A tautology checker
for propositional formulae

M. Richards
Computer Laboratory
University of Cambridge
mr@cl.cam.ac.uk
www.cl.cam.ac.uk/users/mr/

May 15, 2006

Abstract

This paper presents an algorithm to determine whether a Boolean for-
mula always evaluates to false (or true) for all possible settings of its
variables. The algorithm is based Stalmarck’s proof procedure. It uses a
set of Boolean relations over up to eight Boolean variables to represent the
given formula, and a Boolean matrix to hold derived dyadic implications
such as ¢ — y and £ — §. A vector is used to hold equality relations such
asx =0,z =1,z =y and x = y. It applies rules to simplify the set of re-
lations and deduce the dyadic implications, which are analysed to generate
equality relations that are then applied to the relation set. When no more
progress can be made, a variant of Stalmarck’s dilemma rule is applied.
Compared with Stalmarck, this algorithm represents the given formula us-
ing fewer terms and fewer variables, and has available more simplification
and inference rules. The use of dyadic implications allows it to make more
progress before having to resort to the potential expensive dilemma rule.
In addition, it can be implemented efficiently using bit pattern techniques.

Keywords. Tautology checking, Boolean satisfiability, circuit verifica-
tion.

1 Introduction

Both tautology checking and satisfiability testing are well known to have many
useful applications and there are several published algorithms that attempt
to solve these problems. This paper outlines a new algorithm to solve these
problems based on Stalmarck’s proof procedure[5, 2, 3]

Stalmarck’s algorithm represents the given formula by a set of terms of the
form z = (yoz) where o is a Boolean function and z, y and z are positive
or negative Boolean variables or the constants 0 or 1. In one version of the
algorithm, o is limited to just the implies operator. Several rules are available
to simplify the terms and to deduce equality relations of the form: z = 0,
x =1,z =y or z =7. For example, the term 1 = (1 V z) can be eliminated

since it is always satisfied, and, from z = (0 — z), we can deduce that z = 1.
Deductions can also be made by taking terms in pairs. For example, from
a = (zANy)and b = (z Ay), we can deduce a = b, and if we know the
a = b, the variable a can be replaced by b in every term, possibly allowing
further simplifications and deductions to be made. If an unsatisfiable term
is ever found, the given formula is unsatisfiable. If the set of terms becomes
empty, the given formula is satisfiable. If neither of these occur and no further
simplification is possible, the algorithm applies the Dilemma rule. This involves
selecting n variables and applying the algorithm to the 2" subproblems formed
by all the possible settings of these n variables. If all are unsatisfiable the given
formula is unsatisfiable. If any is satisfiable, the given formula is satisfiable,
and if all those subproblems that are not unsatisfiable imply, say, £ = y, then
this is true in the parent problem. The number n is called the recursion depth
and the algorithm attempts to solve the problem with successively increasing
values of n. In practise, many large problems can be solved with quite small
values of n.

The new algorithm extends Stadlmarck’s algorithm in several ways. Firstly,
the set of terms is replaced by a set of Boolean relations. Notice that a
Stalmarck term such as z = (y A z) can be regarded as a relation over three
variables specifying which of the eight settings of zyz are allowed. In this case
they are: 000, 001, 010 and 111. This set can be represent by a bit pattern
of length eight. It is natural to extend Stdlmarck terms to all 256 possible
relations of three variable rather than just the 16 possible Boolean functions,
and a further extension is to increase the number of variables allowed in the
relations. There are advantages and disadvantages in increasing this number,
but a reasonable compromise seems to be relations over eight variables. This
can be represented using a relation bit pattern of length 256 and eight integers
to identify the variables. We will see how to use these relations later. A second
extension to Stalmarck’s algorithm is the use of a Boolean matrix to hold im-
plications of the form: z — y, £ — ¥, Z — y or £ — ¢. From transitive closure
of this matrix, it is easy to deduce equality relations of the form: z =0, z =1,
z =y or £ = ¢, and these can be used to eliminate variables from the original
relation set. Using these larger terms reduces their number and the number of
variables required. It also increases the number of simplifications and inference
rules available. Furthermore, most manipulations of these terms can be done
efficiently using bit pattern techniques.

The dilemma rule of the new algorithm selects a pivot relation that has
many variables and few ones in its relation bit pattern. The subproblems con-
sidered correspond to each one occurring in the bit pattern. If the pivot relation
has eight variables, we typically have less than 40 of the 256 subproblems to
consider. For problems requiring significant recursion depth, this is a major ad-
vantage. The choice of pivot must be made with care since it is a compromise
between the number of ones in its bit pattern and the cumulative frequency of
use of its variables in the other relations.

As with many published algorithms, success depends on the details of the
implementation, so some of these details are outlined in the following sections.

1.1 Notation

Let f(v1,...vn) be a Boolean function of n Boolean variables. If there are no
possible settings of the variables vy, ... v, for which f(vi,...v,) = 0, then f
is a tautology, and if there are no possible settings of the variables for which
f(vi,...v,) = 1, then f is a not satisfiable. The algorithm described in this
paper can determine whether either of these properties hold. Satisfiability and
tautology checking are well known to be NP and co-NP-Complete[l], respec-
tively, and so any algorithm to solve these problems will sometimes take expo-
nential time. However, many Boolean formulae arising from real applications
can be solved much more quickly.

We will assume, without loss of generality, that the function f is given as
a directed acyclic graph in which each internal node contains a monadic or
dyadic Boolean functions and each leaf edge is labelled by a variable from the
argument list of f. The internal edges are then given other distinct labels and
the leading edge, denoting the result of the function, is given the special label
res. The graph is then partitioned in such a way that each partition has no more
than eight edges entering or leaving it. These partitions can be represented by
Boolean relations constraining the possible values on their external edges. The
entire function can thus be represented as a set of relations over no more than
eight variables.

It is common to specify benchmark problems using Conjunctive Normal
Form (CNF'). These are easily converted into relations over no more than eight
variables by the addition of a few extra variables. Unfortunately the resulting
relations have a high density of ones in their bit patterns which is not a good
starting point for the new algorithm.

To test whether f is a tautology, we set the value of res to 0 and test whether
the resulting relations lead to an inconsistency. Alternatively, if we set res to 1
and find an inconstancy the relations are not simultaneously satisfiable. Either
problem thus reduces to searching for an inconstancy in a set of relations.

2 The internal representation

A relation R(a,b,c,d, e, f, g, h) over eight Boolean variables a ... h is represented
internally by a bit pattern w of length 256 and a vector of integers identifying
the variables. With i = a+2b+4c+ 8d+ 16e+32f + 64g + 128h, bit ¢ of w is 1
if and only if the values of a, ..., h satisfy the relation. The bits are numbered
from the right with the rightmost bit numbered zero. Of course in a practical
implementation, relations nodes have other fields to improve efficiency.

Relations over fewer than eight variables can be extended to a relation over
eight variables by adding dummy zeros to the argument list. If the last few
variables of a relation are zero they can be omitted from the written form. So,
for instance, R(a, b, c,d) denotes a relation R(a,b,c,d,0,0,0,0). Sometimes the
name of a relation includes its bit pattern specified in binary or hexadecimal.
For example, R10010101(z,y, z) denote the relation in which zyz must be one
of 111, 001, 010 or 000 as shown in Fig 1.

A relation is written (or read) as a bit pattern composed of up to eight 32-bit

X 10101010
y 11001100
Z 11110000
bit pattern | 10010101
bit number | 76543210

Figure 1: R10001101(z,y, z) represents (zyz V Zyz V Tyz V IyZz)

hexadecimal numbers followed by the variables. If fewer than eight numbers are
given the bit pattern is padded to the left with zeros. Each variable appears as
v followed by its non negative variable number. By convention, the variable v
always has value 0 representing false. Comments start with a hash (#) and run
to the end of the line. Using this notation, the Boolean formulae v; = (ve — v3)
and (v; V vy Vws) = (vg Aws) can be written as:

A6 v1 v2 v3 # vl = (v2->v3)
FF010101 v1 v2 v3 v4 v5 # (v1|v2|v3)->(v4&vh)

The following is an example of a relation over seven variables.
ABO1007F 0 O C81F0073 vl v2 v3 v4 v5 v6 v7

It specifies the possible settings the variables vy, ...,v7 may take. In this ex-
ample, bits 0 to 31 of the relation bit pattern are given by C81F0073, the next
64 bits are all zero and bits 96 to 127 are given by ABO1007F. Notice that, if
(vg,v7) is (0,0), the above relation reduces to RC81F0073(v1,va,v3,v4,Vs5), and
if (vg,v7) is (1,1) then RABO1007F(vy,vs,vs,vs,v5) holds, and that no other
settings of (vg,v7) are not permitted. We can therefore deduce that vg = v7.
Careful inspection will reveal that this relation also implies v4 — vs. Such
implications can be detected efficiently by testing that particular subsets of the
relation bit pattern contain only zeroes.

3 Simplification

Simplifications are applied to reduce the number of relations in the set, the
total numbers of variables used, or the number of ones occurring in relation bit
patterns. The simplification rules are applied either to a single relation or pairs
of relations. Although the examples given typically involve relations over three
variables, they are easily generalised to relations over eight variables.

3.1 Simplification of a single relation

These simplifications apply to a single relation, but occasionally they make use
of extra information such as x — y or x = 1.

FALSE If a relation has bit pattern entirely composed of zeroes, it can never
be satisfied and so simplification is terminated with an indication that
the current problem is unsatisfiable.

TRUE A relation can be eliminated if it is satisfied for all settings of its
variables. For example, R11111111(z,y, z) is always satisfied and so can
be eliminated.

DUP If two of the arguments of a relation are equal then one of them can
be eliminated. For example, the bit pattern of R10011101(x,y, z) states
that zyz must be one of 111, 001, 110, 010 or 000, but we know that the
first and third arguments are the same so the choice is reduced to 111,
010 or 000 which corresponds to a relation R1011(z,y) restricting zy to
one of 11, 01 or 00. This rule is closely related to EQ, defined below, in
which two different variables of a relation are known to have the same
value.

SET If an argument variable has a known value, it can be removed from the
relation with a suitable change of bit pattern. For example, consider the
relation R10010101(z, y, z) which restricts to zyz to one of 111, 001, 010
or 000. If z is known to be 0, the possible settings of zy is restricted to
01 and 00, and so the simplified relation is R0101(z,y). Similarly, if z is
known to be 1, the relation reduces to R1001(z,y). Note that 1001 and
0101 are the two halves of 10010101.

EQ If the values of two arguments of a relation are known to be equal, one
of them can be eliminated. For example, the relation R10010101(z,y, z)
which restricts to zyz to one of 111, 001, 010 or 000 reduces to R1011(zx,y)
if the value of z is known to be equal to z. This restricts zy to be one of
11, 01 or 00.

NE If the values of two arguments of a relation are known to be unequal, one
of them can be eliminated. For example, the relation R10010101(x,y, z)
which restricts to zyz to one of 111, 001, 010 or 000 reduces to R0001(z,),
if it is known that z = Z. This specifies that zy can only be 00.

IMP If the values of two arguments of a relation, and y say, are known to
satisfy x — y, the relation can be simplified. For example, consider the
relation R10010101(z, y, z) which restricts to zyz to one of 111, 001, 010
or 000. If it is known that z — z then the triplet 001 is disallowed, reduc-
ing the possible settings of zyz to one of 111, 010 or 000. The simplified
relation is thus R10000101(x,y, z). The other three implications, z — 7,
T — 4y, or T — ¥ give similar simplifications.

SINGLE If a variable is used in only one relation, it value is unrestricted by
the other relations and so can be removed. For example, if z is only used
in R10010101(z,y, z) which restricts zyz to being one of 111, 001, 010
or 000, the relation can be simplified to R1011(z,y) which restricts zy to
one of 11, 10 or 00.

PERM This rule allows the variables of a relation to be reordered. This in-
volves a permutation of the relation bit pattern. For example, the relation
R10011101(x, z,y) specifies that zzy must be one of 111, 001, 110, 010

or 000. This is equivalent to saying that zyz must be one of 111, 010,
101, 001 or 000 which is represented by R10110101(z,y, z).

SPLIT If a relation R can be factorised into two relations S and 7" that have
no variables in common, then R should be replaced by these two relations.
For instance, RAT00A7A7(a,b,d,c,e) can be split into R10100111(a, b, c)
and R1011(d,e). SPLIT is expensive and rarely succeeds, and so is only
applied when all other simplifications have been applied and then only
to relations over six or more more variables, since monadic and dyadic
relations will have already been extracted by the inference rules described
below. Splitting is useful since the resulting factors may sometimes be
combined with other relations using the COMBINE simplification de-
scribed below.

3.2 Pairwise simplifications

There are two simplifications involve pairs of relations, as follows.

COMBINE If the total number of variables used in two relations is no more
than eight and they have at least one variable in common, they can be
combined to form a single relation. For example, R10010101(a,y, 2)
which restricts to ayz to one of 111, 100, 010 or 000 can be combined
with R10111011(b, y, z) corresponding to byz being one of 111, 101, 100,
011, 001 and 000 resulting in R00001100100010001(a, b, , y) correspond-
ing to abyz being one of 1101, 1010, 1000, 0100 and 0000. In general
its is best to combine relations that have many variables in common.
COMBINE is particularly cheap to implement when two relations use the
same variables in the same order. For instance R4F013A04(a, b, ¢, d, e) and
RC57200FF(a, b, c,d,e) can be replaced by R45000004(a,b,c,d,e), since
45000004=(4F013A04&C57200FF).

RESTRICT If COMBINE cannot be used because the resulting relation
would have too many variables, it may still be possible for one relation to
restrict another. If two relations S and T have some variables is common
and if S imposes a restriction on the possible settings of these shared
variables then this restriction can be applied to T' replacing it by a sim-
pler relation. For example, if S is R10000111(a,y, z) which restricts to
ayz to one of 111, 010, 100 or 000 which thus restricts yz to be one of
11, 10 or 00, and if T is R10111000(b,y, z) corresponding to byz being
one of 111, 101, 001 and 110, the restriction implied by S limits these
possibilities to just 111 and 110 corresponding to the new version of T
being R10001000(b, y, z). Note that, T' can also restrict S, replacing it by
R10000100(a,y,z). RESTRICT is only applied to pairs of relations hav-
ing three or more variables in common, since restrictions between pairs
of variables will have already extracted and applied by the inference rules
described below. RESTRICT can be implemented in a way that allows
the following implications to be detected: x -y, z =>4, T > y,or T —> 7
where z is only in S and y only in T'.

4 Inferences

After the relations have been simplified they are inspected to find all the dyadic
relations of the form x — y, x — 7, T — ¥y, or T — ¥ that they imply. As we
have seen these are easily discovered by applying a mask to the relation bit
pattern and testing for zero. For example, since (95C1008D & 0000FF00) is
zero, we can deduce that d — e is implied by R95C1008D(a, b, c,d,e). Notice
that this relation also implies @ — b since (95C1008D & 22222222) is zero.
These dyadic relations are stored in a matrix as described in the next section.
Although it is possible to deduce particularly useful relations such as v; = v;
or v; = 0 using bit pattern techniques on the relation bit pattern, this is not
done since such facts are discovered more efficiently from the matrix.

For relations over eight variables there are 28 variable pairs to consider, and
for each pair (z,y), say, there are four possible implications: z — y, £ — 7,
Z—>yorZ —y. Since (r - y) = (ZVy) = (y > Z), we need only consider
pairs in which the variable number of z is greater than that of y. There are
thus 112 possible dyadic implications, and these can be packed as bits in four
32-bit words. Each 1 occurring in the relation bit pattern causes 28 of the 112
implications bits to be set to zero. Every other implication bit should remain
set to 1. The computation proceeds by considering the relation bit pattern one
byte at a time and masking out the implication bits disallowed by the ones in
that byte. This can be done efficiently using precomputed tables of 256 112-bit
masks for each of the 32 byte positions in the relation bit pattern. Since relation
bit patterns often contains many zero words, only bytes occurring in non zero
words are processed. Relation nodes hold previous implication bit patterns so
newly discovered implications are easy to detect.

5 The Boolean matrix

The dyadic implications between pairs of variables are stored in a 2n x 2n
Boolean matrix M which is partitioned into four n X n Boolean matrices A, B,

C and D as follows:
A B

A;j is set to 1 if the implication v; — v; is known to hold. Similarly, B;;, Cj;
and D;; are respectively set to 1 if v; — v}, v; — v; or ¥; — v; are known.
Note that D is the transpose of A since (v; = v;) = (U; — 7;), and for similar
reasons B and C are symmetric.

When all the newly discovered implications have been stored to M, a variant
of Warshall’s algorithm is applied to form its transitive closure. Warshall’s
algorithm was originally presented in [6] but is also described in many text
books such as [1]. The variant used here takes advantage of the known symmetry
properties of M and knowledge of which implications have been added since the
previous transitive closure.

From the resulting matrix, we can easily determine relations of the form
v; = vj, v; = vj, v; = 0 and v; = 1 since

7

(7 = 75) = vi = v;
(’U_i—)’Uj) = V; = Uj

(Ui — W) = v; =0

(T = 75) = v; = 1.

Each of these equality relations is particularly useful since it allows the elim-
ination of the variable v; from every relation in the current set. If it is ever
discovered that v; = 7; then an inconsistency has been found, the current set
of relations is unsatisfiable. Newly discovered relations of the form v; — wvj,
v; = Uj, U; — vj and U; — U; can also be used to simplify relations in the
current set using IMP defined above.

After all the newly discovered dyadic relations have been applied to the cur-
rent set of relations, the algorithm returns to the simplification phase, possibly
finding more previously undetected implications. The process continues until
no more progress can be made. At this stage either an inconsistency will been
found implying that the current set of relations is unsatisfiable, or the set of
relations is empty, implying that they can be satisfied. If neither of these cases
arise, SPLIT is applied to every relation over six or more variables and any re-
sulting factors combined with other relations using COMBINE. Although this
simplification is useful, it will not yield new implications and so the algorithm
must now invoke the dilemma rule.

6 The dilemma rule

The algorithm applies the dilemma rule when the set of relations are (a) fully
simplified, (b) contain no obvious inconsistencies and (c) from which no new
implications can be deduced.

It involves choosing a pivot relation from the current set, probably one con-
taining many frequently used variables and reasonably few ones in its relation
bit pattern. The ones in the bit pattern specifies the possible setting of its
variables. Typically there will be, on average, no more that about 40 possible
settings to consider. These are analysed in turn. If they all lead to inconsisten-
cies then the original set of relations in unsatisfiable. If any case is satisfiable,
the original set is satisfiable. If all the non-inconsistent cases imply that, say,
x — y holds then this relation can be applied to the original set. Similarly, for
the other three implications. Once all these newly discovered implications have
been applied to the original set of relations, the algorithm returns again to the
simplification phase.

The depth of nesting of the sub-problems created by the dilemma rule is
called the recursion depth. The maximum recursion depth allowed is succes-
sively increased until the problem is solved. Luckily most problems in practise
can be solved with small depth limits.

7 The overall algorithm

The algorithm is encapsulated in the function:
erplore(relations R, matrix M, int depth, int mazdepth)

which performs the following computation.

(1) Apply the simplification and inference rules to R, inserting any detected
implications of the form z — y, + — 4§, T — y or £ — ¢ into M. If an
inconsistancy is found, return from explore with an indication that the relations
are not satisfiable. If the set of relations becomes empty, return from ezplore
with an indication that the relations are satisfiable.

(2) Form the transitive closure of M and apply any newly discovered relations
of the formz=0,z=1, x =y orz =9 to R.

(3) Repeat steps (1) and (2) until no more progress can be made.

(4) If depth<mazxdepth, return from ezplore with an indication that the current
problem cannot be solved with this setting of maxdepth.

(5) Apply SPLIT to every relation having six or more variables.

(6) Choose a pivot relation P and make a new Boolean matrix I entirely filled
with ones.

(7) For each new set of relations R’ composed of R modified by each possible
setting of the variables permitted by P, copy M into a new Boolean matrix M’
and call: ezplore(P', M', depth+1, maxdepth). If all these sub-problems are
unsatisfiable, return from ezplore with an indication that the relations R are
not satisfiable. If any sub-problem is satisfiable return from ezplore with an
indication that the relations R are satisfiable. Otherwise form the intersection
in I of all the matrices returned by the calls of ezplore that did not indicate
unsatisfaction.

(8) If I contains implications that are not in M, apply them to R and continue
processing from (1).

(9) Otherwise, return from ezplore with an indication that the problem cannot
be solved with this setting of mazdepth.

A useful optimisation is to rename the variables to form a compact set if they
become too sparse, since this improves the efficiency of the matrix operations.
If this compaction is done, it is best performed in step (7).

8 Comments

The implementation of this algorithm is not complete so no performance re-
sults are yet available but it is expected that its complexity will be similar to
that of Stamarck’s algorithm, although it is hoped that it will perform better
particuarly on harder problems. The current state of a BCPL implementation
of the algorithm can be found in directory BCPL/bcplprog/chk8/ in the freely
available BCPL distribution available via [4]. A implementation in C will be
made available in due course.

If using relations over eight variables turns out to be of great benefit, relation
over a larger number, 16 say, may be even better, but then the bit pattern
representation of relations would no longer be economical. It may turn out that
using Ordered Binary Decision Diagrams (OBDDs) would work well. Note that
many of the well known problems with OBDDs are avoided here since they are
guaranteed to be small since they only have a small number of variables. Other

ways to represent relations over a small number of variables are also worth
considering.

References

[1]

2]

[3]

[4]

[5]

[6]

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, Cambridge, MA, 1990.

G. Stalmarck and M. Saflund. Modelling and verifying systems and software
in propositional logic. In B.K. Daniels, editor, Safety of Computer Control
Systems, 1990(SAFECOMP’90), pages 31-36, 1990.

J. Harrison. Stalmark’s Algorithm as a HOL derived rule. In J. von Wright,
J. Grundy and J. Harrison, editor, Proceedings of TPHOLs’96, Lecture
Notes in Computer Science, pages 221-234. Springer-Verlag, 1996.

M. Richards. The BCPL Cintcode Distribution.
www.cl.cam.ac.uk/users/mr/BCPL/bcpl.{tgz,zip}.

Mary Sheeran and Gunnar Stalmarck. A tutorial on Stalmarck’s proof
procedure for propositional logic. In G. Gopalakrishnan and P. Windley,
editors, Proceedings 2nd Intl. Conf. on Formal Methods in Computer-Aided
Design, FMCAD’98, Palo Alto, CA, USA, /—6 Nov 1998, volume 1522,
pages 82-99. Springer-Verlag, Berlin, 1998.

S. Warshall. A theorem on boolean matrices. J. ACM, 9:11-12, 1962.

10

