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Java Fragment

class vector {

int arr[];

int sum() {

int la[] = arr;

int S = 0;

for (int i=la.length; --i>=0)

S += la[i];

return S;

}

}
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Java Byte Code

aload 0 Load this
getfield #10 Load this.arr
astore 1 Store in la
iconst 0
istore 2 Store 0 in S
aload 1 Load la
arraylength Get its length
istore 3 Store in i

A: iinc 3 -1 Subtract 1 from i
iload 3 Load i
iflt B Exit loop if < 0
iload 2 Load S
aload 1 Load la
iload 3 Load i
iaload Load la[i]
iadd Add is S
istore 2 Store in S
goto A Do it again

B: iload 2 Load S
ireturn Return it
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A BCPL Program

SECTION "fact"

GET "libhdr"

LET f(n) = n=0 -> 1, n*f(n-1)

LET start() = VALOF

{ FOR i = 1 TO 8 DO

writef("f(%i2) = %i6*n", i, f(i))

RESULTIS 0

}
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Its Cintcode Compilation

...

// Entry to: f(n)

28: L1:

28: JNE0 L3 J if n 6= 0

30: L1 A := 1

31: RTN Return from f

32: L3:

32: LM1 A := -1

33: AP3 A := A + n

34: LF L1 B := A; A := f

36: K4 A := f(n-1)

37: LP3 B := A; A := n

38: MUL A := B * A

39: RTN Return result

...
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Cintcode in Binary

Big-Ender Cintcode

...

3E031174 JNE0 +3 L1 RTN

0FC30CF9 LM1 AP3 LF -7

0483347B K4 LP3 MUL RTN

...

Little-Ender Cintcode

...

7B11033E RTN L1 +3 JNE0

F90CC30F -7 LF AP3 LM1

7B348304 RTN MUL LP3 K4

...
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Interpreter in C

...

fetch: ...

switch(B[pc++])

{ case 0: ...

...

case f mul: a = b*a;

goto fetch;

...

case f lp3: b = a;

a = p[3];

goto fetch;

...

case 255: ...

}
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Points to Note

• 256 function codes

• For efficiency keep interpretive overhead small

compare to action routine

• Keep the entire interpreter small enough to

fit in the on chip cache of the processor

• Most C compilers do a poor job with this

code

– does not contain small simple loops

– the inner loop contains a computed jump

– bad for pipelining

– bad for instruction prefetching

– bad for jump prediction
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Assembler for the PC

fetch:

movb (%esi),%al

incl %esi

jmp *jtbl(,%eax,4)

...

jtbl:

.long rl0, rl1, rl2, rl3

...

.long rl252, rl253, rl254, rl255

...
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Assembler for the PC

rl52: # mul frq=136949

movl %ecx,%eax

imul %ebx

movl %eax,%ebx # a := b * a

movl 36(%esp),%edx # restore G

movzbl (%esi),%eax

incl %esi

jmp *jtbl(,%eax,4)

...

rl131: # lp3 frq=1059706

movl %ebx,%ecx # b := a

movl 4*3(%ebp),%ebx # a := p[3]

movb (%esi),%al

incl %esi

jmp *jtbl(,%eax,4)

...
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TASM Version

rl52: # mul frq=136949

mov eax,ecx

imul ebx

mov ebx,eax # a := b * a

mov edx,[esp+36] # restore G

movzx eax,BYTE PTR[esi]

inc esi

jmp DWORD PTR[jtbl+4*eax]

...

rl131:# lp3 frq=1059706

mov ecx,ebx # b := a

mov ebx,[ebp+4*3] # a := p[3]

mov al,[esi]

inc esi

jmp DWORD PTR[jtbl+4*eax]

...
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Interpretive Code Design

• Is a byte stream code a good idea?

• For compactness, try to make each byte code

equally likely (not easy).

• What operations are most frequent?

(Combine common pairs and triples)

• Need statistics from benchmark programs.
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Benchmarks

Bench

• Smallish compute intensive

• Modelling common operations in an operating

system kernel

BCPL self compilation

• Larger more realistic application including

I/O

• Well understood program

• Executes 22,475,632 Cintcode instructions

• Uses about 200K bytes of Cintcode memory
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Execution Statistics

Self Compilation Test

Count Instruction Meaning

1,059,706 LP3 b := a; a := p[3]

527,561 LP4 b := a; a := p[4]

1,406,834 LG n b := a; a := g[n]

464,778 SP3 p[3] := a

546,386 JLE l if b ≤ a goto l

136,949 MUL a := b * a

1,333,284 RTN procedure return

22,475,632 Total executions
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Statistics Summary

Self Compilation Test

Load local 3,809,782

Store local 802,744

Load global 5,081,621

Store global 802,744

Load positive integer 4,117,524

Unconditional jumps 455,240

Conditional jumps 2,152,955

Jumps on 0 496,907

Procedure calls 1,333,286

Procedure returns 1,333,284

Subscripted load 1,365,222

Subscripted store 598,275
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More Statistics

Operand type count

No operand 11,972,904

1 byte integer 6,897,634

2 byte integer 435,405

4 byte integer 0

Direct relative byte 2,853,783

Indirect relative byte 174,870

Forward relative refs 2,469,382

Backward relative refs 559,271

Other Statistics

• Relative address distances

• Local variable offsets

• Distribution of small integer oparands
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Interpretation of the Statistics

• Statistics should be read with a pinch of salt

– S3 is executed 27494 times

– while S2 is only executed 4383 times

• Statistics should be read intelligently and

smoothed
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Code Design

Strategy

• One byte instructions for common operations

• Multibyte instructions for less common

instructions

• Graceful degradation

Load Integer Instructions

LM1 b := a; a := -1
L0 b := a; a := 0

...
L10 b := a; a := 10

L n b := a; a := n
LH hh b := a; a := hh

LMH hh b := a; a := -hh
LW wwww b := a; a := wwww
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Cintcode Instructions

0 32 64 96 128 160 192 224

0 - K LLP L LP SP AP A
1 - KH LLPH LH LPH SPH APH AH
2 BRK KW LLPW LW LPW SPW APW AW
3 K3 K3G K3G1 K3GH LP3 SP3 AP3 L0P3
4 K4 K4G K4G1 K4GH LP4 SP4 AP4 L0P4
5 K5 K5G K5G1 K5GH LP5 SP5 AP5 L0P5
6 K6 K6G K6G1 K6GH LP6 SP6 AP6 L0P6
7 K7 K7G K7G1 K7GH LP7 SP7 AP7 L0P7
8 K8 K8G K8G1 K8GH LP8 SP8 AP8 L0P8
9 K9 K9G K9G1 K9GH LP9 SP9 AP9 L0P9

10 K10 K10G K10G1 K10GH LP10 SP10 AP10 L0P10
11 K11 K11G K11G1 K11GH LP11 SP11 AP11 L0P11
12 LF S0G S0G1 S0GH LP12 SP12 AP12 L0P12
13 LF$ L0G L0G1 L0GH LP13 SP13 XPBYT S
14 LM L1G L1G1 L1GH LP14 SP14 LMH SH
15 LM1 L2G L2G1 L2GH LP15 SP15 BTC MDIV
16 L0 LG LG1 LGH LP16 SP16 NOP CHGCO
17 L1 SG SG1 SGH SYS S1 A1 NEG
18 L2 LLG LLG1 LLGH SWB S2 A2 NOT
19 L3 AG AG1 AGH SWL S3 A3 L1P3
20 L4 MUL ADD RV ST S4 A4 L1P4
21 L5 DIV SUB RV1 ST1 XCH A5 L1P5
22 L6 REM LSH RV2 ST2 GBYT RVP3 L1P6
23 L7 XOR RSH RV3 ST3 PBYT RVP4 L2P3
24 L8 SL AND RV4 STP3 ATC RVP5 L2P4
25 L9 SL$ OR RV5 STP4 ATB RVP6 L2P5
26 L10 LL LLL RV6 STP5 J RVP7 L3P3
27 FHOP LL$ LLL$ RTN GOTO J$ ST0P3 L3P4
28 JEQ JNE JLS JGR JLE JGE ST0P4 L4P3
29 JEQ$ JNE$ JLS$ JGR$ JLE$ JGE$ ST1P3 L4P4
30 JEQ0 JNE0 JLS0 JGR0 JLE0 JGE0 ST1P4 -
31 JEQ0$ JNE0$ JLS0$ JGR0$ JLE0$ JGE0$ - -
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Demonstration

To demonstrate

• Speed

• Compactness

• Machine Independence

• Ease of statistics gathering

• Machine independent low level debugging
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BUT . . .

There are problems

• Assembled binary byte stream machine

independent code is not ideal for many

modern machines, particularly those that are

extremely fast, eg:

– DEC Alpha

– Sun’s Ultra Sparc

• On these machine it is difficult to write an

efficient byte stream intepreter, because

– byte access is relatively slow

– multi-byte immediate operands are

expensive

– big/little ended problems

– instruction dispatch is difficult to code

efficienctly
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Recall

...

fetch: ...

switch(B[pc++])

{ case 0: ...

...

case f mul: a = b*a;

goto fetch;

...

case f lp3: b = a;

a = p[3];

goto fetch;

...

case 255: ...

}
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Alpha AssemblyCode

fetch:

# s6 = address of cintcode instruction

# whose bytes are F, A, ...

# ra = address of jtbl

ldq u t12,0(s6) # t12= word containing F

extbl t12,s6,t0 # t0= F

addq s6,1,s6 # pc++

s4addq t0,ra,a0 # a0 = jtbl + 4 * F

jmp zero,(a0),L131

jtbl: # The jump table

br L0;br L1;br L2;br L3

...

br L252;br L253;br L254;br L255
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Sources of inefficiency

• Code very sequential

– Instructions often use operands computed

by the previous instruction

• Can take little advantage of simultaneous

instruction execution

• Several memory refs in dispatch operation

• Nothing useful to do in delay slots

• The computed jump ruins:

– The processor pipeline

– Prefetching

– Jump prediction

• Multi-byte immediate operands are expensive

• Even single byte access is expensive
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Pipelined Alpha Code

Pipelining the interpreter helps

fetch:

# s6 = address of cintcode instruction

# whose bytes are F, A, ...

# t0 = F

# ra = address of jtbl

ldq u t12,1(s6) # t12= word containing A

addq s6,1,s6 # pc++

s4addq t0,ra,a0 # a0 = jtbl + 4 * F

mov t0,v0 # v0 = F(the op code)

extbl t12,s6,t0 # t0 = A

# s6 = address of byte A

# v0 = F

# t0 = A

# t12= the 64 bit word containing A

jmp zero,(a0),L131
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Accessing an immediate operand

16 bit operands

L97: # lh frq=75539

ldq u t10,1(s6)

mov s0,s1 # b := a

extwl t12,s6,s0

extwh t10,s6,t10

ldq u t12,2(s6) # prefetch

addq s6,2,s6 # a := H[pc]; pc += 2

or t10,s0,s0

extbl t12,s6,t0

br fetch

Martin Richards 28 Seminar 13/11/96



Obvious solution

• Use different interpretive codes of different

architectures

– Convential Cintcode on the

386/486/Pentium

– Instructions packed into 64 bit words on

the DEC Alpha

• The result of compilation should be loadable

into either of these forms (or any other).

• The result of compilation should be an

internal assembly language

– Generated by machine, and

– Read by machine, so:

– No need to be human readable
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Recall fact.b

SECTION "fact"

GET "libhdr"

LET f(n) = n=0 -> 1, n*f(n-1)

LET start() = VALOF

{ FOR i = 1 TO 8 DO

writef("f(%i2) = %i6*n", i, f(i))

RESULTIS 0

}
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First Attempt – CIAL

Code for fact

• The opcodes are those of Cintcode plus a few

directives eg LAB, STRING, etc

• All encoded as a stream of integers:

F257 F256 K7 C102 C97 C99 C116 C32

C32 C32 F281 K7 C102 C32 C32 C32

C32 C32 C32 F278 L1 F62 L3 F17

F123 F278 L3 F15 F195 F12 L1 F4

F131 F52 F123 F281 K7 C115 C116 C97

C114 C116 C32 C32 F278 L4 F17 F163

F278 L6 F131 F12 L1 F9 F169 F131

F168 F280 M1 F36 G70 F17 F195 F163

F24 F156 L6 F16 F123 F261 M1 K13

C102 C40 C37 C105 C50 C41 C32 C61

C32 C37 C105 C54 C10 F260 K1 G1

L4 G70 F258
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More Readable Form of CIAL

Conversion to CASM

MODSTART
SECTION K7 C102 C97 C99 C116 C32 C32 C32

//Entry to: f
ENTRY K7 C102 C32 C32 C32 C32 C32 C32
LAB L1
JNE0 L3
L1
RTN
LAB L3
LM1
AP3
LF L1
K4
LP3
MUL
RTN
...
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Second Attempt – SIAL

Code for fact in SASM

SIAL is like CIAL but

• With fewer opcodes and more operands

• Most load operations do not push a to b

MODSTART
SECTION K4 C102 C97 C99 C116

//Entry to: f
ENTRY K1 C102
LAB L1
JNE0 L3
L K1
RTN
LAB L3
LM K1
AP P3
ATB
LF L1
K P4
ATBLP P3
MUL
RTN
...

Martin Richards 33 Seminar 13/11/96



Observations

• Directives present

• Symbolic labels

• Does not specify how the interpretive

instructions are to be represented

• Freedom for the loader to encode the

instructions in a form appropriate for the

target machine

• The loader and interpreter must cooperate

with each other.
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Compaction of SIAL

• Split SIAL into different streams:

– opcodes

– local variable offsets

– symbolic labels

– global variable number

– string constant characters

– etc

• Compact each stream by a method

appropriate for that stream
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Compaction of Opcode Stream

• Use Huffman style variable length encoding

bases on static frequency counts.

• But first preprocess the stream to provide

compact representations of some repetitive

patterns such as

LAB LAB LAB ...

and

LP SP LP SP ...
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Compaction of Label Stream

• Symbolic labels are numbered.

• In practice, they are close to being a

monotonic increasing sequence

• Take first differences, plus a few other tricks

• Then encode Huffman style
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Compaction of Character Stream

• The stream is typically too short to take

much advantage of context so Lempel-Zif or

ZIP style compaction

– Uses too much context

– Decoder too large

• However single character context is helpful

• Consecutive letters and often in the same case
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Compaction of Globals Stream

• Although the Global Vector is peculiar to

BCPL, the stream of global numbers is

similar to:

– references to static variables

– references to variables in FORTRAN

Blank COMMON

– references to method functions in an

Object oriented languages

• Compaction can use techniques similar to

those used in cache stores

– a global once referenced is likely to be

referenced again
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SIAL Compaction Results

BCPL Compiler size

Cintcode: 26184 bytes

Compacted SIAL: 18007 bytes

Raw SIAL compacted by:

compress: 35570 bytes

gzip: 27213 bytes

DJW’s bred: 23144 bytes

Sorted SIAL compacted by:

compress: 36047 bytes

gzip: 22912 bytes

DJW’s bred: 19243 bytes
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Loading Compressed SIAL

1. Copy Compressed SIAL to memory

2. Allocate vector for label values

3. Repeatedly scan SIAL until label values are

known

4. Allocate vector for assembled SIAL

5. Final pass to assemble code into this vector
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Observations

• Number of passes is very dependent on:

– the treatment of variable length relative

addresses

– cunningness of the loader in label value

prediction

• Compacted SIAL can be loaded into Cintcode

form in just one pass
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Code for a 64 bit machine

• Choose 64 bit granularity for labels

• Choose 64 bit granularity for procedure call

return addresses

• Use Huffman style encoding of instruction

opcodes

– No need to use 8 bit opcodes any more

• Constrain immediate operands to lie in

current instruction word

• Pad the right hand end with 2 or 3 zero bits

• Instructions like RTN and J, which must be

the last in a 64 bit word, can be quite long

provided they typically contain several

leading zeros
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Corresponding Interpreter

fetch:

switch( instrs & mask)

{ case 0: instrs = *pc++;

goto fetch;

...

case f_...: action code

instrs <<= shift;

goto fetch;

...

}
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Summary

• Compacted SIAL is indeed compact

• It is machine independent

• No big-/little- ended problem

• Can be interpreted more efficiently than

Cintcode
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The End

BUT . . .

Postscript

• The small program that generated human

readable SIAL can easily be modified to

generate native assembly language.

• For Gnu assembly under Linux this took 2

days.

• The resulting code ran Bench about 10 times

faster and the self compilation test about 4

time faster.
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Fact.b in assembler

# MODSTART
# SECTION K4 C102 C97 C99 C116

# Entry to: f
# ENTRY K1 C102
# LAB L1

LA1:
movl %ebp,0(%edx)
movl %edx,%ebp
popl %edx
movl %edx,4(%ebp)
movl %eax,8(%ebp)
movl %ebx,12(%ebp)

# JNE0 L3
orl %ebx,%ebx
jne LA3

# L K1
movl $1,%ebx

# RTN
movl 4(%ebp),%eax
movl 0(%ebp),%ebp
jmp *%eax
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Fact.b in assembler(cont.)

# LAB L3
LA3:
# LM K1

movl $-1,%ebx
# AP P3

addl 12(%ebp),%ebx
# ATB

movl %ebx,%ecx
# LF L1

leal LA1,%ebx
# K P4

movl %ebx,%eax
movl %ecx,%ebx
leal 16(%ebp),%edx
call *%eax

# ATBLP P3
movl %ebx,%ecx
movl 12(%ebp),%ebx

# MUL
movl %ecx,%eax
imul %ebx
movl %eax,%ebx

# RTN
movl 4(%ebp),%eax
movl 0(%ebp),%ebp
jmp *%eax
...
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