learn and is thus a good
choice as a first programming language. It is freely available via my home page
(www.cl.cam.ac.uk/"mr10) and the only file to download is called bcpl.tgz.
This is easy to decompress and install on the Raspberry Pi and so, in very little
time, you can have a usable BCPL system running on your machine.
The main topics covered by this document are:

e How to connect the Raspberry Pi to a television, keyboard, mouse, and
power supply.

e How to initialise its SD card with a version of the Linux Operating System.

e How to login to the Raspberry Pi followed by a brief description of a few
Linux Shell commands.

e How to obtain and install the BCPL Cintcode system on the Raspberry Pi.

e Then follows a series of examples showing how to write, compile and run
BCPL programs.

e Near the end there are some example programs involving interactive graph-
ics using the BCPL interface to the SDL and Open GL graphics libraries.

e Finally, there is a section outlining some of the debugging aid provided by
the BCPL system.

Professional computer scientists require a reasonable grounding in mathemat-
ics and so some mathematics has been included in this document, but even though
some is of university level, the approach taken requires very little mathematical
background, and should be understandable by most young people. But if this is
not to your taste, skip any sections remotely connected with mathematics.
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Chapter 1

Setting up the Raspberry Pi

The Raspberry Pi is a credit card sized computer that runs the freely available
Linux Operating System. Since the Raspberry Pi was first made available many
new versions making the original ones rather out of date. It has therefore been
necessary to rewrite this chapter and the next.

Figure 1.1 shows an early version of the Raspberry Pi. It was powered by a
typical mobile phone charger using a micro USB connector.

-

Figure 1.1: Raspberry Pi with connectors

Any Raspberry Pi can be connected to a TV using an HDMI cable and can
be connected to a USB keyboard and mouse. Although a Raspberry pi without a
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screen, keynoard or mouse can be accessed remotely, such connections are almost
essential when first setting up the machine.

You might find a combined wireless keyboard and touch pad more convenient
since it allows you to sit in the comfort of an armchair with the keyboard on your
knee and the Raspberry Pi neatly hidden behind the TV without any trailing
cables.

The picture of the Raspberry Pi shows the tiny USB radio dongle for the
keyboard to the left, the HDMI cable above and the micro USB connector for
the power supply to the right.

Figure 1.2 shows the Raspberry Pi fully connected only requiring the HDMI
lead to be connected to a TV and the power adapter plugged into a socket. Notice
that at the right side of the machine, you can see part of the blue SD memory
card which has to be preloaded with a suitable version of the Linux Operating
System. This rather old machine used a full sized SD card. Modern Raspberry
Pis use micro SD cards which are much neater.

Figure 1.2: Raspberry Pi and keyboard fully connected

Figure 1.3 shows a more extensive setup of the Raspberry Pi. This time it is
connected to the internet by cable and has a powered 4-port USB Hub connected
to a second USB port. The Hub itself is connected to a 500 Gbyte USB disc drive.
The screen shows a typical desktop with a web browser showing some photos and
a terminal session demonstrating the BCPL Cintcode System.
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Figure 1.3: A more extensive setup

1.1 Later versions of the Raspberry Pi

In early February 2015, a new version of the Raspberry Pi became available. It
had 1Gb of RAM, 4 USB sockets and is about six times faster the the earlier
version, but still costs about the same as the earlier version. Since then several
new versions have become available, typically models 3B, 4B and 5. These are
faster and have more memory and other advantages.

A major advantage of these later versions is that they provide full support
for floating point machine instructions which is invaluable for instance in the
interface between BCPL and OpenGL graphics. A Raspberry Pi 2 Model B v1.1
dating from 2014 is shown in Figure 1.4.

Since then several newer versions have become avalable. They are much faster,
have more RAM store and all have bultin WiFi. The rest of this document
assumes that you areusing one of these machine, Possible a model 3 or 4 or event
the latestmodel 5. These later machines have about the same power as a typical
laptop.
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Figure 1.4: The Raspberry Pi Model B-2

Beware that more recent machines require power adapters capable of supply-
ing upto 3 amps or more. So be careful when buying these items.



Chapter 2

SD Card Initialisation

The SD card must contain a suitable Operating System for the Raspberry Pi. It
is possible to buy an SD card that already contains the Raspberry Pi OS, but
I strongly recommend that you buy a blank SD card and copy the operating
System onto it. This is easy to do and has the advantage you can choose which
version of the OS you want and also, if your SD card gets corrupted and stops
working, you will know how to reconstruct it. The only disadvantage is that
you will need access to a Windows, MacOS or Linux machine with access to the
internet. Most laptops have an SD card socket but if necessary you can use a
USB adapter for SD cards. You will need a microSD card and I recommend you
choose one of size 32, 64 or 128GB, the larger the better.

You must download the Operating System Image to a file on your non Rasp-
berry Pi machine. To do this, do a Google search on: raspberry pi download.
This will give you a selection of web pages giving you a variety of possible OS im-
ages and how to use them. I had a Raspberry Piis a Model 3B and chose an image

For older Raspberry Pis you should use a Legacy version. For my Raspberry
Pi Model 3B v1.2, I chose a 64 bt version of the OS including desktop and the
recommended software. I downloaded it into a directory called Downloads. Its
filename was: 2023-12-05-raspios-bookworm-arm64-full.img.xz and its size
was 2.797,859 KB.

Probably the best way to write this image to the SD card is to use an app
called: Raspberry Pi Imager. This certainly worked on my laptop running Win-
dows 10. It was easy to install from the Raspberry Pi web site. When run it first
asked the quetion: Do you want to allow this app to make changes to our device?
I clicked on: Yes. It then displayed a window containing four buttons. From left
to right on the top they are as follows.
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Raspberry Pi Device I chose: RASPBERRYPI 3

Operating System I selected: Use custom image
from your computer and gave it the full
filename of the downloaded image

Storage Insert your microSD card into your machine
and click on this button.
You may well then see a message asking whether
you wish to format th SD card.
The answer is no. When you click on the
Storage button it should display a window
asking you to select an SD card.
It will display the name and size of
the SD card you have just inserted.
So select it and NEXT button.

NEXT This button only works after completing
the choices requested by the first three button.

It then displays a window withbuttons labelled: EDIT SETTINGS, NO
CLEAR SETTING, YES,NO and NEXT. Click on EDIT SETTINGS and set
the hoast name to eg Rpi3B.

Set your username and password, and set your router SSID and its password.

The wireless LAN country for me should be GB. You may want to set the
time zone country and town to Europe/London abd the Keyboard layout to gb.

Now press SAVE followed by YES. This causes a window to appear saying:
asking you: All data on 'SDHC’ will be erased. Are you sure you want to con-
tinue? The answer is YES. It now begins to write to the SD card giving you a
continual indication of progress. Since the image file is large it takes quite a long
time to complete the operation. On my machine it took about 25 minutes.

It is now time to initialised your new copy of the Raspberry Pi OS.

1) Insert the SD card into your Raspberry Pi, connect the power supply and
either connect a USB keyboard and mouse or setup a radio keyboard and mouse.
2) Switch the power on. After some welcoming screens you should get a window
inviting you to choose a country, a language and a time zone. I chose United
Kingdom, British English and London. The press Next.

3) The next window asks you to create your user account. It asks for as user
name. I chose: mr. Then a password twice for confirmation. The click on Next.

4) It is now time to connect to the internet. You will probably be asked for yous
router’s SSID and password. Click on Next.

5) Now update the OS and applications. Click Next. For me this took about 5
minutes before it said the System is up to date. Click on Next.

7) It thn said: Your Raspberry Pi is set up and ready to go. Click on: Restart.
After q while it logs you in displaying a pleasant fullscreen image. At the top of
the screen there are some icons. From left to right there is a raspberry icon that



expands into a menu of items allowing you to start a wide variety of applications.
The next is a small blue globe that allows you to enter a web brouser. This
is followed by a file explorer icon and the last will allow you to open a shell
command language window.
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Chapter 3

Introduction to Linux

Assuming that you have successfully logged in to the Raspberry Pi as user pi
and have the time and date correctly set you should be looking at a bash prompt
such as:

pi@raspberrypi:~$

This line is inviting you to type in a command to the bash shell. If you press
the Enter key several times, it will repeatedly respond with the prompt. Shell
commands are lines of text with the first word being the command name and
later words being arguments supplied to the given command. For instance, if
you type echo hello the command name is echo and its argument is hello. If
you then press the Enter key, the machine will load and run the echo command
outputing its argument as shown below.

pi@raspberry:~$ echo hello
hello
pi@raspberry:~$

After doing that, the shell is again waiting for a command.

Errors are common when typing commands and the shell is helpful in allow-
ing you to correct such mistakes before they are executed. Suppose you typed
echohello without a space between the command name and its argumnent, you
could delete the last five characters by pressing the backspace key (often labelled
<-BkSp) five times then press the space bar followed by hello. Alternatively,
you could press the left arrow key five times to position the cursor over the h of
hello. Pressing the space bar now will insert a space before the h and pressing
the Enter key will now cause the corrected command to be executed.

The shell remembers commands you have recently executed and you can
search through them using the up and down arrow keys. So rather typing
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echo hello again, you can find it by pressing the up arrow key once and ex-
ecute it by pressing Enter. Believe it or not, this is an incredibly useful feature.

We will now look at a few shell commands that you are likely to find useful.
Firstly, there is the command date which outputs information you might expect.
But if the output is wrong, the time and date should be corrected using the sudo
date command shown in the previous chapter.

When you have finished using the computer, it is important to close it down
properly by issuing the command sudo shutdown -h now and wait until the
machine says it has halted.

There are literally hundreds of shell commands available in Linux and many
of them are held in the directories /bin and /usr/bin. You can see them by
typing 1s /bin and 1s /usr/bin. But don’t be frightened, you will only need
to know about perhaps 10 or 15 of them to make effective use of Linux. Linux
is to a large extent self documented, and it is possible to learn what commands
do using the man command. This is a rather sophicticated command that will
display manual pages describing almost any command available in the system.
The output is primarily aimed and professional users and is highly detailed and
often incomprehensible to beginners, but you should just try it once to see the
kind of information that is available. Try typing man echo. This gives a detailed
description of the echo command which you can step through using the up and
down arrow keys and the space bar. To exit from the man command, type q. As
an example of a really long and complicated command description, try man bash
and repeatedly press the space bar until you get tired, remembering to press q
to return to the shell. Again don’t be frightened by what you have just seen,
you will only be using a tiny subset of the features available in bash and this
document will show you the ones you are most likely to use.

Sometimes you want to do something but don’t know the name of the com-
mand to use. The man -k command can be helpful in this situation, but it is
not always as helpful as you would like. When I first started to use Linux, many
years ago, | wanted to delete a file. On previous systems I had used, commands
such as del, delete or erase had done the job. Typing man -k delete lists
about 13 commands that have something to do with deletion but none of the
suggested commands would actually delete a file. In Linux deleting a file is called
removal and is performed by the rm command. It appears in the rather long list
generated by man -k remove.

The whoami outputs your user identifier. On the Raspberry Pi this is likely
to be pi.

As has been seen the date command will will either generate the date and
time or let you set the date.

The command cal 2012 will output a calendar for the year 2012. As an
interesting oddity try cal 1752 since this was the year in which some days in
September were deleted when there was a switch from the Julian to the Gregorian
calendar. Type man cal for details.
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To execute a command that requires special privileges, you should precede it
by sudo. It will normally require you to type in a password before it will execute
the given command.

Many other commands are associated with files and the filing system. Some
of these are described in the next section.

3.1 The Filing System

As we have seen, the SD card holds the image of the Linux system including
the built-in shell commands and much more, but it also holds data that you can
create. This data is held in files and continues to exist for use on another day, even
after you turn the computer off. Files have names and are grouped in directories
(often called folders). They typically contain text that can be output to the
screen, but files are frequently used for other purposes. The echo command,
used above, is a file but not a text file. It is actually a program containing a
long and complicated sequence of instructions for the computer to obey in order
to output its argument to the screen. At this stage it may seem like magic, but
after reading this document you will hopefully have a better understanding of
how programs are written and how they work.

Directories can contain other directories as well as files and so it is natural
to think of the filing system as a tree of files (the leaves) and directories (the
branches). At the lowest level is the root which is referred by the special name /.
We can list the contents of this using the command 1s / as can be seen below.

pi@raspberrypi:~$ 1ls /

bin dev 1lib opt sbin STV usr
boot etc media proc sd sys var
Desktop home mnt  root selinux tmp
pi@raspberrypi:~$

It turns out that all the items in the root directory are themselves directories
mostly belonging to the system. As can be seen, one is called home which con-
tains the so called home directories of all users permitted to use this computer.
Currently there is only one user called pi setup. We can show this by listing the
contents of home.

pi@raspberrypi:~$ 1ls /home
pi
pi@raspberrypi:~$

We can also list the contents of the pi directory by the following.
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pi@raspberrypi:~$ 1ls /home/pi

pi@raspberrypi:~$

This indicates that it is apparently empty. However, it does contain files whose
names start with dots (’.”) that are normally hidden. These can be seen using
the -a option as in:

pi@raspberrypi:~$ 1ls -a /home/pi
.bash_history .config .lesshst
pi@raspberrypi:~$

An absolute file name is a sequence of names separated by slashes (’/’) and
starting with a slash. Such compound names can become quite long. For instance
the full file name of the echo command is /usr/bin/echo as can be found using
the which command. To reduce the need to frequently have to type long names,
Linux has the concept of a current working directory. The absolute name of this
directory can be found using the pwd command as in:

pi@raspberrypi:~$ pwd
/home/pi
pi@raspberrypi:~$

File names not starting with a slash are called relative file names and are inter-
preted as files within the current working directory. In this case, it is as though
/home/pi/ is prepended to the relative file name. You can change the current
directory using the cd command, as the following sequence of commands shows.

pi@raspberrypi:~$ cd /usr/local/lib
pi@raspberrypi:/usr/local/lib$ pwd
/usr/local/lib
pi@raspberrypi:/usr/local/1ib$ cd
pi@raspberrypi:/usr/local/lib$ pwd
/home/pi

A few more Linux commands relating to files will be given in the next chapter
after you have installed the BCPL system.
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3.2 The Desktop

After you have logged in to the Raspberry Pi (typically as user pi with password
raspberry), you will probably find yourself connected to a bash shell waiting for
you to enter Linux commands. It is normally more convenient to work within
a graphics session since this allows you to interact with several programs using
separate windows. To start a graphics session type the command startx. After
about 10 seconds you will be in a graphics session. You can then use the mouse to
move about the screen and press the mouse buttons to cause actions to take place.
At the very bottom of the screen there are some tiny icons that are particularly
useful. If you move the mouse pointer over one of them and wait a second, it will
probably bring up a tiny message reminding you what the icon is for. The little
red icon at the bottom right of the screen allows you to logout of the graphics
session, returning to the original bash shell. The reminder message for this icon
just says logout. A little further to the left is an icon showing the current time.
If you place the mouse pointer over it, it will tell you today’s date. Provided you
are connected to the internet or you have set the time and date manually, the
displayed date should be correct.

Two icons at the bottom near the left side allow you to quickly switch between
two separate desktops (Desktop 1 and Desktop 2). This is particularly useful
if you want quick access to many windows. Perhaps, one for editing, one for
compilations, one for running compiled programs in, one for web browsing, etc,
etc. The icon at the bottom left looks like a white bird with a forked tail. If you
click the left mouse button on this, it brings up a menu containing about nine
items such as Accessories, Education, internet, Programming, and several
others. For many of these, if you place the mouse pointer over them they bring
up sub menus. You can explore these menus using either the mouse or the arrow
keys. Suppose you highlight the Accessories menu item, pressing Right Arrow
will highlight the first item in the Accessories’ sub menu. You can move up
and down this sub menu with the Up and Down Arrow keys, and if you select
Leafpad, say, and press Enter, a window will appear that allows you to create and
edit text files. This is a fairly primitive editor similar to Notepad on computers
running Windows.

On the left side of the screen, you should find a column of larger icons for
commonly used applications. Probably the most important ones for our purposes
are Midori a web browser and LXTerminal which creates a window allowing you
to interact with a bash shell. If you place the mouse pointer over the LXTerminal
icon and then click the left mouse button twice quickly (within about half a
second), a window will appear with a bash shell prompt. You can test it by
typing commands such as echo hello or date. The top line of the window is
called the Title Bar. At its centre will be the title, typically pi@raspberry:~. If
you place the mouse pointer in the title bar and hold down the left button you
will find you can drag the window to a new position on the screen. If you place
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the mouse pointer carefully at the bottom right corner of the window, the shape
of the pointer should change to one looking like an arrow pointing down and to
the right. If you now hold down the left button you will be able to drag the
bottom right corner of the window to a new position. This allows you to change
the size and shape of the window.

Just below the title bar is a menu bar typically holding items like File, Edit,
Tabs and Help. If you place the pointer over the Edit item and press the left
button, a menu will appear. Select the item named Preferences by highlighting
it and press the left button. This will bring up a dialog box that allows you to
modify various properties of the window, such as the background and foreground
colours. I tend to prefer a background of darkish blue and a foreground of a light
blue-green colour. Choose any colours you like but do not make them the same
or your text will be invisible!

You can create several LXTerminals by double clicking the LXTerminal icon
several times. If you move them around you will find some can be partially
obscurred by others, just like pages of paper on a desk. To bring a window to
the top, just place the mouse pointer anywhere on it and click the left button.
This is said to also bring the window into focus which means that input from the
keyboard will be directed at it. You can thus have several bash sessions running
simultaneously, and you can move from one to another just by moving the mouse
and clicking.

3.3 Midori

Midori was a web browser provided by early versions of Linux for the Raspberry
Pi. It has since been superceded by most other web browsers fave similar features.
The following paragraphs are thus somewhat out of date.

If you double click on the Midori icon, it will bring up a window containing
the Midori web broswer. This allows you to follow links to almost any web page in
the world. The only problem is to know what to type. If you happen to know the
exact name (or URL) of the page you want to display, you can type it in carefully
in the main text field just below the Midori title bar. Such URLs normally start
with http://www., for instance, try typing http://www.cl.cam.ac.uk/ mr10
and press Enter. This should bring up my Home Page. It is however usually
easier to find web pages by giving keywords to a search engine. Such keywords
can be typed in the smaller text field to the right of the main URL field in Midori.
But first I would suggest you select Google as your search engine since this is my
favourite. To do this click on the little icon at the left hand end of the text
field for keywords. This will bring up a menu of possible search engines, and you
should click on Google. Now typing some keywords such as vi tutorial and
press Enter. Google will respond with many links to web pages that relate to the
keywords. Clicking on one of these will open that page. This is a good way to
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find documentation and tutorials on almost any topic you are interested in. This
particular request will help you with the vi editor briefly summarised in the next
section.

3.4 Editing Files

In order to program you will need to input and edit text files representing the
programs. There are many possible editor programs available for this but I will
only mentions three of them. First is Leafpad mentioned above. It is easy to
use but rather primitive and I do not recommend it for editing programs. The
next is vi which is small, efficient and liked by a surprising number of professional
programmers. It has good tutorials on the web, but the version typically installed
on the Raspbery Pi has no built in documentation. My favourite text editor is
called emacs. It is large and sophisticated and much liked by many professional
(just as Linux is). It has plenty of build in documentation and is an effective editor
even if you use only a tiny proportion of its facilities. The next two sections will
give brief instructions on how to use vi and emacs.

3.5 vi

This section contains only a brief introduction to the vi editor since there are
several excellent tutorials on vi some of which are videos. Try doing a web search
on vi tutorial.

Although I prefer to use the emacs editor, vi is sometime useful since it is a
small program and simple to use. To enter vi, type the command vi filename
where filename is the name of a file you wish to create or edit. If you omit the
filename, you can still create a file but must give the filename when you write it
to disc (using :w filemame). When vi is running it displays some of the text
of the file being edited in a window with with a flashing character indicating the
current cursor position. The cursor can be moved using the arrow keys, or by
pressing h, j, k or 1 to move the cursor left, down, up or right, respectively.

vi has two modes: command and insert. When in insert mode characters
typed on the keyboard are inserted into the current file. Pressing the ESC char-
acter causes vi to return to command mode. In the description that follows text
represents characters typed in in insert mode, ch represents a single character,
Esc represents the escape key and Ret represents the Enter key. Some of the vi
commands are as follows.



16 CHAPTER 3. INTRODUCTION TO LINUX

i text Esc
a text Esc
o text Esc

0 text Esc

dd

/text
7text

n
YA

:wq Ret

:q! Ret

:w Ret

:w filename Ret

:s/pattern/replace/g Ret

:n,ms/pattern/replace/g Ret

Move the cursor to the first non blank char-
acter of the current line.

Move the cursor to the end of the current
line.

Insert text just before the cursor.

Insert text just after the cursor.

Create a blank line just after the current line
and insert text at its start.

Create a blank line just above the current
line and insert text at its start.

Join the current line with the next one.
Delete the character at the current cursor po-
sition.

Delete the character before the current cur-
sor position.

Delete the current line putting it in the dele-
tion buffer.

Insert (or paste) the text in the deletion
buffer to just before the cursor position.
Undo the last command.

Scan forwards from the current cursor posi-
tion for the nearest occurence of text.

Scan backwards from the current cursor po-
sition for the nearest occurence of tezxt.
Repeat the last / or 7 command.

Save the current file and exit from vi.

Save the current file and exit from vi.

Exit from vi without saving the file.

Write the current file to disc.

Write the current file to disc using the spec-
ified filename.

Substitute all occurrences of pattern in the
current line by replace. 1t g is omitted only
the first occurrence is replaced.

Perform the substitution on all lines between
line numbers n and m.The last line number
can be written as $.

The vi editor has many more features, but the above selection is sufficient for

most needs.
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3.6 emacs

The emacs editor is highly sophisticated and much loved by many professional
programmers and I recommend that you use it. You can use it effectively using a
tiny minority of its available commands, and so it should not take long to learn.
It is normally best to use emacs once you are in the graphics desktop, ie after you
have executed the startx command immediately after logging in. So from now
on I assume that you have started a graphics desktop session (using startx) and
have opened an LXTerminal session, so that you can execute bash commands.
The Linux image you copied to your SD card probably did not include the
emacs editor, so you will have to install it using apt-get or synaptic. Try

typing:

sudo apt-get install emacs

If this works (and it should), you will be able to enter emacs by typing
emacs &

This will create a new window on the desktop for emacs to run in.

Before learning how to use emacs, I suggest you move to the next chapter and
install the BCPL system. Once that is working come back here to see how to use
emacs to edit files.

You should first set up some initialisation files so that emacs knows about
BCPL mode which will automatically colour BCPL reserved words, strings, com-
ments and other syntactic items appropriately. So, after installing BCPL, type:

cd
cp -r $BCPLROOT/Elisp .
cp $BCPLROOT/.emacs .

The next time you enter emacs, it will use BCPL mode when editing BCPL
source files with extensions .b or .h. This makes BCPL source code much more
readable.

As I said above, you can create an emacs window by typing the emacs &
command. When the window appears, move the mouse to it and click to bring
it into focus. Input from the keyboard will now be directed to emacs.

Many emacs commands require the Ctrl key to be held down. For in-
stance, holding down Crtl and pressing e will move the cursor to the end
of the current line. We will use the notation C-e to denote this operation.
To illustrate what emacs can do, we will edit the hello.b program in the
~/distribution/BCPL/cintcode/com/ directory. To edit this file, type C-x C-f
and then type ~/distribution/BCPL/cintcode/com/hello.b followed by En-
ter. This should put the following text (in colour) near the top of the window.



18 CHAPTER 3. INTRODUCTION TO LINUX

GET "libhdr"

LET start() = VALQF

{ writef("Hello World!*n")
RESULTIS O

}

The cursor position will be marked by a small flashing rectangle. The cursor can
be moved UP, DOWN, LEFT and RIGHT using the arrow keys. It can also be
moved to the end of the current line by typing C-e, and to the beginning of the
current line by C-a. Use these keys to position the cursor over the w of writef
and press C-k C-k. The first deletes (or kills) the text from the cursor position
to the end of the line, and the second kills the newline character at the end of
the line. The killed text is not lost but held in a stack of killed items. Type C-y
will recover what has just been killed, and typing C-y again will recover it again.
The text should now be as follows.

GET "libhdr"

LET start() = VALOF

{ writef("Hello World!#n")

writef ("Hello World!#*n")
RESULTIS O

}

Move the cursor to the w of the second writef and press the space bar twice
will correct the indentation. Now move the cursor to the H of the second Hello
World! and press C-d 12 times to delete Hello World!. Now insert some text
by typing: How are you?. The text should now be as follows.

GET "libhdr"

LET start() = VALOF

{ writes("Hello World!*n")
writes("How are you?#*n")
RESULTIS O

}

Now write this back to the file by typing C-s. To test that the editing was
successful, click on the LXTerminal window and type: cat com/hello.b. It
should output the edited version of the hello.b program. You can now compile
and run it by typing:
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cintsys
c bc hello
hello

The command ¢ combines the file bc and the argument hello to form a com-
mand sequence that invokes the BCPL compiler to translate the source code
com/hello.b into a form suitable for execution which it stores in cin/hello.
You can inspect the source and compiled forms by typing the commands type
com/hello.b and type cin/hello. Although at this stage the compiled form
will be unintelligible. The file bc is called a command script and is one of many
designed to make the BCPL cintcode system easier to use.

Now return to the emacs window by clicking on it. We can move the cursor
to the start of the file by typing C-Shift-Home and the end by C-Shift-End. Now
move to the start of the file (C-Shift-Home). If we want to find some text in the
file type C-s followed by some characters such as al and observe how the cursor
moves. You will see that the match ignores whether letters are in lower or upper
case. If you press BkSp the cursor moves back to the a of start and pressing r
will highlight the ar of start, and also the ar of are, two lines below. You can
move to this word by either typing C-s again, or by increasing the length of our
pattern by typing e. Pressing BkSp removes e from our pattern and returns the
cursor to the just after the r of start. Just as C-s performs a forward search,
C-r performs a backwards search. Practice using these commands until you are
satisfied you can easily find anything you want in the file. To leave this interactive
searching mode press Enter.

Suppose we wished to change every occurrence of writef to writes. We
could do this by pressing C-Shift-Home to get to the top of the file. Then press
Esc followed by % to enter the interactive replacement command. It will invite
you to type in the text you wish to replace, namely writef. You terminate this
by pressing Enter. It then invites you to give the replacement text, to which you
type writes followed by Enter. This causes the first occurrence of writef to be
highlighted, waiting for a response. If you press the Space Bar it will replace this
occurrence and move on to the next. If you press BkSp it will just move on to
the next, and if you press Enter it will leave interactive replace mode.

The command C-g aborts whatever you were doing and returns you to the
normal editing state. This turns out to be more useful that you might imagine.

A log of changes is kept by emacs and this is used by C-_ to undo the latest
change. Multiple C-_s can undo several changes.

If you want to close the emacs window, type C-x C-c.

Splitting the screen is useful if you want to edit two files at the same time.
To do this type C-x 2 and to return to a single screen type C-x 1. C-x 3 will
split the screen vertically putting the sub-windows side by side.

There is a sophisticated online help facility. Type C-h to enter it. To find out
what to do next, type 7. This will split the window into two parts filling the lower
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half with a decription of the possible help commands that are available. You can
move the cursor into this sub-window by pointing the mouse into it and clicking.
Alternatively, you can type C-x o. Once there, you can navigate through the
help text using the same commands you use when editing a file.

To obtain a list of all key bindings type C-h b. If you scroll down to C-
x C-f (or search for it) you will find it is bound to the find-file command.
C-h f find-file will output a description of the command.

Although the commands I have described so far allows you to create and edit
files, you will find exploring the emacs help system will allow you to use emacs
even more effectively.



Chapter 4
The BCPL Cintcode System

The quick way to install the BCPL sytem is to download bcpl.tgz into your
home directory (/home/pi) and then type the following sequence of commands.

cd

mkdir distribution

cd distribution

tar zxf ../bcpl.tgz
cd BCPL/cintcode

. os/linux/setbcplenv
make clean

make —-f MakefileRaspi

¢ compall
cp -r Elisp $HOME -- to configure emacs
cp .emacs $HOME -- to configure emacs

But if you wish to understand what is going on, you should read the next section.
But, while you are here, you might as well install the BCPL Cintpos systems as
well. To do this, download cintpos.tgz into your home directory and then type
the following.

cd

cd distribution

tar zxf ../cintpos.tgz
cd Cintpos/cintpos
make clean

make -f MakefileRaspi
¢ compall

logout

21
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This is an interpretive implementation of the Tripos Portable Operating System
which is described in the BCPL manual available from my home page.

4.1 Installation of BCPL

To install the BCPL System on the Raspberry Pi you must first ob-
tain a copy of the file bcpl.tgz which is available via my home page
(www.cl.cam.ac.uk/users/mr). Near the top of this page, under the heading
“Shortcut to the main packages”, you will find a link to bcpl.tgz. Right clicking
on this link should bring up a menu one of whose items will save bcpl.tgz as
a file on your computer. If your Raspberry Pi is connected to the internet, you
can do this using the Midori web browser and save to file in your home direc-
tory (/home/pi). Failing that, find a computer that has an SD card slot and is
connected to the internet, and copy bcpl.tgz into /home/pi on your SD card.
When you next login to the Raspberry Pi you will find bcpl.tgz in your home
directory. To check it is there, run the following commands.

pi@raspberrypi:~$ cd

pi@raspberrypi:~$ pwd

/home/pi

pi@raspberrypi:~$ 1ls -1

-rwxrwx--- 1 pi pi 10300397 Apr 23 15:20 bcpl.tgz
pi@raspberrypi:~$

You can install BCPL anywhere you like but I would strongly recommend that
the first time you install it you place it in exactly the same location that I use on
my laptop since this will allow you to set the system up without having to edit
any of the configuration files. I therefore suggest you follow the next few steps
exactly.

1) Create a directory called distribution, make it the current directory and
decompress the tgz file into it.

pi@raspberrypi:~$ mkdir distribution

pi@raspberrypi:~$ cd distribution

pi@raspberrypi:~/distribution$ tar zxvf ../bcpl.tgz

--- Lots of output showing the names of all files of the BCPL system
pi@raspberrypi:~/distribution$

2) List the contents of the current directory, the BCPL directory and
BCPL/cintcode.
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pi@raspberrypi:~/distribution$ 1ls
BCPL
pi@raspberrypi:~/distribution$ 1ls BCPL

bcplprogs cintcode Makefile natbcpl README TGZDATE xfiles
pi@raspberrypi:~/distribution$ 1ls BCPL/cintcode

-—— Lots of files and directories including

g com sysb sysc os

pi@raspberrypi:~/distribution$

3) Now change to directory BCPL/cintcode and type the following commands.

pi@raspberrypi:~/distribution$ cd BCPL/cintcode
pi@raspberrypi:~/distribution/BCPL/cintcode$ . os/linux/setbcplenv
pi@raspberrypi:~/distribution/BCPL/cintcode$ make clean
pi@raspberrypi:~/distribution/BCPL/cintcode$ make -f MakefileRaspi
-—— Lots of output showing the BCPL system being built

--- ending with something like:

bin/cintsys

BCPL Cintcode System (24 Jan 2012)
0.000>

The file os/1inux/setbcplenv is a shell script that sets up BCPL environ-
ment variables such as BCPLROOT and BCPLPATH telling the system where BCPL
has been installed. The important part of setbcplenv is as follows

export BCPLROOT=$HOME/distribution/BCPL/cintcode
export BCPLPATH=$BCPLROOT/cin

export BCPLHDRS=$BCPLRO0T/g

export BCPLSCRIPTS=$BCPLROOT/s

export POSROOT=$HOME/distribution/Cintpos/cintpos
export POSPATH=$POSRO0T/cin

export POSHDRS=$POSRO0T/g

export POSSCRIPTS=$POSRO0T/s

export PATH=$PATH:$BCPLROOT/bin:$POSRO0T/bin
When run using the dot (.) command, it defines the required shell environ-

ment variables and updates the PATH variable to include the bin directories where
cintsys and cintpos live. Cintpos is a portable operating system implemented
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in BCPL but not covered by this document. You can test whether the script has
run correctly by typing echo $BCPLROOT or printenv.

You need to run this script every time you login to the Raspberry Pi if you
want to use BCPL. It would therefore be useful for this to happen automatically
every time you login. The bash shell runs some initialising shell scripts when
it starts up, as is described in the manual pages generated by the man bash
commands. Some of the scripts are provided by the system and live in the /etc
directory but others live in the user’s home directory. The possible file names
are .bash profile, .bash login, .profile and possibly .bashrc. You can see
which of these dot files are in your home directory by typing:

cd
1s -a

You should add the following line onto the end of one of these files.
. $HOME/distribution/BCPL/cintcode/os/linux/setbcplenv

On the version of Linux I am using on the Raspberry Pi, the script .profile
calls .bashrc, and so I added the line to the end of the file .bashrc. To do this,
I typed

cd
vi .bashrc

This caused me to get into the vi editor editing the file .bashrc. Now using
the down-arrow key several times I got to the last line of the file and typed the
lowercase letter o. This got me into input mode allowing me to add text to the
end of the file. I then typed the line

. $HOME/distribution/BCPL/cintcode/os/linux/setbcplenv

terminated by pressing both the Enter and Esc keys. This returned me to edit
mode. Finally I typed: :wq and pressed Enter, to write the edited file back to
the filing system. To check that I edited the file correctly, I typed cat .bashrc
and looked carefully at its last line.

After making this change to an appropriate script file, you should test it by
logging out of the Raspberry Pi and login again. To logout, type

sudo shutdown -h now
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But, if you are in the graphics environment, you should leave this first by clicking
on the little red icon at the bottom right hand corner of the screen.

The next time you login to the Raspberry Pi, you should find that the BCPL
environment variables have been defined automatically. To make sure, type: echo
$BCPLROOT.

The commands make clean and make -f MakefileRaspi remove unwanted
files and causes the entire BCPL Cintcode System to be rebuilt from scratch.
This involves the compilation of several C programs and the BCPL compilation
of every BCPL program in the system. The last line 0.000> is a prompt from
the BCPL Command Language Interpreter inviting you to type a command. If
this all works you will now be in business and can begin to use BCPL.

As confirmation that the system really is working, type in the following com-
mands.

0.000> echo hello
hello

0.000> type com/echo.b
SECTION "ECHO"

GET "libhdr"

LET start() = VALOF
{ LET tostream = 0
LET toname = 0
LET appending = 7
LET nonewline
LET text =0
LET argv = VEC 80

IF rdargs("TEXT,TO/K,APPEND/S,N/S", argv, 80)=0 DO
{ writes("Bad argument for ECHO*n")

RESULTIS 20
b

IF argv!0 DO text := argv!0 // TEXT

IF argv!l DO toname := argv!l // TO/K
appending := argv!2 // APPEND/S
nonewline := argv!3 // N/S

IF toname DO

{ TEST appending
THEN tostream := findappend(toname)
ELSE tostream := findoutput (toname)
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UNLESS tostream DO

{ writef("Unable to open file: %s*n", toname)
result2 := 100
RESULTIS 20

}

selectoutput (tostream)

IF text DO writes(text)
UNLESS nonewline DO newline()

IF tostream DO endstream(tostream)
RESULTIS O

}
0.260> bcpl com/echo.b to junk

BCPL (1 Feb 2011)

Code size 244 bytes
0.130> junk hello
hello

0.020> bcpl com/becpl.b to junk

BCPL (1 Feb 2011)

Code size 22156 bytes

Code size 12500 bytes

1.210> junk com/bcpl.b to junk

BCPL (1 Feb 2011)

Code size 22156 bytes
Code size 12500 bytes
1.210> logout

pi@raspberrypi:/distribution/BCPL/cintcode$

The echo command just outputs its argument. The type command outputs the
BCPL source code of the echo command and the bcpl command compiles it into a
file called junk. This is then executed as the junk command, demonstrating that
it behaves exactly as the echo command did. Next we use the bcpl command to
compile the BCPL compiler whose source code is in com/bcpl.b. This overwrites
the file junk which is then used to compile the compiler again with identical effect.
The prompt contains the time in seconds of the previous command, so we see that
compiling the BCPL compiler takes a mere 1.2 seconds. The logout command
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leaves the BCPL system and returns to the bash shell. To re-enter the BCPL
system type the command cintsys.

If you plan to use the emacs editor (which I recommend) you should set up
its initialisation files so that it knows about BCPL mode which will automati-
cally colour BCPL reserved words, strings, comments and other syntactic items
appropriately. To do this type:

cd
cp -r $BCPLROOT/Elisp .
cp $BCPLROOT/.emacs .

The next time you enter emacs it will used BCPL mode when editing BCPL
source files with extensions .b or .h. This makes editing such files much more
friendly.

We will now look at a few more Linux commands. The bash program looks
up commands in a sequence of directories called a path. This sequence can be
inspected by looking at the value of the PATH environment variable as shown by:

pi@raspberrypi:~$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:
/home/pi/distribution/BCPL/cintcode/bin:
/home/pi/distribution/Cintpos/cintpos/bin:

You can output an entire file to the screen by commands such as cat com/echo.b
or you can display it one page at a time using more as in more com/type.b. The
more program can be controlled using the Space bar, Enter key, the arrow key, p
and b and many others. To quit the program type q.

The cp command copies files. For instance, cp com/abort.b prog.b will
copy the source of the abort command into the current directory as file prog.b.
You can also use cp to copy complete directory trees using the -r argument, as
in cp -r g myg. You can test it worked by typing 1s myg.

The rm command removes files as in rm myg/libhdr.h. It can also remove
complete directory trees using the -r argument, as in rm -r myg.

We are now ready to learn how to program in BCPL and this will be done in
a gentle way exploring the simple programs presented below.

4.2 Hello World

The BCPL system contains a huge number of BCPL programs that can be found
in directories such as
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~/distribution/BCPL/cintcode/com The commands
~/distribution/BCPL/cintcode/sysb The system programs
“/distribution/BCPL/bcplprogs/demos Some demo files
“/distribution/BCPL/bcplprogs/raspi The programs described here

You are certainly free to look at these, but it is probably best to start with some
simple examples. Ever since Brian Kernighan wrote the first Hello World program
in an internal Bell Laboratory memorandum about B in the mid 1970s, it has
become the standard first program used in the description of most programming
languages. The version for BCPL is com/hello.b and is as follows:

GET "libhdr"

LET start() = VALOF

{ writef("Hello World!*n")
RESULTIS O

}

The line GET "libhdr" inserts a file declaring all sorts of library functions,
variables and constants needed by most programs. The actual file inserted is
cintcode/g/libhdr.h but there is no need to look at it yet. The next line is
the heading of a function called start which, by convention, is the first function
of a program to be executed. The body of start is a VALOF block that contains
commands to be executed terminated by a RESULTIS command that specifies
the result. In this case a result of zero indicates that the hello program termi-
nated successfully. But before returning, it executes writef ("Hello World!*n")
which output the characters Hello World! followed by a newline (represented
by the escape sequence *n).

This program can be compiled using the bcpl command to form a compiled
program called junk which is then executed.

0.000> bcpl com/hello.b to junk

BCPL (1 Feb 2011)

Code size = 60 bytes
0.100>

0.000> junk

Hello World!

0.020>

Compiled commands are normally placed in a directory called cin, and, for
convenience, there is a script called bc to simplify the compilation of such com-
mands. If we regard hello.b as a command, it can be compiled using the ¢ bc
hello command as follows.
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0.030> ¢ bc hello
bcpl com/hello.b to cin/hello hdrs BCPLHDRS

BCPL (1 Feb 2011)
Code size = 60 bytes
0.130>

The hello command can now be executed.

0.000> hello
Hello World!
0.020>

The script file be is as follows

#!/home/mr/distribution/BCPL/cintcode/cintsys -s

.k file/a,arg

echo "bcpl com/<file>.b to cin/<file> hdrs BCPLHDRS <arg>"
bcpl com/<file>.b to cin/<file> hdrs BCPLHDRS <arg>

But at this stage there is no need to understand how it works.

For convenience, all the BCPL programs covered in this document can be
found in the directory BCPL/bcplprogs/raspi of the standard BCPL distribu-
tion. If you make this your current directory, you can inspect, compile and run
these programs using commands such as the following.

pi@raspberpi:~$ cd “/distribution/BCPL/bcplprogs/raspi
pi@raspberpi:~/distribution/BCPL/bcplprogs/raspi$ cintsys

BCPL Cintcode System (24 Jan 2012)
0.000> type hello.b
GET "libhdr"

LET start() = VALOF
{ writef("Hello World!*n")
RESULTIS O
}
0.020> ¢ b hello
bcpl hello.b to hello hdrs BCPLHDRS

BCPL (1 Feb 2011)
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Code size = 60 bytes
0.130>

0.000> hello

Hello World!

0.020>

The command script b used here is similar to bc used earlier by expects the souce
program to be in the current directory and place the compiled version in the same
directory.

The next program we will study concerns the Fibonacci sequence of numbers.

4.3 Fibonacci

Leonardo Fibonacci lived in Italy near Pisa dying in about 1250 AD aged around
80. He is regarded by some as “the most talented western mathematician of the
Middle Ages”. He is perhaps best known for the sequence of numbers named
after him. This sequence has some extraordinary properties and has excited
mathematicians ever since. The sequence starts as follows: 0, 1, 1, 2, 3, 5, 8,
13, 21,... with every number being the sum of the preceding two. For instance
2+3 gives 5, and 3+5 gives 8 etc. These numbers can be given positions with the
convention that the first in the sequence is at position zero. The following table
shows the positions and values of the first few numbers in the sequence.

position [0 |1 {234 |56 7 | 8
value 011123581321

A program to print out the positions and values of some numbers in this
sequence is called fibl.b and is shown in Figue 4.1. Text between // and the
end of the line is called a comment and is designed to help the reader understand
what is going on. Comments have no effect on the meaning of a program and are
ignored by the compiler. This program can be compiled and run as follows.

0.020> ¢ b fib1l
bcpl fibl.b to fibl hdrs BCPLHDRS

BCPL (1 Feb 2011)

Code size = 168 bytes
0.030> fibl

Position 0 Value O
Position 1 Value 1
Position 2 Value 1
0.010>
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GET "libhdr"

LET start() = VALOF

{ LET a=0 // a and b hold two consecutive Fibonacci numbers
LET b =1
LET ¢ = a+b // c holds the Fibonacci number after b, namely a+b
LET i = 0 // The position of the Fibonacci number held in a

writef ("Position %n Value %n*n", i, a)

a :=b
b :=c
c := atb
i =i+l

writef ("Position %n Value %n*n", i, a)

a :=b
b :=c¢
c := atb
i = i+1

writef ("Position %n Value %n*n", i, a)

a:=»b

b :=c¢c

c := atb
i = i+1
RESULTIS O

Figure 4.1: The file fibl.b

At the beginning of the body of the function start we see the declaration
LET a = 0. This allocates space in the memory of the computer which you
can think of as a pigeon hole which can hold a number. It has the name a and
is initialised with the number zero. Similarly, LET b = 1 allocates a pigeon hole
for b initialised to 1. The third declaration LET ¢ = a+b allocates a pigeon hole
for c initialising it to the sum of the numbers in a and b. From now on, rather
than talking about pigeon holes, we will usually describe them as variables with
names a, b and c. They are called variables because, during the execution of
the program, their values change. Indeed, as this program progresses, they are
going to be successively set to three consective Fibonacci numbers further down
the sequence. Initially, they hold the first three Fibonacci numbers (0, 1, 1)
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with a holding the number at position zero. The declaration LET i = 0 declares
variable i to hold the position of the Fibonacci number in a. The statement

writef ("Position %n Value %n*n", i, a)

outputs a line with the substitution items %n replaced by the numbers in variables
i and a. It thus outputs the following.

Position O Value O

We now want to move on the next position in the sequence, and so we set a and
b to the values currently in b and c. This is done by the assignments a := b and
b := c, being careful to do these assignments in that order. We then compute
the new value of c using ¢ := a+b which essentially says: take the numbers in
variables a and b, add them together and put the result in c. The numbers now
in a, b and c are the three consecutive Fibonacci numbers starting at position 1.
To set i to this new position number, we execute the statement i := i+1 which
increments i changing it from zero to one.

The program then executes exactly the same code two more times, outputting
the following;:

Position 1 Value 1
Position 2 Value 1

Finally, it executes RESULTIS 0 causing the program to return from start suc-
cessfully.

This program is not well written and can be improved in many ways. Its most
obvious problem is that part of the program is written out three times and we
should be able to find a way of writing this part once, and somehow arrange for
it to be executed three times. The following code does just this.

GET "libhdr"

LET start() = VALOF

{ LET a =0 // a and b hold two consecutive Fibonacci numbers
LET b = 1
LET ¢ = a+b // c holds the Fibonacci number after b, namely atb
LET i = 0 // The position of the Fibonacci number held in a

WHILE i<=2 DO

{ writef("Position %n Value %n*n", i, a)
a :=b
b :=c¢
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= atb
= i+l
}
RESULTIS O

}

Here the WHILE statement repeatedly executes its body so long as the value of
i remains less than or equal to 2. This kind of loop is so common that many
languages allow it to be coded even more compactly. Such as the following.

{LET a=0 // a and b hold two consecutive Fibonacci numbers
LET b = 1
LET ¢ = a+b // c holds the Fibonacci number after b, namely a+b
FOR i = 0 TO 2 DO
{ writef("Position %n Value %n*n", i, a)
a :=b
b :=c
c := atb
+
RESULTIS O
+

The FOR loop declares i with initial value 0, and then it repeatedly executes its
body, incrementing i each time. This version is both more concise and more
understandable.

Finally, the variable c is only needed very briefly when we are calculating the
new value of b. We do not need to remember its value between iterations of the
body, and so it can be declared inside the FOR loop. At the same time we can
replace the separate declarations of a and b by a single simultaneous declaration.
The resulting program is as follows.

GET "libhdr"

LET start() = VALOF
{LET a, b =0, 1 // a and b hold two consecutive Fibonacci numbers

FOR i = 0 TO 2 DO
{ LET ¢ = atb // c holds the Fibonacci number after b, namely a+b
writef ("Position %n Value %n*n", i, a)
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a:

b :=c¢c
}
RESULTIS O

}

The declaration LET ¢ = a+b is placed at the head of the block (enclosed within
{ } brackets) since such declarations are only permitted at the start of a block.
An obvious advantage of this form of the program is that we can now easily
change it to output the sequence up to, say, position 20.

GET "libhdr"

LET start() = VALOF
{LET a, b =0, 1 // a and b hold two consecutive Fibonacci numbers

FOR i = 0 TO 20 DO
{ LET ¢ = a+tb // c holds the Fibonacci number after b, namely a+b
writef ("Position %n Value %n#*n", i, a)

a :=b
b :=c¢c
}

RESULTIS O

}

This gives the following output.

0.010> ¢ b fib4d
bcpl fib4.b to fib4 hdrs BCPLHDRS

BCPL (1 Feb 2011)

Code size = 92 bytes
0.020> fib4

Position 0 Value O
Position 1 Value 1
Position 2 Value 1
Position 3 Value 2
Position 4 Value 3
Position 5 Value 5
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Position 15 Value 610

Position 16 Value 987

Position 17 Value 1597
Position 18 Value 2584
Position 19 Value 4181
Position 20 Value 6765
0.000>

The final improvement could be to arrange that the position numbers are printed
in a field width of 2 and the values in a field width of, say, 12. We do this by
changing the writef statement from

writef ("Position %n Value %n*n", i, a}
to
writef ("Position %2i Value %12i*n", i, a}

The effect is as follows.

Position 0 Value 0
Position 1 Value 1
Position 2 Value 1
Position 3 Value 2
Position 4 Value 3
Position 5 Value 5
Position 15 Value 610
Position 16 Value 987
Position 17 Value 1597
Position 18 Value 2584
Position 19 Value 4181
Position 20 Value 6765

We have just seen that we can perform quite complicated calculations just
using simple variables, assignments, the plus operator and WHILE loops. If we
allow subtraction as well, we can calculate almost anything we like, such as, for
example, the n'* prime number. A prime number is only divisible by 1 and itself.
The first few primes are 2, 3, 5, 7, 11 and 13. The following program outputs the
100" prime.

GET "libhdr"

LET start() = VALOF



36 CHAPTER 4. THE BCPL CINTCODE SYSTEM

{ LET n = 100 // The number of the prime we want
LET p = 2 // The current number we are looking at
LET count = O // The count of how many primes we have found

{ // Start of the main loop
// Test whether p is prime
// Let us assume it is prime unless proved otherwise
LET p_is_prime = TRUE
// Try dividing it by all numbers between 2 and p-1

FOR d = 2 TO p-1 DO
{ // d is the next divisor to try
// We test to see if d divides p exactly
LET r = p // Take a copy of p
// Keep subtracting d until r is less than d
UNTILr <dDOr :=r -d
// If r is now zero, d exactly divides p
// and so p is not prime
IF r=0 DO
{ p_is_prime := FALSE
BREAK // Break out of the FOR loop
}
}

IF p_is_prime DO
{ // We have found a prime so increment the count
count := count + 1
IF count = n DO
{ // We have found the prime we were looking for,
// so print it out,
writef ("The %nth prime is %n*n", n, p)
// and stop.
RESULTIS 0O
}
}
// Test the next number
p := ptl
} REPEAT
}

This program uses special numbers TRUE (=-1) and FALSE (=0) to represent
truth values. It uses an IF statement to conditionally execute some code, and it
uses a BREAK command to break out of the FOR loop. The word REPEAT causes
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the preceding command to be executed repeatedly. In this program the loop is
terminated by RESULTIS 0 after the n'* prime has been output. It is terribly
inefficient but it does compute the correct result on the Raspberry Pi in very
little time, as can be seen below.

0.000> ¢ b primel
bcpl primel.b to primel hdrs BCPLHDRS

BCPL (1 Feb 2011)

Code size = 124 bytes
0.110> primel

The 100th prime is 541
0.080>

If you successively change n to 1000, 2000 and 4000 you will find the time to
compute these primes increases by nearly a factor of 5 each time. It seems to
grow faster than n? (this stands for n x n, so when n doubles the cost goes up
by a factor of 4) but less fast than n® (this stands for n x n x n, so every time
n doubles the cost goes up by a factor of 8). Such programs are said to have
polynomial complexity, and one of the challenges in programming is to find ways
of computing the required result much more efficiently.

If you think polynomial complexity is bad, exponential complexity is far worse
(but sometimes useful). This is when the computation time grows at a rate of
similar to k™ (every time n is increased by 1 the cost goes up by a factor of k).
One problem that is thought to have exponential complexity is the following.
Given an n digit decimal number, x say, that is known to be the product of two
primes, find them. In a sense this is easy — just try dividing by every number
between 2 and x — 1. Unfortunately, there are roughly 10" to try and if n is more
than about 500 it is likely to take longer than the life time of the universe to
solve.

Coming back to our n* prime program, we can speed it up quite a bit us-
ing additional operators available in BCPL, in particular the MOD operator that
computes the remainder after division of one number by another. For instance
13 MOD 5 = 3. Using the MOD operator the program becomes:

GET "libhdr"

LET start() = VALOF
{ LET n = 100 // The number of the prime we want
LET p = 2 // The current number we are looking at
LET count = 0 // The count of how many primes we have found
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{ // Start of the main loop
// Test whether p is prime
// Let us assume it is prime unless proved otherwise
LET p_is_prime = TRUE
// Try dividing it by all numbers between 2 and p-1

FOR d = 2 TO p-1 DO
{ // d is the next divisor to try
// We test to see if d divides p exactly
LET r = p MOD d
// If r is zero, d exactly divides p
// and so p is not prime
IF r=0 DO
{ p_is_prime := FALSE
BREAK // Break out of the FOR loop
}
}

IF p_is_prime DO
{ // VWe have found a prime so increment the count
count := count + 1
IF count = n DO
{ // We have found the prime we were looking for,
// so print it out,
writef ("The %nth prime is %n*n", n, p)
// and stop.
RESULTIS 0O
}
}
// Test the next number
p := ptl
} REPEAT
}

4.4 Multiplication Table

The following simple program (bcplprogs/raspi/multab.b) outputs the 12x12
multiplication table.

GET "libhdr"
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LET start() = VALOF
{ FOR x = 1 TO 12 DO
{ newline()
FOR y = 1 TO 12 DO writef (" %i3", xxy)
}
newline()
RESULTIS 0
}

The output it generates is as follows

4 5 6 7 8 9 10 11 12
8 10 12 14 16 18 20 22 24
12 15 18 21 24 27 30 33 36
12 16 20 24 28 32 36 40 44 48
10 15 20 25 30 35 40 45 50 55 60
12 18 24 30 36 42 48 54 60 66 72
14 21 28 35 42 49 56 63 70 77 84
16 24 32 40 48 56 64 72 80 88 96
18 27 36 45 54 63 72 81 90 99 108
20 30 40 50 60 70 80 90 100 110 120
22 33 44 55 66 77 88 99 110 121 132
24 36 48 60 72 84 96 108 120 132 144
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Many will recognise this as the horrendous collection of 144 numbers one had
to learn, often by rote, at school. Some readers will still be in the process of
learning them. I have two reasons for giving this example. The first is that this
program can be easily modified to output tables for other expression operators.
For instance, try replacing the expression x*y in the writef statement by each
of x/y, x MOD vy, x+y, x-y, x&y, x|y, x XOR y, and even x=y or x<y. All these
operators are described later. The second reason is that learning 144 numbers
can be boring and there are a whole collection of simple tricks that help you work
out the answer to any of these multiplications.

4.5 A Mathematician’s Approach

This section is entirely optional but the mathematics is contains is both simple
and useful, so I recommend you only skip this section when you have had enough.

Rather than remembering a multitude of results, mathematicians tend to like
to work things out from first principles. We all know that 5 x 9 = 45, but our
memory is not always perfect and we might accidentally think 5 x 9 = 54 and
have little to help us recognise that we have the wrong answer. A mathematician
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looking 5 x 9 thinks of the cunning ways of multiplying by 5 and by 9. For
instance, 9 =10—1,s05x 9 =5 x (10 — 1) = 50 — 5 = 45. Since multiplication
by 10 is easy as is subtracting 5, there can be little chance of error. Another
thought is that 5 =1, s0 5x9=5x%x (8+1) =5x8+5=10x 4+ 5 = 45.
These are applications of two rules that I have named X9 and X5 and there are
many other helpful rules as shown in Figure 4.2.

Sq S1 S4 X5 X9 X10 XI11 Xx12

X1 2 3 4 6 7 8 9 10 12
X2 \ 68 214 1618 20 4

12 I 18 21 24 27 30 3B 36

20 24 28 32 36 40 4 48

5 10 15 5 60
6 12 18 ”
7 14 21 84
Sym |18 16 24 9%
9 18 27 H 108
10 20 30 0120
1 2 33 2
12 24 36 4

Figure 4.2: Multiplication Table

The rules are as follow.
Sym

We all know that 2 x 3 =3 x 2 and 5 x 4 = 4 x 5, that is we can swap the
order of the operands of the multiplication without changing the result. This rule
can be stated algebraically as follow.

TXYy=yXxXzx

where z and y can be replaced by any numbers we like. The immediate effect of
this rule is that we do not need to learn the 66 values in the bottom left triangle
since they all appear in the upper right hand triangle.

X1

The top row of the table is trivial since it corresponds to the one times table.
Its entries, such as 1 x 5 = 5, are so obvious they hardly need to be learnt. The
algebraic rule is as follows.

Ilxz==zx
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X2

This corresponds to the two times table. It is easy to remember that 2x2 = 4.
We have 5 fingers on each hand making 10 in all, so 2 x 5 = 10 is not a problem.
We can surely remember that 2 x 10 = 20 and there are rules (X9, X11 and
X12 to help with multiplication by 9, 11 and 12. So we really only have to learn
2x3=6,2x4=82x6=12,2x7 =14 and 2 x 8 = 16. The result of
multiplying by two is called an even number and always has a 0, 2, 4, 6 or 8 in
the units position, and so is easy to recognise.

X10

Multiplication by ten is easy since it just requires a zero to placed on the end
of the number, as is 10 x 6 = 60 or 10 x 12 = 120. We could possibly write this
rule as follows.

10 x x = 20

X11
Multiplication by eleven can be simplified by observing that 11 = (10+ 1), so
that, for instance, 11 x 6 = (10 4+ 1) x 6 = 60 + 6 = 66. The rule is thus:

11l x2x=10x +x

Notice that when x is a single digit, it is duplicated, as in 11 x 4 = 44, but when
it is 10, 11 or 12 a simple addition is required, as in 11 x 10 = 100 + 10 = 110,
11 x11=110+11 =121 and 11 x 12 = 120+ 12 = 132. These are easy since no
carries are required.

X9
Multiplication by nine can be simplified by observing that 9 = (10 — 1), so
that, for instance, 9 x 6 = (10 — 1) X 6 = 60 — 6 = 54. The rule is thus:
Ixr =10z -z

X12
Multiplication by twelve can be simplified by observing that 12 = (10 + 2), so
that, for instance, 12 x 6 = (104 2) x 6 = 60 + 12 = 72. The rule is thus:

12 x x =10z + 22

Multiplying x by ten and two are trivial and adding the two results is easy because
the units digit will be the units digit of 2x and the senior two digits will be the
result of adding 0, 1 or 2 into the ten position of 10z, asin 12 x7 =70+ 14 = 84
or 12 x 9 =90 + 18 = 108.

X5
Computing 5 X x can be simplified by observing that 5 = %. The rule has
two versions depending on whether x is even or odd.

If z is even it can be written as 2n and the rule is

Sxae=4x2n=10xn
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For example, 5 x 8 =10 x 4 = 40

If x is odd it can be written as 2n 4+ 1 and the rule is
bxx=5x2n+1)=10xn+5

For example, 5 x 7T=5x64+5=30+5=35

Sq

Perfect squares are important and should be learnt. All except, 32, 42, 62,
72 and 82 have been covered by rules given above. 32 = 9 is easy to remember
since it is just three groups of three as in 123 456 789. 4 x 4 = 2 x 8 which
equals 16 from the two times table. Observing that 6 = (5 + 1) suggests the
6x6=0bB+1)x6=5x6+6=30+6=36. 7x7isa problem. Perhaps we
should just remember that is is 49, or observe that 7xX7 =6 x7+7 = 42+7 = 49.
Finally 8 x 8 =2 x 4 x 8 = 2 x 32 = 64. Since 8 is 23, 82 = 26 and so is a power
of two. Powers of two (1, 2, 4, 8, 16, 32, 64, 128, 256, ...) are important to
computer scientists since computers use the binary system. These powers are
etched into most computer scientist’s brains, as are 219 = 1024, 2!2 = 4096, 2% is
about a million and 23° is about a thousand million.

S1
If you stare at the multiplication table long enough you will notice that

4x6=24=5>—-1
5x7=35=062-1
6x8=48=T72—1
Tx9=63=8"—1

and so on. This is no accident because it follows from
(-1 x@z+)=@-1)xz+(xz-1)=2*-ax+z—-1=2>-1
ie
(z—1)x(z+1)=2*>-1
So the product of two numbers that differ by two is one less that the square of
the number between them.
S4
The S1 rule can easily be generalised to
(z—y) x (x+y)=2—y
If we set y = 2 this becomes
(r—2)x (z+2)=0*—4
as in
IxT=52—4=25—-4=21
4x8=6"-4=36—4=32
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This rule is not particularly useful but it does lead to one observation. The larger
the value of y the smaller the product. So if you knew that 7 x 8 and 6 x 9 were
56 and 54, or possibly the other way round. Since 6 x 9 must be smaller than
7 % 8, 6 x 9 must have the smaller value, namely 54.

4.6 Numbers

The programs we have looked at so far involved numbers that were held in vari-
ables or named pigeon holes. This section explores how such numbers are repre-
sented within the computer.

Humans have always used numbering systems based on 10, presumeable be-
cause we have 10 fingers. Even in the roman numbering system, 10 is special.
For instance, single letters are used for 10 (X), 100 (C) and 1000 (M). Although
the Roman numbering system is rather elegant and often used on clock faces (I,
I1, I1L, TV, V, VI, VII, VIII, IX, X, XI and XII) it is not convenient for numerical
calculation. Consider, for example, adding 16 to 57. In roman numerals we would
have to add XVI to DVII giving DXXIII (or 73). In China, India and the Arab
world the advantages of multiple digits to represent numbers were well known
3000 years ago but not used in the west until much later. They also discovered
the need for the digit zero which had previously not existed. Arithmetic calcula-
tions were sometimes done using pebbles placed in holes in the ground and the
symbol 0 used to represent zero is thought to be a picture of a hole containing
no pebbles.

Fibonacci was one of the first mathematicians in the west to study the advan-
tages of the system we now use. We all know how to add 16 to 57. We first add 6
to 7 giving the answer 3 in the units position and carry of 1 to the tens position.
We then add this carry to 1 and 5 giving 7, resulting in the answer 73. Humans
are happy with the idea of 10 digits (0 to 9) but computers are much easier to
design if only two digits (0 and 1) are available. Typically, in electronic circuits,
0 is represented by a low voltage possibly about 0 volts, and one is represented
by a higher voltage of possibly about 3 volts. Numbers using only the digits
zero and one are binary numbers. They are like decimal numbers but their digit
positions correspond to powers of 2 (1, 2, 4, 8, 16,...) rather powers of 10 (1,
10, 100, 1000,...) used in the decimal system. Using three digit binary numbers,
we can count from 0 to 7 as follows: 000, 001, 010, 011, 100, 101, 110, 111. In
BCPL, on the Raspbery Pi, numbers are represented using 32 binary digits (or
bits) rather than the three just shown. So rather than just eight different num-
bers, a BCPL variable can have huge number of different values (actually rather
more the 4000 million of them). This sounds like a lot and usually causes no
problems. But if you write a program that requires numbers outside this range,
unexpected things happen. For instance, if we modify the Fibonacci program
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above to output Fibonacci numbers up to position 50 and modify the writef
statements to be:

writef ("Position %2i Value %12u %32b*n", i, a, a}

The %12u substitution item outputs the Fibonacci number as an unsigned (ie
>= 0) number in a field width of 12 characters and %32b outputs it as a 32-bit
binary number. The resulting output is:

Position 0 Value 0 00000000000000000000000000000000
Position 1 Value 1 00000000000000000000000000000001
Position 2 Value 1 00000000000000000000000000000001
Position 3 Value 2 00000000000000000000000000000010
Position 4 Value 3 00000000000000000000000000000011
Position 5 Value 5 00000000000000000000000000000101
Position 6 Value 8 00000000000000000000000000001000

Position 45 Value 1134903170 01000011101001010011111110000010
Position 46 Value 1836311903 01101101011100111110010101011111
Position 47 Value 2971215073 10110001000110010010010011100001
Position 48 Value 512559680 00011110100011010000101001000000
Position 49 Value 3483774753 11001111101001100010111100100001
Position 50 Value 3996334433 11101110001100110011100101100001

Notice that the value at position 6 is 8 which is the sum of 3 and 5. In binary,
the calculation is 0011+0101 giving 1000. The value at position 47 is correct,
but after that the Fibonacci numbers are too large to be represented with just
32 bits, and digits off the left hand end are lost. This unfortunate effect is called
overflow and some languages generate a warning when this happens, but not
BCPL. BCPL assumes that programmers are really clever and careful and don’t
need such warnings which, in any case, greatly complicates the definition of the
language.

We have seen that decimal constants such as 2 and 100 can be written in
the normal way, but BCPL also allows binary constants by prefixing a string
of binary digits with #b, as in #0011 and #b0101. It is sometimes helpful to
put underscores in long numbers to make them more readable. For instance, the
binary representation of the Fibonacci number at position 47 could be written
as:

#b1011_0001_0001_1001_0010_0100_1110_0001

This can also be written as a more concisely using the hexadecimal digits 0, 1, 2,
3,4,5,6,7,8,9, A, B, C, D, E and F, as follows:

#xB11924E1
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Each hexadecimal digit represent 4 binary digits, so, for instance, #xB means
#1011 and #xB1 means #b10110001, etc.

In binary numbers the values associated with the digits, taken from the right
(or least significant end) are 1, 2, 4, 8, 16,... or 2% 21,22 23 24 . Follow-
ing this convention the left most bit of a 32-bit binary number corresponds to the
value 23! which is, of course, a positive number. Unsigned numbers use this con-
vention, but if we want to represent positive and negative numbers, the normal
convention to use is to assign a value of —23! to the left most bit. This allows
us to have numbers roughly in the range -2000 million to +2000 million. Notice
that #x80000000 represents the largest negative number, #xFFFFFFFF represents
the number -1 and #x7FFFFFFF represents the largest positive number.

The representation of -1 perhaps needs some explanation. With a decimal
numbers such as 9999, we all know how to increment it by one. During the
calculation there is a cascade of carries before producing the answer 10000. So
a string of consecutive nines on the right are converted to zeroes. A similar
cascading effect happens when we increment a binary number having a sequence
of ones on the right. Just as nine is the largest decimal digit, one is the largest
binary digit, so when incrementing the digit one it turns into a zero and generates
a carry. If we add one to the binary number 1111, there is a cascade of carries
before giving the result 10000. If we add one to the binary number consisting of
a zero bit followed by 31 ones (#x7FFFFFFF) we get a one followed by 31 zeroes
(#x80000000). In unsigned arithmetic this correctly represents the value 23!.

In signed arithmetic, this result represents —23' and so the calculation has
overflowed, so #x7FFFFFFF must be the largest positive number than can be
represented. If we increment a bit pattern of 32 ones (#xFFFFFFFF), using signed
arithmetic, all the least significant ones are turn to zeroes and the left most
bit also changes from a one to a zero. This gives the correct answer since the
carry into the left most bit represents 23! and this cancels the one that is there
representing —23! correctly giving a zero bit in this position. Thus adding one to
#xFFFFFFFF gives zero, and so #xFFFFFFFF must represent —1.

We have already seen the operators +, - and MOD used in programs given
above, but several other expression operators available. The operator * will
multiply its operands together as in 3*7 gives 21. The operator / divides its left
hand operand by the one on the right, as in 13/5 gives 2. Notice that the result
is a whole number and the remainder, if any, is thown away. The remainder after
division can be obtained using the MOD operator, as in 13 MOD 5 which gives 3.
If we do ordinary arithmetic using operators like +, - and * but always return
the remainder after division by some number, often called the modulus, then we
are doing what is called modulo arithmetic. We will see useful applications of
modulo arithmetic later.

A value can be negated using - as a monadic operator, as in -x. If x was 1000
then the result would be -1000. The monadic operator ABS negates its operand
if it was negative, but leaves it unchanged if it was positive. Thus, ABS (-1000)
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and ABS 1000 both give 1000.

There are various operators that maniplulate bit patterns directly. For in-
stance, x<<n will shift the value of x left by the number of bits specified by n.
Bits are lost off the left hand end and vacated positions on the right are filled
with zeroes. The expression x>>n similarly computes x shifted right by n bit
positions, filling vacated positions with zeroes. The operators & and | perform
the logical bit-wise operations of and and or. For and, the n'” bit of the result
is only a one if the n'" bit of both operands are ones, as in #0011 & #b1010
gives #b0010. For or, the n!* bit of the result is only a zero if the n'* bit of
both operands are zeros, as in #b0011 | #b1010 gives #b1110. The monadic
operator ~ complements each bit of its operand to give the result. You might like
to convince yourself that ("x)+1 = -x. The XOR operator computes a result in
which the n'* bit is only a one if the corresponding bits of its two operands are
different, as in #b0011 XOR #b1010 gives #b1001.

Two little tricks are worth noting. If we subtract one from a variable x we get
a bit pattern identical to x except the consecutive zero bits on the right have all
changed to ones, and the rightmost occurring one has changed to a zero. If we
then and this with the original value of x we obtain a bit pattern with the right
most occurring one removed. For example:

X 0101_.1101_0011_1010_0000_0110_0000_0000
x-1 0101_.1101_0011_1010_0000_0101_1111_1111
x & (x-1) 0101_.1101_0011_1010_0000_0100_0000_0000

Similarly, if we compute x & (-x), we obtain a bit pattern which is all zeroes
except for a one in the position of the right most one in x. For example:

X 0101_.1101_0011_1010_0000_0110_0000_0000
-X 1010_0010_1100_0101_1111_1010_0000_0000
x & (-x) 0000_0000_0000_0000_0000_0010_0000_0000

Many other bit manipulations require cunning to do them efficiently. For
instance, how can we find the most significant occurring one, or count the number
of ones in a bit pattern. If you are interested in these kinds of problems look at
the programs in bcplprogs/bits.

4.7 Applications of X0R and MOD

If you do not feel up it skip this section and the next, but, trust me, you might
find it interesting.

Cryptography is the science of encoding secret messages is a way which
allows only the intended recipient to decode them. Many methods involve
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the use of a shared secret key known by both the sender and receiver but
unknown to everyone else. Suppose the sender and receiver agree that the
shared secret key is the 32 bit word #x87654321 and the message to be sent
is #x0ABCDEFO. The sender could encode the message using the XOR operator to
combine the key with the message to give the encrypted message #x8DD99DD1 (=
#x87654321 XOR #xOABCDEFO). This has complemented some of the bits in the
binary representation of the message, and the receiver can complement the same
bits by computing #x87654321 X0OR #x8DD99DD1, giving back the original mes-
sage #xOABCDEFO. To anyone not knowing the secret key, the encoded message
#x8DD99DD1 is meaningless. This is potentially the basis of an excellent encryp-
tion technique but it suffers the major problem of how we setup the secret keys
between everyone who wishes to encrypt their messages. You cannot send a key
unencrypted since an eavesdropper will be able to see it, and you cannot send it
encrypted because we have assumed you have no secret key already set up. You
could possibly hand it over in person, by telephone or by post, but these methods
take time a may be inconvenient. A better solution must be found.

It was not until 1978 that a suitable mechanism, called RSA public-key en-
cryption, was invented (named after the developers Rivest, Shamir and Adleman).
The idea is simple. The receiver publishes a key that everyone can read. The
sender uses this key to encode the message and sends it to the receiver. The
way the message is encoded is such that it cannot be decoded using the public
key but requires an additional secret known only by the receiver, the person that
published the public key. The public key consists of two carefully chosen random
numbers r and e. To encode a message M, assumed to be less than r, we compute
M° (ie 1 multiplied by M, e times) and then take the remainder after division by
r. If we call this encrypted value C, then

C=M°mod r

Although this calculation looks horrendous, it is, in fact, quite easy to do, as
shown in page 61. Knowing the public key is not enough to decode the encrypted
message. However, there is a decoding exponent d that was calculated and kept
secretly by the receiver when the public key of r and e was chosen. This can be
used to decode the encryted message M by evaluating the following:

C!mod r

As an example, if the receiver chose a public key of r=1576280161 and
e=10000691, and a decoding exponent of d=899015831, the calculations would
be as follows.

XOABCDE]:_"O10000691 mod 1576280161 gives #x5AF3EBFE
g
and

#x5AF3EBFEY1%%3! 04 1576280161 gives #x0OABCDEFO
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This gives the correct result, and since only the receiver knows the decoding
exponent, no one else can (easily) decode the message.

To see how the above calculations were done, look as the file
beplprogs/crypt/rsa.b. The next section (which may be skipped) gives a brief
introduction to the underlying mathematics of RSA encryption.

4.7.1 RSA Mathematical Details

This section is entirely optional and should only be read by those who are in-
terested. It shows how the public key and decoding exponent can be chosen,
but does not go into the details of why the mechanism works. In practice, the
public key should be rather large, perhaps 2000 bits or more in length. So all
arithmetic must be done using numbers of this size rather than the 32 bits used
in the previous section.

To create a new public key, first think up two large prime numbers p and q of
roughly the same size and whose product is about 2000 bits long. Finding such
large primes is out of the scope of this document. Now multiply p by q to give
the first component of the public key. Next choose a number e that is about the
same size as p, and check that it has no factors in common with (p-1)*(q-1).
This is extremely likely to be true if e is a prime. If the test succeeds e is the
second component of the public key, otherwise keep trying other values for e.
The decoding exponent d has the property

(e x d) = 1 modulo (p-1)*(q-1)

This amounts to calculating d = 1/e using arithmetic modulo (p-1)*(q-1)
which can be done efficiently using a program related to Euclid’s greatest common
devisor (GCD) algorithm.

The public key used in the previous section was based on the prime numbers
p=45007 and q=35023. Their product was 1576280161 and the chosen encoding
exponent was 10000691. The expression (p-1)*(q-1) evaluates to 1226540484,
and (1/e) modulo 1226540484 gives 899015831, the decoding exponent.

Notice that if you can factorise the first component of the public key into
its two prime factors p and g, you would be able to calculate the decoding ex-
ponent d and so would be able to decode any message using this public key.
Luckily factorising such large numbers is thought by most mathematicians to be
unfeasible.

This is only the germ of the idea of public key encryption. For a professional
version much attention must be paid to subtle details of the implementation and
use.
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4.8 Vectors

We have already seen that variables are like named pigeon holes that contain
numbers, and that they can be declared by declarations such as

LET x, y, z = 5, 36, 1004

To implement this declaration, BCPL finds three pigeon holes that are currently
free, labels them with the names x, y and z, and puts the numbers 5, 36, 1004
into them. The BCPL Cintcode system normally has about 4 million pigeon
holes to choose from, and each is labelled with an identifying number, similar to
the way houses have numbers. Such numbers help postmen deliver letters, and
pigeon hole numbers turn out to be fantastically useful in BCPL programs. The
pigeon hole numbers of variables x, y and z can be found using the @ operator,
as in the following program.

GET "libhdr"

LET start() = VALOF

{ LET x, y, z = 5, 36, 1004
writef ("@x=)n Q@y=)n Q@z=y)n*n", @x, Qy, 0z)
RESULTIS O

}

The following shows this program being compiled and run.

0.000> ¢ b vecl
bcpl vecl.b to vecl hdrs BCPLHDRS

BCPL (1 Feb 2011)

Code size = 80 bytes
0.030>

0.000> vecl

0x=12156 Q@y=12157 ©z=12158
0.000>

Notice that the pigeon hole numbers for variables x, y and z are consecutive. This
is no accident since BCPL always allocates consecutive pigeon holes to variables
declared by simultaneous declarations. Pigeon hole numbers are normally called
addresses and the symbol @ was chosen because it looks like an a inside an o
standing for address of.
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Instead of using the name x to access the contents of its pigeon hole we can
use the indirection operator (!) applied to the pigeon hole number. So if @x
evaluates to 12156, then !12156 would behave exactly like x.

We cannot tell in advance what the address of x will be, so it would be better
to declare another variable p, say, to hold this value. The expressions !p, ! (p+1)
and ! (p+2) are now equivalent to x, y and z. Since expressions like ! (p+1) and
! (p+2) are so useful, a dyadic version of the ! operator is provided allowing these
expressions to be written as p!1 and p!2, as is shown in the following example.

GET "libhdr"

LET start() = VALOF
{ LET %, y, z = 5, 36, 1004
LET p = @
p!2 := p!0 + p!l // Equivalent to z :=x + y
writef ("x=Yn y=/n z=)n*n", x, y, z)
RESULTIS 0O
b

The output from this program is as follows.
x=5 y=36 z=41

Collections of consecutive pigeon holes are called vectors in BCPL. In other
languages, they are often called one dimensional arrays. They are sometimes
used to represent values that are too large to fit into a single BCPL word. An
example is BCPL’s representation of the current time and date as shown in the
following program (vec3.b).

GET "libhdr"

LET start() = VALOF
{ LET days, msecs, filler = 0, 0, O
datstamp(@days)
writef ("days=Vn msecs=Yn filler=Yn*n", days, msecs, filler)

// Output the time in hh:mm:ss.mmm format
writef ("The time is %2i:%2z:%2z.%3z*n",

msecs/ (60x60%1000) , // The hours

msecs/(60%1000) MOD 60, // The minutes

msecs/1000 MOD 60, // The seconds

msecs MOD 1000) // The milli-seconds
RESULTIS O
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We can run this program vec3 immediately followed by the command dat msecs
separating by a semicolon (;) giving the following output.

0.010> vec3; dat msecs

days=15502 msecs=38273016 filler=-1
The time is 10:37:53.016

Monday 11-Jun-2012 10:37:53.020
0.000>

The argument given to the library function datstamp is the address of the first
of three consecutive variables named days, msecs and filler to hold a repre-
sentation to the current time and date. After the call, days holds 15502 being
the number of days since 1 January 1970, and msecs holds 38273016 being the
number of milli-seconds since midnight. To demonstrate this number is correct, it
has been converted to hours, minutes and seconds and compared with the output
of the dat command. By the way, dat stands for date and time.

Historically, datstamp was defined when BCPL was typically used on 16-bit
computers such as the PDP-11, Data General Nova or the Computer Automation
LSI-4. When BCPL words were only 16 bits long three words were need to
represent the date and time. For compatibility with the past three words have
been retained with the convention that -1 in filler indicates that the new
representation is being used.

It is all very well declaring vectors using simultateous declarations, but this
method is not feasible if we wish to declare a vector containing 1000 elements, or
if we do not know how many elements we need until the program is running. The
declaration LET v = VEC 10 declares a variable v initialised with the address of
11 consecutive pigeon holes. They can be accessed by expressions such as v!0,
v!1 up to v!10. The operand of VEC, in this case 10, is the upperbound of the
vector and must be a compile time constant. The elements of v are unnamed and
so can only be accessed using the subscription operator (!). Vectors declared
using = VEC are allocated from and area of memory called the run time stack
which is of limited size (typically 50000 words), so if you require vectors larger
than about 1000 elements, or if you do not know how large they should be until
the program is running, you should allocate them using getvec. This function
has one argument which is the upperbound of the vector required and it returns
the address of its zeroth element, or zero if insufficient space is available.

Vectors allocated by getvec should be freed by calls of freevec otherwise
space will be permanently lost. This is often called a space leak as illustrated by
the following program (vec4.b).

GET "libhdr"
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LET start() = VALOF
{ LET v1, v2 =0, 0
vl := getvec(100_000)
writef ("getvec(100_000) => %n", v1)
v2 := getvec(3_000_000)
writef ("getvec(3_000_000) => %n", v2)
IF v1 DO freevec(vl)
//IF v2 DO freevec(v2) // Forget to free v2
RESULTIS 0O

The effect of running this is as follows.

0.030> vecd
getvec(100_000) => 62171
getvec(3_000_000) => 162181

0.010>

The state of memory can be inspected using the command map pic, as follows:

0.010> map pic
Largest contiguous free area: 837810 words

Totals:

0
200064
400128
600192
800256

1000320
1200384
1400448
1600512
1800576
2000640
2200704
2400768
2600832
2800896
3000960
3201024
3401088

4000000 words available, 3012122 used, 987878 free

BOOOA. . . .ttt e a000eeEEEQa
elelelelelclceelclelcfelclcdddelddedelddeddeelddeelddeddeeddeddelcdeddelcdeddeelddeddelEdeddeeedeeel
delelelcelecdddeelelelddddeddddeeeleldededddddeeelelddddedddddeeeldddedddedddeeleleldddddddeddde
cleleleelelclclefelclelcfelclcdedelddedelcdedddelddedelcdedeeddeddelcdeddelcledddelcdeddeleddedEeedeeeel
delelelcelccdddeeelelddddeddedddeeleldddedddddedeelelddddeddddeeeldddedddddddeelelddddddedddde
cleleleelelclcleelclelcfelclddcdelddedelcdedddelddeeelededdeelddeddelcdeddelclededdelcdeddelEdddedeeedeeeel
delelelclelecdddeeelelddddedddedddeeleledddeddeddddeelelddededdddddeeeldddeeddddddeeleldddddddddddd
cleleldelelclcleelclelcfelclcdedelcdedelcdedddelddeelcdeddeelddeddelcdeddeclededelcdeddelcdddeeeedeeeel
elelelefelelelclelelclelclelclddccedddedeelddeddeelddedeelededeelddeelcdedeeldeddeelddeddeldeddeecdeeeel
eleleleelelclcleelclelcfelclecdelcdedelcdedddelddeeelcdedddelddeddelcdededeclededelcdeddelcddeeelcdeeeel
clelelfelelelclefelclelclelclddedelddeelddeddeelddedeelcdedeelddedelcdeddeldeddelddeddeldeddeeedeeeel
delelelclelecddeeelelddddddddeeeleledededdedddeeelelddddedddddeeelcdddedddedddeeeleldddddddeddede
clelelelelelclefelclelcfelclcdcddelddeelddeddeelddedeelcdeddeelddeddelcdeddelcleddelddeddelEdeddeeedeeel
delelelclelecdddeelelelddddddddddeeleledddedddddeeelelddededddddeeeldddeddedddedeeeldddddddeddde
cleleldelelecleelclelcelclddedelddedelcdedddelddeeelcdeddeeddedelcdeddelceddelcdeddelEddddEeedeeeel
0000QEEEOCCCEEREEECOCCCCOORECCCCCCCOREEEROEREEEERERRa. . . ... ... ..
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BB0 1 A5 e e e e
3801216 L e e e e
0.000>

This shows that the 3 million words allocated for v2 have not been freed, so the
next time vec4 is executed it is unable to allocate v2.

0.000> vec4d
getvec(100_000) => 62171
getvec (3_000_000) => 0
0.010>

An advantage of declaring a vector using = VEC is that it is automatically freed
when execution leaves the block in which it was declared.

On page 34 we saw how to write out some Fibonacci numbers. We will now
look at a program fills a vector with them.

GET "libhdr"

LET start() = VALOF
{ LET £ = VEC 50 // A vector to hold Fibonacci numbers from O to 50
f10 := 0 // Fill in the first two Fibonacci number
fl1 :=1
// Now fill in the others
FOR i = 2 TO 50 DO f!i := f1(i-1) + f!1(i-2)

// Now write out the result
FOR i = 0 TO 50 DO
writef ("Position %2i Value %12u %32b*n", i, f!i, f!i)

RESULTIS 0

It produces exactly the same output that we saw on page 44.

4.9 Primes

As another example of the use of vectors, we will look a program that finds all
prime numbers less than a million. The program is as follows.
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GET "libhdr"
LET start() = VALOF
{ LET upb = 1_000_000
LET isprime = getvec(upb)

FOR i

2 TO upb DO isprime!i := TRUE // Until proved otherwise.

FOR p = 2 TO upb IF isprime!p DO

{ LET i = p*p // Smaller multiples of p are already crossed out.
// Cross out all multiples of p
IF i>upb BREAK
{ isprime!i := FALSE; i := i + p } REPEATUNTIL i>upb

i

// Output some primes near the end
FOR p = upb-100 TO upb IF isprime!p DO writef ("%6i*n", p)

freevec(isprime)
RESULTIS 0O
}

This program outputs the primes between 999900 and a million.

0.000> vec6
999907
999917
999931
999953
999959
999961
999979
999983
0.200>

Notice that this calculation was done in about 200 milli-seconds or about 1/5 of
a second.

4.10 MANIFEST, GLOBAL and STATIC declarations

We have already seen how to declare local variables and vectors using LET, but
there other ways to declare variables. The first of these is the MANIFEST declara-
tion as in:
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MANIFEST {

col_red

col_green
col_blue

n_op=0
n_ri
n_r2

#xFFO0000
#x00FF00
#x0000FF

// The operator field of a node
// The first operand field of a node
// The second operand field of a node

// List of node operators

s_num=1
s_mul
s_div
s_add
s_sub

// A number node
// A multply node
// A divide node
// An add node

// A subtract node

%)

This declaration declares various named constants such as col_red and n_op. If

the name being declared is followed by an equal sign (=) then its value is that of

the constant following the equals sign, otherwise its value is one larger than that
of the previous name declared. Thus n_r1 and b_r2 have values 1 and 2.

The GLOBAL vector is a area of memory that is allocated when a program starts
and usually has an upperbound of 1000. It is possible to give names to particular
elements of the global vector and this is done using a GLOBAL declaration. The
following example is a modification of part of the standard library header file

g/1libhdr.h.

GLOBAL {
globsize:
start:
stop:
sys:
clihook:
muldiv:
changeco:
currco:
colist:
rootnode:
result?2

returncode

cis

//SYSLIB MR 18/7/01

//SYSLIB  changed to G:5 MR 6/5/05
//SYSLIB MR 6/5/04

© 0 NO O W N+~ O

// For compatibility with native BCPL
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Ccos

It declares that globsize is a variable at position zero of the global vector. By
convention it holds the upper bound of the global vector which is usually 1000.
This can be confirmed by executing writef ("globsize=yn*n", globsize). The
next variable is called start and is by convention is the first function of a program
to be called.

The variables result2, returncode, cis and cos are not followed by colons
(:) and so are given successively the next available global positions, namely 10,
11, 12 and 13.

The main advantage of global variables is that they provide a means of com-
munication between separately compiled parts of the system. For instance, there
is a precompiled library module called b1ib that contains the definitions of func-
tions like writef that we have used in all the example programs so far. The entry
point to writef actually resides in global 94 and is initialised at the moment a
program starts.

STATIC declarations have a similar syntax to MANIFEST declarations but de-
clare initialised variables rather than constants. Unlike manifest constants they
can be updated using assignment statements. An example is as follows:

STATIC {
a=1
b
C

This will declare three static variables a, b and c initialised to 1, 2 and 3. In
general static variables should not be used unless absolutely necessary. They are
usually better placed in the global vector.

4.11 Functions

We have already used functions several times. For instance, we have defined the
function start in every program and we have used functions such as writef,
datstamp, getvec and freevec several times. In this section we examine func-
tions in more detail.

Sometimes we have a fragment of code that we would like to use in several
different places. It would therefore be good to have a simple way on executing
that code without having to write the entire fragment on each time. In most
programming languages this can be done by wrapping up the code in something
called a function. As an example we will look as the definition of the library
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function randno which generates a sequence of pseudo random numbers. Its
definition is as follows.

LET randno(upb) = VALOF

{ // Return a random number in the range 1 to upb
randseed := randseed*2147001325 + 715136305
RESULTIS (ABS(randseed/3)) MOD upb + 1

+

This declares the function randno whose entry point is held in global variable 34
as declared in 1ibhdr.h. Within its body it refers to randseed which is declared
as global 35. The function is an implementation of what is called a congruen-
tial random number generator with carefully chosen constants 2147001325 and
715136305 to cause it to cycle though a huge number of apparently random val-
ues. The use of ABS, division by 3, MOD and +1 remove some of the deficiencies of
the randseed sequence and restrict the resulting numbers to the required range
of 1 to upb. Each value in this range should occur with equal likelihood.

There are two things to note about function definitions. Firstly, if the name
of the function is already declared as a global then its entry point becomes the
initial value of that global. Secondly, every variable used inside a function must
either be declared inside that function or be declared by a function, MANIFEST,
GLOBAL or STATIC declaration. Thus so called dynamic free variables are not
allowed. An easy way to avoid this problem is never to define one function inside
another. (This is enforced syntactically in the language C).

You can pass a collection of values to a function when you call it. These are
called arguments and are enclosed in round brackets (> (> and ’)?). We have
already seen this done in calls like writef ("x=/in y=Vn z=/n*n", x, y, z).
Here we are calling the function writef giving it four arguments. The first is
a string (actually represented by a pointer to the length and characters of the
string), and the remaining ones are the values of x, y and z. When a function is
declared it is given a list of names enclosed in round brackets and separated by
commas. These names behave just like local variables that have been initialised
from left to right with the argument values. The declaration of writef is in the
file sysb/blib.b and its first two lines are:

LET writef (format,a,b,c,d,e,f,g,h,i,j,k,1,m,
n,o,p,q,r,s,t,u,v,w,x,y,z) BE

As can be seen, its first argument is called format to hold the format string given
in the call. The remaining 26 arguments are initialised to as many arguments
as were supplied in the call. Hopefully no one will call writef with more than
this number of arguments. If they do the later arguments will be lost. Just



58 CHAPTER 4. THE BCPL CINTCODE SYSTEM

as simultaneously declared local variables live in adjacent pigeon holes, the same
applies to function arguments. So, for instance, the arguments a to z can thought
of as a vector of 26 elements pointed to by @a, and so can be accessed conveniently
as needed within the declaration of writef. Functions taking variable numbers
of arguments are often called variadic functions. They are clearly useful but often
difficult to implement sensibly in other languages.

The word BE in the declaration of writef indicates that its result is undefined
and that its body is not an expression but a command or command sequence.
After all, writef is not designed to compute a value since its purpose is to output
some formatted text.

Functions designed to compute results are declared using = in place of BE, and
after the equal sign there is an expression (not a command). A simple example
is the definition of the factorial function that computes 1 x 2 x 3... x n for a
given argument n. Its definition is as follows:

LET fact(n) = n=0 -> 1, n*fact(n-1)

The expression n=0 -> 1, n*fact(n-1) is an [F-THEN-ELSE construct for ex-
pressions. It computes the condition, in this case n=0, and if the result is non
zero (representing TRUE) it returns the first alternative namely 1, otherwise it
returns the result of evaluating n*fact(n-1). The interesting thing about this
definition is that it is recursive, defining fact in terms of itself, based on the idea
that factorial 0 is 1 and for non zero n factorial of n is n x factorial of n — 1.
Another example is a rather beautiful definition of a function to compute
Fibonacci numbers. The following program outputs them up to position 50.

GET "libhdr"

LET fib(n) = n=0 -> O,
n=1 -> 1,
fib(n-1) + fib(n-2)

LET start() = VALOF
{FOR i =0 TO 50 DO
writef ("Position %2i Value %12u*xn", i, fib(i))

RESULTIS 0
+

When you run this program it takes longer and longer to output each line, and if
you time it with a stopwatch, each line take a time approximately proportional
to the value of the Fibonacci number it is printing. On my laptop it takes about
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2 hours to output all 51 Fibonacci numbers and, although I have not tried, I
would expect it to take about 8 times longer on the Raspberry Pi. It is perhaps
interesting to explore why this wonderfully elegant little program is so inefficient.

Let us try and define a cost function C(n) that is the cost (in time) of comput-
ing fib(n). When n is 0 or 1 computing £ib(n) is very cheap. Let us arbitrarily
say the cost of computing £ib(0) is so small it can be zero and the cost of com-
puting £ib(1) is one unit. For larger values of n the cost is dominated by the
cost of computing £ib(n-1) and £ib(n-2) giving a total of C'(n — 1)+ C(n —2).
So we have defined the cost function C' to have the following properties.

0
1
(n)=C(n—1)+C(n—2) when n>1

This recurrence relation gives us exactly the same sequence of values as the
Fibonacci sequence itself which explains why the time to output each line is
approximately proportional to the Fibonacci number being written. In the next
section (which is entirely optional) we will obtain a simple formula for C' (and
indeed £ib(n)).

4.12 Solving the recurrence relation for C

In this section we explore the peculiar way in which mathematicians think. They
are typically extremely optimistic, thinking they can solve apparently unsolvable
problems. They are persistent, repeatedly trying different approaches when all
earlier attempts have failed, and they have usually acquired reasonable skill in
algebraic manipulation.

To solve this problem, a mathematician checks whether C'(n) grows as fast
as n? or n® but soon discovers that it grows much faster. Indeed it looks as if
it grows faster than n* for any k. Oh dear, we must find a formula that grows
faster than any of these. How about X"? So lets try C(n) = X". This clearly
is not right, but lets try it all the same. When n is large, substituting this in
our definition of C(n) gives us X" = X" ! + X" 2. Assuming X is not zero we
can divide both sides of the equation by X giving X" ! = X2 4 X3 and
if we repeatedly divide by X we eventually get the beautifully simple equation
X? = X + 1. If we rearrange this to be X? — X = 1 and then add 1/4 to both
sides we get X? — X +1/4 =1+ 1/4 = 5/4. We can now take the square root
of both sides giving X — 1/2 = /5/2. So possible values of X are (1 + /5)/2
and (1 —4/5)/2. The first of the has a value of about 1.618 and is so famous it
is called the Golden Ratio. Look it up on the Web to see why it is so important.
The second value is approximately -0.618. If we call these two values o and 3, we
can convince ourselves that a mixture of the two such as Aa™ + BS" also satisfies
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the relation, and by choosing suitable values for A and B, we can make a simple
formula match C'(n) exactly. Substituting n equals 0 and 1 in our definition of
C(n) we get C(0) = Aa® + BB = A+ B =0 and C(1) = Ao + B3 = 1. The
first equation tells us that B = — A, and substituting this in the second equation
gives A(aw — ) = 1. Remembering that o = (1 ++/5)/2 and = (1 — /5)/2 we
can easily deduce that A = 1/4/5. The formula for C'(n) is thus

C(n) = (a™ = B")//5.

C(n) = (1+\/5)2nn_¢(;_¢5)".

As a challenge, convince yourself that this yields a whole number for every n even
though this formula contains /5 three times.

4.13 Greatest Common Divisor

The greatest common divisor (the GCD) of two positive numbers is the largest
number that exactly divides into both of them. For instance the GCD of 18 and
30 is 6. In roughly 200 BC, Euclid divised an efficient way of computing it. It is
essentially as follows. If they are equal that is the answer, otherwise replace the
larger number by the remainder of dividing it by the smaller number, repeating
the process until both numbers are equal. A BCPL implementation of this is as
follows:

GET "libhdr"

LET gcd(a, b) = VALOF
{LETr=aMDb // r will be less than b
IF r=0 RESULTIS b // b exactly divides a so is the gcd

// r and b have the same gcd as a and b
a:=b
b :=r // a is greater than b

} REPEAT

LET try(a, b) BE
{ LET res = gcd(a, b)
writef ("gcd(%n, %n) = %n*n", a, b, res)

¥
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LET start() = VALOF
{ try(18, 30)

try (1000, 450)

try (1576280161, 1226540484)
b

This gives the following output.

gcd(18, 30) = 6
gcd (1000, 450) = 50
gcd (1576280161, 1226540484) = 1

Notice that if b is greater than a initially, then the first iteration of the REPEAT
loop just swaps these variables.

4.14 Powers

Another example worth looking at is how to raise a number to a large power
using modulo arithmetic. That is how can we calculate ™ modulo m efficiently
as is required by the RSA mechanism described above.

Two ideas come to mind. One is that when we want to calculate, say, 1234 x
5678 modulo 100, we need only consider the two least significant digits of each
number, since the others cannot affect the answer. So calculating 34 x 78 modulo
100 gives the same result. This generalises to a x b modulo m gives the same result
as ((a modulo m) x (b modulo m)) modulo m. The other idea is to consider the
binary representation of the exponent. For instance, if we want to calculate 72°,
we observe that 25 is 11001 in binary corresponding to 16 + 8 4+ 1 so multiplying
1 by 7, 25 times is the same a multiplying 1 by 7, 16 times, then multiplying by
7, 8 times and finally multiplying by 7 once more. In mathematical notation this
is just saying

7P = T = 1 T X T8 X 7.

We can easily calculate 72, 74, 78 and 716 since 72 = Tx 7, 74 = T>x 7%, 78 = T*x 74,
etc. Based on these ideas we can construct an elegant program that compute 2"
modulo m, such as the following.

LET powmod(x, n, m) = VALOF
{ LET res = 1
LET p = x MOD m
WHILE n DO
{ IF (n & 1)=0 DO res := (res * p) MOD m
n := n>>1
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p := (p*p) MOD m
+
RESULTIS res
}

This program has two disadvantages. One is that it is using signed arithmetic
and secondly it has a problem with overflow and so only works with quite small
numbers. A version using full 32-bit unsigned numbers is as follows.

GET "libhdr"

LET add(x, y, m) = VALOF
{ LET a = x+y

IF x<0 & y<0 & a>0 RESULTIS a-m
IF a-m<0 RESULTIS a // Unsigned comparison
RESULTIS a-m

3

AND mul(x, y, m) = y=0 -> O,
(y&1)=0 -> mul(add(x,x,m), y>>1, m),

add (x, mul (add(x,x,m), y>>1, m), m)
AND pow(x, y, m) = y=0 -> 1,

(y&1)=0 -> pow(mul(x,x,m), y>>1, m),

mul (x, pow(mul(x,x,m), y>>1, m), m)

LET start() = VALOF
{LET a, n, m =7, 25, 19
writef ("%n****¥%n modulo %n = %n*n", a, n, m, pow(a, n, m))

a, n, m := #x0ABCDEFO, 10000691, 1576280161 // Should give #x5AF3EBFE
writef ("%8x**x*Yn modulo %n = %8x*n", a, n, m, pow(a, n, m))
RESULTIS O

}

4.15 Compilation

So far we have looked at a few BCPL programs and invoked the BCPL compiler
before running them. In this section we explore what the BCPL compiler actually
does and how the compiled code is executed. To illustrate what is going on we
will consider the following simple program (in bcplprogs/raspi/demo.b).
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GET "libhdr"
LET start() = VALOF
{LETn=17

LET count = 0

{ count := count+1

IF n=1 RESULTIS count
TEST n MOD 2 = 0O
THEN n := n/2
ELSE n := 3*n+1
} REPEAT
}

This program declares two variables n and count initialised to 7 and zero. It then
enters a REPEAT loop in which it increments count before testing to see if n is one.
If it is, it returns from start with the current value of count. By convention, a
non zero result is treated as an error causing its value to be output, as in:

0.010> ¢ b demo
bcpl demo.b to demo hdrs BCPLHDRS

BCPL (24 July 2012)

Code size = 68 bytes

0.020> demo

demo failed returncode 17 reason -1
0.010>

This indicates that when it detects that n equals to 1, count equals to 17. The
TEST statement causes n to be set to n/2 if n was even or 3*n+1 if n was odd.
These operations are repeated until the program is terminated by the RESULTIS
statement. With n initially set to 7, the sequence of values of n has length 17
and is as follows:

7,22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

Before running demo we have to compile it using a command such as ¢ b demo.
The effect of this is to read the file demo.b and output a file called demo. This
file can be displayed using the type command as follows:
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0.010> type demo

0OOOOO3E8 00000011

00000011 OOOODFDF 6174730B 20207472 20202020
A410A317 11A4C411 84033C83 3612837B 12B5073E
EDBAA335 D1341383 OOEE6BAA3 00000000 00000001
00000014 00000001

0.000>

At first sight this compiled code does not look very comprehensible. It basically
consists of a sequence of 32-bit words given in hexadecimal. The first (000003E8)
indicates that this is a hunk of compile code whose length is given by the next
value (00000011). The rest of the file gives the actual data that must be loaded
into memory before the demo program can be run. This code is much easier to
understand if we use the d1 option when invoking the compiler. The output this
generates is as follows:

0.000> ¢ b demo di
bcpl demo.b to demo hdrs BCPLHDRS dil

BCPL (24 July 2012)
0: DATAW 0x00000000
4: DATAW 0xOOOODFDF
8: DATAW 0x6174730B
12: DATAW 0x20207472
16: DATAW 0x20202020
// Entry to:  start

20: L1:
20: L7
21: SP3
22: LO
23: SP4
24: L3:
24: L1
25: AP4
26: SP4
27: L1
28: LP3
29: JNE L4
31: LP4
32: RTN
33: L4:
33: LP3
34: L2

35: REM
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36: JNEO L5

38: XCH

39: L2

40: DIV

41: SP3

42: J L3
44: Lb:

44 LP3

45: L3

46: MUL

47: Al

48: SP3

49: J L3
51: L2:

52: DATAW 0x00000000

56: DATAW 0x00000001

60: DATAW 0x00000014

64: DATAW 0x00000001
Code size = 68 bytes
0.030>

The word at position zero will hold the length of the compiled code when it is
known, and this if followed by four words that indicate that the function named
start follows at byte position 20 in this module. The compiler kindly comments
this position to make the code more readable.

The compiled code consists of a sequence of 8-bit bytes in a language called
Cintcode (Compact Interpretive Code) that was specifically designed for BCPL.
Most Cintcode instructions occupy just one byte and correspond to simple op-
erations performed on the Cintcode Abstract Machine. This machine has some
central registers, the most important being PC, the program counter, that points
to the next Cintcode instruction to execute, and A and B that are used during the
evaluation of expressions. To see how Cintcode works we will execute this pro-
gram one Cintcode instruction at a time. We can do this by typing the following
piece of magic.

0.000> abort

!'1 ABORT 99: User requested

* X

Breakpoint 9 at start of clihook

0.010> demo

't BPT 9: clihook
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A= 0 B= 0 20092: K4G 1
* \ A= 0 B= 0 48532: L7

The abort command enters an interactive debugger and the debugging command
x sets a break point just before start is entered. When we try to execute the
demo command, we immediately hits this break point just as it is about to execute
the Cintcode instruction K4G 1 to enter the function start. The debugger issues
the prompt * inviting us to type a debugging command. We then press the \
key to cause one Cintcode instruction to be executed leaving the system about to
execute L7 at byte address 48532. We can see that both registers A and B contain
zZero.

The compiled code for LET n = 7 is L7 to load 7 into A followed by SP3 to
store A in the memory location whose address is P+3 where P is another central
register of the Cintcode Machine. At this moment P points to an area of memory
used to hold local variables belonging to the function start, and the compiler
has chosen to allocate the location at offset 3 to hold the variable n. Pressing \
twice performs these two instructions, as follows:

* \ A= 0 B= 0 48532: L7
* \ A= 7 B= 0 48533: SP3
* \ A= 7 B= 0 48534 : LO
*

Initialising count can be performed by pressing \ twice more as follows:

* \ A= 7 B= 0 48534 : LO
* \ A= 0 B= 7 48535: SP4
* \ A= 0 B= 7 48536: L1
*

Notice that when a value is loaded into A, the previous content is copied into B.
We have now entered the REPEAT loop and are about to execute the compiled
code for count:=count+1 as can be seen by pressing \ three more times.

* \ A= 0 B= 7 48536: L1
* \ A= 1 B= 0 48537 : AP4
* \ A= 1 B= 0 48538: SP4
* \ A= 1 B= 0 48539: L1
*
*
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L1 loads 1, AP4 adds the value in P4 (=count) and SP4 stores the result back in
P4. The next three instructions test whether n equals 1.

* \ A= 1 B= 0
* \ A= 1 B= 1
* \ A= 7 B= 1
*

48539:
48540:
48541:

L1
LP3
JNE 48545

L1 and LP3 load n and 1 in A and B, and the JNE 48545 instruction sets PC to
48545, if n is not equal to 1. Although the destination of the jump (48545) is too
large to fit into an 8-bit byte, it is actually encoded as an 8-bit signed relative
address in Cintcode. So jump instructions only occupy 2 bytes. Cintcode has
a cunning mechanism to deal with jumps over large distances. The next four

instructions test whether n is even.

A= 7 B=
A= 7 B=
A= 2 B=
A 1 B=

¥ X X ¥ X
ENEEN RN

48545:
48546
48547 :
48548:

LP3
L2
REM
JNEO 48556

The REM instruction sets A to the remainder after dividing n by 2, and the JNEO
48556 instruction sets PC to 48556 if this remainder is not zero, ie if n is odd. So
rather than halving n we now compute n:=3*n+1 as follows:

* \ A= 1 B= 7
* \ A= 7 B= 1
* \ A= 3 B= 7
* \ A= 21 B= 7
* \ A= 22 B= 7
* \ A= 22 B= 7
*

48556
48557 :
48558:
48559:
48560:
48561 :

LP3
L3
MUL
Al
SP3
J 48536

LP3 L3 MUL multiplies n by 3 giving 21, Al increments the result giving 22, and
SP3 updates n with this new value. The next instruction J 48536 jumps us back

to the start of the REPEAT loop.

We can remove the break point using the debugging command 0b9 and con-

tinue normal execution by typing c.

* \ A= 22 B= 7
* 0b9

* C

demo failed returncode 17 reason -1
0.010>

48561 :

J 48536
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While in the debugger, pressing ? gives a useful summary of the possible debug-
ging commands. For more information about Cintcode and the debugger see the
BCPL manual (bcplman.pdf) available via my home page.

4.16 The Collatz Conjecture

The previous section contained a program that computed a sequence of numbers
from a given starting value using a simple rule to determine whether to replace
n by n/2 or 3*n+1. Collatz conjectured in 1937 that the sequence always reaches
1 for every starting value. Surprisingly, no one has yet been able to prove this.
You can learn all about the Collatz Conjecture by searching the web using the
keyword Collatz.

If the conjecture is false, either there will be a starting value that generates
a sequence either ending in a loop not containing one, or generating larger and
larger numbers indefinitely. The following simple program (colllatz0.b) gener-
ates Collatz sequences from a given starting value.

GET "libhdr"
LET start() = VALOF
{LETn=17
LET count = O
{ count := count+1
writef ("%5i: %10i*n", count, n)
IF n=1 BREAK

TEST n MOD 2 = 0

THEN n := n/2

ELSE n := 3*n+1
} REPEAT

RESULTIS 0
b

In this program the starting value is held in n. It outputs n and its position
in the sequence before updating n with the next value. The test n MOD 2 = 0
determines whether n is even, replacing n by n/2 if it was, otherwise setting n to
3*n+1. The program breaks out of the REPEAT loop if n reaches one, otherwise
it goes on for ever outputing more and more numbers in the sequence. You
can easily test a different starting value by modifying the declaration of n. For
instance, if the declaration was replaced by LET n = 123456789 you will find the
sequence terminates at position 178.

An imperfection of this program is that it may suffer from overflow. The
following program (collatzl.b corrects this fault stopping with a message when
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it discovers that the next value will be too large to hold in a BCPL variable. This
can only happen when n is odd and 3*n+1 is greater than the largest number
maxint that can be represented. So if n>(maxint-1)/3 the next number in the
sequence will be too large.

GET "libhdr"

LET start() = VALOF
{ LET n = 123456789
LET count = 0
LET 1lim = (maxint-1)/3

{ count := count+1

writef ("%5i: %10i*n", count, n)

IF n=1 BREAK

TEST n MOD 2 = 0

THEN { n := n/2

}
ELSE { IF n > 1im DO
{ writef ("Number too big*n")

BREAK
}
n := 3%n+l
}
} REPEAT
RESULTIS 0O

}

A variant of this program is given in Section 5.4 on page 310 that plots the
relationship between sequence lengths and starting values.

Even with the program given above you will not be able to find a starting
value that disproves the Collatz Conjecture since it has already been tested for
all starting values up to 5 x 2%°. So if we are going to disprove the conjecture
we must modify the program to use numbers of higher precision. The following
program (collatz2.b) uses numbers with up to about one million binary digits.
It starts as follows:

GET "libhdr"

MANIFEST {
upb = (1<<20)-1 // ie about 1 million digits max
mask = upb
countt=10000 // count at start of test loop
looplen=541 // Length of test loop
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GLOBAL {
digv:ug // digv is a circular buffer holding a number with up
// to upb binary digits, with one digit per element.

digp // Position of the least significant binary digit of

// the number.
digq // Position of the most significant digit of the number.
count // Position of the number in digv in the sequence

digvc // Copy of the number at last checkpoint
digcs // Count of digits in digvc.
countchk // Count at last checkpoint

digvt // Digits of the number at the start of the test loop
digts // Count of digits in digvt

eql // Returns TRUE if the number in digv is 1,

// ie digp=digq and digv!digp=1
divby2 // Function to divide the number in digv by 2
mulby3plusl // Function to replace the number in digv by 3*n+l
tracing // =TRUE causes the numbers to be output
looptest // If TRUE, a loop of values is created

// to test that loops can be detected

The binary digits of the number are held in consecutive elements of the circular
buffer digv, ordered from least to most significant digit. The least and most
significant digits have subscripts digp and digq. If the number has only one
digit digp will equal digq. count holds the position of the number in digv
in the sequence. In order to detect a loop the number in digv is copied into
digvc every time count is a power of two. Every time the next number is
generated it is compared with the number in digvc. If there is a loop this test
will eventually yield TRUE. To test that the loop detection mechanism works,
the variable looptest is set to TRUE. This causes the number at position countt
(currently equal to 10000) to be copied into digvt, and every time count advances
by looplen (currently 541) the number in digv is replaced by the number in
digvt. The loop detection mechanism should detect this loop. Normally the
program just output the position of each number in the sequence and its bit
length, but if tracing is TRUE it also outputs the binary digits of each number
The main program is as follows:

LET start() = VALOF
{ LET len = 5

LET seed = 12345
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LET argv = VEC 50

UNLESS rdargs("len/n,seed/n,t/s,loop/s", argv, 50) DO
{ writef("Bad args for collatz2*n")

RESULTIS O
}
IF argv!0 DO len := !(argv!0) // LEN/N
IF argv!1l DO seed := !(argv!1l) // SEED/N
tracing := argv!2 // T/S
looptest := argv!3 // LOOP/S
setseed(seed)

UNLESS 0<len<upb DO
{ writef("len must be in range 1 to %n*n", upb)
RESULTIS O

}

digv := getvec(upb)

digvc := getvec(upb)

UNLESS digv & digvc DO

{ writef ("upb too large -- more space needed+*n")
RESULTIS O

}

digvt := 0

IF looptest DO
{ digvt := getvec(upb)
UNLESS digvt DO

{ writef("upb too large -- more space needed+*n")
RESULTIS O

+
X
// Initialise digv with a random number of length len
digp := 0
FOR i = 0 TO len-2 DO digv!i := randno(2000)/1000
digv!(len-1) := 1 // Plant a most signigicant 1
digq := len-1 // Set position of the most significant digit
diges := -1
count := 0

{ LET digs = ((digg+mask+1-digp) & mask) + 1

71
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count := count+l

writef ("%9i %6i: ", count, digs)
IF tracing DO prnum()

newline ()

// Check whether the current number has been seen before
IF digs = digcs DO
{ // Numbers are the same length so check the digits
writef ("Checking the digits*n", digs)
FOR i = 0 TO digs-1 UNLESS digvc!i=digv! ((digp+i)&mask) GOTO notsame
writef ("*nLoop of length %n found at count = Yn*n",
count-countchk, count)
GOTO fin

notsame:
IF (count&(count-1))=0 DO
{ // Set new check value in digvc
FOR i = 0 TO digs-1 DO digvc!i := digv! ((digp+i)&mask)
digcs := digs
countchk := count // Remember the position of the check value
writef ("%9i %6i: Set new check value*n", count, digs)

IF looptest DO
{ IF count=countt DO
{ // Create a loop starting here
FOR i = 0 TO digs-1 DO digvt!i := digv!((digp+i)&mask)
digts := digs
writef ("%9i: Save start of loop number*n", count)

}

IF count>countt & (count-countt) MOD looplen = O DO
{ // Return to start of test loop
FOR i = 0 TO digts-1 DO digv!i := digvt!i
digp, digqg := 0, digts-1
writef ("%9i: Restore start of loop number*n", count)
}
}

IF eq1() BREAK

TEST digv!digp=0 // Test for even
THEN divby2()

ELSE mulby3plusi()
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} REPEAT

fin:
IF digv DO freevec(digv)
IF digvc DO freevec(digvc)
IF digvt DO freevec(digvt)
RESULTIS O

}

The argument len specified the length in binary digits of the initial number in
the sequence. This length must be between 1 and about one million. The digits
of the starting value are chosen using a random number generator whose initial
seed can be specified by the seed argument. If no seed is specified a seed of
12345 is initially chosen but then updated to a value depending on the current
time of day. If no specific seed is chosen, it might happen that a random starting
value of say 900000 digits was found that proved the conjecture false by ending
with a loop not containing one, but not knowing the seed you would not be able
to reproduce your fantastic discovery. Such a situation would be unimaginably
annoying. If the argument t is given tracing will be set to TRUE and if loop is
given looptest will be set to TRUE to test the loop detection mechanism.

The code is fairly self explanatory. It contains the loop detection mechanism
and the code to generate a loop if looptest is TRUE. The call eq1 () return TRUE
if the current value in digv represents one. The current value in digv is even if
its least significant digit is zero, that is if digv!digp=0. The call divby2 divides
the value in digv by 2, and mulby3plus1() multiplied the number in digv by
three and adds one. These functions are defined below.

AND eql() = digp=digq & digv!digp=1 -> TRUE, FALSE

AND divby2() BE
{ TEST digp=digq

THEN digv!digp := 0

ELSE digp := (digp+1)&mask
b

AND mulby3plusi() BE
{ // Calculate 3*n+l eg

// 1+
// 1011 +
// 10110 =
/===
// 100010

LET carry =1
LET prev =0
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LET i = digp

{ LET dig = digv!i
LET val = carry+digt+prev
digv!i := val&l
carry := val>>1
prev := dig
IF i=digq DO

{ IF prev=0=carry RETURN // No need to lengthen the number
i := (i+1)&mask

digv!i := 0
digqg := i
LOoP
}
i := (i+1)&mask
} REPEAT

}

AND prnum() BE
{ LET i = digp
{ LET dig = digv!i
wrch(’0’+dig)
IF i=digq RETURN
i := (i+1)&mask
} REPEAT
}

The final function prnum() just outputs the digits of the number in digv.

Using this program you can test random starting values with lengths up to
about one million binary digits, and if there is a value that disproves the Collatz
Conjecture you might be lucky enough to find it. But I think that unlikely since
[ am convinced the conjecture is true.

4.17 The Pig Dice Game

This is a two player game that uses a six sided die, first described by John
Scarne in 1945. It is an example of a jeopardy race game in which players have to
choose repeatedly between making a small gain with high probability or possibly
making a large loss with small probability. Each player has bank balance and,
when having the die, a turn score. During a player’s turn, if a one is thrown, the
player bank balance is left unchanged and the die is passed to the other player.
But, if a value between 2 and 6 is thrown, it is added to the turn score. At any
point the player may terminate the turn by saying “hold”. This causes the turn
score to be added to the player’s balance before handing the die to the other
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player. The first player to obtain a balance of 100 or more wins. Quite a good
strategy is to hold after the turn score reaches 21.

The optimum choice of whether to throw the die or hold depends on the
player’s current scores, the other player’s and the current turn score. Since these
three values are all between zero and 99, there are one million possible states
of the game. The optimum playing strategy just specifies for which states it is
best to throw the die. The optimum strategy turns out to be extremely strange,
counter intuitive and complicated. This strategy is given later in this section.

But first, I describe the program pig.b that just allows the user to play the
game against the computer. It takes several numeric arguments: al, bl, ci,
a2, b2 and c2. If the al is zero, player 1 is a user controlled by input from
the keyboard. When it is player 1’s turn, pressing P causes the die to be thown
and pressing H terminates the turn. If either a one is thrown or H is pressed the
die is passes to the other player. If al is non zero, player 1 is played by the
computer using a strategy specified by a1, bl and c1. If al is negative, player
1 is played by the computer using the optimum strategy based on data in the
file pigstrat.txt, but if al is greater than zero the computer uses a playing
strategy defined by al, bl and c1. You can think of the game state as a point
(my,op,ts) in a 3D cube where my and op are player 1 and player 2’s bank
balances and ts is player 1’s current turn score. If we assume that the ts axis
is vertical, the coordinates (my,op) identify a point on a horizontal square. We
can think of this square as the floor of a shed. The strategy is based on a sloping
plane that can be thought of as the shed’s roof. If ts is less than the height
of the roof at floor position (my,op) the strategy is to play the die, otherwise
player 1 should hold. The orientation of the roof is defined by its height al at
the origin (0,0), bl at position (99,0) and c1 at position (0,99), and so, if
ts<a+(b-a)*my/99+(c-a)*op/99, the strategy is to throw the die. The default
settings for bl and c1 are both set to al. This, of course, represents a horizontal
roof of height al.

Player 2’s strategy is specified similarly using arguments a2, b2 and c2. It is
thus possible to cause the computer to play itself with possibly different strategies.
A new game can be started by pressing S, and the program can be terminated
by pressing Q. After each game, the tally of wins by each player is output. This
is useful when comparing the effectiveness of different playing strategies. The
program starts by declaring globals as follows.

GET "libhdr"

GLOBAL {
stdin:ug
stdout
ch
al; bl; ci1 // Playerl’s strategy parameters
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a2; b2; c2 // Player2’s strategy parameters
scorel; score2 // The players’ scores
player // =0 if game ended,

// =1 if it is player 1’s turn,
// =2 if it is player 2’s turn.
winsl; wins2 // Count of how often each player has won

quitting // =TRUE when Q is pressed
newgameP // The longjump arguments to
newgamelL // start a new game
strategybytes; strategybytesupb; strategystream

Next is the definition of the main function strategyrdch.

LET strategyrdch() = VALOF
{ LET ch = rdch()
UNLESS ch=’(’> RESULTIS ch
// Ignore text enclosed within parentheses
{ ch := rdch()
IF ch=endstreamch RESULTIS endstreamch
} REPEATUNTIL ch=’)’
} REPEAT

This function is used to read characters from the file pigstrat.txt when
loading the optimum strategy. It behaves like rdch but skips over text enclosed
in parentheses. The definition of start then follows.

LET start() = VALOF
{ LET days, msecs, filler = 0, 0, O
LET argv = VEC 50

UNLESS rdargs("al/n,bl/n,cl/n,a2/n,b2/n,c2/n",

argv, 50) DO
{ writef("Bad argument(s) for pig+*n")
RESULTIS 0O
}
al, bl, c1 := 0, O, O // Playerl’s strategy
a2, b2, c2 := -1, 0, 0 // Player2’s strategy
winsl, wins2 := 0, O

quitting := FALSE

IF argv!l DO al
bl, c1 :0 al, ail
IF argv!1l DO b1l

! (argv!0)

I (argv!1)
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IF argv!2 DO ci1 = I (argv!2)

IF argv!3 DO a2 = I (argv!3)

b2, c2 := a2, a2

IF argv!4 DO b2 = !(argv!4)

IF argv!5 DO c2 = I (argv!b)
newgameP, newgameL := level(), newgame
datstamp (@days)

setseed(msecs)

The program first reads the command arguments, if any, that specify whether
the two players are interactive users, the computer or one of each. For the com-
puter players, the values of the arguments specify which strategy the computer
will use. By default, a1=0 causing player 1 to be interactive user and a2=-1
causing player 2 is the computer playing the optimum strategy. Unless bl and
cl are explicitly given they are set equal to al. The same convention applies to
b2 and c2.

The variables newgameP and newgamel are set so the call
longjump (newgameP ,newgamel) in function userplay will cause jump back into
start where a new game can be be started. Finally the random number seed
is set to a value based on the current time od day. The program continues as
follows.

strategybytes := 0
strategybytesupb := 100%100-1
strategystream := 0
IF al<0 | a2<0 DO
{ // Load the optimum strategy data from file pigstrat.txt
strategybytes := getvec(strategybytesupb/bytesperword)
UNLESS strategybytes DO
{ writef("Unable to allocated strategybytes*n")
GOTO fin
b

strategystream := findinput("pigstrat.txt")

UNLESS strategystream DO

{ writef("Unable to open pigstrat.txt*n")
GOTO fin

+

selectinput (strategystream)

{LET i, ch = 0, 0
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{LETx =0

ch := strategyrdch() REPEATUNTIL ’0’<=ch<=’9’ | ch=endstreamch
IF ch=endstreamch BREAK

WHILE ’0’<=ch<=’9’ DO
{ x :=10%x + ch - ’0’
ch := strategyrdch()
}
IF i <= strategybytesupb DO strategybytes)i := x
i:= 1i+1
} REPEAT
UNLESS i = 100*100 DO
{ writef("pigstrat.txt contains %n numbers, should be 10000*n", i)
GOTO fin
}
}
endstream(strategystream)
strategystream := 0

3

newgame:
scorel, score2 := 0, O

writef ("*nNew Game*n")

If either player 1 or 2 is the computer playing the optimum strategy, one
or both of al and a2 will be negative. The effect is to allocate an array,
strategybutes, of 10,000 bytes and initialise it with the values specified in
file pigstrat.txt. These values correspond to the smallest ts value for each
(op,my) position where the optimum strategy is to hold.

The program continues as follows.

UNTIL quitting DO

{ play(1, al, b1, ci)
IF quitting BREAK
play(2, a2, b2, c2)

IF scorel>=100 DO
{ winsl := winsl + 1
writef ("*nPlayer 1 wins*n")
}
IF score2>=100 DO
{ wins2 := wins2 + 1
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writef ("#nPlayer 2 wins*n")

}

IF scorel1>=100 | score2>=100 DO

{ writef("Playerl scored %i3 games won %i3*n", scorel, winsl)
writef ("Player2 scored %i3 games won %i3*n", score2, wins2)

{ writef ("#nPress S or Q ")
deplete(cos)
ch := rch()
IF ch="Q’ | ch=endstreamch DO
{ newline()

RESULTIS O
}
IF ch=’S’ GOTO newgame
} REPEAT
+
}
fin:

IF strategybytes DO freevec(strategybytes)
IF strategystream DO endstream(strategystream)
RESULTIS O

This part of the program causes players 1 and 2 to take turns alternately until
one of them wins, at which time it outputs which player won, what the bank
balances were. It also gives counts of how often each player has won. Pressing Q
will terminate the program and pressing S will start a new game.

Input from the keyboard is read using the function rch which returns the
next key as soon as it is pressed. The call writes("xb *b") erases the character
that sardch echoed. The call deplete(cos) causes the buffered output to the
currently selected output stream to be flushed, typically to the screen.

AND rch() = VALOF

{ LET ¢ = capitalch(sardch())
writes("*b *b")
deplete(cos)
RESULTIS c

}

The function play performs a player’s turn. It is defined as follows.

AND play(player, a, b, c) BE UNLESS scorel>=100 | score2>=100 DO
{ LET turnscore = 0
LET done = FALSE
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LET throws = 0
LET turnv VEC 100

UNLESS a DO writef("Press P, H or S*n")

{ LET score = scorel
LET opponent = score2

IF player=2 DO score, opponent := score2, scorel

writef ("*cPlayer)n: %i3 opponent %i3 turn %i3=",
player, score, opponent, turnscore)

IF throws>0 DO writef("%n", turnv!0)

FOR i = 1 TO throws-1 DO writef("+%n", turnv!'i)

IF done DO
{ newline()
TEST player=1

THEN scorel := scorel + turnscore
ELSE score2 := score2 + turnscore
RETURN
}
IF strategy(turnscore, score, opponent, a, b, c) DO
{ // Throw
LET n = randno(6)
turnv!throws :=n
throws := throws+1
turnscore := turnscore+n
IF n=1 DO
{ turnscore := 0
done := TRUE
}
UNLESS score+turnscore >= 100 LOOP
}
// Hold
done := TRUE
} REPEAT

}

If either player has already won, play returns immediately. Otherwise, it
declares some local variables including the vector turnv which will hold all the
values thrown in the current turn. The variable throws holds the number of
times the die has been thrown in this turn. The choice of whether to hold or play
is computed by the function strategy which defined below. As each decision is



4.17. THE PIG DICE GAME 81

made it then outputs a line such as the following.
Playeril: 14 opponent 23 turn 14=5+3+6

inviting the player to choose between another throw or holding. If done=TRUE
the decision to hold has already been made and so the player’s score is updated
and play returns. The strategy function is defined as follows.

AND strategy(turnscore, myscore, opscore, a, b, c) = VALOF
{ // Return TRUE to throw die, otherwise return FALSE.
UNLESS a RESULTIS userplay()

UNLESS turnscore RESULTIS TRUE // m/c always throws first time

// If a<0 use the optimum strategy based on data in pigstrat.txt
IF a<0 RESULTIS turnscore < strategybytes’ (opscore*100+myscore)

RESULTIS turnscore < a + (myscorex(b-a) + opscorex(c-a))/99

If a is zero, the function userplay is called to let the user decide whether to
throw or hold. If a is negative, the computer used the optimum strategy based
on data in pigstrat.txt. Otherwise, a machine strategy is chosen based on the
parameters a, b and c.

The next function reads the user’s choice of whether to throw or play. It
switches on the next character of input and takes appropriate action.

AND userplay() = VALOF
{ ch := rch(Q)
SWITCHON ch INTO
{ DEFAULT: LOOP
CASE ’P’: RESULTIS TRUE
CASE endstreamch:
CASE ’Q’: quitting := TRUE
CASE ’H’: RESULTIS FALSE
CASE ’S’: longjump(newgameP, newgameL)
}
} REPEAT

A typical run causing the computer to play itself is as follows. Here, strategies
a1=20 and a2=27 are being compared. Repeatedly pressing S shows that the limit
of 20 is better than 27.
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0.010> pig al 20 a2 27

New Game

Playerl: O opponent 0 turn  0=4+3+6+1
Player2: O opponent O turn 21=5+3+3+3+4+3
Playerl: O opponent 21 turn  0=4+2+6+1
Player2: 21 opponent 0O turn 20=6+2+4+6+2
Playerl: O opponent 41 turn  0=4+1
Player2: 41 opponent O turn 0=1

Playerl: O opponent 41 turn 21=2+3+3+6+2+5
Player2: 41 opponent 21 turn 20=5+4+3+6+2
Playerl: 21 opponent 61 turn 0=1

Player2: 61 opponent 21 turn 22=6+4+4+5+3
Playerl: 21 opponent 83 turn 20=3+5+5+3+2+2
Player2: 83 opponent 41 turn 20=6+5+3+6

Player 2 wins
Playerl scored 41 games won O
Player2 scored 103 games won 1

Press S or Q

4.17.1 The Optimum Strategy

As mentioned above the optimum strategy for the pig dice game is complicated
and counter intuitive, and quite hard to discover. The optimum strategy can be
represented by a 100 x 100 x 100 cube of values indicating whether it is best to
hold or play the die for each state of the game. The program pigstrategy.b
is my attempt to calculate this optimum strategy, leaving the result in the file
pigcube.txt.

The triplet (op,my,ts) represents a state in the game, where op is player2’s
score, my is playerl’s score and ts is playerl’s current turn score. The opti-
mum strategy for playerl is specified by stating whether to PLAY or HOLD for
each state gives the higher probability of winning. Suppose P(op,my,ts) is the
probablity of playerl winning, then:

/smallskip

0, if op >= 100, // Playerl has lost
1 is my+ts >= 100, // Playerl has won

P(op,my,ts)

max( (1 - P(my+ts, op, 0)), // Playerl HOLDs

( (1 - P(my, op, 0)) // Playerl throws a 1
+ P(op, my, ts+2) // Playerl throws a 2
+ P(op, my, ts+3) // Playerl throws a 3
+ P(op, my, ts+4) // Playerl throws a 4
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+ P(op, my, ts+5) // Playerl throws a 5
+ P(op, my, ts+6) // Playerl throws a 6
) / 6 // Take the average of these six cases.

)

We can represent the cube by and array called cube with one million (=
100 x 100 x 100) elements. The element cube!i will hold (prob<<1|flag), where
i=op*100%100+my*100+ts, prob holds the probability of a win represented as a
scaled number with 8 decimal digits after the decimal point and flag=1 indicates
that the best strategy at this position is to HOLD. As we have seen the setting of
cube!i depends on the settings of other elements of cube, so we essentially have
one million simultaneous equations to solve. Using a simple recursive function
will fail because the equation for cube!i may depend indirectly on its own value,
and this will cause a recursive loop that is hard to avoid. So we probably have to
resort to a so called relaxation method, in which we make an initial guess for each
element of cube and then repeatedly update each cube!i with a new estimate
based on the previous elements of cube. In general there is no guarantee that
relaxation will converge, but luckily for this problem it converges to a reasonable
looking answer rapidly. A program to perform this iteration using a precision of
eight digits after the decimal point for the probablities is called pigstrategy.b
and a second version using 16 digit precision is called pigstrategyhd. They
both discover exactly the same optimum strategy. After 51 iterations the stategy
does not change and after 95 iterations all the probabilities of winning remain
unchanged to eight decimal places. It is worth noting that the order in which the
elements of cube are updated make a big difference to the rate of convergence
of the algorithm, but the resulting optimal strategy should always be the same.
The 16 digit version shows us that after 149 iterations the first 12 digits of every
probability remains unchanged.

Once the optimum strategy has been found two files are written. The first,
called pigcube.txt holds the resulting winning probability and flag for every
element of the cube. This file is about 13 million bytes long. The second file,
called pigstrat.txt holds a sequence of 10,000 numbers giving the lowest turn
score for which holding is the best strategy for each (opponent score, player score)
pair. This is read by the pig.b program to allow it to play using the optimum
strategy.

A few lines of pigcube.txt as generated by pigstrategy.b are as follows:

(21 256 0): 0.56765260P 0.57086016P 0.57421506P 0.57772383P 0.58139457P
(21 25 5): 0.58523565P 0.58925465P 0.59346038P 0.59785324P 0.60244720P

(25 21 10): 0.54151407P 0.54654803P 0.55182253P 0.55733909P 0.56310562P
(256 21 15): 0.56908934P 0.57538043P 0.58202627P 0.58898613P 0.59620498P
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(25 21 20): 0.60368852P 0.61128274P 0.61977279H 0.62886120H 0.63796413H
(25 21 25): 0.64700159H 0.65618399H 0.66533814H 0.67442849H 0.68337390H

(31 25 0): 0.48526691P 0.48858882P 0.49206411P 0.49569825P 0.49949962P
(31 256 5): 0.50347724P 0.50763997P 0.51199559P 0.51655001P 0.52130443P

If you run pigstrategy with the trace option (-t) specified, it will generated
considerable output including the following lines.

(31 25 0):0.48526691P

(21 25 0):0.56765260P (25 21 12):0.55182253P (25 21 13):0.55733909P

(25 21 14):0.56310562P (25 21 15):0.56908934P (25 21 16):0.57538043P

(25 21 10):0.51473309H 0.54151407P => (25 21 10):0.54151407P diff=0.00000000

These lines were generated when pigstrategy was computing a new setting
for state (25 21 10) of the cube, that is when the player2’s score was 25, the
playerl’s score was 21 and playerl’s current turn score was 10. The first line
indicates that the opponent will win with a probability 0.48526691 if the playerl
HOLDs. Note that 31 is the sum of the playerl’s score (21) and the current
turn score (10). This becomes player2’s score when he/she begins to play. If
the playerl chooses to play the die, we must take the average of six probabilities
corresponding to the possible throws of the die. If the number one is thrown,
player2 gains the die and has a winning probability of 0.56765260 corresponding
to state (21 25 0). Otherwise, the player accumulates in the turn score a value
between 2 and 6 with varying probabilites held in states (25 21 12) to (25 21 16).
When computing the average, we add 3 before dividing by 6 in order to round
the result properly. The last line shows the probability of winning if HOLDing
(0.51473309) or continuing to PLAY (0.54151407). The best strategy for this
state is therefore to PLAY. This last line also indicates that the new estimated
probability of winning is unchanged.

A few lines of pigstrat.txt is as follows.

(25 0): 23 23 23 23 23 23 23 23 23 23

(25 10): 23 23 22 22 22 22 22 21 22 22
(25 20): 22 22 22 22 22 21 21 21 21 20
(25 30): 20 20 20 20 20 20 20 20 19 19

(25 40): 19 19 18 18 18 18 18 19 19 19
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This indicates that when the opponent score is 25 and the player’s score is 21,
the lowest turn score for which HOLD is the best choice is 22. You will notice
that this is compatible with the line starting (25 21 20) from the file pigcube. txt
where the entry for turn score 22 is 0.61977279H.

A pictorial representation of the optimum strategy is shown in Figure 4.3.
The red and green axes identify playerl and player2’s current scores and the
blue axis holds playerl’s current turn score. The solid material in the cube
represents all the games states where playerl’s best strategy is to throw the
die. Notice that the surface is quite complex and contains some overhangs. The
image is based on data in pigcube.txt which can be read by a program called
prepcubepic.b to generate data in the file cubepic.txt. This is subsequently
read by plotpigcube.b to generate the 3D image shown in Figure 4.3. The
image is drawn using the SDL Graphics Library and so you should read the next
chapter before trying to understand how plotpigcube.b works. The programs
pigtrategy.b and pigstrategyhd have recently been modified to display the
cube at each step of the relaxation process. This allows you to see the effect of
different evaluation orders and different initial settings of the cube elements. The
program outputs a checksum of the cube elements to help see whether different
versions of the algorithm produce the same result.

4.18 The Enigma Machine

Having recently visited Bletchley Park with my young grandson, I was pleased to
see how fascinated he was with the German Enigma Machine used between 1939
and 1945 to encipher messages that were typically transmitted by radio using
morse code. Since a program to simulate the machine is quite simple, it is a good
programming example with some added interest.

The Allies could easily read the enciphered text so it was necessary to use
a cipher code that was impossible to break. The method chosen was to use the
Enigma Machine which could translate plain text into enciphered text depending
on how the machine was initially set up, and since the machine could be set
up in more than 1000 million million ways each generating completely different
translations, it was thought to be unbreakable. The machine was battery operated
and small and light enough to be used in aircraft, submarines and at the battle
front.

The program described in this section simulates the M3 version of the Enigma
machine, and its implementation was influenced by a C program written by
Fauzan Mirza, and the excellent document and Enigma Machine simulator writ-
ten by Dirk Rijmenants. For more information, I strongly recommend you visit
the following web sites:

http://users.telenet.be/d.rijmenants
http://www.rijmenants.blogspot.com
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|' m Pig Dice Game Strategy Cube

Iteration 99
Hox Prob choange 0.0000000047306908
Humber of PLAY/HOLD chonges 0

Figure 4.3: The Optimum Strategy for the Pig Dice Game

The machine details and example message have been taken from Rijmenants’
document with permission.

The Enigma machine has a keyboard with keys labelled from A to Z and 26
lights labelled A to Z. When a key was pressed one of the lights will turn on
indicating the translated letter. The electrical path from the key to the light
is complex. It first passes through a plug board which can be set up to swap
typically 10 pairs of letters. For instance, one cable could cause A to be turned
into J and J to be turned into A. After the plug board, the signal then enters
a sequence of three rotors. Each rotor has 26 spring loaded terminals to the
right pressing a plate with 26 contacts arranged in a circle. To the right of the
rightmost rotor the contact plate is fixed and connected to the 26 wires from
the left side of the plug board. The left side of each rotor has a similar circular
contact plate that either makes contact with the terminals of the rotor on its
left, or, for the left most rotor, the spring loaded terminals of a reflector plate.
The reflect connects the letter positions in pairs in an essentially random fashion.
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The wiring of each rotor is also essentially random. Once the signal from the
pressed key has passed through the plug board and three rotors to the reflector,
it returns back through the rotors and plug board to provide power for one of the
lights, giving the translated letter. Notice that, because of the way the machine
works pressing A, say, will never translate into A. Note also that if pressing A
translates to J, say, then, from the same initial setting, pressing J will translate
to A. This property allows the machine to be used both to encode messages and
decode them.

There is a choice of 5 differently wired rotors (named I, II, III, IV and V)
which can be placed in the machine in any order, and there are two possible
reflectors named B and C. Before translating a message the correct rotors must
be selected and placed in the machine in the required order and each be set to one
of 26 initial positions. Each rotor has a small window displaying a letter giving
its current position. But this is complicated by the fact that the ring of letters
for each rotor can be in any one of 26 positions relative to the its wiring core.
These ring settings have to be done before the rotors are placed in the machine.

Every time a key is pressed one or more of the rotors advance by one position
completely changing the translation of each letter. So pressing Q, say, repeatedly
will generate a seemingly random sequence of letters.

The program for this simulator is in bcplprogs/raspi/enigma-m3.b, and
since it is quite long and it will be described in small chunks. With some com-
ments removed, it starts as follows.

GET "libhdr"

GLOBAL
{ newvec:ug
spacev; spacep; spacet

inchar // String of input characters
outchar // String of output characters
len // Number of characters in the input string
ch // Current keyboard character

stepping // =FALSE to stop the rotors from stepping
tracing // =TRUE causes signal tracing output

rotorl; notchl
rotorII; mnotchIl
rotorIII; notchIII
rotorIV; mnotchIV
rotorV; notchV
reflectorB
reflectorC
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rotorLname; rotorMname; rotorRname
reflectorname

// Ring and notch settings of the selected rotors
ringl.; ringM; ringR
notchL; notchM; notchR

// Rotor start positions at the beginning of the message
initposL; initposM; initposR

// Rotor current positions

posL; posM; posR;

// The following vectors have subscripts from 0 to 25
// representing letters A to Z

plugboard

rotorFR; rotorFM; rotorFL

reflector

rotorBL; rotorBM; rotorBR // Inverse rotors

// Variables for printing signal path
pluginF

rotorRinF; rotorMinF; rotorLinF
reflin

rotorLinB; rotorMinB; rotorRinB
pluginB; plugoutB

// Global functions

newvec; setvec

pollrdch; rch; rdlet

rdrotor; rdringsetting

setplugpair; prplugboardspairs; setrotor

step_rotors; rotorfn; encodestr; enigmafn

prsigwiring; prsigreflector; prsigrotor; prsigplug; prsigkbd
prsigline; prsigpath

This inserts the library declarations from 1ibhdr and then declares the global
variables required by this program. The first few newvec, spacev, spacep and
spacet are used in connection with allocation of space. The variables inchar,
outchar and len hold the string of message letters, the enciphered translation
and the message length. The variable ch normally holds the latest character
typed by the user.

Two debugging aids are available controlled by stepping and tracing. If
stepping is FALSE the rotors remain fixed and do not step as each message
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character is typed. If tracing is TRUE, when each message character is typed, the
program outputs a diagram showing the signal path within the machine between
the pressed key and the resulting light. For instance, with the program’s default
settings, a Q translates to D and the output as shown in Figure 4.4.

I M| |JIE E| [TIN N| 0B Bl M M| (M|
| *<L|<<<|I|D<* D] [HIM M| [ N*A Al IL L| IL|
| v KI [HIC =~ Cl IGIL L| IM|Z Z| K K| K|
| v J| IGIB =~ Bl |FIK K| IL1Y Y| | J Jl [J|
[-v—-] |=]-="==—| |-]-====—= I |-|-====—= I | ———=——- I -1
| v I| [FxA =~ Al =|E|J Jl KX X| T I [T]
| v HI |[EIZ = Z| IDIT  *>>I|>>>|J|W>>*x W] |H HI |H|
| *>G|>>>|D|Y>>>* Y| [CIH ~ HI [TV v VI |G Gl |Gl
| Fl [CIX =~ v X| IBIG ~ Gl [HIU v Ul |F Fl |F|
| -——-| |=]-=-"-v--| |=]-=="=—-| |=]-=—-v-—-| | ———=—-- I -1
I El [BIW = v W] [AIF =~ F| [GIT v TI |E E| |E|
| DI [AlV ~ v V| |ZIE -~ EI [FIS v Sl ID *>>D[>>>|D|>>D
| ClI 1ZIU = v Ul lYID =~ DI [EIR  *>>R|>>>[|C>>* (| ICl
I Bl [YIT = v T IXIC =~ ClI IDIQ Ql IB Bl IB|
| -——-| [=]-=-"-v--| |=]-=="=-—-| |=|-====—= I | -————-—- I -1
| Al [X]Ss =~ v S| [(WlB -~ Bl [Cclp P| |A Al [A]
| -——-| [=]-=-"-v--| |=]-=="=—-| |=|-====—= I | ———=—-- I -1
| Z| [WIR = v RI [V¥A = A IBIO 0l |Z Z| 1Z|
| Y| [ViQ = v Ql [ulz -~ Z| [AIN N| Y Y| Y|
I X| [UIP ~ v Pl ITIY =~ Y| =|Z|M M| [X X| IX]
I Wl [TIO = *>0[>>>[S|X>>* X| [YIL L| W Wi (Wl
|-——-1 [=]-="===- |-|-====== I [l I | -=—=——- I -1
| V| [SIN =~ N IRIW Wi XK K| |V Vi V]
| Ul IRIM = M| 1QIV Vi [WlJ JI U Ul Ul
| T QIL =~ L IPIU  #<<U|<<<|V|I<<* I [T T| I TI
| S| I[IPIK = K] [0IT v TI [UIH =~ HI IS S| [S|
| -——-| |-]-="==—-| |=|-=-v-—-]| |=]-=="=—-| | ——————- I -1
I Rl [0lJ - Jl INIS v SI ITIG =~ Gl IR RI IRI
| Ql INIT ~ I| IMIR v RI [SIF *<<F|<<<|Q<<<<<Q|<<<|Q|<<Q
I P| IMIH =~ HI ILIQ v Ql IRIE E| |P P| [P
| 0l ILIG *<<<G|<<<|K|P<<* P| |QID D| |0 ol 1ol
I N| |KIF F| |J10 0l IPIC Cl IN N| IN|
refl B rotor I rotor II rotor V plugs kbd
in: Q

out: D

Figure 4.4: Example Signal Path
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Notice that the keyboard, plug board, rotors and reflector appear in rectangles
with sides composed of horizontal and vertical lines (- and |). The signal path
is represented by horizontal (< and >) and vertical (* and v) arrows, using an
asterisks (*) whenever the path turns a right angle. The current letter positions of
the three rotors are enclosed in square brackets ([ and 1). The current positions
of the three rotor notches are shown by equal signs to the left of each rotor and
the ring setting for each rotor is shown by an asterisk (*) between the ring letter
and the letter A on the left side of the wiring core.

The globals rotorI to rotorV hold strings of length 26 giving the
wiring of each of the available rotors. The string for rotor 1 is
"EKMFLGDQVZNTOWYHXUSPAIBRCJ", indicating that the terminal at position A on
the right hand side of the rotor is connected to the contact at position E on the
left side. Similarly terminal B is connected to contact K.

Each rotor has a circular disc on its left size containing a notch. It is a fixed
position relative to the rotor’s ring of letters, but this position is different for
each rotor. If a rotor has its notch at the A position of the machine then it and
the one to its left will both advance by one letter position the next time a key is
pressed. This mechanism is covered in more detail on page 103 when the function
step_rotors is described. The notch positions of each rotor are held in notchI
to notchV. These are given as ASCII characters, for instance notchI is set to
) Q )

The strings representing the wirings of reflectors B and C are held in
reflectorB and reflectorC. The names of the left, middle and right and rotors
are held as strings in rotorLname, rotorMname and rotorRname, and the name
of the current reflector is held in reflectorname.

The ring settings and notch positions of the left, middle and right hand rotors
are held in ringl, notchL, ringM, notchM, ringR and notchR. These are all
numbers in the range 0 to 25 representing A to Z.

The initial position of the left hand rotor (just before the message in inchar
is processed) is held in initposL as a number in the range 0 to 25 representing A
to Z, and initposM and initposR hold the corresponding positions of the middle
and right hand rotors. These are needed every time the entire input message is
re-enciphered, for instance, whenever one of the machine settings is changed by
the user. The current positions of the rotors are held in posL, posM, posR.

For convenience the wiring of the plug board, the rotors and the reflector are
held in the vectors plugboard, rotorFR, rotorFM, rotorFL, reflector, rotorBL,
rotorBM and rotorBR. Their subscripts range from 0 to 25 corresponding to
positions A to Z, and their elements are in the same range. For instance, if the
plug board maps letter A to B, then plugboard!0 will equal 1. Since the plug
board is its own inverse, plugboard!1 will equal 0. The vector rotorFR holds
the mapping (in the forward direction) of the letter as it passes through the right
hand rotor from right to left. If the right hand rotor is V, it maps B to Z, so
rotorFR!1 is equal to 25. For the return (backward) path from left to right
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through this rotor, the letter W maps to R. This is implemented using a second
vector called rotorBR. Note that rotorBR!22 will equal 17.

When a key is pressed, the signal path through the plug board, rotors and
reflector is computed and recorded in the global variables pluginF, rotorRinF,
rotorMinF, rotorLinF, reflin, rotorLinB, rotorMinB, rotorRinB, pluginB
and plugoutB. These all have values in the range 0 to 25 corresponding to posi-
tions A to Z, and are used by the functions that draw the diagram representing
the signal path from the pressed key to the corresponding light.

Although not strictly necessary, all the functions in this program are given
global locations. This is primarily to aid debugging, since, for instance, it sim-
plifies the setting of break points.

4.18.1 enigma-m3 functions

In this section the functions defined in enigma-m3.b are described in turn.

LET newvec(upb) = VALOF
{ LET p = spacep - upb - 1
IF p<spacev DO
{ writef ("More space needed*n")
RESULTIS O
}
spacep := p
RESULTIS p
}

A reasonably sized area of memory is allocated using getvec in the main
function start. The base and limit of this memory are placed in spacev and
spacet. The function newvec sub-allocates vectors from this memory by decre-
menting spacep by an appropriate amount each time. The advantage of this
scheme is that we can allocate all the memory we need by one call of getvec
and then return it all by one call of freevec just before the program terminates.
There is no need to return all the sub-allocated vectors separately.

LET setvec(str, v) BE
IF v FOR i = 0 TO 25 DO v!i := str¥%(i+1) - °A’

LET setrotor(str, rf, rb) BE
IF rf & r» FOR i = 0 TO 25 DO
{ rf'i := stri(i+1)-’A’; rb!(rf'i) :=1i }

These two functions convert the character string versions of rotor and reflector
wiring strings to the integer vector form as required by the program. Notice that
setrotor initialises both the forward and backward wiring vectors for the rotors.
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LET pollrdch() = VALOF
{ LET ch = sys(Sys_pollsardch)

UNLESS ch=-3 RESULTIS ch

delay(100) // Wait 100 msecs and try again
} REPEAT

This function uses the call sys (Sys_pollsardch) to attempt to read the latest
character typed on the keyboard. If no character is available, represented by -3,
it waits a tenth of a second before trying again. The main reason for using polled
input is to get instant response to each character typed on the Enigma Machine.

The next function, start, is quite long and so its description is broken into
smaller pieces.

LET start() = VALOF
{ LET argv = VEC 50

UNLESS rdargs("-t/s", argv, 50) DO

{ writef("Bad arguments for enigma-m3*n")
RESULTIS O

X

writef ("#nEnigma M3 simulator*n")
writef ("Type 7 for help*n*n")

tracing := TRUE // Default setting of tracing
IF argv!0 DO tracing := “tracing // -t/s

spacev := getvec(1000)
spacet := spacev+1000
spacep := spacet

When enigma-m3 is called, it can be given a switch argument -t which toggles
the tracing option. Currently the default setting is to have tracing enabled.
The last three lines allocate some memory, initialising spacev, spacet, spacep
appropriately.

// Set the rotor and reflector wirings
// and the notch positions.

// Input "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
rotorIl = "EKMFLGDQVZNTOWYHXUSPAIBRCJ"; mnotchI = Q°
rotorII = "AJDKSIRUXBLHWTMCQGZNPYFVOE"; notchII := ’E’
rotorIII := "BDFHJLCPRTXVZNYEIWGAKMUSQO"; notchIII := °’V’
rotorIV := "ESOVPZJAYQUIRHXLNFTGKDCMWB"; notchIV := ’J’
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rotorV := "VZBRGITYUPSDNHLXAWMJQOFECK"; mnotchV =7’

reflectorB :
reflectorC :

"YRUHQSLDPXNGOKMIEBFZCWVJAT"
"FVPJIAOYEDRZXWGCTKUQSBNMHL"

These assigments set the wiring strings of the five rotors and their correspond-
ing notch positions, together with the wiring of the two reflectors.

// Allocate several vectors

rotorFL := newvec(25)
rotorFM := newvec(25)
rotorFR  := newvec(25)
rotorBL := newvec(25)
rotorBM  := newvec(25)
rotorBR := newvec(25)
plugboard := newvec(25)
reflector := newvec(25)
inchar := newvec(255)
outchar := newvec(255)

UNLESS rotorFL & rotorFM & rotorFR &
rotorBL & rotorBM & rotorBR &
plugboard & reflector &
inchar & outchar DO

{ writef ("*nMore memory needed*n")

GOTO fin

}

This code allocates all the vectors needed by the program and places them in
their global locations. It checks that they have all been allocated successfully.

// Set default encryption parameters, suitable for the
// example message.

setvec(reflectorB, reflector)

reflectorname := "B"

setrotor(rotorI, rotorFL, rotorBL)
rotorLname, notchlL := "I ", notchl - ‘A’
setrotor(rotorIIl, rotorFM, rotorBM)
rotorMname, notchM := "II ", notchII - ‘A’
setrotor(rotorV, rotorFR, rotorBR)
rotorRname, notchR := "V ", notchV - ‘A’
ringl. := 06-1; ringM := 22-1; ringR := 14-1
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initposL := ’X’-’A’; posL := initposL
initposM := ’W’-’A’; posM := initposM
initposR := ’B’-’A’; posR := initposR

FOR i = 0 TO 25 DO plugboard!i := i

// Perform +PO+ML+IU+KJ+NH+YT+GB+VF+RE+DC
// to set the plug board.

setplugpair(’P’, °0°)
setplugpair(’M’, ’L’)
setplugpair(°I’, ’U’)
setplugpair (’K’, ’J’)
setplugpair(’N’, ’H’)
setplugpair(’Y’, °T’)
setplugpair(’G’, ’B’)
setplugpair(’V’, ’F’)
setplugpair(’R’, ’E’)
setplugpair(’D’, °C’)

//writef ("Set the example message string*n")

{ LET s = "QBLTWLDAHHYEOEFPTWYBLENDPMKOXLDFAMUDWIJDXRJZ"
len := s%0
FOR i = 1 TO len DO inchar!i := s¥%i

This code initialises the Enigma Machine in the way required to decode the
following encrypted message.

U6Z DE C 1510 = 49 = EHZ TBS =

TVEXS QBLTW LDAHH YEOEF
PTWYB LENDP MKOXL DFAMU
DWIJD XRJZ=

It was sent on the 31st day of the month from C to U6Z at 1510 and contains
49 letters. The recipient had the secret daily key sheet containing the following
line for day 31:

31 T IT V 06 22 14 PO ML IU KJ NH YT GB VF RE DC EXS TGY IKJ LOP

This shows that the enigma machine must be set up with rotors I, IT and V in
the left, middle and right positions with ring settings 6, 22 and 14, respectively.
The plug board should be set with the 10 specified connections.
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The rotor start positions should be set to EHZ then the three letters TBS should
be typed. This generates XWB which is the start positions of the rotors for the
body of the message. The first group TVEXS is not enciphered and just confirms
we have the right daily key since it contains EXS which appears in the daily key
sheet, together with two random letters. Decoding begins at the second group
QBLTW. To decode the example message using this program type the following:

(QBLTW LDAHH YEQOEF PTWYB LENDP MKOXL DFAMU DWIJD XRJZ

This generates the following decrypted text (with spaces added).

DER FUEHRER IST TOD X DER KAMPF GEHTWEITER X DOENITZ X

len := 0
stepping := TRUE
ch := ’x*n’
encodestr ()

These four lines complete the initialisation of the program. Setting len to
zero sets the machine to encode letters typed from the keyboard, but if the
assignment is commented out the program will decode the example message.
The call encodestr () encodes all the letters in inchar placing their translations
in outchar.

Now follows the main loop of the simulator. It starts as as follows.

{ // Start of main input loop
IF ch=’*n’> DO { writef("*n> "); deplete(cos); ch := 0 }

UNLESS ch DO rch()

SWITCHON ch INTO
{ DEFAULT:

CASE ’*s’: ch := 0 // Cause another character to be read.
CASE ’x*n’: LOOP

CASE endstreamch:
CASE ’.’: BREAK

It outputs a prompt, if necessary, and reads the next character from the
keyboard unless one is already available. It then switches on this character. The
character is ignored if it is a space or has no CASE label provided. Dot (.) and
the end-of-stream character both cause the program to terminate.
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CASE ’7:

newline()

writef ("7 Output this help info*n")

writef ("#rst Set the left, middle and *
*right hand rotors to r, s and t where*n")

writef (" r, s and t are single digits *
*in the range 1 to 5 representing+*n")

writef (" rotors I, II, ..., V.*n")

writef ("!abc Set the ring positions for the *
xleft, middle and right rotors where*n")

writef (" a, b and ¢ are letters or numbers *
*in the range 1 to 26 separated*n")

writef (" by spaces.*n")

writef ("=abc Set the initial positions of the *
xleft, middle and right hand rotors*n")

writef ("/B Select reflector B#*n")

writef ("/C Select reflector C*n")

writef ("+ab Set swap pairs on the plug board, *
*a, b are letters.*n")

writef (" Setting a letter to itself removes *
*that plug*n")

writef ("] Toggle rotor stepping*n")

writef (", Print the current settings*n")

writef ("letter Add a message letter*n")

writef ("- Remove the latest message *
xcharacter, if any*n")

writef (". Exit*n")

writef ("space and newline are ignored#*n")

ch := ’x*n’

LOOP

This causes some help information to be output when the user types a question
mark.

CASE ’#’: // Select the rotors, eg #125
{ LET str, name, notch = 0, 0, O

ch :=0

rdrotor (@str)

setrotor(str, rotorFL, rotorBL)
rotorLname, notchl := name, notch-’A’
rdrotor (@str)

setrotor(str, rotorFM, rotorBM)
rotorMname, notchM := name, notch-’A’
rdrotor (@str)

setrotor(str, rotorFR, rotorBR)
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rotorRname, notchR := name, notch-’A’

writef ("*nRotors: %s %s %s mnotches YcYhclhc*xn",
rotorLname, rotorMname, rotorRname,
notchL+’A’, notchM+’A’, notchR+’A’)

encodestr()
ch := ’xn’
LOOP

This reads a command of the form #abc where a, b and ¢ are digits in the range
1 to 5 representing rotor numbers. It specifies which rotors should be placed in
the left, middle and right hand positions. Note that the assignment ch:=0 forces
rdrotor to call rch to read the next keyboard character. The call rdrotor (@str)
reads the next rotor number and sets the local variables str, name and notch to
the wiring string, the rotor name and its notch letter, respectively. Three calls
of rdrotor are made to obtain the appropriate settings for the three rotors.

CASE ’!7:

// Set ring positions, eg !6 22 14 or !fvn

ch :=0

ringl := rdringsetting()

ringM := rdringsetting()

ringR := rdringsetting()

writef ("*nRing settings: Yclclhc*n",
ringl+’A’, ringM+’A’, ringR+’A’)

encodestr()
ch := ’xn’
LOOP

This reads a command of the form !abc where a, b and ¢ are ring positions
given as letters or numbers in the range 1 to 26 separated by spaces. They
correspond to the ring settings of the rotors in the left, middle and right hand

positions.

CASE ’="’:

// Set the rotor positions

ch :=0

initposL := rdlet() - ’A’
initposM := rdlet() - ’A’
initposR := rdlet() - ’A’

writef ("*nRotor positions: Yclclhc*n",
initposL+’A’, initposM+’A’, initposR+’A’)

encodestr ()

ch := ’*n’

LOOP
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This reads a command of the form =abc where a, b and ¢ are rotor positions
given as letters. They correspond to the positions of the left, middle and right

hand rotors.

CASE ’/’: // Set reflector B or C

{ rchQ

IF ch = ’B’ DO

{ setvec(reflectorB, reflector)
reflectorname := "B"
BREAK

}

IF ch = ’C’ DO

{ setvec(reflectorC, reflector)
reflectorname := "C"
BREAK

}

writef ("#nB or C required*n")
} REPEAT

writef ("*nReflector %s selected*n", reflectorname)

encodestr ()
ch := ’*n’
LOOP

The commands /B and /C select which reflector to use.

CASE ’+’: // Set a plug board pair
{LET a, b=7, 7
rch()

a

:= ch

rch()

b
IF

}

:= ch

)A7<=a<=7z) & )A7<=b<=)z7 DD
{ setplugpair(a, b)

BREAK

writef ("#*n+ should be followed by two *

} RE

PEAT

xletters, eg +AB*n")

encodestr()

ch
LOOP

= 2xp’
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A command of the form +ab where a and b are letters sets a cable between
letters @ and b. But if ¢ and b are the same letter, any cable between a and
another letter is removed. It calls setplugpair to deal with these cases.

CASE ’|’:

// Toggle rotor stepping

stepping := “stepping

TEST stepping

THEN writef ("*nRotor stepping enabled*n")
ELSE writef ("*nRotor stepping disabled#*n")
ch := ’x*n’

LOOP

This case just toggles the rotor stepping option.

CASE ’,7:

// Output the settings
newline()
writef ("Rotors: %s hs hs*n",
rotorLname, rotorMname, rotorRname)
writef ("Notches: he he hexn",
notchL+’A’, notchM+’A’, notchR+’A’)
writef ("Ring setting: he=%z2 %hc=hz2 he-%z2*n",

ringl+’A’, ringl+1,
ringM+’A’, ringM+1,
ringR+’A’, ringR+1)
writef ("Initial positions: %c %c %c*n",
initposL+’A’, initposM+’A’, initposR+’A’)
writef ("Current positions: %c %c %c*n",
posL+’A’, posM+’A’, posR+’A’)
writef ("Plug board: ")
prplugboardpairs()

writes("in: "); FOR i = 1 TO len DO wrch(inchar!i)
newline()
writes("out: "); FOR i
newline ()
ch := ’xn’

LOOP

1 TO len DO wrch(outchar!i)

This case outputs the current settings of the machine, namely which rotors
have been selected, what their notch and ring positions are, what the initial and
current rotor positions are, what the plug board connections have been made,
what the current message is and its encoding. Typical output is as follows:
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> b

Rotors: I IT V
Notches: Q E Z

Ring setting: F-06 V-22 N-14

Initial positions: X W B
Current positions: X WD

Plug board: BG CD ER FV HN IU JK LM OP TY

in: QQ

out: DJ

CASE ’-’: // Remove one message character

IF len>0 DO len := len-1
encodestr()
ch := ’*n’
LOOP

The command minus (-) removes one letter from the input message and then
re-encode the entire message just in case tracing was enabled.

CASE ’7’: // Toggle signal tracing
tracing := "tracing
TEST tracing
THEN writef("#nSignal tracing now on*n")
ELSE writef ("#nSignal tracing turned off*n")
ch := ’*n’
LOOP

The twiddles (7) command toggles the tracing option.

CASE A’ :CASE ’B’:CASE ’C’:CASE ’D’:CASE ’E’:
CASE ’F’:CASE ’G’:CASE ’H’:CASE ’I’:CASE ’J’:
CASE ’K’:CASE ’L’:CASE ’M’:CASE °’N’:CASE ’0’:
CASE ’P’:CASE ’Q’:CASE ’R’:CASE ’S’:CASE ’T’:
CASE ’U’:CASE ’V’:CASE ’W’:CASE ’X’:CASE ’Y’:

CASE °Z’:
IF len<255 DO len := len + 1
inchar!len := ch
encodestr ()
ch := 7x%n’
LOOP

If a letter is typed, it is added to the end of the message string and then
the entire message re-encoded by a call of encodestr. Notice that the message
cannot grow to a length greater than 255 letters.
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}
} REPEAT

newline()

fin:
IF spacev DO freevec(spacev)

RESULTIS O
}

These last few lines end the SWITCHON command and the main command
loop. Before returning from the main function start, it returns to free store the
memory, if any, pointed to by spacev.

AND setplugpair(a, b) BE
{ // a and b are capital letters

LET ¢ = ?
a :=a- A’
b :=b-"A

¢ := plugboard'a

UNLESS plugboard!a = a DO

{ // Remove previous pairing for a
plugboard'a := a
plugboard!c := c

b

c := plugboard!b

UNLESS plugboard!b = b DO

{ // Remove previous pairing for b
plugboard!b := b
plugboard!c := c

b

UNLESS a=b DO

{ // Set swap pair (a, b).
plugboard!a := b
plugboard!b := a

b

}

This function is used by the plus (+) command to place a plug board cable
between letters a and b, which are given as character constants in the range ’A’
to ’Z’. If a and b are equal, any previous cable to a is removed.

AND rdlet() = VALOF
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{

}

IF ch=0 DO rch()
WHILE ch=’*s’ DO rch()
IF ’A’<=ch<=’Z’ DO

{ LET res = ch

ch :=0
RESULTIS res
}
writef ("#nA letter is required*n")
ch :=0
REPEAT

AND rch() BE

{

// Read a keyboard key as soon as it is pressed.
ch := capitalch(pollrdch())

wrch(ch)

deplete(cos)

The function rdlet reads a letter from the keyboard, and rch reads any

character from the keyboard, replacing lower case letters by their upper case
equivalents.

AND rdrotor(v) BE

{

// Returns the rotor wiring string

// result2 is the rotor name: I, II, III, IV or V
IF ch=0 DO rch()

WHILE ch=’*s’ DO rch()

IF ’0’<=ch<=’5’ DO

{ IF ch="1’ DO v!0, v!1, v!2 := rotorI, "T ", notchlI
IF ch=’2’ DO v!0, v!1, v!2 := rotorII, "II ", notchII
IF ch=’3’ DO v!0, v!1, v!2 := rotorIII, "III", notchIII
IF ch=’4’ DO v!0, v!1, v!2 := rotorIV, "IV ", notchIV

IF ch=’5’ DO v!0, v!1, v!2 := rotorV, "V ", notchV
ch :=0
RETURN
}
writef ("*nRotor number not in range 1 to 5%n")
ch :=0
} REPEAT

This function reads a digit in the range 1 to 5 and sets v!0, v!1 and v!2 to

the wiring string, the name and the notch letter of the specified rotor.
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AND rdringsetting() = VALOF
{ // Return O to 25 representing ring setting A to Z
IF ch=0 DO rch()

WHILE ch=’%*s’ DO rch()

IF ’A’<=ch<=’Z’ DO
{ LET res = ch-’A’
ch :=0
RESULTIS res
}

IF °0°<= ch <= 9’ DO
{ LET n = ch-’0’
rch(QO
IF ’0°<=ch <= ’9” DO n := 10%n + ch - ’0’
// n =1 to 26 represent ring settings of A to Z
// encoded as 0 to 25
ch :=0
IF 1<=n<=26 RESULTIS n - 1
writef ("#nA letter or a number in range 1 to 26 required#*n")

b
} REPEAT

This function reads a ring setting as either a letter or a number in the range
1 to 26. It returns a value in the range 0 to 25.

AND prplugboardpairs() BE FOR a = 0 TO 25 DO

{ // Print plug board pairs in alphabetical order
LET b = plugboard!a
IF a < b DO writef("Jc¥%c ", a+’A’, b+’A’)

}

This function outputs the current wiring of the plug board as letter pairs in
alphabetic order.

AND step_rotors() BE IF stepping DO
{ LET advM = posR=notchR | posM=notchM
LET advL = posM=notchM

posR := (posR+1) MOD 26 // Step the right hand rotor
IF advM DO posM := (posM+1) MOD 26 // Step the middle rotor
IF advL DO posL := (posL+1) MOD 26 // Step the left rotor

}
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Whenever a key is pressed one or more rotors advance by one letter position.
Each rotor has a notch disk attached to the letter ring on its left side. A notch is
shaped like an asymmetric V with one edge on a radius line towards the centre
of the rotor and the other at an angle of about 70 degrees forming a gentle slope
back to the rim of the disk. On the right hand side of each rotor there is a
disk, we will call the ratchet disk, containing 26 equally spaced notches of similar
shape. Between the middle and right hand rotors there is a spring loaded pawl
that is typically just clear of the rim of the notch disk to its right. When a key
is pressed, the pawl is pushed towards the notch disk and advances by one letter
position. Normally, the notch disk is not in its notch position so the pawl will
rest on the rim and slides without moving the rotor. The rim will also holds the
pawl clear of the notches on the ratchet disk on its left, so the middle rotor will
not be moved. If, on the other hand, the right hand rotor is at its notch position,
the pawl will fall into the notch and will also engage a notch in the ratchet disk
of the middle rotor causing both rotors to advance. As the key is released the
pawl will slide up the gentle slope of both notches and eventually be lifted clear
of the both disks.

There are pawls positioned just to the right of each of the three rotors. The
pawl between the left and middle rotors behaves just like the pawl between the
middle and right hand rotors, but the pawl on the right of the right hand rotor
will always engage its ratchet disk causing this to advance on every key stroke.

If the right hand rotor is in its notch position, the next key stroke will advance
both the right hand and middle rotors. If the middle rotor is now in its notch
position, the next key stroke will advance both the middle and left hand rotors.
Notice that, in this situation, the middle rotor advances on two consective key
strokes. You can observe this double stepping behaviour by selecting rotors ITI,
IT and I (#321) whose notch positions are V, E and Q, and setting the rotor
positions to KDO (=KDO) before typing a few letters with tracing turned on.

In the above function, the variable advM is set to TRUE if the middle rotor
advances on the current key stroke and similarly advL is TRUE if the left hand
rotor advances at the same time. Notice that advM is TRUE if either posR=notchR
or posM=notchM, and advL is only TRUE if posM=notchM. Rotors are advanced by
adding one to their positions held in posL, posM or posR. The addition of MOD 26
deals with the situation of a rotor advancing from its Z to A positions.

When no key is being pressed, the pawls are clear of the notch disks and the
rotors can be rotated forward or backwards by hand.

AND encodestr() BE

{ // Set initial state
posL, posM, posR := initposL, initposM, initposR
// The rotor numbers and ring settings are already set up.
IF len=0 RETURN
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FOR i = 1 TO len DO

{ LET x = inchar!i - ’A’ // letter to encode
IF stepping DO step_rotors()
outchar!i := enigmafn(x) + ’A’

}

TEST tracing

THEN prsigpath()

ELSE writef(" %c", plugoutB+’A’)

This function causes the entire message in inchar to be encrypted, updat-
ing outchar appropriately. It does this by initialising posL, posM and posR to
initposL, initposM and initposR, then sucessively calling enigmafn giving it
each character of the input message. If tracing is TRUE it then outputs a di-
agram showing the electical path through the plug board, rotors and reflector
used to encode the final character, otherwise it just outputs the final encrypted
character.

The next two functions implement the encryption mechanism of the enigma
machine, as you will see these functions are quite simple.

AND enigmafn(x) = VALOF
{ // Plug board
pluginF := x
rotorRinF := plugboard!pluginF
// Rotors right to left
rotorMinF := rotorfn(rotorRinF, rotorFR, posR, ringR)

rotorLinF := rotorfn(rotorMinF, rotorFM, posM, ringM)
reflin = rotorfn(rotorLinF, rotorFL, posL, ringL)
// Reflector

rotorLinB := reflector!reflin

// Rotors left to right

rotorMinB := rotorfn(rotorLinB, rotorBL, posL, ringL)
rotorRinB := rotorfn(rotorMinB, rotorBM, posM, ringM)
pluginB := rotorfn(rotorRinB, rotorBR, posR, ringR)

// Plugboard
plugoutB := plugboard!pluginB

RESULTIS plugoutB

The argument x is a number in the range 0 to 25 representing a letter position
of an active signal within the machine. This signal must first pass through the
plug board, emerging at position plugboard!x. So that the path through the
machine of the active signal can be drawn, its position between components is
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saved in global variables such as pluginF and rotorRinF. Generally speaking
F indicates a signal travelling in the forward direction (from right to left) and
B indicates travel in the backwards direction (from left to right). The signal
entering the right hand rotor in the forward direction is held in rotorRinF and
it leaves this rotor in position rotorMinF. The computation is done by a call of
rotorfn which takes four arguments giving the input position, the appropriate
wiring vector, the position of the rotor and its ring setting. The function rotorfn
is described below. The signal from the right hand rotor then passes through the
middle rotor and the left hand rotor, emerging at position reflin. The signal
then re-enters the left hand rotor at position rotorLinB that was computed by the
expression reflector!refin. The signal then passes back through the rotors via
positions computed by three calls of rotorfn before re-entering the plug board
at position pluginB. Since the plug board is its own inverse its effect can be
computed using plugboard!pluginB to give plugoutB which is the position of
the light identifying the encrypted letter. This position is returned as the result
of enigmafn.

AND rotorfn(x, map, pos, ring) = VALOF

{ LET a = (x+pos-ring+26) MOD 26
LET b = map'a
LET ¢ = (b-pos+ring+26) MOD 26
RESULTIS c

}

As explained above, each rotor has a wiring core that connects terminals on
its right hand side to contacts contacts on the left. Fach of the five available
rotors have their own wiring specified by strings held in the variables rotorI to
rotorV. When the rotors have been selected their wiring maps will have been
placed in vectors such as rotorFR and rotorBR. Here, rotorFR gives the map
specifying how the signal passes through the right hand rotor from right to left. If
the wiring core has its A position aligned with the A position of the machine, then
the signal will emerge at position rotorFR!x where x is the machine position
of the signal entering the right hand rotor from the right. But the rotational
position of the rotor depends on it position (posR) as displayed in the rotor’s little
window, and on its ring setting. As the rotor steps forward from, for instance,
A to B, its wiring core rotates anti-clockwise by one position when viewed from
the right. So we should add posR to x before computing rotorFR!x. If the
ring position is B rather than A the wiring core is effectively rotated clockwise
when viewed from the right, and so we must subtract ringR from x before the
lookup. To deal with the boundary between Z and A we must add 26 and the
take the remainder after division by 26. The addition of 26 ensures that the
left hand operand of MOD is positive. The appropriate position within the map
is thus (x+pos-ring+26) MOD 26 which is placed in variable a. The result of
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the lookup is then placed in b by the declaration LET b = map!a. This gives a
position relative to the A position of the wiring core. The corresponding position
within the machine is (b-pos+ring+26) MOD 26 which becomes the result of
rotorfn. With suitable arguments this function can be used to compute the
effect of each of the three rotors in both the forward and backward directions.

What remains are the functions that generate the ASCII graphics represen-
tation of the signal path showing how any given input letter generates the corre-
sponding encrypted letter. Even though it now all looks fairly straightforward,
it did take longer to design and implement than all of the rest of enigma-m3.b.

As can be seen in the wiring diagram in Figure 4.4 on page 89 it consists of
several blocks placed side by side representing the reflector, the three rotors, the
plug board and the keyboard/lights block. Each has edges drawn using vertical
bars (1) and minus signs (=) and separated from each other by three spaces. The
signal path has a direction and is drawn using the characters <, >, =, v. An
asterisk (*) is used whenever the path turn a right angle.

The diagram contains 26 lines numbered 0 to 25 from bottom to top with
the convention that line 13 corressponds to the A position within the machine.
To improve readability some spacer lines consisting mainly of minus signs and
vertical bars have been added. Each spacer line has the same line number as the
letter line just above it. The diagram is drawn using prsigpath whose definition
is as follows.

AND prsigpath() BE
{ newline()
prsigline (26, TRUE)
prsigline(25, FALSE)
prsigline (24, FALSE)
prsigline(23, FALSE)
prsigline (22, FALSE)
prsigline(22, TRUE)
prsigline(21, FALSE)
prsigline (20, FALSE)
prsigline (19, FALSE)
prsigline(18, FALSE)
prsigline(18, TRUE)
prsigline(17, FALSE)
prsigline(16, FALSE)
prsigline (15, FALSE)
prsigline(14, FALSE)
prsigline (14, TRUE)
prsigline(13, FALSE)
prsigline (13, TRUE)
prsigline (12, FALSE)
prsigline(11, FALSE)
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prsigline (10, FALSE)

prsigline( 9, FALSE)
prsigline( 9, TRUE)
prsigline( 8, FALSE)
prsigline( 7, FALSE)
prsigline( 6, FALSE)
prsigline( 5, FALSE)
prsigline( 5, TRUE)
prsigline( 4, FALSE)
prsigline( 3, FALSE)
prsigline( 2, FALSE)
prsigline( 1, FALSE)
prsigline( O, FALSE)

prsigline( 0, TRUE)
writef ("refl %s ", reflectorname)

writef (" rotor %s ", rotorLname)
writef (" rotor %s ", rotorMname)
writef (" rotor %s ", rotorRname)

writef(" plugs ")
writef (" kbd*n")
writes("in: "); FOR i
newline()

writes("out: "); FOR i
newline()

1 TO len DO wrch(inchar!i)

1 TO len DO wrch(outchar!i)

Each line is drawn by calls of prsigline whose first argument is the line
number, and whose second argument specifies whether or not it is a spacer line.
The top and bottom space lines are drawn by the calls prsigline (26, TRUE) and
prsigline(0,TRUE). Below the bottom line, labels are written giving the names
of the reflector, the rotors, the plug board and the keyboard. Below this there
are two lines giving the message text and its encryption.

Each line in the wiring diagram contains characters representing a line through
the reflector, the three rotors, the plug board and the keyboard/lights. These are
drawn by calls of prsigline whose definition is as follows.

AND prsigline(n, sp) BE
{ prsigreflector(n, sp, reflin, rotorLinB)
prsigrotor(n, sp, posL, ringl, notchL,
rotorLinF, reflin, rotorLinB, rotorMinB)
prsigrotor(n, sp, posM, ringM, notchM,
rotorMinF, rotorLinF, rotorMinB, rotorRinB)
prsigrotor(n, sp, posR, ringR, notchR,
rotorRinF, rotorMinF, rotorRinB, pluginB)
prsigplug(n, sp, pluginF, rotorRinF, pluginB, plugoutB)
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prsigkbd(n, sp, pluginF, plugoutB)
newline()

}

As can be seen, the parts of the line corresponding to the reflector, the
rotors, the plug board and the keyboard are drawn using suitable calls of

prsigreflector, prsigrotor, prsigplug and prsigkbd. The functions are de-
fined below.

AND prsigreflector(n, sp, inF, outB) BE
{ LET iF = (inF +13) MOD 26
LET oB = (outB +13) MOD 26
LET letter = (n+13) MOD 26 + A’
LET cO, c1, c2, c3 =], > 2, 2> > >
LET c4, c5, c6 = letter, ’|’, ?

TEST sp

THEN { c1,c2,c3,cd := >=2, =7 2=2 2=
IF iF<n<=0oB DO c2 :=
IF iF>=n>0B DO c2 :
IF n=0 | n=26 DO c0,c5 := "’ 2,’ ?

|

-
)

-

]
<

}
ELSE { IF iF=n | oB=n DO c2 := ’x*x%’
IF iF<n<oB DO c2 := ’~?
IF iF>n>0B DO c2 := v’
IF iF=n DO c3,c6 := ’<’,’<’
IF oB=n DO c3,c6 := ’>7, >’
}
writef ("Y%cYchelhehehehehe", c0,cl,c2,c3,cd,c5,c6,c6)

The arguments n and sp give the line number to be drawn and whether it is a
spacer line or not, and inF and outB are in the range 0 to 25 representing A to Z,
specifying the machine positions of the input and output signals to the reflector.

The declaration LET iF = (inF+13) MOD 26 converts the input signal posi-
tion to a line number, and the declaration of oB does the same for the output
signal. The declaration LET letter = (n+13) MOD 26 + ’A’ converts the line
number to the letter representing the machine position of the line. By convention
line 13 corresponds to A.

The variables c0 to c6 will hold characters representing the line of the reflector
to be drawn. Normally cO and c5 hold vertical bars for the left and right edges
of the reflector, c1 is normally a space and c2 is used to represent a wire joining
the input and output signal positions. It is thus normally a space character or
one of ~, v or *. Normally c3 and c6 hold spaces but can be set to < or > to
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represent a signal entering or leaving the reflector. The letter position within the
machine is held in c4.

The TEST command then adjusts these settings mainly depending on whether
a spacer line is being drawn and the relative positions of the line and the input and
output positions. Finally, it outputs the characters using a writef statement,
duplicating c6 for readability.

Drawing a line of a rotor is more complicated since it is necessary to draw
signal wires for the forward and backward paths as well as showing the rotor and
notch positions, and the ring setting. This is done by the function prsigrotor
defined as follows.

AND prsigrotor(n, sp, pos, ring, notch,
inF, outF, inB, outB) BE

{ LET iF = (inF+13) MOD 26
LET iB = (inB+13) MOD 26
LET oF = (outF+13) MOD 26
LET oB = (outB+13) MOD 26

LET nch = (notch-pos+13+26) MOD 26
LET rng = (ring-pos+13+26) MOD 26

LET letl = (n+pos+13+26) MOD 26 + A’
LET let2 = (n+pos-ring+13+26) MOD 26 + ’A’
LET c0,cl1,c2,c3,cd,cb = ?,% |’ ,letl,’|’,let2,’
LET c¢6,c7,c8,c9 = > ?,let2,’]?,’
TEST sp
THEN { c2,c3,c4,c5,c6,c7 = 2=> 2|2 2=2 2= 23 -
IF n=0 | n=26 DO c1,c3,c8 = 7 7, 2=> 7 ?
}
ELSE { IF n=iF DO c6,c9 := ’<’,’<’
IF n=0B DO c6,c9 := ’>2,’>?
IF n=oF DO c0,cb := ’<’,)’<?
IF n=iB DO cO,c5 := ’>’,’>?
IF n=nch DO c0 := ’=’
IF n=rng DO c3 := ’*x’
IF n=13 DO ci1,c3 := ’[’,’]’
}

writef ("Y%chehchehehe", c0,c1,c2,c3,cd,ch)
prsigwiring(n, sp, iF, oF, iB, oB)
writef ("Y%clhclhchehe", c6,c7,¢c8,c9,c9)

The forward and backward input and output positions are specified by the
arguments inF, outF, inB and outB. These are in the range 0 to 25 represent-
ing A to Z. The declaration LET iF = (inF+13) MOD 26 converts inF to a line
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number in the wiring diagram, with the convention line 13 corresponds to A. The
variable iB, oF, oB are similarly defined. The variable nch holds the line number
corresponding to the position of the rotor’s notch, and rng is the line number
corresponding to the A position of the rotor’s wiring core. The letter on the ro-
tor’s ring corresponding to the current line is held in 1et1, and wiring core letter
corresponding to the current line is held in let2.

The variables cO to ¢9 will hold characters representing the current line in
the rotor. The notch position is represented by an equal sign (=) in c0. If this is
line 13 then the rotor is at its notch position and the next key press will advance
the rotor on its left. Normally, cO is not an equal sign it will hold a space unless
a signal enters or leaves on this line, in which case it will hold either < or >. The
rotor’s ring of letters has a letter in ¢2 normally surrounded by vertical bars in c1
and ¢3, but we are on line 13 it will be surrounded by square brackets to indicate
that the letter is in the rotor’s little window. If the letter corresponds to the ring
setting, ¢3 holds and asterisk (*). The variables c4 and ¢8 normally hold let2,
the letter on the wiring core corresponding to this line. The routing of the two
wires in the wiring core occupies three character positions between c5 and c6.
These are written by a call of prsigwiring which is defined below. The entry
and exit positions are marked using < and > in ¢5 and c6. The right hand edge
of the rotor is marked by a vertical bar in ¢8, and the signal entering or leaving
the rotor on the right is marked by either < or > in ¢9., which is duplicated for
readability.

The initial settings of these character variables are adjusted by the TEST
command. For spacer lines the correction is simple, and for non spacer lines
attention is paid to input and output positions of signals, the notch and ring
positions and whether the ring letter is displayed in the rotor’s little window.

The plug board is similar to a rotor in that it requires the routing of two
wires which may cross each other. This routing is again done using prsigwiring,
otherwise dealing with the plugboard is simple. The definition of prsigplug is
as follows.

AND prsigplug(n, sp, inF, outF, inB, outB) BE

{ LET iF = (inF +13) MOD 26
LET oF = (outF+13) MOD 26
LET iB = (inB +13) MOD 26
LET oB = (outB+13) MOD 26

LET letter = (n+13) MOD 26 +’A’
LET cO0,c1,c2,c3 = ?,’|’, letter, ’ °’
LET c4,c5,c6,c7 =’ 7, letter, ’|’, ’ ?

TEST sp
THEN { c2,c3,c4,ch5 = 7=2,7=2 1-2 >
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IF n=0 | n=26 DO c1,c6,c7 := > >,> > 7>
}
ELSE { IF n=iF DO c4,c7 := ’<’,’<’
IF n=oF DO c0,c3 := <’’’
IF n=iB DO c0,c3 := ’>7,’>’
IF n=0B DO c4,c7 := ’>’,’>’
}

writef ("%chclhehe", c0,cl,c2,c3)
prsigwiring(n, sp, iF,oF,iB,oB)
writef ("Y%chehehehehe", c4,c5,c6,c7,c7,cT)

As with prsigrotor, the variables iF, oF, iB and oB are declared to give the
line numbers of these signals. The edges are marked by vertical bars in c1 and
c6. The letter position is duplicated in c2 and c5. The entry and exit positions
to the wiring is marked by < or > in c4 and c5. Much of the coding is similar to
that used in prsigrotor.

Finally, the keyboard and lights are deal with prsigkbd whose definition is
as follows.

AND prsigkbd(n, sp, inF, outB) BE
{ LET iF = (inF +13) MOD 26
LET oB = (outB+13) MOD 26
LET letter = (n+13) MOD 26 + A’
LET cO,cl1,c2 = ’|’,letter,’ |’

IF sp DO
{c1:="=

IF n=0 | n=26 DO c0,c2 := > 2, ?
}

writef ("%c%c¥hec", c0,cl,c2)
IF n=iF UNLESS sp DO { writef("<<Yc", letter); RETURN }
IF n=oB UNLESS sp DO { writef(">>Jc", letter); RETURN }

This is particularly simple because it just outputs the machine letter posi-
tions surrounded by vertical bars, and marks which key was pressed and which
encrypted letter was generated by writing strings such as <<Q and >>D to the
right of the keyboard.

The routing of wires in the rotors and the plug board is done by prsigwiring.
It is quite long since there are many separate cases to deal with. It definition
starts as follows.
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AND prsigwiring(n, sp, iF, oF, iB, oB) BE

{ // iF, oF, iB and oB are in the range O to 25 representing
// line numbers within the wiring diagram of the forward and
// backward input and output signals.

LET Flo,Fhi,Blo,Bhi = iF,oF,iB, 0B
LET aF, aB = >~ ,>"?
LET c1,c2,c3=> 2,7 2> 2 >

IF iF>oF DO Flo,Fhi,aF := oF,iF,’v’

IF iB>oB DO Blo,Bhi,aB := oB,iB,’v’

// aF and aB = ~ or v giving the vertical direction

// for the forward and backward paths.

// n = the line number in range 0 to 26

// with the convention n=13 corresponds to position A
// sp = TRUE for spacer lines

// c1, c2 and c3 are for the three wiring characters

// for this line.

The arguments n and sp specify the line number and whether the line is a
spacer. The remaining arguments iF, oF, iB and oB give the line numbers of the
forward and backward entry and exit positions. The variables Flo, Fhi, Blo and
Bhi are declared and initialised to the smaller and larger values of iF, oF, iB and
oB, and aF and aB are declared and initialised to hold = and v to indicate the
vertical direction of the forward and backward wires. These are used in many
places in the code that follows.

The variables c1, c2 and c¢3 will hold the routing of the signals, if any, through
the current line. There are many cases to consider and these will be taken in turn.

IF sp DO
{ // Find every spacer line containing no wires.
IF n>Fhi & n>Bhi |
n<=Flo & n<=Blo |

Bhi<n<=Flo |
Fhi<n<=Blo DO
{ writef("---") // Draw a spacer line with no wires.
RETURN
}
c1,c2,c8 = 1=, 0= 0o
}

This tests to see if the current line is a spacer line containing no wires, and
if so just outputs three minus signs (---). A spacer line that does contain wires
has the default setting of c1 to ¢3 changed from spaces to minus signs.
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// Find all non spacer lines containing no wires.
IF n>Fhi & n>Bhi |
n<Flo & n<Blo |

Bhi<n<Flo I
Fhi<n<Blo DO
{ // Non spacer line at position n contains no wires.
writef (" ")
RETURN

This code deals with non spacer lines containing no wires by simply outputing
three spaces and returning from prsigwiring.

From now on we know there is at least one signal wire passing through this
line.

IF Flo>Bhi |
Blo>Fhi DO
{ // There is only one wire at this region so
// the middle column can be used.
UNLESS sp DO
{ IF iF=n=oF DO { writef("<<<"); RETURN }
IF iB=n=oB DO { writef(">>>"); RETURN }
// Position n has an up or down going wire.
IF n=iF DO { writef (" **<"); RETURN }
IF n=oF DO { writef("<** "); RETURN }
IF n=iB DO { writef(">** "); RETURN }
IF n=0oB DO { writef (" **>"); RETURN }
}
IF Flo<n<=Fhi DO c2 := aF
IF Blo<n<=Bhi DO c2 := aB

writef ("%chche", cl, c2,c3)
RETURN

We now know there is at least one wire passing through this line, so we test
for the special case of the forward wire being entirely above or entirely below the
backward wire. If this happens both wires can be routed along the middle column,
namely c2. We must deal with signals that enter or leave on this line, and we must
also check whether the signal both enters and leaves on this line, necessitating
<<< or >>>. The general case is to conditionally plant the appropriate vertical
arrow in c2.

IF iB<oF<iF & oB<iF |
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iF<oB & iF<oF<iB DO
{ TEST sp
THEN { // This is a spacer line
// so only contains vertical wires
IF Flo<n<=Fhi DO c1 aF
IF Blo<n<=Bhi DO c3 := aB

ELSE { // This is a non spacer line
IF n=iF DO c1,c2,c3 := %%’ ’<’ <’
IF n=oF DO cl1 := ’2x*x’
IF n=iB DO c1,c2,c3 := ’>7,7>% %%’
IF n=0B DO c3 := ’x*x’
IF Flo<n<Fhi DO c1 := aF
IF Blo<n<Bhi DO c3 := aB

}
writef ("%c%che", c1,c2,c3)
RETURN
}

This tests whether the forward wire can be placed on the left and drawn
without the two wires crossing. If so, the vertical portion of the forward wire is
placed in c1, and c¢3 is used by the backward wire. Again, there are special cases
if any signal enters or leaves at this line position.

IF oB<iF<oF & iB<oF |
oF<iB & oF<iF<oB DO
{ TEST sp
THEN { // This is a spacer line
// so only contains vertical wires
IF Flo<n<=Fhi DO c3 := aF
IF Blo<n<=Bhi DO cl1 := aB
}
ELSE { // This is a non spacer line
IF n=oF DO c1,c2,c3 := ’<? 27 %%’
IF n=iF DO c3 := ’*x’
IF n=0B DO c1,c2,c3 := 2%x’ ’2>7 7>
IF n=iB DO cl1 := ’x*x’
IF Flo<n<Fhi DO c3 := aF
IF Blo<n<Bhi DO cl := aB
}
writef ("%chclc", c1,c2,c3)
RETURN
}

This case is the mirror image of the previous one and routes the forward wire
on the right hand side in c¢3.
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We now know there are two wires that cannot be drawn without crossing.

IF iF=oF DO
{ c2 := aB
TEST sp
THEN { IF n=Blo DO c2 := ’-’
}
ELSE { IF n=iF DO c1,c3 := ’<’,’<?

IF n=iB DO c1,c2 := ’>’ %%’
IF n=0B DO c2,c3 := %%’ 7>’
}
writef ("Y%chclhec", c1,c2,c3)
RETURN

This code tests whether the backward wire can use the centre column with
the forward wire passing straight through it.

IF iB=oB DO
{ // The F wire can use the centre column.
c2 := aF
TEST sp
THEN { IF n=Flo DO c2 := ’-’
}
ELSE { IF n=iB DO c1,c3 :
IF n=oF DO ci1,c2
IF n=iF DO c2,c3 :
}
writef ("%c%c¥hec", cl1,c2,c3)
RETURN

)>),)>)
7<),)**7
)**J,J<J

This is the mirror image of the previous situation. It places the forward wire
in the centre c2 and lets the backward wire pass straight through it.

// Test whether the F and B signals enter at the
// same level, and leave at the same level.
// Note that iF cannot equal 0B,
// and 1iB cannot equal oF.
IF iF=iB &
oF=0B TEST Fhi-Flo<=2
THEN { // No room for a cross over
TEST sp
THEN { IF n>iF | n>oF DO c2 := |’
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}
ELSE { IF Flo<n<Fhi DO c2 := ’|’
IF n=iF DO c1,c2,c3 := ’>7,7%x%x’ ’<’

IF n=oF DO c1,c2,c3 := <7, 2%x*x’ 7>
}
writef ("Y%clchc", cl1,c2,c3)
RETURN

ELSE { // The gap between iF and oF is more than 1 line
// so the F wire can use the centre column and
// the B wire can cross it half way down.
LET m = (iF+oF)/2
// Place the F wire down the centre.

c2 := aF

IF n=iF DO c2,c3 := ’*x’ ’<?

IF n=oF DO cl1,c2 := ’<’,7 %%’

// Now place the B wire, crossing half way down.
TEST iB>oB

THEN { IF n>=m DO cl := aB
IF n<=m DO c3 := aB
}
ELSE { IF n>=m DO c3 := aB
IF n<=m DO cl1 := aB
}
UNLESS sp DO

{ IF n=iB DO cl1 := %%’
IF n=0B DO c3 := ’x*x’
IF n=m DO c1,c2,c3 := %%’ 7> %%’
}
writef ("%clchc", cl1,c2,c3)
RETURN

This code deal with the special case of both signal entering on the same line
and leaving on the same line. Somehow they must be made to cross but there
may not be room. If this happens we resort to patterns such as the following.

>*x< or >*x<
<k> |
<k>

But if there is room, we can place one wire along the centre c2 and let the
other wire pass cross half way down.
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IF Flo<iB<Fhi |
Blo<iF<Bhi DO

{ // The F wire can be on the left.
IF Flo<n<=Fhi DO c1 := aF
IF Blo<n<=Bhi DO c3 := aB

UNLESS sp DO

{ IF n=iF DO c1,c2,c3 := %%’ ’<’ ’<’
IF n=iB DO c2,c3 := ’>7,7%x%’
IF n=oF DO cl1 := ’x*x’
IF n=0oB DO c3 := 7*x’

}

writef ("%cY%c¥%c", cl1,c2,c3)

RETURN

This case can be solved by placing the forward wire on the left and the back-
ward wire on the right. The crossing takes place when one of the signals enters
or leaves.

IF Flo<oB<Fhi |
Blo<oF<Bhi DO
{ IF Flo<n<=Fhi DO c3 := aF

IF Blo<n<=Bhi DO cl := aB

UNLESS sp DO

{ IF n=iF DO c3 := 7%’
IF n=iB DO cl := %%’
IF n=oF DO c1,c2,c3 := ’<?,7<? %%’
IF n=0B DO c1,c2 := ’x%x? ’>’

}

writef ("%chche", cl1,c2,c3)

RETURN

}

This case is the mirror image of the previous one. This time the forward wire
is on the right.

We have now covered all possible situations, but if we are wrong, we write
three question marks to indicate the fault.

// There should be no other possibilities
writef ("777")

}
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4.19 Breaking the Enigma Code

The Enigma machine was beautifully engineered, reliable and easy to maintain.
It had an incredibly large number of possible settings most generating completely
different encryptions.

There were two reflectors to choose from and 5 x 4 x 3 = 60 possible selections
of three rotors from the five available. There were 26 x 26 x 26 = 17576 possible
initial rotor core positions. The 26 x 26 = 676 ring settings of the middle and
right hand rotors affected the encryption, but since the middle rotor typically
only steps once every 26 characters and the left hand rotor almost never steps,
the difficulty of finding a compatible ring setting is considerably reduced.

The main complication is finding the plugboard’s setting. There were ten
cables each causing two letters to swap. There were thus six letters that pass
straight through the plugboard unchanged. We first calculate how many ways
we can select six letters from an alphabet of 26 letters. Mathematicians have
no difficulty with this and instantly give the answer % which is known as a
binomial coefficient, often written as Cz°. This turns out to be the coefficient of
2% in the expansion of (1 + x)?. If we have no knowledge of binomials, we can
derive this formula from first principles as follows. Consider all the permutations
of 26 letters. For any particular permutation, the first letter will be any one of
the 26 letters, the second will be any one of the remaining 25, the third will be
one of 24, and so on. This tells us that the number of permutations of 26 letters
is 26 x 25 x 24 x ... x 1 which is known as 26 factorial and is normally written
as 26!. If we now look at the first six letters these permutations, we will find it
contains all possible selections of six letters from the alphabet but repeated many
times over. We should divide by 6!, the number of permutations of six letters,
and by 20! the number of permutations of the remaining 20 letters that were not
selected. This gives the answer 6!1762!0! which can be written as 26X62f;fj§§i§2XQlX2l.
This can be simplified by observing 22/2 = 11, 21/3 =7, 24/(6 x 4) = 1 and
25/5 = 5. So the result is 25 x 5 x 23 x 11 x 7 = 230230, which is the number of
ways of choosing the six letters that pass straight through the plugboard. The
remaining 20 letters are paired up by the ten cables. First sort the 20 letters in
alphabetical order, then select the left most letter and pair it with any one of the
remaining 19 letters. Then select the leftmost letter that has not yet been paired
and pair it with one of the remaining 17 letters. The next pairings have choices
of 15, 13, etc. The total number of ways the pairing that can be done is thus
19X 17X 15 x 13 x 11 Xx9x7x5x3x1=:654729075, and so the total number
of way the plugboard can be set is thus 230230 x 654729075 = 150739274937250
which is slightly more than 150 million million. If we multiply this by the number
of ways the rotors can be set up we get a staggeringly large number in the region
of 10%. This large number provided convincing evidence the enigma code was
unbreakable, and the Germans relied on this belief throughout the war.

However, Alan Turing and others at Bletchley Park discovered a weak-
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ness in the code and designed a largely mechanical machine called the
bombe to help decode Enigma messages. This section outlines a program
(bcplprogs/raspi/bombe.b) that uses some of the principles used in the bombe.
There is not space here to describe the program in detail. This section just gives
an outline some of the principles used.

The method relies on having a crib consisting of some plain text and its en-
cryption. Such cribs are obtained by guessing some likely plain text and matching
it with all encrypted messages transmitted on that day. If the plain text is long
enough most alignments of the plain text with encrypted text will be thrown
out by the rule that no letter encrypts to itself. In the program, a crib is used
consisting of the the first 29 letters of the message given in the previous section
and its encryption. This choice has the advantage we know the answer and its
long length means a solution can be found reasonably quickly. The decryption
breakthough came as a result of discovering a way of deducing the plugboard
setting from the crib.

The program uses the first 29 letters of the message and its encryption shown
below.

1 6 11 16 21 26 31 36 41
(QBLTW LDAHH YEQEF PTWYB LENDP MKOXL DFAMU DWIJD XRJZ
DERFU EHRER ISTTO DXDER KAMPF GEHTW EITER XDOEN ITZX

It first converts the crib into what mathematicians like to call a graph consisting of
26 letter nodes joined by edges labelled with integers. The numbers are positions
within the crib. For instance there is an edge labelled 1 joining node Q to node D,
corresponding to the first position in the crib. As a debugging aid, the program
outputs the graph as shown below. Notice that the line starting Q: has an edge
1D and that the line starting D: has and edge 1Q.

A: E 27 22E B8R

B: E 27 20R 2E

C: C O

D: E 27 24P 18W 16P 7H 1Q
E: E 27 27K 22A 19Y 14T 128 9H 6L 2B
F: E 27 25P 150 4T

G: M 2 26M

H: E 27 280 10R 9E 7D

I: E27 11Y

J:J O

K: E 27 27E 21L

L: E27 21K 6E 3R

M: M 2 26G 23N

N: M 2 23M

0: E 27 28H 15F 13T
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P: E 27 25F 24D 16D

Q: E 27 1D

R: E 27 20B 10H 8A 3L
S: E 27 12E

T: E 27 29X 17X 14E 130 4F
U: E 27 5W

V:V O

W: E 27 18D 5U

X: E 27 29T 17T

Y: E 27 19E 11I

Z2: Z O

This graph is easier to understand when printed as a diagram as follows.

This graph allows us to generate a series of tests to see if a particular initial
setting of the Enigma machine is consistent with the crib. The beauty of this
mechanism is that we do not have to guess the wiring of the plugboard since it
can be deduced as the tests are performed. We do, however, have to guess which
reflector is used, which rotors have been selected for the left, middle and right
hand positions. We also have to guess the rotational positions of the rotors and
the notch positions of the middle and right hand rotors. Once these have been
chosen, we can deduce the rotational position of each rotor for each position of
the crib.
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If the bombe program is called with the -t option, it generates the following
trace output, and stops with an ABORT 1000, allowing the user to resume exe-
cution of the program using the ¢ debugging command. A summary of other
debugging commands can be seen by typing a question mark (?).

Testing reflector B rotors I IT V notches QEZ
Trying posL=A
turnpattern=1 nr=0

1: ABB 1ggpzxboywuarthdcmvnksjfie
ABC lgxkuyjvngdasitrbpmoehzcfw
ABD pfvedbzjnhlkwiyastqrxcmuog
ABE zorkxvipgwdmlsbhucnyqfjeta
: ABF mgxediyofpzvawhjbturslncgk
: ABG zhdcrykbgngwxjutievposlmfa
: ABH smhfjdqcrewxbtvzgianyoklup
: ABI wghzfetclvmikyxubsrgpjaond
: ABJ zgluribjfhvcwpsnteoqdkmyxa
: ABK luspoimvfzqagtedkycnbhxwrj
: ABL hwmuipsaeonzckjfxtgrdybqvl
: ABM Imryoqghgwptabvejfcuksnizdx
: ABN volwpxrkjihczgbengyutadfsm
: ABO hkewcjoapfbzrugivmyxnqdtsl
: ABP rleucytkmohbixjvzawgdpsnfq
: ABQ gmdcwialfzthbpynxsrkvueqoj
: ABR dwtamzpyvkjnelrgxoucsibghf
: ABS jifwqcvobamxkuhtesrpngdlzy
: ABT cnakiuylewdhsbrvzomxfpjtgq
: ABU siwznpymboqgrhejfklaxvuctgd
: ABV ieyobpqjahusxvdfgwlzknrmct
: ABW duragqewsmvxjonyfcizbkhlpt
: ABX guewczaroxmskpinvhlybqdjtf
: ABY gtjwlkaoxcfeyrhusngbpzdimv
: ABZ xlstrhnfykjbogmgqpecdwzuaiv
: ABA uwkloxrsnzcdyieqpghvatbfmj
: ACB rlhzkxocnsebqgigumajypwvitd
: ACC hmunxzjaygopbdklsvqwcrteif
: ACD jkmoqlipgabfcydhevzwxrtuns

© 00 N O O W N

NN DNDNDDNDNDNDNDNNDMDNDNE, PP 2 P2 222
© 00 NO O WNEF, OO0 NO”O P WD~ O

Guess D -- trying inner=a

'l ABORT 1000: Unknown fault
*

This shows that the program has selected reflector B and rotors I, IT and V.
The setting of turnpattern=1 causes the notch position of the middle rotor to
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be such that the left hand rotor remains in the same rotation position for all 29
letters of the crib. The variable nr which is in the range 0 to 25 specified the
initial position of the right hand rotor’s notch. Since nr is set to 0, as the initial
letter of the crib is pressed the right hand and middle rotors both advance to
position B. So at message position 1, the rotors have stepped to ABB. Notice that
the rotors step from ABA to ACB between message position 26 and 27, as expected,
and notice also that the left hand rotor remains at position A throughout the crib.

The sequence of letters 1ggpzxboywuarthdcmvnksjfie associated with rotor
positions ABB shows that a signal entering the right hand rotor at position a will
return to position 1 after passing through the rotors to the reflector and back to
the right hand rotor. Similarly b maps to g, and ¢ maps to q. These mappings
are sometimes written as all, blg, clq, etc.

By convention, lower case letters, called inner letters, are used for positions of
signals between the plugboard and the right hand rotor. Upper case letters, called
outer letters, represent positions on the keyboard or lamp side of the plugboard.
Thus Q1D shows the mapping of key Q to lamp D when the rotors are in position
1.

If we look carefully at the graph, we see that, at position 16, pressing D gener-
ates P, and at position 24 pressing P generates D. The beauty of this observation
is that we can try all the 26 possible inner letters that the plugboard might map
outer letter D into. Most, if not all, of these will instantly lead to inconsistencies.
Suppose we try mapping D to b using the program’s choice of initial settings. At
message position 16 we have b16m, and so, if our assumptions are correct, plug-
board m must map to outer letter P. If we now consider the edge P24D, the inner
letter for P is already known to be m, and at position 24 there is the mapping
m24y implying that the inner letter for D should be y. But it has already been
assigned inner letter b. So either mapping D to b is wrong or the initial settings
are wrong. In either case we must backtrack.

The sequence of tests the program does can be represented by the following
list of statements.

guess D

edge D 16 P
edge P 24 D
edge D 7 H
edge H 9 E
edge E 14 T
edge T 4 F
edge F 25 P
edge T 13 0
edge 0 16 F
edge H 28 0
edge T 17 X
edge T 29 X
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edge H 10 R
edge E 2 B
edge R 20 B
edge R 3 L
edge E 6 L
edge R 8 A
edge A 22 E
edge L 21 K
edge E 27 K
edge D 18 W
edge E 19 Y
edge D 1 Q
edge W 5T
edge Y 11 I
edge E 12 S
guess M
edge M 23 N
edge M 26 G
fin

The guess statements tries all possible plugboard mappings for its given outer
letter, and the edge statements tests edges and the fin statement indicates that
all edges have been tested.

We can see the effect of these statements by running the bombe with the -t
option and stepping through the execution by typing c after each ABORT 1000.
The effect of the first two choices guess makes is shown as follows (by typing c
twice).

Guess D -- trying inner=a

'l ABORT 1000: Unknown fault
* C
Guess setting pluboard D to a
Guess setting pluboard A to d
edge D 16 P
alég
Plugboard P and G are both unset, so
Edge setting plugboard P to g
Edge setting plugboard G to p
edge P 24 D
g24a
Plugboard D is already a, which is 0K
edge D 7 H
ars
Plugboard H and S are both unset, so
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Edge setting plugboard H to s
Edge setting plugboard S to h
edge H 9 E
s90
Plugboard E and 0 are both unset, so
Edge setting plugboard E to o
Edge setting plugboard 0 to e
edge E 14 T
oldg
Plugboard G is already set to p, so cannot set G to t -- Backtrack
Edge unsetting plugboard E
Edge unsetting plugboard O
Edge unsetting plugboard H
Edge unsetting plugboard S
Edge unsetting plugboard P
Edge unsetting plugboard G
Guess unsetting plugboars D
Guess unsetting plugboard A

Guess D -- trying inner=b

!'! ABORT 1000: Unknown fault
* C
Guess setting pluboard D to b
Guess setting pluboard B to d
edge D 16 P
bl6m
Plugboard P and M are both unset, so
Edge setting plugboard P to m
Edge setting plugboard M to p
edge P 24 D
m24y
Plugboard D is already set to b, so cannot be set D to y -- Backtrack
Edge unsetting plugboard P
Edge unsetting plugboard M
Guess unsetting plugboars D
Guess unsetting plugboard B

Guess D -- trying inner=c

'l ABORT 1000: Unknown fault
*

The sequence of statements is compiled by the function trans which first
constructs the graph using structures to represent letter nodes and edges.
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A letter node is represented by a small vector whose fields are accessed
by the selectors: n_parent, n_letter, n_list, n_len, n_size, n visited and
n_compiled. The parent field is either zero or points to another letter node.
It provides a cunning mechanism to determine whether there is a path of edges
connecting two nodes. If there is such a path the two nodes are said to be in the
same connected component. The mechanism will be described later. The letter
field holds a number in the range 0 to 25 specifying the outer letter this node
represents. The 1list field holds the list of edges belonging to this node, and
the len field holds the length of this list. If the parent field is zero, the node is
called a root, and the size field holds the total number of edges reachable from
this root node. This is a measure of the complexity of the connected component
this root node belongs to. The fields visited and compiled are used by the
program that translates the graph into interpretive code. The field compiled is
set to TRUE for all nodes in a connected component when all its the edges have
been compiled.

An edge is represented by a vector whose fields are accessed by the selectors:
e next, e_pos and e_dest. The next field points to the next edge node in the
list. The pos field holds the position in the crib corresponding to this edge and
the dest field points to the destination node of this edge.

The vector nodetab whose subscripts range from 0 to 25 representing the
letter A to Z has elements that point to the 26 letter nodes. Initially all the fields
of each node are set to zero, except for its letter field which is set appropriately.

Edges are now added to the graph one at a time, the first being from S to D
at position 1. This involves adding appropriate edge nodes to the lists belonging
to the nodes for S and D. The len fields are incremented. The parent of any
node provides a path to the root node of the connected component that the node
belongs to. The root nodes for S and D are currently different so this edge joins the
two previously disconnected components. This is implemented by choosing one of
them to become the root of the combined component and setting the parent field
of the other to point this new root. The sizes of the two components are summed
and placed in the new root, and its value incremented because a new edge has
just been added. When finding the root, it is often a good strategy to update
all the parent links in the path to the root by direct links to the root since this
typically makes later searches more efficient. Additionally, when combining two
components, a good strategy is to make the root of the larger component the root
of the combined component. These optimisations are important in applications
involving millions of nodes. But in this program, they are not needed, and have
only been done for educational reasons.

Once the graph has been constructed, the program compiles it into a sequence
of the interpretive instructions. The interpretive code as shown above has intruc-
tions with only three function codes: c_guess, c_edge and c_fin.

The function code guess takes an outer letter argument and invites the in-
terpreter to try all 26 possible plugboard mappings for this letter.
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The function code edge takes three arguments representing the source letter,
the message position of the edge, and the destination letter. The source letter
refers to a node that has already been visited and so already has an inner letter
assigned. The destination node may or may not have an inner letter assigned.
If it has, it is checked for consistency, usually causing the program to backtrack.
If the destination has no inner letter assigned, it is given the required letter and
the plugboard is updated appropriately. Note that if, for instance, W is to be
mapped to g, then G must also be mapped to w. This second mapping may be
found to be inconsistent again causing the program to backtrack, but if not, the
unvisited node for G will be given inner letter w increasing the chance of finding
an inconsistency later.

The function code fin indicates that all edges of the graph have been checked
and no inconsistencies have been found, so the current initial setting may be
correct and should be checked. This function code outputs the current initial
setting then backtracks so that other possible solutions can be found.

The translation into interpretive code is done with care to attempt to increase
the efficiency of the tests. The graph is searched for a good starting node and,
once chosen, it generates an appropriate guess instruction. The starting node
will belong to a connected component of largest size, and will, if possible, be in
a loop of length two. If no such loop exists, a node with the largest number of
edges will be chosen. The edges of the connected component are then explored
generating an edge instruction each time. As the compilation proceeds, nodes
that have been visited and edges that have been used are marked as such.

The strategy used to select the next edge to compile is as follows. First choose
an unused edge connecting two visited nodes. If no such edge is found, choose
an unused edge from a visited node to a node that has a different edge back to a
visited node. If no such edge exists, choose an edge from a visited node to a node
having the largest number of edges. When all the edges of the component have
been compiled, the compiled field of every node in the connected component is
set to TRUE, causing them to play no further part in the compilation. If there are
any unused edges left, the whole process is repeated, ignoring all nodes marked
as compiled. The fin instruction is compiled when all edges have been compiled.
Notice that nodes that have no edges correspond to letters that do not occur in
the plain or encrypted text of the crib. After compiling the graph the resulting
interpretive code is output.

The final part of the program successively selects the reflector, the three
rotors, their initial core positions, the message position (0 to 25) of the first step
of the middle rotor and a code (1 to 5) specifying if and when the left hand rotor
steps and if and when the middle rotor does a double step. Having given this
specification of the machine setting the interpretive code is executes to see if the
setting is compatible with the crib. It will almost always find an incompatibility
quickly and backtracks to test the next setting.

The bombe program can be compiled into native machine code and run by
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typing:

cd ../../natbcpl

make -f MakefileRaspiSDL clean
make -f MakefileRaspiSDL bombe
./bombe

[ ran it on my Pentium based laptop (replacing MakefileRaspiSDL by
MakefileSDL) and found it took 3 minutes 28 seconds to find the solution, trying
all possible rotor selections but only using reflector B. On a 256 Mb Raspberry Pi,
it takes about 29 minutes. This slow speed is probably because my program uses
much more memory than it really needs.

4.20 The Advanced Encryption Standard

Having just studied how the Enigma machine was used to encrypt messages, it
is perhaps appropriate to see how encryption is done on modern computers. The
Advanced Encryption Standard (AES) supercedes the previous Data Encryption
Standard (DES) that was published in 1977. DES used a key length of 56 bits
which is now thought insufficiently secure considering the enormous power of
modern computers. AES is now a well established replacement. It was announced
by the U.S. National Institute of Standards and Technology (NIST) in 2001 after
a five year standardisation process in which many rival systems were compared.
The clear winner was a scheme developed by two Belgian cryptographers, Joan
Daimen and Vincent Rijmen. It is normally called AES128, AES192 or AES256
depending on the key length being used. The scheme is elegant and cunning
allowing encryption to be done efficiently on simple hardware such as smart cards
as well as normal computers, and it is well worth studying.

This section presents a demonstration implementation (aes128.b) of the ver-
sion using 128 bit keys. The program starts as follows.

GET "libhdr"

GLOBAL {
Rkey:ug
sbox
rsbox
mul
tracing
MixColumns_ts
InvMixColumns_st
Cipher
InvCipher
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prstate
prbytes
prmat

// The s state matrix
s00; sO01; s02; s03
s10; si11; s12; s13
s20; s21; s22; s23
s30; s31; s32; s33

// The t state matrix
t00; t01; t02; t03
t10; t11; t12; t13
t20; t21; t22; t23
t30; t31; t32; t33

stateS

stateT
}
MANIFEST {

Keylen=16 // 16 = 4x4

Nr=10 // Number of rounds
}

The algorithm performs a sequence of transformations of a 4 by 4 matrix of
8-bit bytes. This matrix is called the state and, for convenience, is held either in
the variables s00 to s33 or t00 to t33. The key is 128 bits long represented by a
vector of Keylen (=16) bytes. This key is expanded by the function KeyExpand,
described below, to form a schedule of 11 keys in Rkey used during the encryption
process. The data to be encrypted is broken into 128-bit chunks, placed in turn
in the 16 bytes of the state matrix where the encryption process takes place. This
consists of a sequence of ten repeated rounds of simple matrix transformations.
All these transformations are reversible, so performing the inverse versions in
reverse order can be used to decrypt the encrypted message.

One such matrix transformation is performed by the function ShiftRows_st
defined below.

// The ShiftRows() function shifts the rows in the state to the left.

// Each row is shifted with different offset.

// O0ffset = Row number. So the first row is not shifted.

LET ShiftRows_st() BE

{ t00, t01, t02, t03 :
t10, t11, t12, t13 :
t20, t21, t22, t23 :

s00, sO01, s02, s03
sl1, s12, s13, s10
s22, s23, s20, s21



130 CHAPTER 4. THE BCPL CINTCODE SYSTEM

t30, t31, t32, t33 :
X

s33, s30, s31, s32

LET InvShiftRows_ts() BE

{ s00, s01, s02, s03 := t00, t01, t02, t03
s10, s11, s12, s13 := t13, t10, t11, t12
s20, s21, s22, s23 := t22, t23, t20, t21
s30, s31, s32, s33 := t31, t32, t33, t30

}

Another matrix tranformation is performed by the function SubBytes_ts, defined
as follows.

LET SubBytes_ts() BE
{ // Apply sbox from t state to s state

FOR i = 0 TO 15 DO stateS!i := sbox/(stateT!i)
}

This uses the byte vector sbox, which specifies a permutation of the numbers 0 to
255, to convert bytes in state t to bytes in state s. Since a permutation is being
used, the effect of SubBytes_ts can be reversed by the function InvSubBytes_st,
defined as follows.

LET InvSubBytes_st() BE
{ // Apply rsbox from s state to t state

FOR i = O TO 15 DO stateT!i := rsboxl(stateS!'i)
}

This uses the byte vector rsbox representing the inverse of sbox. That is
rsbox’ (sbox’%x)=x for all x in the range 0 to 255. These permutation vectors
are defined by the function inittables as follows.

LET inittables() BE

{ sbox := TABLE
#x7B777C63, #xC56F6BF2, #x2B670130, #x76ABDTFE,
#xTDC982CA, #xF04759FA, #xAFA2D4AD, #xCO72A49C,
#x2693FDB7, #xCCF73F36, #xF1E5A534, #x1531D871,
#xC323C704, #x9A059618, #xE2801207, #x75B227EB,
#x1A2C8309, #xAO5A6E1B, #xB3D63B52, #x842FE329,
#xEDOOD153, #x5BB1FC20, #x39BECB6A, #xCF584C4A,
#xFBAAEFDO, #x85334D43, #x7F02F945, #xA89F3C50,
#x8F40A351, #xF5389D92, #x21DAB6BC, #xD2F3FF10,
#xEC130CCD, #x1744975F, #x3D7EA7C4, #x73195D64,
#xDC4F8160, #x88902A22, #x14BSEE46, #xDBOBSEDE,
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#x0A3A32E0, #x5C240649, #x62ACD3C2, #x79E49591,
#x6D37C8E7, #xA94ED58D, #xEAF4566C, #x08AET7A65,
#x2E2578BA, #xC6B4A61C, #x1F74DDE8, #x8A8BBD4B,
#x66B53E70, #xOEF60348, #xB9573561, #x9E1DC186,
#x1198F8E1, #x948ED969, #xEO9871E9B, #xDF2855CE,
#x0D89A18C, #x6842E6BF, #x0F2D9941, #x16BB54B0

rsbox := TABLE
#xD56A0952, #x38A53630, #x9EA340BF, #xFBD7F381,
#x8239E37C, #x87FF2F9B, #x44438E34, #xCBEODEC4,
#x32947B54, #x3D23C2A6, #x0B954CEE, #x4EC3FA42,
#x66A12E08, #xB224D928, #x49A25B76, #x25D18B6D,
#x64F6F872, #x16986886, #xCC5CA4D4, #x92B6655D,
#x5048706C, #xDABOEDFD, #x5746155E, #x849D8DA7,
#x00ABD890, #x0AD3BC8C, #x0558E4F7, #x0645B3BS,
#x8F1E2CD0O, #x020F3FCA, #x03BDAFC1, #x6B8A1301,
#x4111913A, #xEADC674F, #xCECFF297, #x73E6B4F0,
#x2274AC96, #x8535ADE7, #xE837FOE2, #x6EDF751C,
#x711AF147, #x89C5291D, #xOE62B76F, #x1BBE18AA,
#x4B3ES6FC, #x2079D2C6, #xFECODB9A, #xF45ACD78,
#x33A8DD1F, #x31C70788, #x591012B1, #x5FEC8027,
#xA97F5160, #xOD4AB519, #x9F7AE52D, #xEF9CC993,
#x4D3BEOAO, #xBOF52AAE, #x3CBBEBC8, #x61995383,
#x7E042B17, #x26D677BA, #x631469E1, #x7D0C2155

These TABLEs assume that BCPL is running on a, so called, little ended 32 bit
version of BCPL such as that used on the Raspberry Pi and Pentium based
machines. Notice that, for instance, sbox’%0=#x63 and sbox}1=#x7C.

The next function AddRoundKey_st applies a specified round key from the
schedule to the state matrix.

LET AddRoundKey_st(i) BE

{ // Add key round i from s state to t state
LET K = ORkey!(16*i) // n = number of elements per row
FOR 1 = 0 TO 15 DO stateT!i := stateS!i XOR K!i

The vector Rkey holds a schedule of round keys numbered from 0 to 10. Each
round key consists of 16 bytes occupying four words in Rkey. K is declared to
point to round key i. AddRoundKey (i) XORs the bytes of round key i with the
corresponding elements of state s, placing the result in state t.

It is convenient to have a version of AddRoundKey that transforms state t into
state s. This is defined as follows.
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LET AddRoundKey_ts(i) BE

{ // Add key round i from s state to t state
LET K = O@Rkey!(16%i) // n = number of elements per row
FOR 1 = 0 TO 15 DO stateS'i := stateT!i XOR K!i

This function is also the inverse of AddRoundKey_st.

The AddRoundKey functions use round keys numbered 0 to 10, each being 16
words in length, holding one byte per word. This schedule of keys is derived from
the given cipher key and is constructed by the function KeyExpansion defined as
follows.

LET KeyExpansion(key) BE
{ LET rcon = 1

// The first round key is the cipher key itself,
// stored column by column.

Rkey!00, Rkey!O01, Rkey!02, Rkey!03 :
Rkey!04, Rkey!05, Rkey!06, Rkey!07 :
Rkey!08, Rkey!09, Rkey!10, Rkey!1l1l :
Rkey!12, Rkey!13, Rkey!14, Rkey!15 :

key%00, key%04, key’%08, key%12
key%01, key%05, key’%09, key%13
key%02, key%06, key%10, key%14
key%03, key%07, key%ll, key%15

// Add 10 more keys to the round schedule
FOR i = 1 TO 10 DO

{ LET p = @Rkey! (16%i) // Pointer to space for key in round i
LET q = p-16 // Pointer to round key i-1
p!00 := q!00 XOR sbox%(q!07) XOR rcon
p!04 := q'04 XOR sbox%(q!11)
p'08 := q!08 XOR sbox%(q!15)
p!12 := q!12 XOR sbox%(q!03)

FOR j =1 TO 3 DO

{ p!(00+j) := q!(00+j) XOR p!(j-01)
p! (04+j) := q!(04+j) XOR p!(j+03)
p! (08+j) := q!(08+j) XOR p!(j+07)
p! (12+j) := q!(12+j) XOR p!(j+11)

}

rcon := mul(2, rcon)

}
+

Round key 0 is just the given 16 byte cipher key, packed one byte per word.
Each subsequent round key is a simple modification of the previous round key.
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Each of the first 4 bytes of the new round key are the corresponding bytes of
the previous key modified by one of the last four bytes of the previous round
key changed by an application of the sbox. In addition the first byte of the new
round key is modified by rcon which holds the value 2° where i is the new round
key number. This value is calculated using the 8-bit arithmetic of GF(2%). That
is why the next value of rcon is computed by the call mul (2,rcon) using mul,
defined below. Words 4 to 15 of the new key is just the exclusive or earlier pairs
of words in Rkey.

The next matrix function MixColumns_ts replaces each column of the state
matrix t by a values that are linear combinations of the column elements, leaving
the result in state s. For instance, it sets s00 to 2 xt00+3 xt10+t20+t30. All
16 elements of the state are modified, and the total transformation corresponds
to the following matrix product.

2 311 t00 t01 t02 t03 s00 s01 s02 s03
1 2 31 t10 t11 t12 +t13 N s10 sl11 s12 s13
112 3 t20 t21 t22 t23 520 s21 s22 s23
3 1 1 2 t30 t31 t32 t33 830 s31 s32 s33

When 4 by 4 matrices are multiplied together the rule is as follows.

a b c d

E v e 8

where r = ax + by + cz + dw, thus the value in the i** row and j™* column of the
result is the sum of the products of the elements of the i** row of the left hand
matrix with the corresponding elements of the j* column of the right hand one.

Since the elements of the state matrix are all 8-bit bytes (held in words), or-
dinary addition and multiplication cannot be used since they will cause overflow.
Instead, arithmetic belonging to the Galois! Field GF(2®) is used. This replaces
+ by XOR and z X y by mul (z,y), where mul is defined as follows.

LET mul(x, y) = VALOF
{ // Return the product of x and y using GF(2%*8) arithmetic
LET res = 0

!Named after the French mathematician Evariste Galois who died aged only 20 in Paris in
May 1832 from wounds suffered in a duel. He laid the foundations for Galois theory and Group
Theory
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WHILE x DO

{ IF (x & 1)>0 DO res := res XOR y
x = x>>1
y = y<1
IF y > 255 DO y := y XOR #x11B

}

RESULTIS res

}

This performs the multiplication by conditionally adding y to the result res
whenever the least significant bit of x is a one. Then dividing x by 2 with a
right shift (x:=x>>1) and doubling y with a left shift (y:=y<<1), but whenever
y becomes larger than 255, it is brought back into range by the assignment
y := y XOR #x11B. The constant #x11B was carefully chosen so that, for any x
in the range 1 to 255, we can find a unique y such that mul (x,y)=1. Addition and
subtraction are replaced by applications of the XOR operator. We thus have, in
GF(2®), versions of addition, subtraction, multiplication and division that obey
the algebraic rules of ordinary arithmetic, but on values that are always in the
range 0 to 255. You still have to be careful since, for instance 2 x x # x 4+ x and
3xxismul(3,r) = mul(2,z) XOR z, not z + = + = which just equal x.

To implement the matrix multiplication, we frequently need to compute ex-
pressions of the form ax + by + cz + dw. This is often called the inner product of
(a,b,c,d) and (z,y, z, w), and so we have a function called inprod to do the job.
It definition is as follows.

AND inprod(a,b,c,d, x,y,z,w) =
// Calculate ax+by+cz+dw using GF(2**8) arithmetic
mul(a,x) XOR mul(b,y) XOR mul(c,z) XOR mul(d,w)

The implementation of MixColumns ts is now straightforward and is as fol-
lows.

// MixColumns function mixes the columns of the state matrix
LET MixColumns_ts() BE
{ // Compute the matrix product

// (23 11) (t00 t01 t02 t03) (s00 s01 s02 s03)

// (1 23 1) x ( t10 t11 t12 t13) => (s10 s11 s12 s13)

// (112 3) ( t20 t21 t22 t23) (820 s21 s22 s23)

// (311 2) ( t30 t31 t32 t33) (830 s31 s32 833)

t00, t10, t20, t30)
t01, t11, t21, t31)
, t02, t12, t22, t32)
t03, t13, t23, t33)

-
-

s00 := inprod(2,
s01 := inprod(2,
s02 := inprod(2,
s03 := inprod(2,

W w w w
e
e

-
-
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t00, t10, t20, t30)
, t01, t11, t21, t31)
t02, t12, t22, t32)
t03, t13, t23, t33)

s10 := inprod(1,
s11 := inprod(1,
s12 := inprod(1,
s13 := inprod(1,

-

N N DN DN
W w w w
e

-

-
-

-

-
-

t00, t10, t20, t30)
t01, t11, t21, t31)
, t02, t12, t22, t32)
t03, t13, t23, t33)

s20 := inprod(1,
s21 := inprod(1,
s22 := inprod(1,
s23 := inprod(1,

-
-
-

-

= e
NN NN
w w w w

-
-
-

s30 := inprod(3, 1, 1, 2, t00, t10, t20, t30)
s31 := inprod(3, 1, 1, 2, t01, t11, t21, t31)
32 := inprod(3, 1, 1, 2, t02, t12, t22, t32)
s33 := inprod(3, 1, 1, 2, t03, t13, t23, t33)

The choice of this transformation matrix is well chosen because multiplication
by 1, 2 and 3 in GF(2%) can be done efficiently both in hardware and software,
and it also has the vital property that it has an inverse in GF(2%) namely:

14 11 13 9
9 14 11 13
13 9 14 11
11 13 9 14

We can easily see that this is indeed the inverse by checking the follow equation.

14 11 13 9 2 311 1000
9 14 11 13 1231 10100
13 9 14 11 1123 0010
11 13 9 14 31 1 2 0001

The value that should be in element (0,0) of the result is 14x2+11x14+13x1+9x3
using GF(28) arithmetic. Note that 9 x 3 is 10010 XOR 1001 = 11011 in binary.
So the sum in binary is:

14x2 11100
11x1 1011
13x1 1101
9x3 11011 (= 10010 XOR 1001)
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Similarly, the value that should be in element (0,1) of the result is:

14x3 10010 (= 11100 XOR 1110)
11x2 10110
13x1 1101
9x1 1001

The other 14 elements of the product can easily be checked.
To undo the effect of MixColumns_ts we simply multiply the state matrix by
the inverse transform. This is done by InvMixColumns st define as follows.

LET InvMixColumns_st() BE

{ // Compute the matrix product
// (14 11 13 9) (s00 s01 s02 s03) (t00 t01 t02 t03)
// (9 14 11 13) x (s10 s11 s12 s13) => (£10 t11 t12 t13)
// (13 9 14 11) (820 s21 s22 s23) (t20 t21 t22 t23)
// (11 13 9 14) (s30 s31 s32 s33) (t30 t31 t32 t33)

t00 := inprod(14, 11, 13,
t01 := inprod(14, 11, 13,
t02 := inprod(14, 11, 13,
t03 := inprod(14, 11, 13,

s00, s10, s20, s30)
s01, si11, s21, s31)
, s02, s12, s22, s32)
s03, s13, s23, s33)

© © O ©

-

t10 := inprod( 9, 14, 11, 13, s00, s10, s20, s30)
t11l := inprod( 9, 14, 11, 13, s01, sl11, s21, s31)
t12 := inprod( 9, 14, 11, 13, s02, s12, s22, s32)
t13 := inprod( 9, 14, 11, 13, s03, s13, s23, s33)

t20 := inprod(13,
t21 := inprod(13,
t22 := inprod(13,
t23 := inprod(13,

14, 11, s00, s10, s20, s30)
14, 11, s01, si1, s21, s31)
, 14, 11, s02, sl12, s22, s32)
14, 11, s03, s13, s23, s33)

© ©O© O ©

-

t30 := inprod(11, 13,
t31 := inprod(11, 13,
t32 := inprod(11, 13,
t33 := inprod(11, 13,

14, s00, s10, s20, s30)
, 14, s01, s11, s21, s31)
14, s02, s12, s22, s32)
14, s03, s13, s23, s33)

©O © ©O ©

-

The function Cipher defined below performs a long sequence of these matrix
transformations. This is a demonstration version since it can output helpful
tracing information and has not been optimised to run efficiently.
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LET Cipher(in, out) BE

{ // Copy the input PlainText into the state array.
s00, s01, s02, s03 := in%00, in%04, in%08, in%12
s10, si11, s12, s13 := in%01, in%05, in%09, in%13
20, s21, s22, s23 := in%02, in’%06, in%10, in%14
30, s31, s32, s33 := in}%03, in’%07, inJ11, in%15

IF tracing DO

{ writef("%i2.input ", 0); prstate(stateS)
writef("%i2.k_sch ", 0); prstate(Rkey)

}

// Add the First round key to the state before starting the rounds.
AddRoundKey_st (0)

FOR round = 1 TO Nr-1 DO
{ IF tracing DO
{ writef ("%i2.start ", round); prstate(stateT) }

SubBytes_ts ()
IF tracing DO
{ writef("%i2.s_box ", round); prstate(stateS) }

ShiftRows_st ()
IF tracing DO
{ writef("%i2.s_row ", round); prstate(stateT) }

MixColumns_ts ()
IF tracing DO
{ writef("%i2.s_col ", round); prstate(stateS) }

AddRoundKey_st (round)
IF tracing DO
{ writef("%i2.k_sch ", round); prstate(@Rkey!(16*round)) }

// The last round is given below.
IF tracing DO
{ writef("%i2.start ", Nr); prstate(stateT) }

SubBytes_ts ()
IF tracing DO
{ writef("%i2.s_box ", Nr); prstate(stateS) }

ShiftRows_st ()
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IF tracing DO
{ writef("%i2.s_row ", Nr); prstate(stateT) }

// Do not mix the columns in the final round

AddRoundKey_ts (Nr)

IF tracing DO

{ writef("%i2.k_sch ", Nr); prstate(@Rkey! (16%Nr))
writef ("%i2.output ", Nr); prstate(stateS)

}

// The encryption process is over.

// Copy the state array to output array.

out#%00, out%04, out%08, out%12 := s00, s01, s02, s03
out%01, out’%05, out%09, out%13 := s10, si11l, s12, si13
out’%02, out%06, out%10, out%ld := s20, s21, s22, s23
out’%03, out%07, out%ll, out%l5 := s30, s31, s32, s33

16 bytes of input data given in in are copied into the state ma-
trix and then modified by the call AddRoundkey(0) before performing 10
rounds of matrix modification. Each round sucessively calls SubBytes_ts,
ShiftRows_st (), MixColumns_ts(), and AddRoundKey_st, except in last round
when MixColumns_ts is not called. As a debugging aid the state matrix is con-
ditionally output after each call. After the tenth round is complete the data in
the state matrix are copied the byte vector out.

To decypher a message the function InvCipher, defined below, is used. It
structure is similar to Cipher but performs the inverse matrix transformations
in reverse order, using the same key schedule.

LET InvCipher(in, out) BE

{ // Copy the input CipherText to state array.
s00, s01, s02, s03 := in%00, in%04, in%08, in%12
s10, s11, s12, s13 := in%01, in%05, in%09, in%13
s20, s21, s22, s23 := in%02, in%06, in%10, in%14
s30, s31, s32, s33 := in%03, in%07, in%11, in%15

IF tracing DO

{ writef("%i2.iinput ", 0); prstate(stateS)
writef("%i2.ik_sch ", 0); prstate(@Rkey! (16*Nr))

}

// Add the Last round key to the state before starting the rounds.
AddRoundKey_st (Nr)
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FOR round = Nr-1 TO 1 BY -1 DO
{ IF tracing DO
{ writef("%i2.istart ", Nr-round); prstate(stateT) }

InvShiftRows_ts()
IF tracing DO
{ writef("%i2.is_row ", Nr-round); prstate(stateS) }

InvSubBytes_st ()
IF tracing DO
{ writef("%i2.is_box ", Nr-round); prstate(stateT) }

AddRoundKey_ts (round)

IF tracing DO

{ writef("%i2.ik_sch ", Nr-round); prstate(@Rkey! (16*round))
writef ("%i2.is_add ", Nr-round); prstate(stateS)

}

InvMixColumns_st ()

IF tracing DO
{ writef ("%i2.istart ", Nr); prstate(stateT) }

// The final round is given below.
InvShiftRows_ts()
IF tracing DO { writef("%i2.is_row ", Nr); prstate(stateS) }

InvSubBytes_st ()
IF tracing DO { writef("%i2.is_box ", Nr); prstate(stateT) }

// Do not mix the columns in the final round

AddRoundKey_ts (0)

IF tracing DO

{ writef("%i2.ik_sch ", Nr); prstate(@Rkey! (16*0))
writef ("%i2.ioutput", Nr); prstate(stateS)

}

// The decryption process is over.

// Copy the state array to output array.

out%00, out’%04, out%08, out%l2 := s00, s01, s02, s03
out’%01, out%05, out%09, out%13 := s10, sl1l, s12, s13
out%02, out%06, out%10, out%l14 := s20, s21, s22, s23
out%03, out%07, out%l11l, out%15 := s30, s31, s32, s33
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The main program start exercises these two functions with 16 bytes of plain
text and 16 bytes of cipher key. In this version KeyExpansion, Cipher and
InvCipher are called using the library function instrcount which returns the
number of Cintcode instructions executed during each call.

LET start() = VALOF

{ LET argv = VEC 50
LET plain = TABLE #X33221100, #X77665544, #XBBAA9988, #XFFEEDDCC
LET key = TABLE #x03020100, #x07060504, #xOBOA0908, #xOFOEODOC
// The plain text and key are the same as given in the detailed
// example in Appendix C.1 in
// csrc.nist.gov/publications/fips/fips197/fips-197.pdf
// It provides a useful check that this implementaion is correct.
// Just execute: aesl128 -t
LET in = VEC 63
LET out = VEC 63
LET v VEC 10%16+15 // For the key schedule of 11 keys
LET countExpand, countCipher, countInvCipher = 0, 0, O

Rkey := v
stateS, stateT := @s00, @t00

UNLESS rdargs("-t/s", argv, 50) DO

{ writef("Bad arguments for aes128+*n")
RESULTIS O

}

tracing := argv!0
inittables()

//KeyExpansion (key)
countExpand := instrcount(KeyExpansion, key)

IF tracing DO
{ writef ("*nKey schedule*n")
FOR i = 0 TO Nr DO
{ LET p = 16%i
writef ("%i2: ", i)
prstate(@Rkey!p)
}
}

newline()
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writef ("plain: "); prbytes(plain); newline()
writef ("key: "); prbytes(key)
newline()

//Cipher (plain, out)

countCipher := instrcount(Cipher, plain, out)
newline()
writef ("Cipher text: "); prbytes(out); newline()

//InvCipher (out, in)
countInvCipher := instrcount(InvCipher, out, in)
IF tracing DO newline()

writef ("InvCipher text: "); prbytes(in); newline()
newline()

writef ("Cintcode instruction counts*n*n")
writef ("KeyExpansion: %i7*n", countExpand)

writef ("Cipher: %i7*n", countCipher)
writef ("InvCipher: %i7#n", countInvCipher)
RESULTIS O

The remaining functions, defined below, are used to provide the debugging
output.

AND prstate(m) BE
{ // For outputting state matrix or keys, column by column.
FOR i = 0 TO 3 DO
{ wrch(’ )
FOR j = 0 TO 3 DO
writef ("%x2", m!(4*j+i))
}
newline()

}

AND prbytes(v) BE
{ // For outputting plain and ciphered text.
FOR i = 0 TO 15 DO
{ IF i MOD 4 = 0 DO wrch(’ ’)
writef ("%x2", vii)
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}
newline()

}

When aes128 is run without arguments the output is as follows.

0.050> aes128

plain: 00112233 44556677 8899AABB CCDDEEFF
key: 00010203 04050607 08090A0B OCODOEOF
Cipher text: 69C4EOD8 6A7B0430 D8CDB780 70B4C55A

InvCipher text: 00112233 44556677 8899AABB CCDDEEFF

Cintcode instruction counts

KeyExpansion: 2834
Cipher: 33588
InvCipher: 63581
0.010>

This shows that the given plain text is converted by Cipher to suitably random
looking text using the given key and that InvCipher restores the original plain
text correctly.

You will also notice that InvCipher executes nearly twice as many Cintcode
instructions as Cipher. This somewhat surprising result is because much of the
time is spent in mul while performing the matrix multiplications in MixColumns
and InvMixColumns. In MixColumns mul is multiplying by 1, 2 or 3 which takes
far fewer instructions than the calls of mul in InvMixColumns where the multi-
plcations are by 9, 11, 13 or 14.

For completeness, I have included a demonstration version of AES using a 256
bit cipher key. This program is called bcplprog/raspi/aes256.b. It has much
in common with aes128.b using, for instance, the same 4 by 4 state matrix and
the same matrix tranformations, but it performs 14 rounds rather than 10. The
main difference is how the schedule of 16 byte keys are generated from the given
32 byte cipher key. The increased running time of aes256 is small being mainly
due to the increased number of rounds.

4.20.1 Final Observation

The security of encryption is based entirely on keeping keys secret and not on
hiding the details of the encryption algorithm. After all AES is available on
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thousands of million machines around the world and anyone with a superuser of
administrator password would be able to see the algorithm.

I hope you agree that AES128 is incredibly simple and elegant, and remarkably
efficient. It is natural to wonder whether it could be extended to allow even
stronger encryption. Omne obvious possibility is to use a larger state matrix,
perhaps of size 8 x 8 or even 16 x 16. All the transformations are easily extended
except possibly for the difficulty of finding suitable column mixing matrices and
their inverses using GP(2%) arithmetic. But this turns out to be simple with the
aid of the program invert.b which shows, for instance, that the following two
8 X 8 matrices are mutual inverses:

73129 196 102 231 219 65 198
198 73 129 196 102 231 219 65
65 198 73 129 196 102 231 219
219 65 198 73 129 196 102 231
231 219 65 198 73 129 196 102
102 231 219 65 198 73 129 196
196 102 231 219 65 198 73 129
129 196 102 231 219 65 198 73

GO = = = N W
DD = = =N W o Ot
== =N W Ot
— =N W R OO =

W OO M = =N
= oY~ kP Pk NW
— N W Ot =
N Wk Ot = ==

1 00 00O0O0QO
01 00O0O0O0®O0
001 0O0O0O0G®O
0001O0O00O0®O0
000O01O0O0O0
000O0O0OT1GO0®O0
000O0O0O0OT1OQO0
000O0O0O0O0T1

using GF(28) arithmetic. The program will also find inverses of matrices of other
sizes, such as 16 x 16.

If we choose to use 8 x 8 matrices it would be natural to use a key length of
64 bytes (or 512 bits), and encrypt the data in blocks of 64 bytes. For 16 x 16
matrices, we would use keys of 256 bytes (or 2048 bits). As a demonstration, the
program aesnxn.b implements these two possibilities. Using the stats option
aesnxn will output some statistics on the encoding process. For instance, some
of the output generated by the command: aesnxn 8 stats is as follows.

Histogram of the number of bits changed

0: 6 o o o o o o o o o o o o o o0 o
16: o o o0 o0 o o o o o0 o o o o o o o
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224: 1 0 1 0 O 1 1 2 4 2 2 3 T 2 6 6

240: 8 4 7 11 12 12 13 19 16 13 14 12 13 21 21 21
256: 17 12 16 14 22 13 11 17 16 18 10 13 13 6 10

272: T 9 3 6 3 2 3 2 1 2 1 1 1 0 O 1
496: o o o0 o0 o o o o o o o o0 o o o o

Histogram of the number of times each bit changes

0: 251 275 239 261 257 268 224 247 267 258 266 257 246 252 259 255
16: 251 257 260 268 273 267 264 245 270 252 231 255 244 262 274 262
32: 256 255 261 245 252 251 258 252 265 254 257 259 264 256 246 266

464: 264 251 260 235 264 252 241 255 271 259 256 255 249 251 271 256
480: 265 247 238 267 256 251 250 256 257 265 259 236 266 247 259 254
496: 255 265 263 259 257 267 275 243 272 236 251 247 265 257 250 252
3.190>

This shows two histograms based on 512 runs of the ciphering process comple-
menting a different bit of the plain text each time. The first histogram shows that
roughly half the bits of the encyphered data change each time, and the second
shows that every bit of the encyphered data is equally likely to change.

As a final remark, you may like to look at the following function.

AND increment(p, w) BE WHILE w DO
{ LET ¢ = !p & w // The carry bits
'p := !'p XOR w
w, p :=c, ptl // The next bit position is one word later.

}

This function is used to increment the counts needed by the second histogram.
The argument p points to a word containing the least significant bit of 32 counters.
The more significant bits are held in p!1, p!2 and so on. The argument w is a bit
pattern specifying which counters are to be incremented. The function is thus
capable of incrementing any subset of 32 counters simultaneously.

The function countervalue, defined below, converts a selected counter to a
normal integer. Note that the counters in this implementation are limited to 16
bits.

AND countvalue(p, bit) = VALOF
{ LET res = 0

FOR j = 15 TO 0 BY -1 DO

{ res := 2%res
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UNLESS (p!j & bit) = O DO res := res+l
}
RESULTIS res

}

4.21 GF(2%) Arithmetic

We have seen that GF(2%) arithmetic was used in the implementation of the
advanced encryption standard, but it turns out this form of arithmetic is used
in many other algorithms, so it is worth a little more explanation. GF(2%) is an
example of a mathematical field and such a field consists of a set of elements
and two operators normally written as + for addition and x for multiplication,
satisfying the following algebraic rules.

(1) If x and y are elements of the set then so are = + y and = x y.

(2) If z, y and z are elements of the set then x + (y + z) = (v + y) + 2z and
rx (yxz)=(rxy) Xz

(3) If z and y are elements of the set then z +y =y +z and x x y =y X x.

(4) There exists an element 0 such that z + 0 = z for all x in the set.

(5) There exists an element 1 different from 0 such that x x 1 = x for all x in
the set.

(6) For every element x in the set, there exist an element y such that z+y = 0.

(7) For every element z in the set other than 0, there exist an element y such
that x x y = 1.

(8) If z, y and z are elements of the set then z x (y+2) = (z X +y) + (z X 2).
You will notice that signed real numbers satisfy these properties but unsigned
reals do not, since, for instance, there is no unsigned y satisfying 1.5 +y = 0.
Similarly neither signed nor unsigned integers form a field since, for instance,
there is no y satisfying 7 x y = 1. However GF arithmetic does satisfy all these
rules and has the valuable property that the set of elements is of finite size. For
GF(2%) the number of elements is 256. Although algebra in GF(2%) feels similar
to that on real numbers, you still have to be careful. For instance, x + x is equal
to zero and not 2 * z.

One notable example of the use of GF arithmetic is in the Reed-Solomon Error
Correcting Codes. A simple demonstration is given in the following sections. The
program starts with the following declarations which declares variables that will
be described later when they are used.

GET "libhdr"

GLOBAL {
testno:ug // =0 for small demo, =1 for a larger demo.

gf_log2 // Vector of discrete logarithms in GF(278)
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gf_exp2 // Vector of powers of 2 in GF(278)

n // The codeword length in bytes
// The message length

e // n-k The number of parity bytes

Msg // The message polynomial

G // The generator polynomial

M // The codeword polynomial for Msg and G

R // The received corrupted codeword polynomial

S // The syndromes polynomial with coefficients
// Si = R(271)

T // Temp polynomial

Lambda // The Lambda polynomial, coeffs L1,..

Ldash // d/dx of Lambda polynomial

Omega // The Omega polynomial, coeffs 01,..

e_pos // Vector of the error positions

}

We have already seen that addition and subtraction in GF(2®) are replaced
by XOR but, for completeness, we define the following two functions.

LET gf_add(x, y)

x XOR y

AND gf_sub(x, y)

x XOR y

In GF(28), 2 has the interesting property that all 255 elements other than 0
can be represented by 2" for suitably chosen values of n. It is useful to precompute
these powers of 2 placing them in a vector gf_exp2 and while doing so we can
construct a vector gf _log2 holding this inverse values. These two vectors are
allocated and initialised by the function initlogs, defined as follows.

AND initlogs() BE

{LET x =1
gf_log2 := getvec(255)
gf_exp2 := getvec(510) // 510 = 255+255

// Using a double sized vector for exp2 improves the efficiency
// of functions such as gf_mul and gf_div, defined below.

UNLESS gf_log2 & gf_exp2 DO

{ writef("initlogs: More space needed*n")
abort (999)

}

gf_log2!0 := -1 // log2 of zero is undefined.



4.22. POLYNOMIALS WITH GF(2®) COEFFICIENTS 147

FOR i = 0 TO 255 DO // All possible element values
{// 271 =% so i = log2(x)

gf_exp2!i := x

gf_exp2! (i+255) := x // Note 27255=1 in GF(278)

gf_log2'!'x := 1

X = x<<1 // Multiply x by 2

UNLESS ( x & #b_1_0000_0000 ) = 0 DO

x := x XOR #b_1_0001_1101

The vectors gf _exp2 and gf_log?2 are used is the definitions of gf mul defined
below based on the following observation.
x X y = 21082(2) ¢ Qloga(v) — glogz()+logz(y)

Since log,(0) is undefined, cases where x or y are zero are treated specially.

AND gf_mul(x, y) = VALOF
{ IF x=0 | y=0 RESULTIS 0

RESULTIS gf_exp2! (gf_log2!x + gf_log2!y)
}

The functions gf div, gf _pow and gf_inverse are also implemented efficiently
using these vectors.

AND gf_div(x, y) = VALOF
{ IF y=0 DO

{ writef("gf_div: Division by zero*n")

abort (999)

}

IF x=0 RESULTIS O

RESULTIS gf_exp2! (255 + gf_log2!x - gf_log2!'y)
}

AND gf_pow(x,y) = gf_exp2!((gf_log2!x * y) MOD 255)

AND gf_inverse(x) = gf_exp2! (2565 - gf_log2!x)

4.22 Polynomials with GF(2°) Coefficients

The Reed-Solomon Error Correction mechanism make extensive use of polyno-
mials with GF coefficients, so this section presents some functions relating to
such polynomials. In this implementation polynomials are represented by vec-
tors containing the degree of the polynomial and its coefficients. If p points to
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such a polynomial then p!0 holds its degree, n say, and p!1 holds the coefficient
of ™. Successive elements of p hold the coefficients of lower powers of x, with the
final coefficient in p! (n+1) representing the constant term. So the polynomial
522 + 62 + 7 would be represented by a vector whose elements are 2,5,6 and 7.

The first few polynomial functions are straight forward and need no additional

explanation.

AND gf_poly_copy(p, q) BE

{

}

// Copy polynomial from p to q.
FOR i = 0 TO p!0+1 DO q!i := pli

AND gf_poly_scale(p, x, q) BE

{

// Multiply, using gf_mul, every coefficient of polynomial p by
// scalar x leaving the result in q.

LET deg = p!0 // The degree of polynomial p

q!0 := deg // The degree of the result

FOR i = 1 TO deg+1 DO q!i := gf_mul(p'i, x)

AND gf_poly_add(p, q, r) BE

{

// Add polynomials p and q leaving the result in r

LET degp = p!0 // The number of coefficients is one larger

LET degq = q!0 // than the degree of the polynomial.

LET degr = degp

IF degg>degr DO degr := degq

// degr is the larger of the degrees of p and q.

r!0 := degr // The degree of the result

FOR i = 1 TO degp+l DO r!(i+degr-degp) := p!i

FOR i 1 TO degr-degp DO r!i := 0 // Pad higher coeffs with Os
FOR i = 1 TO degg+l DO r!(i+degr-degq) := r!(i+degr-degq) XOR q!i

// GF addition and subtraction are the same.
AND gf_poly_sub(p, g, r) BE gf_poly_add(p, q, r)

AND gf_poly_mul(p, g, r) BE

{

// Multiply polynomials p and q leaving the result in r

LET degp = p!0
LET degq = q!0
LET degr = degp+degq

r!0 := degr // Degree of the result
FOR i = 1 TO degr+1 DO r'i := 0
FOR j = 1 TO degqg+l DO

CHAPTER 4. THE BCPL CINTCODE SYSTEM
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FOR i = 1 TO degp+1 DO
r!(i+j-1) := r!(i+j-1) XO0R gf _mul(p'i, q!'j)

AND gf_poly_mulbyxn(p, n, r) BE
{ // Multiply polynomials p by x"n leaving the result in r
LET degp = p!0
LET degr = degp + n
r!0 := degr
FOR i = 1 TO degp+1 DO r!'i := pli
FOR i = degp+2 TO degr+l1 DO r!i := 0

AND gf_poly_eval(p, x) = VALOF
{ // Evaluate polynomial p for a given x using Hormer’s method.
// Eg use: ax"3 + bx"2 + cx"1 +d = ((ax + b)x + c)x + d
LET res = p!1l
FOR i = 2 TO p!0+1 DO
res := gf_mul(res,x) XOR p'i // mul by x and add next coeff
RESULTIS res

AND pr_poly(p) BE

{ // Output the polynomial in hex
FOR i = 1 TO p!0+1 DO writef(" %x2", p'i)
newline()

}

AND pr_poly_dec(p) BE

{ // Output the polynomial in decimal
FOR i = 1 TO p!O+1 DO writef(" %i3", p!i)
newline()

}

The function gf _poly_divmod divides polynomial p by polynomial q using
long division leaving both the quotient and remainder in r.

AND gf_poly_divmod(p, q, r) BE

{ LET degp = p!0 // The degree of polynomial p.
LET degq = q!0 // The degree of polynomial q.
LET degr = degp

LET t = VEC 255 // Vector to hold the next product of the generator

UNLESS q'1 > 0 DO
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{ writef("The divisor must have a non zero leading coefficient#*n")
abort (999)
RETURN

}

// Copy polynomial p into r.
r!0 := degr
FOR i = 1 TO degr+1 DO r!'i := pli

//writef ("p: "); pr_poly(p)
//writef ("q: "); pr_poly(q)
//uritef ("r: "); pr_poly(r)

FOR i = 1 TO degp-degg+1 DO
{ LET dig = gf_div(r'i, q!1)
IF dig DO
{ gf_poly_scale(q, dig, t)
//writef("scaled q: ")
//FOR j = 2 TO i DO writef (" ")
//pr_poly(t)
r!'i := dig
FOR j = 2 TO t!0+1 DO r!(i+j-1) := r!(i+j-1) XOR t!j
}
//uritef ("new r: "); pr_poly(r)
}
}

If the write statements in gf _poly_divmod are un-commented, it is possible
to generate the following output.

p: 12 34 56 78 00 00 00 00 00 00
q: 71 11 22 33 44 55 66

initial r: 12 34 56 78 00 00 00 00 00 00
scaled q: 12 F4 F5 01 F7 03 02

new r: 2E CO A3 79 F7 03 02 00 00 00
scaled q: CO 4A 94 DE 35 7F A1l

new r: 2E 82 E9 ED 29 36 7D Al 00 00
scaled q: E9 D8 AD 75 47 9F EA
new r: 2E 82 AA 35 84 43 3A 3E EA 00
scaled q: 35 C1 9F BE 23 E2 BC
new r: 2E 82 AA 1C 45 DC 64 1D 08 BC

This shows the long division steps being used to divide p by q. The quotient
2E 82 AA 1C and remainder 45 DC 64 1D 08 BC are left in r. The functions
gf _poly_div and gf_poly. mod use gf_poly_divmod to obtain the quotient and
remainder separately.
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AND gf_poly_div(p, q, r) BE
{ gf_poly_divmod(p, q, r)

r!0 := p!0 - q!0 // Select just the quotient
}

AND gf_poly_mod(p, q, r) BE
{ LET degp = p!0

LET degq = q!0

LET degr = degq - 1

gf_poly_divmod(p, q, r)

r!0 := degr // Overwrite the quotient with the remainder.
FOR i = 1 TO degr+1 DO r!i := r!(i+degp-degr)
b

4.23 Reed-Solomon Error Correction

Reed-Solomon Error Correction takes a sequence of message elements combined
with an arbitrary number of parity elements to form a codeword that can be
corrected provided not too many of its elements have been corrupted. It is used
in 2D QR barcodes where errors might occur as a result of the scanner misread-
ing a damaged image, and it is also used in radio communication such as digital
television where errors might occur as the result of weak signals or electrical in-
terferrence. The mechanism is both efficient and almost optimal. The codewords
represent polynomials whose coefficients use use GF(2*) for digital television or
GF(28) for QR barcodes. This demonstration program used GF(2®) and we will
assume that the elements are 8-bit bytes.

If there are e parity bytes then all errors can be found and corrected provided
there are no more than e/2 of them. In the unusual situation where the locations
of the errors are known, up to e errors can be corrected.

Assuming we have a message of k bytes, this can be represented as a poly-
nomial of degree k — 1 using the message bytes as the coefficients. To add e
parity bytes, we multiply the message polynomial by z¢ and add the remainder
after dividing it by a special generator polynomial of degree e. The generator
polynomial is the expansion of:

(x — 2% (z — 2Y)(z — 2%)...(z — 2(¢7)
The following function creates the generating polynomial of degree e placing
the result in g.

AND gf_generator_poly(e, g) BE
{ // Set in g the polynomial resulting from the expansion of
// (x=270) (x-271) (x-272) ... (x-2"(e-1)). Note that it is
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// of degree e and that the coeffient of x"e is 1.
LET t = VEC 255
g!0, g!'1 := 0, 1 // The polynomial: 1.
FOR i = 0 TO e-1 DO
{LET 4, a, b =1, 1, gf_pow(2,i) // (x + 271)
// @d points to polynomial: (x - 271)
// which in GF arithmetic is also: (x + 271i)
FOR i = 0 TO g!0+1 DO t!'i := g!i // Copy g into t
gf_poly_mul(t, @d, g) // Multiply t by (x-27i) into g

The function rs_encode msg returns in r the polynomial Msg concatenated
with the e Reed-Solomon check bytes which represent remainder after the Msg
polynomial multiplied by x¢ and divided by the generator polynomial created
by rs_generator_poly. As an example with message polynomial 12 34 56 78
and e=6, the generator polynomial is 01 3F 01 DA 20 E3 26 and the division
proceeds as follows.

12 A9 12 88 7A 4D 16

It thus computes 12 9D 43 57 as the quotient and 17 A7 56 4B 7B DD as
the remainder. As can be seen, the process is basically long division using gf mul
for multiplication and XOR for subtraction. If at each stage the senior byte is not
subtracted, the senior 4 bytes of the accumulator become the quotient and the
junior 6 bytes hold the remainder. This assumes that the senior coefficient of the
generator polynomial is always a one. If, at the end, we replace the quotient bytes
of the accumulator by the original message bytes, we create the Reed-Solomon
codeword.

The definition of rs_encode msg is as follows.
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AND rs_encode_msg() BE

{ // This appends e Reed-Solomon parity bytes onto the end of the
// message bytes Msg, placing the result in M.
LET degmsg = Msg!O // The degree of the message polynomial.
LET e = G!0 // e = the degree of the generator polynomial
LET degm = degmsgte // The degree of the RS codeword polynomial

// Place Msg multiplied by x"e in M.

gf_poly_mulbyxn(Msg, e, M)

gf_poly_copy(M, T)

gf_poly_divmod(T, G, M)

// Copy Msg in the senior end of M replacing the bytes that
// currently hold the quotient.

FOR i = 1 TO degmsg+l DO M!i := Msg!i

We have seen the a Reed-Solomon codeword consists of k bytes of message
followed by e parity bytes which represent the remainder after dividing the mes-
sage polynomial multiplied by z¢ by the generator polynomial. Since addition
and subtraction are both the same in GF arithmetic, the codeword will be exactly
divisible by the generating polynomial and, since the generator polynomial is the
product of many factors of the form (1 — z * 2%), each of these also divides into
the codeword exactly. However, if some bytes of the codeword are corrupted,
most of these factors will not divide the corrupted codeword exactly. We can
easily create a polynomial of degree e — 1 whose coefficients are the e remainders
obtained when attempting to divide the corrupted codeword by each factor of
the generator polynomial.

To demonstrate how the error correction is performed, we will use an example
of a 4 byte message 12 34 56 78 and 6 parity bytes. We thus have k =4, e =6
and so n = 10. The generator polynomial G(x) is therefore:

Gz) = (z—2")(z—2")(z - 2°)(x — 2°)(z — 2)(z — 2°)
= (x — 01)(z — 02)(x — 04)(x — 08)(z — 10)(x — 20)
= 0125 + 3Fz® + 012" + DAz® + 202” + E3x + 26

It turns out that using this generator of this form maximises the Hamming
distance between codewords.

From now on we will write G for the generator, M the codeword and R the
corrupted codeword as follows:

G = 01 3F 01 DA 20 E3 26
M =12 34 56 78 17 A7 56 4B 78 DD
R =12 34 00 00 17 00 56 4B 78 DD

You will notice that bytes 3, 4 and 6 of the codeword have been zeroed, and
that these correspond to the coefficients of 7, 2% and z*, respectively.
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In general, when we attempt to read a codeword some of its bytes may be
corrupted resulting in a different polynomial R(x) which can be written as the
sum of M(x), the original codeword, and E(x) an errors polynomial giving a
correction value for each coefficient of R. This is stated in the following equation:

R(x) = M(x) + E(x)

Assuming the corrupted codeword is:
R =12 34 00 00 17 00 56 4B 78 DD
then the errors polynomial E will be:
E = 00 00 56 78 00 A7 00 00 00 00

which when added to R gives the corrected codeword. Our problem is how to
deduce the errors polynomial knowing only R and the generator polynomial. It
turns out that we can, provided not too many bytes have been corrupted. With
6 check bytes we can find and correct the 6/2=3 corrupted bytes in R.

To do this we first construct a polynomial S (called the syndromes polynomial)
whose coefficients are the remainders after dividing R by each of the factors of
the generator polynomial. In our example e = 6 so the generator has 6 factors
(x =29, (z —2Y), (x —4%), (x — 23), (z — 2*) and (2 — 25). S can be written as

S(x) = Ss2° + Syxt + S32° + Sox? + S1x + S
When we divide R by (z—2¢) we obtain a quotient polynomial @; and a remander
S;. These, of course, satisfy the following equation:

R(x) = (z — 29 % Qi(z) + S;
and if we set x = 2! this reduces to
R(2Y) = S;
So S; can be calculated just by evaluating the polynomial R(z) at x = 2¢. For
our example the syndromes polynomial is:

S = 2E B8 OE CB 50 35

If we happen to know in advance the positions in the codeword that have been
corrupted, in this case 3, 4 and 6, then we could write the errors polynomial as

E(x) = Y1*x"7 + Y2*x"6 + Y3*x"4

Hopefully there is sufficient information to deduce these positions and Y1=56,
Y2=78 and Y3=A7.

Since we have just shown E(27i) = Si, and assuming we know the error
positions, we can say



4.23.

Si

REED-SOLOMON ERROR CORRECTION 155

E(271)
Y1x27(7*1i) + Y2427 (6%i) + Y3*27 (4*i)
Y1*X17i + Y2%xX27i + Y3*xX37i
where X1 = 277, X2 = 276 and X3 = 274

These 6 equations can be written as a matrix product as follow

S0
S1
S2
S3
sS4
S5

NN AN A

R N

N AN AN AN AN

X170
X171
X172
X173
X174
X175

X270
X2~1
X272
X273
X274
X275

X370
X3"1
X372
X373
X374
X375

N

~<
=

~ A~ ~
<<
w N
~

We know that S = 2E B8 OE CB 50 35 and assuming we know that X1=2"7,
X2=2"6 and X3=2"4, this product simplifies to

2E
B8
OE
CB
50
35

N NN A

or

2E
B8
OE
CB
50
35

N NN AN AN

N N N N

A P U g

N AN AN AN AN A

N NN NN
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2° 7
2714
2°21
2728
2735
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01
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2D
8F
60

)
o O

)
=
N

01
10
1D
CD
4C
B4

N N N

~ N

N

~<
N

~ A~
<<
NN
~

If these equations are consistent and non singular they can be solved. The
solution in this case turns out to be Y1=56, Y2=78 and Y3=A7, as expected.

These values for Y1, Y2 and Y3 tells us that E(x)=56*x"7+78*x"6+A7*x"4
giving us the required result

E = 00 00 56 78 00 A7 00 00 00 00

which when added to

R

T

12 34 00 00 17 00 56 4B 78 DD
give use the corrected codeword
12 34 56 78 17 A7 56 4B 78 DD
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It turns out that if we know the locations of 6 error, we could correct all 6. But,
as is usually the case, we do not know the location of any of them we have more
work to do.

The following functions calculate the syndromes polynomial and use it to
confirm the accuracy the description just given.

AND rs_calc_syndromes(codeword, e, s) BE
{ // e = the number of error correction bytes
//uritef ("*nrs_calc_syndromes:*n")
//wuritef ("codeword: "); pr_poly(codeword)
LET degs = e-1
s!0 := degs // The degree of the syndromes polynomial.
FOR i = 0 TO e-1 DO
{ LET p2i = gf_pow(2,1)
LET res = gf_poly_eval(codeword, p2i)
//uritef ("%i2 27i = %x2 => Yx2 %i3*n", i, p2i, res, res)
//s'(i+1) := res // s!(i+1l) = codeword(271i)
s!(degs+1-i) := res // si = codeword(27i)

The typesetting of the following needs more work.

/*

Our problem is now to try and find the locations of errors in the
corrupted codeword using only its syndomes polynomial and the
generator polynomial.

It is common in mathematcs and computing to pick out a seemingly
unrelated construct, as if by magic, and after a little elementary
manipulation suddenly realise it is just what we want.

Let us assume there are three locations el, e2 and e3 containing
corrupted bytes in the codeword. Let us now consider the following
polynomial.

Lambda(x) = (1+x*27el) (1+x*2"e2) (1+x*2"e3)
=1 + Lixx + L2*x"2 + L3*x"3

This polynomial is zero when x=2"-el, or x=2"-e2 or x=2"-e3. If we
write Xi=2"ei, we can say the root of this Lambda(x)=0 are X1°-1,
X27-1 and X3"-1. Knowing the roots allows us the write the following:
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1 + L1*2°-ej + L2%2°-2ej +

L3%2°-3ej = 0

If we multiply this equation by Yj*2~(i+3)ej, we get

Yj*2" (i+3)ej + L1*xYj*2"(i+2)ej + L2*Yj*2" (i+1)ej + L3*Yj*2"iej

If we write these for each value of j, we get

Y1%2~(i+3)el + L1*Y1x2~(i+2)el + L2*Y1%2~(i+l)el + L3*Y1x2~iel
Y2x2~ (i+3)e2 + L1*Y2%2~ (i+2)e2 + L2*Y2%2"(i+1)e2 + L3*xY2*2"ie2
Y3%2~(i+3)e3 + L1xY3*2~(i+2)e2 + L2%Y3*2~(i+1)e3 + L3*Y3*2"ie3

or

Y1x(27(i+3)) el + L1*Y1*x(2"(i+2)) el + L2xY1x(2"(i+1)) el + L3*xY1x(2"i) el
Yox (27 (i+3))"e2 + L1*Y2x (27 (i+2)) e2 + L2xY2*x (2" (i+1)) " e2 + L3*xY2x(2"1) e2
Y3x(27(i+3))"e3 + L1xY3*x (2" (i+2)) " e2 + L2*xY3*x (2" (i+1))"e3 + L3*Y3*(2"i) e3

Remembering that

E(x) = Y1*x"el + Y2*x"e2 + Y3*x"e3

We can add these equations together giving:

E(2°(i+3)) + L1*E(2"(i+2))

+ L2*E(27(i+1)) + L3*E(27i) = 0

We thus have the 3 following equations by setting i to 0, 1 and 2.

E(273) + L1%#E(272) + L2xE(271) + L3*E(270) = 0
E(274) + L1xE(273) + L2xE(272) + L3x*E(271) =0
E(27°5) + L1%#E(274) + L2xE(273) + L3*E(27°2) =0

Since we know E(27i) = R(27i),

these become:

R(27°3) + L1*R(2"2) + L2%R(2"1) + L3*R(2°0) =0

R(274) + L1%R(273) + L2*R(272) + L3*R(271) =

o

R(275) + L1xR(274) + L2xR(273) + L3*R(272) = 0

which is the same as:
S3 + L1%S2 + L2*S1 + L3*S0
S4 + L1xS3 + L2%S2 + L3%S1
S5 + L1xS4 + L2%S3 + L3%S2

These equations can be written

nnon
o O O

in matrix form as follows:

o

157

o
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(S8S3)=(8281S80) x (L1)
(s4) ( 83 82 81) (L2)
( 85) ( 84 83 82) (L3)

Provided the 3x3 matrix is not singular, the equations can be solved
giving us the values of L1, L2 and L3. We now have the equation

Lambda(x) = 1 + Li*x + L2%x"2 + L3%x"3

completely defined and we can therefore find its roots 27-el, 27-e2
and 27-e3 and hence deduce the error positions el, e2 and e3. We can
easily find the root by trial and error since there are only n
possible values for each ei, where n is the length of the codeword.

For our example, the equations matrix equation is

( ) = (DE 8189 ) x (L1)
(82) ( 6E DE 81 ) (L2)
( ) (826EDE) (L3)

giving L1=D0, L2=1B and L3=98.

In general, we do not know how many errors there are. If there are
fewer than 3 the 3x3 matrix will have a zero determinant and we will
have to try for 2 errors, but if the top left 2x2 determinant is zero,
we will have to try the top left 1x1 matrix.

The solution, if any, of this matrix equation is normally solved using
Berlekamp-Massey algorithm, described later.

*/

AND rs_find_error_locator() BE
{ // This sets Lambda to the error locator polynomial
// using the syndromes polynomial in S. It is only used
// when we do not know the locations of any of the
// error bytes, so the maximum number of error that
// can be found is the (S!0+1)/2. It uses the
// Berlekamp-Massey algorithm.
LET old_loc = VEC 50

LET degs = S!0
LET k, 1 =1, 0
LET newL = VEC 50 // To hold the error locator polynomial
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LET C
LET P1

VEC 50 // To hold a correction polynomial
VEC 50

//writef ("*nComputing the error locator polynomial Lambda*n")
//writef ("using the Berlekamp-Massey algorithm.*n*n")

Lambda'!0, Lambda!l := 0, 1 // Polynomial: Lambda(x) = 1
clo, C!1, Cc!2 : =1, 1, 0 // Polynomial: C(x) = x+0

UNTIL k > degs+l DO // degs+l = number of correction bytes
{ LET delta = 0//S!(degs+1) // SO = R(2°0)
LET degL = Lambda!0

//newline()

//writef ("Lambda: "); pr_poly(Lambda)
//writef ("R: "); pr_poly(R)
//writef ("S: "); pr_poly(S)

//writef ("k=Yn 1=Yn*n", k, 1)

// First calculate delta
FOR i = 0 TO 1 DO
{ LET Li = Lambda! (degL+1-i) // Li -- Coeff of x"i in current Lambda
LET f = S!(degs+l - (k-1-i)) // R(2"(k-1-1))
LET Lif = gf_mul(Li, f)
//writef ("i=Y%n delta: %x2*n", i, delta)
delta := delta XOR Lif
//writef ("i=Yn Li=Vx2 f=Y%x2 Lif=%x2 => delta=%x2*n",

// i, Li, f, Lif, delta)
}
//writef ("delta: %x2*n", delta)
IF delta DO
{ gf_poly_scale(C, delta, P1)
//uritef ("Multiply R by delta=%x2 giving: ", delta); pr_poly(P1)
gf_poly_add(P1, Lambda, newL)
//uritef ("Add L giving newL "); pr_poly(newL)
IF 2x1 < k DO
{1:=%k"1

gf_poly_scale(Lambda, gf_inverse(delta), C)
//writef ("Since 2x1 < k set C = Lambda/delta: "); pr_poly(C)
}
}

// Multiply C by x
Clo :=C!0 + 1
c!(Ccto+1) :=0
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//uritef ("Multiply C by x giving: "); pr_poly(C)

FOR i = 0 TO newL!0+1 DO Lambda!i := newL!i
//writef ("Set new version of Lambda: "); pr_poly(Lambda)
k := k+1

AND rs_find_error_evaluator() BE
{ // Compute the error evaluator polynomial Omega
// using S and Lambda.

// Omega(x) = (S(x) * Lambda(x)) MOD x~(e+1)
LET degs = S!0

// This could be optimised since we are going to

// through away many of the terms in the product.
gf_poly_mul(S, Lambda, Omega)

writef ("S: "); pr_poly(S)

writef ("Lambda: "); pr_poly(Lambda)

writef ("S x Lambda: "); pr_poly(Omega)

// Remove terms of degree higher than e

FOR i = 0 TO degs DO Omega! (i+1) := Omega! (i+1+0Omega!O-degs)
Omega!0 := degs

writef ("Omega: "); pr_poly(Omega)

AND rs_demo() BE

{ // This will test Reed-Solomon decoding typically using
// either (n,k) = (9,6) or (26,10) depending on testno.
LET v = getvec(1000)

writef ("reedsolomon entered*n")

S =v // For the syndromes polynomial
M = v + 100 // For the codeword for msg

R = v + 200 // For the corrupted codeword

G = v + 300 // For the generator polynomial
Lambda := v + 400 // For the erasures polynomial
Ldash = v + 500 // For d/dx of Lambda

Omega = v + 600 // For the evaluator polynomial
e_pos = v + 700 // For the error positions
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T := v + 800 // temp polynomial

// A simple test
Msg := TABLE 3, #x12, #x34, #x56, #x78
e :=6

IF testno>0 DO
{ // A larger test from the QR barcode given above.
Msg := TABLE 15, #x40, #xD2, #X75, #x47, #x76, #x17, #x32, #x06,
#x27, #x26, #x96, #xC6, #xC6, #x96, #x70, #xEC

e := 10
}
k := Msg!0O + 1 // Message bytes
n := k+e // codeword bytes

gf_generator_poly(e, G) // Compute the generator polinomial
newline()

//writef ("generator: "); pr_poly(G) // 01 3F 01 DA 20 E3 26
//newline()

writef ("message: "); pr_poly(Msg) // 12 34 56 78

rs_encode_msg() // Compute in R the RS codeword for Msg.

writef ("codeword: "); pr_poly(M) // 12 34 56 78 17 A7 56 4B 78 DD
FOR i = 0 TO M!'0+1 DO R!'i := M!i

R!3 :=0
R!'4 := #xAA
R!6 := 0

IF testno>0 DO
{ // Try 5 errors in all

R!12 =0
R!26 := 0
}
newline()
writef ("corrupted: "); pr_poly(R) // 12 34 00 00 17 00 56 4B 78 DD
rs_calc_syndromes(R, e, S) // syndromes of polynomial R

writef ("syndromes: "); pr_poly(S) // 7TA 82 6E DE 81 89
// Typically: Lambda(x) = L3**x"3 + L2%*x"2 + Ll%*x"1 + 1
writef ("*nLambda(x) = ")

FOR i = /2 TO 1 BY -1 DO
writef ("Lyn**x™n + ", i, i)
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writef ("1*n")

writef ("*nIt can be shown that:*n*n")

FOR row = 0 TO e/2-1 DO
{ writef("( S%n ) ", row+e/2)
wrch(row=0 -> ’=7, 2 ?)
writef (" (")
FOR col = e/2-1 TO 0 BY -1 DO writef(" S%n", col+row)
writef(" ) ")

wrch(row=0 -> ’x’, ’ )
writef (" ( L%n )*n", row+l)
}
newline()

writef ("*nwhere ")

FOR i = e-1 TO O BY -1 DO writef("S)n ", i)

writef ("= ")

FOR i = e-1 TO O BY -1 DO writef("%x2 ", gf_poly_eval(R, gf_exp2!i))
writef ("*n*n")

FOR row = 0 TO e/2-1 DO
{ writef("( %x2 ) ", gf_poly_eval(R, gf_exp2!(row+e/2)))
wrch(row=0 -> ’=’, 7 ?)
writef (" (")
FOR col = e/2-1 TO O BY -1 DO writef(" %x2", gf_poly_eval(R, gf_exp2!(col+row)))
writef(" ) ")

wrch(row=0 -> ’x’, ° ?)
writef(" ( L%n )*n", row+l)
}
newline()

writef ("#nThis can be solved using the Berlekamp-Massey algorithm.*n")

rs_find_error_locator()
writef ("*nLambda: "); pr_poly(Lambda) // 98 1B DO 01

writef("So ")

FOR i = 1 TO e/2 DO writef(" L%n=%x2", i, Lambda!(e/2+1-i))
writef ("*nand")

FOR i = 0 TO e-1 DO writef(" S¥/n=%x2", i, S!(S!0+1-i))
writef ("*n*n")
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FOR row = 0 TO e/2-1 DO
{LET a=0
FOR i = 0 TO e/2-1 DO
{ LET b = gf_poly_eval(R, gf_exp2!(e/2-1-i+row))
LET ¢ = Lambda! (Lambda!0-1i)

a := a XOR gf_mul(b,c)
writef ("%x2**%x2", b,c)
TEST i=e/2-1
THEN writef(" = %x2 -- S%n = %x2*n",
a, e/2+row, gf_poly_eval(R, gf_exp2!(e/2+row)))
ELSE writef(" + ")

writef ("*nIf the coeff of x"i in R(x) is corrupt thenx
* Lambda(2°-1i) should be zero.*n*n")

writef ("The solutions of Lambda(x)=0 can be solved by trial and error*n*n")

e_pos!0 := -1 // No error positions yet found.
FOR i = 0 TO R!'0 DO
{ LET Xi = gf_exp2!i
LET a = gf_poly_eval(Lambda, gf_inverse(Xi))
IF a=0 DO
{ writef ("Lambda(2~-%i2) = O*n", i)
e_pos!0 := e_pos!0O+1
e_pos! (e_pos!0+1) := i
}
}

writef ("*nSo the error locations numbered from the left are: ")
pr_poly_dec(e_pos)
newline()

rs_find_error_evaluator (S, Lambda, Omega)
newline()

writef ("Checking Omega*n*n")

FOR row = 0 TO e/2-1 DO
{ LET sum = 0
writef ("0%n = %x2 ", row, Omega!(Omega!O+1-row))
FOR i = 0 TO row DO
{ LET Li = Lambda!(Lambda!O+1-i)
LET Sj = S!(S!0+1+i-row)
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IF i>0 DO writef(" + ")
writef ("%x2**)x2", Sj, Li)
sum := sum XOR gf_mul(Sj,Li)

}
writef (" = %x2*n", sum)
}
newline()
writef ("Lambda: "); pr_poly(Lambda)

writef ("The formal differential of Lambda(x) is*n*n")
writef ("Ldash(x) = L1 + 2%*xL2**xx~1 + 3**L3**x"2 + %
*4Ax*x[4*xx"3 + BkkLB*xxx"4 + .. .*n")
writef ("but here 2=1+1=0, 3=1+1+1=1, 4=1+1+1+1=0, etc, so:*n")
writef ("Ldash(x) = L1 + L3**x"2 + L5*x*x"4 + ...*n*n")

gf_poly_copy(Lambda, Ldash)

// Clear the coefficients of the even powers
FOR i = Ldash!0+1 TO 1 BY -2 DO Ldash!i := 0
// Divide through by x

Ldash!0 := Ldash!0 - 1

writef ("Ldash: "); pr_poly(Ldash)

writef ("#nLet Xi = 271 and invXi = 27-i*n")
writef ("*nIf Lambda(invXi) = 0, i will correspond to*
* the position of an error in R*n*n")

writef ("To correct the coefficient at this positionx*
* we subtract Yi defined as follows:*n")
writef ("Yi = Xi **x Omega(invXi) / Ldash(invXi)*n")

newline()
FOR i = 0 TO R!'0 DO
{ LET j =R!0O + 1 -1i // Position in R counting from the left.
LET Xi = gf_exp2!i
LET invXi = gf_inverse(Xi)
LET LambdaInvXi = gf_poly_eval(Lambda, invXi)
IF LambdaInvXi = 0 DO
{ LET OmegalnvXi = gf_poly_eval(Omega, invXi)
LET LdashInvXi = gf_poly_eval(Ldash, invXi)
LET q = gf_div(OmegaInvXi, LdashInvXi)
LET Vi = gf_mul(Xi, q)
writef ("j=12 i=%i2 Xi=Yx2 invXi=Yx2 OmegalnvXi=}x2%
* LdashInvXi=%x2 q=%x2 Yi=)x2*n",
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j, i, Xi, invXi, OmegalnvXi, LdashInvXi, q, Yi)
writef ("So add %x2 to %x2 at position %i2 in R to give %x2*n*n",
Yi, R!5, i, R!j XOR Yi)
R!j := R!j XOR Yi // Subtract Yi
}
}

newline()
writef ("Corrected R: "); pr_poly(R)
writef ("Original M: "); pr_poly(M)

freevec(v)

AND start() = VALOF
{ LET argv = VEC 50

UNLESS rdargs("testno/n", argv, 50) DO
{ writef ("#nBad arguments for qr*n")

RESULTIS 0
b

testno := 0
IF argv!0 DO testno := l!argv!0 // testno/n

newline()
initlogs ()

rs_demo ()

IF gf_log2 DO freevec(gf_log?2)
IF gf_exp2 DO freevec(gf_exp2)

RESULTIS O

/*
The following shows the compilation and execution of this program.
For the larger example use: reedsolomon 1

solestreet:$ cintsys

BCPL 32-bit Cintcode System (21 Oct 2015)
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0.000> ¢ b reedsolomon
bcpl reedsolomon.b to reedsolomon hdrs BCPLHDRS t32

BCPL (10 Oct 2014) with simple floating point
Code size = 5096 bytes of 32-bit little ender Cintcode
0.070> reedsolomon

reedsolomon entered

message: 12 34 56 78
generator: 01 3F 01 DA 20 E3 26

12 34 56 78 00 00 00 00 00 00
12 A9 12 88 7A 4D 16

new 12 9D 44 FO 7A 4D 16 00 00 00
scaled 9D 07 9D 3F 4A 51 23

initial M
G
M
G:
new M: 12 9D 43 6D 45 07 47 23 00 00
G.
M
G
M

scaled

scaled 43 3A 43 F7 88 5A 1F

12 9D 43 57 06 FO CF 79 1F 00
57 11 57 99 32 67 DD

new : 12 9D 43 57 17 A7 56 4B 78 DD

codeword: 12 34 56 78 17 A7 56 4B 78 DD

new
scaled

corrupted: 12 34 00 AA 17 00 56 4B 78 DD
syndromes: 4B 7D 8B BD 54 23

Lambda(x) = L3*x™n + L2*x"n + Ll*x™n + 1
It can be shown that:

( ) =(8S2S81S80) x (L1)

(s4) (83 82 81) (L2)

( ) ( S84 83 s2) (L3)

where S5 S4 S3 S2 S1 SO = 4B 7D 8B BD 54 23
( ) = (BD 54 23) x (L1)
(7D ) ( 8B BD 54 ) (L2)
( ) ( 7D 8B BD ) (

This can be solved using the Berlekamp-Massey algorithm.

Lambda: 98 1B DO 01
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So L1=D0 L2=1B L3=98
and S0=23 S1=54 S2=BD S3=8B S4=7D S5=4B

BD*DO + 54*1B + 23%98 = = 8B
8B*DO + BD*1B + 54%98 = 7D -- 5S4 =7D
7D*D0O + 8B*1B + BD*98 = = 4B

|
(o8}
o

|

|
wn
w

|

|
IS
o

|

|
n
(6}

|

If the coeff of x"i in R(x) is corrupt then Lambda(2°-i) should be zero.

The solutions of Lambda(x)=0 can be solved by trial and error

Lambda(2°- 4) = 0

Lambda(2°- 6) = 0

Lambda(2°- 7) = 0

So the error locations numbered from the left are: 4 6 7
S: 4B 7D 8B BD 54 23

Lambda: 98 1B DO 01

S x Lambda: €8 5B D8 00 00 00 OF 26 23
Omega: 00 00 00 OF 26 23

Checking Omega

00 = 23 23%01 = 23

01 = 26 54%01 + 23*%D0 = 26

02 = OF BD*01 + 54*xD0 + 23*x1B = OF
Lambda: 98 1B DO 01

The formal differential of Lambda(x) is

Ldash(x) = L1 + 2%L2*x~1 + 3*L3*x"2 + 4%L4*x"3 + 5xL5*xx"4 + ...
but here 2=1+1=0, 3=1+1+1=1, 4=1+1+1+1=0, etc, so:

Ldash(x) = L1 + L3%x"2 + L5*xx"4 + ...

Ldash: 98 00 DO

Let Xi = 271 and invXi = 2°-1i

If Lambda(invXi) = 0, i will correspond to the position of an error in R

To correct the coefficient at this position we subtract Yi defined as follows:
Yi = Xi * Omega(invXi) / Ldash(invXi)

6 i= 4 Xi=10 invXi=D8 OmegalnvXi=09 LdashInvXi=EA q=38 Yi=A7

.
]
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So add A7 to 00 at position 6 in R to give A7

j= 4 i= 6 Xi=40 invXi=36 OmegalnvXi=B8 LdashInvXi=FO0 =28 Yi=D2
So add D2 to AA at position 4 in R to give 78

j= 3 i= 7 Xi=80 invXi=1B OmegalnvXi=51 LdashInvXi=D8 q=79 Yi=56
So add 56 to 00 at position 3 in R to give 56

Corrected R: 12 34 56 78 17 A7 56 4B 78 DD
Original M: 12 34 56 78 17 A7 56 4B 78 DD
0.020>

*/

4.24 The Queens Problem

A well known problem is to count the number of different ways in which eight
queens can be placed on an 8 x 8 chess board without any two of them sharing
the same row, column or diagonal. It was, for instance, used as a case study
in Niklaus Wirth’s classic paper “Program development by stepwise refinement”
published in the Communications of the ACM in 1971. None of his solutions used
either recursion or bit pattern techniques.

The following program solves a slight generalisation of the problem for board
sizes from 1 x 1 to 12 x 12.
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GET "libhdr"

GLOBAL {
count:ug
all

}

LET try(ld, col, rd) BE
TEST row=all
THEN count := count + 1
ELSE { LET poss = all & “(1d | col | rd)
WHILE poss DO
{ LET p = poss & -poss
poss := poss - p
try(ld+p << 1, col+p, rd+p >> 1)

}
LET start() = VALOF
{ all :=1
FOR i = 1 TO 12 DO
{ count := 0
try(0, 0, 0)

writef ("Number of solutions to %i2-queens is %i9*n", i, count)
all := 2*xall + 1
}

RESULTIS O
}

The program performs a walk over a complete tree of valid (partial) board po-
sitions, incrementing count whenever a complete solution is found. The root
of the tree is said to be at level 0 representing the empty board. The root has
successors (or children) corresponding to the board states with one queen placed
in the bottom row. These are all said to be at level 1. Each level 1 state has
successors corresponding to valid board states with queens placed in the bottom
two rows. In general, any valid board state at level i (i > 0) contain i queens in
the bottom ¢ rows and is a successor of a board state at level © — 1. The solutions
to the n-queens problem are the valid board states at level n when all n queens
have been validly placed. Ignoring symmetries, all these solutions are be distinct.

The walk over the tree of valid board states can be done without actually
building the tree. It is done using the function try whose arguments 1d, col and
rd contain sufficient information about the current board state for its successors
to be explored. Figure 4.5 illustrated how 1d, col and rd are used to find where
a queen can be validly placed in the current row without being attacked by any
queen placed in earlier rows. col is a bit pattern containing a one in for each
column that is already occupied. 1d contains a one for each position attacked
along a left going diagonal, while rd contains diagonal attacks from the other
diagonal. The expression (1d | col | rd) is a bit pattern containing ones in
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1d col rd
lofofofs[afofofo] [2]1]ofofr]ofo]s]| [ofofofa1]1]1]o]o]
N T | ‘ 7
N ! ! ! | ’
o : 1 R
A A | | | | 7’ ’ 7’
\\ \\ ! ! ! ! // // //
N N ! ! ! ! 7 ’ 7
N i i i J/ o
1 1
N | 4
AR ol
Ll S : poss
Current row—=| || X | [o]olz]o]ofo [1]0]
T I
0
Q

Figure 4.5: The Eight Queens

all positions that are under attack from anywhere. When this is complemented
and masked with all, a bit pattern is formed that gives the positions in the
current row where a queen can be placed without being attacked. The variable
poss is given this as its initial value by the declaration:

LET poss = “(1d | col | rd) & all

The WHILE loop cunningly iterates over these possible placements, only execut-
ing the body of the loop as many times as needed. Notice that the expression
poss & -poss yields the least significant one in poss, as is shown in the following
example.

poss 00100010
-poss 11011110

poss & -poss 00000010

The position of a valid queen placement is held in bit and removed from poss
by:

LET bit = poss & -poss
poss := poss - bit

and then a recursive call of try is made to explore the selected successor state.

try( (1d|bit)<<1, collbit, (rdlbit)>>1 )
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Notice that a left shift is needed for the left going diagonal attacks and a right
shift for the other diagonal attacks.

When col=all a complete solution has been found and so the count of solu-
tions is incremented.

The main function start calls try to solve the n-queens problem for 1 <n <
12. The output is as follows:

Number of solutions to 1-queens is 1
Number of solutions to 2-queens is 0
Number of solutions to 3-queens is 0
Number of solutions to 4-queens is 2
Number of solutions to 5-queens is 10
Number of solutions to 6-queens is 4
Number of solutions to 7-queens is 40
Number of solutions to 8-queens is 92
Number of solutions to 9-queens is 352
Number of solutions to 10-queens is 724
Number of solutions to 1ll-queens is 2680
Number of solutions to 12-queens is 14200

4.25 Sudoku

This section presents a program to solve the sudoku puzzles which appear in most
newspapers. The logic of the program is rather similar to that of the n-queens
program given in the previous section. It just attempts to fill in the cells with valid
digits from left to right and top to bottom, backtracking when necessary. As with
the queens program, it gains some efficiency by using bit pattern techniques. This
rather naive approach usually finds solutions quickly and so a faster algorithm
is hardly worth implementing (but might be fun to attempt). The program is
called sudoku.b and hopefully has sufficient comments to make it understandable
without additional description.

// This is a really naive program to solve Su Doku problems
// as set in many newspapers.

// Implemented in BCPL by Martin Richards (c) January 2005

// Modified 4 August 2014

// It consists of a 9x9 grid of cells. Each cell should contain
// a digit in the range 1..9. Every row, column and major 3x3
// square should contain all the digits 1..9. Some cells have
// given values. The problem is to find digits to place in

// the unspecified cells satisfying the constraints.

// A typical problem is:
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// --- 638 ---
// T-6 --- 3-5
/] -1- --- -a-

// --8 T12 4--
// -9~ -=-- -5-
/- -2 569 1 - -

// -3- --- -1-
// 1 -5 --- 6-28
// - -- 184 ---

// The above problem is solved by the command:

// sudoku 000638000 706000305 010000040 -- all on one line
// 008712400 090000050 002569100
// 030000010 105000608 000184000

SECTION "sudoku"

GET "libhdr"

GLOBAL { count:ug

// The 9x9 board consisting of 81 cells

al; a2; a3; a4; ab; a6; a7; a8; a9
bl; b2; b3; b4; b5; b6; b7; b8; b
cl; c2; c3; c4; cb; c6; c7; c8; c9
dil; d2; d3; d4; d5; d6; d7; d8; d9
el; e2; e3; e4; eb; eb6; e7; e8; e9
f1; £f2; £3; f4; £5; f6; f7; £8; f9
gl; g2; g3; g4; gb; gb6; g7; g8; g9
hi; h2; h3; h4; hb5; h6; h7; h8; h9
il; i2; i3; i4; ib5; i6; i7; i8; 19

rowabits; collbits; squlbits
rowbbits; col2bits; squ2bits
rowcbits; col3bits; squ3bits
rowdbits; coldbits; squébits
rowebits; colbbits; squbbits
rowfbits; col6bits; squbbits
rowgbits; col7bits; squ7bits
rowhbits; col8bits; squ8bits
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rowibits; col9bits; squ9bits

}

N1

MANIF

N2 =

N3
N4
N5
N6
N7
N8
N9

EST {

#b_000000001 // Bit patterns representing the 9 digits
#b_000000010
#b_000000100
#b_000001000
#b_000010000
#b_000100000
#b_001000000
#b_010000000
#b_100000000

A1l = N1+N2+N3+N4+N5+N6+N7+N8+N9

}

LET start() = VALOF
{ LET argv = VEC 50

LET
LET
LET
LET
LET
LET
LET
LET
LET

//LET ri1
//LET r9

rl =
r2 =
r3 =
rd =

rb5

r6 =
r7 =
r8 =
r9 =

000_638_000 // The default board setting
706_000_305
010_000_040
008_712_400
090_000_050
002_569_100
030_000_010
105_000_608
000_.184_000

= 000_000_000 // This version of row 1 gives 14 solutions

= 000_000_000 // This version of row 9 gives 46 solutions
// If both row 1 and row 9 are all zeroes
// there are 2096 solutions.

UNLESS rdargs("r1/n,r2/n,r3/n,r4/n,r5/n,r6/n,r7/n,r8/n,r9/n",

argv, 50) DO
{ writef("Bad arguments for SUDOKU*n")
RESULTIS O
}
IF argv!0 DO

{ // Set the board from the arguments
rl,r2,r3,r4,r5,r6,r7,r8,r9 := 0,0,0,0,0,0,0,0,0
IF argv!0 DO rl1 := !(argv!0)
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IF
IF
IF
IF
IF
IF
IF
IF

argv!l
argv!2
argv!3
argv!'4
argv!5
argv!6
argv!7
argv!8

DO
DO
DO
DO
DO
DO
DO
DO

r2 :=
r3 :=
rd :
r5 :=
r6 :=
r7 :=
r8 :=
r9 :
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I (argv!1)
! (argv!2)
! (argv!3)
! (argv!4)
I (argv!b)
! (argv!6)
I (argv!7)
! (argv!8)

initboard(rl,r2,r3,r4,r5,r6,r7,r8,r9)
writef ("*nInitial board*n")
prboard ()

count
tal()

=0

writef ("*n*nTotal number of solutions: %n*n", count)
RESULTIS O

AND setrow(row, r) BE

{ LET tab = TABLE O, N1, N2, N3, N4, N5, N6, N7, N8, N9
=8 TO 0 BY -1 DO

FOR 1

{ LET n = r MOD 10
:=1/10

r

row!i :=

tab!

n

AND initboard(rl,r2,r3,r4,r5,r6,r7,r8,r9) BE
81 cells their initial settings

{// Gi
setro
setro
setro
setro
setro

ve all
w(@al,
w(@b1,
w(@cl,
w(edi1,
w(@el,

setrow(@f1,
setrow(@gl,
setrow(@hi,
setrow(@il,

rl)
r2)
r3)
rd)
r5)
r6)
r7)
r8)
r9)

// Initialise row bit patterns

al+a2+a3+ad4+ab+ab+ar+a8+a9
b1+b2+b3+b4+b5+b6+b7+b8+b9
cl+c2+c3+cd+chb+cb6+c7+c8+c9
d1+d2+d3+d4+d5+d6+d7+d8+d9

rowabits :
rowbbits :
rowcbits :
rowdbits :
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rowebits
rowfbits
rowgbits
rowhbits
rowibits

1= el+e2+e3+ed+eb+eb+e7+e8+e9
1= f1+£2+£3+f4+£f5+£6+f7+£8+f9
1= gl+g2+g3+g4+ghb+gb+g7+g8+g9
:= h1+h2+h3+h4+h5+h6+h7+h8+h9
1= 11+i2+i3+14+ib+i6+i7+i8+i9

// Initialise column bit patterns
:= al+bl+cl+dl+el+fl+gl+hl+il
1= a2+b2+c2+d2+e2+f2+g2+h2+i2
1= a3+b3+c3+d3+e3+£3+g3+h3+13
1= ad+bd+ci4+di+ed+f4+gd+hd+id
:= ab+b5+cb+d5+e5+£5+gb+hb5+1i5
:= ab6+b6+c6+d6+e6+£6+g6+h6+16
1= aT7+b7+cT7+d7+e7+£7+g7+h7+17
1= aB8+b8+c8+d8+e8+£8+g8+h8+1i8
1= a9+b9+c9+d9+e9+£9+g9+h9+i9

collbits
col2bits
col3bits
coldbits
colbbits
col6bits
col7bits
col8bits
col9bits

// Initialise the 3x3 square bit patterns

squlbits
squ2bits
squ3bits
squébits
squbbits
squbbits
squ7bits
squ8bits
squdbits

AND try(p,

// r, c and s are bit patterns indicating which digits

1= al+a2+a3
:= ad+ab+ab
1= aT7+a8+a9
;= d1+d2+d3
:= d4+db+d6
;= d7+d8+d9
1= gl+g2+g3
1= gl4+gb+gb
1= gr+g8+g9

+
+
+
+
+
+
+
+
+

b1+b2+b3
b4+b5+b6
b7+b8+b9
el+e2+e3
ed+eb+eb
e7+e8+e9
h1+h2+h3
h4+hb+h6
h7+h8+h9

+
+
+
+
+
+
+
+
+

cl+c2+c3
c4+cb+c6
c7+c8+c9
f1+£2+£3
f4+f5+f6
f7+£8+£f9
i1+i2+i3
i4+i5+i6
i7+i8+i9

f, rptr, cptr, sptr) BE TEST !p

THEN £() // The cell pointed to by p is already set
// so move on to the next cell, if any.
ELSE { LET r, ¢, s = !rptr, 'cptr, !sptr

// already occupy the current row, column or square.
LET poss = A1l - (r | ¢ | s)

// poss is a bit pattern indicating which digits can
// be placed in the current cell.

WHILE poss DO
{ // Try each allowable digit in turn.
LET bit = poss & -poss
poss := poss-bit

// Update the cell, row, column and square bit patterns.
:= bit, r+bit, ct+bit, s+bit

'p, !rptr,

lcptr, !sptr
// Move on to the next cell, if any.

175
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}

3

// Restore the cell, row, column and square bit patterns.
:=0, r, c, s

£0)

P>

!rptr, lcptr,
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I'sptr

// The following 81 functions try all possible settings for
// each cell

AND
AND
AND
AND
AND
AND
AND
AND
AND

AND
AND
AND
AND
AND
AND
AND
AND
AND

AND
AND
AND
AND
AND
AND
AND
AND
AND

AND
AND
AND
AND
AND
AND
AND

tal()
ta2()
ta3()
tad ()
ta5()
ta6()
ta7()
tas8()
ta9()

tb1()
tb2()
tb3()
tb4 ()
tb5()
tb6 ()
tb7()
tb8()
tb9 ()

tcl1()
tc2()
tc3()
tcd()
tc50)
tc6()
tc7()
tc8()
tc9()

td1()
td2()
td3()
td4 ()
td5Q)
£d6 ()
td7()

BE
BE
BE
BE
BE
BE
BE
BE
BE

BE
BE
BE
BE
BE
BE
BE
BE
BE

BE
BE
BE
BE
BE
BE
BE
BE
BE

BE
BE
BE
BE
BE
BE
BE

on the board.
try(@al, ta2,
try(@a2, ta3,
try(@a3, ta4,
try(Q@a4, tab,
try(@ab, tal,
try(@a6, ta7,
try(@a7, ta8,
try(@a8, ta9,
try(@a9, tbi,

try(@bi,
try(@b2,
try(@b3,
try(@b4,
try(@b5,
try(@b6,
try(@b7,
try(@bs,
try(@b9,

tbh2,
tb3,
th4,
tb5,
tb6,
tb7,
tb8,
tb9,
tcl,

try(Qcl,
try(Qc2,
try(Qc3,
try(Qc4,
try(@ch,
try(Qc6,
try(@c7,
try(@cs,
try(Qc9,

tc2,
tc3,
tc4,
tch,
tc6,
tc7,
tc8,
tc9,
tdi,

try(edi,
try(@d2,
try(ed3,
try(@d4,
try(eds,
try(@d6,
try(ed7,

td2,
td3,
td4,
td5,
td6,
td7,
td8,

Q@rowabits,
Q@rowabits,
@rowabits,
Q@rowabits,
Q@rowabits,
Q@rowabits,
Q@rowabits,
Q@rowabits,
@rowabits,

@rowbbits,
Q@rowbbits,
Q@rowbbits,
Q@rowbbits,
Q@rowbbits,
Q@rowbbits,
Q@rowbbits,
Q@rowbbits,
Q@rowbbits,

Q@rowcbits,
@rowcbits,
Q@rowcbits,
Q@rowcbits,
Q@rowcbits,
Q@rowcbits,
Q@rowcbits,
Q@rowcbits,
@rowcbits,

@rowdbits,
Q@rowdbits,
@rowdbits,
Q@rowdbits,
Q@rowdbits,
Q@rowdbits,
Q@rowdbits,

Q@collbits,
Qcol2bits,
Q@col3bits,
Qcoldbits,
Q@colbbits,
Qcol6bits,
Q@col7bits,
Q@col8bits,
@col9bits,

Qcollbits,
Q@col2bits,
Qcol3bits,
Q@colédbits,
Qcolbbits,
Q@col6bits,
Qcol7bits,
@col8bits,
Q@col9bits,

Q@collbits,
Qcol2bits,
Q@col3bits,
Qcoldbits,
Q@colbbits,
Qcol6bits,
@col7bits,
Q@col8bits,
@col9bits,

Qcollbits,
Q@col2bits,
Q@col3bits,
Q@colédbits,
Qcolbbits,
Q@col6bits,
Qcol7bits,

@squilbits)
@squlbits)
@squlbits)
@squ2bits)
@squ2bits)
@squ2bits)
@squ3bits)
@squ3bits)
@squ3bits)

@squlbits)
@squlbits)
@squlbits)
@squ2bits)
@squ2bits)
@squ2bits)
@squ3bits)
@squ3bits)
@squ3bits)

@squlbits)
@squlbits)
@squilbits)
@squ2bits)
@squ2bits)
@squ2bits)
@squ3bits)
@squ3bits)
@squ3bits)

@squébits)
@squédbits)
@squébits)
@squbbits)
@squbbits)
@squbbits)
@squbbits)
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AND
AND

AND
AND
AND
AND
AND
AND
AND
AND
AND

AND
AND
AND
AND
AND
AND
AND
AND
AND

AND
AND
AND
AND
AND
AND
AND
AND
AND

AND
AND
AND
AND
AND
AND
AND
AND
AND

AND
AND

td8()
£d9 ()

tel()
te2()
te3()
ted ()
te5()
te6()
te7()
te8()
te9()

tf1()
t£20)
t£30)
t£4()
tf50)
t£6()
t£70)
t£8()
t£f9()

tgl ()
tg2()
tg3(0)
tgd ()
tgs()
tg6 )
tg7 ()
tg8()
tg9 ()

th1()
th2()
th3()
th4 ()
th5()
th6 ()
th7()
th8()
th9 ()

ti1()
ti2(0)

BE

BE
BE
BE
BE
BE
BE
BE
BE
BE

BE
BE
BE
BE
BE
BE
BE
BE
BE

BE
BE
BE
BE
BE
BE
BE
BE
BE

BE
BE
BE
BE
BE
BE
BE
BE
BE

BE
BE

try(eds,
try(@d9,

try(Qel,
try(Qe2,
try(Qe3,
try(Qe4,
try(Qeb,
try(Qeb,
try(Qe7,
try(@e8,
try(Qe9,

try(Qf1,
try(ef2,
try (ef3,
try(ef4,
try(ef5,
try(efé,
try(ef7,
try(efs,
try(ef9,

try(@gl,
try(Qg2,
try(Qg3,
try(Qg4,
try(Qeg5,
try(Qg6,
try(Qeg7,
try(Qg8,
try(eg9,

try(@hi,
try(@h2,
try (Ch3,
try(Qh4,
try (Ch5,
try(Qh6,
try(@h7,
try(@Qh8,
try(@h9,

try(@il,
try(@i2,

td9,
tel,

te2,
te3,
ted,
teb,
teb,
te7,
te8,
te9,
tf1,

tf2,
tf3,
tf4,
tf5,
t£f6,
tf7,
t£8,
t£f9,
tgl,

tg2,
tg3,
tgd,
tgb,
tgb,
tg7,
tg8,
tg9,
thi,

th2,
th3,
th4,
thb,
thé,
th7,
ths,
th9,
tit,

ti2,
ti3,

Q@rowdbits,
Q@rowdbits,

Q@rowebits,
Q@rowebits,
Q@rowebits,
Q@rowebits,
Q@rowebits,
Q@rowebits,
Q@rowebits,
Q@rowebits,
Q@rowebits,

Q@rowfbits,
Q@rowfbits,
Q@rowfbits,
@rowfbits,
Q@rowfbits,
Q@rowfbits,
Q@rowfbits,
Q@rowfbits,
Q@rowfbits,

@rowgbits,
O@rowgbits,
@rowgbits,
Q@rowgbits,
@rowgbits,
Q@rowgbits,
Q@rowgbits,
Q@rowgbits,
O@rowgbits,

Q@rowhbits,
Q@rowhbits,
Q@rowhbits,
Q@rowhbits,
Q@rowhbits,
Q@rowhbits,
Q@rowhbits,
@rowhbits,
Q@rowhbits,

Q@rowibits,
Q@rowibits,

Q@col8bits,
@col9bits,

@collbits,
Q@col2bits,
Q@col3bits,
Q@colédbits,
@colbbits,
Q@col6bits,
Qcol7bits,
@col8bits,
Q@col9bits,

Qcollbits,
Q@col2bits,
Q@col3bits,
Q@col4dbits,
Q@colbbits,
Q@col6bits,
Q@col7bits,
Q@col8bits,
@col9bits,

@collbits,
Q@col2bits,
Q@col3bits,
Qcoldbits,
@colbbits,
Q@col6bits,
Q@col7bits,
Q@col8bits,
Q@col9bits,

Qcollbits,
@col2bits,
Q@col3bits,
Q@col4dbits,
Q@colbbits,
Q@col6bits,
Q@col7bits,
Q@col8bits,
Q@col9bits,

@collbits,
Q@col2bits,

@squbbits)
@squbbits)

@squébits)
@squédbits)
@squébits)
@squbbits)
@squbbits)
@squbbits)
@squbbits)
@squbbits)
@squbbits)

@squédbits)
@squébits)
@squébits)
@squbbits)
@squbbits)
@squbbits)
@squbbits)
@squbbits)
@squbbits)

@squ7bits)
@squ7bits)
@squ7bits)
@squ8bits)
@squ8bits)
@squ8bits)
@squdbits)
@squ9bits)
@squdbits)

@squ7bits)
@squ7bits)
@squ7bits)
@squ8bits)
@squ8bits)
@squ8bits)
@squ9bits)
@squdbits)
@squ9bits)

@squ7bits)
@squ7bits)
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AND ti3() BE try(@i3, ti4, Qrowibits, @col3bits, @squ7bits)

AND

ti4() BE try(@i4, tib, @rowibits, @col4bits, @squ8bits)

AND ti5() BE try(@i5, ti6, @rowibits, @colbbits, @squ8bits)
AND ti6() BE try(@i6, ti7, @rowibits, @col6bits, @squ8bits)
AND ti7() BE try(@i7, ti8, @rowibits, @col7bits, @squdbits)
AND ti8() BE try(@i8, ti9, @rowibits, @col8bits, @squdbits)
AND ti9() BE try(@i9, suc, @rowibits, @col9bits, @squ9bits)

// suc is

AND suc() BE
count := count + 1

{

}

only called when a solution has been found.

writef ("*nSolution number %n*n", count)

prboard ()

AND c(n) = VALOF SWITCHON n INTO

{

DEFAULT:
CASE O:
CASE N1:
CASE N2:
CASE N3:
CASE N4:
CASE N5:
CASE N6:
CASE N7:
CASE N8:
CASE N9:

RESULTIS ’7?’
RESULTIS ’-’
RESULTIS 1’
RESULTIS ’2°
RESULTIS ’3’
RESULTIS ’4°
RESULTIS ’5’
RESULTIS ’6’
RESULTIS 7’
RESULTIS ’8’
RESULTIS ’9’

AND prboard() BE
{ LET form = "%c %c %c  Y%c %c %c  %c %c %hc*n"

newline()

writef (form,
writef (form,
writef (form,
newline()

writef (form,
writef (form,
writef (form,
newline()

writef (form,
writef (form,
writef (form,

newline()

c(al),c(a2),c(ad),c(ad),c(ab),c(ab),c(a7),c(ad),c(a9))
c(b1),c(b2),c(®3),c(b4),c(d5),c(b6),c(b7),c(b8),c(b9))
c(c1),c(c2),c(c3),c(cd),c(ch),c(cbB),c(cT),c(c8),c(c9))

c(d1),c(d2),c(d3),c(d4),c(d5),c(d6),c(d7),c(d8),c(d9))
c(el),c(e2),c(e3),c(ed),c(eb),c(eB),c(e7),c(e8),c(e9))
c(f1),c(£f2),c(£3),c(f4),c(£f5),c(£6),c(£f7),c(£8),c(£f9))

c(gl),c(g2),c(g3),c(gd),c(gh),c(gh),c(g7),c(g8),c(gd)
c(h1),c(h2),c(h3),c(hd),c(hb),c(h6),c(h7),c(h8),c(h9))
c(i1),c(i2),c(i3),c(id),c(ib),c(iB),c(i7),c(i8),c(i9))
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4.26 The Sliding Blocks Puzzle

This section describes a program that explores the structure of the sliding blocks
puzzle pictured below.

As can be seen, the puzzle is played on a 4x5 board on which 10 blocks can
slide. There are four unit 1x1 blocks (U), four 1x2 blocks (V) oriented vertically,
one 2x1 block (H) oriented horizontally and one 2x2 block (S). The initial position
of the blocks is as in the picture and the aim is to slide the pieces until the 2x2
block is centred at the bottom. This takes a minimum of 84 moves, where a move
is defined to be moving one block by one position up, down, left or right by one
place. When the program is run it tells us there are 65880 different placements
of the ten pieces of which only 25955 are reachable from the initial position.

The collection of nodes reachable from a given node is called, by mathemati-
cians, a simply connected component, and it turns out that the sliding block
puzzle has 898 of them, the largest and smallest having 25955 and 2 nodes, re-
spectively. As we have seen, one of the components of size 25955 nodes includes
the starting position.

The structure of the puzzle can be thought of as a graph with each board
position represented by a node having edges to other nodes reachable by single
moves. The graph is said to be undirected since every move is reversible.
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Since there are only 65880 nodes in the graph the program can build the entire
graph in memory and then explore it to discover its properties. As a bye product
it outputs a minimum length sequence of moves to solve the puzzle.

The board is represented by a 20 bit pattern with each bit indicating the
occupancy of each square on the board. The vector bitsS holds bit patterns
representing the 12 possible placements of the 2x2 block in bitsS!1 to bitsS!12.
The upper bound, 12, is held in bitsS!0.

A particular placement of the 2x2 block is represented by a placement number
p in the range 1 to 12. The corresponding bit pattern is thus bitsS!p. Its
immediately adjacent placement positions are held in the vector succsS!p. If we
call this vector v, then v!0=n is the number adjacent placements and v!1 to v!n
are their placement numbers.

The vectors bitsV, bitsH and bitsU hold, respectively, the bit patterns rep-
resenting the 16 possible placements of a vertically oriented 1x2 block, the 15
possible placements of the horizontally oriented 2x1 block, and the 20 possible
placements of a 1x1 block. The vectors succsV, succsH and succsU contain
adjacency information for these blocks in a form similar to succsS.

The program starts as follows.

GET "libhdr"
MANIFEST {
// Selectors for a placement node
s_link=0 // link=0 or link -> another node at the dist value.
s_dist // dist=-1 or the distance from the starting position.
// If dist=-1, this node has not yet been visited.
s_prev // prev=0 or prev -> predecessor node in the path
// from the starting position to this node.
s_chain // chain=0 or chain -> another node with the same hash value.
s_succs // List of adjacent placement nodes.

// succs=0 or succs -> [next, node]
// Piece placement numbers

s_S // The 2x2 block
s_Va; s_Vb; s_Vc; s_Vd // The four 1x2 blocks
s_H // The 2x1 block

s_Ua; s_Ub; s_Uc; s_Ud // The four 1x1 blocks

// Board placement bit patterns

s_S1 // Positions occupied by the 2x2 piece

s_V4 // Positions occupied by the 1x2 virtical pieces
s_H1 // Positions occupied by the 2x1 horizontal piece
s_U4 // Positions occupied by the 1x1 pieces
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s_upb=s_U4 // The upb of a placement node
}

These MANIFEST constants define the fields of a placement node. The 1ink
field is used to link all nodes at the same distance from the starting node. This
distance is held in the dist field with the convention that the starting node is at
distance zero. The vector listv holds these lists with listv!d being the list of
all nodes at distance d. The dist field is set to -1 in all nodes that have not yet
been visited.

The program creates nodes all 65880 valid board placements and puts pointers
to them in elements nodev!1 to nodev!65880. The upper bound, 65880, is placed
in nodev!0. The fields S1, V4, H1 and U4 hold bit patterns representing the
placements of the 2x2 block, the 2x1 blocks, the 1x2 block and the 1x1 blocks.
These four bit patterns uniquely represent each possible placement of the ten
blocks. The placement numbers of the ten blocks are held in the S, Va, Vb, Vc,
Vd, H, Ua, Ua, Ua andUa fields.

A hash table, hashtab, allows efficient looking up of a placement node given
its S1, V4, H1 and U4 settings. The call hashfn(S1,V4,H1,U4) computes the hash
value. The pointer to the next node in a hash chain is held in the chain field.

All the placement nodes are created by the call createnodes(). The program
then creates, for each placement node, the list of immediately adjacent place-
ments. This list is held in the succs field. These lists are created by the call
createsuccs () which makes calls of the form mksuccs(node) for every node in
nodev.

The program next creates lists of nodes at different distances from the
starting position. As we have seen, these lists are placed in the vec-
tor listv. They are are created by the call createlists(). The call
find (#x66000, #x09999, #x00006 ,#00660) finds the starting node, which is
given a dist value of zero and becomes the only node in 1istv!0. All other
nodes initially have dist values of -1, indicating that their distances are not
yet known. The list of nodes at distance d from the starting position is con-
structed by the call createlist(d) which inspects every node in 1istv!(d-1).
Each successor to these nodes, that have not be visited previously, is inserted
into listv!d, with its dist field set to d and its prev field set to the immediate
predecessor. The variable solution points to the first node visited that has the
2x2 block placed centrally at the bottom. This combined with the prev field
values allows the solution to be output. If listv!d turns out to be empty, all
reachable nodes have been visited and createlists returns.

The program shows that a solution can be found in 84 moves and that of the
25955 reachable board positions there are four that are most distant from the
initial position taking 133 moves to reach. These positions are:
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UUU | UUU | VVV | UUU
Uuu | UUU | VVV | UUU
----- +=—===] VUV |--——-

VUV | VVV | VVV |

VUV | VUV | VVV |

VUV | VWV |[-—=———————-

VVV | VVV | HHHHHHHHH

VVV | VVV | HHHHHHHHH

_____ S

UUU | VVV | SSSSSSSSS

UUU | VVV | SSSSSSSSS

————— | VVV | SSSSSSsSSS
| VVV | SSSSSSSSS
| VVV | SSSSSSSSS

and

| VVV | VVV | UUU

| VVV | VVV | UUU
----- + VWV | VWV |-———-
Uuu | VVV | VVV |
Uuu | VVV | VVV |
_____ o
UUU | VVV | HHHHHHHHH
UUU | VVV | HHHHHHHHH
————— + VWV [-—————————-
VVV | VVV | SSSSSSSSS
VVV | VVV | SSSSSSSSS
VW |---—- | SSSSSSSSS
VVV | UUU | SSSSSSSSS
VVV | UUU | SSSSSSSSS

and their mirror images. No reachable position has the horizontal block in the
top row.

While there are still unvisited nodes, the program goes on to find another com-
ponent using any unvisited node as the starting node and calling createlists
again.

The program continues as follows declaring the global variables and some
more constants used in the program.

GLOBAL {
bitsS:ug; succsS
bitsH; succsH
bitsV; succsV
bitsU; succsU

spacev; spacep; spacet
mkvec
mk?2

tracing

nodev

nodecount
edgecount

listv

hashtab

root
componentcount
componentsize
componentsizemax
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componentsizemin
componentp
solution

hashfn

find
initpieces
createnodes
createsuccs
mksuccs
explore
prboard
prsol

MANIFEST {
Spaceupb 2_000_000
nodevupb 65880
listvupb = 200
hashtabsize 5000

The definition of start is as follows.

LET start() = VALOF

{ LET argv = VEC 50
LET stdout = output()
LET out = stdout

UNLESS rdargs("-o/k,-t/s", argv, 50) DO

{ writef("Bad arguments for blocks*n")
RESULTIS 20

}

IF argv'0 DO // -o/k
{ out := findoutput(argv!0)
UNLESS out DO
{ writef("Unable to open output file ¥%s*n", argv!0)
RESULTIS 20

}
selectoutput (out)
}
tracing := argv!1 // -t/s

solution =0
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nodecount =0

edgecount =0

componentcount =0

componentsize :=0

componentsizemax := 0

componentsizemin := maxint

componentp =0

spacev := getvec(Spaceupb)

spacep, spacet := spacev, spacev+Spaceupb

UNLESS spacev DO

{ writef ("Insufficient space available*n")
RESULTIS 20

}

hashtab := mkvec(hashtabsize-1)
FOR i = O TO hashtabsize-1 DO hashtab!i := 0

nodev  := mkvec(nodevupb)
listv  := mkvec(listvupb)
nodecount := 0

solution := 0

root := 0

initpieces()
createnodes() // Create all 65880 placement nodes
createsuccs() // Create the successor list for each node

IF FALSE DO

FOR i = 1 TO nodev!0 DO

{ LET node = nodev!i
LET succs = s_succs!node
writef ("node %i7: ", i)
prboard(s_Si!node, s_V4!node, s_Hl!node, s_U4!node)
//writef ("*nsuccs: ")
//WHILE succs DO
//{ writef (" %ib5", succs!1)

// succs := succs!0
//}

newline ()

succs := s_succs!node

WHILE succs DO
{ LET succ = succs!l
writef ("succ %i7: ", succ)
prboard(s_S1!succ, s_V4!succ, s_Hl!succ, s_U4!succ)
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newline()
succs := succs!O0

}
//abort (1000)
}

explore ()

// Lists of nodes at all distances have now been created

// so output the solution

IF solution DO prsol(solution)

writef ("nodecount= %nxn", nodecount)

writef ("edgecount= Jn*n",  edgecount)

writef ("componentcount= Yn*n", componentcount)
writef ("componentsizemax=yn*n", componentsizemax)
writef ("componentsizemin=Yn*n", componentsizemin)

writef ("space used = %n words*n", spacep-spacev)

fin:
UNLESS out=stdout DO endwrite()
freevec(spacev)
RESULTIS O

The program continues as follows.

AND mkvec (upb) = VALOF
{ LET p = spacep
spacep := spacep+upb+1
IF spacep>spacet DO
{ writef ("Insufficient space*n")
abort (999)
RESULTIS O
}
//writef ("mkvec(%n) => %n*n", upb, p)
RESULTIS p

AND mk2(a, b) = VALOF

{ LET p = mkvec(1)
p'0, p!l1 :=a, b
RESULTIS p

}
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The program continues as follows.

AND mkinitvec(n, a, b, c, d) = VALOF
{ LET p = spacep
spacep := spacep+n+l
IF spacep>spacet DO
{ writef ("Insufficient space*n")
abort (999)
RESULTIS O
}
FOR i = 0 TO n DO p'i := (@n)!'i
RESULTIS p

AND initpieces() BE
{ // 2x2 square block
bitsS := TABLE 12, // placement bits

#xCCO000, #x66000, #x33000, // 1 2 3
#x0CCOO0, #x06600, #x03300, // 4 5 6
#x00CCO, #x00660, #x00330, // 7T 8 9
#x000CC, #x00066, #x00033 // 10 11 12

succsS := mkvec(12)

succsS! 0 := 12

succsS! 1 := mkinitvec(2, 2, 4)

succsS! 2 := mkinitvec(3, 1, 3, 5)

succsS! 3 := mkinitvec(2, 2, 6)

succsS! 4 := mkinitvec(3, 1, 5, T7)

succsS! 5 := mkinitvec(4, 2, 4, 6, 8)

succsS! 6 := mkinitvec(3, 3, 5, 9)

succsS! 7 := mkinitvec(3, 4, 8, 10)

succsS! 8 := mkinitvec(4, 5, 7, 9, 11)

succsS! 9 := mkinitvec(3, 6, 8, 12)

succsS!10 := mkinitvec(2, 7, 11 )

succsS!11 := mkinitvec(3, 8, 10, 12 )

succsS!12 := mkinitvec(2, 9, 11 )

// 1x2 vertical block

bitsV := TABLE 16, // placement bits
#x88000, #x44000, #x22000, #x11000, // 1 2 3 4
#x08800, #x04400, #x02200, #x01100, // 5 6 7 8
#x00880, #x00440, #x00220, #x00110, // 9 10 11 12
#x00088, #x00044, #x00022, #x00011 // 13 14 15 16

succsV := mkvec(16)

succsV! 0 := 16

succsV! 1 := mkinitvec(2, 2, 5)
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succsV! 2 := mkinitvec(3, 1, 3, 6)
succsV! 3 := mkinitvec(3, 2, 4, 7)
succsV! 4 := mkinitvec(2, 3, 8)
succsV! 5 := mkinitvec(3, 1, 6, 9)
succsV! 6 := mkinitvec(4, 2, 5, 7, 10)
succsV! 7 := mkinitvec(4, 3, 6, 8, 11)
succsV! 8 := mkinitvec(3, 4, 7, 12)
succsV! 9 := mkinitvec(3, 5, 10, 13)
succsV!10 := mkinitvec(4, 6, 9, 11, 14)
succsV!11 := mkinitvec(4, 7, 10, 12, 15)
succsV!12 := mkinitvec(3, 8, 11, 16)
succsV!13 := mkinitvec(2, 9, 14 )
succsV!14 := mkinitvec(3, 10, 13, 15 )
succsV!15 := mkinitvec(3, 11, 14, 16 )
succsV!16 := mkinitvec(2, 12, 15 )

// 2x1 horizontal block

bitsH := TABLE 15, // placement bits
#xC0000, #x60000, #x30000, // 1 2 3
#x0C000, #x06000, #x03000, // 4 5 6
#x00CO00, #x00600, #x00300, // 7T 8 9
#x000CO0, #x00060, #x00030, // 10 11 12
#x0000C, #x00006, #x00003 // 13 14 15

succsH := mkvec(15)

succsH! 0 := 15

succsH! 1 := mkinitvec(2, 2, 4)

succsH! 2 := mkinitvec(3, 1, 3, 5)

succsH! 3 := mkinitvec(2, 2, 6)

succsH! 4 := mkinitvec(3, 1, 5, 7)

succsH! 5 := mkinitvec(4, 2, 4, 6, 8)

succsH! 6 := mkinitvec(3, 3, 5, 9)

succsH! 7 := mkinitvec(3, 4, 8, 10)

succsH! 8 := mkinitvec(4, 5, 7, 9, 11)

succsH! 9 := mkinitvec(3, 6, 8, 12)

succsH!10 := mkinitvec(3, 7, 11, 13)

succsH!11 := mkinitvec(4, 8, 10, 12, 14)

succsH!12 := mkinitvec(3, 9, 11, 15)

succsH!13 := mkinitvec(2, 10, 14 )

succsH!14 := mkinitvec(3, 11, 13, 15 )

succsH!15 := mkinitvec(2, 12, 14 )

// 1x1 unit squares
bitsU := TABLE 20, // placement bits
#x80000, #x40000, #x20000, #x10000, // 1 2 3 4
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succsU :=
succsU!
succsU!
succsU!
succsU!
succsU!
succsU!
succsU!
succsU!
succsU!
succsU!

succsU!10 :=

succsU!11
succsU!12
succsU!13

succsU!14 :=

succsU!15

succsU!16 :=

succsU!17
succsU!18
succsU!19
succsU!20
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#x08000, #x04000,
#x00800, #x00400,
#x00080, #x00040,
#x00008, #x00004,
kvec(20)
:= 20
:= mkinitvec(2,
:= mkinitvec(3,
= mkinitvec(3,
:= mkinitvec(2,
= mkinitvec(3, 1,
:= mkinitvec(4, 2,
:= mkinitvec(4, 3,
:= mkinitvec(3, 4,
= mkinitvec(3, 5,
mkinitvec(4, 6,
:= mkinitvec(4, 7,
:= mkinitvec(3, 8,
:= mkinitvec(3, 9,
mkinitvec(4, 10,
:= mkinitvec(4, 11,
mkinitvec(3, 12,
:= mkinitvec(2, 13,
:= mkinitvec(3, 14,
:= mkinitvec(3, 15,
:= mkinitvec(2, 16,

13,
14,
15,

17,
18,
19

The program continues as follows.

LET node = mkvec(s_upb)
LET S1 = bitsS!s
LET v4 =

LET H1 = bitsH'h
LET U4 =

LET

s_link!node := 0
s_dist!node := -1
s_prev!node := 0
s_chain!node
hashtab!hashval :=

s_succs!n

ode := 0

:= hashtab'hashval
node

#x02000,
#x00200,
#x00020,
#x00002,
2, 5)
3, 6)
4, 7)
8)

6, 9)
7, 10)
8, 11)
12)

10, 13)
11, 14)
12, 15)
16)

14, 17)
15, 18)
16, 19)
20)

18 )
19 )
20 )
)

AND addnode(s, va,vb,vc,vd, h, ua,ub,uc,ud) BE
{ // Insert a new placement node in nodev

#x01000,
#x00100,
#x00010,
#x00001

bitsVlva + bitsV!vb + bitsV!vc + bitsV!vd

bitsUlua + bitsU!ub + bitsUluc + bitsU!ud
hashval = hashfn(S1, V4, H1i, U4)

// 5 6 7 8
// 9 10 11 12
// 13 14 15 16
// 17 18 19 20
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s_S Inode := s

s_Valnode := va
s_Vblnode := vb
s_Vc!node := vc

s_Vd!node := vd
s_H node := h

s_Ua'!node := ua
s_Ub!node := ub
s_Uc!node := uc

s_Ud!'node := ud

s_Sl!node := S1
s_Hl!node := H1
s_V4!node := V4
s_U4!'node := U4

nodecount := nodecount+1

IF nodecount > nodevupb DO
{ writef ("nodevupb=/n is too small for nodecount=Yn*n", nodevupb)

RETURN
}
nodev!nodecount := node
nodev!0 := nodecount

The program continues as follows.

AND hashfn(S1, V4, H, U4) = (S1 XOR V4x5 XOR Hx7 XOR U4*11) MOD hashtabsize

AND find(S1, V4, H1, U4) = VALOF
{ LET hashval = hashfn(S1, V4, H1, U4)
LET node = hashtabl!hashval
//writef ("find: entered, hashval=Yn*n", hashval)
WHILE node DO
{ IF S1=s_S1'node &
V4=s_V4!node &
Hi=s_H1l!node &
U4=s_U4!'node RESULTIS node
node := s_chain!node
}
writef ("find: Failed to find "); prboard(S1,V4,H1,U4)
newline ()
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abort (999)
RESULTIS O

The program continues as follows.

AND createnodes() BE
{ FOR s = 1 TO bitsS!0 DO
{ LET bits = bitsS!s
FOR va = 1 TO bitsV!0 - 3 IF (bits & bitsV!va)=0 DO
{ bits := bits + bitsV!va
FOR vb = va+1l TO bitsV!0 - 2 IF (bits & bitsV!vb)=0 DO
{ bits := bits + bitsV!vb
FOR vc = vb+1l TO bitsV!0 - 1 IF (bits & bitsV!vc)=0 DO
{ bits := bits + bitsV!vc
FOR vd = vc+l TO bitsV!0 IF (bits & bitsV!vd)=0 DO
{ bits := bits + bitsV!vd
FOR h = 1 TO bitsH!0 IF (bits & bitsH!h)=0 DO
{ bits := bits + bitsH'h
FOR ua = 1 TO bitsU!0 - 3 IF (bits & bitsU'ua)=0 DO
{ bits := bits + bitsUlua
FOR ub = ua+1 TO bitsU!0 - 2 IF (bits & bitsU!ub)=0 DO
{ bits := bits + bitsU!ub
FOR uc = ub+1 TO bitsU!0 - 1 IF (bits & bitsU'uc)=0 DO
{ bits := bits + bitsUluc
FOR ud = uc+1 TO bitsU!0 IF (bits & bitsU!ud)=0 DO
{ bits := bits + bitsU'ud
addnode(s,va,vb,vc,vd,h,ua,ub,uc,ud)
bits := bits - bitsU!lud
}
bits := bits - bitsUluc
}
bits := bits - bitsUlub
}
bits := bits - bitsUlua
}
bits := bits - bitsH'h
}
bits := bits - bitsV!vd
}
bits := bits - bitsV!vc
}
bits := bits - bitsV!vb
}
bits := bits - bitsVl!va
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The program continues as follows.

AND createsuccs() BE

{ // Create the successor list for every node
FOR i = 1 TO nodev!0 DO mksuccs(nodev!i)

}

AND mksuccs(node) BE
{ LET all = s_Sl1'node + s_V4!node + s_Hl!node + s_U4!'node
//uritef ("mksuccs: node is ")
//prboard(s_S1!node, s_V4!node, s_Hl!node, s_U4!node)
//newline ()
//abort (2000)
mksuccsS(node, all, s_S !node)
mksuccsV(node, all, s_Val!node)
mksuccsV(node, all, s_Vb!node)
mksuccsV(node, all, s_Vc!node)
mksuccsV(node, all, s_Vd!mode)
mksuccsH(node, all, s_H !'node)
mksuccsU(node, all, s_Ua!node)
mksuccsU(node, all, s_Ub!node)
mksuccsU(node, all, s_Uc!node)
mksuccsU(node, all, s_Ud!node)
//abort (2003)
}

AND mksuccsS(p, all, q) BE
{ // all is a bit pattern giving all occupied squares
// q is the current placement number of the 2x2 S piece
LET succsv = succsS!q // Vector of successors of placement q
LET bitsq = bitsS!q // The bit pattern for placement g
LET bits = all - bitsq // all with placement q removed
FOR i = 1 TO succsv!0 DO
{ LET j = succsv!i // An adjacent placement of the 2x2 S piece
LET bitsj = bitsS!j // The bit pattern for placement j
//uritef ("mksuccsS: g=%n i=Yn j=Y%n bits=%x5 bitsq=%x5 bitsj=lxb5*n",
// q, i, j, bits, bitsq, bitsj)
//abort (2001)
IF (bits & bitsj) = 0 DO
{ // Found a successor
LET S1, V4, H1, U4 = bitsj, s_V4!p, s_Hilp, s_U4lp
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LET succ = find(S1,V4,H1,U4)
s_succs!p := mk2(s_succs!p, succ)
edgecount := edgecount+1
//writef ("S successor ")
//prboard(S1,V4,H1,U4)
//newline ()

//abort (1000)

AND mksuccsV(p, all, q) BE
{ // all is a bit pattern giving all occupied squares
// q is the current placement number of a 1x2 V piece
LET succsv = succsV!q // Vector of successors of placement q
LET bitsq = bitsV!qg // The bit pattern for placement q
LET bits = all - bitsq // all with placement q removed
FOR i = 1 TO succsv!0 DO
{ LET j = succsv!i // An adjacent placement of the 1x2 V piece
LET bitsj = bitsV!j // The bit pattern for placement j
//writef ("mksuccsV: g=/n i=%n j=/n bits=%x5 bitsq=%x5 bitsj=Vx5*n",
// q, i, j, bits, bitsq, bitsj)
//abort (2001)
IF (bits & bitsj) = 0 DO
{ // Found a successor
LET S1, V4, H1, U4 = s_S1!p, s_V4!p-bitsqg+bitsj, s_Hl!p, s_U4d!p
LET succ = find(S1,V4,H1,U4)
s_succs!p := mk2(s_succs!p, succ)
edgecount := edgecount+1

//wuritef ("V successor ")
//prboard(S1,V4,H1,U4)
//newline()

//abort (1000)

AND mksuccsH(p, all, q) BE
{ // all is a bit pattern giving all occupied squares
// q is the current placement number of the 2x1 H piece
LET succsv = succsH!q // Vector of successors of placement q
LET bitsq = bitsH!q // The bit pattern for placement q
LET bits = all - bitsq // all with placement q removed
FOR i = 1 TO succsv!0 DO
{ LET j = succsv!i // An adjacent placement of the 2x1 H piece



4.26.

LET bitsj = bitsH!j

THE SLIDING BLOCKS PUZZLE

// The bit pattern for placement j

193

//uritef ("mksuccsH: g=%n i=Yn j=%n bits=%x5 bitsq=%x5 bitsj=/x5*n",

//
//

q, i, j, bits, bitsq, bitsj)
abort (2001)

IF (bits & bitsj) = 0 DO

{

// Found a successor

LET S1, V4, H1, U4 = s_S1!'p, s_V4!p, bitsj, s_Ud!p
LET succ = find(S1,V4,H1,U4)

s_succs!p := mk2(s_succs!p, succ)

edgecount := edgecount+1

//writef ("H successor ")

//prboard(S1,V4,H1,U4)

//newline ()

//abort (1000)

AND mksuccsU(p, all, q) BE
{ // all is a bit pattern giving all occupied squares
// q is the current placement number of a 1x1 U piece

LET succsv = succsU!q // Vector of successors of placement q
LET bitsq = bitsU!q // The bit pattern for placement q

LET bits = all - bitsq // all with placement q removed

FOR i = 1 TO succsv!0 DO

{ LET j = succsv!i // An adjacent placement of a 1x1 U piece

LET bitsj = bitsU!j

// The bit pattern for placement j

//writef ("mksuccsU: g=)n i=Yn j=%n bits=%x5 bitsq=%x5 bitsj=Vx5*n",

//
//
IF
{

q, i, j, bits, bitsq, bitsj)
abort (2001)
(bits & bitsj) = 0 DO
// Found a successor

LET S1, V4, H1, U4 = s_Si!p, s_V4!p, s_Hilp, s_U4!p-bitsq+bitsj

LET succ = find(S1,V4,H1,U4)
s_succs!p := mk2(s_succs!p, succ)
edgecount edgecount+1
//uritef ("U successor ")
//prboard(S1,V4,H1,U4)
//newline ()

//abort (1000)

The program continues as follows.
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AND explore() BE

{ componentp := 1
componentcount := 0
componentsizemax := 0
componentsizemin := maxint

// Find the starting position
root := find(#x66000, #x09999, #x00006, #x00660)

WHILE root DO
{ LET dist = 7

// Insert the root of the next simply connected component

s_link!root, s_dist!root := 0, O
listv!0 := root

dist := 0

componentcount := componentcount + 1
componentsize := 1

WHILE listv!dist DO
{ dist := dist+1

createlist(dist)
}

// The component is now complete

IF componentsize > componentsizemax DO componentsizemax := componentsize
IF componentsize < componentsizemin DO componentsizemin := componentsize
IF tracing DO
{ writef ("Component %i3 size %ib root ", componentcount, componentsize)
prboard(s_S1!root, s_V4!root, s_Hllroot, s_U4!root)
newline()
//abort (1007)

}

// Find the root of the next component

root := 0

WHILE componentp <= nodevupb DO

{ LET node = nodev!componentp
//writef ("componentp = %ib*n", componentp)
IF s_dist!node < 0 DO

{ root := node
//writef ("new component root = %i5*n", root)
//abort (1008)

BREAK
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}
componentp := componentp + 1
+
b
}

The program continues as follows.

AND createlist(dist) BE

{ LET prevnode = listv!(dist-1) // List of nodes at distance dist
//writef ("Making list of nodes at distance %n*n", dist)
//writef ("prevnode=yn*n", prevnode)

//abort (1006)

// Create list of nodes at the new distance.
// The list is initially empty.
listv!dist := 0

// Inspect every node at distance dist-1
WHILE prevnode DO
{ // prevnode is a node at the previous distance.
// Any successors of prevnode that have not yet been
// visited are to be inserted into listv!dist.
LET succs = s_succs!prevnode // List of nodes adjacent to prevnode

//writef ("exploring successors of ")
//prboard(s_S1!prevnode, s_V4!prevnode, s_H!prevnode, s_U4!prevnode)
//newline ()

WHILE succs DO

{ LET succ = succs!l // succ is a successor to prevnode
IF s_dist!succ < 0 DO
{ // succ has not yet been visited

s_dist!succ := dist

s_prev!succ := prevnode
s_link!succ := listv!dist
listv!dist := succ

componentsize := componentsize + 1

//writef ("dist=%i4 ", dist)
//prboard(s_S1!succ, s_V4'!succ, s_Hl!succ, s_U4!succ)

//newline()
UNLESS solution IF s_S1!succ=#x00066 DO
{ solution := succ

//writef ("Solution*n")
//abort(1111)
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b
//abort (3000)
b
succs := succs!0
b
prevnode := s_link!prevnode
b

}
The program continues as follows.

AND prboard(S1, V4, H1, U4) BE
{ LET bit = #x80000

WHILE bit DO
{ LET ch = 7%x*’

UNLESS (S1 & bit) = 0 DO ch := ’8’
UNLESS (H1 & bit) = 0 DO ch := ’H’
UNLESS (V4 & bit) = 0 DO ch := °V’
UNLESS (U4 & bit) = 0 DO ch := ’U’

writef (" %c", ch)
IF (bit & #x11110) > 0 DO writef(" ")
bit := bit>>1

}

}

AND prsol(node) BE

{ LET S1 = s_Si1!node
LET V4 = s_V4!node
LET H1 = s_H1l'node
LET U4 = s_U4!node

IF s_prev!node DO prsol(s_prev!node)

writef ("%i3: ", s_dist!node)
prboard(S1, V4, H1, U4)

IF S1=#x00066 DO writes(" solution")
newline()

When this program runs it outputs the following.

0: S8 VSSV VvVUUVvV VUUV VHHV
1: vs8sx V8SSV x=xUUV VUUV VHHYV
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47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
T
78:
79:
80:
81:
82:
83:
84: V Vv
nodecount= 65880
edgecount= 206780
componentcount= 898
componentsizemax=25955
componentsizemin=2
space used = 1736680 words
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4.27 The Rubik Cube

The popular Rubik Cube puzzle, pictured below, has much in common with
the sliding blocks puzzle described above. From any position, you can make
a small number of moves to reach adjacent positions. Unfortunately there are
43,252,003,274,489,856,000 possible positions (see rubik cube on the web) making
it impossible to represent the entire graph in memory.

Much more to follow

My aim was to construct a program to solve the rubik cube starting at any
random position without resorting to one of the recipies available on the web. I
have so far failed and am unlikely to attempt to improve the program, so here is
the current draft (called rubik.b). Even if you choose not to study this program
in detail, you might like to look at the function findnode since it shows how hash
tables can be implemented. Ffloyd’s algorithm might also be of interest (see the
function £floyd). Information about this algorithm is easily availble on the web.
Do a web search on ffloyds algorithm.

/%
###4##4#44# UNDER DEVEOPMENT #######4##4H##H#ASHHSHHGHHSHHSHHSHHISH

This program is unlikely to ever be finished, but may be of interest
all the same.

This is a second attempt to write a program to solve the rubik
cube. The first attempt (in rubikl.b) used a strategy that was too
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slow to be useful unless the solution has a rather small number of
moves.

This program attempts to solve Rubik Cube problems, given a textual
specification of an initial position, it will hopefully output a
sequence of rotations to solve the cube.

Implemented by Martin Richards (c) January 2015

This program uses a lot of work space so it is a good idea to run
cintsys with a large memory size. You can, for instance, run the
system with 100 million words of Cintcode memory by executing the
following shell command.

cintsys -m 100000000

This program is still too slow to find solutions in general, but
seems to get quite close. For instance, output generated by the command

rubik -s 4
ends as follows:

new bestscore=434 nodecount=4491837

WWWw

WWWw

WWWw
GGG RRR BBB 000
GGG RRR BBO BOO
GYG ROR BBB O0GO

YYY

RYY

YYY

Insufficient space

nodecount = 8259446
space used: 75000002 out of 75000000
360.630>

So it found that partial solution after visiting fewer than 5 million
nodes. Note that only a few pieces are not in their correct positioms.

*/

GET "libhdr"



MANIFEST {
// This program assumes the cube is always in the same
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orientation

// with upper face being white and the front face red.
// The other faces are

// right
// back
// left
// down

blue
orange
green
yellow

// Corner piece definitions
// orientation O means W/Y piece face is parallel to up face

//
//
//
WRB0O=0%3+0;
WB00=1%3+0;
WOG0=2%3+0;
WGR0=3%3+0;

YBRO=4%3+0;
YOBO=5%*3+0;
YGO0=6%*3+0;
YRGO=7%3+0;

1 means the piece was rotated anticlockwise once

2 means the piece was rotated

WRB1=0%3+1;
WBO1=1%3+1;
WOG1=2%3+1;
WGR1=3%3+1;

YBR1=4%3+1;
YOB1=5%3+1;
YGO1=6%3+1;
YRG1=7+*3+1;

corncostvupb = YRG2

corncostvsize =

WRB2=0%3+2
WB02=1%3+2
W0G2=2%3+2
WGR2=3%3+2

YBR2=4%*3+2
Y0B2=5%3+2
YG02=6+*3+2
YRG2=7+*3+2

//
//
//
//

//
//
//
//

Corner
Corner
Corner
Corner

Corner
Corner
Corner
Corner

when looking towards its corner.

anticlockwise twice
0

w N =

~N o O

corncostvupb+l // Number of elements in a row or column

corncostmupb = corncostvsize*corncostvsize-1 // Upb of the matrix

// There are 12 Edge pieces

directions
1->2 2->3
1->5 2->6

4->7 5->4 6->b

// orientation O means

// orientation 1 means

// Upper level edges

// The edge
// 0->1
//  0->4
//

//

//

WRO= 0%2+0;
WBO= 1%2+0;
W00= 2%2+0;
WGO= 3%2+0;

WR1= 0*2+1
WB1= 1%2+1
W01= 2%2+1
WG1l= 3x*2+1

// Middle layer edges

are
3->0
3->7
7->6
the first colour is on the left when
looking forward along the edge

the first colour is on the right when
looking forward along the edge

// i
// i
// 1
// i

edge
edge
edge
edge

O_
1_
2_

>1
>2
>3

3->0
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BRO= 4%2+0; BR1= 4*2+1 // in edge 0->4
0BO= 5*2+0; 0B1l= 5%2+1 // in edge 1->5
GOO= 6%2+0; GO1= 6%2+1 // in edge 2->6
RGO= 7%2+0; RG1= 7*2+1 // in edge 3->7

// Down layer edges

YRO= 8+%2+0; YR1= 8*2+1 // in edge 4->7
YBO= 9*2+0; YB1= 9*2+1 // in edge 5->4
Y00=10%2+0; Y01=10*2+1 // in edge 6->5
YGO=11%2+0; YG1=11*2+1 // in edge 7->6

edgecostvupb = YG1
edgecostvsize = edgecostvupb+l // Number of elements in a row or column
edgecostmupb = edgecostvsize*edgecostvsize-1 // Upb of the matrix

// 8 Corner positions used in the cost function
cWRB=0; cWBO; cWOG; cWGR // White corners
cYBR; cYOB; cYGO; cYRG // Yellow corners

// 12 Edge positions used in the cost function
eWR=0; eWB; eW0; eWG
eBR; e0B; eGO; eRG
eYR; eYB; eY0; eYG

// 8 Corner byte position indexes on the cube
iWRB=0; iWBO; iW0G; iWGR // White cormers
iYBR; iYOB; iYGO; iYRG // Yellow corners

// 12 Edge byte position indexes on the cube
iWR; iWB; iW0; 1iWG
iBR; iOB; iGO; iRG
iYR; iYB; iY0; 1iYG

s_chain= iYG / bytesperword + 1 // Hash chain field

s_prev // Immediate predecessor
s_move // The move from predecessor to this node
s_maxdepth // This node has been or is being searched

// with this setting of maxdepth
nodeupb = s_maxdepth

// Moves for Upper, Front, Right, Back, Left and Down
// ¢ = clockwise

// a = anti clockwise

// These are used to record the sequence of moves
mUc="U’; mUa=’u’
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mFc="F’; mFa=’f’
mRc=’R’; mRa=’r’
mBc=’B’; mBa=’b’
mLc="L’; mLa=’1"’
mDc="D’; mDa=’d’

GLOBAL A{
// 8 Corner positions on the p cube as global variables
PWRB:ug; pWBO; pWOG; pWGR // White corners
PYBR; pYOB; pYGO; pYRG // Yellow corners
PWR; pWB; pWO; pWG // 12 Edge positions on the p cube
pBR; pOB; pGO; pRG
pYR; pYB; pYO; pYG

// 8 Corner positions on the q cube as global variables
qWRB; qWBO; qWOG; qWGR // White corners

qYBR; qYO0B; qYGO; qYRG // Yellow corners

qWR; qWB; gqW0; qWG // 12 Edge positions on the g cube
gBR; q0B; qGO; qRG

qYR; q¥B; qY0; qYG

corncostm

corncostv

// corncostm is a 24x24 matrix giving the cost of moving a
// piece from one corner of the cube to another changing its
// orientation at the same time. If i and j are row and

// column subscripts of corncostm then they have the form

// cornerx3+orientaion where corner is the corner number

// in the range O to 7 and oritation is the orientation

// number in the range 0 to 2.

// corncostv!i is a vector corresponding to the ith row

// of matrix corncostm. So the (i,j)th element of the matrix
// can be accessed by corncostv!i!j. To see how it is used
// see the function corncost.

edgecostm

edgecostv

// edgecostm is a 24x24 matrix giving the cost of moving a

// piece from one edge postion to another possibly flipping
// its orientation. Its structure is similar to cordcostm.

// The ((i,j)th element of edgecostm can be accessed by

// edgecost!i!j. See the function edgecost.

fin_p; fin_1
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spacev; spacep;

spacevupb
hashtabsize
hashtabupb
mkvec
nodecount
hashtab
hashfn
findnode

cube

colour
errors
moves
bestnode
bestscore
initcostfn
costfn
score
scorenode
exploreroot
exploretree
try

prnode
tracing
compact
randomise
pieces2cube
cube2pieces
rotc

rota

flip

//
//

//
//
//
//

//

//
//
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spacet

Find a node in the hash table, cresting one
if necessary.

A packed cube -- 20 bytes = 5 words
colour!0 .. colour!53

=TRUE if an error has occurred
Initialising moves supplied by -m argument

(node) returns the node’s score

=TRUE for compact configuration output
Set by the -r or -s options

rotateUc; rotateUa
rotateDc; rotateDa
rotateFc; rotateFa
rotateBc; rotateBa
rotateRc; rotateRa
rotatelc; rotatela

movecubep2q;

cornrotate;
ffloyd

movecubeq2p

edgerotate

prcornmat; predgemat
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prmoves

corncost; edgecost
prcosts

prcorncost; predgecost
prsolution

wrcornerpiece; wredgepiece
prpieces

prnode; prnode

setface

corner; edge

cols2cube; cube2cols
setcornercols; setedgecols

LET hashfn(node) = VALOF
{ // Return a hash value in range O to hashtabupb
LET w = node!0 XOR node!l XOR node!2 XOR node!3 XOR node!4
LET h = w MOD hashtabsize
UNLESS 0 <= h <= hashtabupb DO
{ prnode(node)
writef ("%x8 %x8 %x8 %x8 %x8*n",
node!0, node!l, node!2, node!3, node!4)
writef ("w = %x8 => hashval = %n*n", w, h)
abort (999)

+
RESULTIS h

AND findnode(cube, prev, move) = VALOF
{ // Find the node that matches the configuration in cube
// prev=0 or is the immediate predecessor
// move=0 or is the move to reach this node
// These values are only used if the node has not been seen before.
// It creates a new node if necessary.
LET hashval = hashfn(cube)
LET node hashtab'!hashval
//writef ("hashval=Yn node=Yn*n", hashval, node)
WHILE node DO
{ IF cube!O=node!0 &
cube!l=node!l &
&
&

cube!2=node!2
cube!3=node!3
cube!4=node!4 DO
{ //writef("node %n has been seen before*n", node)
RESULTIS node // The node already exists

205



206 CHAPTER 4. THE BCPL CINTCODE SYSTEM

}

node := s_chain!node

}

//writef ("Matching node not found so create one*n")
// The matching node has not been found so create one.

node := mkvec(nodeupb)

UNLESS node DO

{ writef ("Mode space needed*n")
stop(0, 0) //abort(999)

RESULTIS O
}
// Fill in all its fields
node!0 := cube!0 // The corners
node!l := cube!l
node!2 := cube!2 // The edges
node!3 := cube!3

node!4 := cubel!4

// Fill in its remaining fields

s_prev!node := prev
s_move!node := move
s_maxdepth!node := 0

// Insert it into its hash chain
s_chain!node := hashtab'hashval
hashtab!hashval := node

nodecount := nodecount+1

IF tracing DO
{ writef ("New node %n, nodecount=Y%n*n",
node, nodecount)
prnode (node)

}

RESULTIS node

AND mkvec (upb) = VALOF
{ LET p = spacep
spacep := spacep+upb+1
IF spacep>spacet DO
{ writef("Insufficient space*n")
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longjump(fin_p, fin_1) //abort(999)
RESULTIS O
}
RESULTIS p
}

LET start() = VALOF
{ LET argv = VEC 50
LET root = 0

fin p := level()

fin_1 fin

// Allocate 75} of current Cintcode memory as work space.

// All other space used by this program is taken out of

// this allocation.

spacevupb rootnode!rtn_memsize*3/4

hashtabsize := spacevupb/113

hashtabupb hashtabsize-1

writef ("*nAllocating %n words of work space, hashtabupb=yn*n",
spacevupb, hashtabupb)

spacev := getvec(spacevupb)
spacep, spacet := spacev, spacev+spacevupb

UNLESS spacev DO
{ writef ("Insufficient space available, cannot allocate spacev*n")

GOTO fin
}
cube := mkvec(nodeupb) // Structure representing the current state of the cube
colour := mkvec(6%9-1)
corncostm := mkvec(corncostmupb)
corncostv := mkvec(corncostvupb)
edgecostm := mkvec(edgecostmupb)
edgecostv := mkvec(edgecostvupb)

UNLESS cube & colour &
corncostm & edgecostm &
corncostv & edgecostv DO
{ writef ("Insufficient space available*n")
GOTO fin
3
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errors := FALSE

UNLESS rdargs("W,R,B,0,G,Y,-m/K,-s/K/N,-r/S,-t/S,-c/S", argv, 50) DO
{ writef("Bad arguments for Rubik*n")

GOTO fin

}

// Set default colours of the solved cube
FOR i = 0 TO 8 DO colour!i := W’

FOR i = 9 TO 17 DO colour!i := ’R’

FOR i = 18 TO 26 DO colour!i := ’B’

FOR i = 27 TO 35 DO colour!i := ’0’

FOR i = 36 TO 44 DO colour!i := ’G’

FOR i = 45 TO 53 DO colour!i := ’Y’

// Set user specified colours

IF argv!0 DO setface(0, ’W’, argv!0) // W
IF argv!l DO setface(1l, ’R’, argv!l) // R
IF argv!2 DO setface(2, ’B’, argv!2) // B
IF argv!3 DO setface(3, ’0’, argv!3) // O
IF argv!4 DO setface(4, °G’, argv!4) // G
IF argv!5 DO setface(5, ’Y’, argv!b) // Y

moves := argv!6 // -m/K
randomise := FALSE
IF argv!7 DO // -s/K/N

{ //writef("calling setseed()n)*n", !(argv!7))
setseed (! (argv!7))

randomise := TRUE
}
IF argv!8 DO // -x/8
{ LET day, msecs, filler = 0, 0, O

datstamp (@day)

randomise := TRUE

setseed(msecs) // Set seed based on time of day
b
tracing := argv!9 // -t/S
compact := argv!10 // -c/s

cols2cube(colour, cube)
cube2pieces(cube, @pWRB)

// Make initial moves, if any
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IF moves FOR i = 1 TO moves’0 DO
{ SWITCHON moves%i INTO

writef ("Bad initial moves %s*n", moves)

ENDCASE
ENDCASE
ENDCASE
ENDCASE
ENDCASE
ENDCASE
ENDCASE
ENDCASE
ENDCASE
ENDCASE
ENDCASE
ENDCASE

{ DEFAULT:
errors := TRUE
BREAK
CASE ’U’: rotateUc();
CASE ’u’: rotateUa();
CASE ’F’: rotateFc();
CASE ’f’: rotateFa();
CASE ’R’: rotateRc();
CASE ’r’: rotateRa();
CASE ’B’: rotateBc();
CASE ’b’: rotateBa();
CASE ’L’: rotateLc();
CASE ’1’: rotateLa();
CASE ’D’: rotateDc();
CASE ’d’: rotateDa();
}
movecubeq2p ()

}

// Possibly randomise the cube
IF randomise FOR i = 1 TO 200 DO
{ SWITCHON randno(15) INTO

{ DEFAULT: LOOP
CASE 1: rotateUc();
CASE 2: rotateUa();
CASE 3: rotateFc();
CASE 4: rotateFa();
CASE b5: rotateRc();
CASE 6: rotateRa();
CASE 7: rotateBc();
CASE 8: rotateBa();
CASE 9: rotateLc();
CASE 10: rotateLa();
CASE 11: rotateDc();
CASE 12: rotateDa();

}

movecubeq2p ()

}

IF errors RESULTIS O

ENDCASE
ENDCASE
ENDCASE
ENDCASE
ENDCASE
ENDCASE
ENDCASE
ENDCASE
ENDCASE
ENDCASE
ENDCASE
ENDCASE
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// Pack the starting position in cube
pieces2cube (@pWRB, cube)

newline ()

newline()
initcostfn()
//prcosts()

//uritef ("*nThe starting position is:*n*n")
//prpieces(@pWRB); newline()
//movecubep2q()
//uritef ("score = %n*n", score()+goalscore(cube))
//prnode (cube)
//newline ()

//abort (1000)

hashtab := mkvec(hashtabupb)
FOR i = 0 TO hashtabupb DO hashtab!i := 0

nodecount := 0
// The starting node configuration is now in cube
//writef ("Creating the starting position#*n")

// Create a new node with prev=0 and no move
root := findnode(cube, 0, 0, 0)

{ LET bestsc = bestscore

root := exploreroot(root, 1)
IF bestscore=0 | bestsc=bestscore BREAK
} REPEAT

writef ("*nSolution*n*n")
prsolution(root)

fin:
writef ("*nnodecount = %n*n", nodecount)
writef ("space used: %n out of %n*n",
Spacep-spacev, spacet-spacev)

IF spacev DO freevec(spacev)
RESULTIS O
}



4.27. THE RUBIK CUBE 211

AND exploreroot(root, maxdepth) = VALOF

{ // root is a new root node from which to start the search
// to find a nearest node with minimum score no more than
// maxdepth away. During the search nodes are put into the hash
// table so that we can easily test whether a node has already
// been visited.
// The function returns a node with minimum score.
// If the best node has the same score as root, exploreroot will
// have to be called again with a larger maxdepth.

LET rootscore = scorenode(root)

// Initialise bestscore and bestnode
bestscore, bestnode := rootscore, root

//writef ("exploreroot: score=J/n space used = %n*n", rootscore, spacep-spacev)
//prnode (root)
IF bestscore=0 RESULTIS root
//abort (5000)
exploretree(root, maxdepth)

IF bestscore < rootscore RESULTIS bestnode

maxdepth := maxdepth + 1
//writef ("bestscore = %n, trying exploreroot with new maxdepth = %n*n",

// bestscore, maxdepth)
//abort (6000)
} REPEAT

AND exploretree(node, maxdepth) BE
{ LET sc = score()+goalscore(node)

IF sc < bestscore DO

{ bestscore, bestnode := sc, node
writef ("new bestscore=Yn nodecount=%n*n", bestscore, nodecount)
prnode (node)
//abort (7000)
}
//writef ("exploretree: maxdepth=/n score=Jn bestscore=Jn nodecount=Yn*n",
// maxdepth, sc, bestscore, nodecount)
//prnode (node)

//IF sc=0 DO abort(1000)
IF maxdepth=0 RETURN // We have reached the depth limit
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// Return is this node has already be processed at this maxdepth.
IF s_maxdepth!node >= maxdepth RETURN

// Try the 12 possible successors of this node
// in the list.

try(rotateUc, node, mUc, maxdepth)
try(rotateUa, node, mUa, maxdepth)
try(rotateFc, node, mFc, maxdepth)
try(rotateFa, node, mFa, maxdepth)
try(rotateRc, node, mRc, maxdepth)
try(rotateRa, node, mRa, maxdepth)
try(rotateBc, node, mBc, maxdepth)
try(rotateBa, node, mBa, maxdepth)
try(rotatelc, node, mLc, maxdepth)
try(rotatela, node, mLa, maxdepth)
try(rotateDc, node, mDc, maxdepth)
try(rotateDa, node, mDa, maxdepth)

AND try(rotfn, prev, move, maxdepth) BE IF bestscore DO
{ // Explore an immediate successor of node prev

LET node = 7

// First unpack prev in pWRB, etc

cube2pieces(prev, @pWRB)

//prpieces (@pWRB)

rotfn() // q cube := p cube with one face rotated
//newline ()

//prpieces (@QqWRB)

//abort (1000)

pieces2cube (QqWRB, cube)

node := findnode(cube, prev, move)

exploretree(node, maxdepth-1) // Explore the successor nodes

AND pieces2cube(pieces, cube) BE

{ cube%iWRB := pieces!iWRB
cube’iWB0 pieces!iWBO
cube’iW0G := pieces!iW0G
cube/%iWGR := pieces!iWGR
cube’%iYBR := pieces!iYBR
cube’%iYOB := pieces!iYOB
cube’iYGO pieces!iYGO



cube’%iYRG :

cube’iWR
cube’iWB
cube’iW0
cube’iWG

cube’iBR
cube’i0B
cube’iGO
cube’iRG

cube’%iYR
cube’iYB
cube’iY0O
cube’iYG

{ pieces!iWRB :
pieces!iWBO :
pieces!iW0G :
pieces!iWGR :
pieces!iYBR :
pieces!iYOB :
pieces!iYGO :
pieces!iYRG :

pieces!iWR
pieces!iWB
pieces!iW0
pieces!iWG

pieces!iBR
pieces!iOB
pieces!iGO
pieces!iRG

pieces!iYR
pieces!iYB
pieces!iYO
pieces!iYG

AND rotc(piece) = VALOF SWITCHON piece INTO

4.27. THE RUBIK CUBE

pieces!iYRG

pieces!iWR
pieces!iWB
pieces!iW0
pieces!iWG

pieces!iBR
pieces!iOB
pieces!iGO
pieces!iRG

pieces!iYR
pieces!iYB
pieces!iYO
pieces!iYG

AND cube2pieces(cube, pieces) BE

cube’,iWRB
cube’iWB0
cube’iW0G
cube’iWGR
cube’iYBR
cube’iYOB
cube’iYGO
cube’,iYRG

cube’iWR
cube’iWB
cube’iW0
cube’iWG

cube’iBR
cube’i0B
cube’iGO
cube’iRG

cube’%iYR
cube’iYB
cube’%iY0
cube’%iYG

213
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{ // Rotate
DEFAULT:

clockwise
piece=Yn#*n", piece)

a corner piece one position
writef ("rotc: System error,
abort (999)

RESULTIS piece

CASE
CASE
CASE
CASE

WRB1:
WOG1:
YBR1:
YGO1:

CASE WRB2:
CASE WOG2:

CASE WBO1:

CASE WGR1:
CASE YBR2: CASE YOB1:
CASE YGO2: CASE YRG1:

RESULTIS piece-1

CASE
CASE
CASE
CASE

WB02:
WGR2:
YOB2:
YRG2:

CASE
CASE

WRBO:
YOBO:

CASE WB0O: CASE WOGO:
CASE YBRO: CASE YGOO:
RESULTIS piece+2

CASE
CASE

WGRO:
YRGO:

AND rota(piece) = VALOF SWITCHON piece INTO
{ // Rotate a corner piece one position anti-clockwise
DEFAULT: writef("rotl: System error, piece=/n*n", piece)
abort (999)
RESULTIS piece

CASE WRBO:
CASE WOGO:
CASE YBRO:
CASE YGOO:

CASE WRB1:
CASE WOG1:
CASE YBRI1:
CASE YGO1:

CASE WBO0O:
CASE WGRO:
CASE YOBO:
CASE YRGO:

CASE
CASE
CASE
CASE

WBO1:
WGR1:
YOB1:
YRG1:

RESULTIS piece+l

CASE WRB2:
CASE YO0B2:

CASE WB02: CASE WO0G2:
CASE YBR2: CASE YGO2:
RESULTIS piece-2

CASE
CASE

WGR2:
YRG2:

AND flip(piece) = piece XOR 1 // Flip an edge piece

AND rotateUc() BE

{ // Rotate the upper face clockwise by a quarter turn
qWRB, qWwBO, qWOG, qWGR := pWBO, pWOG, pWGR, pWRB // Rotated
qYBR, qY0B, qYGO, qYRG := pYBR, pYOB, pYGO, pYRG // Not rotated
qWR, qWB, qW0, qWG := pWB, pWO, pWG, pWR // Rotated
gBR, qO0B, 9GO, gRG := pBR, p0B, pGO, pRG // Not rotated
qYR, qYB, qY0, qYG := pYR, pYB, pY0, pYG // Not rotated
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AND rotateUa() BE

{ // Rotate the upper face anti-clockwise by a quarter turn

qQWRB, qWBO, qWOG, qWGR :

PWGR, pWRB, pWBO, pWOG // Rotated

qYBR, qYOB, qYGO, qYRG := pYBR, pYOB, pYGO, pYRG // Not rotated

qWR, qWB, gqWO, qWG :
gBR, q0B, qGO, gRG :
qYR, q¥B, qYO0, qYG :

AND rotateDc() BE

pWG, pWR, pWB, pWO // Rotated
PBR, pOB, pGO, pRG // Not rotated
pYR, pYB, pYO, pYG // Not rotated

{ // Rotate the down face clockwise by a quarter turn

qWRB, qWB0O, gqWOG, qWGR :

pWRB, pWBO, pWOG, pWGR // Not rotated

qYBR, qYOB, qYGO, qYRG := pYRG, pYBR, pYOB, pYGO // Rotated

qWR, qWB, gqWO, qWG :
gBR, q0B, qGO, gRG :
qYR, q¥B, qYO0, qYG :

AND rotateDa() BE

PWR, pWB, pWO, pWG // Not rotated
PBR, pOB, pGO, pRG // Not rotated
pYG, pYR, pYB, pYO // Rotated

{ // Rotate the down face anti-clockwise by a quarter turn

qWRB, qWB0O, qWOG, qWGR :
qYBR, qY0B, qYGO, qYRG :
qWR, qWB, gqWO, qWG :
gBR, q0B, qGO, qRG :
qYR, q¥B, qYO, qYG :

AND rotateFc() BE

pWRB, pWBO, pWOG, pWGR // Not rotated
pYOB, pYGO, pYRG, pYBR // Rotated
pPWR, pWB, pWO, pWG // Not rotated

PBR, pOB, pGO, pRG // Not rotated

pYB, pY0, pYG, pYR // Rotated

{ // Rotate the front face clockwise by a quarter turn

qWRB, qYBR, qYRG, qWGR :
qWB0, qYOB, qYGO, qWOG :
qWR, gBR, qYR, qRG :
qWB, qYB, qYG, qWG :
qwW0, qO0B, qYO, qGO :

AND rotateFa() BE

rotc(pWGR), rota(pWRB), rotc(pYBR), rota(pYRG) // Rotated
pWBO, pYOB, pYGO, pWOG // Not rotated

flip(pRG), pWR, pBR, flip(pYR) // Rotated

PWB, pYB, pYG, pWG // Not rotated

pW0, pOB, pYO, pGO // Not rotated

{ // Rotate the front face anti-clockwise by a quarter turn

qWRB, qYBR, qYRG, qWGR :
qWBO, qY0B, qYGO, qWOG :
qWR, gBR, qYR, qRG :
qWB, q¥YB, q¥G, qWG :
qwW0, qO0B, qYO, qGO :

rotc(pYBR), rota(pYRG), rotc(pWGR), rota(pWRB) // Rotated
pWBO, pYOB, pYGO, pWOG // Not rotated

pPBR, pYR, flip(pRG), flip(pWR) // Rotated

PWB, pYB, pYG, pWG // Not rotated

pWw0, pOB, pYO, pGO // Not rotated
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AND rotateBc() BE

{

// Rotate the back face clockwise by a quarter turn

qWBO, gWOG, qYGO, qYOB := rota(pYOB), rotc(pWBO), rota(pWlG), rotc(pYGO) // Rotated
qWRB, qWGR, qYRG, qYBR := pWRB, pWGR, pYRG, pYBR // Not rotated

qw0, 9GO, qYO, qO0B := flip(p0B), pWO, pGO, flip(pYD) // Rotated

qWB, qWG, qYG, qYB := pWB, pWG, pYG, pYB // Not rotated

gWR, gRG, qYR, gBR := pWR, pRG, pYR, pBR // Not rotated

AND rotateBa() BE

{

// Rotate the back face anti-clockwise by a quarter turn

qWB0, qW0G, qYGO, qYOB := rota(pW0G), rotc(pYGO), rota(pYOB), rotc(pWBO) // Rotated
qWRB, qWGR, qYRG, qYBR := pWRB, pWGR, pYRG, pYBR // Not rotated

qWw0, qGO, qY0, qOB := pGO, pY0D, flip(pOB), flip(pWO) // Rotated

qWB, qWG, qYG, qYB := pWB, pWG, pYG, pYB // Not rotated

gWR, gRG, qYR, gBR := pWR, pRG, pYR, pBR // Not rotated

AND rotateRc() BE

{

// Rotate the right face clockwise by a quarter turn

qWRB, qWBO, qYOB, qYBR := rota(pYBR), rotc(pWRB), rota(pWBO), rotc(pYOB) // Rotated
qWGR, qYRG, qYGO, qWOG := pWGR, pYRG, pYGO, pWOG // Not rotated

qWB, q0B, qYB, gBR := flip(pBR), pWB, pOB, flip(pYB) // Rotated

qWR, gW0, qY0, qYR := pWR, pWO, pY0, pYR // Not rotated

gWwG, 9RG, qYG, 9GO := pWG, pRG, pYG, pGO // Not rotated

AND rotateRa() BE

{

// Rotate the right face anti-clockwise by a quarter turn

qWRB, qWBO, qYOB, qYBR := rota(pWB0), rotc(pYOB), rota(pYBR), rotc(pWRB) // Rotated
qWGR, qYRG, qYGO, qWOG := pWGR, pYRG, pYGO, pWOG // Not rotated

qWB, qO0B, qYB, gBR := pOB, pYB, flip(pBR), flip(pWB) // Rotated

qWR, qW0, qY0, qYR := pWR, pWO, pYO, pYR // Not rotated

qWG, gqRG, qYG, qGO := pWG, pRG, pYG, pGO // Not rotated

AND rotateLc() BE

{

// Rotate the left face clockwise by a quarter turn

gqWGR, qYRG, qYGO, gWOG := rotc(pWOG), rota(pWGR), rotc(pYRG), rota(pYGO) // Rotated
gWBO, qY0B, qYBR, gWRB := pWBO, pYOB, pYBR, pWRB // Not rotated

qWG, gRG, qYG, qGO := flip(pGO), pWG, pRG, flip(pYG) // Rotated

qWR, qYR, qY0, gWO := pWR, pYR, pY0, pWO // Not rotated

qwB, qO0B, qYB, gBR := pWB, pOB, pYB, pBR // Not rotated
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AND rotateLa() BE
{ // Rotate the left face anti-clockwise by a quarter turn
gWGR, qYRG, qYGO, gWOG := rotc(pYRG), rota(pYGD), rotc(pWOG), rota(pWGR) // Rotated
qwBO, qYOB, qYBR, qWRB := pWBO, pYOB, pYBR, pWRB // Not rotated
gWG, gRG, qYG, qGO := pRG, pYG, flip(pGO), flip(pWG) // Rotated
qWR, qYR, qY0, gqW0 := pWR, pYR, pY0, pWO // Not rotated
gWB, qO0B, qYB, gBR := pWB, p0B, pYB, pBR // Not rotated

AND movecubep2q() BE

{ 9gWRB, qWBO, qWOG, gqWGR := pWRB, pWBO, pWOG, pWGR
qYBR, qY0B, qYGO, qYRG := pYBR, pY0B, pYGO, pYRG
qWR, qWB, qW0, qWG := pWR, pWB, pWO, pWG
gBR, q0B, qGO, gRG := pBR, p0B, pGO, pRG
qYR, q¥B, qY0, qYG := pYR, pYB, pY0, pYG

AND movecubeq2p() BE

{ pWRB, pWBO, pWOG, pWGR := gqWRB, gWBO, qW0G, qWGR
pYBR, pYOB, pYGO, pYRG := qYBR, qYOB, qYGO, qYRG
pWR, pWB, pWO, pWG := qWR, qWB, qW0, qWG
pBR, p0B, pGO, pRG := gBR, q0B, qGO, gRG
pYR, pYB, pY0, pYG := qYR, qYB, qY0, qYG

AND initcostfn() BE
{ // Initialise corncostv
FOR i = 0 TO corncostvupb DO corncostv!i := corncostm + i*corncostvsize
// Set all elements of corncostm to 10
FOR i = 0 TO corncostmupb DO
corncostm!i := 10 // No cost will be as large as 10
// Set all elements on the leading diagonal to 0
FOR p = 0 TO corncostvupb DO
{ LET rowp = corncostm + corncostvsize*p
rowp!p =0
}
// Set a cost of one for every single move
cornrotate(0, 1, 0, mUa) // Corner O moves
cornrotate(0, 3, 0, mUc)
cornrotate(0, 3, 1, mFa)
cornrotate(0, 4, 1, mFc)
cornrotate(0, 4, 2, mRa)
cornrotate(0, 1, 2, mRc)

cornrotate(1, 0, mUa) // Corner 1 moves

N
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cornrotate(1, 0, 0, mUc)
cornrotate(1, 0, 1, mRa)
cornrotate(1, 5, 1, mRc)
cornrotate(1l, 5, 2, mBa)
cornrotate(1, 2, 2, mBc)

cornrotate(2, 3, 0, mUa) // Corner 2 moves
cornrotate(2, 1, 0, mUc)
cornrotate(2, 1, 1, mBa)
cornrotate(2, 6, 1, mBc)
cornrotate(2, 6, 2, mLa)
cornrotate(2, 3, 2, mLc)
cornrotate(3, 0, 0, mUa) // Corner 3 moves
cornrotate(3, 2, 0, mUc)
cornrotate(3, 2, 1, mLa)
cornrotate(3, 7, 1, mLc)
cornrotate(3, 7, 2, mFa)
cornrotate(3, 0, 2, mFc)
cornrotate(4, 7, 0, mDa) // Corner 4 moves
cornrotate(4, 5, 0, mDc)
cornrotate(4, 5, 1, mRa)
cornrotate(4, 0, 1, mRc)
cornrotate(4, 0, 2, mFa)
cornrotate(4, 7, 2, mFc)

cornrotate(5, 4, 0, mDa) // Corner 5 moves
cornrotate(5, 6, 0, mDc)
cornrotate(5, 6, 1, mBa)
cornrotate(5, 1, 1, mBc)
cornrotate(5, 1, 2, mRa)
cornrotate(5, 4, 2, mRc)

cornrotate(6, 5, 0, mDa) // Corner 6 moves
cornrotate(6, 7, 0, mDc)
cornrotate(6, 7, 1, mLa)
cornrotate(6, 2, 1, mLc)
cornrotate(6, 2, 2, mBa)
cornrotate(6, 5, 2, mBc)

cornrotate(7, 6, 0, mDa) // Corner 7 moves
cornrotate(7, 4, 0, mDc)
cornrotate(7, 4, 1, mFa)
cornrotate(7, 3, 1, mFc)
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cornrotate(7, 3, 2, mLa)
cornrotate(7, 6, 2, mLc)

//writef ("*ncorner cost matrix before applying Ffloyd’s algorithm*n")
//prcornmat (corncostm, corncostvsize)

// Apply Ffloyd’s algorithm
ffloyd(corncostm, corncostvsize)

//writef ("*ncorner cost matrix after applying Ffloyd’s algorithm*n")
//prcornmat (corncostm, corncostvsize)
//abort (2000)

// Initialise edgecostv
FOR i = O TO edgecostvupb DO edgecostv!i := edgecostm + ixedgecostvsize
// Set all elements of edgecostm to 10
FOR i = 0 TO edgecostmupb DO
edgecostm!i := 10 // No cost will be as large as 10
// Set all elements on the leading diagonal to 0
FOR p = 0 TO edgecostvupb DO
{ LET rowp = edgecostm + edgecostvsize*p
rowp!p = 0
b

// Set a cost of one for every single move

edgerotate( 0, 1, 0, mUa) // Edge O moves
edgerotate( 0, 3, 0, mUc)
edgerotate( 0, 7, 1, mFa)
edgerotate( 0, 4, 0, mFc)
edgerotate( 1, 2, 0, mUa) // Edge 1 moves
edgerotate( 1, 0, 0, mUc)
edgerotate( 1, 4, 1, mRa)
edgerotate( 1, 5, 0, mRc)
edgerotate( 2, 3, 0, mUa) // Edge 2 moves
edgerotate( 2, 1, 0, mUc)
edgerotate( 2, 5, 1, mBa)
edgerotate( 2, 6, 0, mBc)
edgerotate( 3, 0, 0, mUa) // Edge 3 moves
edgerotate( 3, 2, 0, mUc)
edgerotate( 3, 6, 1, mLa)
edgerotate( 3, 7, 0, mLc)
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edgerotate( 4, 0, 0, mFa) // Edge 4 moves
edgerotate( 4, 8, 0, mFc)
edgerotate( 4, 9, 1, mRa)
edgerotate( 4, 1, 1, mRc)
edgerotate( 5, 1, 0, mRa) // Edge 5 moves
edgerotate( 5, 9, 0, mRc)
edgerotate( 5, 10, 1, mBa)
edgerotate( 5, 2, 1, mBc)
edgerotate( 6, 2, 0, mBa) // Edge 6 moves
edgerotate( 6, 10, 0, mBc)
edgerotate( 6, 11, 1, mLa)
edgerotate( 6, 3, 1, mLc)
edgerotate( 7, 3, 0, mLa) // Edge 7 moves
edgerotate( 7, 11, 0, mLc)
edgerotate( 7, 8, 1, mFa)
edgerotate( 7, 0, 1, mFc)
edgerotate( 8, 11, 0, mDa) // Edge 8 moves
edgerotate( 8, 9, 0, mDc)
edgerotate( 8, 4, 0, mFa)
edgerotate( 8, 7, 1, mFc)
edgerotate( 9, 8, 0, mDa) // Edge 9 moves
edgerotate( 9, 10, 0, mDc)
edgerotate( 9, 5, 0, mRa)
edgerotate( 9, 4, 1, mRc)
edgerotate(10, 9, 0, mDa) // Edge 10 moves
edgerotate(10, 11, 0, mDc)
edgerotate(10, 6, 0, mBa)
edgerotate(10, 5, 1, mBc)
edgerotate(11, 10, O, mDa) // Edge 11 moves
edgerotate(11, 8, 0, mDc)
edgerotate(11, 7, O, mLa)
edgerotate(11, 6, 1, mLc)

//uritef ("*nedge cost matrix before applying Ffloyd’s algorithm*n")
//predgemat (edgecostm, edgecostvsize)

// Apply Ffloyd’s algorithm
ffloyd(edgecostm, edgecostvsize)
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//writef ("*nedge cost matrix after applying Ffloyd’s algorithm*n")
//predgemat (edgecostm, edgecostvsize)

//abort (3000)
}
AND cornrotate(cl, c2, rot, move) BE
{ // rot = 0 no change in orientation, ie 0->0, 1->1 and 2->2
// rot = 1 corner piece rotated anti-clockwise, ie 0->1, 1->2 and 2->0
// rot = 2 corner piece rotated clockwise, ie 0->2, 1->0 and 2->1
FOR ol = 0 TO 2 DO // The three orientations of the piece at corner cl
{ LET 02 = (ol + rot) MOD 3 // orientation when moved to corner c2
LET p = cl*3 + ol
LET rowp = corncostv!p
LET q = c2x3 + 02

// A piece at corner cl with orientation ol can be moved to
// corner c2 with orientation 02 by a single move.
rowpl!q =1

AND edgerotate(el, e2, flip, move) BE

{ // flip = 0 no change in orientation, ie 0->0 and 1->1
// flip = 1 edge piece flipped, ie 0->1 and 1->0
FOR ol = 0 TO 1 DO // The two orientations of the piece at edge el
{ LET 02 = ol XOR flip // orientation when moved to edge e2
LET p = el*x2 + ol
LET rowp = edgecostv!p
LET q = e2%2 + 02

// A piece at edge el with orientation ol can be moved to
// edge e2 with orientation o2 by a single move.
rowp!q =1

AND ffloyd(m, n) BE FOR k = 0 TO n-1 DO
{ LET rowk = m + k*n
FOR i = 0 TO n-1 DO
{ LET rowi = m + i*n
LET mik = rowi'k
FOR j = 0 TO n-1 DO
{ LET mkj = rowk!j
LET d = mik+mkj
IF rowi!j > d DO rowi!j :=d
+
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AND prcornmat(m, n) BE
{ newline()
FOR i = 0 TO n-1 DO
{ LET rowi = m + i*n
writef ("row %i2:", i)
FOR j = O TO n-1 DO
{ LET d = rowi!j
TEST d=10 THEN writef(" .")
ELSE writef(" %n", rowi!j)
IF j MOD 3 = 2 DO wrch(’ ?)
}
IF i MOD 3 = 2 DO newline()
newline ()

AND predgemat(m, n) BE
{ newline()
FOR i = 0 TO n-1 DO
{ LET rowi = m + i*n
writef ("row %i2:", i)
FOR j = 0 TO n-1 DO
{ LET 4 = rowil!j
TEST d=10 THEN writef (" .")
ELSE writef(" %n", rowi!j)
IF j MOD 2 = 1 DO wrch(’ )
}
IF i MOD 2 = 1 DO newline()
newline()

AND prmoves(moves) BE IF moves DO
{ prmoves(moves>>8)

wrch (moves&255)
}

AND corncost(piece, corner) = VALOF

{ LET 4 = piece MOD 3
LET res = corncostv!(piece-d)!(3*corner+d)
//writef ("corner piece = Yn/%n corner = %n cost = %n*n",
// piece/3, piece MOD 3, corner, res)
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RESULTIS res
}

AND edgecost(piece, edge) = VALOF

{ LET res = edgecostv!piece! (2xedge)
//writef ("edge piece = %i2/%n edge = %i2 cost = ¥n*n",
// piece/2, piece MOD 2, edge, res)
RESULTIS res

}

AND costfn() = VALOF

{ // Return the cost of the position in qWRB, etc
// This is the sum of the minimum number of moves
// required for each piece.

LET ¢ =7
//writef ("costfn: entered+*n")

c := corncost (QWRB, cWRB)
c := c + corncost(qWBO, cWB0)
c := ¢ + corncost(qW0G, cWOG)
c := c + corncost(qWGR, cWGR)
c := ¢ + corncost(qYBR, cYBR)
c := c + corncost(qYOB, cYOB)
c := c + corncost(qYGO, cYGO)
c := c + corncost(qYRG, cYRG)

edgecost (qWR, eWR)
edgecost (qWB, eWB)
edgecost (qW0, eW0)
edgecost (qWG, eWG)

O o o o0
|

O o o o0

+ o+ o+ o+

c := c + edgecost(gBR, eBR)
c := ¢ + edgecost(q0B, e0B)
c := c + edgecost(qGO, eGO)
c := ¢ + edgecost(qRG, eRG)
c := c + edgecost(qYR, eYR)
c := ¢ + edgecost(qYB, eYB)
c := c + edgecost(qY0, eY0)

c := ¢ + edgecost(qYG, eYG)
//uritef ("costfn: cost = %n*n", c)
//abort (4000)

RESULTIS ¢ * ¢ // Square to discourage pieces many moves
// from their required positions.
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AND scorenode(node) = VALOF
{ cube2pieces(node, QqWRB)
RESULTIS score()+goalscore(node)

}

AND score() = costfn()

AND prcosts() BE
{ newline()

prcorncost ("WRBO:
prcorncost ("WRB1:
prcorncost ("WRB2:

newline()

prcorncost ("WB0O:
prcorncost ("WBO1:
prcorncost ("WB02:

newline()

prcorncost ("WOGO:
prcorncost ("WOG1:
prcorncost ("WOG2:

newline()

prcorncost ("WGRO:
prcorncost ("WGR1:
prcorncost ("WGR2:

newline()

prcorncost ("YBRO:
prcorncost ("YBR1:
prcorncost ("YBR2:

newline()

prcorncost ("YOBO:
prcorncost ("Y0B1:
prcorncost ("Y0B2:

newline()

prcorncost ("YGOO:
prcorncost ("YGO1:
prcorncost ("YGO2:

newline()

prcorncost ("YRGO:
prcorncost ("YRG1:
prcorncost ("YRG2:

newline()

predgecost ("WRO:

WRBO)
WRB1)
WRB2)

WB0O)
WBO1)
WB02)

WOGO)
WOG1)
W0G2)

WGRO)
WGR1)
WGR2)

YBRO)
YBR1)
YBR2)

YOBO)
YOB1)
Y0B2)

YGOO)
YGO1)
YG02)

YRGO)

YRG1)
YRG2)

WRO)



4.27. THE RUBIK CUBE

AND prcorncost(str, piece) BE

{

}

predgecost ("WR1:
newline ()
predgecost ("WBO:
predgecost ("WB1:
newline()
predgecost ("W0O:
predgecost ("WO1:
newline()
predgecost ("WGO:
predgecost ("WG1:
newline ()

predgecost ("BRO:
predgecost ("BR1:
newline()
predgecost ("0BO:
predgecost ("0B1:
newline()
predgecost ("G0O:
predgecost ("GO1:
newline()
predgecost ("RGO:
predgecost ("RG1:
newline ()

predgecost ("YRO:
predgecost("YR1:
newline()
predgecost ("YBO:
predgecost ("YB1:
newline()
predgecost ("Y0O:
predgecost ("Y01:
newline()
predgecost ("YGO:
predgecost ("YG1:
newline()

writef("Y%s: ", str)

FOR corner = 0 TO 7 DO writef(" %i3", corncost(piece, corner))

newline()

WR1)

WBO)
WB1)

w0o)
wo1)

WGO)
WG1)
BRO)

BR1)

0BO)
0B1)

G0O0)
GO1)

RGO)
RG1)
YRO)

YR1)

YBO)
YB1)

Y00)
Y01)

YGO)
YG1)

225
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AND predgecost(str, piece) BE

{ writef("%s: ", str)
FOR edge = 0 TO 11 DO writef(" %i3", edgecost(piece, edge))
newline()

}

AND prsolution(node) BE
{ IF s_prev!node DO
{ prsolution(s_prev!node)
writef ("move Y%c*n", s_move!node)
}
prcube (node)

3

AND wrcornerpiece(piece) BE
{ SWITCHON piece/3 INTO
{
CASE cWRB: writef (" WRB"); ENDCASE
CASE cWBO: writef(" WBO"); ENDCASE
CASE cWOG: writef (" WOG"); ENDCASE
CASE cWGR: writef (" WGR"); ENDCASE
CASE cYBR: writef(" YBR"); ENDCASE
CASE cYO0B: writef(" YOB"); ENDCASE
CASE cYGO: writef(" YGO"); ENDCASE
CASE cYRG: writef(" YRG"); ENDCASE
}
writef ("%n", piece MOD 3)
}

AND wredgepiece(piece) BE
{ SWITCHON piece/2 INTO
{
CASE eWR: writef(" WR"); ENDCASE
CASE eWB: writef(" WB"); ENDCASE
CASE eW0: writef(" WO"); ENDCASE
CASE eWG: writef (" WG"); ENDCASE

CASE eBR: writef (" BR"); ENDCASE
CASE e0B: writef(" 0OB"); ENDCASE
CASE eGO: writef (" GO"); ENDCASE
CASE eRG: writef(" RG"); ENDCASE

CASE eYB: writef(" YB"); ENDCASE
CASE eY0: writef(" Y0"); ENDCASE
CASE eYG: writef(" YG"); ENDCASE
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CASE eYR: writef(" YR"); ENDCASE
}
writef ("%n ", piece MOD 2)
}

AND prpieces(pieces) BE

{ LET ¢ = VEC 4
pieces2cube(pieces, c)
wrcornerpiece(c%0)
wrcornerpiece(c%1)
wrcornerpiece (c%2)
wrcornerpiece(c%3)
wrcornerpiece (c%4)
wrcornerpiece (c%5)
wrcornerpiece (c%6)
wrcornerpiece (c%7)
newline()
wredgepiece(c%8)
wredgepiece (c%9)
wredgepiece(c%10)
wredgepiece(c%11)
wredgepiece(c%12)
wredgepiece(c%13)
wredgepiece(c%14)
wredgepiece(c%15)
wredgepiece(c%16)
wredgepiece (c%17)
wredgepiece(c%18)
wredgepiece(c%19)
newline()
prcube(c)

AND prnode(node) BE

{ //writef("node=Yn prev=/n*n",
// node, s_prev!node)
prcube (node)

AND prcube(cube) BE
{ /* Typical output is either

WWWWWWWWW GGGGGGGGG RRRRRRRRR BBBBBBBBB 000000000 YYYYYYYYY

or



cube2cols (cube, colour)

IF compact DO

{ writef ("“Yclhclhchchchc

colour!oO,
colour!3,

hehehe ",
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WWWw
WWW
WWWw
GGG RRR BBB 00O
GGG RRR BBB 00O
GGG RRR BBB 00O
YYY
YYY
YYY
*/

// Upper face

colour!1l, colour!2,
colour!4, colour!5,

colour!6, colour!7, colour!8)

writef ("Y%chchchehelhehehche ", // Left face
colour!36, colour!37, colour!38,
colour!39, colour!40, colour!'4i,
colour!42, colour!43, colour!44)
writef ("Y%chchehehelehehehe ", // Front face
colour! 9, colour!10, colour!ill,
colour!12, colour!13, colour!i4,
colour!15, colour!16, colour!17)
writef ("%chehehehehehehehe ", // Right face
colour!18, colour!19, colour!20,
colour!21, colour!22, colour!23,
colour!24, colour!25, colour!26)
writef ("Y%chehehehehehehehe ", // Back face
colour!27, colour!28, colour!29,
colour!30, colour!31, colour!32,
colour!33, colour!34, colour!35)
writef ("Y%chehehehehehehehexn", // Down face
colour!45, colour!46, colour!47,
colour!48, colour!49, colour!50,
colour!51, colour!52, colour!53)
RETURN
}
writef (" %c %c %c*n", colour!0O, colour!l, colour!2)
writef (" %c he hekn", colour!3, colour!4, colour!5)
writef (" %c %c hexn", colour!6, colour!7, colour!8)



4.27. THE RUBIK CUBE

writef ("
writef ("
writef ("
writef ("

writef ("
writef ("
writef ("
writef ("

writef ("
writef ("
writef ("
writef ("

writef ("
writef ("
writef ("

AND setface(n, ch,
{ LET face

%he
he
%he
he

%ec
%e
%ec
he

he
%he
he
%he

he
he
he
he

YA
he
%he
he

he
he
he
he

hc ",
%C u’
% ",
%c*n",
% M,
%C ll,
VAN
%C*nll s
%C u,
hc ",
%C u’
%he*n',

%c %c %c*n", colour!45s,
%c %c %c*n", colour!4s,
%c %c %he*n", colour!5i,

str)

colour!36,
colour! 9,
colour!1s,
colour!27,

colour!39,
colour!12,
colour!21,
colour!30,

colour!'42,
colour!i15,
colour!24,
colour!33,

BE

@colour! (9*n)

colour!37,
colour!10,
colour!19,
colour!28,

colour!40,
colour!13,
colour!22,
colour!31,

colour!43,
colour!i16,
colour!25,
colour!34,

UNLESS str%0=9 & capitalch(str’%5)=ch DO

{ writef("Bad face colours Y%c %s*n", ch,
errors

}
FOR i =
}

AND corner(a, b, c) = VALOF SWITCHON a<<16 | b<<8 | ¢ INTO

:= TRUE

1 TO str)0 DO face! (i-1)

colour!38)
colour!11)
colour!20)
colour!29)

colour'41)
colour!14)
colour!23)
colour!32)

colour'44)
colour!17)
colour!26)
colour!35)

colour!46, colour!47)
colour!'49, colour!50)
colour!52, colour!53)

str)

:= capitalch(str%i)

{ DEFAULT: writef("*nBad corner: Y%c%clc*n", a, b, c)

errors := TRUE
RESULTIS O

CASE °’W’<<16 | ’R’<<8 | ’B’: RESULTIS WRBO

CASE °’B’<<16 | ’W’<<8 | ’R’: RESULTIS WRB1

CASE ’R’<<16 | ’B’<<8 | ’W’: RESULTIS WRB2

CASE °’W’<<16 | ’B’<<8 | ’0’: RESULTIS WBOO

CASE °0’<<16 | ’W’<<8 | ’B’: RESULTIS WBO1

CASE ’B’<<16 | ’0’<<8 | ’W’: RESULTIS WBO2

CASE °’W’<<16 | ’0’<<8 | ’G’: RESULTIS WOGO

229
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CASE
CASE

CASE
CASE
CASE

CASE
CASE
CASE

CASE
CASE
CASE

CASE
CASE
CASE

CASE
CASE
CASE

’G’<<16
’0°<<16

YW’<<16
’R’<<16
’G’<<16

’Y’<<16
’R’<<16
’B’<<16

’Y’<<16
’B’<<16
’0’<<16

7Y’<<16
’0°<<16
’G7<<16

’Y’<<16
’G’<<16
’R7<K16

AND edge(a, b)

YW’ <<8 | 0’
)G;<<8 | ;w;:
1G7<<8 | ‘R’ :
)w7<<8 I JG):
YR’<<8 | YW
'B’<<8 | ‘R’ :
1Y 2<<8 | B -
YR’<<8 | Y.
)O:<<8 | ‘B
)Y;<<8 | ;O;:
)BJ<<8 | JY}:
)GJ<<8 I JO):
7Y’ <<8 | G
102<<8 | Yo .
YR’<<8 | e
7Y’ <<8 | ‘R’ :
JG;<<8 I ;Y;:

CHAPTER 4.

RESULTIS
RESULTIS

RESULTIS
RESULTIS
RESULTIS

RESULTIS
RESULTIS
RESULTIS

RESULTIS
RESULTIS
RESULTIS

RESULTIS
RESULTIS
RESULTIS

RESULTIS
RESULTIS
RESULTIS

THE BCPL CINTCODE SYSTEM

WOG1
WOG2

WGRO
WGR1
WGR2

YBRO
YBR1
YBR2

YOBO
YOB1
YO0B2

YGOO
YGO1
YGO2

YRGO
YRG1
YRG2

VALOF SWITCHON a<<8 | b INTO

{ DEFAULT:

errors := TRUE

RESULTIS O
CASE ’W’<<8 | °’R’: RESULTIS
CASE ’R’<<8 | ’W’: RESULTIS
CASE ’W’<<8 | ’B’: RESULTIS
CASE ’B’<<8 | ’W’: RESULTIS
CASE ’W’<<8 | ’0’: RESULTIS
CASE °0°<<8 | ’W’: RESULTIS
CASE ’W’<<8 | ’G’: RESULTIS
CASE °G’<<8 | ’W’: RESULTIS
CASE ’B’<<8 | ’R’: RESULTIS
CASE ’R’<<8 | ’B’: RESULTIS
CASE ’0°<<8 | ’B’: RESULTIS
CASE ’B’<<8 | ’0’: RESULTIS
CASE ’G’<<8 | ’0’: RESULTIS
CASE ’0°<<8 | ’G’: RESULTIS
CASE ’R’<<8 | ’G’: RESULTIS

WRO
WR1
WBO
WB1
W00
wo1
WGO
WG1

BRO
BR1
0BO
0B1
GOO
GO1
RGO

writef ("*nBad edge: Yclkc*n", a, b)
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CASE

CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE

JG)<<8

’Y<<8
’R’<<8
’Y’<<8
’B’<<8
’Y’<<8
’0’<<8
’Y’<<8
’G’<<8

JR):

'R’
Yo
B’
Y.
00
Y
G
Y

RESULTIS

RESULTIS
RESULTIS
RESULTIS
RESULTIS
RESULTIS
RESULTIS
RESULTIS
RESULTIS

AND cols2cube(cv, cube) BE
{ // Colour coordinates

//
//
//

// 36 37 38
// 39 40 41
// 42 43 44

//
//
//

cube’,iWRB :
cube’iWB0 :
cube’iW0G :
cube%iWGR :
cube,iYBR :
cube’iYOB :
cube’%iYGO :
cube’iYRG :

cube’iWR
cube’,iWB
cube’iW0
cube’iWG

cube’%iBR
cube’i0B
cube’iGO
cube’iRG

cube’%iYR

RG1

YRO
YR1
YBO
YB1
YOO
Y01
YGO
YG1

0 1
3 4
6 7
910 1
12 13 14
15 16 17
45 46 47
48 49 50
51 52 53

corner (cv!
corner (cv!
corner (cv!
corner (cv!
corner (cv!
corner (cv!
corner (cv!
corner (cv!

edge (cv!
edge(cv!
edge (cv!
edge (cv!

w = 00N

-

edge(cv!21
edge(cv!30
edge(cv!39
edge(cv!12

edge(cv!46

18 19 20 27 28 29
21 22 23 30 31 32
24 25 26 33 34 35

8, cv!il,
2, cv!20,
0, cv!29,
6, cv!38,
47, cv!24,
53, cv!33,
51, cv!'42,
45, cv!1b,

cv!10)
, cv!19)
, cv!28)
cv!37)

-

, cv!id)
, cv!23)
, cv!32)
, cvldl)

, cv!16)

cv!18)
cv!27)
cv!36)
cv! 9)
cv!17)
cv!26)
cv!35)
cv!4a)

231
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cube}%iYB := edge(cv!50, cv!25)
cube’iY0 := edge(cv!52, cv!34)
cube%iYG := edge(cv!48, cv!43)

¥

AND cube2cols(cube, cv) BE
{ // Colour coordinates

// 01 2
// 3 4 5
// 6 7 8
// 36 37 38 9 10 11 18 19 20 27 28 29

// 39 40 41 12 13 14 21 22 23 30 31 32
// 42 43 44 15 16 17 24 25 26 33 34 35

// 45 46 47

// 48 49 50

// 51 52 B3

cv! 4 := °W> // Fixed colours

cv!l3 := ’R’

cv!22 := ’B’

cv!3l := 0’

cv!40 := G’

cv!49 := Y’

setcornercols(cv, cube’iWRB, 8, 11, 18) // Corner pieces
setcornercols(cv, cube%iWBO, 2, 20, 27)
setcornercols(cv, cube%iW0G, O, 29, 36)
setcornercols(cv, cubeliWGR, 6, 38, 9)

setcornercols(cv, cube%iYBR, 47, 24, 17)
setcornercols(cv, cube’iYOB, 53, 33, 26)
setcornercols(cv, cube%iYGO, 51, 42, 35)
setcornercols(cv, cube%iYRG, 45, 15, 44)

setedgecols(cv, cube’%iWR, 7, 10) // edge piece, left sq, right sq
setedgecols(cv, cube%iWB, 5, 19)
setedgecols(cv, cube%kiW0, 1, 28)
setedgecols(cv, cube%iWG, 3, 37)

setedgecols(cv, cube%iBR, 21, 14)
setedgecols(cv, cube%iOB, 30, 23)
setedgecols(cv, cube%iGO, 39, 32)
setedgecols(cv, cube%iRG, 12, 41)

setedgecols(cv, cube%iYR, 46, 16)
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setedgecols(cv, cubeliYB, 50, 25)

setedgecols(cv, cube%iY0, 52, 34)

setedgecols(cv, cubeliYG, 48, 43)
}

AND setcornercols(cv, piece, i, j, k) BE
{// i, j, k are corner face numbers in anti-clockwise order
//uritef ("setcornercols %i2 %i2 %i2 %i2*n", piece, i, j, k)
SWITCHON piece INTO
{ DEDAULT: writef ("System error in setcornercols: piece=Jn*n", piece)

CASE WRBO: «cv!i, cv!j, cvlk :

’W’, ’R’, ’B’; RETURN

CASE WRB1: cv!j, cv!k, cv!i := ’W’, ’R’, ’B’; RETURN
CASE WRB2: cv'k, cv!i, cv!j := ’W’, ’R’, ’B’; RETURN
CASE WB0O: «cv!i, cv!j, cvlk := ’W’, ’B’, ’0’; RETURN
CASE WBO1: cv!j, cv'k, cv!i := ’W’, ’B’, ’0’; RETURN
CASE wB02: «cv'k, cv!i, cv!j := ’W’, ’B’, ’0’; RETURN
CASE WOGO: cv!i, cv!j, cvlk := ’W’, ’0’, ’G’; RETURN
CASE WOG1: «cv!j, cvlk, cv!i := ’W’, ’0’, ’G’; RETURN
CASE WOG2: «cv'k, cv!i, cv!j := ’W’, ’0’, ’°G’; RETURN
CASE WGRO: cv!i, cv!j, cvlk := ’W’, ’G’, ’R’; RETURN
CASE WGR1: cv!j, cv!k, cv!i := ’W’, ’G’, ’R’; RETURN
CASE WGR2: cv'k, cv!i, cv!j := ’W’, ’G’, ’R’; RETURN
CASE YBRO: cv!i, cv!j, cvlk := ’Y’, ’B’, ’R’; RETURN
CASE YBR1: cv!j, cv!k, cv!i := ’Y’, ’B’, ’R’; RETURN
CASE YBR2: cv'k, cv!i, cv!j := ’Y’, ’B’, ’R’; RETURN
CASE YOBO: «cv!i, cv!j, cvlk :=’Y’, °0’, ’B’; RETURN
CASE YOB1: cv!j, cv'!k, cv!i :=’Y’, ’0’, ’B’; RETURN
CASE Y0B2: cv'k, cv!i, cv!j := ’Y’, ’0’, ’B’; RETURN
CASE YGOO: «cv!i, cv!j, cvlk := ’Y’, °G’, ’0’; RETURN
CASE YGO1: cv!j, cv!k, cv!i :=’Y’, °G’, ’0’; RETURN
CASE YGO2: «cv'k, cv!i, cv!j := ’Y’, °G’, ’0’; RETURN
CASE YRGO: cv!i, cv!j, cvlk := ’Y’, ’R’, ’G’; RETURN
CASE YRG1l: cv!j, cv!k, cv!i := ’Y’, ’R’, ’G’; RETURN
CASE YRG2: cv'k, cv!i, cv!j :=’Y’, ’R’, ’G’; RETURN

AND setedgecols(cv, piece, i, j) BE
{ //writef ("setedgecols(%i2, %i2, %i2)*n", piece, i, j)
SWITCHON piece INTO
{ DEFAULT: writef ("System error in setedgecols: piece=)n*n", piece)
abort (999)
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CASE WRO: cv!i, cv!j := ’W’, ’R’; RETURN
CASE WR1: cv!j, cv!i := ’W’, ’R’; RETURN
CASE WBO: cv!i, cv!j := ’W’, ’B’; RETURN
CASE WB1: cv!j, cv!i := ’W’, ’B’; RETURN
CASE W00: cv!i, cv!j := ’W’, ’0’; RETURN
CASE WO1: cv!j, cv!i := >W’, ’0’; RETURN
CASE WGO: cv!i, cv!j := ’W’, ’G’; RETURN
CASE WG1: cv!j, cv!i := ’W’, ’G’; RETURN
CASE BRO: cv!i, cv!j := ’B’, ’R’; RETURN
CASE BR1: cv!j, cv!i := ’B’, ’R’; RETURN
CASE 0BO: cv!i, cv!j := ’0’, ’B’; RETURN
CASE 0B1: cv!j, cv!i := ’0’, ’B’; RETURN
CASE GOO: cv!i, cv!j := ’G’, ’0’; RETURN
CASE GO1: cv!j, cv!i := ’G’, ’0’; RETURN
CASE RGO: cv!i, cv!j := ’R’, ’G’; RETURN
CASE RG1: cv!j, cv!i := ’R’, ’G’; RETURN
CASE YRO: cv!i, cv!j :=’Y’, ’R’; RETURN
CASE YR1: cv!j, cv!i :=’Y’, ’R’; RETURN
CASE YBO: cv!i, cv!j := ’Y’, ’B’; RETURN
CASE YB1: cv!j, cv!i := ’Y’, ’B’; RETURN
CASE Y00: cv!i, cv!j :=’Y’, ’0’; RETURN
CASE Y01: cv!j, cv!i := ’Y’, ’0’; RETURN
CASE YGO: cv!i, cv!j :=’Y’, ’G’; RETURN
CASE YG1: cv!j, cv!i := ’Y’, °G’; RETURN

AND goalscore(cube) = VALOF
{LET k = 7
LET piece = 7

//uritef ("goalscore:*n")

//prnode (cube)
//writef ("upper edges WR=Yn/%n WB=Yn/%n WO=Yn/%n WG=Yn//n*n",
// cube%iWR, WRO,

// cube’%iWB, WBO,
// cube%iW0, W0O,
// cube’%iWG, WGO)

// Upper edges

// Penalties

// right edge wrong orientation 900
// wrong edge 1000
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k := 4x%1000

piece := cube’,iWR

IF piece=WRO DO k := k-1000
IF piece=WR1 DO k := k-100
piece := cube’iWB

IF piece=WBO DO k := k-1000
IF piece=WB1 DO k := k-100
piece := cubeiW0

IF piece=W00 DO k := k-1000
IF piece=W01 DO k := k-100
piece := cubelkiWG

IF piece=WGO DO k := k-1000
IF piece=WG1 DO k := k-100

// If k=0 upper four edges are correct

// Upper corners

// Penalties

// right corner wrong orientation 700
// wrong corner 800

k := k + 4x800

piece := cube’,iWRB

IF piece=WRBO DO k := k-800
IF piece=WRB1 DO k := k-100
IF piece=WRB2 DO k := k-100
piece := cube’,iWBO

IF piece=WB0OO DO k := k-800
IF piece=WB01 DO k := k-100
IF piece=WB02 DO k := k-100
piece := cube’,iWOG

IF piece=WOGO DO k := k-800
IF piece=W0G1 DO k := k-100
IF piece=W0G2 DO k := k-100
piece := cubeliWGR

IF piece=WGRO DO k := k-800
IF piece=WGR1 DO k := k-100
IF piece=WGR2 DO k := k-100

// If k=0 upper layer is now correct
// Middle layer edges

// Penalties
// right edge wrong orientation 250
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// wrong edge 300
k := k + 4x300

piece := cube’iBR
IF piece=BRO DO k := k-300
IF piece=BR1 DO k := k- 50
piece := cube’,i0B
IF piece=0B0O DO k := k-300
IF piece=0B1 DO k := k- 50
piece := cube’iGO
IF piece=G00 DO k := k-300
IF piece=G01 DO k := k- 50
piece := cube%iRG
IF piece=RGO DO k := k-300
IF piece=RG1 DO k := k- 50

// If k=0 upper and middle layers are now correct

// Lower level edges

// Penalties

// right edge wrong orientation 30
// wrong edge 40

k := k + 4%40

piece := cube’iYR
IF piece=YRO DO k := k-40
IF piece=YR1 DO k := k-10
piece := cube’,iYB
IF piece=YBO DO k := k-40
IF piece=YB1 DO k := k-10
piece := cube%iYO
IF piece=Y00 DO k := k-40
IF piece=Y01 DO k := k-10
piece := cube%iYG
IF piece=YGO DO k := k-40
IF piece=YG1l DO k := k-10

// If k=0 upper and middle layers are now correct
// and down face edges are correct

// Lower level corners
// Penalties
// right edge wrong orientation 15
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// wrong edge 20
k := k+4x%20

piece := cube’iYBR

IF piece=YBRO DO k := k-20
IF piece=YBR1 DO k := k- 5
IF piece=YBR2 DO k := k- 5
piece := cube%iY0B

IF piece=YOBO DO k := k-20
IF piece=YOB1 DO k := k- 5
IF piece=Y0B2 DO k := k- 5
piece := cube’,iYGO

IF piece=YGOO DO k := k-20
IF piece=YGO1l DO k := k- 5
IF piece=YGO2 DO k := k- 5
piece := cube,iYRG

IF piece=YRGO DO k := k-20
IF piece=YRG1 DO k := k- 5
IF piece=YRG2 DO k := k- b5

// If k=0 all positions are correct so the Rubik Cube has been solved
//writef ("goalscore: returning %n*n", k)

//abort (9000)

RESULTIS k

4.28 Simple series

We have seen that the largest number we can represent in an unsigned 32-bit
word is

14+24224+23 4+ ... 4231

This is perfectly understandable and is called a series, but mathematicians do
not normally like to use dots since they introduce possible misunderstandings of
what is being omitted. They generally prefer the following notation.
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but in this document I will almost always use the dot notation. We can generalise
this series to term n, replacing the constant 2 by some arbitrary value x and call
the sum s, namely

s=14+x+22+22+...+2"

We can easily make a simple formula for s by considering s multiplied by (z —1),
that is

s(r—1) =14+ +23+.. . +2")xe—(1+z+22+25+ ... +2a")
=@+ 4+ 4. ") - (I+ax+22+23+... +2")
="t — 1

So

:L,nJrl -1

So for our original series, x = 2 and n = 31 gives us

232 — 1
S=5 1 = 232 _ 1 = 4294967295

Notice that with x = 2 as n gets larger so does the sum. When x = 2, the
series is said to diverge as n tends to infinity (an incredibly large number often
represented by oo). But what happens if x < 1. Let us try « = % and n = oo.

e —1 —1
go -1 _0-1
2

= =2
1
-1 1

In the above derivation, we took (%)OO to be zero since multiplying 1 by % a huge
number of times gets so small its value can be ignored. Note that setting n = oo
allows us to deduce that

= =1+z+22+2%+. ..
Although this is only really valid if |z| < 1.
As a demonstration of the use of vectors and functions we will look a program
called eval2.b that calculates s to 2000 decimal places to show that it is indeed
2. It starts as follows.
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GET "libhdr"

GLOBAL {
sum:ug
term
upb

}

LET start() = VALOF

{ upb := 2004/4 // Each element holds 4 decimal digits
// and there are 4 guard digits at the end.
sum := getvec(upb)
term := getvec(upb)

settok(sum, 0)
sum!upb := 5000 // Add 1/2 at digit position 2000 for rounding
settok(term, 1)

UNTIL iszero(term) DO

{ add(sum, term)
divbyk(term, 2)

}

// Write out the sum to 40 decimal places
writef ("*nsum = %n.", sum!0)

FOR i = 1 TO 10 DO writef("%4z ", sum!i)
newline()

fin:
freevec(sum)
freevec(term)
RESULTIS O

}

It uses the vector sum to hold the summation of all the terms and term to hold the
next term to add to sum. Both sum and term are vectors with upperbound 2004 /4
which is sufficient to hold numbers with 4 decimal digits before the decimal point
and 2000 digits after the decimal point together with a further 4 guard digits at
the end. sum and term are initialised by calls of settok, described later, and
5000 is placed in the last element of sum which corresponds to adding 1/2 at
decimal digit position 2000. This causes appropriate rounding to take place. The
UNTIL loop adds term to sum dividing term by 2 each time until term represents
zero. sum is then output to 40 decimal places as follows:

sum = 2.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000



240 CHAPTER 4. THE BCPL CINTCODE SYSTEM

as expected.
The rest of the program defines the functions settok, add, divbyk and iszero
as follows.

AND settok(v, k) BE
{v!0 :=k

FOR i = 1 TO upb DO v!i :=0
}

AND add(a, b) BE

{LET c=0
FOR i = upb TO O BY -1 DO
{LETd=c+ al'i + bli

d MOD 10000

d / 10000

ali :
c
}
}

AND divbyk(v, k) BE
{LET c =0
FOR i = O TO upb DO
{ LET d = c*10000 + v!i
vlii :=d4d / k
C d MOD k
}
}

AND iszero(v) = VALOF

{FOR i = upb TO 0 BY -1 IF v!i RESULTIS FALSE
RESULTIS TRUE

}

The function settok is self explanatory. Notice that add performs the addi-
tion from the least significant end using the variable ¢ to hold the carry. divbyk
performs short division from the most significant end, again using ¢ to hold the
carry. Finally, iszero only returns TRUE if every element of v is zero.

4.29 e to 2000 decimal places

The constant e which has a value of approximately 2.71828 is one of the most
important constants in mathematics. It can be defined in many ways, but the
one we will use in this section is:

e=1+1+5+g+. + 5+
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where n! stands for n factorial (1 x 1 x 2 x 3 x ... xn).

This section presents a simple program (evale.b) that computes e to 2000
decimal places. As with the previous program, it is primarily an example of the
use of vectors and functions, and, as with the previous program, it uses high
precision numbers using vectors whose elements each contain 4 decimal digits.
It is convenient to think of these elements as digits of radix 10000. A radix of
10000 was chosen because 10000? easily fits in a 32-bit word, but 100000? does
not. The program starts as follows.

GET "libhdr"
GLOBAL {
sum:ug // The sum of terms so far
term // The next term to add to sum
tab // The frequency counts of the digits of e
digcount
digits // The number of decimal digits to calculate
upb
}
LET start() = VALOF
{LETn =1
digits := 2000 // Calculate e to 2000 decimal places
upb := (digits+10)/4 // add ten guard digits
tab := getvec(9) // for digit frequency counts
sum := getvec(upb) // will hold the sum of the series
term := getvec(upb) // the next term in the series to add to sum

UNLESS tab & sum & term DO
{ writef("Unable to allocate vectors*n")

GOTO fin
}
settok(sum, 1) // Initial value of sum
settok(term, 1) // The first term to add

UNTIL iszero(term) DO // Until the term is zero

{ add(sum, term) // Add the term to sum
n:=n+1
divbyk(term, n) //  Calculate the next term
+

// Write out e
writes("*ne = *n")
print (sum)
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// Write out the digit frequency counts
writes("#nDigit counts*n")

FOR i = 0 TO 9 DO writef("%n:%i3 ", i, tab!i)
newline()

fin:
freevec(tab)
freevec(sum)
freevec(term)
RESULTIS O

}

The program ends with the definitions of the functions used, most of which we
have already seen.

AND settok(v, k) BE
{v!0 :=k // Set the integer part

FOR i = 1 TO upb DO v!i := 0 // Clear all fractional digits
}

AND add(a, b) BE
{LET c =0
FOR i = upb TO O BY -1 DO
{LET d==c+ al!i + bli
ali := d MOD 10000
c :=d / 10000

AND divbyk(v, k) BE
{LET c =0
FOR i = O TO upb DO
{ LET d = ¢c*10000 + v!'i
vii :=4d / k
d MOD k

C

AND iszero(v) = VALOF

{FOR i = upb TO 0 BY -1 IF v!i RESULTIS FALSE
RESULTIS TRUE

}

The final two functions output the high precision number held in v as a
sequence of decimal digits.
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AND print(v) BE

{ FOR 1 = 0 TO 9 DO tab!i

digcount := 0
writef (" %id4.", v!0)
FOR i = 1 TO upb DO
{ IF i MOD 15 = O DO writes("*n ")
wrpn(v!i, 4)
wrch(’*s’)

}

newline()

}

AND wrpn(n, d) BE
{ IF d>1 DO wrpn(n/10, d-1)
IF digcount>=digits RETURN

n :=

n MOD 10

tab!n := tab!n
wrch(n+’0’)

digcount

+ 1

:= digcount+1

When the program is run its output is as follows.

6967
9921
3233
9244
2069

4995
6398
4310
8889
1172
8418

Digit
0:196

.7182 8182

6277 2407
8174 1359
8298 8075
7614 6066
5517 0276

8862 3428
7727 5471
0595 8411
0313 6020
7211 5551
8294 7876

counts
1:190 2:

The frequency

8459 0452
6630 3535
6629 0435
3195 2510
8082 2648
1838 6062

1899 7077
0962 9537
6612 0545
5724 8176
9486 6850
1085 2639

3536
4759
7290
1901
0016
6133

3327
4152
2970
5851
8003
8139

0287
4571
0334
1573
8477
1384

6171
1115
3023
1806
6853

207 3:202 4:201

4713 5266 2497
3821 7852 5166
2952 6059 5630
8341 8793 0702
4118 5374 2345
5830 0075 2044

7839 2803 4946
1368 3506 2752
6472 5492 9666
3036 4428 1231
2281 8315 2196

7572
4274
7381
1540
4424
9338

5014
6023
9381
4965
0037

:= 0 // Clear the frequency counts

4709
2746
3232
8914
3710
2656

3455
2648
1513
5070
3562

243

3699
6391
8627
9934
7539
0297

8897
4728
7322
4751
5279

9595
9320
9434
8841
orrr
6067

0719
7039
7536
0254
4495

5:197 6:204 7:198 8:202 9:203

counts have been output because they have the remarkable
property of being very much closer to 200 that we should expect. There is a

7496
0305
9076
6750
4499
3711

4258
2076
4509
4650
1582
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simple statistical test (the x? test), covered in the next section, that shows just
how unlikely these counts are assuming each digit is equally likely to be any digit
in the range 0 to 9 and is independent of the other digits in the series.

4.30 The y? test

Feel free to skip this section if the formula below looks too frightening.

The program above showed us that, for e, the counts of each digit in the 2000
digits after the decimal point are 196, 190, 207, 202, 201, 197, 204, 198, 202 and
203. Since there are 2000 digits in all we would expect each to occur about 200
times, but, of course, we would also expect some random deviation from this
average. Statisticians have devised a test (the x? test) that allows us to see if our
collection of counts is reasonable. The method is as follows. First we calculate
the quantity x? defined as follow.

2
Li — Hi
g )
i=1 223

where k is the number of counts, z; is the i count and y; is the expected value
for x; which in our case is always 200. Putting our counts into the formula we
obtain

2 _ (196—200)2 (190—200)2 (207—200)2 (202—200)? (201-200)2
X = 200 + 200 + 200 + 200 + 200 +

(197—-200)?2 (204—200)2 (198—200)2 (202—200)2 (203—200)2
200 + 200 + 200 + 200 + 200
16+1004+49+4+149-+164+4+4+9

200

212
200

= 1.06

We had 10 counts but since they add up to 2000 the last count depends on the
first 9, so for our collection the so called number of degrees of freedom is 9.
We can lookup our value of x? in the table for 9 degrees of freedom to find the
probability that x? would be greater than 1.06, assuming the digits are random
and independent of one another. If you search the web using terms chi squared
distribution calculator, you will find several web pages that will calculate
the probability that y? should be greater than 1.06 for 9 degrees of freedom. The
answer turns out to be 0.9993, so the chance that y? is 1.06 or smaller is less
than one in a thousand.
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4.31 e

The previous section defined e as the sum of a beautiful series whose n'* was
%. Just for fun let us see what happens when we multiply this series by itself.

Clearly the result should be a series representing e?. So we have to simplify
I+d+L+3+. )xQ+3+L+3+..)

We can multiply each element of the left hand term by each element of the right
hand term in a systematic way as follows

I1x1 _ 1 — 1
%X1+1><% _ 1%1 _ %
Ixl4dxdrixd - w2
Ixl+lxd+ixd+ixd = 4Bl 2

This shows that

e2=1+2+2+2 4.
Seeing this equation leads us to thinking that

2 3

e =1+H+5+5+. ..
might be true. After all, it is certainly true when x is 0, 1 or 2. We can increase
our believe that it is true by considering the product of the series for e and e¥
to see if it yields the series for e*™¥. We can do this by multiplying each element

of the left hand term by each element of the right hand term in a systematic way
as follows

1x1 = 1 = 1

Ixl4+1x¥ = oty = )
X IEExhHlxy S e
D l+ox g2y = dedddyintyt o ()

This shows that
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crx o= 1 Gl 4 gy Ry

which correctly represents the series for e”*¥, as expected.

So far we have assumed that x and y are integers, but the algebra we have
just used works just as well when x and y are not whole numbers. Consider, for
example, ez. This clearly represents /e since

[SIE
Il
[

1
= e§+

NI
NI

ez X e

Similarly, es is the q'" oot of e. We can safely assume that our series works for
any z of the form % where p and ¢ are whole numbers. This leads us to believe the
formula is correct even when x cannot be represented as the ratio of two whole
numbers. Examples of such numbers are /2, 7 and even e itself.

4.32 The extraordinary number ¢™v'%3

This number is peculiar since it has 18 digits to the left of the decimal point, but
a sequence of 12 nines to the right of the decimal point. The following program
demonstrates this by computing its value to sufficient precision. The program is
called epr163.b and starts as follows.

GET "libhdr"

MANIFEST

{ upb = 12
upbl = upb+1

}

LET start() = VALOF

{ LET pi = VEC upb
AND root163 = VEC upb
AND x = VEC upb
AND ex = VEC upb

LET exponent = 0

numfromstr(pi, upb, "3.14159265358979323846264338327950%
*288419716939937510582097494459230")

writef ("*nPi is*n")

print(pi, 0)

// Calculate root 163
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sqrt163(root163)
writef ("#*nRoot 163 is*n")
print (root163, 0)

mult(x, pi, rootl63)
writef ("*nPi times Root 163 is*n")
print(x, 0)

// Divide x by 2*x10 (=1024) to make the computation
// e to the power x converge much more rapidly.
divbyk(x, 1024)
exp(ex, x)
// Now square the result 10 times.
FOR i =1 TO 10 DO
{ exponent := 2%exponent

mult(ex, ex, ex)

IF ex!0>10000 DO

{ divbyk(ex, 10000)

exponent := exponent + 1

}
}
// Output the result
writef ("+*ne to the Pi root 163 is*n")
print(ex, exponent)
RESULTIS O

A high precision number is represented by vector whose elements each contain
four decimal digits. It is best to think of them as digits of radix 10000. The zeroth
element is the integer part and the other elements contain the fractional digits.
The upper bound of the vector is upb, set to 12, to allow a precision of over 40
decimal digits which is sufficient for our purposes. Four such vectors pi, root163,
x, ex are declared to represent 7, /163, m x \/163 and €™ V163 respectively. The
function numfromstr is used to initialise pi from a string holding the digits of
7. The call sqrt163(root163) places a representation of 1/163 in root163. The
product of pi and root163 is placed in x using mult. Since x is about 40, the
convergence of the series for ¢* would be very slow, so x is reduced in size by
dividing it by 1024 (= 2'°) before summing the series for €%, placing the result in
ex by the call exp(ex, x). The result in ex is then squared 10 times to give a
representation of e™*V163 The only problem is that this value is outside the range
of values our high precision numbers can hold. This is solved by maintaining an
exponent value in exponent which specified that the number in ex should be
multiplied by 10000%*P°*®*  Each time ex is squared, exponent is doubled, and
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if ex has become too large it is divided by 10000 and exponent incremented by
one.
The additional functions used by this program are as follows.

AND numfromstr(v, upb, s) BE
{ LET p, k, val = 0, 0, k
FOR i = 1 TO s%0 DO
{ LET ch = s%i
IF ’0’<=ch<=’9’ DO val, k := 10*val + ch - ’0’, k+1
IF ch="." | k=4 DO
{ IF p<=upb DO v!p := val
p, k, val := p+1, 0, O
}
+
UNTIL k=4 DO val, k := 10%val, k+1
IF p<=upb DO v!p := val
// Pad on the right with zeroes
UNTIL p>=upb DO { p := p+1l; v!p := 0 }

This take a character string in s and converts it into our high precision represen-
tation using the vector v whose upper bound is upb.

AND sqrt163(x) BE
{ // This is a simple but inefficient function to
// calculate the square root of 163.

LET w = VEC upb
AND eps = VEC upb
AND n163 = VEC upb
nunfromstr (x, upb, "13.") // Initial guess

numfromstr(n163, upb, "163.")

{ mult(w, x, %)

TEST w'!0>=163 THEN { sub(eps, w, nl163)
divbyk(eps, 24)
sub(x, x, eps)

+
ELSE { sub(eps, nl163, w)
divbyk(eps, 24)
add(x, x, eps)
}
//print(x, 0)
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} REPEATUNTIL iszero(eps)
i

As the comment says this is a simple function to set x to a high precision rep-
resentaion of 1/163. There was no need to use the much faster Newton-Raphson
method.

AND mult(x, y, z) BE
{ LET res = VEC upbl
numfromstr(res, upbl, "0.")
// Round by adding a half to the last digit position.
res!upbl := 5000
FOR i = 0 TO upb IF y!'i FOR j = O TO upbi-i DO
{LET p=1i+3j // p is in range O to upbl
LET carry = y!i * z!j
WHILE carry DO
{ LET w = res!p + carry
IF p=0 DO { res!0 := w; BREAK }
res!p, carry := w MOD 10000, w/10000
p := p-1
}
}
FOR i = 0 TO upb DO x!i := res!i
}

This function multiplies the high precision numbers in y and z placing the rounded
result in x. It uses a temporary vector res that includes an extra digit to allow
for rounding. Every pair of digits that can contribute to the result are multiplied
together and added to the appropriate position in res, dealing with carries as
they arise.

AND exp(ex, x) BE
{ // This calculates e to the power x by summing the series
// whose nth term is x**n/n!
LET n =0
LET term = VEC upb
numfromstr(term, upb, "1.")
numfromstr (ex, upb, "0.")
UNTIL iszero(term) DO
{ add(ex, ex, term)
n := n+l
mult (term, term, x)
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divbyk(term, n)
+
}

This computes e* using the series

2 2t
The result is accumulated in ex and term holds the next term to be added. The
summation stops when term holds zero.

AND add(x, y, z) BE
{LET c=0
FOR i = upb TO O BY -1 DO
{LET d=c+ yli+ zli
x!i := d MOD 10000
c :=d / 10000
+
}

This function adds the high precision numbers in y and z placing the result in x.

AND sub(x, y, z) BE
{ LET borrow = 0
FOR i = upb TO 1 BY -1 DO
{ LET d = y!i - borrow - z!i

borrow := 0
UNTIL d>=0 DO borrow, d := borrowt+l, d+10000
x!'i :=d

}

x!0 := y!0 - borrow - z!0

3

This function subtracts the high precision number in z from y placing the result
in x.

AND divbyk(v, k) BE

{LET c =0
FOR i = 0 TO upb DO
{ LET d = c*10000 + v!i
vlii :=d / k
C :=d MOD k
+
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This divides the high precision number in v by k which must be in the range 1
to 10000.

AND iszero(v) = VALOF
{ FOR i = upb TO O BY -1 IF v!i RESULTIS FALSE
RESULTIS TRUE

This returns TRUE is the high precision number in v is zero.

AND print(v, exponent) BE
{ writef ("%i4", v!0)
FOR i = 1 TO upb DO

{ wrch(exponent=0 -> ’.’, ’xs’)
exponent := exponent - 1
IF i MOD 15 = O DO newline()
wrpn(v!i, 4)

}

newline()

}

AND wrpn(n, d) BE

{ IF d>1 DO wrpn(n/10, d-1)
wrch(n MOD 10 +°07)

}

These two functions combine to output a high precision number with a given
exponent.

When this program runs, its output is as follows.

Pi is
3.1415 9265 3589 7932 3846 2643 3832 7950 2884 1971 6939 9375

Root 163 is
12.7671 4533 4803 7046 6171 0952 0097 8089 2347 3823 6377 9407

Pi times Root 163 is
40.1091 6999 1132 5197 5535 0083 6229 0414 0053 9005 3481 5142

e to the Pi root 163 is
26 2537 4126 4076 8743.9999 9999 9999 2500 7259 7198 1820 2936



252 CHAPTER 4. THE BCPL CINTCODE SYSTEM

4.33 Digits of 7

This section is another illustration of the use of modulo arithmetic. It is entirely
optional and can be skipped.

The ratio of the circumference of a circle to its diameter is a very important
constant called 7, and it has a value of about 3.14159, and some people like
to use the approximations % or % In the mid 1930s, © was known to about
700 decimal places but now, with the aid of computers and staggeringly cunning
methods it can be calculated to billions (and even trillions) of decimal places.
For more information do a web search on: digits of pi.

One intriguing method was discovered by David Bailey, Peter Borwein and
Simon Ploffe and appears in section 10.7 of “Number Theory, A Programmer’s

Guide” by Mark Herkommer. It is based on the totally remarkable formula:

oy 9 1 1 1
=2 (G i " mrd mas mre < (§

1=0

The beauty of this formula is that it can be used to calculate the n'" hexadec-
imal digit of pi using modulo arithmetic with the big advantage that the other
digits are not computed. So how do we do it?

We multiply the right hand side by 16™ and split it into the first n terms and
the rest, namely

g x 16t 2x 16mF 16t 16"

z-:o( 8i+ 1 8i+4 845 816
and

x4 2 1 1 1,

Y lo——5— =) x(=)

—~ & +1 &+4 8 +5 8+6 16

=n

If we add these two sums together, we obtain a huge number, and if we
represent it using hexadecimal digits we find that the first digit to the right of
the decimal point is the n'® hex digit of 7. If we are only interested in this digit
all the digits to the left of the decimal point can be discarded and only a few to
the right of the decimal point need to be retained during the calculation. Let us
consider the first term in the first sum. The contribution this term makes to the
result is

n—1 16n7i

2G5

But we are only interested in the fractional part, so the following sum will do
just as well.
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"214( 16" "mod(8i + 1))
2 Si+ 1

Computing 16" 'mod(8i + 1) throws away all integer multiples of (8 + 1) leaving
only the remainder, which is positive but less than 8¢+ 1, so when this is divided
by 8 + 1 yields a value between 0 and 1. This trick is similar to calculating the
fractional part of 123/10 as follow:

123mod10 3
— 1 "= 0.3

A program to output the digits of 7 in hexadecimal and decimal is in
beplprogs/raspi/pidigs.b. It starts as follows:

GET "libhdr"

MANIFEST {

// Define the scaled arithmetic parameters

fraclen = 28 // Number of binary digits after the decimal point
// 28 allows numbers in the range -8.0 <= x < 8.0

One = 1<<fraclen // eg #x10000000

Two = 2+*0ne // eg #x20000000

Four = 4#*0ne // eg #x40000000

fracmask = One - 1 // eg #xOFFFFFFF

upb = 1000
}

LET start() = VALOF
{ LET hexdig = getvec(upb)

writef ("*nPi in hex*n")

writef ("*n 3.")

hexdig!0 := 3

FOR n = 1 TO upb DO {
LET dig = pihexdig(n-1)

IF n MOD 50 = 1 DO writef("*n%5i: ", n)
writef ("%x1", pihexdig(n)); deplete(cos)
}
newline()

writef ("*nPi in decimal*n")
writef ("*n 3.")
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FOR i = 1 TO upb DO

{ IF i MOD 50 = 1 DO writef("*n%b5i: ", i)
hexdig!0 := 0 // Remove the integer part then
mulby10(hexdig, upb) // multiply the fraction by 10 to obtain
writef ("%n", hexdig!0) // the next decimal digit in hexdig!O
deplete(cos)

}

newline()

freevec(hexdig)

RESULTIS O

The constant fraclen (=28) specifies the number of binary digits after the dec-
imal point of the scaled numbers we will be using. This leaves 4 bits (or one
hexdecimal digit) to the left of the decimal point. We will be using signed arith-
metic, so this allows us to represent numbers greater than or equal to -8.000
and less than 8.000 which is sufficient for our purposes. The constants One,
Two and Four represent the numbers 1, 2 and 4 in this scaled representation, and
fracmask is a bit pattern that will extract just the fractional bits of our numbers.

The main function start outputs the hexadecimal digits of = up to position
1000, placing 50 digits per line. Each digit is calculated by calls of pihexdig.
These digit are saved in the vector hexdig to allow them to be converted to
decimal. The conversion to decimal is simple. It just requires setting the integer
part (held in hexdig!0) to zero before multiplying the fraction in hex by decimal
10 giving the next decimal digit in hexdig!0. The calculation is outlined below.

3.14159265 => 0.14159265 * 10 => 1.4159265
1.4159265 => 0.4159265 =* 10 => 4.159265
4.159265 => 0.159265 * 10 => 1.59265
1.59265 => 0.59265 * 10 => 5.9265
5.9265 => 0.9265 * 10 => 9.265

The multiplication by 10 is done by mulby10 defined as follows.

AND mulby10(v, upb) BE
{ // v contains one hex digit per element with the
// decimal point between v!0 and v!1
LET carry = 0
FOR i = upb TO O BY -1 DO
{ LET 4 = v!i*10 + carry
v!i, carry := d MOD 16, d/16
}
}
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The library function muldiv take three signed numbers and returns the math-
ematically correct result of dividing the third argument into the product of the
first two. Thus muldiv(x,y,z)=(x*y)/z, but x*y is computed as a double length
quantity. The function powmod(x,n,m), defined later, computes z"mod(m) with
reasonably efficiently. Note that

muldiv(Four, powmod(16, n-i, 8%i+1), 8*i+1)

will return the value of

16" 'mod(8i + 1)
81+ 1

4( )

as a number using our scaled representation. The definition of pihexdig is as
follows.

AND pihexdig(n) = VALOF
{ // By convention, the first hex digit after the decimal point
// is at position n=0
LET s = 0 // A scaled number with fraclen binary digits
// after the decimal point.

LET t = One

FOR i = 0 TO n-1 DO

{ LET a = muldiv(Four, powmod(16, n-i, 8xi+1), 8*i+1)
LET b = muldiv( Two, powmod(16, n-i, 8*i+4), 8*i+4)
LET ¢ = muldiv( One, powmod(16, n-i, 8%i+5), 8%i+b)
LET d = muldiv( One, powmod(16, n-i, 8*i+6), 8*i+6)
s :(=s+a-b-c-d& fracmask

}

// Now add the remaining terms until they are too small
// to matter.

{LET i=n
WHILE t DO
{ LET a = 4 x t / (8xi+1)
LET b = 2 x t / (8*%i+4)
LET ¢ = t / (8%i+b)
LET d = t / (8xi+6)
s :=s+a-b-c-d& fracmask

i, t := i+1, t/16
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RESULTIS (s>>(fraclen-4)) & #xF // Extract the required digit
X

To complete the program, the definition of powmod is as on Page 61, namely

AND powmod(x, n, m) = VALOF
{ LET res =1
LET p = x MOD m

WHILE n DO
{ UNLESS (n & 1)=0 DO res := (res * p) MOD m

n := n>>1

p := (p*p) MOD m // DANGER: p*p must not overflow
}

RESULTIS res
}

The actual program in raspi/pidigs.b contains some optional tracing code as
a debugging aid. The values of a, b, ¢, d, and s can be output in decimal and
hexadecimal as they are computed using the function tr, as in tr("a", a). The
definition of tr is as follows.

AND tr(str, x) BE

{ // Output scaled number x in decimal and hex
LET d = muldiv( 1_000_000, x, One)
LET h = muldiv(#x10000000, x, One) // Just in case fraclen is not 28
writef ("%s = %9.6d ¥%8x*n", str, d, h)

}

When pidigs runs it generates the following output.
0.000> pidigs
Pi in hex

3.

1: 243F6A8885A308D313198A2E03707344A4093822299F31D008
51: 2EFA98EC4E6C89452821E638D01377BES5466CF34E90C6CCOAC
101: 29B7C97C50DD3F84D5B5B54709179216D5D98979FB1BD1310B
151: A698DFBSAC2FFD72DBDO1ADFB7BSE1AFED6A267E96BA7CO045
201: F12C7F9924A19947B3916CF70801F2E2858EFC16636920D871
251: 574E69A458FEA3F4933D7EOD95748F728EB658718BCD588215
301: 4AEE7TB54A41DC25A59B59C30D5392AF26013C5D1B023286085
351: FOCA417918B8DB38EFSE79DCB0603A180E6COEOESBBO1ESA3E
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401:
451:
501:
b51:
601:
651:
701:
751:
801:
851:
901:
951:

Pi in

1:
51:
101:
151:
201:
251:
301:
351:
401:
451:
501:
551:
601:
651:
701:
751:
801:
851:
901:
951:
2.990>

D71577C1BD314B2778AF2FDAS5605C60E65525F3AAS5AB9457
48986263E8144055CA396A2AAB10B6B4CC5C341141E8CEA154
86AF7C72E993B3EE1411636FBC2A2BA9C55D741831F6CESC3E
169B87931EAFD6BA336C24CF5CTA325381289586773B8F4898
6B4BBOAFC4BFE81B6628219361D809CCFB21A991487CAC605D
EC8032EF845D5DE98575B1DC262302EB651B8823893E81D396
ACC50F6D6FF383F442392E0B4482A484200469C8F04A9E1F9B
5E21C66842F6E96COA670CO9C61ABD388FO6A51A0D2D8542F68
960FA728AB5133A36EEFOB6C137A3BE4BA3BFO507EFB2A98A1
F1651D39AF017666CA593E82430E888CEE8619456F9FB47D84
A5C33B8B5EBEEO6F75D885C12073401A449F56C16AA64ED3AA
62363F77061BFEDF72429B023D37D0D724D00A1248DBOFEAD3

decimal

3.

14159265358979323846264338327950288419716939937510
58209749445923078164062862089986280348253421170679
82148086513282306647093844609550582231725359408128
48111745028410270193852110555964462294895493038196
44288109756659334461284756482337867831652712019091
45648566923460348610454326648213393607260249141273
72458700660631558817488152092096282925409171536436
78925903600113305305488204665213841469519415116094
33057270365759591953092186117381932611793105118548
07446237996274956735188575272489122793818301194912
98336733624406566430860213949463952247371907021798
60943702770539217176293176752384674818467669405132
00056812714526356082778577134275778960917363717872
14684409012249534301465495853710507922796892589235
42019956112129021960864034418159813629774771309960
51870721134999999837297804995105973173281609631859
50244594553469083026425223082533446850352619311881
71010003137838752886587533208381420617177669147303
59825349042875546873115956286388235378759375195778
18577805321712268066130019278766111959092164201989

257

By changing to bounds of the FOR loop in start and disabling the decimal con-
version, you can discover that the hexadecimal digit at position one million is 6,
which I think is remarkable for such a small program. But beware, 28 fractional
bits does not have sufficient precision to guarantee all digits from position zero to
one million are correct. Try reducing fraclen to see where errors begin to creep
in. For instance, if fraclen=22 the first error is at position 1269, and 25 gives an
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error at 3708. 28 gives correct digits at least up to position 5000. Unfortunately,
if you want more than 28 bits the program will need substantial modification.

4.34 More commands

The programs given so far have included examples of most of the constructs
available in BCPL. This section just describes a few of them in more detail.

We should now be familiar with the IF and UNLESS statements that allow the
conditional execution of commands based on the values returned by expressions.
The convention is that a value of zero represents false and any non zero value
represents true. For convenience, the keywords FALSE and TRUE have values
zero and -1. Note that the bit pattern operators &, | and ~ work well with
this representation of truth values. For instance, (TRUE & FALSE) = FALSE and
(FALSE | "FALSE) = TRUE. However, there is one subtlety which is as follows.
When an expression is used in a conditional statement controlling the flow of
execution, the operators &, | and ~ are evaluated slightly differently. For instance,
in the command IF x=0 & y>3 RESULTIS 13, if the value of x is non zero the
condition y>3 will not be evaluated since it is already known that the RESULTIS
statement will not be executed. The expression x=0 & y>3 in this example is
being evaluated in what is called Boolean context. Whereas in the assignment
sw := x=0 & y>3 both x=0 and y>3 are evaluated before being anded together.
The only places where expressions are evaluated in a Boolean contexts are those
used in IF, UNLESS, TEST, WHILE, UNTIL, REPEATWHILE, REPEATUNTIL, and the
expression to the left of => in a conditional expression. It is important to know
when an expression is being evaluated in a Boolean context since, for instance,
the following two statements are not equivalent.

IF x & 7 RESULTIS 12
IF (x & 7) "= 0 RESULTIS 12

The first will execute the RESULTIS statement whenever x is non zero, but the
second will only do so if the least significant three bits of x are not all zero.

The IF and UNLESS commands allow for the conditional execution of a com-
mand. If you wish to conditionally execute one of two commands you should use
the TEST commands, as in

TEST tracing
THEN writef ("#nSignal tracing now on*n")
ELSE writef ("#nSignal tracing turned off*n")

It is sometimes necessary to select one of many alternative command based
on the value of an expression. This is often done using the SWITCHON command
as in:
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SWITCHON op INTO
{ DEFAULT: writef("Unkown operator %n*n", op)

abort (999)

ENDCASE
CASE Pos: ENDCASE
CASE Neg: a := - a; ENDCASE
CASE Add: a := b + a; ENDCASE
CASE Sub: a := b - a; ENDCASE
CASE Mul: a := b * a; ENDCASE
CASE Div: a := b / a; ENDCASE
CASE Mod: a := b MOD a; ENDCASE

Here the value of op is inspected and compared with Pos, Neg, Add, Sub, Mul,
Div and Mod, all of which must have been declared as MANIFEST constant. If op is
not equal to any of them control passed to the default label, otherwise execution
continues at the appropriate CASE label. The ENDCASE statement cause a jump to
just after the SWITCHON command. Although MANIFEST constants are often used
in CASE label, numerical and character constants are frequently used.

In addition to ENDCASE, there are several other special jump commands. BREAK
causes a jump out of the current repetitive command. The repetitive commands
are those with keywords WHILE, UNTIL, REPEATWHILE, REPEATUNTIL, REPEAT and
FOR. LOOP causes a jump to end of the body of a repetitive command normally to
where the repetition condition is re-evaluated. For a REPEAT command, it jumps
to the start of the body and for a FOR command it jumps to where the control
variable is incremented. The other jump commands are RESULTIS which jumps
to the end of the current VALOF expression carrying with it the result, and, finally,
RETURN causes a return from the current fuction. Careful use of these commands
almost eliminates the need to ever use the GOTO command.

4.35 The VSPL Compiler

As a final example we will look at a somewhat more substantial program.
BCPL was originally written to help with the implementation of programming
language compilers, and its own compiler is a good example. It is, however,
too long and complicated to be used as an introduction to compiler writing.
A much simpler language called VSPL (Very Simple Programming Language)
was designed as an educational tool showing how a compiler can be written in
several languages using different programming styles. If you are interested, look
at the VSPL distribution available from my home page. The standard BCPL
distribution includes the BCPL version of the VSPL compiler in com/vspl.b
together with two example programs primes.vs and demo.vs in the BCPL root
directory. When printed vspl.b is only 21 pages long, but does contain a lexical
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analyser, a parser, a translation phase and an interpreter to execute the compiled
code. It also contains debugging aids to help you understand how the compiler
works.

To explore the VSPL system, try typing the following commands.

cd $BCPLROOT -- Enter the BCPLROOT directory

cintsys —-- Start the BCPL system

¢ bc vspl -— Compile the VSPL compiler

type primes.vs -- Look at a typical VSPL program

vspl primes.vs -- Compile and run it

type demo.vs -- Look at a tiny demo program

vspl -1 demo.vs -— Look at the result of lexical analysis
vspl -p demo.vs -- Look at the parse tree

vspl -c demo.vs -— Look at the compiled code

vspl -t demo.vs -— Trace the execution of the compiled code

For more information look at the VSPL distribution available via my home page.

4.36 Summary of BCPL

This section gives a brief summary of BCPL. For a full description of the language
look at the BCPL Manual (bcplman.pdf) given in my home page.
In the syntactic forms given below

denotes an expression,

denotes a constant expression,
denotes a command,

denotes a definition,

denotes a function argument list,
denotes a variable name,

=Z2=0aQx >

4.36.1 Comments and GET

Text between // and the end of the line is ignored. The symbols /* and */ are
called comment brackets. These brackets and the text enclosed between them
are ignored. Such comments may be nested.

A GET directive of the form GET " filename" asin GET "libhdr" is replaced
by the contents of the specified file. GET first searches the current directory and
then the directories specified by the BCPLHDRS environment variable. If the file
name does not end with .h or .b, .h is appended.
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4.36.2 Sections

A section is a sequence of declarations optionally preceeded by a SECTION direc-
tive of the form SECTION "name". Several sections can occur in one file separated
by dots.

4.36.3 Declarations

LET D AND ... AND D
AND joins simultaneous definitions together. All the variables defined have a
scope starting at the word LET.

MANIFEST { N=K ;...; N= K}
The “= K”s are optional. When omitted the next available integer is used.
STATIC { N=K ;...; N=K}

The “= K”s are optional. When omitted the the corresponding variables have
undefined initial values.

GLOBAL { N : K ;...; N: K}
The “: K”s are optional. When omitted the next available integer is used.

4.36.4 Definitions

Definitions are used in declarations after the word LET or AND. They are as follows.

N,..., N=E,..., E
This is a simultaneous definition defining a list of local variables with specified
initial values. They are allocated consective locations in memory.

N = VEC K
This is a local vector definition. It defines a local variable N with an initial
value that points to the zeroth element of a local vector whose upper bound
is the constant K.

N(N,..., N) =E
This defines a function that returns a result specified by the expression E. It
has zero or more arguments.

N(N,..., N) BEC
This defines a function just like the one above but has no specified result.

4.36.5 Expressions

N Eg: abc vl a s_err
These are used to name functions, variables and constants.
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numb Eg: 1234 #x7F_0001 #377 #b_ 01111111 0000
These yield specified constant values.

This yields an undefined value.

TRUE FALSE
These represent the two truth values -1 and 0, respectively.

char Eg: A’ ’x*n’
These character constants are encoded as numbers in the range 0 to 255.

string Eg: "abc" "Hello*n"
A string is represented by a pointer to where the characters of the string
are packed. The individual characters are encoded as 8-bit bytes and can be
accessed using the percent operator %. The zeroth character of a string holds
its upper bound.

TABLE K ,..., K
This yields an initialised static vector. The elements of the vector are initialised
to the given compile time constants.

VALOF C
This introduces a new scope for locals and defines the context for RESULTIS
commands within C'.

( E)
Parentheses are used to override the normal precedence of the expression op-
erators.

ECE,..., E)
This is a function call.
Q F

This returns the address of £ which must be either a variable name or of the
form E'E or !E.

E'!' FE ' E
This is the subscription operator. The left operand is a pointer to the zeroth
element of a vector and the right hand operand is an integer subscript. The
form !E is equivalent to E!0.

E' E
This is the byte subscription operator. The left operand is a pointer to the
zeroth element of a byte vector and the right hand operand is an integer
subscript.

+ E - FE ABS E
These are monadic operators for plus, minus and absolute value, respectively.
Ex FE E/ E E MOD E

These are dyadic operators for multiplication, division, remainder after divi-
sion, respectively.
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E+ E E - FE
These are dyadic operators for addition and subtraction, respectively.

E relop E relop ... relop E
where relop is any of =, ~=, < <= > or >=. It return TRUE only if all the
individual relations are satisfied.

E < E E > E
These are logical left and right shift operators, respectively.

~ E
This returns the bitwise complement of E.

E & E
This returns the bitwise AND of its operands.

E| E
This returns the bitwise OR of its operands.

E XOR E
This returns the bitwise exclusive OR of its operands.

E->FE, FE
This is the conditional expression construct.

4.36.6 Commands

E,..., E:=FE,..., E
This is the simultaneous assignment operator. The order in which the expres-
sions are evaluated is undefined.

TEST E THEN C ELSE C

IF EDO C

UNLESS E DO C
These are the conditional commands. They are less binding than assignment.

SWITCHON E INTO C

DEFAULT:

CASE K:

ENDCASE
The DEFAULT label and CASE labels identify positions within the body of a
SWITCHON command. The effect of a SWITCHON command is to evaluate F and
then transfer control to the matching CASE label. If no CASE label matches
control is passed to the DEFAULT label, but if there is no DEFAULT label control
exits from the SWITCHON command. ENDCASE causes an exit from the SWITCHON
command. It normally occurs at the end of the code for each case.

WHILE £ DO C
UNTIL £ DO C
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C REPEATWHILE E

C REPEATUNTIL E

C REPEAT

FOR ¥ = ETO EBY K DO C

FOR ¥ = ETO EDO C
These are the repetitive commands. The FOR command introduces a new scope
for locals, and N is a new variable within this scope.

RESULTIS FE

This returns from current VALOF expression with the given value.
RETURN

Return from current function with an undefined value.
BREAK LOOP

Respectively, exit from, or loop in the current repetitive command.
N:
GOTO E:

The construct N: sets a label to this point in the program, and the GOTO
command can be used to transfer to this point. However, the GOTO and the
label must be in the same function.

c;...; C
Evaluate the commands from left to right.

{€C;...; C}
This construct is called a compound command and is treated syntactically as
a single command. It can, for instance, be the operand of an IF statement.
A sequence of declaration is permitted immediately after the open section
bracket ({). This causes it to be called a block. The declared names have a
scope limited to the block.

4.36.7 Constant expressions

These are used in MANIFEST, STATIC and GLOBAL declarations, in VEC definitions,
and in the step length of FOR commands.

The syntax of constant expressions is the same as that of ordinary expressions
except that only constructs that can be evaluated at compile time are permitted.
These are:

N, numb, ?, TRUE, FALSE, char,
(K),

+ K, - K, ABS K,

K* K K/ K, KMOD K

K+ K K- K,

K relop K relop ... relop K,
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K << K, K > K,
~ K,

K& K,

K| K

K XOR K,
K-> K, K

4.37 Debugging Techniques

It is common to make mistakes when writing a large program. Such errors may
cause the program to produce incorrect results or even cause a crash. Errors in
programs have become known as bugs and removing them is known as debugging.
Even the most carefully written programs tend to contain bugs and it seems
almost impossible to create a large programs with fewer than about one bug
every 3000 lines of source code. We therefore have to learn to live with bugs
since modern systems often involve millions of line of code. In such a program
the removal of a known bug may be inadvisable since its correction may introduce
one or more unknown bugs.

Bugs can also occur in computer hardware. Probably the most famous ex-
ample is the FDIV bug detected in some Pentium chips in 1984. The FDIV
instruction would very occasionally produce a slightly inaccurate result. It was
estimated that this occurred about once in every 9 billion executions of FDIV on
random data.

How can we produce reliable software in the presence of software (and hard-
ware) bugs. This is an important problem since there are many situations where
software errors can cause loss of life. For instance, modern jet airliners are typi-
cally flown by computer and even when the pilot takes control the computer still
have a significant effect. One major airliner uses three independent computers
to calculate the required positions of the control surfaces such as the rudder and
ailerons. They each control independent hydraulic systems to move the surfaces
and have the property that if one of the computer fails, the other two have suffi-
cient strength to force the correct result. As an added safety measure the software
for the three machines are implemented by independent teams of progammers,
but even then they may all make the same errors having incorporated identical al-
gorithms taken published books or research papers. This suggests that it may be
worth dynamically checking the accuracy of results. For intance, after computing
r = a/b it might be worth checking that r x b is sufficiently close to a. Similar
checks could be made for square root and the trigonometic functions. Such code
would probably have detected the FDIV bug much earlier. I am personally happy
to know that there are human pilots in the cockpit since they would notice if the
computer system suddenly decided to turn the aircraft upside down causing them
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to take control. Surprisingly, in cloud, the passengers would probably not notice
what had happened.

An important part of a programmers job is clearly the tracking down and
correction of bugs. The most important advice is to program with extreme care
and spend plenty of time proof reading the code. A useful aid to proof reading is
the construction of cross reference listings. For instance, a cross reference listing
of the BCPL compiler is the file BCPL/cintcode/xrefbcpl. It was constructed
by the following command sequence.

cd BCPL/cintcode
cintsys

delete xrefbcpl
bmake xrefbcpl

This uses the bmake command which reads the file: bmakefile containing the
following relevant lines.

xrefbcpl <= com/bcpl.b com/becplfe.b com/becplcgecin.b
sysb/blib.b sysb/dlib.b

<<

delete -f rawxref

¢ bs blib "ver rawxref xref"

¢ bs dlib "ver rawxref xref"

¢ bc bcpl "ver rawxref xref"

sortxref rawxref to xrefbcpl

delete rawxref

>>

These invoke the BCPL compiler to compile blib, d1ib and bcpl using the xref
option to append cross reference lines to the file rawxref. The xref option causes
the compiler to append a line of cross reference information every time it encoun-
ters a name while translating the parse tree representation of a program into
OCODE. Information concerning names corresponding to function arguments or
local variables are not included, since the usage of function names, static vari-
ables and manifest constants is much more useful. The lines in rawxref are then
sorted into alphabetical order using sortxref which also removes duplicate lines.
A few lines from xrefbcpl are as follows.

translate G:218 DEF bcplfecg.h[126] translate=
translate G:218 LG ../cintcode/com/bcplfe.b[5627] translate(tree)
translate G:218 RT ../cintcode/com/bcplfe.b[2437] LET translate(x)BE..
transname G:333 DEF ../cintcode/com/bcplfe.b[2392] transname=
transname G:333 LG ../cintcode/com/bcplfe.b[3196]

transname (x,s_1p,s_lg,s_11,s_1f,s_1n)
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transname G:333 LG ../cintcode/com/bcplfe.b[3281]
transname (x,s_11p,s_l1g,s_111,0,0)

transname G:333 LG ../cintcode/com/bcplfe.b[3511]
transname (x,s_sp,s_sg,s_s1,0,0)

transname G:333 RT ../cintcode/com/bcplfe.b[3587]
LET transname(x,p,g,l,f,n)BE..

These show that the routine translate was defined to be global 218 on line 126
of the header file bcplfecg.h. It was called on line 527 of bcplfecg.b and its
definitions starts on line 2437 of the same file. Similarly, the routine transname
was defined on line 2392 of file bcplfecg.b to be global 333, and called on lines
3196, 3281 and 3511. Its definition starts at line 3587. We can also see that the
definition and the calls all take 6 arguments.

The cross reference listing is particularly useful for checking global number
allocation, mis-spelling of names and that the arguments of function calls match
their definitions and occur in the right order.

Many programming errors are detected by the compiler and are easily cor-
rected. The more difficult errors are usually not detected until the program is
run and some may go undetected for weeks or months until the exact state is
encountered that causes the program to fail. It is a good strategy to incorporate
code to check the validity of certain variables, particularly some function argu-
ment, pointers and array subscripts. Such checks do not significantly increase the
program size and, unless they occur in tight inner loops, will have little effect on
the execution time.

The following sections suggest other ways to aid debugging.

4.37.1 Adding debugging output to a program

Perhaps the simplest way to help debug a program is to add debugging statements
to the program. The BCPL compiler has such statements to help debug its
lexical analyser, syntax analyser, translation phase and codegenerator. Starting
a program with a question mark will cause the compiler to output a trace of its
lexical tokens, as shown below.

solestreet:$ cd “/distribution/BCPL/bcplprogs/tests
solestreet:$ cintsys

BCPL 32-bit Cintcode System (21 Oct 2015)
0.000> type tstl.b
?

GLOBAL { start:1; £:300 }

LET start() = VALOF
{ LET a = 12
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LET b = 24
RESULTIS a/(2*a-b) + f(b)

}

0.000> bcpl tstl.b

BCPL (10 Oct 2014) with simple floating point

token = 68 1ln= 2 GLOBAL

token = 79 1n= 2 LSECT

token = 2 1n= 2 NAME start
token = 45 1n= 2 COLON

token = 1 1ln= 2 NUMBER 1
token = 82 1ln= 2 SEMICOLON

token = 2 1ln= 2 NAME f
token = 45 1n= 2 COLON

token = 1 1n= 2 NUMBER 300
token = 80 1n= 2 RSECT

token = 65 1n= 4 LET

token = 2 1n= 4 NAME start
token = 89 1n= 4 LPAREN

token = 90 1n= 4 RPAREN

token = 19 1n= 4 EQ

token = 6 1ln= 4 VALOF

token = 79 1ln= 5 LSECT

token = 65 1ln= 5 LET

token = 2 1n= 5 NAME a
token = 19 1n= 5 EQ

token = 1 1n= 5 NUMBER 12
token = 65 1ln= 6 LET

token = 2 1n= 6 NAME b
token = 19 1n= 6 EQ

token = 1 1n= 6 NUMBER 24
token = 44 1n= 7 RESULTIS

token = 2 1n= 7 NAME a
token = 15 1n= 7 DIV

token = 89 1ln= 7 LPAREN

token = 1 1ln= 7 NUMBER 2
token = 14 1n= 7 MUL

token = 2 1n= 7 NAME a
token = 18 1n= 7 SUB

token = 2 1n= 7 NAME b
token = 90 1n= 7 RPAREN

token = 17 1n= 7 ADD

token = 2 1ln= 7 NAME f
token = 89 1ln= 7 LPAREN
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token = 2 1n= 7 NAME b
token = 90 1ln= 7 RPAREN

token = 80 1ln= 8 RSECT

token = 94 1n= 9 EOF

0.010>

If we give the compiler the tree option, it will output the parse tree of the
program being compiled as shown in the following example.

0.000> type tst.b
GLOBAL { start:1; f:300 }

LET start() = VALOF

{ LET a = 12

LET b = 24

RESULTIS a/(2*a-b) + f(b)
}

0.000> bcpl tst.b tree

BCPL (10 Oct 2014) with simple floating point
Parse Tree
GLOBAL tst.b[1]
*-CONSTDEF tst.b[1]
! *~CONSTDEF tst.b[1]
11 %x-Nil
I | %x-NAME: f
I 1 *-NUM: 300
! x-NAME: start
! *-NUM: 1
*~LET tst.b[3]
*-FNDEF tst.b[3]
! x-NAME: start
I x=Nil
! *-VALOF
I *-LET tst.bl[4]
! *-VALDEF tst.b[4]
! I *-NAME: a
! I *-NUM: 12
! *-LET tst.b[5]
! *-VALDEF tst.b[5]
! ! x-NAME: b
! I x-NUM: 24
! *-RESULTIS tst.b[6]
! *—ADD
! *-DIV
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! ! x-NAME: a

! I *-SUB

! ! *-MUL

! ! I x-NUM: 2

! ! I x-NAME: a

! ! *-NAME: b

! *-FNAP

! *-NAME: f

! *-NAME: Db
*-Nil

OCODE size: 54/200000

0.010>

This aids the debugging of the syntax analyser and users will sometimes use it
to check their understanding of the relative precedence of expression operators.

The interface between the translation phase and the codegenerator is an inter-
mediate code called OCODE, and running the compiler without telling it where
to send the compiled code causes it to create a file of OCODE. This is just a
sequence of numbers which can be made more readable using the procode com-
mand.

0.000> type tst.b
GLOBAL { start:1; f:300 }

LET start() = VALOF
{ LET a = 12
LET b = 24
RESULTIS a/(2xa-b) + f(b)
}
0.000> bcpl tst.b

BCPL (10 Oct 2014) with simple floating point
OCODE size: 54/200000

0.020> type ocode
110 2 118 1 5 115 116 97 114 116 119 3 100 12 116 100
24 116 98 3 98 3 100 2 14 98 4 18 15 115 9 98

4 99 300 10 6 17 120 115 4 115 3 125 115 3 114 2
116 68 1 1 1

0.010> procode

Converting ocode to *

JUMP L2

ENTRY L1 5 ’s’ ’t’ ’a’ ’r’ ’t’

SAVE 3

LN 12

STORE
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LN 24
STORE
LP 3
LP 3
LN 2
MUL
LP 4
SUB
DIV
STACK 9
LP 4
LG 300
FNAP 6
ADD
FNRN
STACK 4
STACK 3
ENDPROC
STACK 3
LAB L2
STORE
GLOBAL 1
1 L1

Conversion complete
0.000>
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There are also various built-in aids to help debug the codegenerator. For instance
the codegenerator can trace its generation of Cintcode instructions as in the

following.

0.000> type tst.b
GLOBAL { start:1; £f:300 }

LET start() = VALOF
{ LET a = 12
LET b = 24
RESULTIS a/(2*a-b) + f(b)
}
0.000> becpl tst.b to junk di

BCPL (10 Oct 2014) with simple floating point

0: DATAW #x00000000
4: DATAW #xOOOODFDF
8: DATAW #x6174730B
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12: DATAW #x20207472
16: DATAW #x20202020

// Entry to:  start
20: L1:

20: L 12

22: SP3

23: L 24

25: SP4

26: XCH

27: L2

28: MUL

29: LP4

30: SUB

31: LP3

32: XCH

33: DIV

34: SP5

35: LP4

36: K6G1 44

38: AP5

39: RTN

40: L2:

40: DATAW #x00000000
44: DATAW #x00000001
48: DATAW #x00000014
52: DATAW #x0000012C

Code size = 56 bytes of 32-bit little ender Cintcode

0.020>

4.37.2 Using the interactive debugger

The BCPL Cintcode System has a built-in interactive debugger that can be in-
voked in various ways. One common way is when the running program tries to
perform an operation that is not permitted, such as division by zero, or trying
to call a global function that has not been defined. Both of these faults occur in
the following program.

GLOBAL { start:1; £:300 }

LET start() = VALOF
{ LET a = 12
LET b = 24
RESULTIS a/(2*a-b) + f(b)

}
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We can compile and test this program as follows.

solestreet:$ cd “/distribution/BCPL/bcplprogs/tests/
solestreet:$ cintsys

BCPL 32-bit Cintcode System (21 Oct 2015)
0.000> c b tst
bcpl tst.b to tst hdrs BCPLHDRS t32

BCPL (10 Oct 2014) with simple floating point
Code size = 56 bytes of 32-bit little ender Cintcode
0.020> tst

!'! ABORT 5: Division by zero
* C

!'! ABORT 4: G300 unassigned
*
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As can be seen when a fault is detected, the program is suspended with an
indication of the error, and is left in the debugger waiting for the user to enter a
debugging command. The first fault detected was Division by zero and when
execution was resumed by the ¢ command, the system discovers that the function

f had not been defined.

A useful debugging command is ? which outputs the list of available debugging

commands.

* 7

? Print list of debug commands

Gn Pn Rn Vn Variables

G P R V Pointers

123 #0377 #FF03 ’c Constants

xe /e %e +e -e |e &e "e Dyadic operators

le Subscription

<> Shift left/right one place
$b $c $d $f $o $s $u $x Set the print style
SGn SPn SRn SVn SAn Store in variable

= Print current value

Tn Print n consecutive locations

I Print current instruction

N Print next instruction

D Dump Cintcode memory to DUMP.mem
Q Quit -- leave the cintpos system
M Set/Reset memory watch address

B OBn eBn List, Unset or Set breakpoints
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X
z
C
\

)

(G4B9C) Set breakpoint 9 at start of clihook
(P1B9C) Set breakpoint 9 at return of current function
Continue normal execution
Single step execute one Cintcode instruction

[1] Move to current/parent/first/next coroutine
Move down one stack frame
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To discover the functions that are currently active, we can backtrack down the
runtime stack by typing dot (.) followed by comma (,) a few times. resulting in
the following output.

* 12377: Coroutine: clihook Parent 8431 Stack 13/50000

* 12393: #G300# 24 #xABCD1234 #xABCD1234 #xABCD1234
* #xABCD1234 #xABCD1234 #xABCD1234 #xABCD1234 #xABCD1234
* #xABCD1234 #xABCD1234 #xABCD1234 #xABCD1234 #xABCD1234
* #xABCD1234 #xABCD1234 #xABCD1234 #xABCD1234 #xABCD1234
* 12387: start 12 24 0

* 12383: clihook 0

* 12377: #StackBase# clihook 50000 12377

* , Base of stack

*

This shows that we are currently in a coroutine whose main function is clihook
called from a coroutine whose stack is at 8431. The current coroutine has a stack
size of 50000 words of which only 13 words has been used. The name of the
function that was running when the fault occurred appears as #G300# since the
function £ has not been defined. Its first argument of the call is 24 being the
current value of b. When coroutines are created their stacks are initialised with
the special (recognisable) hex constant ABCD1234.

At the next level out we have the function start and can see that its first two
local variables held 12 and 24 corresponding to variables a and b followed by an
anonymous result 0. The next function down is called clihook and below that
is the base of the stack.

The debugging command g gives us the address of the global vector and this
can be output using =. We can also output several locations of memory using the
t command, as shown below.

* g= 8943

* gt50

G 0: 1000 start stop sys clihook
G 5: muldiv changeco 12375 12375 100
G 10: -1 #GO11# 9953 11025 0
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¥ Q QO Q0 Q0

15:
20:
25:
30:
35:
40:
45:

level
cowait
getvec

packstring

setseed
unrdch

writewords

longjump
resumeco
rdargs?2

unpac’tring

sardch
wrch
#GO46#

createco
initco
freevec
getword
sawrch
binwrch
splitname

deleteco
startco
abort
putword
rdch
deplete
findinput
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callco
globin
#GO20#
randno
binrdch
readwords
findoutput

The default printing style usually outputs values as decimal numbers unless they
appear to be entry points to BCPL functions. Function names are given where
possible (possibly shortened as for unpackstring, above). Uninitialised global
variables are given special values that allow the debugger to output values such
as #GO11# or #G046#. Large values are often output in hexadecimal. Several
other printing styles $b $c $d $f $o $s $u $x are available.

*$Xg

¥ QO QO Q0 Q000 0 Q

t50

0:

5:
10:
15:
20:
25:
30:
35:
40:
45:

00OOO03ES
0000777C
FFFFFFFF
00004F88
00006618
00006CEC
00005D60
00005D0C
000050EO0
00005358

0000C11C
00007768
8F8FO000B
0O0004FAO
000065F0
OOOOS5EES
00005D40
00004FBC
0000510C
8F8F002E

OOOO04EFC
00003057
000026E1
000064D4
00006638
00006D2C
00006BFO
00004FDO
0000517C
00006F14

00007754
00003057
00002B11
00006528
00006664
OO004F70
00006C10
0000501C
000054F4
0000551C

00004F44
00000064
00000000
000065D0
00006D98
8F8F001D
00005CE4
00005080
000052FC
00005554

We can disassemble Cintcode compiled code using the i and n commands. As an
example, the compilation of the function start is as follows.

¥ X X X X X X X ¥ X * *

B BB BBBBBB

49436:
49438:
49439:
49441 :
49442
49443:
49444 :
49445:
49446
49447 :

start

SP3

SP4
XCH

L2
MUL
LpP4
SUB
LP3

12

24
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* n 49448: XCH

* n 49449: DIV

* n 49450: SP5

* n 49451 : LP4

* n 49452: K6G1 44
* n 49454 : AP5

* n 49455: RTN

*

This shows that 12 is copied into the third word relative to the P pointer cor-
responding to local variable a and 24 is copied to the fourth word for b. This
is followed by the compilation of a/(2*a-b) + f(b) followed by RTN to return
from start.

The debugger is part of the BCPL Cintcode system and so is always avail-
able. It can be entered from the command language interpreter using the abort
command, as in:

0.000> abort

!'! ABORT 99: User requested
*

At first sight this may not seem useful but it allows the x command set a break-
point in clihook which is within the resident library blib. This function is used
by the command language interpreter to call start of any command is executed.
To demonstrate the use of this breakpoint, we will consider the compilation of
the echo command. It is normally compiled as follows:

solestreet:$ cd ~/distribution/BCPL/cintcode
solestreet:$ cintsys

BCPL 32-bit Cintcode System (21 Oct 2015)
0.000> bcpl com/echo.b to junk

BCPL (10 Oct 2014) with simple floating point

Code size = 244 bytes of 32-bit little ender Cintcode
0.030>

0.000> junk hello

hello

0.010>

But if we set a breakpoint in clihook before performing the compilation the
following happens.
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0.000> abort

It ABORT 99: User requested

* X

Breakpoint 9 at start of clihook

0.010> bcpl com/echo.b to junk

'Y BPT 9: clihook
A= 0 B= 0

20292:

K4G 1

277

Here, we hit breakpoint 9 which is the first instruction of c1ihook, namely K4G 1,
which calls global 1 (the function start) of the BCPL compiler. This happens
after the BCPL compiler has been loaded into memory and initialised. We can
look at the compiler’s global variables, set a break point at the start of the
function rcom and let the compiler continue to run until it reaches this point.

* g+260t40

G 260: #G260# #G261#
G 265: lex dsw
G 270: eqloo’pword rch
G 275: #G275# wrchbuf
G 280: #G280# #G281#
G 285: rname rdef
G 290: synerr opname
G 295: mk?2 mk3
* g287bl

* b

1: rcom

9: clihook

* C

#G262#
decls’words
#G272#
#G27TT#
rdblockbody
rcom
rexplist
mk4

BCPL (10 Oct 2014) with simple floating point

'Y BPT 1: rcom
A= 22868 B= 36

61132:

rdtag
#G2638#
#G273#
#G278#
rdsect
rdcdefs
rdseq
mkb

LF$ 60412

performget
lookupword
#G274#
#G279#
rnamelist
formtree
mk1

mk6

At this point the compiler has begun to compile com/echo.b and has stopped
just before syntax analysing a command. At this moment we can see a rather
more interesting backtrace of the run time stack using dot and comma as before.
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X X K K K K XK X X X K K K X X X X K K K X X X K K K X X X X ¥ * ¥

22667 :
22980:

s 22971:
, 22967:
) 22963:
, 22950:

, 22942:

s 22928:

, 22914:

s 22900:

, 22890:

s 22886:
, 22677 :

s 22673:
s 22667 :

Coroutine:
rcom

lex

8

107

rbexp

lex

rexp

rnexp

rdef

91800

rch
rdblockbody
5
rdblockbody
1048790
rdcdefs
rdblockbody
1048601
rdcdefs
rdblockbody
1048588
rdcdefs
rprog

rbexp
formtree
start

22707

0

0

clihook
#StackBase#

, Base of stack

CHAPTER 4.

clihook
22868
91940

200000
0

0

0

0
clihook

THE BCPL CINTCODE SYSTEM

Parent 8427 Stack 395/50000

36
51542
4
91984
6

274951
lex

91712

91656
91712

91600
91656

91544
91600

274987
274987

22683
0
0
0

50000

51
lookupword
9

55106
91884

91828
582562

58252
58290

58252
58290

57622
58290
91560

12676

22667

32
275772
8

50
59039

53346

272899
rdsect

274946
rdsect

274962
rdsect

57894

22704

We can view the current breakpoints, clear them using the b command, and
resume execution of the compilation, using c.

¥ ¥ ¥ ¥ O = *

b

rcom
: clihook
Obl 0Ob9
b
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Code size = 244 bytes of 32-bit little ender Cintcode
0.090>

The third, and possibly the most useful, way to enter the debugger is to explic-
itly call debug usually after outputing some useful information using writef
or sawritef. As an illustration of this method we will use the program
BCPL/bcplprogs/primes.b which is as follows:

GET "libhdr"

GLOBAL { count: ug 7
MANIFEST { upb = 541 }
//MANIFEST { wupb = 9999 1}

//MANIFEST { upb = 1000000 }

LET start() = VALOF
{ LET isprime = getvec(upb)

LET bigp = 0
count := 0
FOR i = 2 TO upb DO isprime!i := TRUE // Until proved otherwise.

FOR p = 2 TO upb IF isprime!p DO
{ LET i = p*p // Smaller multiples of p are already crossed out.
UNTIL i>upb DO { isprime!i := FALSE; i := i + p }
out (p)
bigp :=p
writef ("*np=%i3 bigp=/n isprime=%i6*n", p, bigp, isprime)
abort (1000)
b

writef ("*n*nlLargest prime %n*n", bigp)
writes("*nend of output*n")

freevec(isprime)
RESULTIS O
}
AND out(n) BE
{ IF count MOD 10 = 0 DO writef("*n%i5: ", count+1)
writef (" %i5", n)
count := count + 1
}

We can compile and run this program as follows:
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solestreet:$ cintsys

BCPL 32-bit Cintcode System (21 Oct 2015)
0.000> ¢ b primes
bcpl primes.b to primes hdrs BCPLHDRS t32

BCPL (10 Oct 2014) with simple floating point
Code size = 260 bytes of 32-bit little ender Cintcode
0.030> primes

1: 2
p= 2 bigp=2 isprime= 62457

1t ABORT 1000: Unknown fault

* 62457sv1
* v1t40
A62457: #xABCD1234  #xABCD1234 -1 -1 0
A62462: -1 0 -1 0 -1
A62467 : 0 -1 0 -1 0
A62472: -1 0 -1 0 -1
A6247T7 . 0 -1 0 -1 0
A62482: -1 0 -1 0 -1
A62487: 0 -1 0 -1 0
A62492: -1 0 -1 0 -1
* C

3

p= 3 bigp=3 isprime= 62457

'l ABORT 1000: Unknown fault

* v1t40

A62457: #xABCD1234  #xABCD1234 -1 -1 0
A62462: -1 0 -1 0 0
A62467: 0 -1 0 -1 0
A62472: 0 0 -1 0 -1
A62477: 0 0 0 -1 0
A62482: -1 0 0 0 -1
A62487: 0 -1 0 0 0
A62492: -1 0 -1 0 0
* C

5

p= 5 bigp=5 isprime= 62457

'l ABORT 1000: Unknown fault
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* v1t40

A62457: #xABCD1234  #xABCD1234 -1 -1 0
A62462: -1 0 -1 0 0
A62467: 0 -1 0 -1 0
A62472: 0 0 -1 0 -1
A6247T: 0 0 0 -1 0
A62482: 0 0 0 0 -1
A62487: 0 -1 0 0 0
A62492: 0 0 -1 0 0
*q

solestreet:$

Notice that it is convenient to store the pointer to the vector isprime in variable
V1 (using 62457sv1). We can then look at its state after various iterations of the
FOR loop. Notice that when p=5 all multiples of the primes 2, 3 and 5 have be
crossed out in isprime. Note that TRUE and FALSE are represented by -1 and 0,
respectively. So as the program procedes more elements of isprime are set to
FALSE.

If we comment out the two lines of debugging code, and re-compile and run
the program, the output is as follows.

0.000> ¢ b primes
bcpl primes.b to primes hdrs BCPLHDRS t32

BCPL (10 Oct 2014) with simple floating point
Code size = 220 bytes of 32-bit little ender Cintcode
0.030> primes

1: 2 3 5 7 11 13 17 19 23 29
11: 31 37 41 43 a7 53 59 61 67 71
21: 73 79 83 89 97 101 103 107 109 113
31: 127 131 137 139 149 151 157 163 167 173
41: 179 181 191 193 197 199 211 223 227 229
51: 233 239 241 251 257 263 269 271 277 281
61: 283 203 307 311 313 317 331 337 347 349
71: 353 359 367 373 379 383 389 397 401 409
81: 419 421 431 433 439 443 449 457 461 463
91: 467 479 487 491 499 503 509 521 523 541

Largest prime 541

End of output
0.000>
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4.37.3 Summary

A brief summary of the previous few sections is as follows:

1 Write the program with extreme care and proof read it very care-
fully.

2 Create and study the cross reference listing, paying particular at-
tention to global variable numbers, arguments of function calls and
definitions, and the use of pointers and subscripts.

3 Program cautiously, including code to check the validity of vari-
ables, particularly pointers and array subscripts.

4 Add code to conditionally output some of the internal structures
used in the program so that they can be checked.

5 Insert code to generate debugging output followed by calls of abort.

Debug the program by setting a breakpoint in clihook.

7 Use the debugger to check how much stack space has been used by
the program’s coroutines, since stack overflow normally causes the
program to crash.

(=}
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Chapter 5

Interactive Graphics in BCPL
using SDL

5.1 Introduction

If your system does not already have the SDL libraries and header files installed,
you should fetch them using commands such as the following.

sudo apt-get update
sudo apt-get install libsdll.2-dev libsdl-imagel.2-dev
sudo apt-get install libsdl-mixerl.2-dev libsdl-ttf2.0-dev

The apt-get update command stops some annoying error messages being gen-
rated by the two install commands.

As a test to see if they have been installed examine the directory
/usr/include/SDL. It should contain several files relating to SDL.

Having installed the SDL libraries you should rebuild the BCPL system telling
it to use the libraries. To do this type the following.

cd ~/distribution/BCPL/cintcode
make clean
make —-f MakefileRaspiSDL

This should rebuild the BCPL system from its source incorporating and interface
with SDL.

Although all the programs in this chapter can be controlled from the keyboard,
you may find it useful to plug a USB joystick into your Raspberry Pi. I bought a
Logitech Attack 3 Joystick which is cheap, well made and works well. It is shown
below. Although it provides elevator, aileron and throttle control together with

301
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11 buttons, it does not provide a convenient rudder control, so you might wish
to buy a more expensive model.

To test whether you have installed the SDL graphics library correctly, try
compiling and running the demonstration program bcplprogs/raspi/engine.b
by typing the following commands.

cd ~“/distribution/BCPL/bcplprogs/raspi
cintsys

c b engine

engine

This should create and display the following window for about 20 seconds.

|"'- First SDL Demo

First Demo

The program starts as follow.

GET "libhdr"

GET "sdl.h"

GET "sdl.b" // Insert the library source code
GET "libhdr"

GET "sdl.h"

The first four lines consisting of three GET directives and a dot, cause a BCPL
interface to the SDL library to be compiled as a separate section at the head of
the program. The source is in cintcode/g/sdl.b and it uses a header file called
cintcode/g/sdl.h. In due course you should look at these files to see what is
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provided, but that can wait. The program goes on to declare some global vaiables
that will be used to hold the various colours.

GLOBAL A
col_black:ug
col_blue
col_green
col_yellow
col_red
col_majenta
col_cyan
col_white
col_darkred
col_gray
col_lightyellow
col_lightred

The rest of the program just contains the definition of the main program
start, and is as follows.

LET start() = VALOF

{ //sawritef("engine calling initsdl*n")

UNLESS initsdl() DO

{ writef ("ERROR: Unable to initialise SDL*n")

RESULTIS O
+

//sawritef ("engine calling mkscreen*n")

mkscreen("First SDL Demo", 600, 400)
//sawritef ("engine returned from mkscreen*n")

col_black 1=
col_blue 1=
col_green 1=
col_yellow 1=
col_red 1=
col_majenta 1=
col_cyan 1=
col_white 1=
col_darkred :=
col_gray 1=
col_lightyellow :=
col_lightred 1=

fillsurf (col_gray)

maprgb( O,
maprgb( O,
maprgb( O,
maprgb( O,
maprgb (255,
maprgb (255,
maprgb (255,
maprgb (255,
maprgb (128,
maprgb( 70,
maprgb (128,
maprgb (255,

0,
0,
255,

0)
255)
0)
255)
0)
255)
0)
255)
0)
70)
255)
128)
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setcolour(col_cyan)
drawf (250, 30, "First Demo")

setcolour(col_red)
moveto( 100, 80)
drawby( 400, 0)
drawby( 0, -10)
drawby (-400, 0)
drawby( 0, 10)

setcolour(col_black)
drawfillcircle (250, 100, 25)
drawfillcircle(350, 100, 25)
setcolour(col_green)
drawfillcircle(250, 100, 20)
drawfillcircle(350, 100, 20)

setcolour(col_blue)
drawfillrect (200, 110, 400, 130)

setcolour(col_majenta)
drawfillrect (225, 135, 330, 170)

setcolour (col_darkred)

//

//

//

//

//

drawfillrndrect (340, 135, 400, 210,

setcolour(col_lightyellow)

drawfillrndrect (350, 170, 380, 200,

setcolour(col_lightred)
drawfillrect (235, 175, 255, 210)

setcolour(col_white)

drawfillcircle(265, 235, 15)
drawfillcircle (295, 250, 12)
drawfillcircle(325, 255, 10)
drawfillcircle(355, 260, 7)

wWr:

//

//

Rails

Wheels

Base

Boiler

Cab

15)

10)

Funnel

Smoke

updatescreen() //Update the screen

sdldelay(10_000) //Pause for 10 secs

closesdl() //Quit SDL

RESULTIS 0
b

The call initsdl1 () initialises the SDL system allowing the program to create
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a window, draw a picture in it, interact with the keyboard, mouse, and joystick,
if any, and even generate sounds. The call of mkscreen creates a window that is
600 pixels wide and 400 pixels high. It is given the title First SDL Demo.

Then follows a sequence of calls of maprgb to create colours in the pixel format
used by the system. These calls can only be made after mkwindow has been called.
There are several possible pixel formats and is more efficient to use the one that
the system is currently using. It turns out that the pixel format on my laptop is
different from the one used by the Raspberry Pi.

The next call fillscreen(col _gray) fills the entire window with the specified
colour. The call setcolour(...) selects the colour to use in subsequent drawing
operations. The first of which is to draw the string First Demo starting 250 pixels
from the left of the window and 30 pixels from the bottom. The convention often
adopted in windowing systems is to measure the vertical displacement from the
top, but I have adopted the convention that the vertical displacement increases
as you move upwards as is typical when drawing graphs on graph paper. If my
choice turns out to be too problematic, I will change it and all your pictures will
suddenly be upside down.

Lines can be drawn in the selected colour by calls such as moveto, drawto,
moveby and drawby, which each take a pair of arguments giving either
the absolute or relative pixel locations. More complicated shapes can be
drawn using functions such as drawcircle(ox, oy, r), drawfillcircle(ox,
oy, ), drawrect(x1, y1, x2, y2), drawfillrect(xl, y1, x2, y2),
drawroundrect(x1, y1, x2, y2, r) and drawfillroundrect(xl, y1, x2,
y2, r). In these calls ox and oy are the coordinates of the centre of the circle
and r is its radius. If the function name includes £ill, the edge and inside of
the shape is filled with the selected colour, otherwise only the edge is drawn.
Rectangles can have rounded corners with a radius in pixels given by r.

After drawing the picture it can be sent to the display hardware by the call
updatescreen(). The call sd1dely(10.000) causes a real time delay of 10 sec-
onds so that the image can be viewed, and the final call closesd1() causes the
graphics system to close down.

5.2 The dragon curve

This next demonstration draws the well known dragon curve. The idea is simple.
To draw the curve from point A to B, if the distance is less than a certain limit,
the curve is just a staight line from A to B, otherwise a detour is made travelling
along two sides of a square whose diagonal is AB. If the sides of the square
is still too long, detours are again taken, and so on. The detours alternate in
direction, the first being to the right, the second being to the left and so on.
Surprisingly this generates a rather beautiful picture. The following program
generates a dragon curve containing 1024 short line segments with a short delay
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as each is drawn so you can see the picture being built up. The program is in
the file bcplprogs/raspi/dragon.b and is as follows.

GET "libhdr"
GET "sdl.h"
GET "sdl.b"

GET "libhdr"
GET "sdl.h"

GLOBAL {
col_blue: ug
col_white
col_lightcyan

b

LET start() = VALOF
{ initsdl ()
mkscreen("Dragon Curve", 600, 600)

col_blue
col_white
col_lightcyan

maprgb( 0, 0, 255)
maprgb (255, 255, 255)
maprgb (255, 255, 64)

fillscreen(col_blue)

setcolour(col_lightcyan)
plotf (240, 50, "The Dragon Curve")

setcolour(col_white)
moveto (260, 200)
dragon(1024, 6)

updatescreen()
sdldelay(20_000)
closesdl()
RESULTIS O

AND gray(n) = n XOR n>>1

AND bits(w) = w=0 -> 0, 1 + bits(w & w-1)

AND dragon(n, size) BE FOR i = 0 TO n-1 DO
{ LET dir = bits(gray(i))
SWITCHON dir & 3 INTO
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{ CASE 0: drawby( size, 0); ENDCASE // Right
CASE 1: drawby( O, size); ENDCASE // Up
CASE 2: drawby(-size, 0); ENDCASE // Left
CASE 3: drawby( O, -size); ENDCASE // Down

}

updatescreen() // Show the curve as it is drawn

sdldelay(20)

}

When this program runs, it creates a window like the following.

m Dragon Curve

The Drogon Curve

The program uses a cunning trick to determine the direction the ** line
segment based on the number of one bits in the gray code representation of i.
The gray code corresponding to the binary number 0110 is shown as follows.

number in binary 0110
corresponding gray code 101

Notice that each digit of the gray code is computed by comparing adjacent digits
of the number. The gray code digit is 0 if the adjacent digits are the same,
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otherwise it is a 1. This conversion is done by the function gray whose body is n
XOR (n>>1. The gray codes for the integers 000 to 111 are shown in the following
table.

n n XOR (n>>1) ones direction

000 000 0 right
001 001 1 up
010 011 2 left
011 010 1 up
100 110 2 left
101 111 3 down
110 101 2 left
111 100 1 up

Notice that Gray code has the property that only one digit changes as you
move from one number to the next. The function bits counts the number of
ones in it argument using a trick involving the expression w&(w-1) as explained
on page 46. The sequence of counts for consecutive Gray codes can be regarded
as a sequence of directions taken as a curve is drawn, and the following diagrams
help to show why this scheme generates the dragon curve.

B B P B P B 2 P
1 \\\3 ///1\\
2 2,71
AT0

(D 2) 3) 4)

Notice that the shape of the lines from P to B in diagram (4) is the same as
that from A to P, but rotated clockwise through 90 degrees about P and drawn
backward.

5.3 The Game of life

In 1970 John Conway invented a cellular automaton he called The Game of Life.
It consists of a 2D array of cells, each of which can be alive or dead. At every clock
tick a new generation is formed by applying the following rules. A live cell remains
alive if exactly 2 or 3 of its eight immediate neighbours are alive, otherwise it dies.
A dead cell becomes alive only if exactly 3 of its eight immediate neighbours are
alive. This automaton has some extraordinary properties causing considerable
interest around the world. For more details, look it up on the internet.
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The program bcplprogs/raspi/life.b is my implementation of the game.
It uses a bit map mapl to hold the state of the cells, generating the next state in
map2. You may find the implementation interesting since it deals with 32 cells
at a time using efficient bit pattern operations. This approach is probably most
suitable when there are a high proportion of live cells. Although the program is
not described here, it is explained in detail in comments in the code. The cunning
way in which the number of live cells is calculated is worth looking at.

When you run the program you can specify the size of the rectangular array
of cells and the size of the displayed window of cells at its centre. The t option
specifies a test number. If t=0, the default setting, the initial state consists of
a rectangle of random cells surrounded by dead cells. Other values of t setup
simple special cases. A typical screenshot resulting from the command:

life xs 400 ys 400

18

m The game of Life

At the bottom of this image there is a group of five live cells called a glider
that slowly moves down and to the left. If you execute life using the command:
life t 3 you will see a remarkable set of live cells that will continually creates
gliders. You might find it interesting to explore what happens when two gliders
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collide either head on or at right angles. The effect depends on the relative phase
and position of the two gliders.

5.4 Collatz Revisited

The program described in this section concerns the Collatz Conjecture which was
introduced in Section 4.16 but has been delayed until this point since it generates
a graphical image. It draws a graph showing, on the vertical axis, the length in
the range 1 to 250 of the Collatz sequences for starting values in the range 1 to
10000 placed on the horizontal axis. The program is called collatzgraph.b and
is as follows.

GET "libhdr"
GET "sdl.h"
GET "sdl.b"

GET "libhdr"
GET "sdl.h"

MANIFEST {
nlim = 10000
clim = 250

}

GLOBAL {
col_red: ug
col_green
col_blue
col_lightgray
col_black

}

LET start() = VALOF
{ initsdl()
mkscreen("Collatz Diagram", 700, 500)

col_red := maprgb (180, 0, 0)
col_green := maprgb( 0, 255, 0)
col_blue := maprgb( O, 0, 255)
col_lightgray  := maprgb(180, 180, 180)
col_black := maprgb( O, 0, 0)

fillsurf(col_lightgray)
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// Draw the axes
setcolour (col_black)

cmoveto( O, 0)
cdrawto(nlim, 0)
cdrawto(nlim, clim)
cdrawto ( 0, clim)
cdrawto( 0, 0)
FOR x = 1 TO nlim DO
{ LET y = try(x)
TEST y>=0

THEN setcolour(col_red)

ELSE {

}

setcolour (col_blue)

y =y

cdrawpoint (x, y)
updatescreen()

sdldelay(20_000)
closesdl()

RESULTIS

0

AND cdrawpoint(x,y) BE
{ // Convert to screen coordinates

LET sx
LET sy

10 + muldiv(screenxsize-20,
10 + muldiv(screenysize-20,

drawfillcircle(sx, sy, 1)

}

AND cmoveto(x,y) BE
{ // Convert to screen coordinates

LET sx =
LET sy

10 + muldiv(screenxsize-20,
10 + muldiv(screenysize-20,

moveto(sx, sy)

}

AND cdrawto(x,y) BE
{ // Convert to screen coordinates

LET sx
LET sy

10 + muldiv(screenxsize-20,
10 + muldiv(screenysize-20,

drawto(sx, sy)

}

y>

Ve

e

nlim)
clim)

nlim)
clim)

nlim)
clim)
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AND try(n) = VALOF
{ LET count = 0
LET 1lim = (maxint-1)/3

{ count := count+1
IF n=1 RESULTIS count
TEST n MOD 2 = 0O

THEN { n := n/2
}
ELSE { IF n > lim RESULTIS -count
n := 3%n+l
}
} REPEAT

¥

When this program is run it generates the following window.

m Collatz Diagram

5.5 sdlinfo.b

This section presents a simple program that displays some details of the graphics
system. It also displays information about any joysticks that are connected to
the system. The program is called sdlinfo.b and is as follows.

/*
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This program outputs some information about the current SDL interface.

Implemented by Martin Richards (c) February 2013

*/
GET "libhdr"
GET "sdl.h"
GET "sdl.b" // Insert the library source code
GET "libhdr"
GET "sdl.h"
GLOBAL {
done:ug
b

LET plotscreen() BE
{ LET maxy = screenysize-1
// Surface info structure

LET flags, fmt, w, h, pitch, pixels, cliprect, refcount

0, 0, 0, O, 0, 0, 0,

// Format info structure
LET palette, bitsperpixel, bytesperpixel,

Rmask, Gmask, Bmask, Amask,
Rshift, Gshift, Bshift, Ashift,
Rloss, Gloss, Bloss, Aloss,

colorkey, alpha = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

// Video info structure
LET videoflags, blit_fill, video_mem, videoformat =

fillsurf (maprgb(120,120,120))

setcolour (maprgb(255,255,255))

sys(Sys_sdl, sdl_getsurfaceinfo, screen, @flags)
sys(Sys_sdl, sdl_getfmtinfo, format, @palette)
sys(Sys_sdl, sdl_videoinfo, @videoflags)

// Screen surface info
drawf (20, maxy- 20, "Screen Surface Info")

drawf (30, maxy- 40,

"flags=%8x w=)n h=Yn pitch=/n",
flags, W, h, pitch)
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// Screen format info
drawf (20, maxy- 80, "Screen Format Info")
drawf (30, maxy-100,

"palette=)n bitsperpixel=¥n bytesperpixel=in",
palette, bitsperpixel, bytesperpixel)

drawf (30, maxy-120,

"Rmask=%8x Gmask=%8x Bmask=%8x Amask=/,8x",
Rmask, Gmask, Bmask, Amask)

drawf (30, maxy-140,

"Rshift=%n Gshift=%n Bshift=Y)n Ashift=)n",
Rshift, Gshift, Bshift, Ashift)

drawf (30, maxy-160,

"Rloss=%n Gloss=%n Bloss=/%n Aloss=/n",
Rloss, Gloss, Bloss, Aloss)

drawf (30, maxy-180,

"colorkey=%8x alpha=/n",
colorkey, alpha)

// Video info
drawf (20, maxy-220, "Video Info")
drawf (30, maxy-240,

{

"videoflags=%8x blit_£fill=¥8x video_mem=%n",
videoflags, blit_£fill, video_mem)

LET n = sys(Sys_sdl, sdl_numjoysticks)
drawf (20, maxy-280, "Number of joysticks %2i", n)
FOR j = O TO n-1 DO
{ LET joystick = sys(Sys_sdl, sdl_joystickopen, j)
LET axes = sys(Sys_sdl, sdl_joysticknumaxes, joystick)
LET buttons = sys(Sys_sdl, sdl_joysticknumbuttons, joystick)
LET hats = sys(Sys_sdl, sdl_joysticknumhats, joystick)
drawf (20, maxy-300-80%j, "Joystick %n", j+1)
drawf (30, maxy-320-80%j,
"Number of axes %2i", axes)
FOR a = 0 TO axes-1 DO
drawf (250+60%a, maxy-320-80%*j,
"%i7", sys(Sys_sdl, sdl_joystickgetaxis, joystick, a))
drawf (30, maxy-340-80%j,
"Number of buttons %2i", buttons)
FOR b = 0 TO buttons-1 DO
drawf (250+20*b, maxy-340-80%j,
"%i2", sys(Sys_sdl, sdl_joystickgetbutton, joystick, b))
drawf (30, maxy-360-80%j,
"Number of hats %2i", hats)
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FOR h = 0 TO hats-1 DO
drawf (250+20%h, maxy-360-80%j,
"%b4", sys(Sys_sdl, sdl_joystickgethat, joystick, h))
sys(Sys_sdl, sdl_joystickclose, joystick)
}
}
}

AND processevents() BE WHILE getevent() SWITCHON eventtype INTO
{ CASE sdle_keydown:

CASE sdle_quit: done := TRUE

DEFAULT: LOOP
}

LET start() = VALOF
{ initsdl()
mkscreen("SDL Info", 800, 500)

done := FALSE

UNTIL done DO

{ processevents()
plotscreen()
updatescreen()
sdldelay(50)

writef ("*nQuitting*n")
closesdl ()
RESULTIS O

The main function start initialises the SDL interface and then makes a win-
dow of size 800x500. It then enters an event loop which it repeatedly executes
until done is set to TRUE. Within the event loop the call od processevents sets
done to TRUE is any key is pressed or if the user clicks on the window’s close
button.

The call of plotscreen interrogates the SDL system and displays some of
the information it obtains. It then displays axis, button and hat information
about any joysticks that are attached to the system. The call updatescreen()
sends the window to the display hardware. The loop ends by delaying for 50
milli-seconds.
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5.6 Graphs

A useful aid to understanding a numerical function is to plot its graph. On
graph paper the point (z,y) is located at a distance x along the horizontal (z-
axis) and a distance y along the vertical (y-axis). The collection of points with
coordinates (, z?) gives a curve that shows how 2% changes as we increase z. The
following diagram shows the curves for the three functions y = 2%, y = 2% — x
and y = 2% — 2% — x displayed in red, green and blue, respectively. The program
(bcplprogs/raspi/graph.b) to draw the graph is as follow.

GET "libhdr"
GET "sdl.h"
GET "sdl.b"

GET "libhdr"
GET "sdl.h"

GLOBAL {
col_red: ug
col_green
col_blue
col_lightgray
col_black

b

LET start() = VALOF
{ initsdl ()
mkscreen("Three curves", 500, 500)

col_red := maprgb(255, 0, 0)
col_green := maprgb( 0, 255, 0)
col_blue := maprgb( 0, 0, 255)
col_lightgray  := maprgb(180, 180, 180)
col_black := maprgb( 0, 0, 0)

fillsurf(col_lightgray)

// We will use scales numbers with three digits after the
// decimal point and the $x$ and $y$ ranges will both be
// between -3.000 and +3.000

// Draw the axes
setcolour(col_black)

FOR x = -3_000 TO 3_000 BY 1_000 DO
{ cmoveto(x, -3_000)
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cdrawto(x, 3_000)
}
FOR y = -3_000 TO 3_000 BY 1_000 DO
{ cmoveto(-3_000, y)
cdrawto( 3_000, y)
}

plotfn(£f1, -3_000, 3_000, col_red)
plotfn(£f2, -3_000, 3_000, col_green)
plotfn(£3, -3_000, 3_000, col_blue)

updatescreen()
sdldelay(20_000)
closesdl()
RESULTIS O

AND plotfn(f, x1, x2, col) BE
{ setcolour(col)
cmoveto(xl, f(x1))
FOR i = 1 TO 100 DO
{ LET x = (x1*(100-i) + x2%i)/100
cdrawto(x, f£(x))

}
}
AND f1(x) = x*x/3_000
AND f2(x) = f1(x)*x/3_000 - x
AND £3(x) = f1(x) - f2(x)

AND cmoveto(x,y) BE

{ // Convert to screen coordinates
LET sx = screenxsize/2 + x/15
LET sy = screenysize/2 + y/15
moveto(sx, sy)

}

AND cdrawto(x,y) BE

{ // Convert to screen coordinates
LET sx = screenxsize/2 + x/15
LET sy = screenysize/2 + y/15
drawto(sx, sy)

}
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This program displays the following window for 20 seconds.

m Three curves

5.7 Gradients

The gradient of a function for a given value of z is a measure of how much
it changes when z is changed by a tiny amount. Mathematically, we say that
the gradient of f(x) is the limit of (f(z + dz) — f(x))/dz as dx becomes closer
and closer to zero. Mathematicians call the gradient the differential of f(z) and
represent it using the notation:

d
%f(a:)

Luckily, for many simple functions there are simple formulae allowing us
to compute the differential. For instance, consider the following program
(bcplprogs/raspi/slope.b).
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GET "libhdr"

// This program outputs the approximate slope of y = x"n for
// various values of x and n, using scaled numbers with 8 digits
// after the decimal point.

LET start() = VALOF
{ writef (" X n dx slope n*x*pow (x,n-1)*n*n")

try( 1.12345678, 0); try( 1_12345678, 1); try( 1_12345678, 2)
try( 1.12345678, 3); try( 1_12345678, 4)

newline ()

try( 0_87654321, 0); try( 0_87654321, 1); try( 0_87654321, 2)
try( 0_87654321, 3); try( 0_87654321, 4)

newline()

try(-0_12345678, 0); try(-0_12345678, 1); try(-0_12345678, 2)
try(-0_12345678, 3); try(-0_12345678, 4)

RESULTIS O

AND try(x, n) BE
{ LET dx = 0_00010000
LET slope = muldiv(pow(x+dx,n) - pow(x,n), 1_00000000, dx)
writef ("%11.8d %n %11.8d %11.8d ¥%11.8dx*n",
X, n, dx, slope, n * pow(x, n-1))

AND pow(x, n) = VALOF

{ LET xn = 1_00000000
FOR i =1 TO n DO xn := muldiv(xn, x, 1_00000000)
RESULTIS xn

}

When run, it outputs the following.

X n dx slope n*pow (x,n-1)
1.12345678 0 0.00010000 0.00000000 0.00000000
1.12345678 1 0.00010000 1.00000000 1.00000000
1.12345678 2 0.00010000 2.24700000 2.24691356
1.12345678 3 0.00010000 3.78680000  3.78646539
1.12345678 4 0.00010000 5.67260000 5.67190692

0.87654321 0 0.00010000 0.00000000  0.00000000
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0.87654321 1 0.00010000 1.00000000 1.00000000
0.87654321 2 0.00010000 1.75320000 1.75308642
0.87654321 3 0.00010000 2.30520000  2.30498397
0.87654321 4 0.00010000 2.69430000 2.69389072
-0.12345678 0 0.00010000 0.00000000  0.00000000
-0.12345678 1 0.00010000 1.00000000 1.00000000
-0.12345678 2 0.00010000 -0.24680000 -0.24691356
-0.12345678 3 0.00010000 0.04570000 0.04572471
-0.12345678 4 0.00010000 -0.00750000 -0.00752668

This seems to imply that

d
— " =nx "'
dx

We can convince ourselves that this is indeed correct by the following derivation.

d n _  ((z+de)x(z+de)x...x(x+dz))—a™
7I f—
dx dx
z"+nxz" " ldz+0(dz?)—a"

dx
nxz? 1dz+O0(dx?)
dx

= nxz" !+ 0(dr)
= nxgv!

where the notation O(dx) stands for terms that all have dz as a factor, so tend
to zero as dr becomes smaller and smaller.
Using this formula we can easily see that

3 -1

This allows us to deduce a remarkable property of e*, namely

IE2 .TS 2174
%(f = %(1+I+§+§+j+...)
= 0+1+a+%+5+...

= el‘
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5.8 Events

This section demonstrates how input from the keyboard, mouse and joystick can
be handled. The program displays a coloured circle in a window. Its colour may
be changed to red, green or blue by pressing R, G or B on the keyboard, or by
buttons on the joystick. It can be moved up, down, left or right by pressing
the arrow keys, and it may be dragged using the mouse with a mouse button
pressed. It may also be moved using the joystick. You can exit from the program
by pressing Q. The program (bcplprogs/raspi/events.b) starts as follows.

GET "libhdr"
GET "sdl.h"
GET "sdl.b"
GET "libhdr"
GET "sdl.h"
GLOBAL A{
done:ug

xpos; ypos; xdot; ydot

col_blue; col_green; col_red
col_cyan; col_white; col_gray

}

LET start() = VALOF
{ initsd1()
mkscreen("Events Test", 600, 400)
runtest ()
closesdl()
RESULTIS O

As usual we insert a section containing the BCPL interface to the SDL library,
and declare the global variables required by the program. The main function
start initialises the SDL system and make a window of size 600 by 400 entitled
Events Test before calling runtest, defined below, and the call closesdl closes
down the SDL library.

AND runtest() = VALOF
{ // Declare a few colours in the pixel format of the screen

col_blue = maprgb( O, 0, 255)
col_green = maprgb( 0, 255, 0)
col_red = maprgb (255, 0, 0)
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col_cyan = maprgb(255, 255, 0)
col_white = maprgb (255, 255, 255)
col_gray = maprgb(128, 128, 128)

fillscreen(col_gray)

xpos, ypos := 1000*screenxsize/2, 1000*screenysize/2
xdot, ydot := 0, O

setcolour(col_red) // Set the initial circle colour
done := FALSE

UNTIL done DO
{ stepQO
displayall()
sdldelay(20)
}

RESULTIS O

runtest creates a few colours, fills the screen with a gray colour and initialises,
xpos, ypos , xdot, ydot and done. The first two are scaled numbers with three
digits after the decimal point representing the coordinates on the screen of the
location of the small coloured circle. Mathematicians often use the notation &
and gy to represent the rate at which x and y change with time. In this program
we use the names xdot and ydot to hold the rate of change of xpos and ypos.
These rates depend on the joystick position. The variable done is set to TRUE
when the user wishes to exit from the program.

The program now enters an UNTIL loop that repeatedly reads and processes
events from the keyboard, mouse and joystick. These events may change the
colour and position of the coloured circle, so the window is redrawn by the call
displayall() each time round the loop. The call sdldelay(20) causes a real
time delay of 20 milli-seconds so that the screen is updated about 50 times per
second independent of the CPU speed of the computer. The program thus has
a similar timing behaviour even when run on computers of different processing
power.

Finally the definition of step is as follows.

AND step() BE
{ WHILE getevent() SWITCHON eventtype INTO
{ DEFAULT: LOOP

CASE sdle_keydown:
SWITCHON capitalch(eventa2) INTO
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{ DEFAULT:

CASE sdle_arrowup: ypos :
CASE sdle_arrowdown: ypos :
CASE sdle_arrowright: xpos :
CASE sdle_arrowleft: xpos :

CASE ’R’: setcolour(col_red);
CASE ’G’: setcolour(col_green);
CASE ’B’: setcolour(col_blue);
CASE ’Q’: done := TRUE;

CASE sdle_keyup: LOOP

CASE sdle_mousemotion:
UNLESS evental LOOP

CASE sdle_mousebuttonup:
CASE sdle_mousebuttondown:

xpos, ypos := 1000*eventa2, 1000*(screenysize-eventa3)

LOOP

CASE sdle_joyaxismotion:

SWITCHON eventa2 INTO // Which axis

{ DEFAULT:
CASE 0: xdot :
CASE 1: ydot :
}

+eventa3/2;
-eventa3/2;

CASE sdle_joybuttonup:
CASE sdle_joybuttondown:
SWITCHON eventa2 INTO
{ DEFAULT:
CASE 0: setcolour(col_red);
CASE 1: setcolour(col_blue);
CASE 2: setcolour(col_green);

CASE sdle_quit: done := TRUE;
}
Xpos, ypos := xpos+xdot, ypos+ydot

}

LOOP
LOOP
LOOP

LOOP

LOOP
LOOP
LOOP

LOOP

LOOP

ypos+8_000; LOOP
ypos—-8_000; LOOP
xpos+8_000; LOOP
xpos-8_000; LOOP

LOOP
LOOP
LOOP
LOOP

// Aileron
// Elevator

323

When the user presses a key on the keyboard, moves the mouse or joystick, or
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presses a mouse or joystick button, the system creates an event held in an event
queue. These events can be inspected, one at a time, by calling getevent (). If
there are no outstanding events getevent returns FALSE, otherwise it updates the
global variable eventtype and possibly some event arguments evental, eventa?2,
eventa3, etc. As we will see later, which event arguments are set depends on
the event type. The possible event types are declared in sdl.h and have names
starting with sdle_, such as sdle_keydown or sdle_joyaxismotion.

If the type was sdle_keydown, the argument eventa2 will identify which key
pressed. As can be seen, the program is only interested in the arrow keys and
the letters R, G, B and Q. The arrow keys cause the coordinates xpos and ypos to
change, R, G, B cause the colour of the circle to change and Q sets done to TRUE
causing execution of the program to terminate.

If the type was sdle mousebuttondown, the arguments eventa2 and eventa3
give the coordinates of the mouse. These are used to set the coordinates of the
centre of the coloured circle.

If the type was sdle mousemotion, the arguments eventa2 and eventa3 give
the coordinates of the mouse. evental is a bit pattern identifying which of the
mouse buttons are currently pressed, and if any are, the coloured circle is moved
to the cursor position.

If the type was sdle_joyaxismotion, the arguments eventa2 and eventa3
identify which axis has moved and what it new value is. With the Logitech
Attack 3 joystick there are three axes, elevator, aileron and throttle and their
values range from -32768 to +32767. The elevator and aileron values are used to
control how fast our coloured circle moves across the screen.

The event type sdle_quit occurs when the user clicks on the little cross
at the top right hand corner of the window indicating that the program should
terminate. All that step does in this case is to set done to TRUE causing execution
to leave the event loop.

The final function, displayall, just fills the screen with gray, draws the
coloured circle in it new position, ensuring that it is still within the window,
and finally displayall calls updatescreen to update the video hardware. Its
definition is as follows.

AND displayall() BE

{ LET %, y = xpos/1000, ypos/1000
LET minx, miny = 20, 20
LET maxx, maxy = screenxsize-20, screenysize-20
fillscreen(col_gray)

IF x<minx DO x, xpos := minx, minx*1000
IF y<miny DO y, ypos := miny, miny*1000
IF x>maxx DO x, xpos := maxx, maxx*1000
IF y>maxy DO y, ypos := maxy, maxy+*1000
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drawfillcircle(x, y, 20)
updatescreen()

}

5.9 ¢ and rotation

We all know that when we square a number the result is positive. For example,
2?2 =4 and (—3)? = 9. But mathematicians are not satisfied with this since they
sometimes find it useful to take the square root of negative numbers. You might
think they are mad but let us see what they do and why it is useful. The trick is
to postulate a new number i having the property that i = —1. Such a number,
of course, cannot exist so they call it an imaginary number. They let it obey
all the normal algebraic rules that ordinary (real) numbers have. Using i we can
make complex numbers such as 2 + 3¢, and these also obey the normal rules of
algebra. For instance, we can multiply them as in

(a+1ib) x (c+id) = ac + i*bd + aid + ibc = (ac — bd) + i(ad + bc)
We have seen the series for e® in Section 4.31 which was as follows
2 3
ex:1+:c+3§—!+9§—!+...

If we substitute ix for x in this equation we get an equation with some very
interesting properties.

22 33 it oxd
21

e =1+ir+

_ - 22 iz 24 12
_1+ZI_§4_?+ﬂ+ﬁ+"'

=(1-C 4+ )iz T+ )

The real and imaginary parts of ¢ are so important they are given the names
cosine and sine, normally written as cosz and sin x.

— .’EQ $4
cosx—l—j—i—ﬂJr...

. . LE3 m5
Slnx—l'—?—i—y—'—

Notice that if we change the sign of x, all the terms in the cos series remain
unchanged, but those in the sin series are all negated, so
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cos(—x) = cosx

sin(—zx) = —sinx
Notice, also, that

eix % e—i:p — eix—im — 60 =1

But
e x 7 = (cosx +isinx) X (cos(—x) + isin(—x))
= (cosx x cos(—x) —sinzx X sin(—=x)) + i(cosz X sin(—z) — sinx x cos(—x))
= (cos?x +sin*z) +i(—cosz X sinx + sinx x cos 1)
= cos?x +sin’x
So

coslx +sin’z =1

Using the formula

d ™ . xn—l
dz(i)  (n—1)!

n!

that we derived earlier, we can easily obtain the following two results.

d g _ d(p 2y a
msinr = S -+ EH+.)
J— ZCQ $4
= 1-Z 4Ty
Cos X
and
d — d(p_2 at
weost = (=g +fF—g+.)

= —l’—i-y—y—l-...)

= —sinx
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It turns out that the arguments of cos and sin are best thought of as angles
and, since mathematicians like to use greek letters for angles, we will use letters
such as 6 and ¢ in place of z and y, saving x and y for horizontal and vertical
coordinates on graph paper.

It is instructive to see how cos 6 and sin # change as  varies from 0 to 2w. The
following program plots them with the curve for cosé in red and the curve for
sin # in green. It also plots the points with coordinate (cos 6, sin @) in blue centred
on the graph. The program uses variants of several of the functions used in the
evaluation of e™193 given in Section 4.32, and as with the previous program we
use multi digit numbers of radix 10000 held in vectors, but this time the upper
bound is 4 which is sufficient for a precision of nearly 16 decimal digits after
the decimal point. If v is such a number, then 10000*v!0+v!1 is the equivalent
scaled fixed point number with 4 decimal digits after the decimal point. The
digit in v!0 is signed, but all the other digits are positive in the range 0 to 9999.
This convention is somewhat analagous to the interpretation of the bits in a 2s
complement signed binary numbers.

The program (which is in becplprogs/raspi/cossin.b) starts as follows.

// Insert the SDL library source code as a separate section

GET "libhdr"

GET "sdl.h"

GET "sdl.b"

GET "libhdr"

GET "sdl.h"

GLOBAL {
x0:ug // The scaling parameters
yO
scale

col_white; col_blue; col_green; col_red; col_gray; col_black

}
MANIFEST { upb = 4 }

LET start() = VALOF
{ initsdl ()
mkscreen("Cosine and sine curves", 800, 400)

// Declare a few colours in the pixel format of the screen
col_white := maprgb(255, 255, 255)
col_black := maprgb( 0, 0, 0)
col_blue maprgb( O, 0, 225)
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col_green := maprgb( 0, 185, 0)
col_red maprgb(195, 0, 0)
col_gray maprgb (228, 228, 228)

fillscreen(col_gray)

updatescreen() //Update the screen hardware

setscaling() // Set the scaling parameters for smoveto etc.
setcolour(col_black); plotgraphpaper ()

setcolour(col_red); plot_fn(cosine)

setcolour(col_green) ; plot_fn(sine)

setcolour(col_blue); plotcircle()

updatescreen() //Update the screen hardware
sdldelay(20_000) //Pause for 20 secs

closesdl()
RESULTIS O

All that remains is to define the plotting functions and the one that sets the
scaling parameters so that the graph will appear appropriately sized and centred
in the window.

The graph paper ranges from 0.0000 to 2 x 3.1415 in the z (horizontal) direc-
tion and from -1.0000 to +1.0000 in the y (vertical) direction with (0, -1) being
the bottom left corner of the graph. Lines will be drawn using the functions
smoveto and sdrawto which both take scaled fixed point numbers with 4 digits
after the decimal point to specify the coordinates on the graph paper. They are
defined as follows.

AND smoveto(x, y) BE

{ LET screenx = x0 + muldiv(x, scale, 1_000_000)
AND screeny = yO + muldiv(y, scale, 1_000_000)
moveto(screenx, screeny)

¥

AND sdrawto(x, y) BE
{ LET screenx = x0 + muldiv(x, scale, 1_000_000)
AND screeny = yO + muldiv(y, scale, 1_000_000)
drawto(screenx, screeny)
updatescreen() //Update the screen
sdldelay(20) // So we can see the curves being drawn
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Both these functions use the scaling parameters x0, yO and scale to transform
the graph paper coordinates to coordinates on the window. Notice also that
sdrawto updates the screen and has a slight real time delay so that we can watch
the graphs being drawn. The scaling parameters are set by the next function

AND setscaling() BE

{ // Set the scaling parameters x0, yO and scale used by smoveto
// and sdrawto so that the drawing area from x = 0 to 2 pi and
// y = -1.0 to +1.0 appears centered in the window.
// The convertion from graph coordinates (x, y) to
// screen coordinates will be as follows

// screenx = x0 + muldiv(x, scale, 1_000_000)
// screeny = yO + muldiv(y, scale, 1_000_000)

x0 := screenxsize / 20

yO
scale :

screenysize / 2
muldiv(screenxsize*9/10, 1_000_000, 2 * 3_1415)

Next comes the plotting functions. The first draws the graph paper consisting
of lines for the edges, the z axis and vertical lines at 7/2, = and 37 /2.

AND plotgraphpaper() BE
{FOR i =-1T0 +1 DO
{ // Draw horizontal lines at -1.0000, O and 1.0000
smoveto ( 0, i * 1_0000)
sdrawto( 2%3_1415, i * 1_0000)
}
FOR i = 0 TO 4 DO
{ // Draw vertical lines at 0, pi/2, pi 3pi/2 and 2pi
smoveto( 1%3_1415/2, -1_0000)
sdrawto( 1%3_1415/2, +1_0000)
}
}

The next function plot_fn is used to plot the cosine and sine curves. It takes an
argument £ which is either cosine or sine and draws the curve as a sequence of
100 short line segments. It uses a multi digit representation of the angle theta
which it passes to f each time a new value is to be computed. The values of 6
are of the form 2nm /100 for n in the range 0 to 100. It uses mulbyk and divbyk
defined later.
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AND plot_fn(f) BE FOR n = 0 TO 100 DO
{ // Plot f(theta) from theta = 0 to 2 pi
LET theta = VEC upb
LET pi = TABLE 3,1415,9265,3589,7932
FOR j = O TO upb DO theta!j := pi!j // Set theta = pi
mulbyk (theta, 2+*n)
divbyk(theta, 100)
TEST n=0
THEN smoveto(10000*theta!O+theta!l, f(theta))
ELSE sdrawto(10000*theta!O+theta!l, f(theta))

The function plotcircle has much in common with plot_fn but draws short
line segements between points with coordinates (cosf,sinf). A scaled number
representing 3.1415 is added to the z coordinate to place the circle at the center
of the graph.

AND plotcircle() BE FOR n = O TO 100 DO
{ LET theta = VEC upb
LET pi = TABLE 3,1415,9265,3589,7932
FOR i = O TO upb DO theta!i := pil!i // Set theta = pi
mulbyk(theta, 2*n)
divbyk(theta, 100)
TEST n=0
THEN smoveto(cosine(theta)+3_1415, sine(theta))
ELSE sdrawto(cosine(theta)+3_1415, sine(theta))

The functions cosine and sine compute multi digit representations of cos @
and sin # using the two series we have already seen, namely.

P $2 1‘4
cosx—l—g—i-ﬂ—i-...

. . 1’3 x5
Slnx—x—y—i—i—i—

Since these series have much in common, cosine and sine both use an auxiliary
function sumseries(theta, n) to perform the summation. theta is a multi
digit representation of § and n=0 for cosine and n=1 for sine. The function is
defined as follows.

AND sumseries(theta, n) = VALOF
{ // n=0 return cosine theta as a scaled number with 4 decimal
// digits after the decimal point
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// n=1 return sine theta as a scaled number with 4 decimal

// digits after the decimal point
LET sum = VEC upb
LET term = VEC upb // Next term to add, x"n/n!

LET negt2

VEC upb // To hold -theta”2

FOR i = O TO upb DO sum!i, term!i := 0, 0 // Set sum and term to zero
1 // Set sum to 1.0000

term!0 :
IF n DO mult(term, term, theta) // Set term for sine

FOR i = O TO upb DO negt2!i := thetali // Set negt2 = theta
mult(negt2, negt2, negt2) // negt2 now holds theta”2
neg(negt2, negt2) // negt2 now hold -theta”2

UNTIL iszero(term) DO

{ add(sum, sum, term) // Accumulate the current term
mult(term, term, negt2) // Calculate the next term in the series
divbyk(term, n+1)
divbyk(term, n+2)
n := n+2

}

RESULTIS 1_0000*sum!O + sum!l // Return a fix point scaled number

AND iszero(v) = VALOF

{FORi=0TO upb IF v!i RESULTIS FALSE
RESULTIS TRUE

}

The definition of sumseries should be reasonably understandable. It accumu-
lates the result in sum by adding the next term (held in term) until term repre-
sents zero. The next term is computed from the previous one by multiplying by
—m incrementing n by 2 each time. The initial value of term represents
either 1 for cosine or @ for sine. Once the series has been summed, it is converted
to a scaled fixed point number with 4 decimal digits after the decimal point by
the expression 1_0000*sum!0 + sum!1. Finally cosine as sine are defined by

suitable calls of sumseries.

AND cosine(theta) sumseries (theta, 0)

AND sine(theta) sumseries(theta, 1)



332 CHAPTER 5. INTERACTIVE GRAPHICS IN BCPL USING SDL

All that remains is to define the low level functions to perform arithmetic on
our multi digit representation of signed numbers. The first of these is mult which
computes the product of the numbers in y and z storing the result in x. The
comments explain how it works.

AND mult(x, y, z) BE

{ // Set x to the product of y and z
// x, y and z need not be distinct, so copies are made.
LET res

VEC upb+3 // res includes some guard digits

LET cy = VEC upb // cy and cz will hold copies of y and z
LET cz = VEC upb
LET resneg = FALSE

// Make copies of y and z
FOR i = 0 TO upb DO cy!'i, cz!i := yli, z!i
// Set res to zero

FOR i = 0 TO upb+3 DO res!i := 0
// Rounding of the result is done by adding 1/2 to the last digit
res! (upb+1) := 5000

IF cy!0<0 DO { neg(cy, cy); resneg := “resneg }
IF cz!0<0 DO { neg(cz, cz); resneg := “resneg }

// cy and cz now both reprent positive numbers

FOR i = 0 TO upb IF cy!i FOR j = O TO upb+3-i DO

{LETp=1+j // Destination in range O to upb+3
LET 4 = res!p + cyl!i * cz!]j
LET carry = d / 10000
IF p=0 DO { res!0 := d; LOOP } // res!0 is allowed to be >= 10000
res!p := d MOD 10000

// Deal with the carry, if any
WHILE carry DO
{p:=p1 // Position of next digit to the left
d := res!lp + carry
IF p=0 DO { res!0 := d; BREAK }
carry :=d / 10000
res!p := d MOD 10000

3
}
TEST resneg
THEN neg(x, res) // Set x = -res
ELSE FOR i = O TO upb DO x!i := res!i // Set x = res



5.9. €@ AND ROTATION 333

The next function copies the negated value of y into x. It is perhaps best
understood by considering the operation on a number with only one digit (of radix
10000) after the decimal point. Suppose num represents 1.2345, then num!0=1 and
num! 1=2345. Our representation -1.2345 has num!0=-2 and num! 1=7655 since the
fractional part is positive. This result can be computed as follows. First negate
both the integer and fractional parts giving num!0=-1 and num!1=-2345, then
correct the fractional part by adding 10000 to it and subtracting 1 from the
integer part in compensation. The addition 10000 can be done by adding 9999
and then incrementing the result. The fractional part thus becomes 9999-2345+-1
= 7654+1 = 7655. Note that the addition of 1 causes a carry of 1 into the integer
part, if the original fractional part was zero.

AND neg(x, y) BE
{ // Set x to -y
LET carry = 1
FOR i = upb TO 1 BY -1 DO
{ LET d = 9999 - y!i + carry
x'i d MOD 10000
carry :=d / 10000
}
x!0 := carry - y!0 -1

The add function adds corresponding digits of y and z starting from the least
significant end, dealing with carries as it goes. The result is placed in x. Note
that the fraction digits are all positive but the integer part (in element zero) is
signed and need not be in the range -9999 to +9999.

AND add(x, y, z) BE
{ LET carry = 0
FOR i = upb TO 1 BY -1 DO
{ LET d = y!i + z!i + carry

x'i := d MOD 10000
carry :=d / 10000

b

x!0 := y!0 + z!0 + carry

}
Subtraction is performed by negating z then calling add.

AND sub(x, y, z) BE
{// Setx=y -2z
// Copy z because it might be the same as y
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LET cz = VEC upb
neg(cz, z)
add(x, y, cz)

}

The function mulbyk multiplies the multi digit signed number in v by the
integer k placing the result back in v. It conditionally changes the signs of v and
k so the multiplication is performed on positive values. It then changes the sign
of v again at the end, if needed.

AND mulbyk(v, k) BE
{ LET carry = 0
LET resneg = FALSE
IF v!0<0 DO { neg(v, v); resneg := “resneg }
IF k<0 DO { k := -k; resneg :

“resneg }

FOR i = upb TO 1 BY -1 DO
{ LET 4 = v!i * k + carry

vii := d MOD 10000
carry :=d / 10000
b
v!0 := v!0 * k + carry

IF resneg DO neg(v, v)

The function divbyk divides the multi digit signed number in v by the integer
k placing the result back in v.

AND divbyk(v, k) BE
{ LET carry =0
LET resneg = FALSE
IF v!0<0 DO { neg(v, v); resneg := “resneg }
IF k<0 DO { k := -k; resneg :

“resneg }

FOR i = O TO upb DO

{ LET 4 = carry*10000 + v!i
v!i :=d / k
carry := d MOD k

}

IF resneg DO neg(v, v)
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When the above program runs, it creates the window shown below containing
the curves for cosf in red, sin# in green and a circle in blue. The short delay in
sdrawto allows you to see these curves being drawn.

| Cosine and sine curves -

Before leaving this section, there is one last formula we need to derive. Look-
ing at the blue circle drawn by the previous program, it is clear the coordinates
(cosd,sinf) lie on a circle of radius one. 6 is not measured in degrees but in
radians which is the distance around the circumference of the unit circle from the
point (1, 0). Thus # = 27 corresponds to an angle of 360°.

Let us assume a point P on the unit circle is at an angle ¢ from the x axis
and that its coordinates are (x,y) = (cos ¢, sin ¢). If we wanted to rotate P anti-
clockwise by an angle 6 to point @, it would move to (X,Y) = (cos(0+ ¢), sin(0 +
¢)). It would be really useful to have formulae that compute these coordinates
in terms of the old ones and @, and this can easily be done by considering e*(¢+¢)
as follows

e0+®) = cos(0 + ¢) + isin(0 + ¢)

But also
ci0+0) it o it
= (cos @ +isinf) x (cos ¢ + isin @)
= (cos @ cos ¢ — sin B sin ¢) + i(sin f cos ¢ + cos f sin @)
So

cos(0 + ¢) = cos O cos ¢ — sin 6 sin ¢
sin(f + ¢) = sin 6 cos ¢ + cos @ sin ¢
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Remembering the old coordinates were (x,y) = (cos¢,sin¢), we can calculate
the new coordinates (X,Y’) = (cos(6 + ¢),sin(0 + ¢)) as follows

X =cosf xx—sinf xy

Y =sinf xx+cosh xy

Mathematicians usually prefer to write these two equations as a single equation
having exactly the same meaning using what is called matrix notation.

X\ [ cosf —sind T
Y )\ sinf cosf Y

It is easy to see that these formulae work just as well when (z,y) is not on the
unit circle but on a circle of radius r, say. These formulae will be used later when
we wish to rotate, for example, the moon lander space craft. To see a geometric
proof of the cos(f + ¢) equation do a web search on: cos a plus b geometric
proof.

Note that when 6 is small enough to allow us to ignore terms such as 92—? and

g—? then from the series we can deduce that cosf is approximately 1 and sin @ is
approximately 6. We take advantage of these approximations when dealing with
small rotations in implementation of the flight simulator given later.

To summarise this section, we started by considering the impossible number
t whose square is -1 and then thought of the equally mind boggling idea of
computing e, that is multiplying 1 by e, iz times. This resulted in two functions,
cos and sin, which, when plotted, looked beautiful and rather similar. We even
showed that cos?6 + sin?@ = 1 which was confirmed by plotting points of the
form (cos#,sin @) showing they all lay on the unit circle. We went on to deduce
formulae for cos(f + ¢) and sin(f + ¢) which we will be used later in this chapter.
What this tells us is that mathematics in not just about learning multiplication
tables and doing tedious numerical sums, but is more to do with extraordinary
ideas and beautiful results obtained with the aid of a little simple algebra. Some of
the results turn out to be very useful, while others, like Euler’s identity /™41 = 0,
are just wonderous to observe. (Try a web search on: e to the i pi plus one
equals zero.)

If you have reached this far in this section you are either already a mathe-
matician or well on the way to becoming one. Well done!
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5.10 The Riemann (-function

If you survived the previous section you may well find this one interesting. It
contains no programming and the mathematics is probably the most advanced
of any appearing in the document. However the algebra is simple and easy to
understand and the resulting equation is truly amazing. We saw on page 238
that

= =l4+z+a?+23+. ..
This equation is valid if |x| < 1 where |z| denotes the absolute value of z. A
possible value for z is % where p is a prime number, giving

1 1 1 1
I+ 5+ 5+

I —
g

If we multiply all the terms of the form 1_% together for each prime p, we obtain
p

an interesting result consisting of the sum of terms such as ﬁ, but since each

number n can only be factorised into primes in one way, the sum will only contain

each ?IL once. This tell us that
1 1 1 1

Unfortunately the sum on the right hand side diverges to infinity, but if we raise
each prime to the power s both sides can be made to converge to finite values.
The equation then becomes

1 1 1 1
Hp:primelf 1‘1‘2*54‘?4‘4?4‘---

— =
pT

The right hand side is Riemann’s zeta function ((s), normally defined as follows

((s) = Zigl(%)

This function is totally extraordinary and possibly the most significant function
in all of mathematics since it relates the set of all prime numbers to all the natural
numbers and is valid for most values of s even when s is complex. As stated in
the Wikipedia web page, it plays a pivotal role in analytic number theory and
has applications in physics, probability theory, and applied statistics. It has an
infinite number of zeroes when s is a real number, but surprisingly, when s is
allowed to be complex, all the other zeroes seem to be on the line s = % + it, but
this has not yet been proved to be true.
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5.11 Polar Coordinates

We saw in the previous sections that complex numbers can be thought of as points
on a two dimensional graph, with the horizontal and vertical axes representing
the real and imaginary components, respectively. Such a graph is often called
an Argand diagram and is useful in helping to understand how complex numbers
behave. A complex number z = x + iy can be represented by the point in the
Argand diagram with cartesian coordinates (z,y). However, we can also describe
it is by the pair (r,0) where r is the distance between z and the origin, and @ is
the angle between the line from the origin to z and the real axis. The quantities
r and 6 are called polar coordinates, and this representation turns out to be very
useful. The conversion from polar coordinate (r, 8) to cartesian coordinates (z, )
is easy, since x = rcosf and y = rsinf. So, z = rcosf + irsin 6 which, as we
saw in the previous section, can also be written as re®.

The product of two complex numbers re? and se'® is rse’®®) . So, using
polar coordinates, the product of (r,0) and (s, ®) is (rs,0 + ¢). It is thus clear
that when we multiply two complex numbers together, the polar distance of the
result is the product of the polar distances of the two operands, and the polar
angle is the sum of the angles of the two operands.

If we consider a number (r,60) on or inside the unit circle in the Argand
diagram then r will be less than or equal to one and the square of (r,60) will
still be within the unit circle. If, on the other hand, » > 1 the square will be
further away from the origin and repeatedly squaring the result will cause it to
diverge to infinity. Thus if we apply this repeated squaring process to arbitrary
initial values, we only avoid divergence for all initial values on or inside the unit
circle. This mechanism defines the set of points inside or on the unit circle and
the boundary of this set is the unit circle itself.

5.12 The Mandelbrot Set

Benoit Mandelbrot considered a slight variation of the repeated squaring process.
Every time z is squared a small complex constant ¢ is added to the result. So

the process involves repeated performing z := 22 + c¢. He chose to start with
z = 0. For some values of ¢, such as ¢ = 3, the process diverges, and for other
settings, such as ¢ = 0 or ¢ = —1, the values of z remain bounded. The possible

values of ¢ that cause the process to remain bounded is called the Mandelbrot
set, and it turns out to have some extraordinarily unexpected properties. The
program presented here displays a specified square region of the Mandelbrot set
by performing the iteration a limited number of times for all possible values of
¢ in the square. If z remains within three units of the origin throughout all the
iterations, c is in or close to the Mandelbrot set and is plotted as a black pixel. If,
on the other hand, z moves further than three units from the origin, the process
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is clearly going to diverge and the corresponding pixel is given a colour depending
on how many iterations were required for z to escape. The resulting picture is
sometimes rather surprising.

The program is called bcplprogs/raspi/mandset.b and starts as follows.

// Insert the SDL library source code as a separate section

GET "libhdr"
GET "sdl.h"
GET "sdl.b"

GET "libhdr"
GET "sdl.h"

GLOBAL {
a:ug
b
size
limit // The iteration limit
A
col_white; col_gray; col_black

MANIFEST {
One = 100_000_000 // The number representing 1.00000000
width=512
height=width // Ensure the window is square

}

The global variables a, b and size will hold the details of a square region to
display with sides of length 2*size centred at position (a,b), and 1limit is the
upper limit of the number of iterations to use.

The manifest constant One gives the integer value of the scaled numbers used
used in the calculation. This allow for number in about the range -20.0 to +20.0 to
be represented with 8 decimal digits after the decimal point. The main program
is as follows.

LET start() = VALOF
{LETs=0 // Region selector
LET argv = VEC 50

UNLESS rdargs("s/n,a/n,b/n,size/n,limit/n", argv, 50) DO
{ writes("Bad arguments for mandset*n")
RESULTIS O
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// Default settings

a, b, size := -50_000_000, 0, 180_000_000
limit := 38
IF argv!0 DO s = largv!0 // s/n

IF argv!1l DO a = largv!l // a/n
IF argv!2 DO b = largv!2 // b/n
IF argv!3 DO size := largv!3 // size/n
IF argv!4 DO limit := largv!4 // limit/n

IF 1<=s<=7 DO

{ LET limtab = TABLE 38, 38, 38, 54, 70, // O
80, 90, 100, 100, 110, // 5
120, 130, 140, 150, 160, // 10
170, 180, 190, 200, 210, // 15

220 // 20
limit := limtab!s
a, b, size := -52_990_000, 66_501_089, 50_000_000
FOR i = 1 TO s DO size := size / 10
}
initsdl()

mkscreen("Mandlebrot Set", width, height)

// Declare a few colours in the pixel format of the screen

col_white := maprgb(255, 255, 255)
col_gray := maprgb(128, 128, 128)
col_black := maprgb( 0, 0, 0)

v := getvec(widthxheight-1)

// Initialise v the vector of random pixel addresses.

FOR i = O TO width*height - 1 DO v!i := i

// Random shuffle v so that the screen pixels are filled in
// in random order.

FOR i = width*height - 1 TO 1 BY -1 DO

{ LET j = randno(i+1) - 1 // Random number in range O .. i

LET t = v!j
vlj = vli
vii = ¢t
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plotset ()

setcolour(col_white)
drawf (5, 50, "s
drawf (5, 35, "a
drawf (5, 20, "limit
updatescreen()

"); drawf(50, 50, " %i4*n", s)
%11.8d b = %11.8d size = %11.8d4", a, b, size)
"); drawf(50, 20, " %id*n", limit)

sdldelay(60_000) //Pause for 60 secs
closesdl()

IF v DO freevec(v)

RESULTIS O

The program takes five possible arguments s, a, b, size and limit all of
which are numeric. The first argument can be used to select one of 7 interesting
regions to display, the next three can specify other regions, and 1limit can be
used to set the iteration limit.

The vector v is initialised to the integers 0 to width¥height-1 stored in
random order. Each element holds the z, y coordinates of a pixel position packed
as two adjacent 9-bit values. The i’ pixel to be drawn will be at (z,y) position
(v!11i&#x1FF, (v!1>>9) &#x1FF). This vector holds the random order in which the
pixels are drawn.

The mandelbrot set is then plotted by the call plotset (). Some text is then
written to the screen specifying the position and size of the region displayed. A
colour bar is then drawn near the bottom of the screen to show the mapping be-
tween iteration count and the corresponding colour. Finally the screen is updated
and displayed for 60 seconds.

AND colfill(p, m, coll, col2) BE
{ //writef("colfill: p=%ib m=%i3 coll=%09 col2=%o09*n", p, m, coll, col2)
//abort (1000)

TEST m<=1
THEN { putcolour(p, O, coll)
}

ELSE { // Fill p!0 to p!(m-1) with colours using linear
// interpolation.
LET m2 = m/2 // Midpoint
LET midcol = (coll+col2)/2 // Midpoint colour
colfill(p, m2, coll, midcol)
colfill(p+m2, m-m2, midcol, col2)

}

AND putcolour(p, i, col) BE
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{ LET r, g, b = (col>>18)&255, (col>>9)&255, col&255
// writef ("putcolour: p=%i6 i=%i3 col=%09 r=%i3 g=%i3 b=%i3*n",

// p, i, col, r, g, b)
//abort (1000)

p!i := maprgb(r, g, b)
}

AND setpalette(p, lim, colv, n) BE
{ // Fill in colours in p!0 to p!lim based on
// the colours in colv!0 to colv!n

//uritef ("setpalette: p=%ib lim=%i3 colv=%ib n=%i3*n", p, lim, colv, n)

//abort (1000)
IF lim<=n DO
{FOR i = 1im TO 0 BY -1 DO { putcolour(p, i, colv!n); n := n-1 }
RETURN
}
IF 1lim - 1im/4 >= n DO
{ LET m = 1lim/4
colfill(p, m, colv!0, colv!l)
setpalette(p+m, lim-m, colv+l, n-1)
RETURN
}
// Copy colours from colv! to colv!n to p!(lime-n+1) to p!lim
WHILE n>0 DO
{ putcolour(p, lim, colv!n)
lim, n := lim-1, n-1
}
colfill(p, lim+1, colv!0, colv!1l)

These few functions construct a colour palette in colourv that depends on
the selected iteration limit. The colours are chosen so that they move from yellow
through white to various shaded of green, and for points most distant from the

Mandelbrot the various shades of blue are chosen.

AND plotset() BE
{ // The following table hold 8-bit rgb colours packed
// in three 9-bit fields. It is used to construct a palette
// of colours depending on the current limit setting.
LET coltab = TABLE
#300_300_377, #200_200_377, #100_100_377, #000_000_377, // O
#040_040_300, #070_140_300, #070_110_260, #100_170_260, // 4
#120_260_260, #150_277_240, #120_310_200, #120_340_200, // 8
#120_377_200, #100_377_150, #177_377_050, #270_377_070, // 12
#350_377_200, #350_300_200, #340_260_200, #377_260_140, // 16
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#377_220_100, #377_170_100, #347_200_100, #360_100_000, // 20
#240_300_000, #100_277_000, #000_377_000, #230_350_230, // 24
#340_340_377, #377_377_377, #377_377_200, #377_377_100, // 28
#377_377_000 // 32

LET mina = a - size
LET minb

b - size

LET colourv = VEC 500
setpalette(colourv, limit, coltab, 32)
fillsurf (col_gray)

// Draw a small white square at the centre

setcolour(col_white)

drawrect (width*45/100, height*45/100,
width*55/100, height*55/100)

// Draw the colour bar

FOR x = 0 TO width-1 DO

{ LET i = ((1imit+1) * x) / width
LET p, 9 = x, 6
setcolour(colourv!i)
moveto(p, q)
drawby (0, 6)

}

updatescreen()

FOR i = 0 TO width*height - 1 DO // Number of points to plot
{ LET vi = v!i

LET colour = 7

LET itercount = 7?7

LET x, y, p, 9 =7, 7, 7, 7

// Periodically update the screen as the pixels are drawn
IF i MOD 100 = O DO updatescreen()

x := vi & #x1FF // 0 .. B11
(vi>>9) & #x1FF // 0 .. 511

<
Il

// Calculate c = p + iq corresponding to pixel (x,y)
:= mina + muldiv(2*size, x, 511)
minb + muldiv(2*size, y, 511)

Q ‘g
i
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itercount := mandset(p, q, limit)
TEST itercount<O

THEN colour := col_black

ELSE colour :

colourv!itercount

setcolour(colour)
drawpoint (x, y)

// Draw the palette of colours

FOR x = 0 TO width DO

{ LET i = (1imit * x) / width
LET p, q =%, 6
setcolour(colourv!i)
moveto(p, q)
drawby (0, 6)

}

updatescreen()

The function plotset plots the requested region of the Mandelbrot set. It
does this by plotting each pixel in the requested region in random order. For
each point, if mandset returns -1 it is in or close to the Mandelbrot set and
so is coloured black, otherwise it is given a colour depending on the number of
iterations needed before z is more than three units away from the origin. The
palette of colours is placed in the vector colourv.

AND mandset(p, q, n) = VALOF
{LET x, y =0, 0 // z=zx+ iy is initially zero
// ¢ = a + ib is the point we are testing
FOR i = 0 TO n DO
{LET ¢t =7
LET x3, y3 = x/3, y/3 // To avoid possible overflow
LET rsq = muldiv(x3, x3, One) + muldiv(y3, y3, One)

// Test whether z is diverging, ie is x"2+y~2 > 9
IF rsq > One RESULTIS i

// Square z and add c

// Note that (x + iy)~2 = (x72-y~2) + i(2xy)

t := muldiv(2*x, y, One) + b

x := muldiv(x, x, One) - muldiv(y, y, One) + a

y =t
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// z did not diverge after n iterations
RESULTIS -1
}

This function initially sets z = z+iy to zero and then repeatedly performs the
assignment z := 22 + ¢ up to n times. If at any stage z move further than three
units from the origin, the function returns the iteration count at that moment,
otherwise it returns -1 indicating that ¢ is in or close to the Mandelbrot set.

The following three diagrams show the result of running this program with a
first argument of 0, 2 and 4, respectively, using an appropriate iteration limit for
each.

m Mandelbrok Set

0
=0.50000000 b = 0.00000000 size = 1.80000000
38
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m Mandelbrot Set

These images were saved using the shell command gnome-screenshot -i and
converted to . jpg format using gimp. If these commands are not yet installed on
your machine type the following.

sudo apt-get install gnome-screenshot
sudo apt-get install gimp
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| i Mandelbrot Set

This program uses only 8 digits of precision after the decimal point and this
limits the detail that can be displayed when really small regions are selected. By
selecting s=6 or 7 you will see that 8 decimal digits of precision is insufficient
for this level of detail. If the program were rewritten in C, the calculation could
easily be done using double length floating point numbers giving a precision of
about 15 decimal digits. If one unit corresponds to a distance of a metre, we
would be able to display regions as small as, say, a hydrogen atom (which has
a diameter of about 107° metres. However the iteration limit would have to be
increased somewhat. We could, of course, go for much higher precision using the
mechanism used is Section 4.32. By doing this, it would be possible to explore
much tinier regions of the Mandelbrot set that have never been seen before by
anyone. A high definition version of this program called raspi/hdmandset.b is
available. Its first argument s selects different magnifications of an interesting
point in the Manelbrot set. The image displayed is square with a side length of
107%. Currently s can be between 1 and 20 but this range can easily be extended.
The program currently uses 40 decimal digits after the decimal point which is
certainly sufficient for all settings of s from 1 to 20. Since the images require
huge amounts of computation, it is best to run the program using the native
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code version of BCPL. The following two images were generated in a Pentium
based laptop machine running Linux using the following shell command sequence.

cd $BCPLROOT/../natbcpl

make -f MakefileSDL clean
make -f MakefileSDL hdmandset
./hdmandset 10

./hdmandset 15

To do this on the Raspberry Pi just replace MakefileSDL by
MakefileRaspiSDL. The first image is as follows.
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The above image is a detailed display of a square region with a side length
of 1071 close to the point ¢ = —0.53 + 0.66i. If one unit corresponds to one
metre, the side length of this image is one Angstrom which is about the size of a
hydrogen atom.

It is tempting to think of the black area as land surrounded by sea coloured
to indicate its depth. Indeed, the colours have been chosen so that sea close
to the coast is yellow indicating sand, then there is white representing breaking
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waves and foam followed by various shades to green. At a greater distance the
sea is dark blue becoming lighter as the distance increases. In between other
colours are used to make the image more interesting. But thinking of this image
as land surrounded by sea in unrealistic since, at this magnification, the image
is one Angstrom across and a single water molecule which has a diameter of 3.2
Angstoms far too large to fit in the window.

The next image increases the magnification by a factor of 100,000 giving a
detailed display of a region about the size of a proton (the nucleus of a hydrogen
atom).
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These images help to confirm that the boundary of the Mandelbrot set remains
just as wiggly at whatever magnification we use. It also helps to confirm that
the Mandelbrot set is simply connected, that is between any two points in the set
there is a path lying entirely in the set that joining them.

Since computing these images take considerable time, I include thumbnail
pictures of the 20 images corresponding to s=1 to 20. These images are all centred
at c= -0.529.899.999.999_998_948_805+0.665_010_889_500_000_000_0001.

They are also available as files with names from hdmandsetO1.jpg to
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hdmandset20. jpg in the directory bcplprogs/raspi.

5.13 Ball and Bucket Game

This is a simple game in which the user can hit three coloured balls with a bat in
an enclosed room containing a bucket placed near the ceiling. The balls bounce
off each other, the walls, the floor, the ceiling and the bat, and feel the effect
of gravity. The bat can only move horizontally along the floor and its motion
is controlled by the left and right arrow keys. Pressing R puts all three balls in
the bucket and pressing S starts the game by removing the base of the bucket
until all the balls fall out. Pressing P pauses the game, and Q terminates the
game. Pressing H will toggle the display of some help information, and pressing
D or U causes debugging and CPU usage information to be displayed. Pressing B
toggles between the user having control of the bat or the computer moving the
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bat randomly. The aim of the game is to return the balls to the bucket as quickly
as possible. A typical screen shot is the following.

m Ball and Bucket

Tine 100.64

The source of the program is in bplprogs/raspi/bucket.b and, although
quite long, most of it is easy to understand. There is code to display the static
parts of the scene, namely, the bucket walls with their rounded ends and the base
of the bucket. There is code to display the three balls and the bat in their current
positions. There is code to deal with bouncing of the balls off each other and
the bat as well as bounces off fixed surfaces such as the walls and the bucket.
The game is controlled by input from the keyboard, handled by the function
processevents. The program starts as follows.

/* This is a simple bat and ball game
Implemented by Martin Richards (c) February 2013
History:

17/02/2013

Successfully reimplemented the first version, bucketO.b, to
make it much more efficient.

*/

SECTION "sdllib"

GET "libhdr"

GET "sdl.h"

GET "sdl.b" // Insert the library source code

SECTION "bucket"
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GET "libhdr"
GET "sdl.h"
MANIFEST {
One = 1_00000 // The constant 1.000 scaled with 5 decimal
// digits after the decimal point.
OneK = 1000_00000
batradius = 12_00000
ballradius = 25_00000
endradius = 15_00000
bucketthickness = 2 * endradius
ag = 50_00000 // Gravity acceleration
}
GLOBAL {
done:ug
help // Display help information
stepping // =FALSE if not stepping
starting // Trap door open
started
finished
randombat // If TRUE the bat is given random accelerations
randbattime
randbatx
starttime // Set when starting becomes FALSE
displaytime // Time to display
usage
displayusage
debugging
sps // Steps per second, adjusted automatically

bucketwallsurf // Surface for the bucket walls
bucketbasesurf // Surface for the bucket base

ballisurf // Surfaces for the three balls
ball2surf

ball3surf

batsurf // Surface for the bat
backcolour // Background colour

bucketcolour



5.13. BALL AND BUCKET GAME 353

bucketendcolour
balllcolour

ball2colour

ball3colour

batcolour

wall_1x // Left wall
wall_rx // Right wall
floor_yt // Floor

ceiling_yb // Ceiling
screen_xc

bucket_1x1; bucket_lxc; bucket_lxr // Bucket left wall
bucket_rxl; bucket_rxc; bucket_rxr // Bucket right wall
bucket_tyb; bucket_tyc; bucket_tyt // Bucket top
bucket_byb; bucket_byc; bucket_byt // Bucket base

// Ball bounce limits

x1lim_lwall; xlim_rwall

ylim_floor; ylim_ceiling

x1lim_bucket_11; xlim_bucket_1lc; xlim_bucket_1r
x1lim_bucket_rl; xlim_bucket_rc; xlim_bucket_rr
ylim_topt

ylim_baseb; ylim_baset

ylim_bat

// Positions, velocities and accelerations of the balls
cgxl; cgyl; cgxldot; cgyldot; axl; ayl
cgx2; cgy2; cgx2dot; cgy2dot; ax2; ay2
cgx3; cgy3; cgx3dot; cgy3dot; ax3; ay3

// Position, velocity and acceleration of the bat
batx; baty; batxdot; batydot; abatx; abaty

The first few lines insert the BCPL interface with the SDL library. This is
followed by the declarations of the constants and global variables used in the pro-
gram. Many quantities in this program use scaled numbers with 5 decimal digits
after the decimal point. These numbers are used for the location of the fixed sur-
faces on the screen, the centre of gravity of the balls and bat, and their velocities
and accelerations. The constant One represents 1.00000 in this representation.
The radii of the balls and bat are held in ballradius and batradius. The
bucket has circular corners whose radius is in endradius. The thickness of the
bucket walls and the base is twice endradius and is held in bucketthickness.
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The balls feel the effect of gravity whose acceleration is held in ag, typically set
to 50_.00000 representing 50 pixels per second per second.

The player can terminate the program by pressing Q or clicking on the little
cross at the top right hand corner of the window. This sets the variable done to
TRUE.

Various variables, such as starting, started and finished, describe the
state of the game. For instance, starting=TRUE after the player presses S to
place the balls in the bucket and remove its base allowing them to fall out. When
the bucket becomes empty the base is re-instated and started becomes TRUE.
This is the moment when the timer starts and begins to be displayed. When all
three balls are returned to the bucket, finished is set to TRUE and the timer is
stopped.

Pressing B causes the program to move the bat randomly causing the balls
to be eventually returned to the bucket. It is implemented using the variables
randombat, randbattime and randbatx. Details are given later.

Pressing P causes the program to pause. It is implemented by setting
stepping to FALSE. Pressing D or U turn on and off the display of some debugging
information.

The colour of the various objects on the screen such as the bucket, bat
and balls are held in suitably mnemonic variables such as bucketcolour and
batcolour.

Many variables are initialised to hold the geometry of the objects in the game.
For instance wall 1x and wall rx hold the x coordinates of the left and right
wall. The y-coordinates of the ceiling and floor are held in ceiling yb and
floor_yt. The z-coordinate of the centre of the screen is held in screen xc.

Variables starting bucket_ hold the coordinates of the surfaces of the bucket.

Global variables with names starting with x1im_ or ylim_ are used to deter-
mine efficiently whether a ball is in contact with a fixed surface such as the side
of the bucket.

The position, velocity and acceleration of the balls are held in variables such
as cgxl, cgyl, cgxldot, cgyldot, axl and ayl. It is important that these six
values are in consecutive global locations since @cgx1 is sometimes used as a
pointer to all six values.

The bat is constrained to move horizontally in contact with the floor, but it is
convenient to represent its position and velocity using the variables batx, baty,
batxdot and batydot. When the bat is being moved randomly, the variable
abatx holds its current acceleration.

An important feature of the game is how the balls bounce. Bouncing off flat
surfaces such as the floor or sides of the bucket is straightforward since they are
all either horizontal or vertical. Details of such bounces are covered later. When
a ball collides with another ball, the bat or a circular corner of the bucket, the
computation is more difficult. The two functions incontact and cbounce help
to deal with these collisions. incontact is defined as follows.



5.13. BALL AND BUCKET GAME 355

LET incontact(pl,p2, d) = VALOF
{ LET x1, y1 = p1!0, pi'l
LET x2, y2 = p2!0, p2!1
// (x1,y1) and (x2,y2) are the centres of two circles
// The result is TRUE if these centres are less than d apart.
LET dx, dy = x1-x2, yl-y2
IF ABS dx > d | ABS dy > d RESULTIS FALSE
IF muldiv(dx,dx,One) + muldiv(dy,dy,One) >
muldiv(d,d,One) RESULTIS FALSE
RESULTIS TRUE

The variable x1, y1, x2 and y2 are declared to hold the centres of the two cir-
cles, and the function returns TRUE if these circles are less than a distance d
apart. The argument d is the sum of the radii of the two circles involved, and so
is batradius+ballradius, endradius+ballradius, ballradius+ballradius.
With the current settings d can be no larger than 50_00000. The function first
checks whether the horizontal and vertical separations of the two objects are
no greater than d. This is a cheap test and has the merit that the more de-
tailed measurement of separation cannot suffer from overflow. The distance be-
tween the two centres is the length of the hypotenuse of a right angled triangle
whose shorter sides have lengths dx and dy. Using Pythagorus’ theorem the
square of this length is the sum of squares of dx and dy, and so we compare this
sum with the square of d, dividing both sides of the relation by One=1_00000 to
avoid overflow. Notice that both dx and dy are less than or equal to 50.00000
and so muldiv(dx,dx,0One) + muldiv(dy,dy,0One) can be no greater than twice
2500_00000 which is well within the range of 32-bit signed numbers. A bounce
between these two objects can only occur if incontact returns TRUE. The effect
of the collision is calculated by a call of cbounce whose definition is as follows.

AND cbounce(pl, p2, ml, m2) BE
{ // p1'0 and pl!l are the x and y coordinates of a ball, bat or bucket end.
// pl!2 and pl!3 are the corresponding velocities
// p2'0 and p2!1 are the x and y coordinates of a ball.
// p2!'2 and p2!3 are the corresponding velocities
// ml and m2 are the masses of the two objects in arbitrary units
// m2 = 0 if pl is a bucket end.
// m1=m2 if the collition is between two balls
// ml1=b5 and m2=1 is for collisions between the bat and ball assuming the bat
// has five times the mass of the ball.

LET ¢ = cosines(p2!0-p1!0, p2!1-p1!1) // Direction pl to p2
LET s result2
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IF m2=0 DO
{ // Object 1 is fixed, ie a bucket corner
LET xdot = p2!2
LET ydot = p2!3
// Transform to (t,w) coordinates
// where t is in the direction of the two centres
LET tdot inprod(xdot,ydot, c, s)
LET wdot = inprod(xdot,ydot, -s, c)

IF tdot>0 RETURN

// Object 2 is getting closer so reverse tdot (but not wdot)
// and transform back to world (x,y) coordinates.

tdot := rebound(tdot) // Reverse tdot with some loss of energy
// Transform back to real world (x,y) coordinates

p2!2 := inprod(tdot, wdot, c, -s)

p2!3 := inprod(tdot, wdot, s, <¢)

RETURN

IF m1=m2 DO
{ // Objects 1 and 2 are both balls of equal mass
// Find the velocity of the centre of gravity
LET cgxdot = (p1!2+p212)/2
LET cgydot = (p1!3+p2!3)/2
// Calculate the velocity of object 1
// relative to the centre of gravity
LET rxldot = pl!2 - cgxdot
LET ryldot = pl!3 - cgydot
// Transform to (t,w) coordinates
LET tidot = inprod(rxldot,ryldot, c,s)
LET wildot inprod(rxidot,ryldot, -s,c)

IF t1dot<=0 RETURN

// Reverse tldot with some loss of energy
tldot := rebound(tidot)

// Transform back to (x,y) coordinates relative to cg
rxldot inprod(tidot,wldot, c,-s)
ryldot inprod(tidot,wldot, s, c)

// Convert to world (x,y) coordinates
pl!2 := rxldot + cgxdot
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pl!3 := ryldot + cgydot
p2!2 := -rxldot + cgxdot
p2!3 := -ryldot + cgydot

// Apply a small repulsive force between balls

pl!0 := p1!0 - muldiv(0_40000, c, One)
pi!l := p1!1 - muldiv(0_40000, s, One)
p2!0 := p2!0 + muldiv(0_40000, c, One)
p2!1 := p2!1 + muldiv(0_40000, s, One)
RETURN

{ // Object 1 is the bat and object 2 is a ball
// Find the velocity of the centre of gravity
LET cgxdot = (pl!2*ml+p2!2+m2)/(m1+m2)

LET cgydot = (p1!3*ml+p2!3*m2)/(m1+m2)
// Calculate the velocities of the two objects
// relative to the centre of gravity

LET rxldot = pl1!2 - cgxdot
LET ryldot = pl1!3 - cgydot
LET rx2dot = p2!2 - cgxdot
LET ry2dot = p2!3 - cgydot

// Transform to (t,w) coordinates
LET tldot = inprod(rxldot,ryldot, c,s)

LET wldot = inprod(rxldot,ryldot, -s,c)
LET t2dot = inprod(rx2dot,ry2dot, c,s)
LET w2dot = inprod(rx2dot,ry2dot, -s,c)

IF tldot<=0 RETURN

// Reverse tldot and t2dot with some loss of energy
tidot rebound (tildot)
t2dot rebound (t2dot)

// Transform back to (x,y) coordinates relative to cg
rxldot := inprod(tidot,wldot, c,-s)
ryldot := inprod(tldot,wldot, s, c)
rx2dot := inprod(t2dot,w2dot, c,-s)
ry2dot := inprod(t2dot,w2dot, s, c)

// Convert to world (x,y) coordinates

pl!2 := rxldot + cgxdot

pl!3 := ryldot + cgydot // The bat cannot move vertically
p2!'2 := rx2dot + cgxdot
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p2!3 := ry2dot + cgydot

// Apply a small repulsive force
pl!0 := p1!0 - muldiv(0_05000, c, One)

pl!l := p1!1 - muldiv(0_05000, s, One)
p2!0 := p2!0 + muldiv(0_05000, c, One)
p2!1 := p2!1 + muldiv(0_05000, s, One)
RETURN

}

This function may look complicated but is, in fact, quite easy to understand.
It take four arguments. The first, p1l is a pointer to the locations holding the
(x,y) coordinates and velocity of the first object involved in the collision, and
p2 points to the coordinates and velocity of the second object. Pointers are used
since cbounce may need to update both the position and velocity of each object
after the collision. The masses of the two objects are given in arbitrary units
in m1 and m2. If object 1 is a bucket corner it is given infinite mass by setting
m1=1 and m2=0. If the collision is between two balls, they are given equal mass
by setting m1=1 and m2=1, and if object 1 is the bat and object 2 is a ball, m1 is
set to 5 and m2 is set to 1, indicating that the mass of the bat is five times that
of a ball.

The direction from the centre of object 1 to the centre of object 2 is cal-
culated by a call of cosines whose arguments are the horizontal and vertical
displacements between the two centres. On return, the result is the cosine of the
direction relative to the x axis, and result2 holds the corresponding sine. The
implementation of cosines is described later.

When object 1 is a bucket corner, the calculation is simple since the corner
is fixed and the ball’s velocity in the direction of the to centres is reversed with
some energy loss. This velocity is calculated using the direction cosines by the call
inprod(xdot,ydot,c,s). The tranverse velocity (orthogonal to the line between
the centres) is calculated by the call inprod(xdot,ydot,-s,c). The results are
placed in tdot and wdot, respectively. If the ball is approaching the corner tdot
will be negative, a bounce will take place implemented by replacing tdot with
the result of rebound (tdot). The inverse tranformation is performed to convert
the velocities back to world (x,y) coordinates.

The case when m1=m2 is two balls of equal mass collide and its implementation
is a straightforward optimisation of the general case given at the end of cbounce
that deals with objects with different masses. We will look at this general case
first.

The principles underlying this kind of collision was worked out by Isaac New-
ton and described in 1687 in Principia Mathematica. His second law states that
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the acceleration a of a body is parallel and directly proportional to the net force F
acting on the body, is in the direction of the force and is inversely proportional to
the mass m of the body, i.e. F=ma. Note that we are using the standard mathe-
matical convention that quantities that have both magnitude and direction, such
as F' and a appear in bold while those such a m that only have magnitude are
non bold.

Suppose F and m are such as to cause an acceleration of one foot per second
per second, then applying the force for one second would increase the speed of
the body by one foot per second. Applying it for two seconds would increase
the speed by two feet per second. Thus if ¢t was the length of time the force was
appied and v was the resulting change in velocity then F¢ = mv. The term Ft is
called the impulse, and mv is called the change in momentum. When two bodies
collide they receive equal and opposite impulses so their changes in momentum
are equal and opposite. The total momentum of two colliding bodies is thus
unchanged by the collision. It is easy to see that the velocity of the combined
centre of gravity of two objects in unaffected by the collision.

We calculate the velocity of the combined centre of gravity by declaring
cgxdot to have value (p1!2xm1+p2!2*m2)/(mi+m2) and cgydot to have value
(p1!3*m1+p2!3*m2) / (m1+m2). We then subtract this velocity from the veloci-
ties of the two objects, declaring rxldot, ryldot, rx2dot and ry2dot to be the
velocities of the two object relative to the centre of gravity. Even though we are
now in a moving frame of reference the behaviour of the objects are unchanged.
After all, if you play billiards or snooker the behaviour of the balls is not affected
by the fact we are travelling at a more or less uniform rate of 15 miles per second
around the sun, and further more, if you play again on the same table six months
later when we are on the other side of the sun, even though we are now traveling
at 15 miles per second in the opposite direction.

Viewing the situation relative to the centre of gravity is a great simplification,
since the centre of gravity now appears to be stationary, and the two objects are
moving toward the centre of gravity until they bounce, when the will then begin
moving away. At the moment of collision the each receive impulses that are equal
and opposite along the line joining their centres. If there is some loss of energy
during the collision the component of velocity in the direction between the centre
will be reversed with its magnitude slightly reduced. We assume that the compo-
nent orthogonal to this direction will be unchanged. If we call these two directions
t and w, we can compute the velocity component of object 1 in direction t by eval-
uating inprod(rxldot,ryldot,c,s), calling the result t1dot. The component
orthogonal to this in computed by inprod(rxidot,ryldot,-s,c) and given the
name widot. The velocity components of the other object are computed similarly
and given names t2dot and w2dot. At the moment of collision the components
in direction t are reversed using calls of rebound which also simulates a slight loss
in energy. The inverse transformation is then performed to obtain the velocities
after the collision of the two objects relative the centre of gravity, and finally



360 CHAPTER 5. INTERACTIVE GRAPHICS IN BCPL USING SDL

the velocities in real world coordinates are obtained by adding the velocity of
the centre of gravity to each object. The results are the assigned to the velocity
components pointed to by pl and p2. To make the packing of the balls in the
bucket realistic, a small repulsive force is applied to both objects when they are
in contact.

As stated earlier, the case when two balls collide (m1=m2) is an optimisation
of this code taking advantage that the masses of the two balls are the same.

Whenever a ball bounces it loses some energy and this loss is implemented by
the function rebound, defined below.

AND rebound(vel) = vel/7 - vel // Returns the rebound speed of a bounce

It negates the given velocity and reduces its magnitude slightly. The implemen-
tation does this by subtracting one seventh to avoid possible overflow.

When a ball collides with another ball, the bat or a round corner of the bucket,
it is necessary to calculate the direction of the line joining the centres of the two
objects. This direction could be represented by the angle between this line and
the z-axis, but it is more convenient to represent it as the cosine and sine of this
angle. These two values are often called direction cosines, and can be thought of
as the coordinates of a point at the required angle on a unit circle. The function
cosines computes them from given displacements dx and dy of the two centres
in the x and y directions. This calculation could have been done by taking the
inverse tangent of dy/dx and then computing the cosine and sine of the resulting
angle, but for this program an alternative method is used.

If you think of a right angled triangle whose two shorter sides are of length dx
and dy lying parallel the z and y-axes, by Pythagoras’ theorem the hypotenuse
will be of length v/(dx* + dy?), and so the required cosine and sine will be
N dx‘g’jr o7 and i dxgi o7 The function cosines, defined below, first reduces the
size of the triangle by dividing dx and dy by the so called Manhatten distance
ABS dx + ABS dy. This will cause the hypotenuse to have a length somewhere
between about 0.7 and 1. The square of this length is placed in a and the ap-
proximate values of cosine and sine are held in ¢ and s. To correct these values
they must be divided by the square root of a which is computed to sufficient
precision by just three interations of Newton-Raphson using a well chosen initial
guess. The Newton-Raphson iteration is illustrated by the following diagram.
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The iteration is based on the function f(z) = z? — a which has the property

that + = y/a when f(z) = 0. As shown in Section 5.7, the slope of f(z) is its
differential which, in this case, is 2z. To find a value of d for which f(d) = 0
we can make a guess, say d = 1, corresponding to point A in the diagram, and
improve it by reducing d by f(d) divided by the slope of f(z) at £ = d. The new
guess is then d—(d*>—a) /2d which simplifies to (d+a/d)/2. This step is encoded by
the statement d:=(d+muldiv(dsq,0One,d))/2. The new value of d corresponds
to point B in the diagram. If you uncomment the writef statements you will see
how rapidly this process converges. In fact, each iteration approximately doubles
the number of significant digits, so if we started with a guess that was correct
to one significant place, the successive iterations would be correct to about 2,
4, 8 and 16 places. Indeed, if we did the calculation to sufficient precision, 10
iterations would give us an answer correct to about 1000 places. However, for
our purposes the 4 digits of precision obtained by three iterations is sufficient. To
understand this mechanism in more detail, do a web search on newton raphson.
The definition of cosines is as follows.

AND cosines(dx, dy) = VALOF
{ LET d = ABS dx + ABS dy

LET ¢ = muldiv(dx, One, d) // Approximate cos and sin
LET s = muldiv(dy, One, d) // Direction good, length not.
LET a = muldiv(c,c,0One)+muldiv(s,s,0One) // 0.5 <= a <= 1.0

d := 1_00000 // With this initial guess only 3 iterations
// of Newton-Raphson are required.
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//writef ("a=%8.5d d=%8.5d d~2=%8.5d*n", a, d, muldiv(d,d,0One))
d := (d + muldiv(a, One, d4))/2

//uritef ("a=%8.5d d=%8.5d d~2=%8.5d*n", a, d, muldiv(d,d,One))
d := (d + muldiv(a, One, d))/2

//uritef ("a=%8.5d d=%8.5d d~2=%8.5d*n", a, d, muldiv(d,d,One))
d := (d + muldiv(a, One, d4))/2

//writef ("a=%8.5d d=%8.5d d~2=%8.5d*n", a, d, muldiv(d,d,0One))

s := muldiv(s, One, d) // Corrected cos and sin
¢ := muldiv(c, One, d)
//uritef ("dx=%10.5d dy=%10.5d => cos=/8.5d sin=%8.5d*n", dx, dy, c, s)

result2 := s
RESULTIS c
}

The cosine is returned as the result of cosines and the sine is returned in the
global result?2.

If a point has coordinates (z,y) then its component in the direction specified
by cosines (c, s) is zc + ys. This value is sometimes called the inner product of
the two pairs (z,y) and (¢, s). For our scaled numbers with 5 digits after the
decimal point, this calculation and be performed by calling inprod(x,y,c,s).
The definition of inprod is as follows.

AND inprod(dx, dy, c, s) = muldiv(dx, c, One) + muldiv(dy, s, One)

As the game proceeds, the window is repeatedly redrawn perhaps more often
as 20 times per second to give the illusion that the bat and balls are moving
smoothly. The function step is used to calculate the new the positions of the
bat and balls for each image frame. This function uses ballbounces to deal with
bounces between balls and the bat or fixed surfaces such as the walls or bucket.
Most of ballbounces is easy to understand, but since it is rather long it will be
described a few lines at a time. It starts as follows.

AND ballbounces(pv) BE
{ // This function deals with bounces between the ball whose position
// and velocity is specified by pv and the bat or any fixed surface.
// It does not deal with ball on ball bounces.
LET cx, cy, vx, vy = pv!0, pv!l, pv!2, pv!3
TEST x1lim_bucket_11 <= cx <= xlim_bucket_rr &
ylim_baseb <= cy <= ylim_topt
THEN { // The ball cannot be in contact with the cieling, floor or
// either wall so we only need to check for contact with
// the bucket
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The argument pv points to consecutive locations holding the (x,y) coordi-
nates of a ball and its velocities in the x and y directions. These are extracted and
placed in the variables cx, cy, vx and vy. The TEST command then determines
whether the ball might bounce off the bucket or the walls. The THEN case deals
with possible bounces off the bucket.

IF cy > bucket_tyc DO
{ LET ecx, ecy, evx, evy = bucket_lxc, bucket_tyc, 0, 0
IF incontact(@ecx, pv, endradius+ballradius) DO
{ cbounce(@ecx, pv, 1, 0)
// No other bounces possible
RETURN
}
ecx := bucket_rxc
IF incontact(Q@ecx, pv, endradius+ballradius) DO
{ cbounce(@ecx, pv, 1, 0)
// No other bounces possible
RETURN
}
// No other bounces possible
RETURN

If cy is greater bucket_tyc, the only possible bounces are with the two rounded
tops of each side of the bucket. These are tested for and dealt with using appro-
priate calls of incontact and cbounce.

IF cy >= bucket_byc DO
{ // Possibly bouncing with bucket walls

IF cx <= bucket_1lxc DO

{ // Bounce with outside of bucket left wall
pv!0 := xlim_bucket_11
IF vx>0 DO pv!2 := rebound(vx)

}

IF bucket_lxc < cx <= xlim_bucket_1lr DO

{ // Bounce with inside of bucket left wall
pv!0 := xlim_bucket_1r
IF vx<0 DO pv!2 := rebound(vx)

}

IF xlim_bucket_rl <= cx < bucket_rxc DO

{ // Bounce with inside of bucket right wall
pv!0 := xlim_bucket_rl
IF vx>0 DO pv!2 := rebound(vx)
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}

IF bucket_rxc < cx DO

{ // Bounce with outside of bucket right wall
pv!0 := xlim_bucket_rr
IF vx<0 DO pv!2 := rebound(vx)

}

If bucket _byc<=cy<=bucket_tyc, the only possible bounces are with the inside
or outside of the bucket walls. These four possibilities are straightforward and
dealt with in turn.

// Bounce with base
UNLESS starting DO
{ // The bucket base is present
IF bucket_lxc <= cx <= bucket_rxc DO
{
IF cy < bucket_byc DO
{ // Bounce on the outside of the base
pv!l := ylim_baseb
IF vy>0 DO pv!3 := rebound(vy)
// No other bounces are possible
RETURN
}
IF bucket_byc <= cy <= ylim_baset DO
{ // Bounce on the top of the base
pv!l := ylim_baset
IF vy<0 DO pv!3 := rebound(vy)
// No other bounces are possible
RETURN

If starting is FALSE the base of the bucket is present, and so bouncing is possible
of its top or bottom surfaces. The above code deals with these two cases. If either
bounce occurs no other bounces are possible, so the function returns.

// Bounces with the bottom corners
IF cy < bucket_byc DO
{ LET ecx, ecy, evx, evy = bucket_lxc, bucket_byc, 0, O
IF incontact(@ecx, pv, endradius+ballradius) DO
{ // Bounce with bottom left cormer
cbounce(@ecx, pv, 1, 0)
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// No other bounces are possible
RETURN

}

ecx := bucket_rxc

IF incontact(Q@ecx, pv, endradius+ballradius) DO

{ // Bounce with bottom right corner
cbounce (Qecx, pv, 1, 0)
// No other bounces are possible
RETURN

}

}
}

The above code deals with bounces off the bottom two corners of the bucket, but
is only reached if the ball did not bounce off the bucket base, if present. As before,
these corner bounces are easy to implement using suitable calls of incontact and
cbounce.

The rest of ballbounces deals with bounces known not to be off the bucket,
and since ball on ball bounces are not performed by ballbounces the only pos-
sibilities are with the bat, wall, ceiling or floor. The following code deals with
them all.

ELSE { // The ball can only be in contact with the bat, side walls,
// ceiling or floor

// Bouncing with the bat
IF incontact(@batx, pv, batradius+ballradius) DO
{ pv!4, pv!5 :=0, 0
cbounce(@batx, pv, 5, 1)
batydot := 0 // Immediately damp out the bat’s vertical motion
}

// Left wall bouncing
IF cx <= x1lim_1lwall DO
{ pv!0 := xlim_lwall
IF vx<0 DO pv!2 := rebound(vx)
}

// Right wall bouncing
IF cx >= xlim_rwall DO
{ pv!0 := x1im_rwall
IF vx>0 DO pv!2 := rebound(vx)
}
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// Ceiling bouncing

IF cy >= ylim_ceiling DO

{ pv!l := ylim_ceiling
IF vy>0 DO pv!3 := rebound(vy)
// No other bounces are possible
RETURN

// Floor bouncing
IF cy <= ylim_floor DO
{ pv!l := ylim_floor
IF vy<0 DO pv!3 := rebound(vy)
}

// No other bounces are possible
RETURN

Notice that the above code allowed for bounces to occur simultaneously between
the ball and, say, a wall and the floor.

The function step is called repeatedly to update the positions of the balls
and the bat. It definition starts as follows.

LET step() BE
{ IF started UNLESS finished DO
displaytime := sdlmsecs() - starttime

The timer starts as soon as the bucket base is reinstated after all three balls
have fallen out of the bucket. It continues measuring the time until the three
balls have again settled into the bucket. The variable displaytime holds the
time measured in milli-seconds since the start. It is only updated after started
becomes TRUE and before finished becomes TRUE.

The next fragment of code updates started to TRUE at the appropriate mo-
ment.

// Check whether to close the base

WHILE starting DO

{ IF ylim_baseb < cgyl & bucket_lxc < cgxl < bucket_rxc BREAK
IF ylim_baseb < cgy2 & bucket_lxc < cgx2 < bucket_rxc BREAK
IF ylim_baseb < cgy3 & bucket_lxc < cgx3 < bucket_rxc BREAK
starting := FALSE
started := TRUE
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finished := FALSE

starttime := sdlmsecs()
displaytime := 0
BREAK

This code is not really a WHILE loop since its body is not repeatedly executed.
It is a trick to allow the use of BREAK to exit from this fragment of code. The
first IF statement executes BREAK if the first ball is above or possibly in contact
with the bucket base and has an x value between the bucket walls. The second
and third IF statements perform the same test for the other two balls. If none
of these tests call BREAK, the game has just started causing starting to be set
to FALSE and started to TRUE. The other three variables finished, starttime
and displaytime are also initialised appropriately.
The next fragment tests whether the balls have returned to the bucket.

IF started UNLESS finished DO

IF bucket_byt < cgyl < bucket_tyb &
bucket_lxc < cgxl < bucket_rxc &
bucket_byt < cgy2 < bucket_tyb &
bucket_lxc < cgx2 < bucket_rxc &
bucket_byt < cgy3 < bucket_tyb &
bucket_lxc < cgx3 < bucket_rxc &

ABS cgyldot < 2_00000 &
ABS cgy2dot < 2_00000 &
ABS cgy3dot < 2_00000 DO finished := TRUE

It checks that the centre of each ball is within the bucket and that none of them
are travelling fast enough in the y direction to escape. If all these tests succeed,
finished is set to TRUE.

Variables, such ax1 and ay1, hold the horizontal and vertical accelerations of
the balls. They are initialised by the following code.

// Calculate the accelerations of the balls
// Initialise and apply gravity

axl, ayl := 0, -ag

ax2, ay2 := 0, -ag

ax3, ay3 := 0, -ag

// Add a little random horizontal motion
axl := axl + randno(2001) - 1001
ax2 := ax2 + randno(2001) - 1001
ax3 := ax3 + randno(2001) - 1001
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They are each given a vertical acceleration of -ag simulating gravity and small
random horizontal accelerations to stop balls being able to stand unrealistically
in a vertical column.

The next fragments are concerned with the bouncing of the balls on any sur-
face they come in contact with. The following code deals with the balls bouncing
of the left and right hand walls.

ballbounces (@cgx1)
ballbounces (@cgx2)
ballbounces (Qcgx3)

The ball on ball bounces are dealt with by the follow code. The only subtlety
is that during a bounce the force of gravity are ignored by setting, for instance,
ayl and ay?2 to zero. Since all ball have the same mass m1 and m2 are both given
value 1.

// Ball on ball bounce
IF incontact(@cgxl, @cgx2, ballradius+ballradius) DO
{ ay1, ay2 := 0, 0
cbounce(@cgxl, @cgx2, 1, 1)
}

IF incontact(@cgxl, @cgx3, ballradius+ballradius) DO
{ ay1, ay3 := 0, 0

cbounce (@cgxl, Q@cgx3, 1, 1)
}

IF incontact(@cgx2, @cgx3, ballradius+ballradius) DO
{ ay2, ay3 := 0, 0

cbounce(Q@cgx2, Qcgx3, 1, 1)
}

Then follows code to updates the velocities of the three balls and their posi-
tions.

// Apply forces to the balls
cgxldot := cgxldot + ax1/Sps
cgyldot := cgyldot + ayl/Sps
cgx2dot := cgx2dot + ax2/Sps
cgy2dot := cgy2dot + ay2/Sps
cgx3dot := cgx3dot + ax3/Sps
cgy3dot := cgy3dot + ay3/Sps

cgxl, cgyl := cgxl + cgxldot/Sps, cgyl + cgyldot/Sps
cgx2, cgy2 := cgx2 + cgx2dot/Sps, cgy2 + cgy2dot/Sps
cgx3, cgy3 := cgx3 + cgx3dot/Sps, cgy3 + cgy3dot/Sps
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If B is pressed the bat moves randomly. This is implemented by setting
randombat to TRUE, and then selecting a new target x position for the bat every
half second. The bat always accelerates to this target. The selected target is
either related to the position of the lowest ball, or is randomly chosen. The speed
of the bat is limited to no more than 400 pixels per second. If the bat hits a wall
it bounces without loss of energy. The y position of the bat is also given a slight
correction.

IF randombat DO
{ LET t = sdlmsecs()
IF t > randbattime + 0_500 DO
{ // Choose a new random target x position every 1/10 second
LET xmax = screenxsize*(One
randbatx := randno(xmax)
IF randno(1000)<500 DO
{ // About 50% of the time choose as target the x position
// depending on the position of the lowest ball to the bat.
LET miny = cgyl
randbatx := cgxl

IF cgy2<miny DO randbatx, miny := cgx2, cgy2
IF cgy3<miny DO randbatx, miny := cgx3, cgy3
}
randbattime := t
}
TEST batx > randbatx THEN abatx := -500_00000
ELSE abatx := 500_00000
}
// Apply forces to the bat
batxdot := batxdot + abatx/sps
IF batxdot> 600_00000 DO batxdot := 600_00000
IF batxdot<-600_00000 DO batxdot := -600_00000

batx := batx + batxdot/sps

IF batxt+batradius > wall_rx DO
{ batx := wall_rx - batradius
batxdot := -batxdot
}
IF batx-batradius < 0 DO
{ batx := batradius
batxdot := -batxdot

// Slowly correct baty
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baty := baty - (baty - batradius)/10
}

In the first iteration of this program the bucket with or without its base,
the balls and the bat were all drawn from scratch each time a new frame was
displayed. This turned out to be too inefficient for the Raspberry Pi and so
a more efficient implementation was chosen. This involved creating small SDL
surfaces containing fragments of the scene which could be copied to the screen
efficiently when needed. The fragments chosen were a wall of the bucket with its
rounded ends, the three coloured balls and the bat. The corresponding sur-
faces are held in bucketwallsurf, bucketbasesurf, ballisurf, ball2surf,
ball3surf and batsurf. They are created when needed by functions such as
initbucketwallsurf defined below.

AND initbucketwallsurf() = VALOF

{ // Allocate a surface for the bucket walls
LET width 2%¥endradius/One + 1
LET height = (bucket_tyt - bucket_byb)/One + 2
LET surf = mksurface(width, height)

selectsurface(surf, width, height)
fillsurf (backcolour)

// Draw the ends

TEST debugging

THEN setcolour (bucketendcolour)

ELSE setcolour (bucketcolour)

drawfillcircle(endradius/One, endradius/One, endradius/One-1)
drawfillcircle(endradius/One, height-endradius/One, endradius/One-1)

// Draw the wall

setcolour (bucketcolour)

drawfillrect (0, endradius/One, width, height-endradius/One)
RESULTIS surf

It first calculates the width and height of the fragment, and creates a surface
of the size. It fills the surface with the backgraound colour and then draws the
rounded ends of the bucket wall by suitable calls of drawfillcircle. The wall
itself is then drawn by a call of drawfillrect. Notice that when debugging is
TRUE the circular bucket ends are given a different colour.

The coding of the other initialisation functions follow the same pattern. They
are defined as follows.
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AND initbucketbasesurf(col) = VALOF

{ // Allocate the bucket base surface
LET height = 2*endradius/One + 1
LET width = (bucket_rxc - bucket_lxc)/One + 1
LET surf = mksurface(width, height)

selectsurface(surf, width, height)
fillsurf (backcolour)

setcolour (bucketcolour)
drawfillrect(0, 0, width, height)
RESULTIS surf

AND initballsurf(col) = VALOF
{ // Allocate a ball surface

LET height = 2%ballradius/One + 2
LET width = height
LET colkey = maprgb(64,64,64)

LET surf = mksurface(width, height)

selectsurface(surf, width, height)
fillsurf (colkey)
setcolourkey(surf, colkey)

setcolour(col)
drawfillcircle(ballradius/One, ballradius/One+1, ballradius/One)

RESULTIS surf

AND initbatsurf(col) = VALOF

{ // Allocate a bat surface
LET height = 2*batradius/One + 2
LET width = height
LET surf = mksurface(width, height)
selectsurface(surf, width, height)
fillsurf (backcolour)

setcolour(batcolour)
drawfillcircle(batradius/One, batradius/One+1, batradius/One)

RESULTIS surf

The only subtlety is in the function initballsurf which uses a feature called
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colour keying to cause only the circular ball to be written to the screen. The
pixels outside the circle are given a special colour held in colkey and the call
setcolourkey(surf,colkey) tells the surface not to copy any pixels of this
colour to the screen. If you comment out the call of setcolourkey you will see
why this call is necessary.

The next function plotscreen draws the entire scene. It first fills in the
background colour and then checks all the required surface fragments have been
created. It then copies the to the screen by calls of blitsurf. This function
takes four arguments src, dst, x and y, where src and dst are the source and
destination surfaces, and (x,y) is the position in the destination of where the
top leftmost pixel of the source should be placed. The definition of plotscreen
starts as follows.

AND plotscreen() BE
{ selectsurface(screen, screenxsize, screenysize)

fillsurf (backcolour)

// Allocate the surfaces if necessary

UNLESS bucketwallsurf DO bucketwallsurf := initbucketwallsurf ()
UNLESS starting |

bucketbasesurf DO bucketbasesurf := initbucketbasesurf ()
UNLESS balllsurf DO ballisurf := initballsurf (ballicolour)
UNLESS ball2surf DO ball2surf := initballsurf (ball2colour)
UNLESS ball3surf DO ball3surf := initballsurf (ball3colour)
UNLESS batsurf DO batsurf := initbatsurf (batcolour)

// Left bucket wall
blitsurf (bucketwallsurf, screen, bucket_1x1/One, bucket_tyt/One)
// Right bucket wall
blitsurf (bucketwallsurf, screen, bucket_rxl/One, bucket_tyt/One)

IF bucketbasesurf DO
blitsurf (bucketbasesurf, screen, bucket_lxc/One, bucket_byt/One-1)

// The bat
blitsurf (batsurf, screen, (batx-batradius)/One, (baty+batradius)/One)

IF debugging & randombat DO

{ setcolour(bucketcolour)
drawfillcircle(randbatx/One, baty/One, 7)

}

// Finally, the three balls

blitsurf(ballisurf, screen, (cgxl-ballradius)/One, (cgyl+ballradius)/One)
blitsurf(ball2surf, screen, (cgx2-ballradius)/One, (cgy2+ballradius)/One)
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blitsurf(ball3surf, screen, (cgx3-ballradius)/One, (cgy3+ballradius)/One)

This draws the bucket (with or without its base) the three coloured balls and
the bat. All that remains is to write some text on the screen. This is done by
the following code.

setcolour (maprgb(255,255,255))

IF finished DO
drawf (30, 300, "Finished -- Well Done!")

IF started | finished DO
drawf (30, 280, "Time %9.2d", displaytime/10)

IF help DO
{ drawf (30, 150, "R -- Reset")
drawf (30, 135, "S -- Start the game")
drawf (30, 120, "P -- Pause/Continue")
drawf (30, 105, "H -- Toggle help information")
drawf (30, 90, "B -- Toggle bat random motion")
drawf (30, 75, "D -- Toggle debugging")
drawf (30, 60, "U -- Toggle usage")
drawf (30, 45, "Left/Right arrow -- Control the bat")
}

IF displayusage DO
drawf (30, 245, "CPU usage = %i3%% sps = %n", usage, sps)

IF debugging DO
{ drawf (30, 220, "Balll x=%10.5d y=%10.5d xdot=%10.5d ydot=%10.5d",
cgxl, cgyl, cgxldot, cgyldot)
drawf (30, 205, "Ball2 x=%10.5d y=%10.5d xdot=%10.5d ydot=%10.5d",
cgx2, cgy2, cgx2dot, cgy2dot)
drawf (30, 190, "Ball3 x=%10.5d y=%10.5d xdot=%10.5d ydot=%10.5d",
cgx3, cgy3, cgx3dot, cgy3dot)
drawf (30, 175, "Bat  x=%10.5d y=%10.5d xdot=%10.5d",
batx, baty, batxdot)

This code uses plotf to write text to specified positions on the screen but
otherwise should be self explanatory.

The next function initialises the position and velocity of the balls and a few
other variables. It definition is as follows.
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AND resetballs() BE
{ cgyl := bucket_byt+ballradius + 10_00000
cgy2 := bucket_byt+3*ballradius + 20_00000
cgy3 := bucket_byt+b*ballradius + 30_00000
cgxl, cgx2, cgx3 := screen_xc, ScCreen_xc, screen_xc
cgxldot, cgx2dot, cgx3dot := 0, 0, O
cgyldot, cgy2dot, cgy3dot := 0, 0, O

starting := FALSE
started FALSE
finished := FALSE
-1

displaytime :

The function processevents deals with input from the mouse and keyboard.
Most keyboard events are simple letters detected when the key is pressed. These
are all easily understood. The only subtlety is the treatment of the left and right
arrow keys. An acceleration of 750_00000 is added to abatx while the right arrow
key is held down. When it is eventually raised 750_.00000 is decremented from
abatx. Thus while the right arrow key is pressed the bat accelerates at a constant
rate to the right. Similarly, the left arrow key accelerates the bat to the left.

AND processevents() BE WHILE getevent() SWITCHON eventtype INTO
{ DEFAULT:
LOOP

CASE sdle_keydown:
SWITCHON capitalch(eventa2) INTO
{ DEFAULT: LOOP

CASE ’Q’: done := TRUE
LOOP
CASE ’77:
CASE ’H’: help := "help
LOOP
CASE ’D’: debugging := “debugging

IF bucketwallsurf DO
{ freesurface(bucketwallsurf)
bucketwallsurf := 0

b
LOOP

CASE ’U’: displayusage := “displayusage
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LOOP

CASE ’B’: randombat := “randombat
abatx := 0
randbatx := screen_xc
randbattime := 0
LOOP

CASE ’S’: // Start again
UNLESS ylim_baseb < cgyl & bucket_lxc < cgxl < bucket_rxc &
ylim_baseb < cgy2 & bucket_lxc < cgx2 < bucket_rxc &
ylim_baseb < cgy3 & bucket_lxc < cgx3 < bucket_rxc DO
resetballs()
starting := TRUE
started := FALSE
finished := FALSE
starttime := -1
displaytime := -1
IF bucketbasesurf DO
{ freesurface(bucketbasesurf)
bucketbasesurf := 0
3
LOOP

CASE ’P’: // Toggle stepping
stepping := “stepping
LOOP

CASE °’R’: // Reset the balls
resetballs()
finished := FALSE
starting := FALSE
displaytime := -1
LOOP

CASE sdle_arrowright:

abatx := abatx + 750_00000; LOOP
CASE sdle_arrowleft:

abatx := abatx - 750_00000; LOOP

CASE sdle_keyup:
SWITCHON capitalch(eventa2) INTO
{ DEFAULT: LOOP
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CASE sdle_arrowright:

abatx := abatx - 750_00000; LOOP
CASE sdle_arrowleft:

abatx := abatx + 750_00000; LOOP

CASE sdle_quit:
writef ("QUIT*n");
done := TRUE
LOOP

Notice that the surface fragment bucketballsurf must be cleared when D is
pressed since toggling the debugging flag causes the colour of the bucket ends to
change. Similarly, bucketbasesurf must be cleared when S is pressed.

The final function start is the main program. It initialises all the required
variables and then enters the event loop to repeatedly read events, update the
state of the balls and bat and display the result. If you comment out the IF
FALSE DO line near the top, code will run to test the cosines function. This was
a debugging aid used to ensure the cosines behaved correctly.

LET start() = VALOF
{ LET stepmsecs = 7
LET comptime 0 // Amount of cpu time per frame

UNLESS sys(Sys_sdl, sdl_avail) DO
{ writef ("*nThe SDL features are not availablex*n")
RESULTIS O

bucketwallsurf := 0O
bucketbasesurf := 0
balllsurf := 0
ball2surf := 0
ball3surf := 0
batsurf :=

o

IF FALSE DO
{ // Code to test the cosines function
LET el, e2 = One, One
FOR dy = O TO One BY One/100 DO
{LET ¢, s, rsq =17, 7, 7
c := cosines(One, dy)
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s :=re
rsq :=

writef ("dx=%9.5d dy=%9.5d cos=Y9.5d sin=%9.5d rsq=%9.5d*n",

IF el <
IF e2 >
}
writef ("E
RESULTIS
}

initsdl()

sult2

muldiv(c,c,0One) + muldiv(s,s,0One)

One, dy, c, s, rsq)

rsq DO el := rsq
rsq DO e2 := rsq
rrors +/46.5d -%7.5d*n", el-One, One-e2)

0

mkscreen("Ball and Bucket", 800, 500)

help := TRUE

randombat := FALSE

randbatx := screen_xc

randbattime := 0

stepping := TRUE // =FALSE if not stepping
starting := TRUE // Trap door open
started := FALSE

finished := FALSE

starttime := -1

displaytime := -1

usage := 0

debugging := FALSE

displayusage := FALSE

sps := 40 // Initial setting

stepmsecs := 1000/sps

backcolour := maprgb(120,120,120)
bucketcolour = maprgb(170, 60, 30)
bucketendcolour := maprgb(140, 30, 30)
balllcolour := maprgb(255, O, 0)
ball2colour := maprgb( 0,255, 0)
ball3colour := maprgb( 0, 0, 255)
batcolour := maprgb( 40, 40, 40)
wall_1x := 0

wall_rx := (screenxsize-1)*0ne // Right wall

floor_yt

ceiling_yb :

0
(screenysize-1)*0ne

// Floor
// Ceiling

377
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screen_xc := screenxsizex0One/2
bucket_tyt := ceiling_yb - 6#*ballradius
bucket_tyc := bucket_tyt - endradius
bucket_tyb := bucket_tyt - bucketthickness
bucket_lxr := screen_xc - ballradius *x 5 / 2
bucket_lxc := bucket_lxr - endradius
bucket_1x1 := bucket_lxr - bucketthickness
bucket_rxl := screen_xc + ballradius * 5 / 2
bucket_rxc := bucket_rxl + endradius
bucket_rxr := bucket_rxl + bucketthickness
bucket_byt := bucket_tyt - 6*ballradius
bucket_byc := bucket_byt - endradius
bucket_byb := bucket_byt - bucketthickness
x1lim_lwall = wall_1x + ballradius
xlim_rwall = wall_rx - ballradius
ylim_floor := floor_yt + ballradius
ylim_ceiling := ceiling_yb - ballradius
x1lim_bucket_11 := bucket_1xl - ballradius
x1lim_bucket_lc := bucket_lxc - ballradius
x1lim_bucket_1lr := bucket_lxr + ballradius
x1lim_bucket_rl := bucket_rxl - ballradius
x1lim_bucket_rc := bucket_rxc - ballradius
xlim_bucket_rr := bucket_rxr + ballradius
ylim_topt := bucket_tyt + ballradius
ylim_baseb := bucket_byb - ballradius
ylim_baset := bucket_byt + ballradius
resetballs()
axl, ayl := 0, 0 // Acceleration of ball 1
ax2, ay2 := 0, 0 // Acceleration of ball 2
ax3, ay3 := 0, 0 // Acceleration of ball 3
batx := screen_xc // Position of bat
baty := floor_yt + batradius // Position of bat

ylim_bat := floor_yt + batradius + ballradius

batxdot, batydot :=
abatx := 0

150_00000, O // Velocity of bat
// Acceleration of bat
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done := FALSE

UNTIL domne DO

{

wr
sd

IF
IF
IF
IF
IF
IF

cl
RE

LET t0 = sdlmsecs()
LET t1 = 7

processevents ()
IF stepping DO step()

usage := 100*comptime/stepmsecs
plotscreen()
updatescreen()
UNLESS 80<usage<95 DO
{ TEST usage>90
THEN sps := sps-1
ELSE sps := sps+1
stepmsecs := 1000/sps
}

t1 := sdlmsecs()

comptime := t1 - tO

IF tO+stepmsecs > tl1 DO sdldelay(tO+stepmsecs-t1)

itef ("#nQuitting*n")

ldelay(1_000)

bucketwallsurf DO freesurface(bucketwallsurf)
bucketbasesurf DO freesurface(bucketbasesurf)
balllsurf DO freesurface(balllsurf)
ball2surf DO freesurface(ball2surf)
ball3surf DO freesurface(ball3surf)
batsurf DO freesurface(batsurf)
osesdl()

SULTIS O
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Although the Cintcode interpretive system runs this program reasonably well,
you can improve its efficiency by compiling the BCPL into native machine code

for the ARM processor.
BCPL/natbcpl then typing the following.

make

-f MakefileRaspiSDL clean

On the Raspberry Pi, try getting into the directory
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make -f MakefileRaspiSDL bucket
./bucket

With luck this should run the bucket program with a frame rate of about 25
frames per second.

5.14 The A* Algorithm

A weighted graph consists of a collection of nodes some of which are connected
by edges having associated costs. Such a graph can be used to represent a road
network connecting towns, with the costs being the distance along the roads
between the towns. It is natural to wonder how the cheapest route between
two towns can be found. In 1958 the famous Dutch Computer Scientist, Edsgar
Dijkstra, published an algorithm to solve this problem. His method is now known
as Dijkstra’s algorithm. Later, a variant of his algorithm called the A* algorithm,
was discovered. It uses a heuristic function giving a minimum possible cost from
any node to the goal. Such a function is not always possible, but for graphs
representing road networks it is, for instance the straight line distance between
a town and the goal would be a suitable heuristic. When applicable the A*
algorithm is usually significantly faster than Dijkstra’s algorithm.

This section presents a program that implements the A* algorithm applied
to a rectangular array of square cells. It has randomly chosen start and goal
cells. The cost of moving to a diagonally adjacent cell is taken to be 14 and to a
horizontally or vertically adjacent cell is 10. These being approximate distances
between the cell centres in arbitrary units. Some cells represent walls that block
the path, but most cells are marked initially as Unvisited. As the algorithm
proceeds the minimum distance of a cell from the start cell may become known.
Such a cell is marked as Closed. Other cells, called fringe cells, are adjacent to
closed cells, but have not yet been fully processed so their minimum distance
from the start cell is not yet known. All other cell are either marked as Unvisited
or Wall. Closed cells have their distances from the start cell held in the g field of
the cell node. Fringe cells also have a g value, but it holds the cost of the shortest
path to the start cell so far discovered. A cheaper path may be found later. Its
g value will always be either 10 or 14 greater than the g value of an immediate
closed neighbour. A fringe cell also has an f value which is the sum of its g value
and the cell’s heuristic value, typically the straight line distance from it to the
goal.

The algorithm repeatedly extracts a fringe cell with the minimum f value. It
marks it as Closed and then looks at its 8 immediate neighbours. Closed or Wall
cells are ignored. Unvisited cells are become Fringe cells with suitably computed
g and f values. If the neighbour was a fringe cell, it is possible that the path via
the current closed cell gives a smaller g value. This causes its g and f values to
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reduce. The algorithm terminated when the goal cell becomes marked as Closed
and its g value will be its minimum distance from the start cell. The algorithm
also terminates if the set of Fringe cells is empty, but this only happens if there
is no possible route from the start cell to the goal.

One subtlety of the algorithm is how to represent the set of fringe cells. The
operations required are (1) add a new cell to the set, (2) extract a cell with the
minimum f value from the set, and (3) reduce the f value of a cell that is already
in the set. The mechanism required is called a priority queue and there are many
ways it implement it. The simplest scheme is to use a linear list ordered by f
value, but this is extremely inefficient if the fringe ever contains millions of cells.
A near optimal scheme is to use a structure called a Fibonacci Heap but this is
hard to program and difficult to understand. For reasonably small fringe sizes
a priority queue based on the heap structure used in heap sort is far simpler
and adequately efficient. This is the version used in this demonstration. Its
implementation is described later.

When the program is run, it produces an animated display showing how the
algorithm works. A typical screen image is the following.

m A* Algorithm Demo
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The start cell is green and the goal is red. Every Closed cell except for the
start and goal is blue and contains a arrow pointing to the next cell on the shortest
path towards the start cell. This is determined by the frompos field in the cell’s
node. Every Fringe cell is white and contains an arrow to the next cell of the
shortest path currently discovered to the start cell. Once the shortest path to
the goal is found, all cells on the path are coloured light majenta. Unvisited cells
are gray and Wall cells are black. The program runs the algorithm 50 times with
different random start and goal cells.

If the program is run with the -d option, every cell is given the same heuristic
value causing the A* algorithm to behave like Dijkstra’a algorithm. You can use
the -m command option to specify a delay in milli-seconds every time the state a
a cell changed. This allows the detailed working of the algorithm to be inspected.

The program is called bcplprogs/raspi/astar.b and is as follows.

/*

This is a demonstration of the well known A* algorithm for finding the
shortest path between two cells on a 2D grid in which some cells must
be avoided.

Implemented in BCPL by Martin Richards (c) 23 Jan 2017

Usage: -m=msecs/n,-s=seed/n,-t=tracing/s,-d=dijkstra/s

-m/n Delay time in msecs between steps.

-s/n The random number seed, used to select the start and goal
positions. Small values select some hand chosen positions.

-t/s Turn on tracing.

-d/s Perform Dijkstra’s algorithm rather than Ax

History

24/12/2016

Changed cell size from 5x5 to 9x9 so that backtracking arrow
are more visible.

*/

SECTION "sdllib"

GET "libhdr"

GET "sdl.h"

GET "sdl.b" // Insert the library source code

SECTION "astar"
GET "libhdr"
GET "sdl.h"
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MANIFEST {

Unvisited=0 // Undiscovered cell

Fringe
Closed
Wall
Path

// Dicovered cell still being evaluated

// Evaluated cell

// A cell blocking the path

// =TRUE if on the shortest path to the goal

// Cell node selectors

s_state=0
s_pos
s_frompos
5_8

s_f
s_priqpos

S_size

// = Unvisited, Fringe, Closed or Wall

// position of the cell in the vector areav

// position of the best predecessor cell

// The shortest path distance from the start cell

// The g value + the shortest distance to the goal ignoring walls
// The position of this cell in the priority queue, or zero.

s_upb=s_size-1

csize=9

GLOBAL {
stdin:ug
stdout
tracing
delaytime
randseed

/

/ cells are now 9x9 (no longer 5x5)

dijkstra // =TRUE if performing Dijkstra’a algorithm

dijkstra_heuristic
astar_heuristic

heuristic

spacevupb
spacev
spacep
spacet
areav

xsize
ysize

priq
prign
prignmax

//
//
//
//
//

//
//

//
//
//

The upper bound of spacev

Vector of free storage

Point to the most recent subvector allocated
The 1limit of spacev

A 2D array of cell nodes

Number of cells per row, somewhat less than screenxsize
Number of cells per column

The heap structure used to represent the priority queue
The number of cells in the priority queue
The largest value of prign used
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priqupb //

getleast //
//

insert //
positioncell
chkpriq //
prpriq //

indent //

newvec //
newcell //

startcell
goalcell

position //
allocarea
plotarea
cellcolour

findshortestp
neighbourcost
drawwall
plotcell

col_black
col_blue
col_green
col_yellow
col_red
col_majenta
col_cyan
col_white
col_darkgray
col_darkblue
col_darkgreen

The maximum possible number of cells in the priority queue

Function to extract the cell with the least f value from
the priority queue
Insert a cell into the priority queue
// (cell, p) Reposition the cell at position p since
// its f value has just been reduces.
Check that the priority queue structure is valid.
Output the priority queue showing its structure.
Output the indent character (used by prpriq)

Allocate space from spacev
Allocate a cell node

(x,y) calculate the position of a cell in areav

ath

col_darkyellow

col_darkred
col_darkmajen
col_darkcyan
col_gray
col_lightgray
col_lightblue

ta
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col_lightgreen
col_lightyellow
col_lightred
col_lightmajenta
col_lightcyan

LET start() = VALOF
{ LET argv = VEC 50
spacev, priq := 0, O

UNLESS rdargs("-m=msecs/n,-s=seed/n,-t=tracing/s,-d=dijkstra/s",

argv, 50) DO

{ writef("Bad arguments for astar*n")

GOTO fin
}
delaytime := 0 // msecs
randseed := 0 // Used to select the start and goal positions
IF argv!0O DO delaytime := l!argv!0 // -m=msecs/n
IF argv!l DO randseed := largv!l // -s=seed/n
tracing := argv!2 // -t=tracing/s
dijkstra := argv!3 // -d=dijkstra/s

IF tracing DO writef("delaytime=%7.3d randseed=)n dijkstra=yn*n",
delaytime, randseed, dijkstra)

spacevupb := 30_000

spacev := getvec(spacevupb)
priqupb := 500

priq := getvec(priqupb)

initsdl()

TEST dijkstra
THEN { mkscreen("Dijkstra’s Algorithm Demo", 550, 550)

heuristic := dijkstra_heuristic
+
ELSE { mkscreen("A*x Algorithm Demo", 550, 550)
heuristic := astar_heuristic
}

// The calls of mkscreen above sets screenxsize and
// screenysize both to 550.

385
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xsize := screenxsize/csize - 5 // The number of cells in a row
ysize := screenysize/csize - 5 // The number of cells in a column

// Define some colours

col_black := maprgb( 0, 0, 0)
col_blue := maprgb( O, 0, 255)
col_green := maprgb( 0, 255, 0)
col_yellow := maprgb( 0, 255, 255)
col_red := maprgb(255, 0, 0)
col_majenta := maprgb(255, 0, 255)
col_cyan := maprgb(255, 255, 0)
col_white := maprgb (255, 255, 255)
col_darkgray := maprgb( 64, 64, 64)
col_darkblue := maprgb( 0, 0, 64)
col_darkgreen  := maprgb( O, 64, 0)
col_darkyellow := maprgb( 0, 64, 64)
col_darkred := maprgb (128, 0, 0)
col_darkmajenta := maprgb( 64, 0, 64)
col_darkcyan := maprgb( 64, 64, 0)
col_gray := maprgb(128, 128, 128)
col_lightblue  := maprgb(100, 100, 255)
col_lightgreen := maprgb(100, 255, 100)
col_lightyellow := maprgb(128, 255, 255)
col_lightred := maprgb(255, 128, 128)
col_lightmajenta:= maprgb(255, 128, 255)
col_lightcyan  := maprgb(255, 255, 128)

FOR i = 1 TO 50 DO // Perform 50 random tests

{ spacet := spacev + spacevupb
spacep := spacet
prign := 0
prignmax := 0

// Allocate areav and all cells

// and also initialise the wall cells

// Display the result.

// Note that the other cells are displayed as they change.
writef ("*nSeed = %n*n", randseed)

allocarea() // Initialise the area and place the walls.

selectstartandgoal (randseed)
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plotcell(startcell)
plotcell(goalcell)

// Run the A* or Dijkstra algorithm
findshortestpath(startcell, goalcell)

writef ("Space used %n out of %n*n", spacet-spacep, spacevupb)
writef ("Priority queue used %n out of %n*n", priqumax, priqupb)

sdldelay(10_000) // Delay between tests to allow the solution
// to be viewed.

randseed := randseed+1

fin:
closesdl()
IF spacev DO freevec(spacev)
IF priq DO freevec(priq)

writef ("*nEnd of test*n")
RESULTIS O
}

AND prcell(cell) BE

{ writef ("[%n (%i3,%i3) (%i3,%i3) Yn+%4n=Ynl*n",
s_state!cell,
xcoord(s_pos!cell), ycoord(s_pos!cell),
xcoord(s_frompos!cell), ycoord(s_frompos!cell),
s_g'!cell, heuristic(cell, goalcell), s_fl!cell)

AND selectstartandgoal() BE
{ LET goalx, goaly =0, O
LET startx, starty = 0, O

SWITCHON randseed INTO
{ DEFAULT: ENDCASE

CASE 0: startx, starty := 14, 22
goalx, goaly := 52, 41
ENDCASE

CASE 1: startx, starty := 15, 22
goalx, goaly := 46, 40
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ENDCASE
CASE 2: startx, starty := 22, 42
goalx, goaly := 36, 15

ENDCASE
CASE 3: startx, starty := 47, 25

goalx, goaly := 5, 30
ENDCASE

CASE 4: startx, starty := 30, 15
goalx, goaly := 25, 53
ENDCASE

CASE 5: startx, starty := 10, 45
goalx, goaly := 38, 19

ENDCASE

{ LET pos = position(startx, starty)

startcell := areav!pos

// Ensure that the start cell is Unvisited.

IF s_state!startcell = Unvisited BREAK

startx, starty := randno(xsize-1), randno(ysize-1)
} REPEAT

{ LET pos = position(goalx, goaly)

goalcell := areav!pos

// Ensure that the goal cell is Unvisited

// and not too close to the start cell.

IF s_state!goalcell = Unvisited &

ABS(startx-goalx) + ABS(starty-goaly) > 40 BREAK

goalx, goaly := randno(xsize-1), randno(ysize-1)

} REPEAT

writef ("start=(%n,%n) goal=(%n,%n) dist=)n*n",
startx, starty,

goalx, goaly,
ABS(startx-goalx) + ABS(starty-goaly))

AND findshortestpath(startcell, goalcell) = VALOF
{ // Return FALSE if no path exists
setseed(randseed)
s_state!startcell := Fringe

s_frompos!startcell := -1 // The start cell has no predecessor
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s_gl!startcell 0
s_f!startcell heuristic(startcell, goalcell)
insert(startcell) // Put it in the priority queue

plotcell(startcell)
//chkpriq() // Debugging check

{ // Start of main loop
LET currentcell = getleast()

UNLESS currentcell DO

{ writef("The goal cannot be reached from the start cell*n")
RESULTIS FALSE // No path exists

}

IF currentcell=goalcell DO

{ writef ("Shortest path found*n")
createpath(goalcell, startcell)
RESULTIS TRUE

}

// Close the current cell

s_state!currentcell := Closed
plotcell(currentcell)

//chkpriqQ) // Debugging check

// Look at the 8 immediate neigbours of the current cell

{ LET pos = s_pos!currentcell
LET g s_glcurrentcell
LET tg, newf =7, 7

FOR dx = -1 TO 1 FOR dy = -1 TO 1 UNLESS dx=0=dy DO

389

{ LET npos = pos + dy*xsize + dx // Position of an immediate neighbour

LET cell = areav!npos
LET state = s_statelcell

// Ignore neighbours that are walls or are already evaluated
IF state = Closed | state = Wall LOOP

tg := g + neighbourcost(dx, dy)
IF state = Unvisited DO

{ s_state!cell := Fringe // Make this cell a Fringe cell
s_glcell := tg
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s_fl!cell := tg + heuristic(cell, goalcell)
s_frompos!cell := pos

insert(cell) // Insert this cell into the priority queue

plotcell(cell)

//chkpriq() // Debugging check

IF tracing DO

{ writef ("*nNew fringe cell created "); prcell(cell)
prpriq(1, 0, 0)
abort (1000)

}

sdldelay(delaytime)

LOOP

UNLESS state = Fringe DO

{ writef("Sytem error: this cell should be a Fringe cell "); prcell(cell)
abort (999)

}

IF tg >= s_g!cell LOOP // There is already a cheaper route

// We have found a shorter route to this Fringe cell

s_frompos!cell := pos

s_glcell := tg

s_flcell := tg + heuristic(cell, goalcell)

positioncell(cell, s_priqpos!cell) // Re-position cell in the queue
plotcell(cell)

//chkpriqQ) // Debugging check

IF tracing DO

{ writef ("*nf value of a fringe cell decreased "); prcell(cell)
prpriq(1, 0, 0)
abort (1000)

}

sdldelay(delaytime)
// Consider the next neighbour, if any
}

}
// Deal with another Fringe cell

} REPEAT
}
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AND createpath(p, q) BE
{ UNTIL p=q DO

{ p := areav! (s_frompos!p)
s_state!p := Path
plotcell(p)

}

}

AND newvec(upb) = VALOF
{ LET p = spacep - upb - 1
IF p < spacev DO

{ writef ("More space needed*n")

abort (999)
RESULTIS O
}
spacep := p
RESULTIS p
}

AND newcell() = VALOF
{ LET cell = newvec(s_upb)

s_state!cell := Unvisited

s_pos!cell = -1 // Not yet in the area
s_frompos!cell := -1 // No from cell yet

s_g'!cell = -1 // Not yet visited

s_flcell = -1 // Unset value
s_priqpos!cell := O // Not in the priority queue

RESULTIS cell

// Note that x and y are in the range O to xsize and O to ysize.

AND position(x, y) = y * xsize + x

AND xcoord(pos)
AND ycoord(pos)

pos /
AND neighbourcost(dx, dy) =

AND allocarea() BE

= pos MOD xsize

xXsize

dx=0 | dy=0 -> 10, 14

{ // Allocate areav and create all cell node
// and initialise the wall.
// Finally display the area and its walls.

// Note that the cells are displayed later as they change.

391
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spacep := spacet // Allocate a brand new area
areav := newvec(position(xsize-1, ysize-1))

IF tracing DO
writef ("areav=Yn upb=/n*n", position(xsize-1,xsize-1))

FOR x = 0 TO xsize-1 FOR y = 0 TO ysize-1 DO
{ LET pos = position(x, y)
LET cell = newcell()

s_pos!cell := pos // The position of this cell in areav
s_frompos'!cell := -1 // No from cell yet

s_glcell := -1 // g value unset

s_flcell := -1 // f value unset

s_priqpos!cell := 0 // The cell is not in the priority queue
areav!pos := cell

}

fillsurf(col_gray) // Fill the area background colour

// Fill in the outside walls

drawwall( 0, O, 56, 1) // Base wall
drawwall( 0, 55, 56, 56) // Top wall
drawwall( O, 1, 1, 56) // Left wall
drawwall( 55, 1, 56, 56) // Right wall

drawwall( 20, 47, 35, 48) // A

drawwall( 20, 38, 21, 47) // # #

drawwall( 34, 38, 35, 47) // # #

drawwall( 20, 37, 35, 38) // # RS

drawwall( 39, 34, 50, 35) // HHHHHH

drawwall( 49, 25, 50, 34) // #
// #
/] HEHRHER R #

drawwall( 10, 26, 30, 27) // #

drawwall( 29, 18, 30, 26) // #

drawwall( 18, 17, 30, 18) // HHH

drawwall( 12, 11, 50, 12) // A

drawwall( 12, 5, 13, 11) // # #

drawwall( 49, 5, 50, 11) // # #

drawwall( 12, 4, 30, 5) // .

drawwall( 34, 4, 50, 5)
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AND drawwall(xl,yl, x2,y2) BE
{ // The coordinates are all in the range 0 to 56

FOR x = x1 TO x2-1 FOR y = y1 TO y2-1 DO
{ LET cell = areav!position(x,y)
IF cell<0O DO
{ writef("drawwall: System error x=¥n y=)n*n", x, y)
abort (999)
}
s_state!cell := Wall
plotcell(cell)

AND drawpoints(x, y, bits) BE
{ x := x+8
WHILE bits DO
{ UNLESS (bits&1)=0 DO drawpoint(x, y)
X, bits := x-1, bits>>1
}
}

AND plotcell(cell) BE
{ LET pos = s_pos!cell
LET x = xcoord(pos)
LET y = ycoord(pos)
LET dir = -1
LET frompos = s_frompos!cell

LET px = (screenxsize-csizexxsize)/2 + csizex*x
LET py (screenysize-csizex*ysize)/2 + csizex*y

LET col = cellcolour(cell)
IF cell=startcell DO col :
IF cell=goalcell DO col :

col_green
col_red

IF x > xsize | y > ysize DO

{ writef("plotcell: x=Y/n y=Yn out of range*n", x, y)
abort (999)
RETURN

}

UNLESS s_state!cell=Path IF frompos>=0 DO
{ LET fx = xcoord(frompos)
LET fy = ycoord(frompos)
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LET dx = fx - x
LET dy = fy - y
dir :=
}
setcolour(col)

(dy+1)*3 + dx + 1

// dir
// towards
// parent

[@ RNV ENe)}
ENNIEN
N o1 O

drawfillrect(px, py, px+(csize-2), py+(csize-2))
setcolour(col_darkgray)
UNLESS cell=goalcell SWITCHON dir INTO
{ DEFAULT:

CASE O:

CASE 1:

CASE 2:

CASE -1:

ENDCASE

drawpoints (px,
drawpoints (px,
drawpoints (px,
drawpoints (px,
drawpoints (px,
drawpoints (px,
drawpoints (px,
drawpoints (px,
drawpoints(px,
ENDCASE

drawpoints (px,
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ENDCASE
CASE 3: // Left

drawpoints(px, py+8, #b_0_0_0_0_0_0_0_0_0) // 8 + + + + + + + + +
drawpoints(px, py+7, #b_0_0_0_0_0_0_0_1_0) // 7 + + + + + + + # +
drawpoints(px, py+6, #b_0_0_0_0_0_1_1_1.0) // 6 + + + + + # # # +
drawpoints(px, py+5, #b_0_0_1_1_1.1.1.0.0) // 5 + + # # # # # + +
drawpoints(px, py+4, #b_1_1_1_1.1.1.0.0.0) // 4 # # # # # # + + +
drawpoints(px, py+3, #b_0_0_1_1.1.1.1.0.0) // 3 + + # # # # # + +
drawpoints(px, py+2, #b_0_0_0_0_0_1_1_1.0) // 2+ + + + + # # # +
drawpoints(px, py+l, #b_0_0_0_0_0_0_0_1_0) // 1 + + + + + + + # +
drawpoints(px, py+0, #b_0_0_0_0_0_0_0_0_0) // O + + + + + + + + +
ENDCASE

CASE 5: // Right
drawpoints(px, py+8, #b_0_0_0_0_0_0_0_0_0) // 8 + + + + + + + + +
drawpoints(px, py+7, #b_0_1_0_0_0_0_0_0_0) // 7 + # + + + + + + +
drawpoints (px, py+6, #b_0_1_1_1_0_0_0_0_0) // 6 + # # # + + + + +
drawpoints(px, py+5, #b_0_0_1_1_1.1.1.0.0) // 5 + + # # # # # + +
drawpoints(px, py+4, #b_0_0_0_1_1_1_1_1_1) // 4 + + + # # # # # #
drawpoints(px, py+3, #b_0_0_1_1.1.1.1.0.0) // 3 + + # # # # # + +
drawpoints(px, py+2, #b_0_1_1_1.0.0_0_0_0) // 2 + # # # + + + + +
drawpoints(px, py+1l, #b_0_1_0_0_0_0_0_0_0) // 1 + # + + + + + + +
drawpoints(px, py+0, #b_0_0_0_0_0_0_0_0_0) // O + + + + + + + + +
ENDCASE

CASE 6: // Up left
drawpoints(px, py+0, #b_1_0_0_0_0_0_0_0_0) // 8 # + + + + + + + +
drawpoints(px, py+7, #b_0_1_1_0_0_0_0_0_0) // 7 + # # + + + + + +
drawpoints(px, py+6, #b_0_1_1.1.1.0.0_0.0) // 6 + # # # # + + + +
drawpoints(px, py+5, #b_0_0_1_1_1.1.1.1.0) // 5 + + # # # # # # +
drawpoints(px, py+4, #b_0_0_1_1_1_1.1.1.0) // 4 + + # # # # # # +
drawpoints(px, py+3, #b_0_0_0_1_1_0_0_0_0) // 3 + + + # # + + + +
drawpoints(px, py+2, #b_0_0_0_1_1.0_0_0_0) // 2 + + + # # + + + +
drawpoints(px, py+l, #b_0_0_0_1_1_0_0_0_0) // 1 + + + # # + + + +
drawpoints(px, py+0, #b_0_0_0_0_0_0_0_0_0) // O + + + + + + + + +
ENDCASE

CASE 7: // Up
drawpoints(px, py+8, #b_0_0_0_0_1_0_0_0_0) // 8 + + + + # + + + +
drawpoints(px, py+7, #b_0_0_0_0_1_0_0_0_0) // 7 + + + + # + + + +
drawpoints(px, py+6, #b_0_0_0_1_1_1_0_0_0) // 6 + + + # # # + + +
drawpoints(px, py+5, #b_0_0_0_1_1.1.0.0_0) // 5+ + + # # # + + +
drawpoints(px, py+4, #b_0_0_0_1_1_1.0_0_0) // 4 + + + # # # + + +
drawpoints(px, py+3, #b_0_0_1_1_1.1.1.0.0) // 3 + + # # # # # + +
drawpoints(px, py+2, #b_0_0_1_1_0_1_1.0_0) // 2 + + # # + # # + +
drawpoints(px, py+1l, #b_0_1_1_.0_0_0_1_1.0) // 1 + # # + + + # # +
drawpoints(px, py+0, #b_0_0_0_0_0_0_0_0_0) // O + + + + + + + + +

ENDCASE
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CASE 8: // Up right

drawpoints(px, py+8, #b_0_0_0_0_0_0_0_0_1) // 8 + + + + + + + + #
drawpoints(px, py+7, #b_0_0_0_0_0_0_1_1_0) // 7 + + + + + + # # +
drawpoints(px, py+6, #b_0_0_0_0_1_1_1.1.0) // 6 + + + + # # # # +
drawpoints(px, py+5, #b_0_1_1.1.1.1.1.0.0) // 5 + # # # # # # + +
drawpoints(px, py+4, #b_0_1_1_1.1.1.1.0.0) // 4 + # # # # # # + +
drawpoints(px, py+3, #b_0_0_0_0_1_1_0_0_0) // 3 + + + + # # + + +
drawpoints(px, py+2, #b_0_0_0_0_1_1.0_0_0) // 2+ + + + # # + + +
drawpoints(px, py+1l, #b_0_0_0_0_1_1_0_0_0) // 1 + + + + # # + + +
drawpoints(px, py+0, #b_0_0_0_0_0_0_0_0_0) // O + + + + + + + + +
ENDCASE

}

updatescreen()

}

AND cellcolour(cell) = VALOF SWITCHON s_state!cell INTO
{ DEFAULT: RESULTIS col_darkred

CASE Unvisited: RESULTIS col_gray

CASE Closed: RESULTIS col_lightblue

CASE Fringe: RESULTIS col_white

CASE Wall: RESULTIS col_black

CASE Path: RESULTIS col_lightmajenta
b

The following three functions implement the priority queue as needed by the
A* algorithm. The queue is held in positions 1 to priqn of the vector priq where
prign is the current number of cells in the queue. There is the constraint that
the £ value of the cell at position i is less than or equal the £ values of the cells
at positions 2¢ and 2¢ + 1, if they exist. Thus the elements of priq represent a
perfectly balanced binary tree with the cell at position 1 having the minimum f
value. A fringe cell’s position in priq is always held in the s_priqgpos field of the
cell’s node. The function getleast returns zero if the priority queue is empty,
otherwise it returns the cell that was at position 1. This leaves a hole that must,
if possible, be filled. This is done by taking the cell at position prign provided
prign>1, decrementing priqn, and trying to place it at position 1, but it may
have to be swapped with the child with the smaller f value. This swapping is
carried out down the tree until a valid position is reached.

AND getleast() = prign=0 -> 0, VALOF
{ // Extract the cell with the least f value from
// the priority queue. Return O if the queue is empty.
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LET p = 1

LET mincell = priq!l // The cell with the least f value in the queue
LET cell = priq!prign // The last cell of priq

LET cellf = s_flcell // Its f value

s_prigpos!mincell := 0 // Not in the priority queue anymore.

// Decrease the size of the priority queue
prign := prign-1

// Insert cell into the priority queue knowing that
// element at position 1 is empty

{ LET smallerchild, smallerf = 7, 7
LET q = ptp
// Position p in the queue is now empty

IF q > prign BREAK // The cell at position p has no children.

// There is at least one child
smallerchild := priql!q // The first child cell
smallerf := s_fl!smallerchild

IF q < prign DO
{ // There is a second child
LET child2 = priq!(g+1)
LET child2f = s_f!child2
IF child2f < smallerf DO
{ // The second child has a smaller f value
q := q+l
smallerf := child2f

// If the f value of cell is no larger than that of the smaller
// child, break out of the loop.

IF cellf <= smallerf BREAK

// Move the smaller child one level towards the root, and
// set p to the position of the new hole.

priq!p := smallerchild
s_priqgpos!smallerchild := p
p :=q // p is now the position where the smaller child was.
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} REPEAT

prigq!p := cell
s_priqpos!cell :=p
//chkpriq() // A debugging aid

RESULTIS mincell

The function insert inserts a cell into the priority queue. It does this by
incrementing prign and calling positioncell to attempt to place the cell at
this position, but positioncell may well have to move the cell toward the root
before a valid position is found.

AND insert(cell) BE
{ // Insert cell into the priority queue.

// Increase the size of the priority queue.
prign := priqgn+l
IF priqn > priqupb DO
{ writef("Need a larger priority queue, prign=yn priqupb=/n*n",
prign, priqupb)
abort (999)
b

IF prignmax < priqn DO prigmmax := priqn

positioncell(cell, prign)

The function positioncell repositions a cell in the priority queue when its
f value has just changed. The current position is given as the argument p. The
function just moves the cell towards the root until it reaches a valid position.

AND positioncell(cell, p) BE

{ // Position p in the priority queue is empty. Insert cell
// at the appropriate position between p and the root.
LET £ = s_flcell

WHILE p > 1 DO
{ // p is the position of an empty element in the queue
LET q = p/2 // q is the position of its parent
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LET parent = priq!q // This is the parent cell

// Break out of the loop if the f value of the parent is no
// larger than that of cell.

IF s_flparent <= f BREAK

priq!p := parent // Move the parent one level further from the root
s_priqgpos!parent := p
p:=q

}

priq!p := cell // Insert cell in its new position

s_priqgpos!cell := p // Set its new position in the cell node.

}

The following function is a debugging aid to check that the priority queue
structure is valid. It is called when tracing is turned on every time the priority
queue is modified.

AND chkpriq() BE
{ FOR i = 1 TO priqn DO
{ LET parent = priq!i
LET £ = s_f!parent
LET priqpos = s_priqpos!parent
LET q = i+i // The position of the first child if it exists.

// Check the cell’s state and prigpos value.
UNLESS s_state!parent=Fringe & priqpos = i DO
{ writef ("Error at %i3: prigqpos=¥n in cell ", i, s_priqgpos!parent)

prcell(parent)
prpriq(1, 0, 0)
abort (999)

3

IF g<=priqn DO
{ LET childf = s_f!(priq!q)
UNLESS f <= childf DO
{ writef ("Parent at position %n and child at %n have f values %n and %n*n",
i, q, £, childf)
prpriq(1, 0, 0)
abort (999)

IF g+1<=priqn DO
{ LET childf = s_f!(priq!(g+1))
UNLESS f <= childf DO
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{ writef("Parent at position %n and child at %n have f values %n and %n*n",
i, g+1, f, childf)

prpriq(1, 0, 0)
abort (999)

}

}
}
}

The functions prpriq and prindent provide a debugging aid to print out the
priority queue, showing its structure. It is invoked when tracing is turned on
every time the priority queue changes. Typical output is as follows.

New fringe cell created [1 ( 15, 24) ( 15, 23) 24+438=462]

456 at (16,22) p=1
*--456 at (16,23) p=2
| *--464 at (16,21) p=4
| | *--484 at (13,21) p=8
| | *--470 at (14,21) p=9
| *x—-462 at (15,24) p=5
I *--476 at (14,24) p=10
I *-—476 at (13,22) p=11
*—-462 at (14,23) p=3
*--476 at (13,23) p=6
*--464 at (15,21) p=7

'l ABORT 1000: Unknown fault
*

It leaves the program in the interactive debugger. Normal execution can be
resumed by typing c. The definitions of prpriq and prindent are as follows.

AND prpriq(p, depth, indentbits) BE IF p<=priqn DO
{ // This function outputs the priority queue.
// The output includes an indication of the binary heap
// structure to assist debugging of the priority queue code.
// If tracing is TRUE, prpriq(l, 0, 0) is called every
// time the priority queue is modified.
LET cell = priq!p
LET £ = s_flcell
LET pos = s_pos!cell
LET x, y = xcoord(pos), ycoord(pos)
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LET q = p+p // The position of the first child, if any.
writef ("%n at (%n,%n) p=ko*n", £, x, y, p)

IF g<=priqn DO // Output the first child tree
{ prindent(depth, indentbits)

writef ("kx—-")

prpriq(q, depth+1l, indentbits<<1l | 1)
}

IF gq+l<=priqn DO // Output the second child tree
{ prindent(depth, indentbits)
writef ("*x—-")
prpriq(q+l, depth+1l, indentbits<<1)
}
}

AND prindent(depth, bits) BE IF depth>0 DO

{ prindent(depth-1, bits>>1)
writes((bits&1)=0 -> " ", "| ")

}

The remaining two functions provide the heuristic for both the A* algorithm
and Dijkstra’s algorithm. The appropriate one is assigned to heuristic at the
start of the run.

AND astar_heuristic(celll, cell2) = VALOF

{ LET posl = s_pos!celll
LET pos2 = s_pos!cell2
LET dx = ABS(posl MOD xsize - pos2 MOD xsize)
LET dy = ABS(posl / xsize - pos2 / xsize)

// Assuming dx>=0 and dy>=0 and dx>dy, return the cost of a path
// consisting of (dx-dy) steps in the x direction followed by dy
// steps diagonally towards the goal, giving a cost of

// 10%(dx-dy)+14*dy = 10*dx+4*dy

// The calculation is similar for other directionmns.

IF dx>=dy RESULTIS 10xdx + 4x*dy

RESULTIS 10*dy + 4*dx

AND dijkstra_heuristic(celll, cell2) = 0
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5.15 Robots

This section describes a program that displays some robots that are designed to
work cooperatively collecting randomly placed bottles with their grabbers and
depositing them in a pit. The dark green robot can be controlled by the user
using the arrow keys, G for grab and R for release. The robots and bottles move
and bounce off each other and the walls. Bottles over the pit disappear. The
bottles slide over the ground without friction, but the pit is at the top of a gentle
conical hill that repels bottles that get too close. As a debugging aid properties
of the dark green robot and the black coloured bottle can be displayed on the
screen by pressing D. At the moment, the dark green robot can be controlled by
hand to grab bottles and deposit them into the pit. If two robots find that they
are on a collision path they both make minor adjustments to hopefully avoid each
other. A typical image is the following.

m Robots -- Press H for Help

»

The program is called raspi/robots.b and is currently as follows.

/*
This is a program that displays some robots attempting to
pick up bottles with their grabbers and deposit them in a pit.

Implemented by Martin Richards (c) February 2015
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History:

08/12/2016
Trying a new algorithm for robot-robot collision avoidance.

27/11/2016
Currently teaching the robots to catch and dispose of the bottles.

02/02/2015
Initial implementation started based on bucket.b.

*/

SECTION "sdllib"

GET "libhdr"

GET "sdl.h"

GET "sdl.b" // Insert the library source code

SECTION "robots"
GET "libhdr"
GET "sdl.h"

MANIFEST {
// Most arithmetic uses scaled numbers with 3 digits
// after the decimal point.

One = 1_000 // The constant 1.000 scaled with 3 decimal
// digits after the decimal point.
OneK = 1000 * One

spacevupb = 100000

pitradius = 50_000

bottleradius = 5_000

robotradius = 18_000

shoulderradius = 4_000

tipradius = 2_000 // Tip of grabber arm
armthickness = 2%tipradius

grablen = 12_000

edgesize = 60_000

grabbedpos = bottleradius / // (Typically = 0_500)

((robotradius - shoulderradius - 2*tipradius)/One)

[/ #H Robot geometry HEHFHAH R H B H AR RS AR
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//

// Y

// - shoulder

// | /

// + + 4+ + + + + + / tip

// + | + |+ /

// + | + +o-———at+t++++d/  —-m——m——————- y = ri-r2
// + | + 4+t p+ ldl = 2 x r3

// + rl ++++b+++++c 0 oo y = ri-r2-d1
/0t left | + o+ -

/] o+ | + + d2 = (r1-r2-d1) x grabpos/One

/] o+ | + + v 0.1<=grabpos<=1.0

/] Amm———- rl---——--- S Fmmmmpmmm e D > X

// o+ | + + q = (r1+2xr4,0) centre of grabbed bottle
/] + | + +

// o+ right | + o+t rl = robotradius = 18.0
// + | ++++b+++++cC r2 = shoulderradius = 4.0
// + | + 4+ p + r3 = tipradius = 2.0
// + | + +o—-—-a+++++d r4 = bottleradius = 5.0
// + | + |+

// ++ + 4+t + + +  |<-—-d3--—->]| d3 = grablen = 12.0

// Bottle field selectors

b_cgx=0; b_cgy // The first four must be in positions O to 4
b_cgxdot; b_cgydot

b_grabbed // If grabbed, b_robot is the grabbing robot

b_robot // 0 or the robot that selected this bottle
b_dropped // If true, the bottle has fallen into the pit
b_id // The bottle number

b_upb=b_id

b_size // Number of elements in a bottle node

// robot selectors

r_cgx=0; r_cgy // The first four must be in positions O to 3
r_cgxdot; r_cgydot

r_grabpos; r_grabposdot

r_bottle // =0 or the selected bottle

r_inarea // =TRUE if the bottle in the grabber area

// and the grabber is closing

// if another bottle is found to be in the

// grabber area, the grabber opens and if the
// selected bottle was grabbed it is released.

// Coordinates of the robot shoulders
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r_lex; r_ley; r_
r_lcx; r_lcy; r_

405

rex; r_rey // le re
rcx; r_rcy // lc rc

// Coords of the robot arms

r_ltax; r_ltay; r_
r_ltbx; r_ltby; r_
r_ltcx; r_ltcy; r_
r_ltdx; r_ltdy; «r_
r_ltpx; r_ltpy; zr_

rtax; r_rtay // 1td 1ltp ltc rtc rtp rtd
rtbx; r_rtby //
rtcx; r_rtcy //
rtdx; r_rtdy //
rtpx; r_rtpy // 1lta ltb  rtb rta

r_bcx; r_bcy // Centre of the grabber.

r_id // The robot number
r_upb=r_id
r_size // Number of elements in a robot node
}
GLOBAL {
done:ug
debugging
help // Display help information
stepping // =FALSE if not stepping
finished
usage
displayusage
debugging
sps // Steps per second, adjusted automatically
bottles // Number of bottles
bottlev // Vector of bottles
// bottlev!0 holds the current number of bottles
robots // Number of robots
robotv // Vector of robots

//

robotv!0 holds the current number of robots

// coords of the pit centre

pit_x; pit_y; pit_xdot; pit_ydot

thepit // -> [ pitx, pity, pit_xdot, pit_ydot]
xsize // Window size in pixels

ysize
seed
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spacev; spacep; spacet

mkvec

bottlecount
freebottles

bottlesurfR
bottlesurfDR
bottlesurfk
bottlesurfB
pitsurf

backcolour

col_red; col_black;

pitcolour
robotcolour
robotlcolour
grabbercolou

wall_wx
wall_ex
wall_sy
wall_ny

priq
prign
priqupb

msecsnow

msecsO

//
//

//
//
//
//
//

//

r

Number of bottles not yet in the pit
Number of free bottles -- not selected or dropped

Surface
Surface
Surface
Surface
Surface

for
for
for
for
for

a red bottle

a dark red selected bottle
a black bottle (number 1)
a brown bottle (grabbed)
the bucket base

Background colour
col_brown

col_darkred; col_darkblue; col_darkgreen

col_grayl; col_gray2; col_gray3; col_gray4

// West wall x coordinate
// East wall x coordinate
// South wall y coordinate
// North wall y coordinate

// Heap structure for the time queue
// Number of items in priq

// Upb of priq

// Updated by step, possibly releasing
// events in the priority queue
// Starting time since midnight

LET mkvec(upb) = VALOF

{ LET p = spac

ep

spacep := spacep+upb+1

IF spacep>spacet DO

{ writef ("Insufficient space*n")

abort (999)
RESULTIS O
}

//writef ("mkvec(%n) => %n*n",

upb, p)
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RESULTIS p
}

AND mk2(a, b) = VALOF

{ LET p = mkvec(1)
p'0, p!l :=a, b
RESULTIS p

}

AND incontact(pl, p2, dist) = VALOF

{ // This returns TRUE if points pl and p2 are no more than dist apart.
LET dx = ABS(p1!0-p2!0)
LET dy = ABS(p1!1-p2!1)

//writef ("incontact: x1=Y9.3d y1=)9.3d*n", pl1!0, p1!1l)
//writef ("incontact: x2=%9.3d y2=Y9.3d*n", p2!0, p2!'1)
//uritef ("incontact: dx=%9.3d dy=%9.3d dist=%9.3d*n", dx, dy, dist)
IF dx > dist | dy > dist DO
{ //writef ("=> FALSE*n");
//abort (9104)
RESULTIS FALSE
}
//writef ("dx~2  =%12.3d*n", muldiv(dx,dx,0One))
//uritef("dy~2 =%12.3d*n", muldiv(dy,dy,One))
//writef ("dist~2 =%12.3d*n", muldiv(dist,dist,0One))
//abort (9102)
IF muldiv(dx,dx,0One) + muldiv(dy,dy,One) >
muldiv(dist,dist,One) DO
{ //writef ("=> FALSE*n")
//abort (9105)
RESULTIS FALSE
}
//writef ("=> TRUE*n")
//abort (9103)
RESULTIS TRUE

AND cbounce(pl, p2, ml, m2) BE
{ // p1!0 and pl!l are the x and y coordinates of a circular object.
// pl!2 and p1!3 are the corresponding velocities
// pl!'4 and pl!5 are the corresponding direction cosines
// p2'0 and p2!1 are the x and y coordinates of the other circular object.
// p2!2 and p2!3 are the corresponding velocities
// p2!'4 and p3!5 are the corresponding direction cosines
// ml and m2 are the masses of the two objects in arbitrary units
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// m1=m2 if the collition is between two bottles or two robots.
// m1=5 and m2=1 then pl is a robot and p2 is a bottle.
// m1=1 and m2=0 then pl is an infinitely heavy robot or grabbed bottle

// and p2 is a bottle.

LET ¢ = cosines(p2!0-p1!0, p2!1-p1!1) // Direction from pl to p2
LET s = result2

IF m2=0 DO

{ // Object 1 is a robot or a grabbed bottle and object 2 is a bottle.
// The robots or grabbed bottle is treated as infinitely heavy.
LET xdot = p2!2 - pllr_cgxdot
LET ydot = p2!3 - pllr_cgydot
// Transform to (t,w) coordinates
// where t is in the direction from the robot to the bottle
LET tdot
LET wdot

inprod(xdot,ydot, c, s)
inprod(xdot,ydot, -s, c)

//uritef ("robot-bottle bounce tdot=%9.3d wdot=%9.3d*n", tdot, wdot)
IF tdot>0 RETURN // The robot and bottle are moving apart

// The bottle is getting closer so reverse tdot (but not wdot)
// and transform back to world (x,y) coordinates.

tdot := rebound(tdot) // Reverse tdot with some loss of energy
// Transform back to real world (x,y) coordinates

p2!2 := inprod(tdot, wdot, c, -s) + pl!r_cgxdot

p2!3 := inprod(tdot, wdot, s, c¢) + pll!r_cgydot

// Note that the robot or grabbed bottle motion is not changed.
RETURN

IF mi1=m2 DO
{ // This deals with bottle-bottle and robot-robot bounces.
// Find the velocity of the centre of gravity
LET cgxdot = (pl!2+p2!2)/2
LET cgydot = (p1!3+p2!3)/2
// Calculate the velocity of object 1
// relative to the centre of gravity
LET rxldot = pl!2 - cgxdot
LET ryldot = pl!3 - cgydot
// Transform to (t,w) coordinates
LET tldot = inprod(rxldot,ryldot, c,s)
LET widot = inprod(rxldot,ryldot, -s,c)

IF tldot<=0 RETURN // The objects are moving apart
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// Reverse tldot with some loss of energy
tldot := rebound(tidot)

// Transform back to (x,y) coordinates relative to cg
rxidot := inprod(tldot,wldot, c,-s)
ryldot := inprod(tildot,wldot, s, c)

// Convert to world (x,y) coordinates

pl!2 := rxldot + cgxdot
pl!3 := ryldot + cgydot
p2!2 := -rxldot + cgxdot
p2!3 := -ryldot + cgydot

// Apply a small repulsive force between the objects.

pl!0 := p1!0 - muldiv(0_400, c, One)
pi!l := p1!1 - muldiv(0_400, s, One)
p2!0 := p2!0 + muldiv(0_400, c, One)
p2!1 := p2!'1 + muldiv(0_400, s, One)
RETURN

// m17”=m2 and neither are zero.

// Object 1 is a robot and object 2 is a bottle
// and the robot is not infinitely heavy.

// Find the velocity of the centre of gravity
LET cgxdot = (p1!2*m1+p2!2*m2)/(m1+m2)

LET cgydot = (p1!3*ml+p2!3+*m2)/(m1+m2)

// Calculate the velocities of the two objects
// relative to the centre of gravity

LET rxldot = pl!2 - cgxdot
LET ryldot = pl!3 - cgydot
LET rx2dot = p2!2 - cgxdot
LET ry2dot = p2!3 - cgydot

// Transform to (t,w) coordinates
LET tldot = inprod(rxldot,ryldot, c,s)

LET wldot = inprod(rxldot,ryldot, -s,c)

LET t2dot = inprod(rx2dot,ry2dot, c,s)

LET w2dot = inprod(rx2dot,ry2dot, -s,c)
IF FALSE DO

{
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writef ("dir =(%10.34d,%10.3d)*n", c, s)

writef ("p1  =(%10.3d,%10.3d)*n", p1!0, pi!l)
writef("p2  =(%10.3d,%10.3d)*n", p2'0, p2!'1)

writef ("pldot=(%10.3d,%10.3d) ml=Yn*n", p1'2, p1!'3, ml)
writef ("p2dot=(%10.3d,%10.3d) m2=Yn*n", p2!2, p2!3, m2)
writef ("cgdot=(%10.3d,%10.3d)*n", cgxdot, cgydot)
writef ("ridot=(%10.3d,%10.3d)*n", rxldot, ryldot)
writef ("r2dot=(%10.3d,%10.3d)*n", rx2dot, ry2dot)
writef ("t1dot=(%10.3d,%10.3d)*n", tidot, wildot)

writef ("t2dot=(%10.3d,%10.3d)*n", t2dot, w2dot)

writef ("t1dot=%10.3d is the speed towards the centre of gravity*n", tldot)
abort (1000)

}
IF tldot<=0 RETURN // The robot and bottle are moving apart
// Reverse tldot and t2dot with some loss of energy
tldot := rebound(tidot)
t2dot := rebound(t2dot)
// Transform back to (x,y) coordinates relative to cg
rxldot := inprod(tidot,wldot, c,-s)
ryldot := inprod(tildot,wldot, s, c)
rx2dot := inprod(t2dot,w2dot, c,-s)
ry2dot := inprod(t2dot,w2dot, s, c)
// Convert to world (x,y) coordinates
pl!2 := rxldot + cgxdot
pl!3 := ryldot + cgydot
p2'!2 := rx2dot + cgxdot
p2!3 := ry2dot + cgydot

}
}

AND rebound(vel) = vel/8 - vel // Returns the rebound speed of a bounce

AND cosines(x, y) = VALOF
{ // This function returns the cosine and sine of the angle between
// the line from (0,0) to (x, y) and the x axis.
// The result is the cosine and result2 is the sine.
LET ¢, s, a="7, 7, 7
LET 4 = ABS x + ABS y
UNLESS d DO
{ result2 := 0
RESULTIS One
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muldiv(x, One, d) // Approximate cos and sin

muldiv(y, One, d) // Direction good, length not.

muldiv(c,c,0One)+muldiv(s,s,0One) // 0.5 <= a <= 1.0

1_000 // With this initial guess only 3 iterations

// of Newton-Raphson are required.

//writef ("a=%8.3d d=%8.3d d~2=%8.3d*n", a, d, muldiv(d,d,One))
d := (d + muldiv(a, One, d))/2

//writef ("a=%8.3d d=%8.3d d°2=%8.3d*n", a, d, muldiv(d,d,One))
d := (d + muldiv(a, One, d))/2

//writef ("a=%8.3d d=%8.3d d~2=%8.3d*n", a, d, muldiv(d,d,0One))
d := (d + muldiv(a, One, d))/2

//writef("a=%8.3d d=%8.3d d~2=%8.3d*n", a, d, muldiv(d,d,One))

QM n 0O Y
1

s := muldiv(s, One, d) // Corrected cos and sin

¢ := muldiv(c, One, d)
//uritef ("x=%8.3d y=%8.3d => cos=%8.3d sin=),8.3d#*n", x, y, ¢, S)
//abort (3589)

result2 := s

RESULTIS c
}

AND inprod(dx, dy, c, s) = muldiv(dx, c, One) + muldiv(dy, s, One)

LET step() BE
{ // This function deals with the motion of all the robots and bottles
// and their interractions with each other and the wall and the pit.

msecsnow := sdlmsecs() - msecsO

// Deal with crossing midnight assuming now is no more than
// 24 hours since the start of the run.

IF msecsnow<0O DO msecsnow := msecsnow + (24*x60*60%1000)

//writef ("step: entered*n")
//IF bottlecount=0 DO finished := TRUE

// Robots always point in their directions of motion given by

// cgxdot and cgydot. A robot with a selected bottle will rotate
// towards its bottle and be given sufficient speed it to catch
// it up. Interaction between robots and the walls, the pit,

// and other robots affect cgxdot and cgydot.

//abort (9001)

// (1) Deal with robot bounces and collisions with the walls and
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// pit slope.

FOR rib
{LET r
LET x, y = rlr_cgx, r'!r_cgy

1 TO robotv!0 DO
robotv!rib

LET dw = x - wall_wx // Distance from west wall
AND dn = wall_ny - y // Distance from north wall
AND de = wall_ex - x // Distance from east wall
AND ds = y - wall_sy // Distance from south wall

// Limit the speed of the robot

IF ABS r!r_cgxdot > 40_000 | ABS r!r_cgydot > 40_000 DO
r!r_cgxdot, r!r_cgydot := r!r_cgxdot*97/100, r!r_cgydot*97/100

// Ensure the robot is always moving.

WHILE ABS r!r_cgxdot + ABS r!lr_cgydot < 1_000 DO

{ //sawritef ("R%i2: Random nudge: xdot=%8.3d ydot=%38.3d*n",
// rlr_id, r!r_cgxdot, r!r_cgydot)
r!r_cgxdot := rlr_cgxdot + randno(201) - 100
r!r_cgydot := rlr_cgydot + randno(201) - 100

// Test if the robot is closest to the west wall

IF dw<edgesize & dw<=dn & dw<=ds DO

{ // (x,y) is closest to the west wall
TEST dw < robotradius
THEN r!r_cgxdot, rlr_cgx := -rlr_cgxdot, wall_wx + robotradius
ELSE r!r_cgxdot := r!r_cgxdot + 4_000

+

// Test if the robot is closest to the north wall

IF dn<edgesize & dn<=de & dn<=dw DO

{ // (x,y) is closest to the north wall
TEST dn < robotradius
THEN r!r_cgydot, rlr_cgy := -rlr_cgydot, wall_ny - robotradius
ELSE r!r_cgydot := rlr_cgydot - 4_000

// Test if the robot is closest to the east wall
IF de<edgesize & de<=ds & de<=dn DO
{ // (x,y) is closest to the east wall

TEST de < robotradius
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THEN r!r_cgxdot, rlr_cgx := -r!r_cgxdot, wall_ex - robotradius
ELSE r!r_cgxdot := rlr_cgxdot - 4_000
b

// Test if the robot is closest to the south wall

IF ds<edgesize & ds<=de & ds<=dw DO

{ // (x,y) is closest to the south wall
TEST ds < robotradius
THEN r!r_cgydot, r!r_cgy := -rlr_cgydot, wall_sy + robotradius
ELSE r!r_cgydot := rlr_cgydot + 4_000

IF incontact(r, thepit, pitradius+edgesize) DO
{ // If the robot is on the pit slope.
LET ¢ = cosines(x-pit_x, y-pit_y)
LET s = result2
r!r_cgxdot := r!r_cgxdot + inprod(1_000,0, c,-s)
r!r_cgydot := r!r_cgydot + inprod(1_000,0, s, c)

}
}
// (2) Deal with bottle bounces and collisions with the walls,
// pit slope. Drop bottles that are above the pit and
// decrement bottlecount and freebottles appropriately.
// If the bottle was owned start opening its start
// opening owner’s grabber, if not fully open.
FOR bid = 1 TO bottlev!0 DO

{ LET b = bottlev!bid

IF b!b_dropped LOOP
// Limit the speed of the bottle

IF ABS b!b_cgxdot > 35_000 | ABS b!b_cgydot > 35_000 DO
b!b_cgxdot, b!b_cgydot := b!b_cgxdot*97/100, b!b_cgydot*97/100

// Test if the bottle is within the pit slope circle.

IF incontact(b, thepit, pitradiust+edgesize) DO
{ // The bottle is within the pit slope circle.

IF incontact(b, thepit, pitradius-bottleradius) DO
{ // The bottle is actually above the pit so must be dropped.
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// Note that freebottles is the count of how many bottles are
// neither selected nor dropped.
// bottlecount is the number of bottles that have not yet dropped.

LET owner = b!b_robot // Find the owner, if any.

IF owner DO
{ owner!r_bottle := 0 // Deselect the bottle.
owner!r_inarea := FALSE // Only TRUE if the selected bottle

// is in the area.
UNLESS owner!r_grabpos= 1_000 DO // Start opening the owner’s

owner !r_grabposdot := +0_600 // grabber if necessary.
b!b_grabbed := FALSE // Ensure the bottle is not grabbed.
b!b_robot := 0 // The bottle has no owner.

freebottles := freebottles + 1 // The bottle is no longer owned.

// The bottle had no owner and is being dropped into the pit
// so decrement freebottles and bottlecount

freebottles := freebottles - 1
bottlecount := bottlecount - 1
b!b_dropped := TRUE

LOOP // This bottle has gone, so consider another bottle, if any.

// The bottle is not above the pit but is on the pit slope.

{ // Deal with bottle-pit slope interactions

// Calculate the direction from the pit centre to the bottle.
LET dx = cosines(b!b_cgx-pit_x, blb_cgy-pit_y)
LET dy = result2

//writef ("B%i2: dx=%10.3d dy=%10.3d dx=%10.3d dy=%10.3d*n",

//

bid, b!b_cgx-pit_x, b!b_cgy-pit_y, dx, dy)

// Apply a constant force away from the pit centre.
b!b_cgxdot := b!b_cgxdot + muldiv(10_000, dx, One)
blb_cgydot := b!b_cgydot + muldiv(10_000, dy, One)

// This bottle is within the pit slope circle so cannot be
// on a wall edge.
LOOP
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// This bottle may be near a wall edge.

{ LET x
LET y

b!b_cgx
b!b_cgy

// Bottle interaction with the walls
LET dw = x - wall_wx // Distance from west wall

AND dn = wall_ny - y // Distance from north wall
AND de = wall_ex - x // Distance from east wall
AND ds = y - wall_sy // Distance from south wall

// Test if the bottle closest to the west wall.

IF dw < edgesize & dw<=dn & dw<=ds DO

{ // (x,y) is closest to the west wall
TEST dw < bottleradius
THEN b!b_cgxdot, b!b_cgx := -bl!b_cgxdot, wall_wx + bottleradius
ELSE b!b_cgxdot := bl!b_cgxdot + 20_000

// Test if the bottle closest to the north wall.

IF dn < edgesize & dn<=de & dn<=dw DO

{ // (x,y) is closest to the north wall
TEST dn < bottleradius
THEN b!b_cgydot, b!b_cgy := -blb_cgydot, wall_ny - bottleradius
ELSE b!b_cgydot := bl!b_cgydot - 20_000

// Test if the bottle closest to the east wall.

IF de < edgesize & de<=ds & de<=dn DO

{ // (x,y) is closest to the east wall
TEST de < bottleradius
THEN b!b_cgxdot, b!b_cgx := -blb_cgxdot, wall_ex - bottleradius
ELSE b!b_cgxdot := b!b_cgxdot - 20_000

// Test if the bottle closest to the south wall.
IF ds < edgesize & ds<=de & ds<=dw DO
{ // (x,y) is closest to the south wall
TEST ds < bottleradius
THEN b!b_cgydot, bl!b_cgy := -bl!b_cgydot, wall_sy + bottleradius
ELSE b!b_cgydot := bl!b_cgydot + 20_000
}
+
// Consider another bottle, if any.
}
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// (3) Deal with robot-robot bounces and collision avoidance.

FOR ridl = 1 TO robotv!0 DO

{ // Test for robot-robot interaction -- collision avoidance and bouncing.
LET r1 = robotv!ridl
LET x1, y1 = rllr_cgx, rllr_cgy

FOR rid2 = ridi+1 TO robotv!0 DO
{ LET r2 = robotv!rid2 // Another robot
LET x2, y2 = r2!r_cgx, r2lr_cgy

IF incontact(rl, r2, 12*robotradius) DO

{ // These two robots are close enough for collision avoidance
// to be applied, or possibly perform a simple bounce.
//sawritef ("R%i2 is in avoidance range with R%i2*n", ridl, rid2)

// But if they are touching perform a simple bounce.

TEST incontact(rl, r2, 2*robotradius)

THEN { // The robots are in contact so perform a simple bounce.
//sawritef ("R%i2 is bouncing off R%i2*n", ridl, rid?2)
cbounce(rl, r2, 1, 1)

// cbounce does not move the robots
//abort (9109)
}

ELSE { // The robots are in range and not touching
// so perform collision avoidance adjustment,

// if necessary.

LET dx
LET dy

x2-x1 // Position of r2 relative to ri
y2-y1

// Subtract the velocity of r2 from both rl and r2
// effectively make r2 stationary.

LET relvx = rl!r_cgxdot - r2!r_cgxdot

LET relvy = rl!r_cgydot - r2!r_cgydot

// Compute the direction cosines of the relative velocity
LET ¢ = cosines(relvx, relvy)
LET s = result2

// Rotate about r to make the relative velocity lie in
// the X axis, and calculate where this will leave r2.
LET sepx = muldiv(c, dx, One) + muldiv(s, dy, One)
AND sepy = muldiv(c, dy, One) - muldiv(s, dx, One)
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// sepx is the distance to travel before reaching the closest
// approach
// sepy is the closest approach distance.

IF ridi=-1 DO
{ writef ("R¥n: is avoidance range with Ry)n*n", ridl, rid2)

writef ("R/n: cg (%8.3d,%8.3d) velocity = (%8.3d,%8.3d)*n",
ridl, x1, y1, rill!r_cgxdot, rl!r_cgydot)
writef ("RYn: cg (%8.3d,%8.3d) velocity = (%8.3d,%8.3d)*n",

rid2, x2, y2, r2!r_cgxdot, r2!r_cgydot)
writef ("(dx,dy)=(%8.3d,%8.3d) Rel velocity = (%8.3d,%8.3d)*n",

dx, dy, relvx, relvy)
writef ("Rel velocity direction cosines (%8.3d,%8.3d)*n",c,s)
writef ("sepx = %8.3d sepy = %8.3d minsep = %8.3d*n",

sepx, sepy, 6*robotradius)

abort (9100)

IF ridl=-1 & sepx>0 DO
writef ("R%i2 and R%i2: ABS sepy = %9.3d 6**robotradius=%9.3d*n",
ridl, rid2, ABS sepy, 6*robotradius)

IF sepx>0 & ABS sepy < 6*robotradius DO
{ // The robots are getting closer and will get too close
// so an adjustment must be made
// The forces depend on the robot’s speed
LET f1 = (ABS rl!r_cgxdot + ABS ri!r_cgydot)*12/100
LET f2 = (ABS r2!r_cgxdot + ABS r2!r_cgydot)*12/100

LET fx1 = +muldiv(f1, s, One)
AND fyl = -muldiv(f1l, c, One)
LET fx2 = +muldiv(f2, s, One)
AND fy2 = -muldiv(f2, c, One)

IF sepy<0O DO

{ fx1, fyl
fx2, fy2 :

}

// Apply force (fx1,fyl) to robot rl. Note that the direction of

// (fx1,fy1) is (-s,c)

// Robot r2 receives its force in the opposite direction.

-fx1, -fyl // Apply forces in the right direction
-fx2, -fy2

ri!r_cgxdot, rl!r_cgydot := rillr_cgxdot+fxl, rl!r_cgydot+fyl
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r2'r_cgxdot, r2!r_cgydot := r2!lr_cgxdot-fx2, r2!r_cgydot-fy2

// This changes the velocities of both robots but not their
// positions.

IF ridil=-1 DO

{ //writef ("R}i2 and %i2: ABS sepy = %9.3d 6**robotradius=%9.3d*n",
// ridl, rid2, ABS sepy, 6*robotradius)
writef ("Applying fx1=%9.3d £fy1=)9.3d to R)n*n", fxl, fyl, ridil)
writef ("Applying fx2=%9.3d £fy2=%9.3d to R/n*n", fx2, fy2, rid2)
//abort (631)

// Do not move the robots yet.

// (4) For each robot, set inarea=false then look at every bottle.

// Deal with its bounces off the robot body, shoulders,

// and grabber.

// If a bottle is in the grabber area and the grabber is fully

// open and inarea=false, cause it to become the robot’s selected
// bottle, set inarea=true and start closing the grabber, but if
// inarea was true there are two or more bottles in the grabber
// area so start opening the grabber to let one or more escape.
// If inarea=true and grabposdot<0 and grappos<=grabbedpos set

// grabbed to true and set grabposdot=0.

FOR rid = 1 TO robotv!0 DO

{ LET r = robotv!rid
LET b = r!r_bottle // The currently selected bottle
LET inareacount = O // Count of the number of bottle in the grabber area
// If >0 b will be a bottle in the grabber area

UNLESS b IF freebottles & r!r_grabpos=1_000 DO

{ // This robot can select a bottle
//sawritef ("R/n: has no selected bottle, freebottles=/n and grabpos=%6.3*n",
// rid, freebottles, r!r_grabpos)

FOR bid = 1 TO bottlev!0 DO
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{ b := bottlev!bid

UNLESS b!b_dropped | b!b_robot DO

{ // Bottle b is neither dropped nor owned by another
// robot, so select it.
r!r_bottle := b
r!r_inarea := FALSE // This should not be necessary.
b!b_robot :=r
freebottles := freebottles - 1

//sawritef ("R%n: selects BY%n, freebottles=Y%n*n", rid, bid, freebottles)

BREAK

}

}
+

// This robot has a selected if one was available.

// Now deal with robot-bottle interraction.
// This requires the robots coordinates to be calculated.
robotcoords (r)

1 TO bottlev!0O DO
bottlev!bid

FOR bid
{ LET b

IF b!b_dropped LOOP // Ignore dropped bottles

// Ignore this bottle unless it is close to the robot.
UNLESS incontact(r, b, 3*robotradius) LOOP

IF rid=-1 DO

{ writef("RY/n is close to BYn*n", rid, bid)
abort (3002)

}

// Test if the bottle has hit the body of the robot.
IF incontact(r, b, robotradius+bottleradius) DO
{ // If so make the bottle bounce off.
IF rid=-1 DO
writef ("R%n body bounce with B%n*n", rid, bid)
cbounce(r, b, 1, 0) // The robot is infinitely heavy
}

// Test for left shoulder-bottle bounce
{ LET sx, sy, sxdot, sydot =
rlr_lcx, r!r_lcy, // Left shoulder centre
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rlr_cgxdot, r!r_cgydot // Motion ignoring rate of rotation.
LET s = @sx // Centre of left choulder.
IF incontact(s, b, shoulderradius+bottleradius) DO
{ // They are in contact so make the bottle bounce off
IF rid=-1 DO
writef ("RY%n left shoulder contact with BY%n*n", rid, bid)
cbounce(s, b, 1, 0) // Robot is inifinitely heavy
}
}

// Test for right shoulder-bottle bounce
{ LET sx, sy, sxdot, sydot =
rlr_rcx, rlr_rcy,
r!r_cgxdot, r!r_cgydot
LET s = @sx
IF incontact(s, b, shoulderradius+bottleradius) DO
{ // They are in contact so make the bottle bounce off
IF rid=-1 DO
writef ("RY%n right shoulder contact with B)n#*n", rid, bid)
cbounce(s, b, 1, 0) // Robot is infinitely heavy
}
}

// Test for robot left tip bounce
{ LET sx, sy, sxdot, sydot =
r!r_ltcx, r'!r_ltcy,
r!r_cgxdot, r!r_cgydot
LET s = @sx
IF incontact(s, b, tipradius+bottleradius) DO
{ // They are in contact so make the bottle bounce off
IF rid=-1 DO
writef ("R/n left tip contact with B)n*n", rid, bid)
cbounce(s, b, 1, 0) // Robot is heavy
}
}

// Test for robot right tip bounce
{ LET sx, sy, sxdot, sydot =
r!lr_rtcx, rl!r_rtcy,
r!r_cgxdot, r!r_cgydot
LET s = @sx
IF incontact(s, b, tipradius+bottleradius) DO
{ // They are in contact so make the bottle bounce off
IF rid=-1 DO
writef ("R/n right tip contact with BYn#*n", rid, bid)
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cbounce(s, b, 1, 0) // Robot is heavy
}
}

// Test for robot grabber bounces
{ // Make the robot’s centre the origin
LET bx = blb_cgx - rlr_cgx

LET by = b!b_cgy - rlr_cgy

LET c
LET s

cosines(r!r_cgxdot, r!r_cgydot) // Direction cosines of the robot

result?2

// Rotate clockwise the bottle position about the new origin
LET tx = inprod(bx, by, c, s)

LET ty = inprod(bx, by, -s, c)

// Deal with bounces of the arm edges

// Calculate the y positions of the arm edges.

LET y3 = muldiv(robotradius-shoulderradius-armthickness,
r!r_grabpos, One) // Right edge of the left arm
LET y4 = y3 + armthickness // Left edge of the left arm
LET y2 = -y3 // Left edge of the right arm
LET y1 = -y4 // Right edge of the right arm

IF rid=-1 DO // Debugging aid

{ writef ("R%n: cg=(%8.3d %8.3d)*n", rid, r'!r_cgx, r!r_cgy)
writef ("Bjn: cg=(%8.3d %8.3d)*n", bid, b!b_cgx, blb_cgy)
writef ("bx=78.3d by=%8.3d*n", bx, by)
writef ("tx=%8.3d ty=%h.3d grablen=%8.3d*n", tx, ty, grablen)
writef ("x1=%8.3d x2=%8.3d*n", robotradius, robotradius+grablen)
writef ("y1=%8.3d y2=%8.3d y3=%8.3d y4=%8.3d*n", y1, y2, y3, y4)

abort (1234)

}

IF robotradius <= tx <= robotradius+grablen DO
{ // Bounces and grabbing are both possible

IF rid=-1 DO
{ sawritef ("R%n: has B)n parallel to grabbers*n", rid, bid)
abort (1235)
}
IF y1 - bottleradius <= ty <= y1 DO
{ // Bottle bounce with outside edge of right arm
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//LET rtdot = inprod(r!r_cgxdot, r!r_cgydot, c, s)
LET rwdot = inprod(r!r_cgxdot, r!r_cgydot,-s, c)

LET btdot = inprod(b!b_cgxdot, b!b_cgydot, c, s)
LET bwdot = inprod(b!b_cgxdot, b!b_cgydot,-s, c)
LET v = bwdot-rwdot

IF rid=-1 DO
{ sawritef("B%n: in contact with outside edge of right grabber arm*n", bid)
abort (1236)
}
IF v>0 DO
{ bwdot := rebound(v) + rwdot
// Transform bottle velocity to world coords
b!b_cgxdot := inprod(btdot,bwdot, c, -s)
b!b_cgydot := inprod(btdot,bwdot, s, c)
}
}

IF y2 <= ty <= y2 + bottleradius DO
{ // Bottle bounce with the inside edge of right arm

LET rtdot = inprod(r!r_cgxdot, r!r_cgydot, c, s)
LET rwdot = inprod(r!r_cgxdot, r!r_cgydot,-s, c)
LET btdot = inprod(b!b_cgxdot, b!b_cgydot, c, s)
LET bwdot = inprod(b!b_cgxdot, b!b_cgydot,-s, c)

LET v = bwdot-rwdot // Speed of bottle away from the right arm

IF rid=-1 DO
{ sawritef("B%n: in contact with inside edge of right grabber arm*n", bid)

sawritef ("rxdot=%8.3d rydot=%8.3d*n", rlr_cgxdot, r!r_cgydot)

sawritef ("bxdot=/8.3d bydot=%8.3d*n", b!b_cgxdot, b!b_cgydot)

sawritef ("c= %8.3d s= %8.3d*n", c, s)

sawritef ("rtdot=%8.3d rwdot=%8.3d*n", rtdot, rwdot)

sawritef ("btdot=%8.3d bwdot=%8.3d*n", btdot, bwdot)

sawritef ("v= %8.3d*n", v)

abort (1236)

IF v<0 DO
{ bwdot := rebound(v) + rwdot
// Transform bottle velocity to world coords
IF rid=-1 DO
sawritef ("bxdot=/8.3d bydot=%48.3d*n", b!b_cgxdot, b!b_cgydot)
b!b_cgxdot := inprod(btdot,bwdot, c, -s)
b!b_cgydot := inprod(btdot,bwdot, s, c)

IF rid=-1 DO

{ sawritef ("bxdot=%8.3d bydot=%8.3d*n", b!b_cgxdot, b!b_cgydot)
abort (1239)

}
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}
//IF tydot>0 DO tydot := rebound(tydot)
}

IF y3 - bottleradius <= ty <= y3 DO
{ // Bottle collision with right edge of left arm
//LET rtdot = inprod(r!r_cgxdot, r!r_cgydot, c, s)

LET rwdot = inprod(r!r_cgxdot, r!r_cgydot,-s, c)
LET btdot = inprod(b!b_cgxdot, bl!b_cgydot, c, s)
LET bwdot = inprod(b!b_cgxdot, b!b_cgydot,-s, c)

LET v = bwdot-rwdot
IF rid=-1 DO
{ sawritef("BY%n: in contact with right edge of left grabber*n", bid)
abort (1237)
}
IF v>0 DO
{ bwdot := rebound(v) + rwdot
// Transform bottle velocity to world coords
b!b_cgxdot := inprod(btdot,bwdot, c, -s)
b!b_cgydot := inprod(btdot,bwdot, s, c)

IF y4 <= ty <= y4 + bottleradius DO
{ // Bottle collision with left edge of left arm
//LET rtdot = inprod(r!r_cgxdot, r!r_cgydot, c, s)

LET rwdot = inprod(r!r_cgxdot, r!r_cgydot,-s, c)
LET btdot = inprod(b!b_cgxdot, b!b_cgydot, c, s)
LET bwdot = inprod(b!b_cgxdot, b!b_cgydot,-s, c)

LET v = bwdot-rwdot
IF rid=-1 DO
{ sawritef ("B/n in contact with left edge of left grabber*n", bid)
abort (1236)
}

IF v<0 DO

{ bwdot := rebound(v) + rwdot
// Transform bottle velocity to world coords
b!b_cgxdot := inprod(btdot,bwdot, c, -s)
b!b_cgydot := inprod(btdot,bwdot, s, c)

IF y2 <= ty <= y3 DO
{ // Bottle b is the grabber area
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IF rid=-1 DO

{ sawritef("B%n: is in R¥%n’s grabber area*n", bid, rid)
abort (2233)

}

inareacount := inareacount + 1

UNLESS b!b_robot DO
{ // The bottle is not dropped and does not have
// an owner, select it.

IF r!r_bottle DO
{ // De-select this robot’s current bottle
LET sb = rlr_bottle
sb!b_robot := 0
sb!b_grabbed := FALSE
r!r_bottle 0
r!r_inarea := FALSE
freebottles := freebottles + 1

b
TRUE

r!r_bottle
r!r_inarea :
b!b_robot :=
b!b_grabbed :
freebottles

o}

FALSE
freebottles - 1

// Test for a bounce off the grabber base
IF robotradius <= tx <= robotradius+bottleradius DO
{ LET rtdot

inprod(r'r_cgxdot, r!r_cgydot, c, s)
LET btdot = inprod(b!b_cgxdot, b!b_cgydot, c, s)
LET bwdot = inprod(b!b_cgxdot, b!b_cgydot,-s, c)
LET v = btdot-rtdot

IF rid=-1 DO
{ sawritef("B%n is in contact R/n,s grabber base*n", bid, rid)
sawritef ("grabbedpos = %8.3d*n", grabbedpos)
abort (2235)
}
IF v<O0 DO
{ btdot := rebound(v) + rtdot
// Transform bottle velocity to world coords
b!b_cgxdot := inprod(btdot,bwdot, c, -s)
blb_cgydot inprod(btdot,bwdot, s, c)
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} // End of bottle loop

// If the selected bottle is the only bottle in this robot’s
// grabber area set inarea to TRUE.

r!r_inarea := inareacount=1

// (5) Deal with all the bottle-bottle bounces.

FOR bidl
{ LET b1

1 TO bottlev!0 DO
bottlev!bidl // bl -> [cgx, cgy, cgxdot, cgydot]

UNLESS bl!b_dropped DO
{ // Test for bottle-bottle bounces
FOR bid2 = bidil+1 TO bottlev!0 DO
{ LET b2 = bottlev!bid2 // b2 -> [cgx, cgy, cgxdot, cgydot]
IF b2!'b_dropped LOOP
IF incontact(bl, b2, bottleradius+bottleradius) DO
cbounce(bl, b2, 1, 1)
}
}
}
//abort (9002)

// Move the robots and their grabber arms.
// All bottles have been seen.
FOR rid = 1 TO robotv!0 DO
{ LET r = robotv!rid
LET b = r!r_bottle
LET inarea = r!r_inarea // =TRUE if b is the only bottle in
// this robot’s grabber area
LET grabpos, grabposdot = r!r_grabpos, r!r_grabposdot

UNLESS inarea | b!b_grabbed IF grabposdot=0 & grabpos<1_000 DO
{ grabposdot := +0_600
r!r_grabposdot := grabposdot

3

IF grabposdot DO
{ grabpos := grabpos+grabposdot/sps



426

CHAPTER 5. INTERACTIVE GRAPHICS IN BCPL USING SDL
r!r_grabpos := grabpos
TEST grabposdot > 0
THEN { IF grabpos >= 1_000 DO r!r_grabpos, r!r_grabposdot := 1_000, O
b
ELSE { IF grabpos <= grabbedpos & inarea DO
{ // The grabber has just captured the selected bottle
grabpos = grabbedpos
r!r_grabpos = grabpos
r!r_grabposdot := O
b!b_grabbed = TRUE
b
3
// If the grabber is fully closed start opening it.
IF grabpos <= 0_100 DO r!r_grabpos, r!r_grabposdot := 0_100, 0_600
}

IF inarea & r!r_grabpos=1_000 & r!r_grabposdot=0 DO
r!r_grabposdot := -0_600

// Encourage the robot to move towards its selected bottle, if any.
IF r!r_bottle &

edgesize < rl!r_cgx < screenxsize*One-edgesize &

edgesize < rlr_cgy < screenysize*One-edgesize DO
{ LET b = r!r_bottle // The possibly grabbed selected bottle

UNLESS b!b_grabbed | b!b_dropped DO

{ // The bottle is selected, not grabbed and not dropped
// so make the robot move towards it
LET dx = blb_cgx - rlr_bcx
LET dy = blb_cgy - r!r_bcy
// Calculate the direction from the robot to the bottle
LET ct = cosines(dx, dy)
LET st = result2

// Calculate the speed of the bottle
LET vx, vy = b!b_cgxdot, b!b_cgydot

// Calculate the direction of motion
LET bcv = cosines(vx, vy)
LET bsv = result2
LET speed = vx=0=vy -> O,
ABS vx > ABS vy -> muldiv(vx, One, bcv),
muldiv(vy, One, bsv)
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// Increase the speed depending on the distance from the bottle
speed := speed + 15_000

// Increase the speed if the robot is not close to the bottle
UNLESS incontact(r, b, 2*robotradius) DO speed := speed + 56_000

// Make the robot move towards the bottle
r!r_cgxdot := (29 * rlr_cgxdot + muldiv(speed, ct, One)) / 30
r!r_cgydot := (29 * r!r_cgydot + muldiv(speed, st, One)) / 30

IF b!b_grabbed DO
{ // Cause the robot to move towards the pit
LET dx = pit_x - rlr_cgx
LET dy = pit_y - rlr_cgy
LET cp = cosines(dx, dy)
LET sp = result2

// Make the robot move towards the pit

r!r_cgxdot := (29 * r!r_cgxdot + muldiv(60_000, cp, One)) / 30
r!r_cgydot := (29 * rlr_cgydot + muldiv(60_000, sp, One)) / 30
b!b_cgxdot, blb_cgxdot := rlr_cgxdot, r!r_cgxdot

3
b
rlr_cgx := rlr_cgx + r!r_cgxdot/sps
rlr_cgy := rlr_cgy + rlr_cgydot/sps

}

// Move the bottles
FOR bid 1 TO bottlev!0 DO
{ LET b bottlev!bid

IF b!b_dropped LOOP

b!b_cgx + b!b_cgxdot/sps
b!b_cgy + b!b_cgydot/sps

b!b_cgx :
b!'b_cgy :

AND initpitsurf(col) = VALOF
{ // Allocate the pit surface
LET rl = pitradius/One
LET r2 = rl1 + edgesize/One
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LET height = 2*r2 + 2
LET width = height
LET colkey = maprgb(1,1,1)

LET surf = mksurface(width, height)

selectsurface(surf, width, height)
fillsurf (colkey)
setcolourkey(surf, colkey)

setcolour(col_grayl)
drawfillcircle(r2, r2+1, r2)

setcolour(col)
drawfillcircle(r2, r2+1, ril)

RESULTIS surf

AND initbottlesurf(col) = VALOF
{ // Allocate a bottle surface
LET height = 2*bottleradius/One + 2
LET width height
LET colkey = maprgb(1,1,1)
LET surf = mksurface(width, height)

selectsurface(surf, width, height)
fillsurf (colkey)
setcolourkey(surf, colkey)

setcolour(col)
drawfillcircle(bottleradius/One, bottleradius/One+1, bottleradius/One)

RESULTIS surf

AND sine(theta) = VALOF
// theta = 0_000 for O degrees
// = 64_000 for 90 degrees
// Returns a value in range -1_000 to +1_000
{ LET a = theta / 1_000
LET r = theta MOD 1_000
LET s = rawsine(a)
RESULTIS s + (rawsine(a+1)-s)*r/1000
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AND cosine(x) = sine(x+64_000)

AND rawsine(x) = VALOF
{ // x is scaled d.ddd with 64.000 representing 90 degrees

// The result is scaled d.ddd, ie 1_000 represents 1.000
= TABLE 0,

LET

LET

a =

UNLESS (x%128)=0 DO a :

t

a

t

la

195,
383,
556,
707,
831,
924,
981,

1000

x&63
UNLESS (x&64)=0 DO a :

RESULTIS a

AND robotcoords(r) BE
{ // This function calculates the orientation of the robot
// and

LET
LET
LET
LET
LET
LET
LET

LET

X,
rl
r2
r3
d1
d2

the coordinates of all its key points

y

d3 =
LET c
LET s

ns

25,
219,
405,
576,
724,
845,
933,
985,

49,
243,
428,
596,
741,
858,
942,
989,

64-a

= rlr_cgx, rlr_cgy

robotradius

shoulderradius

tipradius
2*r3

74,
267,
450,
615,
757,
870,
950,
992,

98,
290,
471,
634,
773,
882,
957,
995,

muldiv(r!r_grabpos, ri-r2-dl, One)

grablen

= cosines(r!r_cgxdot, r!r_cgydot)
= result2

rlr_lcx

r'r_lcy

rlr_lex
r'r_ley

rlr_rcx

r!r_rcy
rlr_rex

r!r_rey

inpr
inpr
inpr
inpr

1
oMo X
+ o+ o+ o+

inpr
inpr
inpr
inpr

SRR
+ o+ + o+

od (
od (
od (
od (

od (
od (
od(
od (

c,

c,

c,

c,

ns,
c,
ns,
C’

ns,
C,
ns,
C,

ri-r2,
rl-r2,
rl,
rl,

ri-r2,
ri-r2,
rl,
rl,

ri-r2)
ri-r2)
ri-r2)
ri-r2)

r2-ri)
r2-ri)
r2-ri)
r2-ri)

122,
314,
493,
653,
788,
893,
964,
997,

147,
337,
514,
672,
803,
904,
970,
999,

171,
360,
535,
690,
818,
914,
976,
1000,

// Left side

// Right side
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r!r_ltax := x + inprod( c,ns, rl, d1+d2) // Left arm
rlr_ltay := y + inprod( s, c, rl, di1+d2)
r!r_ltbx := x + inprod( c,ns, rl, d2)
r!r_ltby :=y + inprod( s, c, rl, d2)
r!r_ltcx := x + inprod( c,ns, ri+d3, d2)
rlr_ltcy :=y + inprod( s, c, ri1+d3, d2)
r!r_ltdx := x + inprod( c,ns, ri1+d3, d1+d2)
r!r_ltdy := y + inprod( s, c, ri1+d3, di1+d2)
r!r_ltpx := x + inprod( c,ns, ri1+d3, d2+r3)
r!r_ltpy := y + inprod( s, c, ri1+d3, d2+r3)
r!r_rtax := x + inprod( c,ns, r1,-d1-d2) // Right arm
rlr_rtay := y + inprod( s, c, rl,-d1-42)
r!r_rtbx := x + inprod( c,ns, rl, -d2)
r!r_rtby :=y + inprod( s, c, ril, -d2)
r!r_rtcx := x + inprod( c,ns, ri+d3, -d2)
rlr_rtcy :=y + inprod( s, c, ri1+d3, -d2)
r!lr_rtdx := x + inprod( c,ns, ri1+d3,-d1-d42)
rlr_rtdy := y + inprod( s, c, ri1+d3,-d1-d2)
r!r_rtpx := x + inprod( c,ns, ri1+d3,-d2-r3)
r!r_rtpy := y + inprod( s, c, ri1+d3,-d2-r3)

// Centre of grabbed bottle
r!r_bcx := x + inprod( c,ns, robotradius+2*bottleradius, 0)
r!r_bcy :=y + inprod( s, c, robotradius+2*bottleradius, 0)

AND drawrobot(r) BE
{ LET b = r!r_bottle

robotcoords (r)
setcolour(r!r_id=1 -> robotlcolour, robotcolour)

// Body

drawfillcircle(r!r_cgx/One, r!r_cgy/One, robotradius/One)

// Left shoulder

drawfillcircle(r!r_lcx/One, r'!'r_lcy/One, shoulderradius/One)
// Right shoulder

drawfillcircle(r!r_rcx/One, r'!r_rcy/One, shoulderradius/One)

IF debugging DO
{ // Plot the robot number centred in the robot
setcolour (col_black)
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drawf (r!r_cgx/One-(r!r_id>=10->9,3), r!r_cgy/One-6, "Yn", r!r_id)

}

setcolour (grabbercolour)
// Grabber base

drawquad(r!r_lcx/One, r!r_lcy/One, //  lc--le
r!r_lex/One, r!r_ley/One, // | |
r!r_rex/One, r'r_rey/One, // | |
r!r_rcx/One, r!r_rcy/One) //  rc--re

// Left arm

drawquad(r!r_ltax/One, r!r_ltay/One, // lta——--—-—-—--- 1td
r!'r_1tbx/One, r!r_ltby/One, // |
r!r_ltcx/One, r!r_ltcy/One, // 1tb-—————- 1ltc

r!r_ltdx/One, r!r_ltdy/One)
drawfillcircle(r!r_ltpx/One, r!r_ltpy/One, tipradius/One)
// Right arm

drawquad(r!r_rtax/One, r!r_rtay/One, // rta--—------ rtd
r!r_rtbx/One, r!r_rtby/One, // |
r!r_rtcx/One, r!r_rtcy/One, // rtb———------ rtc

r!r_rtdx/One, r!r_rtdy/One)
drawfillcircle(r!r_rtpx/One, r!r_rtpy/One, tipradius/One)

//sawritef ("debugging=Yn b=Y%n grabbed=Y%n dropped=¥n*n",
// debugging, b, b!b_grabbed, b!b_dropped)
IF debugging UNLESS b!b_grabbed | b!b_dropped DO
{ setcolour(col_red)
moveto(r!r_bcx/One, r!r_bcy/0One)
drawto(b!b_cgx/0One, b!b_cgy/One)
//updatescreen()
//abort (1000)
}
}

AND drawbottle(b) BE UNLESS b!b_dropped DO
{ LET r = b!b_robot // Owning robot,if any
LET surf = bottlesurfR

IF b!'b_id=1 DO surf := bottlesurfK
IF b!b_robot DO surf bottlesurfDR

IF b!b_grabbed DO

{ surf := bottlesurfB
b!b_cgx := rlr_bcx // If grabbed the bottle is at the centre
blb_cgy := rlr_bcy // of the robot’s grabber.

}
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blitsurf (surf, screen, (b!b_cgx-bottleradius)/0One,
(b!b_cgy+bottleradius)/One)

IF debugging DO
{ // Plot the bottle number near the bottle
setcolour(col_black)
drawf (b!b_cgx/0One+10, b!b_cgy/One-6, "%n", b!b_id)
}
}

AND plotscreen() BE

{ LET 4 = edgesize/One
selectsurface(screen, screenxsize, screenysize)
fillsurf (backcolour)

selectsurface(screen, xsize, ysize)

setcolour(col_grayl)
drawquad (0,0, d,d, d,screenysize-d, O,screenysize)
setcolour(col_gray2)
drawquad (0, screenysize,
d, screenysize-d,
screenxsize-d, screenysize-d,
screenxsize,screenysize)
setcolour(col_gray3)
drawquad (screenxsize,screenysize,
screenxsize-d,screenysize-d,
screenxsize-d,d,
screenxsize,0)
setcolour(col_gray4)
drawquad (0,0, d,d, screenxsize-d,d, screenxsize,0)

// The pit
blitsurf(pitsurf, screen,

(pit_x-pitradius-edgesize)/One, (pit_y+pitradius+edgesize)/One)
selectsurface(screen, xsize, ysize)

FOR i = 1 TO robotv!0 DO drawrobot (robotv!i)
FOR i = 1 TO bottlev!0 DO drawbottle(bottlev!i)
//abort (802)

setcolour (maprgb(255,255,255))

IF debugging DO
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{

3

//drawf (30, 380, "sps = %i2", sps)
drawf (80, 365, "freebottles = %i2", freebottles)
drawf (80, 350, "bottlecount %i2", bottlecount)

IF help DO

{

drawf (30, 165, "H -- Toggle help information")
drawf (30, 150, "Q —— Quit")

drawf (30, 135, "X -- Enter the debugger")
drawf (30, 120, "P -- Pause/Continue")

drawf (30, 105, "G -- Close the grabber of the Dark green robot")
drawf (30, 90, "R -- Open the grabber of the Dark green robot")

drawf (30, 75, "D -- Toggle debugging")

drawf (30, 60, "U -- Toggle usage")

drawf (30, 45, "W -- Write debugging info")

drawf (30, 30, "Arrow keys -- Control the dark green robot")

setcolour (maprgb(255,255,255))

IF displayusage DO

drawf (30, 345, "CPU usage = %i3%% sps = %n", usage, sps)

//updatescreen()
//abort (803)
IF debugging DO

{

LET r = robotv!l
LET sb = r!lr_bottle
LET b = bottlev!0 -> bottlev!l, O
drawf (80, 120, "R1: x=%8.3d y=%8.3d xdot=%8.3d ydot=%8.3d",
r!'r_cgx, rlr_cgy, r!r_cgxdot, r!r_cgydot)
IF b DO
drawf (80, 105, "B1l: x=%8.3d y=%8.3d xdot=%8.3d ydot=%8.3d",
b!b_cgx, b!b_cgy, bl!b_cgxdot, b!b_cgydot)

//drawf (80, 85, " grabpos=%8.3d grabposdot=%8.3d",
// r!r_grabpos, r!r_grabposdot)
//IF sb DO
// drawf(80, 45, "Selected B%i2 grabbed=Yn",
// (sb -> sb!b_id, 0), (sb -> sb!b_grabbed, FALSE))
//abort (5678)
}
}
AND processevents() BE WHILE getevent() SWITCHON eventtype INTO
{ DEFAULT:

LOOP

433
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CASE sdle_keydown:
SWITCHON capitalch(eventa2) INTO

{ DEFAULT:
CASE ’H’: help := “help
LOOP
CASE ’Q’: done := TRUE
LOOP
CASE ’D’: debugging := “debugging
LOOP

CASE ’X’: sawritef("User requested entry to the debugger*n")
sawritef ("robotv=Yn bottlev=Yn*n", robotv, bottlev)
abort (9999)
LOOP

CASE °’U’: displayusage := "displayusage
LOOP

CASE ’W’: sawritef ("Bottles
sawritef ("Free bottles
sawritef ("Robots
FOR i = 1 TO bottlev!0 DO
{ LET b = bottlev!i

UNLESS b LOOP

sawritef ("Bottle %i2: ", b!b_id)

IF b!b_robot DO sawritef (" robot %i2", b!b_robot!r_id)
IF b!b_grabbed DO sawritef(" grabbed")

sawritef ("*n")

%n*n", bottles)
Yn*n", freebottles)
%n*n", robots)

FOR i = 1 TO robotv!0 DO
{ LET r = robotv!i
UNLESS r LOOP
sawritef ("Robot %i2: ", rl!lr_id)
IF r'!'r_bottle DO sawritef(" bottle %i2", r!r_bottle!b_id)
IF r!r_inarea DO sawritef (" bottle in area")
sawritef ("*n")

abort (1000)
LOOP
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CASE ’G’:
{LET r =

CASE ’R’:
{LET r =

CASE ’S’:

CASE ’P’:

435

// Grab

robotv!1

LET b = r!r_bottle

// Start closing unless a bottle is already grabbed
UNLESS b & b!b_grabbed DO r!r_grabposdot := -0_600
LOOP

// Release

robotv!1l

LET b = r!r_bottle

r!r_grabposdot := +0_300

IF b & b!b_grabbed DO b!b_grabbed := FALSE
LOOP

// Start again
LOoP

// Toggle stepping
stepping := “stepping
LOOP

CASE sdle_arrowup:

{ LET r

robotv!1l

cosines(r!r_cgxdot, r!r_cgydot)

result?

r!r_cgxdot + muldiv(5_000, c, One)
r!r_cgydot + muldiv(5_000, s, One)

LET c
LET s
r!r_cgxdot :
r!r_cgydot :
LOOP

CASE sdle_arrowdown:

{ LET r

robotv!1l

cosines(r!r_cgxdot, r!r_cgydot)

result2

r!r_cgxdot - muldiv(4_000, c, One)
r!r_cgydot - muldiv(4_000, s, One)

LET c
LET s
r!r_cgxdot :
r!r_cgydot :
LOOP

CASE sdle_arrowright:

{LET r =

robotv!1l

LET xdot = r!r_cgxdot
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LET ydot = r!r_cgydot

LET dc = cosine(4_000)

LET ds = sine(4_000)

r!r_cgxdot := inprod(xdot,ydot, dc, ds)
r!r_cgydot := inprod(xdot,ydot,-ds, dc)
LOOP

CASE sdle_arrowleft:
{ LET r = robotv!1l
LET xdot = r!r_cgxdot

LET ydot = r!r_cgydot
LET dc = cosine(4_000)
LET ds = - sine(4_000)

r!r_cgxdot := inprod(xdot,ydot, dc, ds)
r!r_cgydot := inprod(xdot,ydot,-ds, dc)
LOOP

CASE sdle_quit:
writef ("QUIT*n");
done := TRUE
LOOP

AND nearedge(x, y, dist) = VALOF
{ //writef ("nearedge: x=/n y=/n dist=)n xsize=Yn ysize=n*n",
// x/0One, y/One, dist/One, xsize, ysize)
//abort (2000)
UNLESS dist < x < xsize*One - dist RESULTIS TRUE
UNLESS dist < y < ysize*One - dist RESULTIS TRUE
//writef ("=> FALSE*n")
//abort (2001)
RESULTIS FALSE

+
AND nearthepit(x, y, dist) = VALOF
{ LET cx = pit_x

LET cy = pit_y

LET dx = ABS(x - cx)

LET dy = ABS(y - cy)
//writef ("nearthepit: x=)n y=/n cx=/n cy=/n dist=Yn*n",
// x/0One, y/One, cx/One, cy/One, dist/One)
//abort (3000)
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IF dx < dist & dy < dist RESULTIS TRUE
//writef ("=> FALSE*n")
//abort (3001)

RESULTIS FALSE

AND nearbottle(x, y, b, dist) = VALOF

{ // Return TRUE if (x,y) is near bottle b.
// (x,y) is the position of either a robot or a bottle.
LET bx = b!b_cgx
LET by = b!b_cgy

LET dx = ABS(x - bx)

LET dy = ABS(y - by)
//uritef ("nearbottle: bid=Yn x=Yn y=¥n bx=Y/n by=Yn dx+dy=/n dist=Vn*n",
// b!b_id, x/One, y/One, bx/One, by/One, (dx+dy)/One, dist/One)
//abort (4000)

IF dx < dist & dy < dist RESULTIS TRUE

//writef ("=>FALSE*n")
//abort (4001)
RESULTIS FALSE

AND nearanybottle(bid, x, y, dist) = VALOF
{ // Return TRUE if (x,y) near a bottle other than bottle bid
// If bid=0, (x,y) is the position of a robot.
FOR i = 1 TO bottlev!0 UNLESS i=bid IF nearbottle(x, y, bottlev!i, dist)
RESULTIS TRUE
RESULTIS FALSE

AND nearrobot(x, y, r, dist) = VALOF

{ // Return TRUE if (x,y) is near robot r.
// (x,y) is the position of either a robot or a bottle.
LET rx = rlr_cgx
LET ry = rlr_cgy

LET dx = ABS(x - rx)

LET dy = ABS(y - ry)
//sawritef ("nearrobot: rib=%i2 x=Yn y=Y/n rx=Yn ry=Yn dx+dy=Jn dist=Y/n#*n",
// r!'r_id, x/One, y/One, rx/One, ry/One, (dx+dy)/One, dist/One)
//abort (5000)

IF dx < dist & dy < dist RESULTIS TRUE

//sawritef ("=>FALSE*n")
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//abort (5001)
RESULTIS FALSE

AND nearanyrobot(rid, x, y, dist) = VALOF
{ // Return TRUE if (x,y) near a robot other than robot rid
// If rid=0, (x,y) is the position of a bottle.
FOR i = 1 TO robotv!0 DO
UNLESS i=rid IF nearrobot(x, y, robotv!i, dist) RESULTIS TRUE
RESULTIS FALSE
}

LET start() = VALOF
{ LET argv = VEC 50
LET stepmsecs = 7

LET comptime = 0 // Amount of cpu time per frame

LET day, msecs, filler = 0, 0, O

//datstamp (@day)

seed := 5 //msecs // Set seed based on time of day
//msecsO := msecs // Set the starting time

//msecsnow := 0

UNLESS rdargs("-b/n,-r/n,-sx/n,-sy/n,-s/n,-d/s",

argv, 50) DO
{ writef("Bad arguments for robots*n")
RESULTIS O
}
bottles := 35
robots := 7
//bottles := 20
//robots := 6
//bottles := 1
//robots =1
xsize := 700
ysize = 500
IF argv!0 DO bottles := !(argv!0) // -b/n
IF argv!1l DO robots := !(argv!l) // -r/n
IF argv!2 DO xsize := !(argv!2) // -sx/n
IF argv!3 DO ysize := !(argv!3) // -sy/n
IF argv!4 DO seed := l(argv!4) // -s/n

debugging := argv!5 // -d/s
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help := FALSE

IF bottles < O DO bottles := 0
IF bottles > 100 DO bottles := 100
IF robots < 1 DO robots := 1
IF robots > 30 DO robots := 30
freebottles := bottles

bottlecount := bottles
setseed(seed)

UNLESS sys(Sys_sdl, sdl_avail) DO
{ writef ("*nThe SDL features are not availablex*n")
RESULTIS O

spacev := getvec(spacevupb)

UNLESS spacev DO

{ writef ("Insufficient space available*n")
RESULTIS 0

b

spacep, spacet := spacev, spacev+spacevupb

IF FALSE DO
{ // Code to test the cosines function
LET el, e2, rsq = One, One, One
LET x, y, xdot, ydot, c, s = 0, O, One, O, One, O

LET p = @x
FOR dy = O TO One BY One/100 DO
{ ydot := dy

c := cosines(xdot, ydot)

s := result2

rsq := inprod(c,s, c,s)

writef ("dx=%8.3d dy=/%8.3d cos=%8.3d sin=/8.3d rsq=%8.3d*n",
One, dy, c, s, rsq)
IF el < rsq DO el := rsq

IF e2 > rsq DO e2 := rsq
}
writef ("Errors +%7.3d -%7.3d*n", el-One, One-e2)
abort (1000)

RESULTIS O
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// Initialise the priority queue
priq := mkvec(200)
prign, priqupb := 0, 200

initsdl1 ()

mkscreen("Robots -- Press H for Help", xsize, ysize)
backcolour := maprgb(100,100,100)
col_red := maprgb(255, 0, 0)
col_darkred := maprgb(196, 0, 0)
col_black := maprgb( 0, 0, 0)
col_brown := maprgb (100, 50, 20)
col_grayl := maprgb(110,110,110)
col_gray?2 := maprgb(120,120,120)
col_gray3 := maprgb(130,130,130)
col_gray4 := maprgb(140,140,140)
pitcolour := maprgb( 20, 20,100)
robotcolour := maprgb( 0,255, 0)
robotlcolour := maprgb( 0,120, 40)
grabbercolour  := maprgb(200,200, 40)
bottlesurfR := initbottlesurf(col_red)
bottlesurfDR := initbottlesurf(col_darkred)
bottlesurfK := initbottlesurf(col_black)
bottlesurfB := initbottlesurf(col_brown)
pitsurf := initpitsurf (pitcolour)

pit_x, pit_y := xsize*0One/2, ysizex*One/2
pit_xdot, pit_ydot := 0, O
thepit := Qpit_x

// Initialise robotv
robotv := mkvec(robots)
robotv!0 := 0
FOR i = 1 TO robots DO
{ LET r = mkvec(r_upb)
LET x v
LET y

?

UNLESS r DO

{ sawritef ("More space needed*n")
abort (999)

}



5.15. ROBOTS 441

FOR j = 0 TO r_upb DO r!j := 0
FOR k = 1 TO 200 DO
{ x := randno(xsizex*0One)

y := randno(ysize*0One)

UNLESS nearedge (x, y, robotradius) |
nearthepit (x, y, pitradius+2*robotradius) |
nearanyrobot(i, x, y, 3*robotradius) BREAK
//writef ("R%i2: x=%8.3d y=7%8.3d no good*n", i, x, y)

//abort (1000)
IF k>150 DO
{ writef("Too many robots to place*n")
abort (999)
}
}
//uritef ("R%i2: x=%8.3d y=%8.3d good*n", i, x, y)
//abort (1005)
robotv!0 := i
robotv!i :=r
// Position
r!r_cgx 1= X
r'r_cgy =y
// Motion
r!r_cgxdot = randno(40_000) - 20_000
r!'r_cgydot = randno(40_000) - 20_000
// grabber
r!r_grabpos = 1_000 // The grabber is fully open
r!r_grabposdot := 0_000
r!r_bottle =0 // No grabbed bottle
rlr_id := i
robotcoords(r)
}
//abort (1001)

// Initialise bottlev

bottlev := mkvec(bottles)

bottlev!0 := 0

FOR i = 1 TO bottles DO

{ LET b = mkvec(b_upb)
LET x 7
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LET y = 7

UNLESS b DO

{ sawritef ("More space needed*n")
abort (999)

}

FOR j = 0 TO b_upb DO b!j := 0
//FOR k = 1 TO 1000 DO

{ // Choose a random position for the next bottle
X @

randno (xsize*0ne)
y := randno(ysize*0One)
//sawritef ("Calling nearedge*n")

UNLESS nearedge (x, y, 4*bottleradius) |
nearthepit(x, y, 4*bottleradius) |
nearanyrobot (0, x, y, 2*robotradius) |
nearanybottle(i, x, y, 4*bottleradius) BREAK

//IF k > 200 DO

//{ writef ("Too many bottles to place*n")

// abort(999)

// BREAK

/7%

} REPEAT

bottlev!0
bottlev!i
b!b_cgx
b!b_cgy
b!b_cgxdot
b!b_cgydot
b!b_grabbed :
b!b_robot 0 // No grabbing robot
b!b_dropped := FALSE
b'b_id =1
b
//abort (1002)

]
< W T P

randno (50_000) - 25_000
randno (50_000) - 25_000
FALSE

stepping := TRUE // =FALSE if not stepping
usage := 0

//debugging := FALSE

displayusage := FALSE

sps := 10 // Initial setting

stepmsecs := 1000/sps
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wall_wx := 0

wall_ex := (screenxsize-1)*0One // East wall
wall_sy =0 // South wall
wall_ny := (screenysize-1)*0One // North wall

done := FALSE

//{ LET r1, r2 = robotv!l, robotv!2

//rilr_cgx, rilr_cgy := 400_000, 100_000
//r2'r_cgx, r2!'r_cgy := 400_000+robotradius*5, 100_000+00_000
//r1i'r_cgxdot, rllr_cgydot := 10_000, 0_000
//r2'r_cgxdot, r2!r_cgydot := O, -1_000

//}

//abort (1003)
UNTIL done DO
{ LET tO0 = sdlmsecs()
LET t1 = 7

processevents()

IF stepping DO step()
//abort (922)
usage := 100*comptime/stepmsecs

plotscreen()
updatescreen()

UNLESS 80<usage<95 DO
{ TEST usage>90
THEN sps := sps-1
ELSE sps := sps+l
IF sps<1 DO sps := 1 // To stop division by zero
stepmsecs := 1000/sps
+

tl := sdlmsecs()
comptime := t1 - tO

IF tO+stepmsecs > t1 DO sdldelay(tO+stepmsecs-t1)

writef ("*nQuitting*n")
sdldelay (0_200)



444 CHAPTER 5. INTERACTIVE GRAPHICS IN BCPL USING SDL

IF bottlesurfR DO freesurface(bottlesurfR)
IF bottlesurfDR DO freesurface(bottlesurfDR)
IF bottlesurfK DO freesurface(bottlesurfk)
IF bottlesurfB DO freesurface(bottlesurfB)

IF pitsurf DO freesurface(pitsurf)
closesdl()
fin:
IF spacev DO freevec(spacev)
RESULTIS O

3

5.16 Moon Lander

This is a re-inplementation of a moon lander program originally written in
September 1973 for the PDP-7 and the Vector General display. It now uses
the SDL graphics library and runs under Linux, the Raspberry Pi and Windows.
If you run the program (bcplprogs/raspi/lander.b) without touching any of
the controls the lander makes a perfect landing.

GET "libhdr"
GET "sdl.h"
GET "sdl.b" // Insert the library source code

GET "libhdr"
GET "sdl.h"

MANIFEST {
fuelmax=4000000
}

STATIC {
shape=9111
rotforce=0//50

///* Perfect landing

cgx= 322_855_260 // in millimetres

cgy= 129_712_464 -16000 +3000

theta= 3232

cgxdot=-526_837 // in millimetres per second
cgydot= -0_357

thetadot= 32
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//%/

/* Take off
cgx=-37000000
cgy=28001
theta=64%1000
cgxdot=0
cgydot=1
thetadot=-32
*/

minscale = 400

fuel=fuelmax
thrust=450
dthrust=50
target=-37000000

halftargetsize=30_000 // in millimetres

scale=4
weight=300
mass=1

moonradius = 8000*#x1000 * 7 / 22 // circumference/pi

costheta=0
sintheta=0
flamelength=0
x0=0

y0=0
thrustmax=2000
thrustmin=100
single=FALSE
novice=FALSE
delay=1
offscreen=TRUE
ch=0
tracing=FALSE
}

GLOBAL {
done:ug
rotleft
rotright

landed // Quality of the landing
toofast // Quality of the landing

445
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badsite
badorientation
goodlanding
stepping

col_black
col_blue
col_green
col_yellow
col_red
col_majenta
col_cyan
col_white
col_darkgray
col_darkblue
col_darkgreen
col_darkyellow
col_darkred
col_darkmajenta
col_darkcyan
col_gray
col_lightgray
col_lightblue
col_lightgreen
col_lightyellow
col_lightred
col_lightmajenta
col_lightcyan

LET start() = VALOF

{ LET mes = VEC 256/bytesperword
writes("*nMoon Lander*n")
initsdl()
mkscreen("Moon Lander", 640, 480)
rotleft, rotright := FALSE, TRUE
startlander (format)

//Update screen
updatescreen()
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//Pause for 10 secs
sdldelay(10_000) ;

//Quit SDL
closesdl ()

writef ("Done!*n")

RESULTIS O

AND startlander (fmt) = VALOF

{ LET count = 0

// Declare a few colours in the pixel format of the screen

col_black = maprgb( O, 0, 0)
col_blue = maprgb( 0, 0, 255)
col_green = maprgb( 0, 255, 0)
col_yellow = maprgb( 0, 255, 255)
col_red = maprgb(255, 0, 0)
col_majenta = maprgb(255, 0, 255)
col_cyan = maprgb(255, 255, 0)
col_white = maprgb (255, 255, 255)
col_darkgray = maprgb( 64, 64, 64)
col_darkblue = maprgb( O, 0, 64)
col_darkgreen = maprgb( 0, 64, 0)
col_darkyellow := maprgb( O, 64, 64)
col_darkred = maprgb( 64, 0, 0)
col_darkmajenta := maprgb( 64, 0, 64)
col_darkcyan = maprgb( 64, 64, 0)
col_gray = maprgb(128, 128, 128)
col_lightblue = maprgb(128, 128, 255)
col_lightgreen := maprgb(128, 255, 128)
col_lightyellow := maprgb(128, 255, 255)
col_lightred = maprgb (255, 128, 128)
col_lightmajenta:= maprgb(255, 128, 255)
col_lightcyan = maprgb (255, 255, 128)

fillscreen(col_gray)

IF FALSE DO

{ LET days, msecs, flag = 7, 7, 7

datstamp (@days)
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// Draw some random coloured lines rapidly
setcolour(col_blue)
drawpoint (screenxsize/2, screenysize/2)
FOR i = 1 TO 100_000 DO
{ LET col = maprgb(randno(255) ,randno(255) ,randno(255))
LET x, y = randno(screenxsize)-1, randno(screenysize)-1
IF i=10 DO setcaption("Hello World Again")
setcolour(col)
drawto(x, y)
updatescreen()
//sdldelay(100)
IF i MOD 100 = 99 DO
{LETd, m, £=7, 7,7
datstamp (@d)
writef ("%8.3d frames per second*n", 100000_000/(m-msecs))
days, msecs, flag :=d, m, £
}
}
RESULTIS O

lander ()
RESULTIS O

3

AND

lander() BE

{ single := TRUE
delay := 0
landed := FALSE
stepping := TRUE

done := FALSE
UNTIL done DO

{

¥

readcontrols()
IF stepping DO step()
sdldelay (100)

WHILE sys(Sys_pollsardch)=pollingch LOOP
writes("#nPress any key*n")
sys(Sys_sardch)

newline()

AND

setwindow() BE
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{ // Set the position and scale of the window to display
// ie set x0, yO and scale.
LET x, y = x0, yO
LET h = height(cgx)
LET relheight = ABS(cgy-h)

// Choose scale so that relheight appears no larger that half screenysize
LET s = relheight*2/screenysize

scale := minscale

UNTIL scale > s DO scale := scalex*2

// Adjust y so that the moon’s surface is suitably places
UNLESS screenysize*2/10 < (h-y)/scale < screenysize*4/10 DO
y := h - (screenysize*3/10)*scale

UNLESS screenysize/ 8 < (h-yO)/scale < screenysize/3 &
screenysize/10 < (cgy-y0)/scale < screenysize*9/10 DO yO :=y

cgx - (screenxsize*3/5)*scale
cgx - (screenxsizex2/5)x*scale

IF screenxsize/4 > (cgx-x0)/scale DO x0 :
IF screenxsize*3/4 < (cgx-x0)/scale DO x0 :

IF tracing DO
{ writef ("cgx=Vn cgy=¥n h=Yn scale=/n x=Yn y=/n*n",
cgx, cgy, h, scale, (cgx-x0)/scale, (cgy-y0)/scale)
writef ("screenxsize=%n screenysize=}n*n", screenxsize, screenysize)
}
}

AND readcontrols() BE
{ WHILE getevent(@eventtype) SWITCHON eventtype INTO

{ DEFAULT:
writef ("Unknown event type = %n*n", eventtype)
LOOP
CASE sdle_active: // => 1
//writef ("active %d %d#*n", evental, eventa2)
LOOP
CASE sdle_keydown: // => 2 mod ch

SWITCHON capitalch(eventa2) INTO
{ DEFAULT: L0OOP

CASE ’.’: rotforce := rotforce - 1
IF rotforce<-1 DO rotforce := -1
LOOP

CASE ’,’: rotforce := rotforce + 1
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IF rotforce>1 DO rotforce := 1
LOOP
CASE ’Z’: thrust := thrust - dthrust; LOOP
CASE ’X’: thrust := thrust + dthrust; LOOP
CASE ’T’: tracing := "tracing; LOOP
CASE ’P’: stepping := "“stepping LOOP
CASE ’Q’: done := TRUE; LOQP
}
LOQP
CASE sdle_keyup: // => 3 mod ch
//writef ("keyup %d %d*n", evental, eventa2)
LOOP
CASE sdle_mousemotion: // 4
//writef ("mousemotion %n %n %n*n", evental, eventa2, eventa3)
LOOP

CASE sdle_mousebuttondown: // 5
//writef ("mousebuttondown*n", evental, eventa2, eventa3)

LOOP
CASE sdle_mousebuttonup: // 6
//writef ("mousebuttonup*n", evental, eventa2, eventa3)
LOOP
CASE sdle_joyaxismotion: /7
{ LET which = evental
LET axis = eventa2

LET value = eventa3
//writef ("joyaxismotion %n %n %n*n", evental, eventa2, eventa3)

SWITCHON axis INTO
{ DEFAULT:
LOOP

CASE 0: // Aileron

rotforce := 0

IF value > 0 DO rotforce := -1
IF value < 0 DO rotforce := +1
LOOP

CASE 1: // Elevator
LOOP
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CASE 2: // Throttle
thrust := thrustmax - muldiv(thrustmax-thrustmin, value+32769, 32768+32767)

LOOP

}

}

CASE sdle_joyballmotion: // 8
//writef ("joyballmotion*n", evental, eventa2, eventa3)
LOOP

CASE sdle_joyhatmotion: // 9
//uritef ("joyhatmotion*n", evental, eventa2, eventa3)
LOOP

CASE sdle_joybuttondown: // 10
//writef ("joybuttondown#*n", evental, eventa2, eventa3)
LOOP

CASE sdle_joybuttonup: // 11
//writef ("joybuttonup*n", evental, eventa2, eventa3)
LOOP

CASE sdle_quit: // 12
writef ("QUIT*n");
LOOP

CASE sdle_syswmevent: // 13
//writef ("syswmevent*n", evental, eventa2, eventa3)
LOOP

CASE sdle_videoresize: // 14
//writef ("videoresize*n", evental, eventa2, eventa3)
LOOP

CASE sdle_userevent: // 15
//writef ("userevent*n", evental, eventa2, eventa3)
LOOP

AND step() BE
{ thetadot := thetadot + 20*rotforce

theta := theta + thetadot
IF novice DO theta, thetadot := theta+15*%thetadot, O
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costheta := cosine(theta) // scaled d.ddd
sintheta := sine(theta)

IF thrust > thrustmax DO thrust := thrustmax
IF thrust < thrustmin DO thrust := thrustmin
IF fuel>0 DO { fuel := fuel - thrust

IF fuel<O DO fuel := 0

X

IF fuel<=0 DO thrust := 0
flamelength := thrust*30000/thrustmax
cgxdot := cgxdot + (thrust*costheta/1000 ) /mass
cgydot := cgydot + (thrust*sintheta/1000 - weight)/mass
// Add the effect of centrifugal force.
// This should allow the lander to remain in orbit, if cgxdot large enough.
///cgydot := cgydot + muldiv(cgxdot, cgxdot, cgy+moonradius)

cgx := cgx + cgxdot
cgy := cgy + cgydot

//uritef ("x=Yn, y=)n*n", cgx, cgy)

IF tracing DO
{ writef ("#*nxydot= %n, %n*n", cgxdot, cgydot)
writef("t,tdot = %n, %n*n", theta, thetadot)
writef ("x=Yn, y=)n*n", cgx, cgy)
writef ("h = %n*n", height(cgx))
writef ("xOy0= %n, %n*n", x0, y0)
writef ("scale = %n*n", scale)

}

// The CG of the lander is 3 metre above the feet.
IF cgy <= height(cgx)+3_000 DO
{ toofast := FALSE
badsite := FALSE
badorientation := FALSE
goodlanding := TRUE
landed, thrust := TRUE, O
stepping := FALSE
writes("*nLanded*n")
writef ("xdot = %7.3d ydot = %7.3d*n", cgxdot, cgydot)
UNLESS 0 < cgxdot*cgxdot+cgydot*cgydot < 1_500%1_500 DO
{ goodlanding := FALSE // Speed greater than 1.5 metre per second
toofast := TRUE
writef ("Too fast*n")
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}
// The craft width is 12 metres

UNLESS ABS(height (cgx-6_000) - height(cgx)) +
ABS(height (cgx+6_000) - height(cgx)) < 1000 DO
{ // Not level enough
goodlanding := FALSE
badsite := TRUE
writef ("Bad landing site*n")
}
UNLESS sintheta>950 DO
{ // Bad orientation
goodlanding := FALSE
badorientation := TRUE
writes("Bad orientation*n")

X
IF goodlanding DO writes("Perfect, Well done!!x*n")

displayall()
}

AND height(x) = VALOF
{ IF -halftargetsize < x-target < halftargetsize DO x := target

x := x/8000

{ LET ra, rb, rc = x&H#777, x&H#T7, x&#7

LET a, b, ¢ = x-ra, x-rb, x-rc

LET h = (hf(a)*(#777-ra) + hf(a+#1000)*ra +
hf (b) % (#77 -rb) + hf(b+#100) *rb +
hf (c)*(#7 -rc) + hf(c+#10) *rc)/512

h := h*h/100

IF (hf (x4-2)&#71)=0 DO h := h+4

RESULTIS h*6%1000

AND hf(n) = VALOF

{ LET a = n XOR shape
LET b = ax(a XOR #4132)/100 + a
RESULTIS (bx*b/313*%a) & 255

}

AND cdrawto(x, y) BE
{ LET tx = x / minscale
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AND ty = y / minscale
//writef ("cdrawto: Yn,%n ", x, y)
x := (+tx*sintheta + ty*costheta)/1000 + (cgx-x0)/scale
y := (-txxcostheta + ty*sintheta)/1000 + (cgy-y0)/scale
//writef (" ¥n,%n*n", x, y)
drawto(x, y)

+

}

AND cpoint(x, y) BE

{ LET tx = x / minscale
AND ty = y / minscale
x := (+tx*sintheta + ty*costheta)/1000 + (cgx-x0)/scale
y := (-txxcostheta + ty*sintheta)/1000 + (cgy-y0)/scale
drawpoint(x, y)

}

AND plotcraft() BE
{ setcolour(col_white)

// The units are millimetres

// The craft width is 12 metres (-6 to +6)
cpoint( -3000, -2000) // The base

cdrawto ( 3000, -2000)

cdrawto ( 3000, 0)

cdrawto ( -3000, 0)

cdrawto ( -3000, -2000)

cpoint( 1000, 0) // The return module
cdrawto ( 2000, 1000)
cdrawto ( 2000, 3000)
cdrawto ( 1000, 4000)
cdrawto ( -1000, 4000)
cdrawto ( -2000, 3000)
cdrawto ( -2000, 1000)
cdrawto ( -1000, 0)

cpoint ( -3000, -1000) // Lhe legs
cdrawto ( -5000, -3000)

cpoint( -6000, -3000)

cdrawto ( -4000, -3000)

cpoint( 3000, -1000)

cdrawto ( 5000, -3000)

cpoint( 4000, -3000)

cdrawto ( 6000, -3000)
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setcolour(col_cyan)
IF thrust DO
{ cpoint( 0, -3000) // The flame

cdrawto ( -2000, -flamelength-3000)
cdrawto ( 0, -flamelength/2-3000)
cdrawto ( 2000, -flamelength-3000)
cdrawto ( 0, -3000)

IF thrust DO
{ IF rotforce>0 DO
{ setcolour(col_yellow)

cpoint (-3000, 0) // Rotate left jets
cdrawto( -3500, 2000)
cdrawto( -2500, 2000)
cdrawto( -3000, 0)
cpoint ( 3000,-2000)
cdrawto( 2500,-4000)
cdrawto( 3500,-4000)
cdrawto( 3000,-2000)

IF rotforce<0 DO
{ setcolour(col_yellow)
cpoint ( 3000, 0) // Rotate right jets
cdrawto( 3500, 2000)
cdrawto( 2500, 2000)
cdrawto( 3000, 0)
cpoint (-3000,-2000)
cdrawto( -2500,-4000)
cdrawto( -3500,-4000)
cdrawto( -3000,-2000)

AND plotmoon() BE
{ LET x, dx = 0, 4//screenxsize/128

setcolour(col_lightblue)
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drawpoint (x, (height(x0)-y0)/scale)
WHILE x<screenxsize DO
{ x = x+dx
drawto(x, (height(xO+scale*x)-y0)/scale)
}

setcolour(col_lightmajenta)
drawpoint ((target-halftargetsize-x0)/scale, (height(target)-y0)/scale)
drawto  ((target+halftargetsize-x0)/scale, (height(target)-y0)/scale)

AND displayall() BE
{ LET xm = screenxsize/2
LET targy = screenysize - 60

LET fuely = screenysize - 30

LET fuelxl = xm - 100

LET fuelxh = xm + 100

LET fuelx = fuelxl + muldiv(200, fuel, fuelmax)
LET targx = xm + (target-cgx)/100000

LET targxl = xm + (target-cgx)/1000000

LET tdotx = xm - thetadot/8

LET tdoty = fuely-15

LET f1x0, fly0 = xm, fuely-100
LET flxs, flys = flamelength*costheta/1000, flamelength*sintheta/1000

sys(Sys_sdl, sdl_fillsurf, screen, col_darkgray)
setwindow()

setcolour(col_cyan) // Fuel
drawpoint (fuelxl, fuely)

drawby (200, 0)

setcolour(col_red)

drawpoint (fuelx, fuely)

drawby (0, 20)

setcolour(col_lightmajenta) // Target
drawpoint (targx-10, targy)

drawby (20, 0)

drawpoint (targx1-5, targy-2)

drawby (5, 0)

setcolour(col_cyan) // Thetadot
drawpoint (xm, fuely)

drawby (0, -15)

setcolour(col_red)
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drawpoint (tdotx, tdoty)
drawby (0, -15)

setcolour(col_lightgreen) // Acceleration
drawpoint (£f1x0, £1y0)
drawby (f1xs/200, flys/200)

setcolour(col_red) // Velocity
drawpoint (£1x0, £1yO0)
drawby (cgxdot/10_000, cgydot/10_000)

{ LET x = f1x0+cgxdot/200-1

LET y = flyO+cgydot/200-1

drawfillrect(x, y, x+3, y+3) // Velocity/200
}

setcolour(col_white)

drawf (10, 75, "target %11.3d", target-cgx)

drawf (10, 60, "cgx=  %11.3d xdot=%9.3d", cgx, cgxdot)
drawf (10, 45, "cgy=  %11.3d ydot=%49.3d", cgy, cgydot)
drawf (10, 30, "fuel= %11.3d", fuel)

//drawf (10, 15, "scale= %11.3d", scale)

IF landed DO

{ LET x = screenxsize/2
LET y = screenysize/2
drawf (x, y, "Landed")

IF toofast DO { y := y-15; drawf(x, y, "Too fast") }
IF badsite DO { y := y-15; drawf(x, y, "Bad site") }
IF badorientation DO { y := y-15; drawf(x, y, "Bad orientation") }
IF goodlanding DO { y := y-15; drawf(x, y, "Perfect landing -- well done!") }
}
plotmoon()
plotcraft()
retl:
updatescreen()

}

AND rdjoystick() = 0

AND rdn() VALOF
{ LET res = 0
ch := sys(10)
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WHILE ’0°<=ch<=’9’ DO { res := 10*res + ch - ’0’
ch := sys(10)

RESULTIS res

AND sine(theta) = VALOF
// theta = 0 for O degrees
// = 64000 for 90 degrees
// Returns a value in range -1000 to 1000
{ LET a = theta / 1000
LET r = theta REM 1000
LET s = rawsine(a)
RESULTIS s + (rawsine(a+1)-s)*r/1000

}
AND cosine(x) = sine(x+64_000)

AND rawsine(x) = VALOF
{ // x is scaled d.ddd with 64.000 representing 90 degrees
// The result is scalled d.ddd, ie 1000 represents 1.000
LET t = TABLE o, 25, 49, 74, 98, 122, 147, 171,
195, 219, 243, 267, 290, 314, 337, 360,
383, 405, 428, 450, 471, 493, 514, 535,
556, 576, 596, 615, 634, 653, 672, 690,
ror, 724, 741, 757, 773, 788, 803, 818,
831, 845, 858, 870, 882, 893, 904, 914,
924, 933, 942, 0950, 957, 0964, 970, 976,
981, 985, 989, 992, 995, 0997, 999, 1000,
1000

LET a = x&63

UNLESS (x&64)=0 DO a :
a := tla

UNLESS (x&128)=0 DO a :
RESULTIS a

1]
o
i
)

1]
[
)

As the lander approaches the landing site, the screen should look something
like the following.
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m Moon Lander

torget -432.155
cox= -36567.845 xdot-= -6.694
cgy-= 2855.350 ydot- -28.927
FueL= 32332.650

5.17 A Library for High Prec ision Arithmetic

You may well wonder why there is a section here covering a library for high
precision arithmetic when we have seen simple examples of such arithmetic al-
ready. The reason is that the next two sections concern the tracing of rays of
light through a catadioptric telescope and optics is renowned for needing high
precision arithmetic including functions for division and square root. Efficient
implementations of these two functions make use of Newton-Raphson iterations
which have only recently been covered in page 360. The programs also use of
SDL graphics which have only just been covered.

For convenience, the library is located in BCPL/cintcode/g and consists of a
arith.b and a header file arith.h. Programs using this library should typically
start as follows.

GET "libhdr"
MANIFEST {
ArithGlobs=350 // The first global used by the arith library
numupb=2+25 // Room for the sign, the exponent and 25 radix
// digits, equivalent to 100 decimal digits.
} // Each radix digit is in the range 0 to 9999

GET "arith.h"
GET "arith.Db"
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The constant ArithGlobs allows the user to avoid global number clashes
with other libraries. The constant numupb specifies the precision of numbers used
internally by the library particularly in the implementation of divide and square
root. Numbers in the user’s program will normally use a slightly lower precision.

The header file arith.h contains the following declarations.

GLOBAL {
str2num: ArithGlobs
setzero
settok

copy

copyu
addcarry
roundnum
standardize
addu

add

subu

sub

neg

mul
mulbyk
div
divbyk
exptok
sqrt
inprod
radius
normalize
iszero
numcmpu
numcmp
integerpart
roundtoint
prnum
checknum

The file arith.b contains the definitions of all the arith library functions.
Numbers processed by this library are represented by variable length vectors
containing the sign, the exponent and fractional part. Typically, a number is
passed to the functions in this library as a pair (N,upb) where N is the vector
and upb is its upperbound. For such a number the following holds:
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N!0 TRUE if the number is negative.

FALSE if the number is greater than or equal to 0.

NIl is the exponent e, ie the value of the number is
fractional_partx10000°.
The exponent may be positive or negative.

N!2 to Nltupb hold the fractional part with an assumed decimal point
to the left of the first digit in N!2. The digits

are in the range 0 to 9999.

If N is in standard form then either N!2 is non zero or all its elements are zero.
The fractional part contains digits of radix 10000 so the approximate precision
of the number is slightly less than 4 x (upb — 2) decimal digits. Rounding errors
cause some loss of precision and also N!'2 may contain fewer the 4 significant
decimal digits.

After some comments, arith.b starts with the definition of str2num as fol-
lows.

LET str2num(s, nl, upbl) = VALOF
{LETp=0 // Count of decimal digits not including
// leading zeroes
LET fp -1 // Count of decimal digits after the decimal point, if any.
LET pos = 2 // Position of next radix digit

LET dig = O // To hold the next radix digit

LET dexp = 7

LET e = 0 // For the exponent specified by En
nilo := -2 // No sign yet

FOR i = 1 TO upbl DO nl!'i := 0

FOR i 1 TO s%0 DO
{ LET ch = s%i

SWITCHON ch INTO
{ DEFAULT: RESULTIS FALSE

CASE ’ ’: LOOP // Ignore spaces

CASE ’-’: UNLESS n1!0=-2 RESULTIS FALSE
nl!0 := TRUE
LOOP

CASE ’+’: UNLESS n1!0=-2 RESULTIS FALSE
nl!0 := FALSE
LOOP

CASE ’.’: IF fp>=0 RESULTIS FALSE // Invalid decimal point
fp := 0 // Count of digits after the decimal point.
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LOOP
CASE ’E’:
CASE ’e’: { // Read a possibly signed exponent leaving
// its value in e.
LET nege = -2
FOR j = i+1 TO s%0 DO
{ ch := s¥%j
SWITCHON ch INTO
{ DEFAULT: RESULTIS FALSE

CASE ’ ’: LOOP // Ignore spaces

CASE ’-’: UNLESS nege=-2 RESULTIS FALSE
nege := TRUE
LOOP

CASE ’+’: UNLESS nege=-2 RESULTIS FALSE
nege := FALSE
LOOP

CASE ’0’:CASE ’1°:CASE ’2’:CASE ’3’:CASE ’4’:
CASE ’5’:CASE ’6’:CASE ’7’:CASE ’8’:CASE ’9’:
IF nege=-2 DO nege := FALSE
e := 10xe + ch - ’0’

LOOP
b
b
IF nege DO e := -e
BREAK

}

CASE ’0’: IF p=0 DO
{ // No significant decimal digits yet
// 1If sign unset make it positive
IF n1!'0=-2 DO n1!0 := FALSE
IF fp>=0 DO fp := fp+1
LOOP

CASE ’1’:CASE ’2’:CASE °’3’:CASE ’4’:
CASE ’5’:CASE ’6’:CASE ’7’:CASE ’8’:CASE ’9’:
{ // A significant digit
// If sign unset make it positive
IF n1!'0=-2 DO n1!0 := FALSE
p := p+l // Increment count of significant digits
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IF fp>=0 DO fp := fp+l // Count of fractional digit
dig := 10*dig + ch - ’0’
IF p MOD 4 = 0 DO
{ // Just completed a radix digit
// Store it digit, if possible
IF pos<=upbl DO nl!pos := dig

dig := 0
pos := pos+l
X
LOoP
3
}
b
IF p=0 DO

{ // No significant digits, so the result is zero.
setzero(nl,upbl)
RESULTIS TRUE

}

// Place a decimal point here if not already present.
IF fp<0 DO fp := 0

// Pad last radix digit by adding fractional decimal zeroes.

UNTIL p MOD 4 = 0 DO
{ dig := dig * 10

p := ptl

IF fp >= 0 DO fp := fp+1
}

// Store the last digit, if room.
IF pos<= upbl DO nl'!pos := dig

// nl!2 contains 4 decimal digits including the padding zeroes.
dexp := p-fp // Decimal exponent

// p 1is the number of decimal digits including padding.

// p 1s a multiple of 4.

// fp is the number of fractional decimal digits including padding.
// We require dexp to be a multiple of 4, so

// until dexp is a multiple of 4, increment dexp and divide
// the fractional value by 10.
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UNTIL dexp MOD 4 = 0 DO

{ divbyk(10, nl,upbl)
dexp:= dexp+l

b

// The decimal exponent dexp is now a multiple of 4.
nl!l := dexp/4 // Set the radix exponent.

// Now add in the En exponent
nl!l := nlll + e

//checknum(nl,upbl)
RESULTIS TRUE

This function converts a string representing a high precision number into its
vector form. The number starts with an optional sign followed by decimal digits
and at most one decimal point. An explicit exponent can then be given consisting
of E or e followed by a possibly signed integer. The exponent repesents a power of
10000. Spaces are ignored, so for instance: str2num("-12.3456 789 E3", N,5)
will set the elements of N to:

[TRUE, 4, 0012, 3456 7890, 0000]
A vector representation of a number in the range -9999 to +9999 may be set
using the function settok defined as follows.

AND settok(k, nil,upbl) = VALOF
{ // k must be in range -9999 to +9999
// Return TRUE is k is in range
setzero(nl,upbl)
IF k=0 RESULTIS TRUE
IF k<0 DO n1!0, k := TRUE, -k
IF k>=10000 RESULTIS FALSE
ni!l, ni1!2 =1, k
RESULTIS TRUE

The integer part of a number can be found using integerpart defined be-
low. This function requires the number to be in standard form and in the range
-9999_9999 to +9999_9999. If the integer part is out of range the result is either
+1_0000_0000 or -1_0000_0000.

AND integerpart(nl,upbl) = VALOF
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{ LET e = n1!1
LET x = nl1!2 *x 10000
IF upb1>=3 DO x := x + nl1!3
IF e > 2 DO x := 1_0000_0000
IF n1!'0 DO x := -x
IF e <= 0 RESULTIS O
IF e =1 RESULTIS x / 10000
RESULTIS x

465

The following function rounds its argumnent to the nearest integer, returning
a value representing the first 8 decimal digits after the decimal point before

rounding takes place.

AND roundtoint(nl,upbl) = VALOF
{ LET e = n1!1 // The exponent
LET frac = 0

IF e > 0 DO
{ // The integer part is non zero

// e >0
LET p = et2 // Position of the first fractional radix digit
LET carry = p<upbl & nl!'p>=5000 -> 1, O

IF p <= upbl DO frac := nl!p * 10000 // Fractional digits 1 to 4
IF p < upbl DO frac := frac + nl!(p+1) // Fractional digits 5 to 8

FOR i = p TO upbl DO n1!i := 0
IF carry DO addcarry(nl,p-1)

//checknum(nl,upbl)
RESULTIS frac

// The unrounded integer part is zero, so the rounded
// integer part is zero or 1.

// e <=0

IF e= 0 DO frac :
IF e=-1 DO frac :

n1!2%10000 + n1!3 // 8 fractional digits
ni!2 // 4 fractional digits

TEST e=0 & frac >= 50000000
THEN settok(l, nl,upbl) // nl was in range 0.5 to 0.99999999
ELSE setzero(nl,upbl) // nl was in range 0.0 to 0.49999999

//checknum(nl,upbl)
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RESULTIS frac
}

The next function outputs a charater representation of the high precision
number it is given.

AND prnum(n, upb) BE
{ // Output a number n of size upb, followed by a newline().
writef ("%c0.", nl0->’-’,7+7)
FOR i = 2 TO upb DO
{ writef("%z4 ", n'i)
IF (i-2) MOD 10 = 9 DO writef("*n ")
}
IF n'1 DO writef("E¥n", n'l)
newline()

For example, if N points to: [TRUE, 4, 0012, 3456 7890, 0000],
pronum(N,5) outputs: -0.0012 3456 7890 0000 E4.

The function defined below compares the magnitude of two high precision
numbers returning -1, 0 or +1 depending on whether the absolute value of the
first number is less, equal, or greater than the absolute value of the second.

AND numcmpu(nl,upbl, n2,upb2) = VALOF
{ // Return 1 if abs nl > abs n2
// Return O if abs nl = abs n2
// Return -1 if abs nl < abs n2
// nl and n2 are assumed to be in standard form.
LET upb = upbl<=upb2 -> upbl, upb2
// upb is the smaller upper bound

// Deal with the cases when nl or n2 is zero.

IF n1!2=0 DO

{ IF n2!2=0 RESULTIS 0 // n1= 0 n2= 0
RESULTIS -1 // nl= 0 n27=0

IF n2!2=0 RESULTIS 1 // n1”=0 n2= 0

// Neither nl nor n2 is zero

FOR i = 1 TO upb DO

{ // Compare the exponents and digit os nl and n2.
LET a, b = nl1!i, n2!i
IF a > b RESULTIS 1 // nl > n2
IF a < b RESULTIS -1 // nl < n2
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IF upbl=upb2 RESULTIS 0

TEST upbl>upb
THEN FOR i = upb+1 TO upbl IF n1!i RESULTIS 1
ELSE FOR i = upb+l TO upb2 IF n2!i RESULTIS -1

RESULTIS O

The function defined below compares two standardized signed numbers, re-
turning -1, 0 or +1.

AND numcmp(nl,upbl, n2,upb2) = VALOF
{ // Return 1 if nl > n2
// Return 0 if nl = n2
// Return -1 if nl < n2
// nl and n2 are assumed to be in standard form.

IF n1'0 DO

{ IF n2!'0 RESULTIS - numcmpu(nl,upbl, n2,upb2) // ni< 0, n2< 0
RESULTIS -1 // ni1< 0, n2>=0

}

IF n2'0 RESULTIS 1 // n1>=0, n2< 0

RESULTIS numcmpu(nl,upbl, n2,upb2) // n1>=0 n2>=0

The next function standardizes n1 then sets n2 = -n1.

AND neg(nl,upbl) = VALOF

{ // Standardize nl and the set nl = -nl
standardize(nl,upbl)
IF n1!2 DO n1!0 := 7 nl1!0
RESULTIS TRUE

The function iszero defined below returns TRUE if n1 is zero. If n1 is known
to be in standard form, it is more efficient just to test n1!2.

AND iszero(nl,upbl) = VALOF

{ // nl is zero if all the fraction digits are zero
FOR i = 2 TO upbl UNLESS nl1!i=0 RESULTIS FALSE
RESULTIS TRUE

}
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The next function sets n3 to ABS nl + ABS n2, assuming nl and n2 are in
standard form. The result is rounded.

AND addu(nl,upbl, n2,upb2, n3,upb3) = VALOF
{ // Set n3 to abs nl + abs n2 rounded
// nl and n2 are assumed to be in standard form.
LET carry = 0
LET t1,ul = nl,upbl // To hold the number with the larger exponent
LET t2,u2 = n2,upb2 // To hold the number with the smaller exponent
LET offset = 7
LET p, g =7, 7
LET tmp = VEC numupb

//checknum(nl,upbl)
//checknum(n2,upb2)

IF n1!2=0 RESULTIS copyu(n2,upb2, n3,upb3)
IF n2!2=0 RESULTIS copyu(nl,upbl, n3,upb3)

// Neither nl nor n2 are zero.

IF n1!'1<n2!1 DO // Compare their exponents
{ t1,ul := n2,upb2

t2,u2 :
}

nl,upbl

// t111 >= t2!11 So t1 has the larger exponent

offset := t1!1-t2!1
// offset is >= 0
// It is the amount t2 must be shifted before adding to til

u2 // Position of the last digit of t2
u2+offset // Position in tmp of where to add it.

p :
q :

IF q > numupb DO

{ // Reduce both p and q so the g=numupb
p := p - (u2+offset-numupb)
q := numupb

}

// Form the sum in tmp
copyu(tl,ul, tmp,numupb)

// Add t2 suitably shifted into tmp
WHILE p >= 2 DO
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{ LET x = tmp!q + t2!p + carry
tmp!q := x MOD 10000
carry := x / 10000

p, q :=p-1, g-1

// There are no more digits of t2, but the may still be a carry
// to deal with

WHILE carry & g >= 2 DO

{ LET x = tmp!q + carry

tmp'!qg := x MOD 10000
carry := x / 10000
q:=9q-1

}

// If there is a carry out of the senior digit, tmp must be
// shifted right and the exponent corrected.
IF carry DO
{ // Shift the radix digits to the right by one position.
FOR i = numupb-1 TO 2 BY -1 DO tmp!(i+1) := tmp'i
tmp!2 := carry
tmp!l := tmp!l + 1 // Adjust the exponent
+

copy (tmp,numupb, n3,upb3) // Set n3 = tmp rounded

//checknum(n3,upb3)
RESULTIS TRUE

The next function sets n3 to ABS nl - ABS n2 assuming the result is greater
than or equal to zero. Both n1 and n2 are assumed to be in standard form. The
result is rounded.

AND subu(nl,upbl, n2,upb2, n3,upb3) = VALOF

{ LET borrow = 0
LET t1,ul = nl,upbl // To hold the number with the larger exponent
LET t2,u2 = n2,upb2 // To hold the number with the smaller exponent
LET offset = 7
LET p, q =7, 7
LET tmp = VEC numupb

//checknum(nl,upbl)
//checknum(n2,upb2)
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IF n2!2=0 RESULTIS copyu(nl,upbl, n3,upb3)

IF n1!2=0 DO

{ // Since abs nl >= abs n2 and nl1=0 the so does n2.
setzero(n3,upb3)
RESULTIS TRUE

// Neither nl nor n2 are zero.

// Since abs nl >= abs n2 and they are both non zero,
// the exponent of nl must be >= exponent of n2

// is nl1!'1l >= n2!1 So t1 has the larger exponent
offset := ni1!1-n2!1
// offset is >= 0

// It is the amount n2 must be shifted before adding to nil

upb?2 // Position of the last digit of n2
= upb2+offset // Position in tmp of where to bubtract it.

Q g
L

IF q > numupb DO

// Reduce both p and q so the g=numupb
p := p - (u2+offset-numupb)

q := numupb

// Form the difference in tmp
copyu(tl,ul, tmp,numupb)

// Subtract n2 suitably shifted from tmp
WHILE p >= 2 DO
{ LET x = tmp!q - borrow - t2!p

borrow := 0

IF x < 0 DO borrow, x := 1, x + 10000
tmp!q := x

p, q := p-1, g-1

}

// There are no more digits of n2, but the may still be a borrow
// to deal with
WHILE borrow & g >= 2 DO
{ LET x = tmp!q - borrow
borrow := 0
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IF x < 0 DO borrow, x := 1, x + 10000
tmp!q := x
q:=9q-1

b

IF borrow DO

{ // There was a borrow out of the senior radix digit.
// This is a system error since abs nl is >= abs n2.
writef ("SYSTEM ERROR: in subu*n")
abort (999)
RESULTIS FALSE

standardize (tmp,numupb)
copy (tmp,numupb, n3,upb3) // Set n3 = tmp rounded

//checknum(n3,upb3)
RESULTIS TRUE

The next function sets it argument to 0.0.
AND setzero(nl, upbl) BE FOR i = O TO upbl DO ni!i := 0

The next function sets n3 to n1 + n2 using signed arithmetic. Both n1 and
n2 are assumed to be in standard form. The result is rounded.

AND add(nl,upbl, n2,upb2, n3,upb3) = VALOF
{ // Add signed numbers nl and n2 placing the rounded result in n3

LET rc = 7
LET t = VEC numupb

//checknum(nl,upbl)
//checknum(n2,upb2)

IF n1!2=0 DO

{ copy(n2,upb2, n3,upb3) // nl is zero
RESULTIS TRUE

}

IF n2!2=0 DO
{ copy(nl,upbl, n3,upb3) // n2 is zero
RESULTIS TRUE
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// Neither nl nor n2 are zero

IF n1!0=n2'0 DO
{// eg +5 + +3 => + (5+3)
// eg -3 + -5 => - (5+3)
// So add the absolute values and then set the sign
rc := addu(nl,upbl, n2,upb2, n3,upb3)
UNLESS n3!2=0 DO n3!0 := nl!0
RESULTIS rc

// The signs are different
rc := numcmpu(nl,upbl, n2,upb2)

IF rc=0 RESULTIS setzero(n3,upb3)

TEST n1!0
THEN TEST rc>0
THEN { // eg -5 + +3 => - (5-3)
rc := subu(nl,upbl, n2,upb2, n3,upb3)
UNLESS n3!2=0 DO n3!'0 := TRUE
RESULTIS rc

ELSE { // eg -3 + +5 => + (5-3)
rc := subu(n2,upb2, nl,upbl, n3,upb3)
n3!0 := FALSE
RESULTIS rc

}
ELSE TEST rc>0

THEN { // eg +5 + -3 => + (5-3)
rc := subu(nl,upbl, n2,upb2, n3,upb3)
n3!0 := FALSE
RESULTIS rc

ELSE { // eg +3 + -5 => - (5-3)
rc := subu(n2,upb2, nl,upbl, n3,upb3)
UNLESS n3!2=0 DO n3!0 := TRUE
RESULTIS rc

The next function sets n3 to n1 - n2 using signed arithmetic. Both n1 and
n2 are assumed to be in standard form. The result is rounded.
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AND sub(nl,upbl, n2,upb2, n3,upb3) = VALOF

{ // Subtract n2 from nl using signed arithmetic placing
// the rounded result in n3.
LET rc = 7
LET n2sign = n2!0

//checknum(nl,upbl)
//checknum(n2,upb2)

IF n2!2=0 DO

{ copy(n1,upbl, n3,upb3) // n2 is zero
RESULTIS TRUE

+

// n2 is non zero
n2!0 := ~ n2!0 // Negate n2

rc := add(nl,upbl, n2,upb2, n3,upb3)
//checknum(n3,upb3)
n2!0 := n2sign // Restore the sign of n2

// No need to call checknum since add has already done so.
standardize (n3,upb3)

//checknum(n3,upb3)
RESULTIS rc

The next function sets n3 to nl1 * n2 using signed arithmetic. Both n1 and
n2 are assumed to be in standard form. The result is rounded.

It does this by clearing an accumulator t1 and the successively adding the
product of radix digits from n1 and n2 into appropriate positions in t1. These
products are typically larger than 9999 and so a carry operation is performed
occasionally to ensure all fraction digits in t1 are in the range 0 to 9999. Notice
that if the exponents of n1 and n2 are both zero then the result will have exponent
zero. Unless the result is zero the exponent of the result will be the sum of the
exponenents of the two operands. Having computed the product in t1, this result
is copied to n3, rounding it if upb3 is smaller the numupb.

AND mul (nl,upbl, n2,upb2, n3,upb3) = VALOF

{ LET sign = n1!0 XOR n2!0 // Set the sign of the result
LET el = ni1!1
LET e2 = n2!1
LET exponent = el + e2 // Initial exponent

LET carry = 7
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LET t1 = VEC numupb

IF iszero(nl,upbl) | iszero(n2,upb2) DO
{ setzero(n3,upb3)

RESULTIS TRUE
}

setzero(tl,numupb)
// Neither nl nor n2 are zero.

// Set the exponents of nl and n2 to zero
ni!1, n2!1 :=0, O
// Form the product nl*n2 in t1.
// Both nl and n2 are less than 1.0 so the product will be less than 1.0.
FOR i = 2 TO upbl DO
{ // Take each digit of ni
LET nl1i = n1!i

IF n1i DO
{LET p, x=7, 7
LET jlim = numupb+1-i

IF jlim > upb2 DO jlim := upb2

// j is in the range 2 to upb2, but the destination
// position i+j-1 must be <= numupb, so

// it+j-1 <= numupb ie j <= numupb+l-i

// j must also be <= upb2

FOR j = jlim TO 2 BY -1 DO

{pi=1+j-1 // The destination position
tl!p := tllp + nli * n2!j

}

carry := 0

FOR j = numupb TO 1 BY -1 DO
{ LET x = t1!j + carry

t1!j := x MOD 10000
carry := x / 10000
b
b
t1!'0 := sign
ti!l := t1!1 + exponent

standardize(t1,numupb)
copy (t1,numupb, n3,upb3)

// Restore the exponents of nl and n2
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ni'l, n2'1 := el, e2

//checknum(n3,upb3)
RESULTIS TRUE

The next function set n1 = k * nl1 where k is in the range -9999 to =9999.

AND mulbyk(k, nl,upbl) = VALOF
{ LET sign = nl!0
LET carry = 0O

standardize(nl,upbl)
IF n1!2=0 RESULTIS TRUE

IF k=0 DO

{ setzero(nl,upbl)
RESULTIS TRUE

}

IF k<O DO n1!'0, k := "nl1!'0, -k

// The result sign is correct and k is non zero.
// Multiply digits from the least significant end
// dealing with carry.

FOR i = upbl TO 2 BY -1 DO

{ LET x = n1!i * k + carry

nl!i := x MOD 10000
carry :=x / 10000
+
IF carry DO

{ // Shift the fractiomnal part to the right one place
// and adjust the exponent.
LET 1sdig = nl'upbl
FOR i = upbl-1 TO 2 BY -1 DO n1!(i+1) := nl'i

ni!l :=nl!l + 1
nl!2 := carry
IF 1lsdig >= 5000 DO addcarry(nl,upbl)

//checknum(nl,upbl)
RESULTIS TRUE
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The next function sets n2 = 1/n1. It uses a Newton-Raphson iteration based
on finding the value of z for which f(z) = (1/x—a) = 0. The slope (or differential)
of this function at x is —1/2% and this leads to the iteration: x, 1 = z, + z,(1 —
a X x,). This iteration require a good initial guess since it is easy to choose a
value that causes the iteration to diverge. Luckily we can use ordinary single
length division to help provide a good initial guess using the first 8 significant
decimal digits of n1. The implementation is otherwise quite straightforward. If
upb2 < numupb the result is rounded.

AND inv(nl,upbl, n2,upb2) = VALOF
{ // Standardize nl if necessary, then if nl is zero return FALSE,
// otherwise standardize set n2 = 1/nl.
// upbl is assumed to be > 2.
LET one = TABLE FALSE, 1, 0001 // The number +1.0
LET sign = nl1!0 // The sign of nl
LET e = 7 // To hold the exponent of nl
LET elim = -(numupb - 2 - numupb/4)

LET t1 = VEC numupb
AND t2 = VEC numupb
AND t3 = VEC numupb
AND t4 = VEC numupb

//checknum(nl,upbl)
IF n1!2=0 RESULTIS FALSE // Cannot take the inverse of zero.

IF numcmp(one,2, nl,upb1)=0 DO

{ settok(1l, n2,upb2) // The inverse of 1.0 is 1.0.
RESULTIS TRUE

}

e :=nl!l
n1!0, ni1!l := FALSE, O // Set nl to be in the range +0.0001 to +1.0000

// Select initial guess

{ LET w = n1!2 * 1_0000 + n1!'3
// 10000 <= w <= 99999999
LET a = muldiv(9999_9999, 1_0000, w)
setzero(t1,numupb)

t1!0 := FALSE // Set positive
t1!l1 =1 // Set the exponent
t1!2 :=a / 1.0000 // and two radix digits

t1!3 := a MOD 1_0000 // of the initial guess.
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{ // Start of Newton-Raphson loop

again:
mul (t1,numupb, nl,upbl, t2,numupb) // Set t2 = tlxnl

sub(one,2, t2,numupb, t3,numupb) // Set t3 := 1 - ti*ni

mul (t1,numupb, t3,numupb, t2,numupb)

add (t1,numupb, t2,numupb, t3,numupb)

IF t3!1>100 DO

{ // The iteration for 1/nl has diverged

newline()

writef ("The iteration for 1/nl has diverged*n")
writef ("nl= "); prnum(nl,upbl)

abort (999)

}
sub (t3,numupb, t1,numupb, t2,numupb)
UNLESS iszero(t2,numupb) DO
{ IF t2!'1 > elim DO

{ copy(t3,numupb, ti1,numupb)

GOTO again

}

}
}
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t310, t3!1 := sign, 1-e // Set the sign and exponent of the result

copy (t3,numupb, n2,upb2)

nl!0, ni1!'l := sign, e // Restore the sign and exponent of nl

//checknum(n2,upb2)
RESULTIS TRUE

The next function divides nl by a single radix digit k leaving the result in
nl. It does this using, so called, short division which is quite straightforwrd to

implement. The divisor can be negative.

AND divbyk(k, nl,upbl) = VALOF
{ LET sign, carry = 7, O
LET e = n1!1

standardize(nl,upbl)

IF k=0 RESULTIS FALSE
IF n1!2=0 RESULTIS TRUE
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sign := nl!0
IF k<O DO sign, k := "sign, -k

FOR i = 1 TO upbl-1 DO
{ LET x = carry*10000 + nl1!(i+1)

ni!i :=x / k
carry := x MOD k
}
nl!lupbl := carry
TEST ni1!1

THEN FOR i = upbl-1 TO 1 BY -1 DO n1!(i+1) := nl'i
ELSE e := e-1

nl!o :
ni'l :

sign
e

//checknum(nl,upbl)
RESULTIS TRUE

The next function sets n3 = n1 / n2 using signed arithmetic. After dealing
with the special case of n1=0, it does this by first calculating the inverse of n2
and then multiplying it by n1. This method is used since there is a good Newton-
Raphson iteration to calculate an inverse but not for a general division.

AND div(nl,upbl, n2,upb2, n3,upb3) = VALQOF
{ LET t1 = VEC numupb
LET t2 = VEC numupb

//checknum(nl,upbl)
//checknum(n2,upb2)

IF n1!2=0 DO
{ setzero(n3,upb3) // If nl is zero the result is zero
RESULTIS TRUE

}

IF n2!2=0 RESULTIS FALSE // Cannot divide by zero
inv(n2,upb2, t1,numupb) // t1 = 1/n2

mul (n1,upbl, tl,numupb, t2,numupb) // t2 = nl * 1/n2

copy (t2,numupb, n3,upb3) // n3 = t2 rounded
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//checknum(n3,upb3)
RESULTIS TRUE
}

The next function calculates the square root of nl leaving the result in n2.
It uses a Newton-Raphson iteration based on finding the value of = that causes
f(z) = 2> — a to be zero. The differential (the slope at ) of this function 2x
and this leads to the iteration: z,1 = (z, + a/x,)/2. After dealing with the
simple special case of n1=0, the function remembers the exponent of n1 in e then
sets n1!1 to zero causing n1 to be in range 0.0001 to 0.9999. A reasonable initial
guess is then chosen based on the first 8 decimal digits of n1 and the iteration
started. Once the iteration is complete, the exponent of the result is set. As can
be seen special care is needed if the original exponent was an odd number. The
final call of copy rounds the result, if necessary.

AND sqrt(nl,upbl, n2,upb2) = VALOF
{ // Set n2 to the square root of nl.
LET rc, prevrc = 7, -2

LET e = 7

LET elim = -(numupb - 2 - numupb/4)
LET t1 = VEC numupb

AND t2 = VEC numupb

AND t3 = VEC numupb

setzero(n2,upb2)
IF iszero(nl) RESULTIS TRUE // sqrt(0) = 0

standardize(nl,upbl)
// n1!2 will certainly be non zero

IF n1!0 RESULTIS FALSE // nl must be positive

e := nl!l // Remember the exponent of nl in e
ni!l := 0 // Cause nl to be in range 0001 to 9999

// nl is greater than zero

{ // Choose a reasonable initial guess
LET a = n1!2 * 10000 + n1!3 // 0001 <= a <= 9999_9999
LET guess = 100_0000

UNTIL muldiv(guess, guess, 1_0000_0000) >= a DO
guess := guess + guess
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guess := (guess + muldiv(a, 1_0000_0000, guess))>>1
guess := (guess + muldiv(a, 1_0000_0000, guess))>>1
guess := (guess + muldiv(a, 1_0000_0000, guess))>>1
guess := (guess + muldiv(a, 1_0000_0000, guess))>>1

// Place the initial guess in til
setzero(tl,numupb)
t1!2, t1!3 := guess/10000, guess MOD 10000

setzero (t2,numupb)
setzero (t3,numupb)

{ // Start of Newton=Raphson sqrt loop
again:
div(nl,upbl, t1,numupb, t2,numupb) // t2 = ni/tl
add(tl,numupb, t2,numupb, t3,numupb) // t3 = tl + nl/tl
divbyk(2, t3,numupb) // Set t3 := (t1 + n1/t1)/2

sub (t3,numupb, t1,numupb, t2,numupb)
UNLESS iszero(t2,numupb) DO
{ IF t3!1 + elim < t2!1 DO

{ copy(t3,numupb, t1,numupb)

GOTO again
}
}
}
t3!11 := e>=0 -> (e+1)/2, (e-1)/2
ni!l := e // Restore the exponent of nl

UNLESS (e&1)=0 TEST e>0 THEN divbyk(100, t3,numupb)
ELSE mulbyk(100, t3,numupb)

copy (t3,numupb, n2,upb2)

//checknum(n2,upb2)
RESULTIS TRUE

The next function set n2 = nl rounding if necessary.
AND copy(nl,upbl, n2,upb2) = VALOF

{ LET p = upbl
IF p > upb2 DO p := upb2
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FOR i
FOR i

ni'i
0 // Pad with zeroes

0TO p DO n2!i :
p+1 TO upb2 DO n2'i :

IF p>upb2 & nl1!(upb2+1) > 5000 DO addcarry(n2,p)

IF n2!2=0 RESULTIS standardize(n2,upb2)
//checknum(n2,upb2)
RESULTIS TRUE

The next function sets n2 = ABS n1, rounding if necessary.

AND copyu(nl,upbl, n2,upb2) = VALOF
{ LET p = upbl
IF p > upb2 DO p := upb2

FOR i
FOR i

nili
0 // Pad with zeroes

1 TO p DO n2'i :
p+1l TO upb2 DO n2!i :

IF p>upb2 & nl!(upb2+1) > 5000 DO addcarry(n2,p)

n2!0 := FALSE // Set the result to be positive
IF n2!2=0 RESULTIS standardize(n2,upb2)
//checknum(n2,upb2)

RESULTIS TRUE

The next function is mainly used internally in the arith library to help im-
plements rounding. It adds one at position p of the fraction digits of n1. Note
that if p is less than the upperbound of n1, the radix digits from psition p+1 to
the end are not changed.

AND addcarry(nl,p) = VALOF
{FOR i =p TO 2 BY -1 DO
{ LET x = n1!i
UNLESS x = 9999 DO { nl!i := x+1; RESULTIS TRUE }
ni'i := 0

// There is a carry out of the senior digit position.

// This can only happen if 1 was added to 9999 9999 .. 9999
// so n1!2 to nl'upbl are all zero.

nl!2 := 0001

ni!l :=nl1!1 + 1 // Correct the exponent
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//checknum(nl,p)
RESULTIS TRUE
}

The next function standardizes the high precision number it is given. It either
sets n1 to zero or ensures that n1!2 is non zero, shifting the fraction digits and
adjusting the exponent, if necessary.

AND standardize(nl,upbl) = VALOF
{LETp=2
UNTIL p>upbl | ni!p DO p := p+l

IF p>upbl DO

{ // The number is zero if every radix digit is zero.
n1!0, ni!l := FALSE, O // Other elements are already zero.
RESULTIS TRUE

UNLESS p=2 DO
{ // Shift the fractional part to the left
// and adjust the exponent.

FOR i = p TO upbl DO ni1!(2+i-p) := nili
FOR i = upbl-p+1 TO upbl DO ni'i := 0
ni!l :=nl!1 - p + 2 // Correct the exponent

RESULTIS TRUE

The next function sets d to the radius of a sphere centred at the origin that
has point p on its surface. If p represents the point (x,y, z) then d is given the

value representing /22 + y2 + 22.

AND radius(p,upbl, d,upb2) = VALOF
{ LET t1 = VEC numupb

LET t2 = VEC numupb

LET t3 = VEC numupb

LET t4 = VEC numupb

LET t5 = VEC numupb

UNLESS mul(p!0,upbl, p!0O,upbl, t1,numupb) RESULTIS FALSE
UNLESS mul(p'1,upbl, p'l,upbl, t2,numupb) RESULTIS FALSE
UNLESS mul(p!2,upbl, p!2,upbl, t3,numupb) RESULTIS FALSE
UNLESS add(t1,numupb, t2,numupb, t4,numupb) RESULTIS FALSE
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UNLESS add(t3,numupb, t4,numupb, t5,numupb) RESULTIS FALSE
UNLESS Sqrt(t5,numupb, d,upb2) RESULTIS FALSE

RESULTIS TRUE

The function inprod, defined below, computes the inner product of two 3D
vectors dirl and dir2 leaving the result in n3. The components of dirl and
dir2 have upperbounds upb1l and upb2, respectively. If dirl and dir2 represent
(a,b,c) and (z,y, z), respectively, the result placed in n3 represents ax + by + cz.
As will be shown on page 602, if (a,b,c) and (z,y, z) are direction cosines, the
result is the cosine of the angle between them.

AND inprod(dirl,upbl, dir2,upb2, n3,upb3) = VALOF
{ // dirl and dir2 are 3D vectors.
// ie dirl -> [dx1,dyl,dzl] and dir2 -> [dx2,dy2,dz2] where
// upbl is the upperbounds of dxl1, dyl and dzl
// upb2 is the upperbounds of dx2, dy2 and dz2
// n3 is set to the dx1xdx2+dyl*dy2*dzl*dz2
// If dirl and dir2 represent direction cosines, n3 will be the
// cosine of the angle between them.
LET t1 = VEC numupb

AND t2 = VEC numupb
AND t3 = VEC numupb
AND t4 = VEC numupb

mul (dir1!0,upbl, dir2!0,upb2, tl,numupb)
mul (dirl!1,upbl, dir2!1,upb2, t2,numupb)
mul(dirl!2,upbl, dir2!2,upb2, t3,numupb)
add (t1,numupb, t2,numupb, t4,numupb)

add (t3,numupb, t4,numupb, n3,upb3)
RESULTIS TRUE

The function crossprod, defined below, calculates the cross product of two
3D vectors dirl and dir2 leaving the result in dir3. The upperbounds of the
components of these three vectors are upb1, upb2 and upb3, respectively.

If dirl and dir2 represent (a, b, ¢) and (z,y, z), respectively, then the compo-
nents of dir3 are set to to represent (bz — cy, cx — az, ay — bx). The direction of
dir3 will be orthogonal to the plane specified by dirl and dir2, and its length
will be the product of the lengths of dirl and dir2 multiplied by the sine of the
angle between them. As a special case, if dirl = (1,0,0) and dir2 = (0,1,0),
then dir3 will represent (0,0, 1).
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AND crossprod(dirl,upbl, dir2,upb2, dir3,upb3) = VALOF
{ LET t1 = VEC numupb
AND t2 = VEC numupb

mul(dirl!1,upbl, dir2!2,upb2, t1,numupb) // t1 = bz
mul (dir1!2,upbl, dir2!'1,upb2, t2,numupb) // t2 = cy, cx-az and ay-bx,
sub(t1,numupb, t2,numupb, dir3!0,upb3) // dir3!0 = bz-cy

mul (dir1!2,upbl, dir2!0,upb2, ti1,numupb) // tl = cx
mul (dirl!l,upbl, dir2!2,upb2, t2,numupb) // t2 = az
sub (t1,numupb, t2,numupb, dir3!1,upb3) // dir3!0 = cx-az

mul (dir1!0,upbl, dir2!1,upb2, tl,numupb) // tl = ay
mul(dir1!1,upbl, dir2!2,upb2, t2,numupb) // t2 = bx
sub(t1,numupb, t2,numupb, dir3!2,upb3) // dir3!0 = ay-bx

RESULTIS TRUE

The function normalize, defined below, converts an arbitrary 3D vector to
one of unit length pointing in the same direction. Its implementation is straight-
forward.

AND normalize(dir, upb) = VALOF
{ // This function causes a 3D vector dir to be scaled to make it
// unit length. dir!0, dirl and dir!2 are the three components
// of the vector and each have upprbound upb. It is implemented
// dividing these numbers by radius(dir!O,upb, dir!l,upb, dir!2,upb)
// The resulting values are often call direction cosines.
LET d = VEC numupb
LET t = VEC numupb

UNLESS radius(dir,upb, d,numupb) RESULTIS FALSE

IF iszero(d,numupb) DO
{ settok(1, dir!0,upb)
setzero(dir!1l,upb)
setzero(dir!2,upb)
//writef ("Set dir to (1,0,0) since dir was too small*n")
RESULTIS TRUE

UNLESS div(dir!O,upb, d,numupb, t,numupb) RESULTIS FALSE
copy (t,numupb, dir!0,upb)
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UNLESS div(dir!1l,upb, d,numupb, t,numupb) RESULTIS FALSE
copy (t ,numupb, dir!1l,upb)

UNLESS div(dir!2,upb, d,numupb, t,numupb) RESULTIS FALSE
copy (t,numupb, dir!2,upb)

RESULTIS TRUE
The function exptok, defined below, computes n1* by the reasonably efficient
method described on page 61.

AND exptok(k, nl,upbl, n2,upb2) BE
{ // Set n2 to ni1"n rounded where n is an integer >= 0.

LET P = VEC numupb
AND R = VEC numupb
AND T = VEC numupb

copy(nl,upbl, P,numupb) // To hold the next power of nl
settok(1, R,numupb) // To hold the result

WHILE k DO
{ IF (k & 1)>0 DO
{// Set R =R * P ie multiply R by the current power of nl
mul (R,numupb, P,numupb, T,numupb)
copy (T ,numupb, R,numupb)
}
// Set P to P x P
mul (P,numupb, P,numupb, T,numupb)
copy (T,numupb, P,numupb)
k = k>>1
}
copy (R,numupb, n2,upb2)
}

The function checknum, defined below, is primarily a debugging aid that
checks that its argument is valid standardized number.

AND checknum(nl,upbl) BE
{ // The calls abort(999) if nl is not in standard form.
LET sign, e, d1 = n1!0, nl1!'1, ni!2
UNLESS sign=TRUE | sign=FALSE DO
{ writef("nl has a bad sign field*n")
writef("nl= "); prnum(nl,upbl)
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abort (999)
RETURN
}
IF d1=0 DO
{ // Check nl represents zero.
FOR i = O TO upbl UNLESS n1!i=0 DO
{ writef("n1!2 is zero but other elements are not*n")
writef("nl= "); prnum(nil,upbl)
abort (999)
RETURN

X
RETURN

X

// Check that all radix digits are in range O to 9999

FOR i = 2 TO upbl UNLESS 0 <= nl1!i <= 9999 DO

{ writef("Not all radix digits of nl are in range O to 9999*n")
writef("nl= "); prnum(nil,upbl)
abort (999)
RETURN

5.17.1 A Simple Example

The arith library was developed and tested using a variant of the program
in bcplprogs/tests/testarith.b, but rather than describing this program, a
more interesting program called fastfib.b will be presented. This program ex-
ecises most of the arith library including particularly the functions div, sqrt
and exptok. It computes high precision Fibonacci numbers and can be used
to find the position of the first Fibonacci number that has 1000 decimal digits
which corresponds to problem 25 in the interesting collection of over 500 some-
what mathematical programming problems set in www.ProjectEuler.net These
problems range from being quite simple to extremely challenging, and are well
worth looking at. This program is as follows.

GET "libhdr"

MANIFEST {
ArithGlobs=350
numupb = 2+250+10 // Size of numbers used in the library,
// good for 1000 decimals 40 check digits.
nupb = numupb-5 // Size of numbers used in this program,
// allowing 5 guard digits
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GET "arith.h"
GET "arith.b" // Get the high precision library

GLOBAL {
tracing:ug

rootb

invrootb

P // To hold (1+sqrt(5))/2

Q // To hold (1-sqrt(5))/2

One // To hold 1.0

pos // Position of the fibonacci number
F // To hold fib(pos)

T1 // Temp value

LET start() = VALOF
{ LET argv = VEC 50

UNLESS rdargs("n/N,-t/S", argv, 50) DO
{ writef ("Bad arguments*n")

RESULTIS O
}
pos := 5
IF argv!0 DO pos := !(argv!0) // pos/N
tracing := argv!l // -t/8

rooths := getvec(nupb)

invroot5 := getvec(nupb)
P := getvec(nupb)

Q := getvec(nupb)

F := getvec(nupb)

One := getvec(nupb)

T1 := getvec(nupb)

settok(5, T1,nupb)
sqrt (T1,nupb, root5,nupb)
inv(root5,nupb, invroot5,nupb)

IF tracing DO
{ writef ("root5=*n")
pronum(root5,nupb)
// Check rooth
mul (root5,nupb, root5,nupb, T1,nupb)

487
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writef ("root572=+n"); prnum(T1,nupb)
newline()

// Check invrooth

writef ("invroot5=#*n")

prnum(invroot5,nupb)

mul (invroot5,nupb, invroot5,nupb, T1,nupb)
writef ("invroot5~2=*n")

proum(T1,nupb)

settok(l, One,nupb)

// Set P to (1 + sqrt(5))/2
add (One,nupb, rootb,nupb, P,nupb)
divbyk(2, P,nupb)
IF tracing DO
{ writef("P = (1 + sqrt(5))/2 =*n")
prnum(P,nupb)
newline()
}
// Set Q to (1 - sqrt(b))/2
sub(One,nupb, rootb5,nupb, Q,nupb)
divbyk (2, Q,nupb)
IF tracing DO
{ writef("Q = (1 - sqrt(5))/2 =*n")
proum(Q,nupb)
newline()

}

//writef ("Calling fib(%n, F,%n)*n", pos, nupb)
fib(pos, F,nupb) // Compute fibonacci of pos

writef ("fib(%n) =*n", pos)
proum (F,nupb)

{ LET k, d1 = 4xF!1-4, F!2
UNTIL d1 = 0 DO k, d1 := k+1, d1/10
IF k<=0 DO k :=1
writef ("Number of decimal digits: %n*n", k)

}

freevec(rooth)
freevec(invrooth)
freevec(One)
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freevec(P)
freevec(Q)
freevec (F)
freevec(T1)

RESULTIS O

AND fib(n, nl,upbl) BE

{

}

LET rc
LET t1
AND t2
AND t3

0

VEC numupb
VEC numupb
VEC numupb

exptok(n, P,nupb, tl,nupb)

IF tracing DO

{ writef ("P"%n:*n", n)
prnum(t1,nupb)

}

exptok(n, Q,nupb, t2,nupb)

IF tracing DO

{ writef ("Q " %n=*n",n)
prnum(t2,nupb)

}

sub(tl,nupb, t2,nupb, t3,nupb)

IF tracing DO

{ writef ("P"%n-Q " %n=*n",n,n)

prnum(t3,nupb)
}

mul (t3,nupb, invroot5,nupb, nl,upbl)

IF tracing DO

{ writef ("(P"%n-Q"%n) by sqrt(5) unrounded*n",n,n)

pronum(nil,upbl)
}

rc := roundtoint(nl,upbl)

UNLESS rc=0 | rc=9999_9999 DO
{ writef("Higer precision required, rc=%z8*n", rc)

abort (999)
}

489

As can be seen it computes fib(n) using the formula derived on page 60, namely:

Fib(n) =

(1+y/5)" = (1= y5)"

27./5
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When this program is run with argument 4782 it generates the following output.

0.000> fastfib 4782

fib(4782) =

+0.1070 0662 6638 2758 9367 6498 0584 4573 9688 5083
6838 9663 2151 6650 1323 5203 3753 1452 0604 6940
4062 1889 1475 8248 9792 6578 0469 4888 1775 9195
7484 3364 6667 2569 9595 1299 6030 4612 6274 8092
4821 8614 4069 4330 5123 4774 4427 5027 3781 7530
8757 9391 6661 9214 9259 1867 5955 3966 4228 3714
8943 1130 7469 9503 4395 4700 1985 4326 0972 3067
2901 9287 0526 4472 4372 6117 7158 2182 5548 4911
2052 5013 2014 7861 2965 9313 8179 2235 5596 5745
2039 5061 3755 1467 8375 4322 9119 6021 2993 4048
2607 0617 5397 7068 4706 8202 8954 8690 2666 1854
3512 4521 9003 6948 0641 3574 4747 0911 7076 1976
6945 6910 7009 8024 3934 3961 7474 1037 3691 2503
2313 6553 2164 7736 9702 3167 7550 5159 5173 5184
6057 9954 9194 1096 7778 3732 2966 5796 5816 4651
3903 4881 5425 6310 1842 2419 0259 8460 8800 0110
1862 5555 0245 4939 3711 3651 6570 3944 7629 5847
1454 8523 4259 5042 8582 4253 0608 3544 4354 2821
2611 0089 9286 3795 0480 0689 4330 3097 7321 7834
8645 4311 3205 7656 5986 8456 2886 1680 8718 6938
3529 7350 6439 8629 7640 6600 0072 3562 9179 0520
7051 1640 7761 4812 4918 8583 0945 9405 6668 8339
1093 5094 4456 5763 5766 6151 6193 1775 3792 8916
6158 1327 1596 1687 7487 9838 2182 0492 5203 4847
3874 3847 3677 1934 5127 8702 9218 6362 5062 7816
0000 0000 0000 0000 0000 0000 E250

Number of decimal digits: 1000

1.550>

Although this program may be good for really large fibonacci numbers with
perhaps a million digits, the following naive program (£ib1000.b) is much faster
for a mere 1000 digits.

/*

This program finds the position of the first fibonacci number having
1000 decimal digits. The first fibonacci number has position zero.
Ie £ib(0)=0, fib(1)=1, £ib(2)=1, £fib(3)=2, fib(4)=3, fib(5)=5, etc

This is a naive implemetation using vectors of digits of radix 100_00_000.

*/
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GET "libhdr"

MANIFEST {

}

radix = 100_000_000
digs 1000 // Number of decimal digits
upb digs / 8 // 8 decimal digits per word

LET start() = VALOF

{

LET a = getvec(upb)

AND b = getvec(upb)

LET upba, upbb = 7, 7

LET t, upbt = 7, ?

LET n =7

LET w =1

LET k = (digs-1) / 8

FOR i = 1 TO (digs-1) MOD 8 DO w := 10%w

// Set a=0 and b=1
FOR i = 0 TO upb DO a!i, b!i := 0, O

b!0 =1
upba, upbb := 0, O
n :=1 // n is the position of the fibonacci number in b

{ IF b!'k >= w BREAK

// b is greater than a
upba := add(b,upbb, a,upba) // Set a to b + a

n :=n+l // n is now the position of the fibonacci number in a
//pr(n, a, upba)

// Swap a and b

t, upbt := a, upba

a, upba := b, upbb

b, upbb := t, upbt
} REPEAT

writef ("The first fibonacci number with %n digits is at position %n*n",
digs, n)

freevec(a)
freevec(b)
RESULTIS TRUE
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AND add(a,upba, b,upbb) = VALOF
{ // Add a to b assuming a is greater than b, ie upba>=upbb
LET carry = 0

FOR i = 0 TO upba DO
{ LET x = a!i + b!i + carry

b'i := x MOD radix
carry := x / radix
}
IF carry DO

{ upba := upba+l
blupba := carry

}
RESULTIS upba
}
AND pr(n, a, upb) BE
{ writef ("%i5: ", n)
FOR i = upb TO O BY -1 DO writef(" %i8", a!i)
newline()
}

5.18 The Airy Disk

This program uses the arith library described in the previous section to calculate
the diffraction pattern caused by a point source of light at infinity observed by a
telescope with an aperture of 100mm and focal length of 1000mm.

It does this by considering many rays of light with wave length 550nm passing
through an assumed perfect circular objective lens of diameter 100mm causing
the wave front to become spherical with a radius of 1000mm centred at the focal
point. The effect of rays reaching nearby points on the focal plane are summed
taking account of their different phases. The resulting intensities are plotted
to show the size of the central spot and the radius of some of the surrounding
diffraction rings. The central spot is called the Airy disk named after George Airy
who, in 1835, was the first to give a mathematical explanation of this pattern.
The matematical theory states that the radius of the innermost dark ring should
be
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r=122\x F/A

where A is the wave length of the light (=550nm)
F ' is the focal length (=1000mm)
A is the aperture (=100mm)
(The ratio F'/A is commonly called the F number of
a camera or telescope)

So for the telescope under consideration
r=1.22 x (550 x 1076) x 1000/100 = 0.00671mm

The program confirms this result. The Rayleigh criterion of barely being able to
resolve two close stars is when the centre of the Airy disk of one of the stars is on
the edge of the Airy disk of the other. Increasing the magnification of the image
will not help.

The program starts as follows.

MANIFEST {
ArithGlobs=350
numupb = 2+10 // Allow a maximum precision of about 40 decimal digits.

}

GET "libhdr"
GET "arith.h" // Insert the arith high precision library
GET "arith.b"

GET "sdl.h" // Insert the SDL library
GET "sdl.b"

GLOBAL A{
stdin:ug
stdout

tracing

// Colours
c_black
c_white
c_gray
c_blue
c_red

screen // For the SDL graphics
fmt // The graphics format

// All numerical values use high precision numbers.
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pvx; pvy; pvz // Vextors holding the coordinates of points
// on the spherical wave front touching the objective

pvcount // Count of the number of point in pvx, pvy and pvz.
qvx // X coordinates of points in the focal plane

qvcount // Count of the number of points in qvx

intensityv // Diffraction intensity of points in the focal plane
spacev

spacet

spacep

centrex // Position of (0,0) in the SDL screen
centrey

The z axis is the axis of the telescope in direction from the objective lens
towards the mirror. The z axis is to the right when viewing the objective in the
z direction, and y is upwards. The origin is on the z axis in the plane of the
thin perfect objective lens. The focal point has coordinates (0, 0, F), where F is
1000mm.

The vectors pvx, pvy and pvz hold the coordinates of thousands of points on
the spherical wave front touching the objective lens. Each point is derived from
a lattice point in the plane of the objective lens within 50mm of the 2 axis.

The program continues as follows.

MANIFEST {
pvupb = 101%100 // UPB of the vectors holding the coordinated
// of points on the spherical wave front.

nupb = 2+8 // The size of most high precision numbers used
// in the calculation. This setting allows about
// 32 decimal digits of precision.

spacevupb = 1000000
F = 1000 // The focal length

A 100 // The aperture
Ar = A/2 // Objective lens radius

LET drawdot(x, y) BE
{ // Draw a 3x3 dot at (x,y) relative to (centrex,centrey).
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// This function is used to plot points on the graph.
LET sx = centrex + x

LET sy = centrey + y

drawfillrect(sx-1, sy-1, sx+1, sy+1)

updatescreen()

LET initscreen() BE
{ initsdl()
mkscreen("Airy Diffraction Pattern", 800, 400)
// Define some colours
c_black := maprgb( 0, 0, 0)
c_white := maprgb(255, 255, 255)
c_gray := maprgb(200, 200, 200)
c_blue maprgb( 0, 0, 255)
c_red maprgb (255, 0, 0)

// Choose the screen position of (0,0)
centrex := screenxsize/2
centrey := 60

writef ("screenxsize=Yn screenysize=)n#*n", screenxsize,screenysize)
writef ("centrex=%n centrey=)n*n", centrex, centrey)

fillsurf (c_gray)
updatescreen()

}

LET start() = VALOF
{ LET argv = VEC 50

stdin := input()
stdout output ()

UNLESS rdargs("-t/s", argv, 50) DO

{ writef("Bad arguments for airy*n")
RESULTIS O

}

tracing := argv!0 // -t/s

initscreen()

spacev := getvec(spacevupb)
spacet := spacev+spacevupb
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spacep := spacet

mkfront ()
drawgraph ()

freevec(spacev)

writef ("Space used = %n out of n*n", spacet-spacep, spacevupb)
RESULTIS O

AND newvec(upb) = VALOF
{ LET p = spacep - upb - 1
IF p<spacev DO
{ writef ("*nMore space needed*n")
abort (999)
RESULTIS O
}
spacep :=
FOR 1 =0
RESULTIS p

p
TO upb DO p!i := 0

AND newnum(upb) = newvec (upb)

The function initscreen creates a suitable SDL window that will be used
to draw a graph showing the intensity of points in the focal plane near the z
axis. The function drawdot draws a 3x3 square representing a point on the
intensity curve. The main function start reads the command arguments setting
the variable tracing, but currently this variable is not used. It also allocated
some space using getvec for use by newvec which is mainly used to allocate
the vectors holding high precision numbers. Before returning from start it calls
freevec to return the space obtained by getvec.

AND mkfront() BE
{ // Create the coordinates of all the points on the
// spherical wave front.
LET t1 = VEC nupb
AND t2 = VEC nupb
AND t3 VEC nupb

MANIFEST { step=4 }

// step controls the number of points chosen in the objective lens.
// The larger step is the faster the program runs but the resulting
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// graph becomes less accurate.

pvcount := 0

pvx := newvec(pvupb) // These will hold the x, y and z coordinated
pvy := newvec(pvupb) // of points on the spherical wave front.

pvz := newvec (pvupb)

FOR x = 0 TO +Ar BY step DO
FOR y = 0 TO +Ar BY step IF x*x+y*y <= Ar*Ar DO

{ // (x,y) are the coordinates of a lattice point in the plane of
// the objective lens within a distance Ar from the z axis.
LET Fnum = TABLE FALSE, 1, F // F as a high precision number.

// (x,y,0) is a point in the first quadrant of the objective lens

LET dx = VEC nupb
AND dy = VEC nupb
AND dz = VEC nupb

LET nx, ny, nz = 7, 7, 7 // Three will hold the x,y and z
// coordinates of a point on the
// spherical wave front.

//uritef ("*nx=%i3 y=4i3*n", x, y)
//abort (1000)

settok( x, dx,nupb) // Direction of the line from the focal point
settok( y, dy,nupb) // to the point (x,y,0) in the objective lens.
settok(-1000, dz,nupb)

//writef ("dx= "); prnum(dx, nupb)
//writef ("dy= "); prnum(dy, nupb)
//writef ("dz= "); prnum(dz, nupb)

normalize (@dx,nupb)

//writef ("*nAfter normalisation we have direction cosines*n")

//writef ("dx= "); prnum(dx, nupb)

//writef("dy= "); prnum(dy, nupb)

//writef ("dz= "); prnum(dz, nupb)

//newline ()

// (dx,dy,dz) is now a unit vector in direction focal point to (x,y,0)

// Multiply dx by F
mulbyk (F, dx,nupb)
//uritef ("Multiply dx by F where F=Ynx*n", F)
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//uritef ("dx= ") ;prnum(dx,nupb)
//newline()

// Multiply dy by F

mulbyk (F, dy,nupb)

//writef ("Multiply dy by F where F=Yn*n", F)
//uritef ("dy= ") ;prnum(dy,nupb)

//newline ()

mulbyk(F, dz,nupb)

//uritef ("Multiply dz by F where F=Yn*n", F)
//uritef("dz= ") ;prnum(dz,nupb)

//newline()

// Add the coordinates (0,0,1000) of the focal point
add(Fnum,2, dz,nupb, tl,nupb)

copy (t1,nupb, dz,nupb)

//writef ("Add F to the z coordinate where F=Yn*n", F)
//writef ("dz= ") ;prnum(dz,nupb)

// (dx,dy,dz) is now a point on the spherical wave front in
// the first quadrant.

nx := newnum(nupb) // Allocate the numbers to hold the
ny := newnum(nupb) // x, y and z coordinates of a point
nz := newnum(nupb) // on the spherical wave front.

copy (dx,nupb, nx,nupb)
copy (dy,nupb, ny,nupb)
copy(dz,nupb, nz,nupb)

// Store these coordinates in pvx, pvy and pvz.

pvcount := pvcount+l
pvx!pvcount := nx // A point in the first quadrant
pvy!pvcount := ny // ie nx>=0 and ny>=0

pvz!pvcount := nz
//uritef ("Wave front point %i4 for (%i3,%i3)*n", pvcount, x,y)
//writef ("x= "); prnum(nx, 4)
//writef ("y= "); prnum(ny, 4)

//writef ("z= "); prnum(nz, 4)
IF x=0 & y=0 LOOP

UNLESS x=0 DO
{ nx := newnum(nupb) // Allocate the numbers to hold the
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ny := newnum(nupb) // x, y and z coordinates of a point
newnum(nupb) // on the spherical wave front.

nz :

copy (dx,nupb, nx,nupb)
copy (dy,nupb, ny,nupb)
copy(dz,nupb, nz,nupb)

nx!0 := TRUE // Negate just x -- second quadrant
pvcount := pvcount+l

pvx!pvcount := nx // A point in the second quadrant
pvy!pvcount := ny // ie nx<0 and ny>=0

pvz!pvcount := nz

//uritef ("Wave front point %i4 for (%i3,%i3)*n", pvcount, -x,y)
//writef ("x= "); prnum(nx, 4)
//uritef("y= "); pronum(ny, 4)
//writef ("z= "); prnum(nz, 4)

IF x>0 & y>0 DO
{ nx := newnum(nupb) // Allocate the numbers to hold the

ny := newnum(nupb) // x, y and z coordinates of a point
nz := newnum(nupb) // on the spherical wave front.

copy (dx,nupb, nx,nupb)
copy (dy,nupb, ny,nupb)
copy(dz,nupb, nz,nupb)

nx!0, ny!0 := TRUE, TRUE // Negate x and y -- third quadrant
pvcount := pvcount+l

pvx!pvcount := nx // A point in the third quadrant
pvy!pvcount := ny // ie nx<0 and ny<O0

pvz!pvcount
//uritef ("Wave front point %i4 for (%i3,%i3)*n", pvcount, -x,-y)
//uritef ("x= "); prnum(nx, 4)

//uritef("y= "); pronum(ny, 4)

//writef ("z= "); prnum(nz, 4)

nz

IF x>=0 & y>0 DO
{ nx := newnum(nupb) // Allocate the numbers to hold the

newnum(nupb) // x, y and z coordinates of a point
newnum(nupb) // on the spherical wave front.

ny :
nz :

copy (dx,nupb, nx,nupb)
copy (dy,nupb, ny,nupb)
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copy (dz,nupb, nz,nupb)

ny!0 := TRUE // Negate just y -- Fourth quadrant
pvcount := pvcount+l

pvx!pvcount := nx // A point in the fourth quadrant
pvy!'!pvcount := ny // is nx>=0 and ny<O0

pvz!pvcount := nz
//writef ("Wave front point %i4 for (%i3,%i3)#*n", pvcount, x,-y)
//writef ("x= "); prnum(nx, 4)
//writef ("y= "); prnum(ny, 4)
//wuritef ("z= "); prnum(nz, 4)
}

3

writef ("Number of points on the wave front = %n*n", pvcount)
//abort (1001)
}

This function considers every grid point in the plane of the objective lens that
is no more than Ar (50mm) from the z axis. For each point it constructs a line
to the focal point and computes the coordinates of the point on this line that is
1000mm from the focal point. These coordinates are placed in the vectors pvx,
pvy and pvz. Since the telescope is symmetric about the z axis, the computation
is only done for points in the first quadrant (when z > 0 and y > 0). The
coordinates of points on the wave front in the other quadrants just involve sign
changes.

You can imagine the result is a circular disc with a shallow spherical depression
uniformly covered with thousands of point sources of light, and since they are on
the wave front they will all be in phase.

The next function drawgraph draws the graph showing the intensity of the
resulting image at points in the focal plane close to the z axis.

AND drawgraph() BE

{
moveto (0, centrey)
drawto(screenxsize, centrey)
moveto(centrex, 0)
drawto(centrex, screenysize)

setcolour(c_black)

moveto(centrex— 671%3/10, centrey-20)

drawto(centrex- 671%3/10, centrey+20)

plotf (centrex- 671%3/10 - 40, centrey-40, "-0.00671mm")

moveto(centrex+ 671*3/10, centrey-20)
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drawto(centrex+ 671%3/10, centrey+20)
plotf (centrex+ 671*%3/10 - 40, centrey-40, "+0.00671mm")

updatescreen()

// Plot the intensity points
FOR r = 0 TO 126 BY 1 DO // r is in units of 0.0001mm

{ LET fx = VEC nupb // To hold the coordinates of a point on the focal
LET fy = VEC nupb // plane at a distance r from the z axis.
LET fz = VEC nupb
LET t1 = VEC nupb

LET lambda = VEC nupb // To hold the wave length 550nm.
LET angle = 0
LET sum = O

str2num("0.000550", lambda,nupb) // Average wave length of visible light
//writef ("lambda= "); prnum(lambda, nupb)

settok(r, fx,nupb)

UNLESS r=0 DO fx!1 := fx!1 - 1 // Divide fx by 10000
setzero (fy,nupb)

settok (1000, fz,nupb)

// Iterate through all the points on the wave front.
FOR i = 1 TO pvcount DO

{ LET x = pvx!i // Coordinates of the next point
LET y = pvy!i
LET z = pvz!i

LET dx = VEC nupb
AND dy = VEC nupb
AND dz = VEC nupb
AND VEC nupb

Q.
]

AND diff = VEC nupb // The difference between the length
// the ray from the selected point on
// the wave front to the selected point
// the focal plane.

//writef ("*ni=%i4 r=%7.4dmm*n", i, r)
//writef ("fx= "); prnum(fx, nupb)
//writef ("fy= "); prnum(fy, nupb)
//uritef ("fz= "); prnum(fz, nupb)
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//writef ("x=  "); prnum(x, nupb)
//writef ("y= "); prnum(y, nupb)
//writef ("z= "); prnum(z, nupb)

//writef ("Calling sub(x,nupb, fx,nupb, dx,nupb)#*n")
//writef("x= "); prnum(x, nupb)
//writef ("fx= "); prnum(fx, nupb)

sub(x,nupb, fx,nupb, dx,nupb)
sub(y,nupb, fy,nupb, dy,nupb)
sub(z,nupb, fz,nupb, dz,nupb)

//writef ("dx= "); prnum(dx, nupb)
//IF i=54 DO abort(5544)

//writef("dy= "); prnum(dy, nupb)

//writef ("dz= "); prnum(dz, nupb)

radius (@dx,nupb, d,nupb)

//writef("d= "); prnum(d, nupb)

// d is the distance between the selected point on the wave front
// and the selected point in the focal plane.

sub(d,nupb, fz,nupb, diff,nupb)
//writef ("diff="); prnum(diff, nupb)
div(diff,nupb, lambda,nupb, tl,nupb)
//writef ("t1= "); prnum(tl, nupb)

// t1 is diff divided by the wavelength of light.

// The integer part of tl1 is the number of complete wavelengths
// in diff, and the fractional part is the phase represents

// as a number in the range -0.9999 to +0.9999. For digits

// of precision is sufficient so we set angle to the

// first 4 decimal digits after the decimal point. -1.0000

// represents -180 degrees and +1.0000 represents +180 degrees.

angle := -1

IF t1!'1= 1 DO angle := t1!3
IF t1!1= 0 DO angle := t1!2
IF t1!1< 0 DO angle := 0

IF angle<O DO

{ writef("System error: angle too large+*n")
abort (999)

}
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IF t1!'0 DO angle := -angle

// angle is in the range -9999 to +9999,
// representing -180 to +180 degrees.
//writef ("fx= "); prnum(fx, nupb)
//writef ("t1= "); prnum(tl, nupb)
//writef ("angle=%8.4d*n", angle)
//abort (1000)

// We now convert this angle to radians and take the cosine
// which we then convert to a numbe in the range -1_0000 to +1_0000.
{ LET fangle = sys(Sys_flt, fl_float, angle)
LET x = sys(Sys_flt, fl_cos,
2.0 #* 3.14159 #* fangle #/ 1_0000.0)
LET cosangle = sys(Sys_flt, fl_fix, x #x 10000.0)
// We add all the cosines
sum := sum + cosangle
//writef ("%i4/%i4: %8.4d sum=%8.4d*n", i, pvcount, cosangle, sum)
}
//IF i>=53 DO
//IF r=126 DO abort(1001)
}

sum := sum / pvcount // Take the average cosine
sum := sum*sum/10000 // and square it to give the intensity.
writef ("r=)7.4d mm intensity= %i6*n", r, sum)

//abort (1001)
setcolour(c_black)
drawdot (+r*3, sum/30) // Plot the resulting two points
drawdot (-r*3, sum/30)
updatescreen()

//abort (1002)

}
}

Strictly speaking, we should take the average of intensities over many different
phases of the the wave front. But even without doing this the resulting graph is
reasonably accurate. Note that the point on the 2z axis will give the maximum
intensity and points at a distance of 0.00671mm where the first dark ring occurs
has intensity zero corresponding to an amplitude of zero for all phases of the wave
front.

When this program, runs it generates the following window showing a graphs
that confirms that, for a telescope with a 100mm objective lens and a focal length
of 1000mm, the Airy disk has a radius of 0.00671mm.
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5.19 A Catadioptric Telescope

This program is a demonstration of ray tracing through lenses and mirrors. It
concentrates on the design of a Hamiltonian catadioptric telescope consisting of
a convex objective made of crown glass and a mirror made of flint glass silvered
on its back surface. All the surfaces are spherical but the resulting spherical
aberration can be minimised by careful placement of the mirror and the choice
of the radii of four optical surface. At the same time chromatic aberration can
also be minimized. The objective lens and mirror are arranged as follows.

Objective lens Mirror

R1 R2 R3|/ R4

— ——

S Focal plane

Analysis of optical instruments is renowned for requiring high precision arith-
metic, so the arith is used library to perform the calculations to sufficient pre-
cision. Currently numbers with with about 60 significant decimal digits are used
while allowing the library functions to use upto 72. This precision can be changed
easily if required.

The program uses a BCPL system that includes the SDL graphics library
since it draws an image on the focal plane resulting from point sources of blue
and red light light at infinity from directions on or near the axis of the telescope.
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For each direction, 17 rays are chosen using different entry points through the
objective lens. Since spherical and chromatic aberration cannot be fully corrected
the images contain scatterings of blue and red dots. The program attempts to
improve the geometry of the telescope iteratively minimising this scattering. The
iteration only changes the radii of the spherical front and rear surfaces of the
objective lens and the front and rear surfaces of the mirror. From a well chosen
initial setting the program can find a near optimum design for the telescope. If
we can obtain a design that causes the scattering to be no larger than the size of
the corresponding Airy disk, further optimization will not improve the resolution
of the telescope.

The program is called cataopt.b and starts as follows, declaring all the global
variables and manifest constants needed.

MANIFEST {
ArithGlobs=350
numupb = 2+18 // Allow a maximum precision of about 72 decimal digits

}

GET "libhdr"
GET "arith.h"
GET "arith.b"

GET "sdl.h"
GET "sdl.b"

// Compile the arith library as a separate section.

MANIFEST {
ArithGlobs=350
numupb = 2+18 // Allow a maximum precision of about 72 decimal digits

}

GET "libhdr"
GET "arith.h"
GET "sdl.h"

GLOBAL {
stdin:ug
stdout

spotmag // This specified the magnification of spot
// drawn by drawdot.

pausing // Pause when the geometry improves

tracing
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reduced // =TRUE when the geometry improves

// Colours
c_black
c_white
c_gray
c_blue
c_red

screen // For the SDL graphics
fmt // The graphics format

R1 // Objective lens front radius

prevR1

Cl // Centre of objective lens front

R2 // Objective lens rear radius

prevR2

C2 // Centre of objective lens rear surface
R3 // Concave mirror front radius

prevR3

C3 // Centre of concave mirror front surface
R4 // Concave mirror silvered surface radius
prevR4

C4 // Centre of concave mirror silvered surface
T1 // Objective thickness

T2 // Mirror thickness

MirrorRadius // Actual mirror radius
D // The distance between the objective and mirror.

// Typically about 700mm
F // The z coordinate of the focus plane. Typically F=0

deltaR1

deltaR2

deltaR3

deltaR4

factor // A power of ten used in computing the next delta
initfactor // This hold the value of the f argument

spotsize // Current spot size or -1

dist // Distance from y average to theoretical y centre.

spotvalue // Set to spotsize+5*dist
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bestspotvalue // The best spotvalue so far
bestdist // Set to dist of the best spotvalue.
bestspotsize // Set to spotsize of the best spotvalue.

// Directions at small angles in the y-z plane

dirOcx; dirOcy; dirOcz // Parallel to the telescope axis.
dirlcx; dirlcy; dirlcz // about 1/8 degrees of the axis.
dir2cx; dir2cy; dir2cz // about 1/4 degrees off the axis.

Inx; Iny; Inz // Coordinates of the entry point in plane z=0

Outx; Outy; Outz // Coordinates of the exit point on the front
// surface of the mirror.

outdircx; outdircy; outdircz // Direction of the out ray

Arad // Radius of the A circle in the objective, typically 50mm
Brad // Radius of the B circle in the objective, typically 25mm

root2 // Two useful conatants
one

spacev
spacet

spacep

currentline // A byte vector with upb=255, used
// when reading catageometry.txt

iterations // Number of iterations to perform

spotOvx // Dot coordinates is the focal plane
spotOvy // resulting from point light sources
spotlvx // from three directions, 0, 1/8 and
spotlvy // 1/4 degree from the axis. Note the
spot2vx // moon has a angular radius of
spot2vy // about 1/4 degree.

geometrystream // Used when reading or writing catageometry.txt
// This holds the latest setting of R1 to R4.

// The refractive indices of crown and flint glass
// for both air to glass and glass to air.
crownblueindex; crownblueinvindex

crownredindex; crownredinvindex

flintblueindex; flintblueinvindex

flintredindex; flintredinvindex
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centrex // Centre of the SDL screen
centrey

X
MANIFEST {
nupb = 2+15 // Size of most high precision numbers, allowing

// about 60 decimal digits of precision.
// If p is a number

//  p'o TRUE is negative, = FALSE otherwise

//  p!l The exponent, ie the power of 10000 to multiple or
// divide the fractinal part by.

// p!2 .. plupb is the fractional part representing a

// value in the range O to 1.0

spacevupb = 10000

Blue=1 // Specifying colours used in raytrace.
Red=2

The z-axis is the axis of the telescope in direction from the centre of the objective
lens towards the mirror. The z-axis is to the right when viewing the objective in the z
direction, and y is upwards. The origin is on the z axis att the centre of the objective
lens. The separation D is the z coordinate of where the silvered surface of the mirror
intersects the z-axis. The focal plane is at z=0 and the setting of D=700 allows the
telescope to have a focal length of between 700mm and 1400mm. The optimisation
process aims for a focal length of 1000mm.

The program continues as follows.

LET drawdot(dir, x, y) BE
{ // Draw a 3x3 dot at (x,y) relative to (centrex,centrey)
// x and y are in units of 1/10000mm.
// dir = 0, 1 or 2 specifying the direction of the
// incoming ray.
// Direction 1 the image spot on the focal plane is centred
// at x=0 and y = - 1000%/(8%60) = -2.0833mm
// For direction 2 the y coordinate is -4.1666mm

LET spotcentrex = centrex
LET spotcentrey = centrey - muldiv(screenysize, 2_0833*dir, 8_0000)

// Place the dot relative to the origin
y =y + 2_0833*dir



5.19. A CATADIOPTRIC TELESCOPE 209

// Magnify the spot dot
X, ¥ = X * spotmag, y * spotmag

// These are in units of 1/10000mm relative to the spot centre.

// Convert to screen coordinates assuming screenysize is
// equivalent to 8mm

X := spotcentrex + (screenysize * x) / 8_0000

y := spotcentrey + (screenysize * y) / 8_0000

drawfillrect(x-1, y-1, x+1, y+1) // Draw a 3x3 dot

setcolour(c_black)
moveto (spotcentrex-10, spotcentrey)
drawto(spotcentrex+10, spotcentrey)

updatescreen()
IF tracing DO
{ writef("drawdot: x=Yn y=/n*n", x,y)
//abort (1077)
}
}

The function drawdot, defined above, plots a the point on the focal plane corre-
sponding to a ray through the telescope originating from a blue or red point source
at infinity. The argument dir is 0, 1 or 2 specifies the direction of the incoming ray.
The function also draws a short horizontal line through the y-axis indicating the the-
oretical position of the centre of the image of a star from this direction assuming the
focal length of the telescope is 1000mm. To make the scattering of points more visible
their distance from the theoretical centre is magnified by the factor spotmag whose
default value is 20. It can be changed using the mag option when cataopt is called.
For a reasonable telescope design each image spot has a size of about two pixels when
spotmag=1.

Since cataopt draws and image on the screen using the SDL graphics library, it
must initialise SDL and create a window in which to draw it. This is done by the
function defined below.

LET initscreen() BE
{ initsd1()
mkscreen("Catadioptric", 500, 500)

// Define some colours
c_black := maprgb( 0, 0, 0)
c_white := maprgb(255, 255, 255)
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c_gray := maprgb(200, 200, 200)
c_blue := maprgb( 0, 0, 255)
c_red = maprgb (255, 0, 0)

// Choose the screen position of (0,0)
centrex := screenxsize/2

centrey := screenysize - 60

fillsurf (c_gray)

updatescreen()

The next function start is the main function of cataopt. It reads the command
arguments using rdargs and after setting iterations and spotmag and initialising
SDL by the call initsdl (). It enters the function telescope to optimise the geometry
of the telescope. The f argument overrides the setting
t factor that controls the maximum size for the delta values used in choosing another
setting of R1 to R4. The -p argument causes the program to pause every time a new
setting of R1 to R4 has been processed. The -t argument causes some debugging output
to be generated while the program runs. More debugging output can be generated by
uncommenting various writef and abort. Since the program allocates space for many
high precision numbers, it is convenient to allocate one area for the using getvec. This
space is used by newvec and newnum that are defined later.

LET start() = VALOF
{ LET argv = VEC 50
LET str = VEC 255/bytesperword

currentline := str
stdin := input()
stdout := output()

UNLESS rdargs("mag/n,n/n,f/n,-p/s,-t/s", argv, 50) DO
{ writef("Bad arguments for cataopt*n")

RESULTIS O
X
spotmag := 20
IF argv!0 DO spotmag := largv!O // mag/n
iterations := 1000

IF argv!1l DO iteratioms := 'argv!l // n/n

initfactor := 0
IF argv!2 DO initfactor := largv!2 // f/n
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pausing := argv!3 // -p/s
tracing := argv!4 // -t/s
spacev := getvec(spacevupb)

spacet := spacev + spacevupb

spacep := spacet

UNLESS spacev DO

{ writef ("*nERROR: More memory is needed*n")
RESULTIS O

}

initscreen()

// Analyse the catadioptric telescope, hopefully optimising its
// geometry.

telescope ()

IF spacev DO
{ writef("Space used is %n out of %n*n", spacet-spacep, spacevupb)
freevec(spacev)

}

RESULTIS O

The program spends most of its time tracing rays of blue and red light through the
telescope. The effect of refraction must be calculated as the ray enters or leaves the
objective lens. It must also deal with the refraction and reflection as the ray passes
through the mirror. Luckily the underlying mathematics is quite simple making the
program easy to write and understand, even though it is quite long.

We must first choose a way to represent a ray. Our selected method is to choose a
point, P, on the ray specified by coordinate (z,y, z) and the direction of the ray using
direction cosines (u,v,w). You will remember that direction cosines represent a 3D
vector of unit length, so (z,y,2) + (u,v,w)t = (x + ut,y + vt, z + wt) represent the
coordinates of a point on the ray at a distance t from P. In this program, P is always
either a point in the focal plane (z = 0) or a point on the spherical surface of the lens
or mirror.

Having chosen our representation of a ray, we need a mathematical representation of
a spherical surface. This is simple since every point (z,y, z) on it must be at a constant
distance R from the centre of the sphere. Assuming the centre is at coordinate (0,0, ¢),
the resulting equation is: x2 +y? + (z — ¢)?> = R2. The centre of each spherical surface
is always on the z axis, so both its x and y coordinates are zero.

We will frequently need to calculate the coordinates of the point where a ray inter-
sects the spherical surface of a lens or mirror. This is easily done by substituting the
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coordinates of the point on the ray at distance ¢ from P in the equation of the sphere.
This gives us the following equation:

(z+vt)? + (y+wt)? + (2 +wt — ) = R?
which simplifies to the following quadratic in ¢:
A2+ Bt +C =0
where
A =+’ +uw?=1
B =2u+yv+ (2 — cw)
C =22+y*+(2—0¢)* - R?

Since A = 1, the quadratic equation yield two solutions for ¢, namely:

t =(-B+VBZ—40)/2
t =(-B—vB2—40)/2

The function places the two solutions in the given high precision numbers t1 and
t2, returning TRUE if successful. If the ray does not interect the sphere the result is
FALSE, but in this program this never happens. The definition of intersect is as
follows.

AND intersect(dir, P, c, r, t1, t2) = VALOF

{ // This calculates the intersection points of a line and
// a sphere.
// dir'0,dir'1,dir!2 are the direction cosines of the line
// P'0,P!1,P!2 is a point on it.
// ¢ is the z coordinate of the centre of the lens surface
// r is the radius of the lens surface.
// P+tlxdir and P+t2xdir are the intersection points, if any.
// The result is TRUE is t1 and t2 exist.

// All the numbers above have upperbound nupb.

// A point on the line has coordinates
// x = Pl0 + dir!0*t
// y = P!l + dir!ixt
// z = P!2 + dir!2xt

// These must be on the surface of the sphere, so
// x°2 + y°2 + (z-¢c)72 = 1r"2

// This gives a quadratic of the form At"2 + Bt + C = 0

// where
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// A =dx"2 + dy¥2 + dz"2 = 1
// B = 2(xdx +ydy + (z-c)dz)
// C=%x"2+y"2+ (z-¢c)"2 - r°2

// giving the solutions: t = (-B +/- sqrt(B"2 - 4AC))/2A

// and since A=1 t = (-B +/- sqrt(B"2 - 4C))/2
LET x = P10

LET y = P!l

LET =z = P12

LET dx = dir!0

LET dy = dir!1

LET dz = dir!2

LET tmpl = VEC numupb
LET tmp2 = VEC numupb
LET tmp3 = VEC numupb
LET tmp4 = VEC numupb
LET tmp5 = VEC numupb

LET B = VEC nupb

LET C = VEC nupb

mul (x,nupb, dx,nupb, tmpl,numupb) // tmpl = x dx

mul (y,nupb, dy,nupb, tmp2,numupb) // tmp2 =y dy
sub(z,nupb, c,nupb, tmp3,numupb) // tmp3 =z - ¢

mul (tmp3,numupb, dz,nupb, tmp4,numupb) // tmp4 = (z - c)dz

add (tmp1l,numupb, tmp2,numupb, tmp3,numupb) // tmp3 = xdx + ydy

add (tmp3,numupb, tmp4,numupb, B,nupb) // B =xdx + ydy + (z - c)dz
mulbyk (2, B,nupb) // B = 2(xdx + ydy + (z - c)dz)

mul (x,nupb, x,nupb, tmpl,numupb) // tmpl = x72

mul (y,nupb, y,nupb, tmp2,numupb) // tmp2 = y~2

sub(z,nupb, c,nupb, tmp3,numupb) // tmp3 = z-c

mul (tmp3,nupb, tmp3,nupb, tmp4,nupb) // tmp4d = (z-c)~2

mul (r,nupb, r,nupb, tmp5,numupb) // tmpb = r"2

add (tmp1,numupb, tmp2,numupb, C,nupb) // C = x"2+y"2
add(C,nupb, tmp4,numupb, tmpl,numupb) // tmpl = x"2+y~2+(z-c)"2
sub(tmpl,numupb, tmp5,numupb, C,nupb) // C = x"2+y~2+(z-c)"2-r"2

mul (B,nupb, B,nupb, tmpl,numupb) // tmpl = B"2

mulbyk(4, C,nupb) // C = 4C
sub(tmpl,numupb, C,nupb, tmp2,numupb) // tmp2 = B"2 - 4C

sqrt (tmp2,numupb, tmp3,numupb) //tmp3 = sqrt(B~2 - 4C)

neg(B,nupb) // B =-B
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sub(B,nupb, tmp3,numupb, tl,nupb)

divbyk(2, t1,nupb) // t1 = (-B - sqrt(B~2 - 4C))/2
add (B,nupb, tmp3,numupb, t2,nupb)

divbyk(2, t2,nupb) // t2 = (-B + sqrt(B~2 - 4C))/2
RESULTIS TRUE

The next function, refract, takes arguments specifying the inward direction
(indir) of a ray, the coordinates of the intersection point (point) on a spherical sur-
face, the z coordinate of the centre of the sphere and the inverse of the refractive index
(index) of boundary. The inverse is used since this allows mul to be used instead
of div which is more efficient. These quantities allow the function to calculate
the direction cosines of the outgoing ray using Snell’s law. This law states that,
when a ray of light passes through the boundary between two media such as air
to glass, the ratio of the sines of the angles of incidence and refraction is the
refractive index of the boundary. The boundary from air to crown glass has a
refractive index is about 1.5 but this varies slightly on the wavelength of the light.
For the the boundary glass to air the inverse 1/1.5 is used.

The angle on incidence is the angle between the ray and the normal at the
point P where the ray intersects the boundary. Normal is a mathematical term
for the direction perpendicular to a surface. For all our surfaces the normal is
easy to calculate since its direction is from the centre of the spherical surface to
P. If P = (z,y,2) and the centre is at (0,0, ¢) then a 3D vector in the direction
of the normal is (x,y,z — ¢) and this can be converted to direction cosines by
calling standardize. We can calculate the cosine of the angle of incidence (6)
by evaluating the inner produce of indir and the normal, but we may have to
negate the normal first so that they are both advancing more or less the same
direction. Why the inner product of two direction cosines yields the cosine of the
angle between them is explained on page 602. Having calculated cosf we can
casily compute sin @ using the formula: cos?6 + sin®# = 1 that was derived on
page 326.

Assuming P is the intersection point on the lens surface we can calculate a
point P1 on the incoming ray one unit from P by subtracting the direction cosines
indir from P. We have already calculated cosf so we can easily calculate the
coordinates of a point P2 on the normal a distance of cos# from P and on the
same side of the surface as P1. We now have a right angled triangle with vertices
P, P1 and P2, and the length of the edge from P1 to P2 is sinf. Snell’s law
tells us that sin ¢, where ¢ is the angle of refraction, equals sin @ divided by the
refractive index. We can easily construct a triangle with vertices P, Q1 and ()2
in the same plane as the first triangle P — P1 — P2 with )2 on the normal at a
distance cos ¢ from P, and 1 chosen to be on the line through ()2 parallel to
P1— P2 with the length of Q1 — ()2 equal to sin ¢. The triangle P — Q1 — Q)2 is
thus a right angled triangle with the outgoing ray lying along P — (X1, and since
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P — Q1 is already of unit length the components are the direction cosines of the
refracted ray. The definition of refract is as follows.

AND refract(indir, P, c, invindex, outdir) = VALOF

{ // indir!0,indir!'1,indir!2 are the direction cosines

of the in ray.

P!0,P!1,P!2 are the coordinates of the entry

point P on the lens surface.

C is the z coordinate of the lens surface centre.

is the inverse of the refactive index air to glass.
outdir!0,outdir!1,outdir!2 will be the direction cosines

//
//
//
//
//
//
//
//

LET
AND
AND

LET
AND
AND

LET
AND
AND

LET
AND
AND

AND
AND
AND
AND

LET
AND
AND

LET
AND
AND

LET
AND

invindex

of the out ray.

All numbers have upper bound nupb.
// The result is TRUE if refract is successful.

indir!0 // The direction cosines of the in ray.

P!0 // The coordinates of the entry point.

outdir!0 // To hold the direction cosines of the out ray.

indx =

indy = indir!1l

indz = indir!2

Px =

Py = P!1

Pz = P!2

outdx =

outdy = outdir!1l
outdz = outdir!2

ndx = VEC nupb
ndy = VEC nupb
ndz = VEC nupb
costheta = VEC numupb
sintheta = VEC numupb
cosphi = VEC numupb
sinphi = VEC numupb
Pix = VEC nupb
Ply = VEC nupb
Plz = VEC nupb
P2x = VEC nupb
P2y = VEC nupb
P2z = VEC nupb
Qix = VEC nupb
Qly = VEC nupb

//
//

//

//

//
//

//
//

//
//

The surface normal direction cosines
with the same z sign as for indir.

The in ray

The out ray

The point P1 on the in ray
costheta away from P

The point P2 on the in normal
at distance 1 from P

The point Q1 on the out normal
cosphi away from P
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AND Qiz = VEC nupb

LET Q2x = VEC nupb // The point Q2 on the out ray
AND Q2y = VEC nupb // at distance 1 from P

AND Q2z = VEC nupb

// Note that P-P1-P2 and P-Q1-Q2 are both right

// angle triangles lying in the same plane, and that

// P1-P2 has length sintheta and Q1-Q2 has length sinphi.
// By Snell’s law, the ratio of these lengths is the

// refractive index.

// ie sintheta = sinphi / index = sinphi * invindex

AND tmpl = VEC numupb
AND tmp2 = VEC numupb
AND tmp3 = VEC numupb
AND tmp4 = VEC numupb
copy (Px,nupb, ndx ,nupb)
copy (Py,nupb, ndy,nupb)

sub (Pz,nupb, c,nupb, ndz,nupb)

// (Px,Py,Pz are the coordinates of

// the entry point on the lens.

// (ndx,ndy,ndz) is a vector parallel to the normal.

// Ensure that the normal and indir have the same z sign,
// negating (ndx,ndy,ndz) if necessary.
UNLESS indz!0=ndz!0 DO
{ // The z signs are different, so negate the normal.
neg(ndx)
neg(ndy)
neg(ndz)

normalize (@ndx,nupb) // Direction cosines of the normal
// (ndx,ndy,ndz) are now direction cosines.

inprod(indir,nupb, ©@ndx,nupb, costheta,numupb)

// theta is the angle between the incident ray and the normal.
mul (costheta,numupb, costheta,numupb, tmpl,numupb)
sub(one,nupb, tmpl,numupb, tmp3,numupb)

sqrt (tmp3,numupb, sintheta,numupb)

mul (sintheta,numupb, invindex,nupb, sinphi,numupb) // Apply Snell’s law
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mul (sinphi,numupb, sinphi,numupb, tmpl,numupb)
sub (one,nupb, tmpl,numupb, tmp3,numupb)
sqrt (tmp3,numupb, cosphi,numupb)

// Pl is on the in ray at distance 1 from P
sub(Px,nupb, indx,nupb, Plx,nupb)
sub (Py,nupb, indy,nupb, Ply,nupb)
sub(Pz,nupb, indz,nupb, Plz,nupb)

// Point P2 is on the normal at distance costheta from P
mul (ndx,nupb, costheta,numupb, tmpl,numupb)

sub (Px,nupb, tmpl,numupb, P2x,nupb)

mul (ndy,nupb, costheta,numupb, tmpl,numupb)

sub (Py,nupb, tmpl,numupb, P2y,nupb)

mul (ndz,nupb, costheta,numupb, tmpl,numupb)

sub (Pz,nupb, tmpl,numupb, P2z,nupb)

// Point Q1 is on the normal at distance cosphi from P.
mul (ndx,nupb, cosphi,numupb, tmpl,numupb)

add (Px,nupb, tmpl,numupb, Qlx,nupb)

mul (ndy,nupb, cosphi,numupb, tmpl,numupb)

add (Py,nupb, tmpl,numupb, Qly,nupb)

mul (ndz,nupb, cosphi,numupb, tmpl,numupb)

add (Pz,nupb, tmpl,numupb, Qlz,nupb)

// Calculate Q2 = Q1 + (P2-P1)*invindex

sub (P2x,nupb, P1x,nupb, tmpl,numupb)

mul (tmpl,numupb, invindex,nupb, tmp2,numupb)

add (Q1x,nupb, tmp2,numupb, Q2x,nupb) // Q2x = Qilx + (P2x-Plx)*invindex

sub(P2y,nupb, Ply,nupb, tmpl,numupb)
mul (tmpl,numupb, invindex,nupb, tmp2,numupb)
add(Qly,nupb, tmp2,numupb, Q2y,nupb) // Q2y = Qly + (P2y-Ply)*invindex

sub (P2z,nupb, Plz,nupb, tmpl,numupb)
mul (tmpl,numupb, invindex,nupb, tmp2,numupb)
add(Qlz,nupb, tmp2,numupb, Q2z,nupb) // Q2x = Qlz + (P2z-Plz)*invindex

sub (Q2x,nupb, Px,nupb, outdx,nupb)
sub (Q2y,nupb, Py,nupb, outdy,nupb)
sub(Q2z,nupb, Pz,nupb, outdz,nupb)
normalize (outdir,nupb)

RESULTIS TRUE
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The next function, reflect, deals with the reflection of a ray by the silvered
surface of the mirror.

It arguments specifying the inward direction (indir) of a ray, the coordinates
of the intersection point (P) on a spherical surface, and ¢ is the z coordinate
of the centre of the sphere. These quantities allow it to calculate the direction
cosines of the reflected ray. The calculation is easy since the angle of reflection
is equal to the angle of incidence. As in refract we calculate the normal at
the intersection point and then cos @ where 6 is the angle of incidence. Then, as
before, we construct a right angled triangle P — A — B where P is the intersection
point, A is the point on the incoming ray one unit from P and B is the point on
the normal at a distance cosf from P and on the same side of the mirror as A.
We then construct the point C' equal to B — (A — B) = 2B — A. The triangle
P — C — B is clearly a mirror image of P — A — B and they are both in the same
plane, so the line P — C' lies in the reflected ray, giving us the required direction
to place in outdir. The definition of reflect is as follows

AND reflect(indir, P, c, outdir) = VALOF

{ // This computes the direction cosines of a reflected ray.
// indir!0,indir!1,indir!2 hold the direction cosines of the in ray.
// P'0,P!1,P!2 hold the coordinates of the intersection point on

// the mirror surface.

// c is the z coordinate of the centre of the mirror surface.
// outdir!0,outdir!1l,outdir!2 will hold the direction cosines

// of the reflected ray.

// All the numbers above have upperbound nupb.
// The result is TRUE if the reflection is successful.
LET costheta = VEC numupb

LET indx = indir!0 // The direction cosines of the incident ray.
AND indy = indir!1l

AND indz = indir!2

LET Px = P!0 // The coordinates of the entry point.

AND Py = P!1

AND Pz = P!2

LET outdx = outdir!0 // To hold the out direction cosines.

AND outdy = outdir!1l

AND outdz = outdir!2

LET Nx = VEC nupb // The direction cosines of the normal
AND Ny = VEC nupb // at the intersection point P.
AND Nz = VEC nupb

LET Ax = VEC nupb // The coordinates of the point on the
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AND
AND

LET
AND
AND

LET
AND
AND

Ay
Az

Bx

By =

Bz

Cx

Cy
Cz

AND tmpl

VEC
VEC

VEC
VEC
VEC

VEC
VEC
VEC

= VEC numupb

nupb // inray one unit from P

nupb

nupb
nupb
nupb

nupb
nupb
nupb

//
//

//
//
//

The coordinates of the point on the
the normal costheta from P

The coordinates of the point on the
reflected ray one unit from P.
Note B is the mid point of A and C.

// Compute the normal.

copy (Px,nupb,
copy (Py,nupb,

Nx,nupb)
Ny ,nupb)

sub(Pz,nupb, c,nupb, Nz,nupb)
normalize (@Nx,nupb)

// Calculate the coordinates of A

sub(Px,nupb, indx,nupb, Ax,nupb)
sub (Py,nupb, indy,nupb, Ay,nupb)
sub (Pz,nupb, indz,nupb, Az,nupb)

// Calculate the coordinated of B

P - indir

point - N * costheta

inprod(indir,nupb, @Nx,nupb, costheta,numupb)
mul (Nx,nupb, costheta,numupb, tmpl,numupb)

sub (Px,nupb, tmpl,numupb, Bx,nupb)
mul (Ny,nupb, costheta,numupb, tmpl,numupb)
sub(Py,nupb, tmpl,numupb, By,nupb)
mul (Nz,nupb, costheta,numupb, tmpl,numupb)

sub (Pz,nupb, tmpl,numupb, Bz,nupb)

// Calculate the coordinates of C = 2B - A

mulbyk(2, Bx,nupb)
mulbyk(2, By,nupb)
mulbyk(2, Bz,nupb)

sub(Bx,nupb, Ax,nupb, Cx,nupb)
sub (By,nupb, Ay,nupb, Cy,nupb)
sub(Bz,nupb, Az,nupb, Cz,nupb)

// Calculate the direction of the reflected ray normalize(C - P)

sub (Cx,nupb, Px,nupb, outdx,nupb)

019
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sub(Cy,nupb, Py,nupb, outdy,nupb)
sub(Cz,nupb, Pz,nupb, outdz,nupb)
normalize (outdir,nupb)

RESULTIS TRUE

The function raytrace follows a ray from its initial refraction at the front
surface of the objective lens through the other refractions and the reflection in
the mirror until it finally leaves the front surface of the mirror and hits the focal
plane at 2 = 0. The x and y coordinates in the focal plane are copied to the
arguments focalx and focaly. The function, although quite long, is simple
using intersect, refract and reflect where needed as the ray passes through
the five spherical surfaces.

AND raytrace(indir, P, colour, focalx, focaly) = VALOF
{ // Trace a ray all the way through the telescope
// indir!'0,indir!'1,indir!'2 are the dirction cosines of the
// incoming ray.
// P'0,P!1,P!2 are the coordinates of a point on the incoming ray.
// colour is either Blue or Red.
// focalx,focaly are the coordinates in the focal plane resulting
// from the incoming ray.
// The result is TRUE if the raytracing was successful.

// The ray passes through the following

// (1) the front surface of the objective lens, crown glass
// (2) the rear surface of the objective lens

// (3) the front surface of the mirror, flint glass

// (4) the reflective surface of the mirror

// (5) back through the front surface of the mirror

LET t1 = VEC nupb

LET t2 = VEC nupb

LET tmpl = VEC numupb

LET tmp2 = VEC numupb

LET tmp3 = VEC numupb

LET indx = VEC nupb // Private in direction cosines
AND indy = VEC nupb

AND indz = VEC nupb

LET inptx = VEC nupb // Point on an in ray
AND inpty = VEC nupb

AND inptz = VEC nupb
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LET x = VEC nupb // For intersection points

AND y = VEC nupb

AND z = VEC nupb

LET outdx = VEC nupb // Direction cosines of an out ray.
AND outdy = VEC nupb

AND outdz = VEC nupb

AND invindex = ? // The inverse of the refractive index of
// the current surface depending on colour
// and crown or flint glass.

// Front surface of the objective lens

copy(indir!0,nupb, indx,nupb) // In direction to front surface of objective
copy(indir!1,nupb, indy,nupb)
copy(indir!2,nupb, indz,nupb)

copy(P!0,nupb, inptx,nupb) // A point on the incident ray.
copy(P!1,nupb, inpty,nupb)
copy(P!2,nupb, inptz,nupb)

UNLESS intersect(@indx, @inptx, C1, R1, t1, t2) RESULTIS FALSE

// Select the negative root
IF t2!0 DO copy(t2,nupb, t1,nupb)

IF tracing DO
writef ("*nObjective front surface intersection point (x,y,z) is:*n")

mul (indx,nupb, t1,nupb, tmpl,numupb)

add (inptx,nupb, tmpl,numupb, x,nupb)

IF tracing DO

{ writef("x= "); prnum(x,8) }

mul (indy,nupb, t1,nupb, tmpl,numupb)

add (inpty,nupb, tmpl,numupb, y,nupb)

IF tracing DO

{ writef("y= "); prnum(y,8) }

mul (indz,nupb, t1,nupb, tmpl,numupb)
add(inptz,nupb, tmpl,numupb, z,nupb)

IF tracing DO

{ writef("z= "); prnum(z,8) }
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// Apply Snell’s law to obtain the transmitted direction

// indx,indy,indz hold the direction cosines of the in ray.

// outdir will hold the direction cosines of the out ray.

// (x,y,z) are the coordinates of the entry point on the

// objective lens front surface.

// Cl is the z coordinate of the centre of the lens front surface.
// invindex is the inverse of the refractive index.

// Set the air to glass refractive index for crown glass
// depending on the colour.
invindex := colour=Blue -> crownblueinvindex, crownredinvindex

refract(@indx, @x, C1l, invindex, @outdx)
// Now deal with the rear surface of the objective lens.

copy (outdx,nupb, indx,nupb) // Out ray of front surface becomes
copy (outdy,nupb, indy,nupb) // the in ray of the rear surface.
copy (outdz,nupb, indz,nupb)

copy(x,nupb, inptx,nupb) // The intersection point on the front surface
copy(y,nupb, inpty,nupb) // is a point on the in ray of the rear surface.
copy(z,nupb, inptz,nupb)

UNLESS intersect(@indx, @inptx, C2, R2, tl1, t2) RESULTIS FALSE

// Select the positive root.
UNLESS t2!0 DO copy(t2,nupb, t1,nupb)
//uritef ("t1= "); prnum(tl,nupb)

IF tracing DO
writef ("#*nObjective rear surface intersection point (x,y,z) is:*n")

mul (indx,nupb, tl1,nupb, tmpl,numupb)
add (inptx,nupb, tmpl,numupb, x,nupb)
IF tracing DO

{ writef ("x= "); prnum(x,8) }

mul (indy,nupb, t1,nupb, tmpl,numupb)
add (inpty,nupb, tmpl,numupb, y,nupb)
IF tracing DO

{ writef("y= "); prnum(y,8) }
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mul (indz,nupb, t1,nupb, tmpl,numupb)
add (inptz,nupb, tmpl,numupb, z,nupb)
IF tracing DO

{ writef("z= "); prnum(z,8) }

// Set the inverse of the glass to air refractive index for
// crown glass depending on the colour.
invindex := colour=Blue -> crownblueindex, crownredindex

// Calculate the new out direction.
refract (@indx, @x, C2, invindex, Qoutdx)

// Now deal with the front surface of the mirror.

copy (outdx,nupb, indx,nupb)
copy (outdy,nupb, indy,nupb)
copy (outdz,nupb, indz,nupb)

copy(x,nupb, inptx,nupb) // The intersection point on the
copy(y,nupb, inpty,nupb) // rear surface of the objective lens.
copy(z,nupb, inptz,nupb)

UNLESS intersect(@indx, @inptx, C3, R3, t1, t2) RESULTIS FALSE

// Select the positive root, one of tl or t2 is positive.
IF t1!0 DO copy(t2,nupb, t1,nupb)

IF tracing DO
writef ("#nThe mirror front surface intersection point (x,y,z) is:*n")

mul (indx,nupb, t1,nupb, tmpl,nupb)

add (inptx,nupb, tmpl,nupb, x,nupb) // x
IF tracing DO

{ writef("x= "); prnum(x, 8) }

inptx + tl*indx

mul (indy,nupb, t1,nupb, tmpl,nupb)

add (inpty,nupb, tmpl,nupb, y,nupb) // y
IF tracing DO

{ writef("y= "); pronum(y, 8) %}

inpty + tl*indy

mul (indz,nupb, t1,nupb, tmpl,nupb)

add (inptz,nupb, tmpl,nupb, z,nupb) // z
IF tracing DO

{ writef("z= "); prnum(z, 8) }

inptz + tl*indz
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// Calculate the distance from the z axis.

mul (x,nupb, x,nupb, tmpl,numupb) //tmpl = x~2

mul (y,nupb, y,nupb, tmp2,numupb) //tmp2 = y~2

add (tmpl,numupb, tmp2,numupb, tmp3,numupb) // tmp3 = x"2 + y~2
sqrt (tmp3,numupb, tmpl,numupb) // tmpl = the radius

IF numcmp (tmpl,numupb, MirrorRadius,nupb) > O DO
copy (tmpl,numupb, MirrorRadius,nupb)

IF tracing DO
{ writef ("#nMirror radius= "); prnum(MirrorRadius,8) }

// Set the air to glass refractive index for flint glass
// depending on the colour.
invindex := colour=Blue -> flintblueinvindex, flintredinvindex

// Calculate the new out direction
refract (@indx, @x, C3, invindex, Qoutdx)

// Now deal with the reflecting surface of the mirror.

copy (outdx,nupb, indx,nupb) // Out direction of the front surface is
copy (outdy,nupb, indy,nupb) // the in direction to the silvered surface.
copy (outdz,nupb, indz,nupb)

copy (x,nupb, inptx,nupb) // The intersection point on the front
copy (y,nupb, inpty,nupb) // surface of the mirror.
copy(z,nupb, inptz,nupb)

UNLESS intersect(@indx, Qinptx, C4, R4, tl1, t2) RESULTIS FALSE

// Select the positive root. One of tl or t2 is positive.
IF t1!0 DO copy(t2,nupb, t1,nupb)

IF tracing DO
writef ("*nThe mirror reflective surface intersection point (x,y,z) is:*n")

mul (indx,nupb, ti,nupb, tmpl,nupb)

add (inptx,nupb, tmpl,nupb, x,nupb) // x
IF tracing DO

{ writef("x= "); pronum(x, 8) }

inptx + tl*indx

mul (indy,nupb, ti1,nupb, tmpl,nupb)
add (inpty,nupb, tmpl,nupb, y,nupb) // y

inpty + til*indy
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IF tracing DO
{ writef ("y= "); prnum(y, 8) }

mul (indz,nupb, til,nupb, tmpl,nupb)

add (inptz,nupb, tmpl,nupb, z,nupb) // y = inptz + tl*indz
IF tracing DO

{ writef("z= "); prnum(z, 8) }

// Calculate the new out direction.
reflect(@indx, ©x, C4, Qoutdx)

// Now deal with the front surface of the mirror again.

copy (outdx,nupb, indx,nupb)
copy (outdy,nupb, indy,nupb)
copy (outdz,nupb, indz,nupb)

copy (x,nupb, inptx,nupb) // the intersection point on the front surface
copy (y,nupb, inpty,nupb)
UNLESS intersect(@indx, @inptx, C3, R3, tl, t2) RESULTIS FALSE

// Select the smaller root
IF numcmp(t2,nupb, tl1,nupb)<0 DO copy(t2,nupb, ti,nupb)

IF tracing DO
writef ("#nThe mirror front surface intersection point (x,y,z) is:*n")

mul (indx,nupb, t1,nupb, tmpl,nupb)

add (inptx,nupb, tmpl,nupb, x,nupb)

IF tracing DO

{ writef ("x= "); prnum(x, 8) }

mul (indy,nupb, t1,nupb, tmpl,nupb)
add (inpty,nupb, tmpl,nupb, y,nupb)

IF tracing DO

{ writef("y= "); prnum(y,8) }

mul (indz,nupb, til,nupb, tmpl,nupb)
add (inptz,nupb, tmpl,nupb, z,nupb)

IF tracing DO

{ writef("z= "); pronum(z,8) }

// Set the inverse of the glass to air refractive index for flint glass
// depending on the colour.
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invindex := colour=Blue -> flintblueindex, flintredindex

// Calculate the new out direction
refract(@indx, @x, C3, invindex, @outdx)

TEST iszero(outdz,nupb)

THEN { // In the exceptional case where outdz is zero,
// focalx and focaly are just x and y.
copy (x,nupb, focalx,nupb)
copy (y,nupb, focaly,nupb)

ELSE { div(z,nupb, outdz,nupb, tmpl,numupb)
mul (outdx,nupb, tmpl,numupb, tmp2,numupb)
sub(x,nupb, tmp2,numupb, focalx,nupb)
mul (outdy,nupb, tmpl,numupb, tmp2,numupb)
sub(y,nupb, tmp2,numupb, focaly,nupb)

RESULTIS TRUE

The next two functions allocate cleared vectors with a specified upperbound.

AND newvec(upb) = VALOF
{ LET p = spacep - upb - 1
IF p<spacev DO
{ writef ("#*nMore space needed*n")
abort (999)
RESULTIS O
}
spacep := p
FOR i = O TO nupb DO p'i := 0
RESULTIS p

AND newnum(upb) = newvec (upb)

The next function, telescope, attempts to optimise the design of the tele-
scope by successively making small changes to R1, R2, R3 and R4, preferring the
settings that reduce the size of the scattering of points resulting from rays en-
tering the objective lens at different positions. Three point sources are chosen,
one on the axis of the telescope and the other two at about 1/8 and 1/4 degree
off the axis (in the y direction). Rays of both blue and red light are used. If
the optics of the telescope were perfect and if the focal length was 1000mm, then
the three point sources would produce single point images on the focal plane at
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about x =0, z =0 and y = 0, -2.0833 and -4.1666mm. The program traces each
ray though the telescope measuring its distance from its focal point. The largest
of these distances is places in spotsize. Circles of this radius centred at each
of the three focal points will enclose all the scattered points. How the program
selects better values for R1 to R4 is explained later.

The function starts as follows.

AND telescope() BE

{ LET tmpl = VEC nupb
AND tmp2 = VEC nupb
AND tmp3 = VEC nupb
AND tmp4 = VEC nupb

AND tmp5 = VEC nupb

LET delta = VEC nupb // Current change in a radius value
LET initdelta = VEC nupb // Current initial setting of delta
LET failcount = -1 // Unset

// The idea is to try changing each radius R1 to R4 by a small amount delta

// either positive or negative. The distance between the average y coordinates
// of an image spot and the theoretical position of its centre assuming a

// focal length of 1000mm is placed in dist. spotsize+dist is placed in

// spotvalue giving a measure of how good the optics are. If spotvalue reduces,
// the current delta values are doubled and a new setting of R1 to R4 tried,

// otherwise start again with a new set of small random delta values, and

// start again.

// Every time the sizes of the spots reduce, the file catageometry.txt is
// written with the new radii R1 to R4.

// If the file catageometry.txt exists, it is used to set the initial values
// of R1 to R4.

// Typically every time cataopt runs these radii are improved.

// Directions 0, 1 and 2 are small angles in the y-z plane
// used to generate test in rays.

dirOcx := newnum(nupb) // Direction parallel to the telescope axis
dirOcy := newnum(nupb)
dirOcz := newnum(nupb)

settok(0, dirOcx,nupb)
settok(0, dirOcy,nupb)
settok(l, dirOcz,nupb)
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dirlcx := newnum(nupb)
dirlcy := newnum(nupb)
dirlcz := newnum(nupb)

settok( 0, dirlcx,nupb)
settok( -1, dirlcy,nupb)
settok(480, dirlcz,nupb)
normalize(@dirlcx,nupb)

dir2cx := newnum(nupb)
dir2cy := newnum(nupb)
dir2cz := newnum(nupb)

settok( 0, dir2cx,nupb)
settok( -1, dir2cy,nupb)
settok (240, dir2cz,nupb)

normalize(@dir2cx,nupb)

Arad

:= newnum(nupb) //

settok(50, Arad,nupb)

Brad

:= newnum(nupb) //

settok(25, Brad,nupb)

R1

C1
R2

C2 :=

// Direction about 1/8 degree off the telescope axis.
// Note that 1 in 60 is about 1 degree
// so 1 in 480 is about 1/8 degree

// Direction about 1/4 degree off the telescope axis.
// This is a field of view about the size of the moon.
// Note that 1 in 60 is about 1 degree

// so 1 in 240 is about 1/4 degree

Radius of the A circle in the objective

Radius of the B circle in the objective

:= newnum(nupb) // Objective lens front radius
prevRl := newnum(nupb)
:= newnum(nupb) // Centre of objective lens front
:= newnum(nupb) // Objective lens rear radius

prevR2 := newnum(nupb)

R3 :
prevR3 := newnum(nupb)

C3 :=

R4

newnum(nupb) // Centre of objective lens rear surface
newnum(nupb) // Concave mirror front radius

newnum(nupb) // Centre of concave mirror front surface

:= newnum(nupb) // Concave mirror silvered surface radius
prevR4 := newnum(nupb)

C4 := newnum(nupb) // Centre of concave mirror silvered surface

T1 := newnum(nupb) // Objective thickness

T2 := newnum(nupb) // Mirror thickness

MirrorRadius := newnum(nupb) // Radius of mirror

D := newnum(nupb) // The distance between the objective and mirror.
// This is typically 700mm.

F := newnum(nupb) // The z coordinate of the focus plane, typically F=0
// This typically give a focal length of 1000mm.

Inx := newnum(nupb) // The direction cosines of an in going ray to a



5.19. A CATADIOPTRIC TELESCOPE 529

Iny := newnum(nupb) // lens or mirror surface.

Inz := newnum(nupb)

Outx := newnum(nupb) // The direction cosines of an out going ray to a
Outy := newnum(nupb) // lens or mirror surface.

Outz := newnum(nupb)

outdircx := newnum(nupb)

outdircy := newnum(nupb)

outdircz := newnum(nupb)

deltaRl := newnum(nupb) // Used to make small changes to Rl to R4
deltaR2 := newnum(nupb)

deltaR3 := newnum(nupb)

deltaR4 := newnum(nupb)

root2 := newnum(nupb)

one := newnum(nupb)

// Allocate numbers for the refractive indexes

crownblueindex := newnum(nupb)
crownredindex := newnum(nupb)
flintblueindex := newnum(nupb)
flintredindex := newnum(nupb)

// Allocate numbers for the inverse refractive indexes

crownblueinvindex := newnum(nupb)
crownredinvindex := newnum(nupb)
flintblueinvindex := newnum(nupb)
flintredinvindex := newnum(nupb)
spotOvx := newvec(16+16+2-1) // Space for points of spotO

spotOvy := newvec(16+16+2-1)
spotlvx := newvec(16+16+2-1) // Space for points of spotl
spotlvy := newvec(16+16+2-1)
spot2vx := newvec(16+16+2-1) // Space for points of spot2
spot2vy := newvec(16+16+2-1)

// Note that for spotO the x coordinates in the focal plane
// are held in spotOvx. The table of subscripts is as follows

// 0 to 7 A circle Blue dots
// 8 to 15 A circle Red dots
// 16 to 23 B circle Blue dots
// 24 to 31 B circle Red dots
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// 32 C ray Blue dot
// 33 C ray Red dot

// spotOvy holds the y coordinates of spotO dots

// spotlvx, spotlvy, spot2vx and spot2vy hold the coordinates
// of the spotl and spot2 Blue and Red dots

FOR i = 0 TO 16+16+2-1 DO
{ // Allocate space for all the spot dot coordinates

spotOvx!i := newnum(nupb)
spotOvy!i := newnum(nupb)
spotlvx!i := newnum(nupb)
spotlvy!i := newnum(nupb)
spot2vx!i := newnum(nupb)
spot2vy!i := newnum(nupb)
}
bestspotsize := newnum(nupb)
spotsize := newnum (nupb)
dist := newnum (nupb)
bestdist := newnum (nupb)
bestspotvalue := newnum(nupb)
spotvalue := newnum (nupb)

UNLESS spotsize DO

{ writef ("More space needed*n")
abort (999)
RETURN

}

The program continues as follows initialising several global values such as T1
and T2 the thicknesses of the objective lens and mirror measured at their centres.
D is set to 700, the z position of the mirror. The square root of 2 is placed in
root2 and a high precision representation of the constant 1 is placed in one. The
refractive indices for blue and red light for crown and flint glass are placed in
suitable variables, and it is also convenient to hold the inverse versions of these
values. The program goes on to set well chosen initial values to the radii of the
lens and mirror surfaces in R1 to R4. These settings cause each of the selected
rays to hit the focal plane at a distance no greater than 0.0217mm from the
theoretical centre of the image for a point source from its direction.

// All numbers have been created successfully

// Set the unchanginging geometry of the telescope
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settok( 4, Tl,nupb) // Objective lens thickness 4mm at centre.
settok( 4, T2,nupb) // Mirror thickness 4mm at centre.
settok (700, D,nupb) // z coordinate of the mirror silvered surface

settok(2, tmpl,nupb)
sqrt (tmpl,nupb, root2,nupb)

settok(1l, one,nupb)

// Refractive indices.
// The objective glass is crown and the mirror glass is flint.

// crown flint
// blue 486 nm 1.51690 1.6321
// red 640 nm 1.50917 1.6161

str2num("1.51690", crownblueindex,nupb)
str2num("1.50917", crownredindex,nupb)
str2num("1.6321", flintblueindex,nupb)
str2num("1.6161", flintredindex,nupb)

inv(crownblueindex,nupb, crownblueinvindex,nupb)
inv(crownredindex,nupb, crownredinvindex,nupb)
inv(flintblueindex,nupb, flintblueinvindex,nupb)
inv(flintredindex,nupb, flintredinvindex,nupb)

IF tracing DO

{ writef ("crownblueindex= "); prnum(crownblueindex, 6)
writef ("crownredindex= "); prnum(crownredindex, 6)
writef ("flintblueindex= "); prnum(flintblueindex, 6)
writef ("flintredindex= "); pronum(flintredindex, 6)
writef ("crownblueinvindex= "); prnum(crownblueinvindex, 6)
writef ("crownredinvindex= "); prnum(crownredinvindex, 6)
writef ("flintblueinvindex= "); prnum(flintblueinvindex, 6)
writef ("flintredinvindex= "); prnum(flintredinvindex, 6)

}

// Initialize the setting of the lens and mirror surface radii.
// These are overwritten if file catagemetry.txt exists.

// It seems that the initial settings of R1 to R4 often cause
// the iterations to lead to a false minimum. So some
// experimention was needed before a good result was obtained.
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//str2num("5000", R1,nupb) // Objective front surface radius
//str2num("5000", R2,nupb) // Objective rear surface radius
//str2num("1100", R3,nupb) // Radius of mirror front surface
//str2num("1200", R4,nupb) // Radius of mirror silvered surface

//

This give a spot size of about 0.0173mm after many hours

str2num("+0.1537 9603 6301 4326 5100 0000 0000 E1", R1,nupb)
str2num("+0.4978 7269 7214 4032 0700 0000 0000 E1", R2,nupb)
str2num("+0.0926 7191 6585 7604 6700 0000 0000 E1", R3,nupb)
str2num("+0.1505 7199 0416 5610 7700 0000 0000 E1", R4,nupb)

//

This give a spot radius of about 0.0173mm

//str2num("+0.1545 1166 8077 8501 2000 0000 0000 E1", R1,nupb)
//str2num("+0.4969 1626 0425 6302 7000 0000 0000 E1", R2,nupb)
//str2num("+0.0946 9427 9298 7956 8000 0000 0000 E1", R3,nupb)
//str2num("+0.1523 9989 0724 6298 1000 0000 0000 E1", R4,nupb)

//
//
//

//
//

//
//
//
//

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

This give a spot radius of about
0.0217mm for A2 and 0.0153mm for Al and 0.0082mm for AO
The Airy disc radius is 0.00671mm

To show that this is close to the theortical optimum for a
telescope with an aperture of 100m consider the following.

Light is electromagnetic radiation but, unlike radio waves
which have wave lengths measured in metres, visible light
has a wave length measured in nano-metres. Blue light is
typically 486nm and red light is about 640nm.

If we consider a point source of light with a wave length of
550nm at infinity on the axis of a optically perfect telescope,
rays passing through every point the objective lens will be in
phase when they reach the focus point. As a result of
diffraction the image is not a tiny spot but a rather larger
spot surrounded by light and dark rings. A point of the
innermost dark ring is where the path lengths from opposite
edges of the objective lens differ by about one wave length of
the colour being considered. This is because rays being received
at this point are out of phase with other rays and so are
partially cancelled. The size of the bright spot at the centre
is thus somewhat smaller than the size of the innermost dark
diffraction ring. By applying simple geometry we can estimate
the radius of the innermost diffraction ring as (1000/100)*(550/2)
which i