Specification of Programming
Language Syntax

by
Martin Richards

mr10@cl.cam.ac.uk

http://www.cl.cam.ac.uk/users/mr10/

Computer Laboratory
University of Cambridge
Revision date: Mon Nov 4 10:57:01 GMT 2024

Abstract

Normally Backus Naur Form (BNF) or extended BNF (EBNF) is used to specify
the syntax of programming languages. Users typically find such specifications
hard to interpret and it is often not easy to check whether a parser the conforms
precisely with the BNF specification. There is also the problem that the BNF
may be ambiguous.

This document suggests way to specify the syntax of programming languages
that is concise and easily understood by users. It essentially specifies a recur-
sive descent parsing algorithm making it easy to implement a parser conforms
precisely to the specification. Syntax specified in this way is guaranteed to be
unambiguous.

Keywords: BNF, EBNF, transition diagrams, ambiguity.

Chapter 1

Introduction

Backus Naur Form (BNF) was first used in the Algol 60 Report to give a precise
description of its syntax.

John Backus and Peter Naur were members of the committee that developed
Algol 60.

Since then almost all programming languages have had their syntax specified
using BNF or Extended BNF(EBNF). EBNF is a slightly more compact notation
to specify a BNF grammar.

Algol 60 was a tour de force since at that time the most popular languages were
COBOL, FORTRAN 66, LISP and various Autcodes.

2 CHAPTER 1. INTRODUCTION

1.1 Example BNF grammar for expressions

Bexp ::= name
number
(E)
+ E
- E

E ::= Bexp
E"E
E x E
E/E
E+E
E-E

An example mathematical expression
27" —16/-2 %3

can be written satisfying the above grammar as follows:
X *2°-n"2-16 / -2 * 3

1.2. SYNTAX IS DIFFICULT 3

1.2 Syntax is difficult

At about the age of 7 we are taught that multiplication is more binding than
addition. So 1+ 2 x 3 evaluates to 7 not 9.

I was told to remember the word BODMAS which stands for
Brackets Of Division Multiplication Addition and Subtraction
indicating that, for instance, multiplication is more binding than addition.

Unfortunately BODMAS is just wrong and misleading. For instance, what does
it say about:

24 x6+-2+1—-546
Or even:
r+y+z

Consider the following two assignments:

s =X + z;

t
Il

X+y+z;

Bexp :

E2 ::

El ::

EO ::

Prog ::

name
number
(E0)
+ E1
- E1

Bexp
Bexp = E2

E2
E1l x E2
E1 / E2

E1l
EO + E1
EO - E1

= EO <eof>

CHAPTER 1. INTRODUCTION

1.2. SYNTAX IS DIFFICULT 3

This grammar could be written using category names similar to
those in the C++ grammar given in the [SO/IEC 14882:1998(E)
specification

<basic expression> ::=
<name>
<number>
(<additive expression>)
+ <multiplicative expression>
- <multiplicative expression>

<power expression> ::=
<basic expression>
<basic expression>

~

<power expression>

<multipicative expression> ::=
<power expressio>
<multipicative expression> * <power expression>
<multipicative expression> / <power expression>

<additive expression> ::=
<multipicative expression>
<additive expression> + <multipicative expression>
<additive expression> - <multipicative expression>

<program> ::=
<additive expression> <eof>

This grammar has
6 syntactic categories, 14 productions and 10 terminal symbols.

The ISO/IEC 14882:1998(E) grammar for C++ has
196 categories, 640 productions and 192 terminal symbols.

6 CHAPTER 1. INTRODUCTION

1.3 The transition diagrams

The definition of

[
\

[[

|

e {2)
M ne2 /7
(a0)
M el -

“ -

Definition of
=

1.4. THE COMPACTED TRANSITION DIAGRAMS

1.4 The compacted transition diagrams

A more compact definition of

——1 hame >

|
N number

(].J
\-—uddop—@—/

A more compact definition of _@_

\
M n<2 mulop —@—/

M n<l addop

Definition of

CHAPTER 1. INTRODUCTION

1.5 Implementing the Parser

LET rbexp() = VALOF
{ // Read a basic expression returning the corresponding parse tree

LET op = token
LET res = 0
SWITCHON op INTO
{ DEFAULT:

synerr("Bad token at the start of an expression")
lex()
RESULTIS 0

CASE s_name:

CASE s_number:
res := mk2(op, lexval)
lex()
RESULTIS res

CASE s_lparen:
res := rnexp(0)
checkfor(s_rparen, "’)’ expected")
RESULTIS res

CASE s_add:

CASE s_sub:
res := rnexp(1l)
IF op=s_sub RESULTIS mk2(s_neg, res)
RESULTIS res

AND rnexp(n) = VALOF
{ 1lex()

3

RESULTIS rexp(n)

1.5. IMPLEMENTING THE PARSER

AND rexp(n) = VALOF
{ LET res = rbexp()

{ LET op = token
SWITCHON op INTO
{ DEFAULT:
RESULTIS res

CASE s_power:
UNLESS n<3 RESULTIS res
res := mk3(op, res, rnexp(2))
LOOP

CASE s_mul:

CASE s_div:
UNLESS n<2 RESULTIS res
res := mk3(op, res, rnexp(2))
LOOP

CASE s_add:
CASE s_sub:
UNLESS n<1 RESULTIS res
res := mk3(op, res, rnexp(l))
LOOP
}
} REPEAT
RESULTIS res
}

10 CHAPTER 1. INTRODUCTION

1.6 How to draw the flow graphs

yb
7 S ySs
Bexp }—~~— n<3 " E2 y4
n<2—mutop E2 '—’,— y3
n<l addop E1 y2
A\ = y1
NAY
x0 x1x2 x3 x4x5 x6 x7 x8

Code to draw the items at level y4

drawcatboxL (y4, x1, x2, x5, "Bexp")
drawtestboxL(y4, x5, x5, x6, "n<3 ")
drawcatboxL (y4, x6, x6, x7-r, "E2")
rndcorner (2, x3, y4, r)

rndcorner (0, x4, y4, r)

rndcorner (3, x7, y4, r)

moveto (x4, y4-r)

drawto (x4, yl+r)

1.6. HOW TO DRAW THE FLOW GRAPHS 11

SectionSyntactic ambiguity
The rules associated with the floaw graphs are:
1) Backtracking through a test box that matches a lexical token is not permitted.
2) At a path division point the left hand branch is always tried first.
The rules ensure the grammar specified by the flow graphs contains no ambigui-
tites.
It is easy to create flow graphs in which every loop will match at least one lexical,
and it is easy to check that this poperty holds.
Note that BNF grammars can contain ambiguties.

12 CHAPTER 1. INTRODUCTION

1.7 BNF ambiguities

From the Web BNF I have obtained specifications for the languages C, C++ and
Java. All three essential the following productions.

iselection-statement;, ::= if (jexpression;) jstatement,,
iselection-statement;, ::= if (jexpression;) jstatement; else jstatement;
istatement; ::= jseclection-statement;,

This contains an ambiguity since there are two way to parse the following

res = 0;
if (x>0) if (y>0) res=2; else res = 1;

If x is zero this code will set res to either zero of one depending on how the author
of the compiler interpreted the grammar.

This is exactly the same ambiguity that was present in the Algol 60 Report 64
years ago.

My conclusion is that language designers and/or people who write programming
languae manuals choose to specify the grammar using BNF but don’t notice or
care if the BNF specification is ambiguous.

Chapter 2

Syntax Diagrams for BCPL

This appendix gives the precise syntax of BCPL as it is now, at least in February
2022. It includes the floating point operators, the FLT feature and the newly
added pattern matching constructs. It also contains some constructs from older
versions of BCPL to make compilation of older BCPL programs easier.

The syntax of programming languages is often specified using Backus Naur
Form or BNF. Mathematicians like BNF notation because of its simplicity, power
and interesting properties, while language designers like it because the rules just
confirm their understanding of the language grammar they are designing. For
users, understanding a grammar from its BNF specification is harder. There are
typically a hundred or more of syntactic categories, many with artificial names,
and a greater number of rules. Understanding the rules is hard because they
mostly depend on each other. There is also sometimes a problem noticing whether
a BNF grammar is ambiguous. Indeed it is not possible, in general, to write a
program that can determine whether a BNF grammar is ambiguous, and it is also
not always easy to write a parser that precisely agrees with the BNF specification.

Even though much research has been done in this area resulting in packages
such as Lex and Yacc, I have decided to specify the grammar of BCPL using a
method based on transition diagrams. This method gives a precise specification
of the parsing algorithm. The diagrams are easy to understand and have the
advantage that the grammar is unambiguous. It is also easy to check that the
parser in a compiler comforms precisely with this specification. These diagrams
can also be used as the basis of a program to find a minimum cost syntactic
repairs, resulting in better error messages. Such a program, checksyn.b, is
currently under development and is available in the BCPL distribution.

The BCPL syntax is given using the diagrams shown in figures 2.1, 2.2, 2.3,
2.4, 2.5, 2.6 and 2.7 for the syntactic categories Prog, D, Mlist, Pn, C, Bexp and
En. In the diagrams these categories are represented by the rounded boxes:

AFroa) (o), {mise) (e} (e} {Eexe) ana {En)-

A rectangular box is called a test box and may contain a terminal symbol as in

13

14

CHAPTER 2. SYNTAX DIAGRAMS FOR BCPL

WHILE = op , or a label representing a set of terminal symbols or some

other condition. These test box labels are specified in the following table.

Label | Possible symbols or condition

name A name not preceded by FLT

fname | A name possibly preceded by FLT

number | Integer or floating point constant

const | Integer or floating point constant, BITSPERBCPLWORD
character constant, TRUE, FALSE or ?

bpat Possibly signed integer or floating point constant,
character constant, TRUE, FALSE, 7,
or a name not preceded by FLT

string | A string constant

mulop | * / MOD #x #/ #MOD

posop | + — ABS #+ #- #ABS

addop | + — #+ #-

relop = "= < <= > >=
#= #7= #< #<= #> #>=

fcond | -> #-—>

range R

jcom NEXT EXIT BREAK LOOP ENDCASE RETURN

assop 1= x:= /:= MOD:= +:= -:=
#:= #x:= #/:= #MOD:= #+:= #-:=
L= >>:= &:= | := EQV:= XOR:=

iscall | This is only satisfied if the most recent construct
was a function, routine or method call

isname | This is only satisfied if the most recent construct
was a name nor enclosed in parentheses

nonl This is only satisfied if the previous and current
tokens are on the same line

defop | This is satisfied when reading a GLOBAL
declaration if the current token is :
This is also satisfied when reading a MANIFEST
or STATIC declaration if the current token is =

eof This is only satisfied if the program file is exhausted

A test box that specifies one or more terminal symbols can only be traversed if it
matches the current symbol in the program. Some test boxes have side conditions
such as n<6 which must also be satisfied. When a box successfully matches a
terminal symbol, input is advanced to the next symbol of the program.

Test and category boxes are connected by paths which may contain branch
points where paths diverge, and join points where paths converge. Each diagram
has an entry point and an exit point, and every path in it has an implied direction.

15

The diagrams specify an infinite extended flow graph obtained by starting

with the category and repeatedly replacing category boxes by their
definitions, substituting the parameter n where necessary. Every test box in the

extended graph having a side condition will now compare two explicit integers
and so is either equivalent to a test box without a side condition if the comparison
is successful, or the box is eliminated if the condition fails. The extended graph
thus only contains test boxes without side conditions.

The parsing algorithm searches through the extended flow graph trying to
find a path containing a sequence of test boxes that match the terminal symbols
of the program being parsed. Whenever a branch point is encountered, the left
branch is tested first, only trying the right branch when all test boxes reachable
from the left branch fail. If a test box is successful and all boxes reachable from
it fail, the program is syntactically incorrect. A program is only syntactically
correct if the exit point of the extended graph can be reached.

To keep the diagrams as simple as possible there are some syntactic constraints
they do not cover. These are as follows.

1) Names declared in GLOBAL declarations must must
use the defining operator :
2) Names declared in MANIFEST and STATIC declarations
must must use the defining operator =
3) In a match list the defining operator namely => or BE
must be the same in each match item.
4) In a MATCH or EVERY expression, the defining operator
in the match items must all be =>
5) In a MATCH or EVERY command, the defining operator
in the match items must all be BE
6) The operands of .. and #.. must be either be names or
manifest constant expressions.
7) The number of patterns separated by commas in square brackets must
not exceed 255.
8) The depth of nesting of square brackets in patterns must not exceed 4.
9) In a local variable declaration, the number of names must equal
the number of initial value expressions.
10) In assignment commands, the number of expressions on the left and
right sides must be the same.
11) FLT can only precede names when the name is being declared
as local variable, a formal parameter or a pattern variable.
Note that FOR loop control variables may not be prefixed
by FLT

For compatibility with older versions of BCPL some terminal symbols have
synonyms as follow.

CHAPTER 2. SYNTAX DIAGRAMS FOR BCPL

16
Symbol | Possible synonyms
{ $(, possibly tagged
} $), possibly tagged
DO THEN
THEN DO
MOD REM
NOT -
OF .
= 7= EQ NE
< <= LS LE
> >= GR GE
<< >> | LSHIFT RSHIFT
& | LOGAND LOGOR
XO0R NEQV

1
L ™

4[1_1 SECTION | string }—@

-

M NEEDS [—| string

GLOBAL
MANIFEST
\4 STATIC

“— LET

Figure 2.1: The definition of

—~{retop L H{Eo {7
A

\—l icom I

/
TP *

N bpat }—T{ range H bpat M
\—I fname I ~

Figure 2.4: The definition of

v

17

18 CHAPTER 2. SYNTAX DIAGRAMS FOR BCPL

Y E ~—
M RETURN | 4 N REPEATWHILE (Eo)
M FINISH | / N REPEATUNTIL
. w4

g

“4 GOTOI
RESULTIS ~ ~

" | ELSE [¢C d

[For }{name }{= {£0 }y{To {E0) 50 |

Sia

g

iscall

1sndme

Figure 2.5: The definition of

Figure 2.6: The definition of

L J

19

20

CHAPTER 2. SYNTAX DIAGRAMS FOR BCPL

w,

nonl |~ (n<9 | y [@] r [
N (n<9 | [@ J [
T n<s] (o) 01
M OF n<g | @ 1
miE n<8 :j
miE n<8
" mutop n<6 | (Es) y
M addop n<5 | @ 1
M relop n<5 }—I—{ relop n<5 }—]

@ J

M << n<4 | @ 4
N >> h<4 }—j
N & h<3 | @ 4
mil n<? | @ 1
M EQV n<l | @ 1
M XOR n<l }—J
M feond n<l I—@] @ /

Figure 2.7: The definition of

g

