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The Problem

Evaluate the formula:

Q1x1Q2x2 · · ·Qnxn C

where each Qi is either ∀ or ∃
and C is in conjunctive normal form

with at most two literals per clause.

For example

∃a∃b∀c∃d(a∨ b)∧ (b∨ c̄)∧ (b̄∨ d̄)∧ (b∨ d)∧ (d∨ a)
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Note

a ∨ b is equivalent to ā −→ b

or b̄ −→ a

ā ∨ b is equivalent to a −→ b

or b̄ −→ ā

a ∨ b̄ is equivalent to ā −→ b̄

or b −→ a

ā ∨ b̄ is equivalent to a −→ b̄

or b −→ ā
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Graph Formation

Without loss of generality assume that all clauses

of C have two literals, since (x) = (x ∨ x).

Assuming the formula contains n variables

v1, . . . , vn, create 2n vertices named v1, . . . , vn

and v̄1, . . . , v̄n.

For each clause of the form: (a ∨ b), add edges

ā→ b and b̄→ a.

Add appropriate edges for clauses of the form:

(a ∨ b̄), (ā ∨ b) and (ā ∨ b̄).
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Example

If C is

(a ∨ b) ∧ (b ∨ c̄) ∧ (b̄ ∨ d̄) ∧ (b ∨ d) ∧ (d ∨ a)

The graph is:

a

c b d a

cbd
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Duality Property

The constructed graph is isomorphic to one

obtained by reversing all edges and

complementing the names of the vertices.
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Strongly Connected Components

A strongly connected component is a maximal

subset of the vertices for which paths exists from

any vertex to any other vertex.

All vertices in a strongly connected component

must be assigned the same truth value

(x −→ y −→ · · · −→ x implies x = y).

If a strongly connected component contain a

variable x and its complement x̄ then there is an

inconsistency.

All the strongly connected components can be

found in linear time.
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Components Algorithm

1) Perform depth first search on graph G(V,E),

attaching the discovery time (d[u]) and finishing

time (f [u]) to every vertex (u) of G.

For example, consider

b
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a

e

d g

h

f
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After DFS
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Forefather

Define φ(u) = w (the forefather of u)

where wεV

and u −→ · · · −→ w

and ∀w′(u −→ · · · −→ w′ ⇒ f [w′] ≤ f [w])

Clearly, since u −→ · · · −→ u

f [u] ≤ f [φ(u)] (1)
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Forefather Property

φ(υ)υ

d1/f1 d2/f2

Either u = φ(u)

or u 6= φ(u)

if d2 < f2 < d1 < f1

or d1 < d2 < f2 < f1

contradicts of (1)

if d1 < f1 < d2 < f2

contradicts u −→ · · · −→ φ(u)

so d2 < d1 < f1 < f2

ie φ(u) −→ · · · −→ u

so u and φ(u) are in the same

strongly connected component.
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Algorithm Continued

2) Find the vertex r with largest f [r] that is not

in any strongly connected component so far

identified. Note that r is a forefather.

3) Form the set of vertices {u|φ(u) = r} – i.e.

the strongly connected component containing

r. This set is the same as {u|u −→ · · · −→ r}
This set is the set of vertices reachable from r

in the graph GT = G with all its edges

reversed. This set can be found using DFS on

GT .

4) Repeat from (2) until all components have

been found.

The complexity is O(|V |+ |E|).
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Recall
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After DFS on GT
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Components
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Satisfiability

If all the quantifiers are ∃, then we just have to

determine whether it is possible to assign truth

values to the vertices with the following

properties:

• Complementary vertices must be assigned

compementary truth values,

• no edge u→ v can have u assigned true and v

assigned false.
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Example (again)

If C is

(a ∨ b) ∧ (b ∨ c̄) ∧ (b̄ ∨ d̄) ∧ (b ∨ d) ∧ (d ∨ a)

The graph is:

a

c b d a

cbd

S1 S2

S2S3

S3

S1

C is satisfiable if and only if no vertex x is in the

same strong component as x̄.
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Assignment Algorithm

a

c b d a

cbd

S1 S2

S2S3

S3

S1

Consider strongly connected components in

reverse topological order:

S1 Mark S1 true and S̄1 false,

S2 Mark S2 true and S̄2 false,

S3 Mark S3 true and S̄3 false,

S̄2 Already marked,

S̄1 Already marked,

S̄3 Already marked.
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General Case

We call a vertex universal if the corresponding

variable is universally qualified, and existential

otherwise.

A formula F is true if and only if none of the

following conditions holds:

1. A vertex x is in the same strongly connected

component as its complement x̄.

2. An existential vertex x occurs in the same

strongly connected component as a

universally declared vertex y, with x declared

before y. For example: · · · ∃x · · · ∀y · · · C.

3. There is a path from a universal vertex x to

another universal vertex y. For example:

· · · ∀x · · · ∀y · · · C.
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The Algorithm

Initially all the strongly connected components

are unmarked, but become marked true, false or

contingent as the algorithm proceeds.

1) Let S be the next unmarked strongly

connected component, chosen is reverse

topological order. If there is no such S return

“F is true”. If S contains a variable x and its

complement x̄, return “F is false”.

2) If S has some false or contingent successor,

2.1) If S contains at least one universal

vertex, return “F is false”.

2.2) If S̄ → · · · → S, return “F is false”.

Mark S false and S̄ true then goto (1).

3) // All successors, if any, are marked true.

If S contains two or more universal vertices,

return “F is false”.
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The Algorithm (cont.)

4) // All successors, if any, are marked true and

// S contains less than two universal vertices.

If S contains no universal vertices, mark S

true and S̄ false then goto (1).

5) // S has just one universal vertex, y say.

If S also contains an existential vertex x

declared before the universal vertex y,

(i.e. · · · ∃x · · · ∀y · · ·C), return “F is false”.

If S̄ → · · · → S, return “F is false”.

Mark S and S̄ contingent and goto (1).
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Example (again)

If the formula is

∃a∃b∀c∃d(a∨ b)∧ (b∨ c̄)∧ (b̄∨ d̄)∧ (b∨ d)∧ (d∨ a)

The graph is:

a

c b d a

cbd

S1 S2

S2S3

S3

S1
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Algorithm Trace

Formula: ∃a∃b∀c∃d C

a

c b d a

cbd

S1 S2

S3

S3falsefalse contingent

contingent S2 true S1 true

Consider strongly connected components in

reverse topological order:

S1 Mark S1 true and S̄1 false,

S2 Mark S2 true and S̄2 false,

S3 Mark S3 and S̄3 contingent,

S̄2,S̄1, S̄3 Already marked.

So the formula is true.
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