Appendix A

BCPL Syntax Diagrams

This appendix gives the precise syntax of BCPL as it is now, at least in February 2022.
It includes the floating point operators, the FLT feature and the newly added pattern
matching constructs. It also contains some constructs from older versions of BCPL to
make compilation of some older BCPL programs easier.

The syntax of programming langugages is often specified using Backus Naur Form
or BNF. Mathematicians like BNF notation because of its simplicity, power and inter-
esting properties, while language designers like it because the rules just confirm their
understanding of the language grammar they are designing. For users, understanding
a grammar from its BNF specification is harder. There are typically a hundred or more
of syntactic categories, many with artificial names, and a greater number of rules. Un-
derstanding the rules is hard because they mostly depend on each other. There is also
sometimes a problem noticing whether a BNF grammar is ambiguous. Indeed it is not
possible,in general, to write a program that can determine whether a BNF grammar
in unambiguous. It is also not always easy to write a parser that precisely agrees with
the BNF specification.

Even though much research has been done in this area resulting in packages such
as Lex and Yacc, I have decided to specify the grammar of BCPL using a method
based on transition diagrams. This method gives a precise specification of the parsing
algorithm. The diagrams are easy to understand and have the advantage that the
grammar is unambiguous. It is also easy to check that the parser in the compiler
comforms precisely with this specification.

The BCPL syntax is given using the diagrams shown in figures A.1, A.2, A.3,
A4, A5 and A.6 for the syntactic categories Prog, D, Mlist, Pn, C and En. In the

diagrams these categories are represented by the rounded boxes: , —@— ,
, , and —@— , respectively.

A rectangular box is called a test box and may contain a terminal symbol as in

or <<}, or a label representing a set of terminal symbols or some other

condition. These test box labels are specified in the following table.

259

260 APPENDIX A. BCPL SYNTAX DIAGRAMS

Label Possible symbols or condition
number | Integer or floating point constant
const | Integer or floating point constant,
character constant, TRUE, FALSE or 7
bpat Possibly signed integer or floating point constant,
character constant, TRUE, FALSE, 7,
or a name possibly preceded by FLT
name A name not preceeded by FLT

fname | A name possibly preceded by FLT
mulop | * / MOD #x #/ #MOD

posop | + — ABS #+ #- #ABS

addop + - #+ #-

relop = = < <K= > >=
#= #7= #< #<= #> #>=

cond -> #->

range .. #o

jcom NEXT EXIT BREAK LOOP ENDCASE

assign | := *k:= /:= MOD:= +:= -:=
#:= #x:= #/:= #MOD:= #+:= #-:=
KL= >>:= &:= |:= EQV:= XOR:=

iscall | This is only satisfied if the most recent construct
was a function, routine or method call

isname | This is only satisfied if the most recent construct
was a name

defop | This is satisfied when reading a GLOBAL

declaration if the current token is :

This is also satisfied when reading a MANIFEST

or STATIC declaration if the current token is =

eof This is only satisfied if the program file is exhausted

Test and category boxes are connected by paths which may contain branch points where

paths diverge to the left or right, and join points where paths converge. Each diagram

has an entry point and an exit point, and every path in it has an implied direction.
The diagrams specify an infinite extended flow graph obtained by starting with the

category and repeatedly replacing category boxes by their defined flow
graphs, substituting the parameter n where necessary. The extended graph can be
thought of as only containing test boxes.

A test box can only be traversed if the condition or the possible terminal symbols it
specifies match the current program input. If the box successfully matches a terminal
symbol, input is advanced to the next symbol of the program.

A test box can contain a side condition such as n<5, and in the extended flow
graph n will have always been replaced by an explicit integer. Such a box can only be
traversed if the condition is satisfied.

The parsing algorithm searches through the extended flow graph trying to find
a path containing a sequence of test boxes that match the terminal symbols of the
program being parsed. But whenever the algorithm encounters a branch point, it

261

always tries the left branch first. If a test box is satisfied and all boxes reachable from
it fail, the program is syntactically incorrect. If the exit point of the extended flow
graph is reached, the program is syntactically correct.

To keep the diagrams as simple as possible there are some syntactic constraints
they do not cover. These are as follows.

1) Names declared in GLOBAL declarations must must
use the defining operator :
2) Names declared in MANIFEST and STATIC declarations
must must use the defining operator =
3) In a match list the defining operator namely => or BE
must be the same in each match item.
4) In a MATCH or EVERY expression, the defining operator
in the match items must all be =>
5) In a MATCH or EVERY command, the defining operator
in the match items must all be BE
6) The operands of range must be manifest constant expressions.
7) The number of patterns separated by commas in square brackets must
not exceed 255.
8) The depth of nesting of square brackets in patterns must not exceed 4.
9) 1In alocal variable declaration, the number of names must equal
the number of initial value expressions.
10) In assignment commands, the number of expressions on the left and
right sides must be the same.

For compatibility with older versions of BCPL some terminal symbols have syn-
onyms as follow.

Symbol | Possible synonyms
{ $(, possibly tagged
} $), possibly tagged
DO THEN

THEN DO

MOD REM

NOT -

OF -

= "= EQ NE

< <= LS LE

> >= GR GE

<< >> LSHIFT RSHIFT

& | LOGAND LOGOR
X0R NEQV

262 APPENDIX A. BCPL SYNTAX DIAGRAMS

R
J

L,-{ SECTION | string }—@—]
o
M NEEDS ——] string }—@—]

Figure A.1: The definition of

263

GLOBAL
MANIFEST
\—l STATIC I

[_TDU |
\ fname [— , fname =

Figure A.2: The definition of —@—

Figure A.4: The definition of

264 APPENDIX A. BCPL SYNTAX DIAGRAMS

“{ RETURN | 4 M REPEATWHILE (E0)
M FINISH | 4 M REPEATUNTIL

1S nhame

DEFAULT

Figure A.5: The definition of

- <> || >

265

mulop n<6

addop n<5

old

’ﬁ

] relop n<5 F—I—4 relop n<5 F—}
&4
<< n<4 {E4}
>> h<4
% n<3 (E3)
| n<2 (E2)
EQV n<l {El}
XOR n<l
fcond n<l {EO [EEJ——J

Figure A.6: The definition of —@—

266 APPENDIX A. BCPL SYNTAX DIAGRAMS

