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Abstract

Development of the Tripos Portable Operating System was started in 1977 at

Cambridge and the system was extensively used for many years for operating

system and network research. It formed the basis of the operating system for the

Commodore Amiga and was also used commercially by several companies. It is,

indeed, still in use by at least one major manufacturer.

This manual describes a machine independent version of Tripos implemented

using a slightly extended version of BCPL Cintcode. Its interpreter and interface

with the host operating system are implemented in C and be easily modified and

extended. It is designed for process control applications in which most devices

are controlled using TCP/IP on a local network.

It provides a simple environment in which all Cintpos tasks run in the same

address space and communicate with each other using packet based message

passing. The Cintpos kernel is simple, effective and includes facilities to set

breakpoints and perform single step execution of the cintcode translation of BCPL

programs. The execution performance of Cintpos on modern processors is an

order of magnitude faster than the native version of Tripos on the machines on

which it originally ran.

This manual describes the internal structure of Cintpos, its command lan-

guage and the standard commands. It is currently being developed to run under

Linux but should in due course also run under any version of Microsoft Windows.
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Preface

History of Tripos and Cintpos.

The Cintpos System described in this manual is freely available from my home

page on the Internet [Ric].

The implementation is reasonably machine independent and should run effi-

ciently on many machines both now and in the indefinite future.

The topics covered by this manual are listed below.

• An overview of the Cintpos system.

• A summary of the BCPL

• Cintcode, the byte stream interpretive code used in this implementation.

• The Kernel data structure.

• A description of the Cintpos resident runtime library.

• The design and implementation of command language interpreter for the

system.

• A description of the standalone cintcode debugger and the DEBUG task.

• The profiling and statistics gathering facilities offered by the system.

v
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The System Overview

A console session.
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Chapter 2

The BCPL Language

A BCPL program is made up of one or more separately compiled sections, each

consisting of a list of declarations that define the constants, static data and

functions belonging to the section. Within functions it is possible to declare

dynamic variables and vectors that exist only as long as they are required. The

language is designed so that these dynamic quantities can be allocated space on

a simple runtime stack. The addressing of these quantities is relative to the base

of the stack frame belonging to the current function activation. For this to be

efficient, dynamic vectors have sizes that are known at compile time. Functions

may be called recursively and their arguments are called by value. The effect

of call by reference can be achieved by passing pointers. Input and output and

other system operations are provided by means of library functions.

The main syntactic components of BCPL are: expressions, commands, and

declarations. These are described in the next few sections. In general, the pur-

pose of an expression is to compute a value, while the purpose of a command is

normally to change the value of one or more variables.

2.1 Lexical features

Some features in BCPL are implemented by the lexical analyser in the compiler.

These include comments, Get directives and conditional compilation.

2.1.1 Comments

There are two form of comments. One starts with the symbol // and extends

up to but not including the end-of-line character, and the other starts with the

symbol /* and ends at a matching occurrence of */. Comment brackets (/* and

*/ may be nested, and within such comments the lexical analyser is only looking

3
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for /* and */. Care is needed when commenting out fragments of program

containing string constants. Comments are equivalent to white space and so

may not occur in the middle of multi-character symbols such as identifiers or

constants.

2.1.2 The GET Directive

A directive of the form GET "filename" is replaced by the contents of the named

file. By convention, GET directives normally appear on separate lines. The header

file is searched for first in the current directory, then in the directories specified

by the HDRPATH shell variables.

2.1.3 Conditional Compilation

There is a simple mechanism, whose implementation takes fewer than 20 lines of

code in the compiler’s lexical analyser, that allow conditional skipping of lexical

symbols. It uses directives of the following form:

$$tag

$<tag

$>tag

where tag is conditional compilation tag composed of letters, digits, dots and

underlines. All tags are initially unset, but may be complemented using the $$tag

directive. All the lexical tokens between $<tag and $>tag are skipped (treated as

comments) unless the specified tag is set. The following example shows how this

conditional compilation feature can be used.

$$Linux // Set the Linux conditional compilation tag

$<Linux // Include if the Linux tag is set
$<WinNT $$WinNT $>WinNT // Unset the WinNT tag if set
writef("This was compiled for Linux")

$>Linux
$<WinNT // Include if the WinNT tag is set

writef("This was compiled for Windows NT")
$>WinNT

2.1.4 Section Brackets

Historically BCPL used the symbols $( and $) to bracket commands and decla-

rations. These symbols are called section brackets and are allowed to be followed

by tags composed of letters, digits, dots and underlines. A tagged closing section
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bracket is forced to match with its corresponding open section bracket by the au-

tomatic insertion of extra closing brackets as needed. Use of this mechanism is no

longer recommended since it can lead to obscure programming errors. Recently

BCPL has been extended to allow all untagged section brackets to be replaced

by { and } as appropriate.

2.2 Expressions

Expressions are composed of names, constants and expression operators and may

be grouped using parentheses. The precedence and associativity of the different

expression constructs is given in Section 2.2.9. In the Cintcode implementation

of BCPL all expressions yield values that are 32 bits long, but in some native

code implementations this word length is 64 bits.

2.2.1 Names

Names are used to identify variables, functions, labels and manifest constants.

Syntactically a name is any sequence of letters, digits, dots and underlines starting

with a letter, except that the reserved words (such as IF, WHILE, TABLE) are not

names.

2.2.2 Constants

Decimal numbers consist of a sequence of digits, while binary, octal or hexadeci-

mal hexadecimal are represented, repectively, by #b, #o or #x followed by digits

of the appropriate sort. The o may be omitted in octal numbers. Underlines

may be inserted within numbers to improve their readability. The following are

examples of valid numbers:

1234
1_234_456
#b_1011_1100_0110
#o377
#x_BC6

The constants TRUE and FALSE have values -1 and 0, respectively, which are

the conventional BCPL representations of the two truth values. Whenever a

boolean test is made, the value is compared with FALSE (=0).
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A question mark (?) may be used as a constant with undefined value. It can

be used in statements such as:

LET a, b, count = ?, ?, 0
sendpkt(P_notinuse, rdtask, ?, ?, Read, buf, size)

Character constants consist of a single character enclosed in single quotes (’).

The character returns a value in the range 0 to 255 corresponding to its normal

ASCII encoding.

Character (and string) constants may use the following escape sequences:

Escape Replacement

*n A newline (end-of-line) character.

*c A carriage return character.

*p A newpage (form-feed) character.

*s A space character.

*b A backspace character.

*t A tab character.

*e An escape character.

*" "

*’ ’

** *

*xhh The single character with number hh (two hexadecimal

digits denoting an integer in the range [0,255]).

*ddd The single character with number ddd (three octal digits

denoting an integer in the range [0,255]).

*f..f* This sequence is ignored, where f..f stands for a se-

quence of one or more space, tab, newline and newpage

characters.

A string constant consists of a sequence of zero or more characters enclosed

within quotes ("). Both string and character constants use the same character

escape mechanism described above. The value of a string is a pointer where the

length and bytes of the string are packed. If s is a string then s%0 is its length

and s%1 is its first character, see Section 2.2.6.

A static vector can be created using an expression of the following form:

TABLE K0, . . . , Kn where K0, . . . , Kn are manifest constant expressions, see Sec-

tion 2.2.10. The space for a static vector is allocated for the lifetime of the

program and its elements are updatable.
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2.2.3 Calls

The only difference between functions and routines is whether their calls return

results. Functions calls are normally made in the context of an expression where

a result is required, while routine calls are made in the context of a command

where no result is required. If a function is called in the context of a command

its result is thrown away, and if a routine is called in the context of an expression

the result is undefined.

A call is syntactically an expression followed by a list of arguments enclosed

in paretheses.

newline()
mk3(Mult, x, y)
writef("f(%n) = %n*n", i, f(i))
f(1,2,3)
(fntab!i)(p, @a)

The parentheses are required even if no arguments are given. The last exam-

ple above illustrates a call in which the function is specified by an expression.

Section 2.4.8 covers both procedure definition and procedure calls.

2.2.4 Method Calls

Method calls are designed to make an object oriented style of programming more

convenient. They are syntactically similar to a function calls but uses a hash

symbol (#) to separate the function specifier from its arguments. The expression:

E#(E1,..,En)

is defined to be equivalent to:

(E1!0!E)(E1,..,En)

Here, E1 points to the fields of an object, with the convention that its ze-

roth field (E1!0) is a pointer to the methods vector. Element E of this

vector is applied to the given set of arguments. Normally, E is a mani-

fest constant. An example program illustrating method calls can be found in

BCPL/bcplprogs/demos/objdemo.b in the BCPL distribution system (see Chap-

ter 10).
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2.2.5 Prefixed Expression Operators

An expression of the form !E returns the contents of the memory word pointed

to by the value of E.

An expression of the form @E returns a pointer to the word sized memory

location specified by E. E can only be a variable name or an expression with

leading operator !.

Expressions of the form: +E, -E, ABS E, ~E and NOT E return the result

of applying the given prefixed operator to the value of the expression E. The

operator + returns the value unchanged, - returns the integer negation, ABS

returns the absolute value, ~ and NOT return the bitwise complement of the value.

By convention, ~ is used for bit patterns and NOT for truth values.

Expressions of the form: SLCT len:shift:offset pack the three constants len,

shift and offset into a word. Such packed constants are used by the field selection

operator OF described in the next section.

SLCT shift:offset means SLCT 0:shift:offset, and SLCT offset means

SLCT 0:0:offset.

2.2.6 Infixed Expression Operators

An expression of the form E1!E2 evaluates E1 and E2 to yield respectively a

pointer, p say, and an integer, n say. The value returned is the contents of the

nth word relative to p.

An expression of the form E1%E2 evaluates E1 and E2 to yield a pointer, p

say, and an integer, n say. The expression returns a word sized result equal to

the unsigned byte at position n relative to p.

An expression of the form K OF E accesses a field of consecutive bits

in memory. K must be a manifest constant (see section 2.2.10) equal to

SLCT len:shift:offset and E must yield a pointer, p say. The field is contained

entirely in the word at position p+offset. It has a bit length of len and is shift bits

from the right hand end of the word. A length of zero is interpreted as the longest

length possible consistent with shift and the word length of the implementation.

The operator Ä:: is a synonym of OF. Both may be used on right and left hand side

of assignments statements but not as the operand of @. When used in a right hand

context the selected field is shifted to the right hand end of the result with vacated

positions, if any, filled with zeros. A shift to the left is performed when a field is

updated. Suppose p!3 holds the value #x12345678, then after the assignment:

(SLCT 12:8:3) OF p := 1 + (SLCT 8:20:3) OF p

the value of p!3 is #x12302478.



2.2. EXPRESSIONS 9

An expression of the form E1<<E2 (or E1>>E2) evaluates E1 and E2 to yield

a bit pattern, w say, and an integer, n say, and returns the result of shifting w

to the left (or right) by n bit positions. Vacated positions are filled with zeroes.

Negative shifts or those of more than the word length return 0.

Expressions of the form: E1*E2, E1/E2, E1 REM E2, E1+E2, E1-E2. E1 EQV E2

and E1 NEQV E2 return the result of applying the given operator to the two

operands. The operators are, respectively, integer multiplication, integer division,

remainder after integer division, integer addition, integer subtraction, bitwise

equivalent and bitwise not equivalent (exclusive OR). MOD and XOR can be used

as synonyms of REM and NEQV, respectively.

Expressions of the form: E1&E2 and E1|E2 return, respectively, the bitwise

AND or OR of their operands unless the expression is being evaluated in a boolean

context such as the condition in a while command, in which case the operands

are tested from from left to right until the value of the condition is known.

An expression of the form: E relop E relop . . . relop E where each relop is one

of =, ~=, <=, >=, < or > returns TRUE if all the individual relations are satisfied and

FALSE, otherwise. The operands are evaluated from left to right, and evaluation

stops as soon as the result can be determined. Operands may be evaluated more

than once, so don’t try ’0’<=rdch()<=’9’.

An expression of the form: E1->E2,E3 first evaluates E1 in a boolean context,

and, if this yields FALSE, it returns the value of E3, otherwise it returns the value

of E2.

2.2.7 Boolean Evaluation

Expressions that control the flow of execution in conditional constructs, such as

if and while commands, are evaluated in a Boolean. This affects the treatment

of the operators NOT, & and |. In a Boolean context, the operands of & and | are

evaluated from left to right until the value of the condition is known, and NOT (or

~) negates the condition.

2.2.8 VALOF Expressions

An expression of the form VALOF C, where C is a command, is evaluated by

executing the command C. On encountering a command of the form RESULTIS E

within C, execution terminates, returning the value of E as the result of the VALOF

expression. Valof expressions are often used as the bodies of functions.
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2.2.9 Expression Precedence

So that the separator semicolon (;) can be omitted at the end of any line, there

is the restriction that infixed operators may not occur as the first token of a line.

So, if the first token on a line is !, + or -, these must be regarded as prefixed

operators.

The syntax of BCPL is specified by the diagrams in Appendix A, but a sum-

many of the precendence of expression operators is given in table 2.1. The prece-

dence values are in the range 0 to 9, with the higher values signifying greater

binding power. The letters L and R denote the associativity of the operators.

For instance, the dyadic operator - is left associative and so a-b-c is equiva-

lent to (v-i)-j, while b1->x,b2->y,z is right associative and so is equivalent to

b1->x,(b2->y,z).

9 Names, Literals, ?, TRUE, FALSE,

(E),

9L Function and method calls

8L ! % OF :: Dyadic

7 ! @ Prefixed

6L * / REM MOD Dyadic operators

5 + - ABS

4 = ~= <= >= < > Extended Relations

4L << >>

3 ~ NOT Bitwise and Boolean operators

3L &

2L |

1L EQV NEQV XOR

1R -> , Conditional expression

0 VALOF TABLE Valof and Table expressions

0 SLCT : Field selector constant

Table 2.1: Operator precedence
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Notice that these precedence values imply that

! f x means ! (f x)

! @ x means ! (@ x)

! v ! i ! j means ! ((v!i)!j)

@ v ! i ! j means @ ((v!i)!j)

x << 1+y >> 1 means (x<<(1+y))>>1)

~ x!y means ~ (x!y)

~ x=y means ~ (x=y)

NOT x=y means NOT (x=y)

b1-> x, b2 -> y,z means b1 -> x, (b2 -> y, z)

2.2.10 Manifest Constant Expressions

Manifest constant expressions can be evaluated at compile time. They may

only consist of manifest constant names, numbers and character constants, TRUE,

FALSE, ?, the operators REM,SLCT, *, /, +, -, ABS, the relational operators, <<,

>>, NOT, ~, &, |, EQV, NEQV, and conditional expressions. Manifest expressions are

used in MANIFEST, GLOBAL and STATIC declarations, the upper bound in vector

declarations and the step length in FOR commands, and as the left hand operand

of :: and OF.

2.3 Commands

The primary purpose of commands is for updating variables, for input/output

operations, and for controlling the flow of control.

2.3.1 Assignments

A command of the form L:=E udates the location specified by the expression L

with the value of expression E. The following are some examples:

cg_x := 1000
v!i := x+1
!ptr := mk3(op, a, b)
str%k := ch
%strp := ’A’

Syntactically, L must be either a variable name or an expression whose leading

operator is ! or %. If it is a name, it must have been declared as a static

or dynamic variable. If the name denotes a function, it is only updatable if the

function has been declared to reside in the global vector. If L has leading operator
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!, then its evaluation (given in Section 2.2.6) leads to a memory location which

is the one that is updated by the assignment. If the % operator is used, the

appropriate 8 bit location is updated by the least significant 8 bits of E.

A multiple assignment has the following form:

L1,..,Ln := E1,..,En

This construct allows a single command to make several assignments without

needing to be enclosed in section brackets. The assignments are done from left

and is eqivalent to:

L1:=E1 ;. . . ; Ln := En

2.3.2 Calls

Both function calls and method calls as described in sections 2.2.3 and 2.2.4 are

allowed to be executed as commands. The only difference is that any results

produced are thrown away.

2.3.3 Conditional Commands

The syntax of the three conditional commands is as follows:

IF E DO C1

UNLESS E DO C2

TEST E THEN C1 ELSE C2

where E denotes an expression and C1 and C2 denote commands. The symbols

DO and THEN may be omitted whenever they are followed by a command keyword.

To execute a conditional command, the expression E is first evaluated. If it yields

a non zero value and C1 is present then C1 is executed. If it yields zero and C2

is present, C2 is executed.

2.3.4 Repetitive Commands

The syntax of the repetitive commands is as follows:

WHILE E DO C

UNTIL E DO C

C REPEAT
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C REPEATWHILE E

C REPEATUNTIL E

FOR N = E1 TO E2 DO C

FOR N = E1 TO E2 bY K DO C

The symbol DO may be omitted whenever it is followed by a command key-

word. The WHILE command repeatedly executes the command C as long as E

is non-zero. The UNTIL command executes C until E is zero. The REPEAT com-

mand executes C indefinitely. The REPEATWHILE and REPEATUNTIL commands

first execute C then behave like WHILE E DO C or UNTIL E DO C, respectively.

The FOR command first initialises its control variable (N) to the value of

E1, and evaluates the end limit E2. Until N moves beyond the end limit, the

command C is executed and N increment by the step length given by K which

must be a manifest constant expression (see Section 2.2.10). If BY K is omitted

BY 1 is assumed. A FOR command starts a new dynamic scope and the control

variable N is allocated a location within this new scope, as are all other dynamic

variables and vectors within the FOR command.

2.3.5 SWITCHON command

A SWITCHON command has the following form:

SWITCHON E INTO { C1 ;. . . ; Cn }

where the commands C1 to Cn may have labels of the form DEFAULT: or CASE K.

E is evaluated and then a jump is made to the place in the body labelled by

the matching CASE label. If no CASE label with the required value exists, then

control goes to the DEFAULT label if it exists, otherwise execution continues from

just after the switch.

2.3.6 Flow of Control

The following commands affect the flow of control.

RESULTIS E

RETURN

ENDCASE

LOOP

BREAK

GOTO E

FINISH
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RESULTIS causes evaluation of the smallest textually enclosing VALOF expres-

sion to return with the value of E.

RETURN causes evaluation of the current routine to terminate.

LOOP causes a jump to the point just after the end of the body of the small-

est textually enclosing repetitive command (see Section 2.3.4). For a REPEAT

command, this will cause the body to be executed again. For a FOR com-

mand, it causes a jump to where the control variable is incremented, and for

the REPEATWHILE and REPEATUNTIL commands, it causes a jump to the place

where the controlling expression is re-evaluated.

BREAK causes a jump to the point just after the smallest enclosing repetitive

command (see Section 2.3.4).

ENDCASE causes execution of the commands in the smallest enclosing SWITCHON

command to complete.

The GOTO command jumps to the command whose label is the value of E. See

Section 2.4.1 for details on how labels are declared. The destination of a GOTO

must be within the currently executing function or routine.

FINISH only remains in BCPL for historical reasons. It is equivalent to the

call stop(0, 0) which causes the current program to stop execution. See the

description of stop(code, res) page 66.

2.3.7 Compound Commands

It is often useful to be able to execute commands in a sequence, and this can be

done by writing the commands one after another, separated by semicolons and

enclosed in section brackets. The syntax is as follows:

{ C1 ;. . . ; Cm }

where C1 to Cm are commands.

Any semicolon ocurring at the end of a line may be omitted. For this rule to

work, infixed expression operators may never start a line (see Section 2.2.9).

2.3.8 Blocks

A block is similar to a compound command but may start with some declarations.

The syntax is as follows:

{ D1 ;. . . ; Dn; C1 ;. . . ; Cm }
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where D1 to Dn are delarations and C1 to Cm are commands. The declarations

are executed in sequence to initialise any variables declared. A name may be used

on the right hand side of its own and succeeding declarations and the commands

(the body) of the block.

2.4 Declarations

Each name used in a BCPL program must in the scope of its declaration. The

scope of names declared at the outermost level of a program include the right

hand side of its own declaration and all the remaining declarations in the section.

The scope of names declared at the head of a block include the right hand side of

its own declaration, the succeeding declarations and the body of the block. Such

declarations are introduced by the keywords MANIFEST, STATIC, GLOBAL and LET.

A name is also declared when it occurs as the control variable of a for loop. The

scope of such a name is the body of the for loop.

2.4.1 Labels

The only other way to declare a name is as a label of the form N:. This may

prefix a command or occur just before the closing section bracket of a compound

command or block. The scope of a label is the body of the block or compound

command in which it was declared.

2.4.2 Manifest Declarations

A MANIFEST declaration has the following form:

MANIFEST { N1=K1 ;...; Nn=Kn }

where N1,..,Nn are names (see Section 2.2.1) and K1,..,Kn are manifest con-

stant expressions (see Section 2.2.10). Each name is declared to have the constant

value specified by the corresponding manifest expression. If a value specification

(=Ki) is omitted, the a value one larger than the previously defined manifest

constant is implied, and if =K1 is omitted, then =0 is assumed. Thus, the decla-

ration:

MANIFEST { A; B; C=10; D; E=C+100 }

declares A, B, C, D and E to have manifest values 0, 1, 10, 11 and 110, respectively.
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2.4.3 Global Declarations

The global vector is a permanently allocated region of store that may be directly

accessed by any (separately compiled) section of a program (see Section 2.5. It

provides the main mechanism for linking together separately compiled sections.

A GLOBAL declaration allows a names to be explicitly associated with elements

of the global vector. The syntax is as follows:

GLOBAL { N1:K1 ;...; Nn:Kn }

where N1,..,Nn are names (see Section 2.2.1) and K1,..,Kn are manifest con-

stant expressions (see Section 2.2.10).

Each constant specifies which global vector element is associated with each

variable.

If a global number (:Ki) is omitted, the next global variable element is im-

plied. If =K1 is omitted, then =0 is assumed. Thus, the declaration:

GLOBAL { a, b:200, c, d:251 }

declares the variables a, b, c and d occupy positions 0, 200, 201 and 251 of the

global vector, respectively.

2.4.4 Static Declarations

A STATIC declaration has the following form:

STATIC { N1=K1 ;...; Nn=Kn }

where N1,..,Nn are names (see Section 2.2.1) and K1,..,Kn are manifest con-

stant expressions (see Section 2.2.10). Each name is declared to be a statically

allocated variable initialised to the corresponding manifest expression. If a value

specification (=Ki) is omitted, the a value one larger than the previously defined

manifest constant is implied, and if =K1 is omitted, then =0 is assumed. Thus,

the declaration:

STATIC { A; B; C=10; D; E=C+100 }

declares A, B, C, D and E to be static variables having initial values 0, 1, 10, 11

and 110, respectively.
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2.4.5 LET Declarations

LET declarations are used to declare local variables, vectors, functions and rou-

tines. The textual scope of names declared in a LET declaration is the right hand

side of its own declaration (to allow the definition of recursive procedures), and

subsequent declarations and the commands.

Local variable, vector and procedure declarations can be combined using the

word AND. The only effect of this is to extend the scope of names declared forward

to the word LET, thus allowing the declaration of mutually recursive procedures.

AND serves no useful purpose for local variable and vector declarations.

2.4.6 Local Variable Declarations

A local variable declaration has the following form:

LET N1 ,..., Nn = E1 ,..., En

where N1,..,Nn are names (see Section 2.2.1) and E1,..,En are expressions.

Each name, Ni, is allocated space in the current stack frame and is initialized

with the value of Ei. Such variables are called dynamic variables since they are

allocated when the declaration is executed and cease to exist when control leaves

their scope.

The query expression (?) should be used on the right hand side when a

variable does not need an initial value.

2.4.7 Local Vector Declarations

LET N = VEC K

where N is a name and K is a manifest constant expression. A location is

allocated for N and initialized to a vector whose lower bound is 0 and whose

upper bound is K. The variable N and the vector elements (N!0 to N!K) reside

in the runtime stack and only continue to exist while control remains within the

scope of the declaration.

2.4.8 Procedure Declarations

A procedure declaration has the following form:

LET N ( N1 ,..., Nn ) = E

LET N ( N1 ,..., Nn ) BE C
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where N is the name of the function or routine being declared, N1,..,Nn are

its formal parameters. A function is defined using = and returns E as result.

A routine is defined using BE and executes the command C withou returning a

result.

Some example declarations are as follows:

LET wrpn(n) BE { IF n>9 DO wrpn(n/10)

wrch(n REM 10 + ’0’)

}

LET gray(n) = n NEQV n>>1

LET next() = VALOF { c := c-1

RESULTIS !c

}

If a procedure is declared in the scope of a global variable with the same name

then the global variable is given an initial value representing the procedure (see

section 2.5).

A procedure defined using equals (=) it is called a function and yields a result,

while a procedure defines by BE is called a routine and does not. If a function is

invoked as a routine its result in thrown away, and if a routine is invoked as a

function its result is undefined. Functions and routines are otherwise similar. See

section 2.2.3 for information about the syntax of to function and routine calls.

The arguments of a procedure behave like named elements of a dynamic vector

and so exist only for the lifetime of the procedure call. This vector has as many

elements as there are formal parameters and they receive their initial values

from the actual parameters at the moment of call. Procedures are variadic; that

is, the number of actual parameters need not equal the number of formals. If

there are too few actual parameters then the missing higher numbered ones are

left uninitialized, and if there are too many actual parameters, the extra ones

are evaluated but their values discarded. Notice that the ith argument can be

accessed by the expression (@v)!i, where v is the first argument. The scope of

the formal parameters is the body of the procedure.

Procedure calls are cheap in both space and execution time, with a typical

space overhead of three words of stack per call plus one word for each formal

parameter. In the Cintcode implementation, the execution overhead is typically

just one executed insruction for the call and one for the return.

There are two important restrictions concerning procedures. One is that a

GOTO command cannot make a jump to a label not declared within the current

procedure, although such non local jumps can be made using the library proce-
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dures level and longjump, described on page 61. The other is that dynamic free

variables are not permitted.

2.4.9 Dynamic Free Variables

Free variables of a procedure are those that are used but not declared in the

procedure, and they are restricted to be either manifest constants, static variables,

global variables, procedures or labels. This implies that they are not permitted to

be dynamic variables (ie local variables of another procedure). There are several

reasons for this restriction, including the need to be able to represent a procedure

in a single word, the ability to provide a safe separate compilation facility with

the related ability to assign procedures to variables. It also allows the procedure

calling to be efficient. Programmers used to languages such as Algol or Pascal

will find that they need to change their programming style somewhat; however,

most experienced BCPL users agree that the restriction is well worthwhile. One

should note that C adopted the same restriction, although in that language it is

imposed by the simple expedient of insisting that all procedures are declared at

the outermost level, thus making dynamic free variables syntactically impossible.

A style of programming that is often be used to avoid the dynamic free variable

restriction is exemplified below.

GLOBAL { var:200 }

LET f1(...) BE

{ LET oldvar = var // Save the current value of var

var := ... // Use var during the call of f1

...

f2(...) // var may be used in f2

...

IF ... DO f1(...) // f1 may be called recursively

var := oldvar // restore the original value of var

}

AND f2(...) BE // f2 uses var as a free variable

{ ... var ... }

2.5 Separate Compilation

Large BCPL programs can be split up into sections that can be compiled sepa-

rately. When loaded into memory they can communicate with each other using
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a special area of store called the Global Vector. This mechanism is simple and

machine independent and was put into the language since linkage editors at the

time were so primitive and machine dependent.

Variables residing in the global vector are declared by GLOBAL declarations

(see section 2.4.3). Such variables can be shared between separately compiled

sections. This mechanism is similar to the used of BLANK COMMON in Fortran,

however there is an additional simple rule to permit access to procedures declared

in different sections.

If the definition of a function or routine occurs within the scope of a global

declaration for the same name, it provides the initial value for the corresponding

global variable. Initialization of such global variables takes place at load time.

The three files shown in Table 2.1 form a simple example of how separate

compilation can be organised.

File demohdr File demolib.b File demomain.b

GET "libhdr" GET "demohdr" GET "demohdr"

GLOBAL { f:200 } LET f(...) = VALOF LET start() BE

{ ... { ...

} f(...)

}

Table 2.1 - Separate compilation example

When these sections are loaded, global 200 is initialized to the entry point of

function f defined in demolib.b and so is can be called from the function start

defined in demomain.b.

The header file, libhdr, contains the global declarations of all the resident

library functions and routines making all these accessible to any section that

started with: GET "libhdr". The library is described in the next chapter. Global

variable 1 is called start and is, by convention, the first function to be called

when a program is run.

Automatic global initialisation also occurs if a label declared by colon (:)

occurs in the scope of a global of the same name.

Although the global vector mechanism has disadvantages, particularly in the

organisation of library packages, there are some compensating benefits arising

from its extreme simplicity. One is that the output of the compiler is available

directly for execution without the need for a link editing step. Sections may

also be loaded and unloaded dynamically during the execution of a program
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using the library functions loadseg and unloadseg, and so arbitrary overlaying

schemes can be organised easily. An example of where this is used is in the

implementation of the Command Language Interpreter described in Chapter 8.

The global vector also allows for a simple but effective interactive debugging

system without the need for compiler constructed symbol tables. Again, this

was devised when machines were small and disc space was very limited; however,

some of its advantages are still relevant today.
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Chapter 3

The Design of Cintcode

The Cintcode abstract machine used to implementation of Cintpos has eight

registers as shown in figure 3.1.

B

C

P

G

ST

PC

Count

A

Stack frame Global vector Program area

Registers

Figure 3.1: The Cintcode machine

The registers A and B are used for expression evaluation, and C is used in

byte subscription. P and G are pointers to the current stack frame and the global

vector, respectively. St is zero when Cintcode interrupts are enabled, otherwise

interrupts are disabled. St=1 while executing code in the Cintpos kernel KLIB,

st==2 during the bootstrapping process and st=3 when executing an interrupt

service routine. PC points to the first byte of the next Cintcode instruction to

execute. Count is a register used by the debugger. While it is positive, Count

is decremented on each instruction execution, raising an exception (code 3) on

reaching zero. When negative it normally causes a second (faster) interpreter to

be used. The faster interpreter is usually implemented in assembly language and

23
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provides few debugging aids. In particular it does not inspect or change the value

of Count.

Cintcode encodes the most commonly occurring operations as single byte

instructions, using multi-byte instructions for rarer operations. The first byte of

an instruction is the function code. Operands of size 1, 2 or 4 bytes immediately

follow some function bytes. The two instructions used to implement switches

have inline data following the function byte. Cintcode modules also contains

static data for strings, integers, tables and global initialisation data.

3.0.1 Global Variables

Global variables are referenced as frequently as locals and therefore have many

function codes to handle them. The size of the global vector in most programs is

less than 512, but Cintcode allows this to be as large are 65536 words. Each op-

eration that refers to a global variable is provided with three related instructions.

For instance, the instructions to load a global into register A are as follows:

LG

LG1

LGH

b

h

B := A; A := G!(b+256)

B := A; A := G!b

B := A; A := G!h

b

Here, b and h are unsigned 8 and 16 bit values, respectively.

3.0.2 Composite Instructions

Cintcode contains many composite instructions, such as AP3 which adds local 3

to the A register, and L1P6 will load v!1 into register A, assuming v is held in local

6. Composite instructions improve the compactness and execution efficiency of

Cintcode.

3.0.3 Relative Addressing

A relative addressing mechanism is used in conditional and unconditional jumps

and the instructions: LL, LLL, SL and LF. All these instructions refer to locations

within the code and are optimised for small relative distances. To simplify the

generation, all relative addressing instructions are 2 bytes in length. The first

being the function code and the second being an 8 bit relative address.

All relative addressing instructions have two forms: direct and indirect, de-

pending on the least significant bit of the function byte. The details of both

relative address calculations are shown in figure 3.2, using the instructions J and
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Direct

Indirect

J a

J$ b hh

x

PC x

PC

dest = q + hh

dest = x + a

q = (x & #xFFFFFFFE) + 2*b

Figure 3.2: The relative addressing mechanism

J$ as examples. For the direct jump (J), the operand (a) is a signed byte in the

range -128 to +127 which is added to the address (x) of the operand byte to give

the destination address (dest). For the indirect jump, J$, the operand (b) is an

unsigned byte in the range 0 to 255 which is doubled and added to the rounded

version of x to give the address (q) of a 16 bit signed value hh which is added to

q to give the destination address (dest).

The compiler places the resolving half word as late as possible to increase

the chance that it can be shared by other relative addressing instructions to the

same destination, as could happen when several ENDCASE statements occur in

a large SWITCHON command. The use of a 16 bit resolving word places a slight

restriction on the maximum size of relative references. Any Cintcode module of

less than 64K bytes will have no problem.

3.1 The Cintcode Instruction Set

The resulting selection of function codes is shown in Table 3.1 and they are

described in the sections that follow. In the remaining sections of this chapter

the following conventions hold:
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Symbol Meaning

n An integer encoded in the function byte.

Ln The one byte operand of a relative addressing instruction.

b An unsigned byte, range 0 ≤ b ≤ 255.

h An unsigned halfword, range 0 ≤ h ≤ 65535.

w A signed 32 bit word.

filler Optional filler byte to round up to a 16 bit boundary.

A The Cintcode A register.

B The Cintcode B register.

C The Cintcode C register.

P The Cintcode P register.

G The Cintcode G register.

PC The Cintcode PC register.

3.1.1 Byte Ordering and Alignment

A Cintcode module is a vector of 32 bit words containing the compiled code and

static data of a section of program. The first word of a module holds its size

in words that is used as a relative address to the end of the module where the

global initialisation data is placed. The last word of a module holds the highest

referenced global number, and working back, there are pairs of words giving the

global number and relative entry address of each global function or label defined

in the module. A relative address of zero marks the end of the initialisation data.

See section ?? for more details.

The compiler can generate code for either a big- or little-endian machine.

These differ only in the byte ordering of bytes within words. For a little endian

machine, the first byte of a 32 bit word is at the least significant end, and on

a big-endian machine, it is the most significant byte. This affect the ordering

of bytes in 2 and 4 byte immediate operands, 2 byte relative address resolving

words, 4 byte static quantities and global initialisation data. Resolving words are

aligned on 16 bit boundaries relative to the start of the module, and 4 byte static

values are aligned on 32 bit boundaries. The 2 and 4 byte immediate operands

are not aligned.

For efficiency reasons, the byte ordering is chosen to suit the machine on which

the code is to be interpreted. The compiler option OENDER causes the BCPL

compiler to compile code with the opposite endianess to that of the machine

on which the compiler is running, see the description of the bcpl command on

page 89.
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0 32 64 96 128 160 192 224

0 - K LLP L LP SP AP A
1 - KH LLPH LH LPH SPH APH AH
2 BRK KW LLPW LW LPW SPW APW AW
3 K3 K3G K3G1 K3GH LP3 SP3 AP3 L0P3
4 K4 K4G K4G1 K4GH LP4 SP4 AP4 L0P4
5 K5 K5G K5G1 K5GH LP5 SP5 AP5 L0P5
6 K6 K6G K6G1 K6GH LP6 SP6 AP6 L0P6
7 K7 K7G K7G1 K7GH LP7 SP7 AP7 L0P7
8 K8 K8G K8G1 K8GH LP8 SP8 AP8 L0P8
9 K9 K9G K9G1 K9GH LP9 SP9 AP9 L0P9

10 K10 K10G K10G1 K10GH LP10 SP10 AP10 L0P10
11 K11 K11G K11G1 K11GH LP11 SP11 AP11 L0P11
12 LF S0G S0G1 S0GH LP12 SP12 AP12 L0P12
13 LF$ L0G L0G1 L0GH LP13 SP13 XPBYT S
14 LM L1G L1G1 L1GH LP14 SP14 LMH SH
15 LM1 L2G L2G1 L2GH LP15 SP15 BTC MDIV
16 L0 LG LG1 LGH LP16 SP16 NOP CHGCO
17 L1 SG SG1 SGH SYS S1 A1 NEG
18 L2 LLG LLG1 LLGH SWB S2 A2 NOT
19 L3 AG AG1 AGH SWL S3 A3 L1P3
20 L4 MUL ADD RV ST S4 A4 L1P4
21 L5 DIV SUB RV1 ST1 XCH A5 L1P5
22 L6 REM LSH RV2 ST2 GBYT RVP3 L1P6
23 L7 XOR RSH RV3 ST3 PBYT RVP4 L2P3
24 L8 SL AND RV4 STP3 ATC RVP5 L2P4
25 L9 SL$ OR RV5 STP4 ATB RVP6 L2P5
26 L10 LL LLL RV6 STP5 J RVP7 L3P3
27 FHOP LL$ LLL$ RTN GOTO J$ ST0P3 L3P4
28 JEQ JNE JLS JGR JLE JGE ST0P4 L4P3
29 JEQ$ JNE$ JLS$ JGR$ JLE$ JGE$ ST1P3 L4P4
30 JEQ0 JNE0 JLS0 JGR0 JLE0 JGE0 ST1P4 -
31 JEQ0$ JNE0$ JLS0$ JGR0$ JLE0$ JGE0$ - -

Table 3.1: The Cintcode function codes
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3.1.2 Loading values

The following instructions are used to load constants, variables, the addresses of

variables and function entry points. Notice that all loading instructions save the

old value of register A in B before updating A. This simplifies the translation of

dyadic expression operators.

Ln 0 ≤ n ≤ 10 B := A; A := n
LM1 B := A; A := -1
L b B := A; A := b
LH h B := A; A := h
LMH h B := A; A := -h
LW w B := A; A := w

These instructions load integer constants. Constants are in the range -1 to 10

are the most common and have single byte instructions. The other cases use

successively larger instructions.

LPn 3 ≤ n ≤ 16 B := A; A := P!n
LP b B := A; A := P!b
LPH h B := A; A := P!h
LPW w B := A; A := P!w

These instructions load local variables and anonymous results addressed relative

to P. Offsets in the range 3 to 16 are the most common and use single byte

instructions. The other cases use successively larger instructions.

LG b B := A; A := G!b
LG1 b B := A; A := G!(b+ 256)
LGH h B := A; A := G!h

LG loads the value of a global variable in the range 0 to 255, LG1 loads globals

in the range 256 to 511, and LGH can load globals up to 65535. Global numbers

must be in the range 0 to 65535.

LL Ln B := A; A := variable Ln
LL$ Ln B := A; A := variable Ln
LF Ln B := A; A := entry point Ln
LF$ Ln B := A; A := entry point Ln

LL loads the value of a static variable and LF loads the entry address of a function,

routine or label in the current module.
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LLP b B := A; A := @P!b
LLPH h B := A; A := @P!h
LLPW w B := A; A := @P!w
LLG b B := A; A := @G!b
LLG1 b B := A; A := @G!(b+ 256)
LLGH h B := A; A := @G!h
LLL Ln B := A; A := @(variable Ln)
LLL$ Ln B := A; A := @(variable Ln)

These instructions load the BCPL pointers to local, global and static variables.

3.1.3 Indirect Load

GBYT A := B%A
RV A := A!0
RVn 1 ≤ n ≤ 6 A := A!n
RVPn 3 ≤ n ≤ 7 A := P!n!A
L0Pn 3 ≤ n ≤ 12 B := A; A := P!n!0
L1Pn 3 ≤ n ≤ 6 B := A; A := P!n!1
L2Pn 3 ≤ n ≤ 5 B := A; A := P!n!2
L3Pn 3 ≤ n ≤ 4 B := A; A := P!n!3
L4Pn 3 ≤ n ≤ 4 B := A; A := P!n!4
LnG b 0 ≤ n ≤ 2 B := A; A := G!b!n
LnG1 b 0 ≤ n ≤ 2 B := A; A := G!(b+256)!n
LnGH h 0 ≤ n ≤ 2 B := A; A := G!h!n

These instructions are used in the implementation of byte and word indirection

operators % and ! in right hand contexts.

3.1.4 Expression Operators

NEQ A := -A
ABS A := ABS A
NOT A := ~A

These instructions implement the three monadic expression operators.

MUL A := B * A
DIV A := B / A
REM A := B REM A
ADD A := B + A
SUB A := B - A
LSH A := B << A
RSH A := B >> A
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AND A := B & A
OR A := B | A
XOR A := B NEQV A

These instructions provide for all the normal arithmetic and bit pattern dyadic

operators. The instructions DIV and REM generate exception 5 if the divisor

is zero. Evaluation of relational operators in non conditional contexts involve

conditional jumps and the FHOP instruction, see page 33. Addition is the most

frequently used arithmetic operation and so there are various special instructions

to improve its efficiency.

An 1 ≤ n ≤ 5 A := A + n
Sn 1 ≤ n ≤ 4 A := A - n
A b A := A + b
AH h A := A + h
AW w A := A + w
S b A := A - b
SH h A := A - h

These instructions implement addition and subtraction by constant integer

amounts. There are single byte instructions for incrementing by 1 to 5 and

decremented by 1 to 4. For other values longer instructions are available.

APn 3 ≤ n ≤ 12 A := A + P!n
AP b A := A + P!b
APH h A := A + P!h
APW w A := A + P!w
AG b A := A + G!b
AG1 b A := A + G!(b+1)
AGH h A := A + G!b

These instructions allow local and global variables to be added to A. Special

instructions for addition by static variables are not provided, and subtraction by

a variable is not common enough to warrant special treatment.

3.1.5 Simple Assignment

SPn 3 ≤ n ≤ 16 P!n := A
SP b P!b := A
SPH h P!h := A
SPW w P!w := A
SG b G!b := A
SG1 b G!(b+256) := A
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SGH h G!h := A
SL Ln variable Ln := A
SL$ Ln variable Ln := A

These instructions are used in the compilation of assignments to named local,

global and static variables. The SP instructions are also used to save anonymous

results and to layout function arguments.

3.1.6 Indirect Assignment

PBYT B%A := C
XPBYT A%B := C
ST A!0 := B
STn 1 ≤ n ≤ 3 A!n := B
ST0Pn 3 ≤ n ≤ 4 P!n!0 := A
ST1Pn 3 ≤ n ≤ 4 P!n!1 := A
STPn 3 ≤ n ≤ 5 P!n!A := B
S0G b G!b!0 := A
S0G1 b G!(b+256)!0 := A
S0GH h G!h!0 := A

These instructions are used in assignments in which % or ! appear as the leading

operator on the left hand side.

3.1.7 Procedure calls

At the moment a function or routine is called the state of the stack is as shown

in figure 3.3. At the entry point of a function or routine the first argument, if

any, will be in register A and in memory P!3.

E2 En

P

Old stack frame New stack frame

k

Figure 3.3: The moment of calling E(E1,E2,...En)

Kn 3 ≤ n ≤ 11
K b
KH h
KW w
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These instructions call the function or routine whose entry point is in A and whose

first argument (if any) is in B. The new stack frame at position k relative to P

where k is n, b, h or w depending on which instruction is used. The effect of

these instructions is as follows:

P!k := P // Save the old P pointer
P := P+k // Set its new value
P!1 := PC // Save the return address
PC := A // Set PC to the entry point
P!2 := PC // Save it in the stack for debugging
A := B // Put the first argument in A
P!3 := A // Save it in the stack

As can be seen, three words of link information (the old P pointer, the return

address and entry address) are stored in the base of the new stack frame.

KnG b 3 ≤ n ≤ 11
KnG1 b 3 ≤ n ≤ 11
KnGH h 3 ≤ n ≤ 11

These instructions deal with the common situation where the entry point of the

function is in the global vector and the stack increment is in the range 3 to 11.

The global number gn is b, b+256 or h depending on which function code is used

and stack increment k is n. The first argument (if any) is in A. The effect of these

instructions is as follows:

P!k := P // Save the old P pointer
P := P+k // Set its new value
P!1 := PC // Save the return address
PC := G!gn // Set the new PC value from the global value
P!2 := PC // Save it in the stack for debugging
P!3 := A // Save the first argument in the stack

RTN

This instruction causes a return from the current function or routine using the

previous P pointer and the return address held in P!0 and P!1. The effect of the

instruction is as follows:

PC := P!1 // Set PC to the return address
P := P!0 // Restore the old P pointer

When returning from a function the result will be in A.
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3.1.8 Flow of Control and Relations

The following instructions are used in the compilation of conditional and uncon-

ditional jumps, and relational expressions. The symbol rel denotes EQ, NE, LS,

GR, LE or GE indicating the relation being tested.

J Ln PC := Ln
J$ Ln PC := Ln
Jrel Ln IF B rel A DO PC := Ln
Jrel$ Ln IF B rel A DO PC := Ln
Jrel0 Ln IF A rel 0 DO PC := Ln
Jrel0$ Ln IF A rel 0 DO PC := Ln

The destinations of these jump instructions are computed using the relative ad-

dressing mechanism described in section 3.0.3. Notice than when the comparison

is with zero, A holds the left operand of the relation.

GOTO PC := A

This instruction is only used in the compilation of the GOTO command.

FHOP A := 0; PC := PC+1

The FHOP instruction is only used in the compilation of relational expressions in

non conditional contexts as in the compilation. The assignment: x := y < z is

typically compiled as follows:

LP4 Load y
LP5 Load z
JLS 2 Jump to the LM1 instruction if y<z
FHOP A := FALSE; and hop over the LM1 instruction
LM1 A := TRUE
SP3 Store in x

3.1.9 Switch Instructions

The instructions are used to implement switches are SWL and SWB, switching on

the value held in A. They both assume that all case constants are in the range

0 to 65535, with the compiler taking appropriate action when this constraint is

not satisfied.

SWL filler n dlab L0 . . .Ln−1

This instruction is used when there are sufficient case constants all within a

small enough range. It performs the jump by selecting an element from a vector
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of 16 bit resolving half words. The quantities n, dlab, and L0 to Ln−1 are 16 bit

half words, aligned on 16 bit boundaries by the option filler byte. If A is in the

range 0 to n− 1 it uses the appropriate resolving half word LA, otherwise it uses

the resolving half word dlab to jump to the default label. See Section 3.0.3 for

details on how resolving half words are interpreted.

SWB filler n dlab K1 L1 . . .Kn Ln

This instruction is used when the range of case constants is too large for SWL to be

economical. It performs the jump using a binary chop strategy. The quantities n,

dlab, K1 to Kn and L1 to Ln are 16 bit half words aligned on 16 bit boundaries by

the option filler byte. This instruction successively tests A with the case constants

in the balanced binary tree given in the instruction. The tree is structured in a

way similar to that used in heapsort with the children of the node at position

i at positions 2i and 2i + 1. References to nodes beyond n are treated as null

pointers. Within this tree, Ki is greater than all case constants in the tree rooted

at position 2i, and less than those in the tree at 2i + 1. The search starts at

position 1 and continues until a matching case constant is found or a null pointer

is reached. If A is equal to some Ki then PC is set using the resolving half word

Li, otherwise it uses the resolving half word dlab to jump to the default label.

See Section 3.0.3 for details on how resolving half words are interpreted.

The use of this structure is particularly good for the hand written machine

code interpreter for the Pentium where there are rather few central registers.

Cunning use can be made of the add with carry instruction (adcl). In the

following fragment of code, %esi points to n, %eax holds i and A is held in %eab.

There is a test elsewhere to ensure that A is in the range 0 to 65535.

swb1: cmpw (%esi,%eax,4),%bx ; { compare A with Ki
je swb3 ; Jump if A=Ki
adcl ; IF A>Ki THEN i := 2i

; ELSE i := 2i+1
cmpw (%esi),%ax ;
jle swb1 ; } REPEATWHILE i<=n

The compiler ensures that the tree always has at least 7 nodes allowing the code

to be further improved by preceding this loop with two copies of:

cmpw (%esi,%eax,4),%bx ; compare Ki with A
je swb3 ; Jump if match found
adcl ; IF A>Ki THEN i := 2i

; ELSE i := 2i+1

The above code is a great improvement on any straightforward implementation

of the standard binary chop mechanism.



3.1. THE CINTCODE INSTRUCTION SET 35

3.1.10 Miscellaneous

XCH Exchange A and B
ATB B := A
ATC C := A
BTC C := B

These instructions are used move values between register A, B and C.

NOP

This instruction has no effect.

SYS

This instruction is used in body of the hand written library routine sys. It

provides an escape mechanism that allows for operations no directly available

to Cintcode. These operations include input/output and control of the running

environment. They are all described in Section 6.2.1.

Otherwise, it performs a system operation returning the result in A. In the C

implementation of the interpreter this is done by the following code:

c = dosys(p, g);

MDIV

This instruction is used as the one and only instruction in the body of the hand

written library routine muldiv, see Section 6.3.14. It divides P!5 into the double

length product of P!3 and P!4 placing the result in A and the remainder in the

global variable result2. It then performs a function return (RTN). Its effect is as

follows:

A := <the result>
G!Gn_result2 := <the remainder>
PC := P!1 // PC := P!1
P := P!0 // P := P!0

CHGCO

This instruction is used in the implementation of coroutines. It is the one and

only instruction in the body of the hand written library routine chgco. Its effect,

which is rather subtle, is as follows:
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G!Gn_currco!0 := P!0 // !currco := !P
PC := P!1 // PC := P!1
G!Gn_currco := P!4 // currco := cptr
P := P!4!0 // P := !cptr

BRK

This instruction is used by the debugger in the implementation of break points.

It causes the interpreter to return with exception code 2.

3.1.11 Undefined Instructions

These instructions have function codes 0, 1, 232, 254 and 255, and they each

cause the interpreter to return with exception code 1.

3.1.12 Corruption of B

To improve the efficiency of some hand written machine code interpreters, the

following instructions are permitted to corrupt the value held in B:

K KH KW Kn KnG KnG1 KnGH

SWL SWB MDIV CHGCO

All other instructions either set B explicitly or leave its value unchanged.

3.1.13 Exceptions

When an exception occurs, the interpreter saves the Cintcode registers in its

register vector and yields the exception number as result. For exceptions caused

by non existent instructions, BRK, DIV or REM the program counter is left

pointing to the offending instruction. For more details see the description of

sys(1, regs) on page 48.



Chapter 4

The Kernel Data Structures

Proper understanding of how Cintpos works requires knowledge of all the struc-

tures used by the kernel. All these structures are visible to any program running

under Cintpos and their fields may be conveniently accessed using symbolic offsets

declared in libhdr. The various kernel structures are as follows.

4.1 The root node

The fundamental structure that gives access to all other kernel structures is called

the rootnode. It is positioned at location 100, but normally referenced using the

manifest constant rootnode. Its fields are as follows:

37
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Rootnode offset Purpose

rtn.tasktab Pointer to the task table

rtn.devtab Pointer to the device table

rtn.tcblist Pointer to the highest priority TCB

rtn.crntask Pointer to the currently executing TCB

rtn.blklist Pointer to the list of memory blocks

rtn.tallyv Pointer to the tally vector

rtn.clkintson TRUE if clock interrupts are enabled

rtn.lastch The latest charcter typed on the keyboard

rtn.insadebug TRUE if currently in sadebug

rtn.clkwq List of packet sent to the clock device

rtn.membase Pointer to the start of Cintcode memory

rtn.memsize Size of Cintcode memory in words

rtn.info Pointer to the info structure

rtn.sys Entry address of the sys function

rtn.blib List of the BLIB modules

rtn.boot Pointer to the BOOT module

rtn.klib Pointer to the KLIB modules

rtn.keyboard The SCB for main keyboard input

rtn.screen The SCB for main screen output

- Other system dependent fields

after this point

rtn.upb The last field used.

4.2 The task table

The task table is pointed to by rootnode!rtn.tasktab. Its zeroth entry holds

the upper bound of the table and each other entry is either zero or holds a

pointer to the task control block (TCB) of a task. Tasks are identified by small

positive integers. If a task with identified id exists, its TCB will be pointed to

by rootnode!rtn.tasktab!rtn.tasktab!id.

4.3 Task control blocks

Each task in the system has a task control block (TCB) which contains informa-

tion relating to that task. It fields are as follows:
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TCB offset Purpose

tcb.link Link to the next TCB (or zero)

tcb.procid Not used

tcb.taskid The id of the task

tcb.pri The task’s priority, a positive number

tcb.wkq List of packets sent to this task

tcb.state The state of the task, a 4 bit integer

tcb.flags The flags field

tcb.stsiz The task’s stack size

tcb.seglist Pointer to the vector of segment lists

tcb.segnames Not used

tcb.gbase Either zero or the base of the global vector

tcb.sbase Either zero or the base of the stack

tcb.timlist Not used

tcb.iolist Used only in pvstask/vobroot.bpl

- Unused

- Unused

tcb.a Dump of A

tcb.b Dump of B

tcb.c Dump of C

tcb.p Dump of P

tcb.g Dump of G

tcb.intson Dump of Intson

tcb.pc Dump of PC

tcb.count Dump of Count

tcb.upb The last field used.

4.4 Global vectors

Each active task has a global vector whose zeroth element is the upper bound

of the global vector. This size is normally 1000. Every other global element is

initialised to globword(=#xEFEF0000)+n where n is the global number. If such

a value is used as a function the interpreter will generate a fault. The globals

corresponding to entry points in the modules specified by the segment lists are

then set.
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4.5 Stacks

Each active task has a stack used to hold arguments, locals and anonymous

result during the evaluation of (nested) function calls. The stack pointed to by

the TCB field sbase is the root coroutine stack for the task. A task may create

other coroutine stacks during execution. The fields of a stack are shown below.

Stack offset Purpose

co.pptr The resumption P pointer if suspended

co.parent -1 if root, 0 if orphan, or parent if active

co.list Pointer to the next coroutine

co.fn The coroutine’s main function

co.size The size of the coroutine’s stack

co.c Coroutine system work space

4.6 Memory blocks

Memory may be allocated and freed using getvec and freevec. The space is

taken from a list of blocks pointed to by the blklist field of the root node.

The zeroth word of each block in the block list contains its size, which must be

even, and a one bit flag (the least significant bit) to indicate whether the block

is currently allocated or free. A flag bit of 0 means the block is allocated, and

1 means it is free. The last block in the chain is marked with a zero indicating

an allocated block of size zero. The functions getvec and freevec invoke C

functions to do the allocation/deallocation. This is done using the sys function.

Such modification of the block list is only permitted by the Cintcode interpreter

thread. Other threads of the C program such as ones handling I/O devices may

not change the block list.

If this simple mechanism proves to be too slow it can easily be improved.

4.7 Device control blocks

Cintpos has a device table pointed to by the devtab field of the root node.

Its zeroth entry contains its upper bound and each other entry is either zero or

points to a device control block (DCB). DCBs are used to control communication

between Cintpos and external devices such as disc filing systems or serial lines

connected via TCP/IP ports. The structure of a DCB is as follows.
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DCB offset Purpose

Dcb type Unused – once the driver code

Dcb devid The device id, a negative number

Dcb wkq List of packets sent to the device

Dcb op The function to call when the device receives a packet

Dcb threadp M/C address of location holding the pthread id

Dcb cvp M/C address of the pthread conditional variable

Dcb intson TRUE if the device may generate interrupts

Dcb irq TRUE if the device is ready to interrupt

The type field indicates the type of the device. The device types currently

available are:

Type Description

Devt clk The clock device

Devt ttyin The keyboard device

Devt ttyout The screen device

Devt fileop The main filing system device

Devt tcpdev Devices to handle TCP/IP connections

Devices are implemented using one Posix thread and one condition vari-

able per device. At the lowest level the device is controlled by calls of

sys(Sys devcom, com, arg) where com can be Devc create, Devc destroy,

Devc start, Devc stop or Devc setintson. However, the user normally used

createdev and deletedev to create and delete devices. Interaction with a de-

vice is normally done by sending it a packet using qpkt and waiting for it to reply

using taskwait.
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Chapter 5

Cintpos startup and initialisation

Although most of Cintpos is implemented in BCPL, its main program and cin-

terpreter are implemented in C. The function main is defined in cintpos.c and

is the first code to execute. It reads the optional command line arguments. . . .

More to come here
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Chapter 6

The Resident Library

This chapter describes the resident library functions, routines and manifest con-

stants that are declared in the standard library header file libhdr and defined in

either SYSLIB or sys/BLIB.b.

6.1 The Standard Header File libhdr

The file libhdr contains the global and manifest declarations of all the proce-

dures, variables and constants belonging to the standard resident library. Global

variables 0 to 199 are reserved for use by the system. Of these, globals 0 to 99

mainly belong to BLIB and SYSLIB, while those between 133 and 149 belong

to the Command Language Interpreter described in Chapter 8. The first global

available to the user is numbered 200. For convenience this is declared as the

manifest constant ug.

The size of the global vector is held in globsize (global 0) and, by convention,

the global result2 is used by some functions to return a second result. Global

variable 1 is called start and is special since it must be defined by the user

because it is the first function to be called when a program is run. Global 4

(called clihook is also special since it is useful when debugging programs, see

page 65.

6.1.1 Architecture Constants

This constant B2Wsh holds the shift required to convert a BCPL pointer into a

byte address. On 32 bit machines it is set to 2 while on some 64 bit implemen-

tations it is set to 3. The constant bytesperword is defined to be 1<<B2Wsh and

indicates how many bytes can be packed into a word. The constant bitsperbyte

is set to 8 indicating the size of a byte. The constants minint and maxint hold

45



46 CHAPTER 6. THE RESIDENT LIBRARY

the largest negative and positive numbers that can be represented by a word in

this implementation.

6.1.2 Other Manifest Constants

The constants t hunk, t bhunk and t end are used in the representation of Cint-

code Object Modules. Constants whose names start with co are used in the

implementation of the coroutine mechanism (see Section 6.3.12), and constants

starting with rtn denote offsets in the rootnode (see Section 6.3.1). The con-

stants InitObj(=0) and CloseObj(=1) are the positions in the methods vector

of the routines to initialise and close an object. See mkobj described on page 64.

6.2 SYSLIB

This module contains the definitions of the functions sys, chgco and muldiv.

These functions are hand written in Cintcode because they need to execute the

Cintcode instructions (SYS, CHGCO and MDIV) that cannot be generated by the

BCPL compiler. The instruction SYS (see Section 6.2.1) provides an interface

with the host operating system, CHGCO is used in the implementation of coroutines

(see Section 6.3.12), and MDIV performs the operation required by muldiv(see

Section 6.3.14).

To understand the sys function and the corresponding SYS Cintcode in-

struction it is necessary to know how the Cintcode System in implemented. It

is mainly implemented in C and can be found in the files sysc/cintpos.c,

sysc/cinterp.c, sysc/kblib.c and sysc/nrastlib.c with a header file

sysc/cinterp.h that contains architecture dependent declarations. The file

sysc/cintpos.c contains the main program and the the definition of dosys

which provide access to I/O primitives and other system functions. The file

sysc/cinterp.c is the C implementation of the Cintcode interpreter but there

is usually a second more efficient interpreter such as sysasm/LINUX/cintasm.s.

cintasm is faster than the C version since it has fewer built-in debugging aids

and because it is carefully hand written in assembly language taking advantage of

knowledge not available to a C compiler. Both cinterp and cintasm are callable

from C and both receive a pointer to the base of the Cintcode memory vector and

the position within it of where a dump of the Cintcode registers are held. Both

will interpreters sequentially execute Cintcode instructions before returning with

an integer result indicating why interpretation has ceased. The possible results

are given below in the description of sys(Sys interpret,...).
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The BCPL function sys provides an interface between BCPL and dosys, and

can also control which version of the interpreter is used.

6.2.1 The BCPL sys Function

The sys function is defined by hand in SYSLIB it body is just the Cintcode

instructions SYS followed by RTN. When SYS is encountered by the interpreter,

it normally just calls dosys passing the BCPL P and G pointers as arguments.

But when sys(Sys quit,code) is executed, the interpreter saves the Cintcode

registers in a vector and returns with the result code to the (C) program that

called this invocation of the interpreter. This is normally used to exit from the

Cintcode system, but can also be used to return from recursive invocations of the

interpreter (see sys(Sys interpret,regs) below).

A typical call of sys is as follows:

res := sys(op,...)

The action performed by this call depends on op. Some actions concern the

management of the interpreter, some are concerned with input and output, while

others provide access to functions implemented in C.

6.2.2 Interpreter Management Sys Functions

The Cintcode System normally has two resident interpreters. One is called

cinterp and is implemented in C and the other is called cintasm which is

normally implemented by hand in assembly language. The assembly language

version runs faster but but provides fewer debugging and statistics gathering

aids. It is possible to select dynamically which interpreter is running by setting

a value in the Cintcode count register. A positive value causes cinterp to run.

Each time cinterp executes a Cintcode instruction it decrements count and re-

turns with an error code of 3 when count reaches zero. If the value in count is

-1, cintasm is invoked and runs without changing count. With some debugging

versions of cintasm, setting count to -2 causes cintasm to execute just one in-

struction and then return with error code 10. This feature assists the debugging

of a new versions of cintasm. The count register can be set by means of the

sys(Sys setcount,...) call described below.

A second version of the BCPL Cintcode system called rasterp. It uses just

one interpreter implemented in C, and can be called upon to generate raster image

data. For more information, see the description of sys(Sys setraster,...) on

page 52 and the raster and rast2ps commands on page 93.
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oldcount := sys(Sys setcount, newcount)

Under normal conditions when the interpreter is running under the control of

code in BOOT, this sets the Cintcode count register to newcount and returns the

previous value. If the count register is now less than 0, interpretation continues

using the fast interpreter (cintasm), but if it is greater than 0, interpretation

continues using the slow interpreter (cinterp). The code to make this selection

can be found in the execution loop occuring at the end of the function start

defined in sys/BOOT.b.

For some (debugging) versions of cintasm a count of -2 causes the (fast)

interpreter to execute just one Cintcode instruction before returning with an

error code of 10.

The sys(Sys setcount,...) function is used by the CLI command

interpreter to select which interpreter is to be used (see Section 8.2). It is

also used by the instrcount function defined in BLIB.b (see page 66).

sys(Sys quit, code)

This will cause a return from the the interpreter yielding code as the return

code. A code of zero denotes successful completion and, if invoked at the outer-

most level, causes the BCPL Cintcode System to terminate.

res := sys(Sys interpret, regs)

This function enters the Cintcode interpreter recursively with the Cintcode

registers set to values specified in the vector regs. The elements of regs are as

follows:

regs!0 A register – work register

regs!1 B register – work register

regs!2 C register – work register

regs!3 P register – the stack frame pointer

regs!4 G register – the base of the global vector

regs!5 ST register – the status register

regs!6 PC register – the program counter

regs!7 Count register – see below

When cinterp is active, the count register is decremented every time an

instruction is interpreted. When the count goes negative the interpreter saves

the registers and returns with a result (=3) to indicate what has happened. If

the count register is positive it indicates how many Cintcode instructions should

be executed before the interpreter returns. A count of -1 is treated as infinity

and causes the fast interpreter cintasm to be used.
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Either interpreter returns when a fault, such as division by zero, occurs or

when a call of sys(Sys_quit,...) or sys(Sys_setcount,...) is made. When

returning, the current state of the Cintcode registers is saved back into regs. The

returned result is either the second argument of sys(Sys_quit,...) or one of

the built-in return codes in the following table:

-1 Re-enter the interpreter with a new value in the the count register

0 Normal successful completion (by convention)

1 Non existent Cintcode instruction

2 BRK instruction encountered

3 Count has reached zero

4 PC set to a negative value

5 Division by zero

10 Single step interrupt from the fast interpreter (debugging)

11 The watched location has just been updated.

sys(Sys saveregs, regs)

sys(Sys rti, regs)

sys(Sys setst, val)

These calls are normally only made in the Cintpos kernel and the interrupt

service routine. Sys saveregs causes the current state of the cintcode registers

to be saved in the vector regs. Sys rti will set the Cintcode registers, except

for count, to the values held in the vector regs. Sys setst will set the Cintcode

register st to the given value. It is primarily used in the kernel to enable and

disable interrupts.

sys(Sys watch, addr) On some systems this will cause the interpreter to

watch the given address. When the watched value changes, fault 11 will be

generated causing the standalone debugger to be entered. A zero address disables

the watch feature.

sys(Sys tracing, b)

sys(Sys tally, flag)

When running under cinterp, the calls sys(Sys tracing,TRUE) and

sys(Sys tracing,FALSE) provide a primitive trace facility to aid debugging the

cinterp itself and are not normally of use to ordinary users. When running under

cinterp, the calls sys(Sys_tally,TRUE) and sys(Sys_tally,FALSE) provide

the profiling facility that was used to obtain execution statistics. It uses the

tally vector to hold frequency counts of Cintcode instructions executed. When
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tallying is enabled, the ith element of the tally vector is incremented every time

the instruction at location i of the Cintcode memory is executed. The size of

the tally vector can be specified when entering the Cintpos system. This size is

stored in its zeroth element. The tally vector is held in the rtn.tallyv field of

the rootnode. Note this profiling facility is only available when running under

cinterp. Statistics of the execution of a program can be gathered and analysed

using the CLI command stats (see Section 8.2).

6.2.3 Primitive I/O Operations

ch := sys(Sys sardch)

Return the next character from the keyboard. The character is echoed to

standard output (normally the screen).

sys(Sys sawrch, ch)

Send character ch to the standard output (normally the screen). the character

linefeed is transmitted as carriage return followed by linefeed, and the output is

flushed.

n := sys(Sys read, fp, buf, len)

Read upto len bytes from the file specified by the file pointer fp into

the byte buffer buf. The file pointer must have been created by a call of

sys(Sys openread,...) or sys(Sys openreadwrite,...). The number of

bytes actually read is returned as the result. A result of zero indicate end of

file, and a negative value indicates an error.

n := sys(Sys write, fp, buf, len)

Write len bytes to the file specified by the file pointer fp from the

byte buffer buf. The file pointer must have been created by a call of

sys(Sys openwrite,...) or sys(Sys openread,...). The result is the number

of bytes transferred, or zero if there was an error.

fp := sys(Sys openread, name)

This opens for reading the file whose name is given by the string name. It

returns 0 if the file cannot be opened, otherwise it returns the file pointer for the

opened file. See page 61 for information about the treatment of file names.

fp := sys(Sys openwrite, name)

This opens for writing the file whose name is given by the string name. It
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returns 0 if the file cannot be opened, otherwise it returns the file pointer for the

opened file. See page 61 for information about the treatment of file names.

fp := sys(Sys openreadwrite, name)

This opens for reading and writing the file whose name is given by the string

name. It returns 0 if the file cannot be opened, otherwise it returns the file

pointer for the opened file. See page 61 for information about the treatment of

file names.

res := sys(Sys close, fp)

This closes the file whose file pointer is fp. It returns zero if successful.

res := sys(Sys deletefile, name)

This deletes the file whose name is given by name. See page 61 for information

about the treatment of file names.

res := sys(Sys renamefile, old, new)

This renames file old to new. It returns zero if successful.

res := sys(Sys getvec, upb)

This allocates a vector whose lower bound is zero and whose upper bound is

upb. It returns zero if the request cannot be satified.

sys(Sys freevec, ptr)

If ptr is zero it does nothing, otherwise it returns the space pointed to by ptr

that must have previously been allocated by sys(Sys getvec,...).

res := sys(Sys loadseg, name)

This loads a Cintcode module from file name. It returns a pointer to the

loaded module if successful. Otherwise it returns zero.

res := sys(Sys globin, seg)

This initializes the global variables defined in the loaded module pointed to

by seg. It returns zero is there is an error.

res := sys(Sys unloadseg, seg)

This unloads the the loaded module given by seg. If seg is zero it does nothing.

res := sys(Sys muldiv, a, b, c)

This invokes the C implementation of muldiv. It returns the result of dividing

c into the double length product of a and b. It sets result2 to the remainder.
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res := sys(Sys intflag)

This returns TRUE if the program is being interrupted by the user. On many

systems this is not implemented and just returns FALSE.

res := sys(Sys setraster, n, arg)

This invokes the setraster primitive used in the rastering version of the

Cintcode interpreter (rasterp). It is used to control the collection of data for

time-memory raster images. If n=3, it returns 0 if rastering is available and -1

otherwise. If n=2, the memory granularity is set to arg bytes per pixel. The

default is 12. If n=1, the number of Cintcode instructions per raster line is set to

arg. The default is 1000.

If n is zero and arg is non-zero then rastering is activated to send its output to

file name (the rastering data file). Raster information is collected for the duration

of the next CLI command. If n and arg are both zero the rastering data file is

closed.

The raster data file is an ASCII file that encodes the raster lines using run

length encoding. Typical output is as follows:

K1000 S12 1000 instructions per raster line, 12 bytes per pixel

W10B3W1345B1N 10 white, 3 black, 1345 white, 1 black, newline

W13B3W12B2N etc

...

See the CLI commands raster and rast2ps on page 93 for more information

on how to use the rastering facility.

res := sys(Sys cputime)

This returns the CPU time in milliseconds since the Cintcode system was

entered.

res := sys(Sys filemodtime, name)

This returns time of last modification of the file given by name.

res := sys(Sys setprefix, prefix)

This is primarily a function for the Windows CE version of the BCPL Cintcode

System for which there is no current working directory machanism. It sets the

prefix that is prepended to all future relative file names. See Sections 6.3.6 and

the CLI prefix command described on page 93.

str := sys(Sys getprefix)

This returns the current prefix string. See sys(Sys setprefix,...) above.



6.3. BLIB 53

res := sys(Sys graphics,...)

This is currently only useful on the Windows CE version of the BCPL Cint-

code system. It performs an operation on the graphics window. The graphics

window is a fixed size array of 8-bit pixels which can be written to and whose

visibility can be switched on and off.

res := sys(Sys chready)

This returns TRUE if a character is ready to be read from the keyboard. This

function is currently only available in the Windows CE implementation.

res := sys(Sys seek, fd, pos)

This sets the current position of the file with descriptor fd to pos.

res := sys(Sys tell, fd)

This returns the current position in the file whose file descriptor is fd.

res := sys(Sys waitirq)

This will suspend the execution of the interpreter until woken up again by a

signal from a device. This call is only used in the IDLE task.

res := sys(Sys devcom, dcb, com, arg)

This will execute the device command com for the device with specified DCB.

If the command needs an argument it may be passed in arg.

res := sys(Sys ftime, tv)

This set the current real time in tv!0 to tv!4. See the source of cintpos.c

for details.

res := sys(Sys usleep, usecs)

This will cause the interpreter to sleep for the specified number of micro-

seconds.

res := sys(Sys filesize, fd)

This returns the size in bytes of the file whose file descriptor is fd. A negative

result indicates an error.

6.3 BLIB

BLIB contains the main part of the standard library. It is implemented in BCPL

and its source code can be found in sys/BLIB.b.
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6.3.1 Initialization

When the Cintcode System is started, a region of store is allocated for the Cint-

code memory. This is where Cintode stacks, global vectors, program code and

system data are placed. It contains a vector called the rootnode that allows run-

ning programs to locate components of the system data structure. The global

variable rootnode holds a pointer to the rootnode and there are manifest con-

stants (define in libhdr) to ease access to its various elements. For instance,

the pointer to the start of the memory block chain can be obtained by evaluat-

ing rootnode!rtn blklist. Ten elements are defined in the rootnode as shown

below.

Position Expression Value

0 rootnode!rtn.tasktab Vector of tasks.

1 rootnode!rtn.devtab Vector of devices.

2 rootnode!rtn.tasktab List of tasks in decreasing priority order.

3 rootnode!rtn.tasktab The current task.

4 rootnode!rtn.blklist The start of the chain of memory blocks.

5 rootnode!rtn.tallyv The tally vector.

6 rootnode!rtn.clkintson Clock interrupts on/off flag.

7 rootnode!rtn.lastch For sadebug polling input.

8 rootnode!rtn.insadebug Looked at by the ttyin device.

9 rootnode!rtn.bptaddr Vector of breakpoint addresses.

10 rootnode!rtn.bptinstr Vector of breakpoint instructions.

11 rootnode!rtn.clwkq The clock work queue.

12 rootnode!rtn.membase Pointer to the start of the Cintcode memory.

13 rootnode!rtn.memsize The size of the Cintcode memory in words.

15 rootnode!rtn.sys The BCPL sys function.

16 rootnode!rtn.boot The BOOT code segment.

17 rootnode!rtn.klib The KLIB code segments.

18 rootnode!rtn.blib The BLIB code segments.

19 rootnode!rtn.keyboard The stream control block for the keyboard.

20 rootnode!rtn.screen The stream control block for the screen.

21 rootnode!rtn.vecstatsv Memory allocation statistics.

22 rootnode!rtn.dumpflag =TRUE to dump memory on fault.

23 rootnode!rtn.envlist List of logical name-value pairs.

24 rootnode!rtn.abortcode Latest reason for leaving the interpreter.
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6.3.2 Space Allocation

Allocation and release of space is performed by getvec and freevec, which use

a first fit algorithm based on a list of blocks chained together in memory order.

Word zero of each block in the chain contains a flag in its least significant bit

indicating whether the block is allocated or free(0=allocated, 1=free). The rest

of the word is an even number giving the size of the block in words. A pointer

to the first block in the chain is held in the rootnode!rtn.membase. The size of

blocks are rounded up to an even number of words and four words of data are

added at the end which are used by freevec can check that the block has not

been misused.

freevec(v)

This returns vector v to free store. It does nothing if v = 0, and for non zero

v it checks the four words at the end of v to see if the vector looks like one that

was allocated by getvec. If it detects an error it outputs a message and calls

abort(999). It currently calls safreevec.

v := getvec(upb)

This allocates a vector with upper bound upb from the first large enough free

block on the block list. If no such block exists it returns zero. In the current

implementation it just calls sagetvec.

6.3.3 Standalone Functions

safreevec(v)

This returns vector v to free store by calling: sys(Sys freevec, v).

v := sagetvec(upb)

This allocates a vector with upper bound upb by calling: sys(Sys getvec,

upb).

ch := sardch()

This function returns the next character from the keyboard as soon as it is

available, echoing the character to the screen. It is implemented by means of

sys(10), described above.

sawrch(ch)

The call sawrch(ch) outputs the character ch to the screen. It is implemented

by means of sys(11,ch), described above.
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sawritef(format,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z)

This function has the same effect as writef described below but uses sawrch

rather than wrch to perform the writing. Output thus goes straight to the

standard output stream independent of which output stream is currently

selected.

seg := saloadseg(name)

This loads the named segment of code, returning the segment if successful or

zero on failure. It calls: It calls sys(Sys loadseg,...).

saunloadseg(seg)

This unloads a previously loaded code segment. It calls

sys(Sys unloadseg,...).

seg := saglobin(seg)

This initialises the globals of a previously loaded code segment. It calls

sys(Sys globin,...).

sadeletefile(name)

This deletes a named file. It directly calls sys(Sys deletefile,...).

sarenamefile(oldname, newname)

This renames a file. It directly calls sys(Sys renamefile,...).

6.3.4 Stream Functions

endread()

The call endread() closes the currently selected input stream. If there is an

error it aborts (with code 190).

endstream(scb)

This call closes stream scb. If there is an error it aborts (with code 190).

endwrite()

This routine closes the currently selected output stream. If there is an error

it aborts with code 189 (trouble with writing) or code 191 (trouble with closing).

scb := findinput(name)

The call findinput(name) opens an input stream. If name is the string "*"

then it opens the standard input stream which is normally from the keyboard,

otherwise name is taken to be a device or file name. If the stream cannot be
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opened the result is zero. See Section 6.3.6 for information about the treatment

of filenames.

scb := findoutput(name)

This function opens an output stream specified by the device or file name

name. If name is the string "*" then it opens the standard output stream which

is normally to the screen. If the stream cannot be opened, the result is zero. See

Section 6.3.6 for information about the treatment of filenames.

scb := input()

This returns the currently selected input stream.

scb := output()

This function returns the SCB of the currently selected output stream.

scb := pathfindinput(name, pathname)

The call pathfindinput(name, pathname) opens an input stream. If name

is the string "*" then input comes from the keyboard, otherwise name is taken

to be a filename. If the stream cannot be opened the file directories specified

by the shell variable pathname are searched. If the file is not found in any of

these directories, the result is zero. The shell variable BCPLPATH is used by the

Command Language Intepreter (see Chapter 8) when searching for commands,

and by the BCPL compiler when processing GET directives.

selectinput(scb)

The call selectinput(scb) selects scb as the currently selected input stream.

It aborts (with code 186) if scb is not an input stream.

selectoutput(scb)

This routine selects scb as the currently selected output stream. It aborts

(with code 187) if scb is not an output stream.

settimeout(scb, timeout)

This set the timeout value for the specified stream (scb) to the specified value

(timeout). A timeout od zero means that there is no time. A positive time-

out specifies the maximum time in milli-seconds that an input/output operation

may take, and a negative timemout puts the stream into polling mode where

input/output operations return immediately either successfully or with an indi-

cation that the required operation could not be performed immediately
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6.3.5 Input and Output Functions

n := readn()

This reads an optionally signed decimal integer from the currently selected

input stream. Leading spaces, tabs and newlines are ignored. If the number is

syntactically correct, readn returns its value with result2 set to zero, otherwise

it returns zero with result2 set to -1. In either case, it uses unrdch to replace

the terminating character.

wrch(ch)

This routine writes the character ch to the currently selected output stream.

If output is to the screen, ch is transmitted immediately. It aborts (with code

189) if there is a write failure.

ch := rdch()

This reads the next character from the currently selected input stream. If

the stream is exhausted, it returns the special value endstreamch(=-1). Input

from the keyboard is buffered until the ENTER (or RETURN) key is pressed to

allow simple line editing in which the backspace and rubout keys may be used

to delete the most recent character typed. For streams that aloow for timeouts

(currently only TCP streams), if the timeout value is zero, rdch waits until a

character is available or the stream is exhausted. If the timeout value is positive,

rdch waits until a character is available or the stream is exhausted, but if the

timeout period is exceeded it returns timeoutch(=-2). If the timeout value is

negative, rdch returns immediately with either the next character if available, or

enstreamch(=-1) if the stream is exhasted, or it returns pollingch(=-3) if no

character is currently available. See settimeout described above.

flag := unrdch()

The call unrdch() attempts to step the current input stream back by one

character position. It returns TRUE if successful, and FALSE otherwise. A call

of unrdch will always succeeds the first time after a call of rdch. It is useful in

functions such as readn (described below) where single character lookahead is

necessary.

newline()

newpage()

These two routines simply output the newline character (’\n’) or the new-

page (form-feed) character (’\p’), respectively, to the currently selected output

stream.
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writed(n, d)

writeu(n, d)

writen(n)

These routines output the integer n in decimal to the currently selected output

stream. For writed and writeu, the output is padded with leading spaces to fill

a field width of d characters. If writen is used or if d is too small, the number is

written without padding. If writeu is used, n is regarded as an unsigned integer.

writehex(n, d)

writeoct(n, d)

writebin(n, d)

These routines output, repectively, the least significant d hexadecimal, octal

or binary digits of the integer n to the currently selected output stream.

writes(str)

writet(str, d)

These routines output the string str to the currently selected output stream.

If writet is used, trailing spaces are added to fill a field width of d characters.

In either case if str does not look like a string it is replaced by ##Bad string##

rather than causing a memory fault.

writef(format,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z)

The first argument (format) is a string that is copied character by character

to the currently selected output stream until a substitution item such as %s or

%i5 is encountered when a value (usually the next argument) is output in the

specified format. The substitution items are given in table 6.1. If format does

not look like a string it is replaced by "##Bad format##" rather than causing a

memory fault.

When a field width (denoted by n in the table) is required, it is specified by

a single character, with 0 to 9 being represented by the corresponding digit and

10 to 35 represented by the letters A to Z or a to z. Format and field width

characters are case insensitive.

As an illustrations of the use of the %p substitution item, the following code:

FOR i = 0 TO 2 DO writef("There %p\is\are\%- %n item%-%ps*n", i)

will write:

There are 0 items
There is 1 item
There are 2 items



60 CHAPTER 6. THE RESIDENT LIBRARY

Item Substitution

%s Write the next argument as a string using writes.

%tn Write the next argument as a left justified string in a

field width of n characters using writet.

%c Write the next argument as a character using wrch.

%bn Write the next argument as a binary number in a field

width of n characters using writebin.

%on Write the next argument as an octal number in a field

width of n characters using writeoct.

%xn Write the next argument as a hexadecimal number in a

field width of n characters using writehex.

%in Write the next argument as a decimal number in a field

width of n characters using writed.

%n Write the next argument as a decimal number in its

natural field width using writen.

%un Write the next argument as an unsigned decimal number

in a field width of n characters using writeu.

%+ Step forward over the next argument value.

%- Step backward over the previous argument value.

%p\s\p\ If the next argument has value is 1 write the text s

otherwise write p. In either case the argument pointer

is advanced by one position.

%pc Unless the next argument value is 1 write the character

c which is normally an ’s’, and advance the argument

pointer one position. The character c may not be a

backslash.

%f Treat the next argument value as a format string, ad-

vancing the next argument pointer appropriately.

%m Find the message format corresponding to the next ar-

gument value, and use it in a way similar to %f above.

%% Write the character %.

Figure 6.1: writef substitution items

The %m substitution item is provided to simplify the generation of messages

in different languages. Each message has a message number which is converted

into a format string by the function get.text which is normally overridden by

a definition in the application program. The default definition of get.text in



6.3. BLIB 61

sysb/BLIB.b always yields the string: "<mess:%-%n>".

The implementation of writef (in sysb/BLIB.b) is a good example of how a

variadic function can be defined.

6.3.6 The Filing System

BCPL uses the filing system of the host machine and so such details as the

maximum length of filenames or what characters they may contain are machine

dependent. However, within a file name the characters slash (/) and backslash (\)

are regarded as a file separators and are converted into the appropriate separator

for the operating system being used. For Unix systems this is a slash, for MS-

DOS, WINDOWS and OS/2 it is a backslash, and on the Apple Macintosh it

is a colon. Thus, under MS-DOS, findoutput can be given a file name such as

"tmp/RASTER" and it will be treated as if the name "tmp\RASTER" had been given.

This somewhat ad hoc feature greatly improves portability between systems.

A file name prefix feature is available primarily for systems such as Windows

CE where there is no concept of a current working directory. The system main-

tains a prefix that is prepended to any non absolute file name before it is passed

to the operating system. A file name is absolute if it starts with a slash or back-

slash or, on Windows systems, if it starts with a letter followed by a colon. A

separator is placed between the prefix and the given file name.

The current prefix can be inspected and changed using the calls:

sys(32,prefix) and sys(33), or the CLI command prefix described on page 93.

6.3.7 File Deletion and Renaming

flag := deletefile(name)

flag := renamefile(oldname, newname)

The call deletefile(name) deletes the file with the given name. It re-

turns TRUE if the deletion was successful, and FALSE otherwise. The call

renamefile(oldname, newname) renames the file oldname as file newname,

deleting newname if necessary. Both oldname and newname are strings. The

function returns TRUE if the renaming was successful, and FALSE otherwise.

6.3.8 Non Local Jumps

P := level()

longjump(P, L)
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The call level() returns the current stack frame pointer for use in a later

call of longjump. The call longjump(P, L) causes execution to resume at label

L in the body of a procedure that owns the stack frame given by P . Jumps to

labels within the current procedure can be performed using the GOTO command,

so level and longjump are only needed for non local jumps.

6.3.9 Command Arguments

This implementation of BCPL incorporates a command language interpreter

which is described in Chapter 8. Most commands require argument and these are

most easily read using the functions: rditem, rdargs, findarg and str2numb.

kind := rditem(v, upb)

The function rditem reads a command argument from the currently selected

input stream. After ignoring leading spaces and tab characters, it packs the item

into the vector v whose upper bound is upb and returns an integer describing

the kind of item read. Table 6.2 gives the kinds of item that can be read and

corresponding item codes.

Example items Kind of item Item code

; 4

carriage return 3

"from"

"\ntwo words\n" Quoted string 2

abc

123-45*6 Unquoted string 1

end-of-stream Terminator 0

An error -1

Figure 6.2: rditem results

It is possible to include newline characters within quoted strings using the

escape sequence *n.

res := rdargs(keys, argv, upb)

The first argument (keys) is a string specifying a list of argument keywords

with possible qualifiers. The second and third arguments provide a vector (argv)

with a given upper bound (upb) in which the decoded arguments are to be placed.



6.3. BLIB 63

If rdargs is successful, it returns the number of words used in argv to represent

the decoded command arguments, and, on failure, it returns zero.

Command arguments are read from the currently selected input stream using

a decoding mechanism that permits both positional and keyed arguments to be

freely mixed. A typical use of rdargs occurs in the source of the input command

as follows:

UNLESS rdargs("FROM/A,TO/K,N/S", argv, 50) DO
{ writef "Bad arguments for INPUT\n"
...

}

In this example, there are three possible arguments and their values will be

placed in the first three elements of argv. The first argument has keyword FROM

and must receive a value because of the qualifier /A. The second has keyword TO

and its qualifier /K insists that, if the argument is given, it must be introduced

by its keyword. The third argument has the qualifier /S indicating that it is a

switch that can be turned on by the presence of its keyword. If an argument is

supplied, the corresponding element of argv will be set to -1, if it is a switch

argument, otherwise it will be set to a string containing the characters of the

argument value. The elements of argv corresponding to unset arguments are

cleared. Table 6.3 shows the values in placed in argv and the result when the

call:

rdargs("FROM/A,TO=AS/K,N/S", argv, 50)

is given various argument strings. This example illustrates that keyword syn-

onyms can be defined using = within the key string. Positional arguments are

those not introduced by keywords. When one is encountered, it becomes the

value of the lowest numbered unset non-switch argument.

Arguments argv!0 argv!1 argv!2 Result

abc TO xyz "abc" "xyz" 0 >0

to xyz from abc "abc" "xyz" 0 >0

as xyz abc n "abc" "xyz" -1 >0

abc xyz - - - =0

"from" to "to" "from" "to" 0 >0

Figure 6.3: rdargs("FROM/A,TO=AS/K,N/S", argv, 50)

n := findarg(keys, item)

The function findarg was primarily designed for use by rdargs but since it
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is sometimes useful on its own, it is publicly available. Its first argument, keys, is

a string of keys of the form used by rdargs and item is a string. If the result is

positive, it is the argument number of the keyword that matches item, otherwise

the result is -1.

n := str2numb(str)

This function converts the string str into an integer. Characters other than 0

to 9 and - are ignored.

n := randno(upb)

This function returns a random integer in the range 1 to upb. Its implemen-

tation is as follows:

STATIC { seed=12345 }

LET randno(upb) = VALOF
{ seed := seed*2147001325 + 715136305

RETURN ABS(seed/3) REM upb + 1
}

oldseed := setseed(newseed)

The current seed can be set to newseed by the call setseed(newseed). This

function returns the previous seed value.

obj := mkobj(upb, fns, a, b, c, d, e, f, g, h, i, j, k)

This function creates and initialises an object. Its definition is as follows:

LET mkobj(upb, fns, a, b, c, d, e, f, g, h, i, j, k) = VALOF
{ LET obj = getvec(upb)

UNLESS obj=0 DO
{ !obj := fns

InitObj#(obj, @a) // Send the init message to the object
}
RETURN obj

}

As can be seen, it allocates a vector for the fields of the object, initialises its

zeroth element to point to the methods vector and calls the initialisation method

that is expected to be in element InitObj of fns. The result is a pointer to the

initialised fields vector. If it fails, it returns zero. As can be seen the initialisation

method receives a vector with up to 11 arguments.
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6.3.10 Program Loading and Control

In this implementation, the BCPL compiler generates a file of hexadecimal num-

bers for the compiled code. For instance the compiled form of the logout com-

mand:

SECTION "logout"
GET "libhdr"
LET start() BE abort(0)

is

000003E8 0000000C
0000000C 0000FDDF 474F4C07 2054554F 0000DFDF
61747307 20207472 7B1F2310 00000000 00000001
0000001C 0000001F

The first two words indicate the presence of a “hunk” of code of size

12(000000C) words which then follow. The first word of the hunk (000000C),

is again the length. The next two words (0000FDDF and 474F4C07) contain the

SECTION name "logout". These are followed by the two words 0000DFDF and

61747307 which identify the procedure name "start". The body of start is

compiled into one word (7BF1F2310) which correspond to the Cintcode instruc-

tion:

L0 Load A with 0

K3G 31 Call the function in global 31, incrementing the stack by 3

RTN

The remaining 4 words contains global initialisation data indicating that global 1

is to be set to the entry point at position 28 (0000001C) relative to the start of

the hunk, and that the highest referenced global number is 31 (0000001F).

code := start(a1, a2, a3, a4)

This function is, by convention, the main procedure of a program. If it is called

from the command language interpreter (see section 8), its first argument is zero

and its result should be the command completion code; however, if it is the main

procedure of a module run by callseg, defined below, then it can take up to 4

arguments and its result is up to the user. By convention, a command completion

code of zero indicates successful completion and larger numbers indicate errors

of ever greater severity

clihook()

This procedure is defined in BLIB and simply calls start. Its purpose is to
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assist debugging by providing a place to set a breakpoint in the command lan-

guage interpreter (CLI) just before a command in entered. It is also permissible

for the user to override the standard definition of clihook with a private version.

stop(code)

This function is provided to stop the execution of the current command run-

ning under control of the CLI. Its argument code is the command completion

code.

count:= instrcount(fn,a,b,c,d,e,f,g,h,i,j,k)

This procedure returns the number of Cintcode instruction executed when

evaluating the call: fn(a,b,c,d,e,f,g,h,i,j,k).

Counting starts from the first instruction of the body of fn and ends when

its final RTN instruction is executed. Thus when f was defined by LET f(x) =

2*x+1, the call instrcount(f, 10) returns 4 since its body executes the four

instructions: L2; MUL; A1; RTN.

abort(code)

This procedure causes an exit from the current activation of the interpreter,

returning code as the fault code. If code is zero execution leaves the Cintcode

system altogether, if code is -1 execution resumes using the faster version of the

interpreter (cintasm). If code is positive, under normal conditions, the interactive

debugger is entered.

flag := intflag()

This function provides a machine dependent test to determine whether the

user is asking to interrupt the normal execution of a program. On the Apple

Macintosh, flag will be set to TRUE only if the COMMAND, OPTION and

SHIFT keys are simultaneously pressed.

segl := loadseg(name)

This function loads the compiled program into memory from the specified file

name. It returns the list of loaded program modules if loading was successful and

zero otherwise. It does not initialise the global variables defined in the program.

res := globin(segl)

This function initialises the global variables defined in the list of program

modules given by its argument segl. It returns zero if the global vector was too

small, otherwise it returns segl.

unloadseg(segl)

This routine unloads the list of loaded program modules given by segl.
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res := callseg(name,a1,a2,a3,a4)

This function loads the compiled program from the file name, initialises its

global variables and calls start with the four arguments a1,...,a4. It returns

the result of this call, after unloading the program.

6.3.11 Character Handling

ch := capitalch(ch)

This function converts lowercase letters to uppercase, leaving other characters

unchanged.

res := compch(ch1, ch2)

This function compares two characters ignoring case. It yields -1 (+1) if ch1

is earlier (later) in the collating sequence than ch2, and 0 if they are equal.

res := compstring(s1, s2)

This function compares two strings ignoring case. It yields -1 (+1) if s1 is

earlier (later) in the collating sequence than s2, and 0 if they the strings are

equal.

6.3.12 Coroutines

BCPL uses a stack to hold function arguments, local variables and anonymous

results, and it uses the global vector and static variables to hold non-local quanti-

ties. It is sometimes convenient to have separate runtime stacks so that different

parts of the program can run in pseudo parallelism. The coroutine mechanism

provides this facility.

In this implementation, they have distinct stacks but share the same global

vector, and it is natural to represent a coroutine by a pointer to its stack. At

the base of each stack there are six words of system information as shown in

figure 6.4.

The resumption point is the P-pointer belonging to the procedure that caused

the suspension of the coroutine. It becomes the value of the P-pointer when the

coroutine next resumes execution. The parent link points to the coroutine that

called this one, or is zero if the coroutine not active. The outermost coroutine

(or root coroutine) is marked by the special value -1 in its parent link. As a

debugging aid, all coroutines are chained together in a list held in the global
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sz c P1 L1fn

suspended
stack frame

resumption point

coroutine chain

parent link
cptr

Figure 6.4: A coroutine stack
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resumption point

resumption point

cptr

Figure 6.5: The effect of changeco(a, cptr)

colist. The values fn and sz hold the main function of the coroutine and its

stack size, and c is a private variable used by the coroutine mechanism.

At any time just one coroutine (the current coroutine) has control, and all

the others are said to be suspended. The current coroutine is held in the global

variable currco, and the P pointer points to a stack frame within its stack.

Passing control from one coroutine to another involves saving the resumption

point in the current coroutine, and setting new values for the program counter

(PC), the P pointer and currco. This is done by changeco(a,cptr) as shown

in figure 6.5. The function changeco is defined by hand in SYSLIB and its body

consists of the single instruction CHGCO and as can be seen its effect is somewhat

subtle. The only uses of changeco are in the definitions of createco, callco,

cowait and resumeco, and its effect, in each case, is explained below. The only

functions that can cause coroutine suspension are callco, cowait and resumeco.

res := callco(cptr, arg)

This call suspends the current coroutine and transfers control to the coroutine

pointed to by cptr. It does this by resuming execution of the function that caused

its suspension, which then immediately returns yielding arg as result. When
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callco(cptr,arg) next receives control it yields the result it is given.

res := cowait(arg)

This call suspends the current coroutine and returns control to its parent by

resuming execution of the function that caused its suspension, yielding arg as

result. When cowait(arg) next receives control it yields the result it is given.

res := resumeco(cptr, arg)

The effect of resumeco is almost identical to that of callco, differing only in

the treatment of the parent. With resumeco the parent of the calling coroutine

becomes the parent of the called coroutine, leaving the calling coroutine sus-

pended and without a parent. Systematic use of resumeco reduces the number

of coroutines having parents and hence allows greater freedom in organising the

flow of control between coroutines.

cptr := createco(fn, size)

This function creates a new coroutine leaving it suspended in the call of

cowait in the following loop.

c := fn(cowait(c)) REPEAT

When control is next transfered to the new coroutine, the value passed be-

comes the result of cowait and hence the argument of fn. If fn(..) returns

normally, its result is assigned to c which is returned to the parent coroutine by

the repeated call of cowait. Thus, if fn is simple, a call of the coroutine will

convert the value passed, val say, into fn(val). However, in general, fn may

contain calls of callco, cowait or resumeco, and so the situation is not always

quite so simple.

In detail, the implementation of createco uses getvec to allocate a vector

with upper bound size+6 and initialises its first seven locations ready for the

call of changeco(0,c) that follows. The state just after this call is shown in

figure 6.6. Notice that cowait(c) is about to be executed in the environment of

the new coroutine, and that this call will cause a return from createco in the

original coroutine, passing back a pointer to the new coroutine as a result.

deleteco(cptr)

This call takes a coroutine pointer as argument and, after checking that the

corresponding coroutine has no parent, deletes it by returning its stack to free

store.

cptr := initco(fn, size, a,...)

This function is defined in BLIB to provide a convenient method of creating
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P2 L2 fn sz c P1 L1 0 c

K9G 24     cowait(c)
LP3

J -7     } REPEAT

K6         fn( ... )

LP5      {PC

P
The new coroutine

coroutine chain
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stack frame
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stack frame
changeco

colist

currco

SP5        c := ...

Figure 6.6: The state just after changeco(0,c) in createco

and intialising coroutines. It definition is as follows:

LET initco(fn, size, a, b, c, d, e, f, g, h, i, j, k) = VALOF
{ LET cptr = createco(fn, size)

UNLESS cptr=0 DO callco(cptr, @a)
RESULTIS cptr

}

A coroutine with main function fn and given size is created and, if successful,

it is initialised by callco(cptr, @a). Thus, fn should expect a vector containing

up to 11 values. Once the coroutine has initialised itself, it should return control

to initco by means of a call of cowait. Examples of the use of initco can be

found in the example that follows.

6.3.13 Hamming’s Problem

A following problem permits a neat solution involving coroutines.

Generate the sequence 1,2,3,4,5,6,8,9,10,12,... of all

numbers divisible by no primes other than 2, 3, or 5”.

This problem is attributed to R.W.Hamming. The solution given here shows how

data can flow round a network of coroutines. It is illustrated in figure 6.7 in which

each box represents a coroutine and the edges represent callco/cowait connec-

tions. The end of a connection corresponding to callco is marked by c, and end
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corresponding to cowait is marked by w. The arrows on the connections show

the direction in which data moves. Notice that, in tee1, callco is sometimes

used for input and sometimes for output.

MAIN

BUF1 TEE1

X2 X3 X5

MER1 MER2

BUF2 TEE2 BUF3
w w w w w

w

w

w

ww

w

w c c c c

w
c

cc
c c

cc

c c

Figure 6.7: Coroutine data flow

The coroutine buf1 controls a queue of integers. Non-zero values can be

inserted into the queue using callco(buf1,val), and values can be extracted

using callco(buf1,0). The coroutines buf2 and buf3 are similar. The coroutine

tee1 is connected to buf1 and buf2 and is designed so that callco(tee1) will

yield a value extracted from buf1, after sending a copy of it to buf2. tee2

similarly takes values from buf2 passing them to buf3 and x3. Values passing

through x2, x3 and x5 are multiplied by 2, 3 and 5, repectively. mer1 merges

two monotonically increasing streams of numbers produced by x2 and x3. The

resulting stream is then merged by mer2 with the stream produced by x5. The

stream produced by mer2 is the required Hamming sequence, each value of which

is printed by main and then inserted into buf1.

The BCPL code for this solution is as follows:

GET "libhdr"

LET buf(args) BE // Body of BUF1, BUF2 and BUF3
{ LET p, q, val = 0, 0, 0
LET v = VEC 200

{ val := cowait(val)
TEST val=0 THEN { IF p=q DO writef("Buffer empty*n")

val := v!(q REM 201)
q := q+1

}
ELSE { IF p=q+201 DO writef("Buffer full*n")

v!(p REM 201) := val
p := p+1

}
} REPEAT

}
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LET tee(args) BE // Body of TEE1 and TEE2
{ LET in, out = args!0, args!1

cowait() // End of initialisation.

{ LET val = callco(in, 0)
callco(out, val)
cowait(val)

} REPEAT
}

AND mul(args) BE // Body of X2, X3 and X5
{ LET k, in = args!0, args!1

cowait() // End of initialisation.

cowait(k * callco(in, 0)) REPEAT
}

LET merge(args) BE // Body of MER1 and MER2
{ LET inx, iny = args!0, args!1

LET x, y, min = 0, 0, 0
cowait() // End of initialisation

{ IF x=min DO x := callco(inx, 0)
IF y=min DO y := callco(iny, 0)
min := x<y -> x, y
cowait(min)

} REPEAT
}

LET start() = VALOF
{ LET BUF1 = initco(buf, 500)

LET BUF2 = initco(buf, 500)
LET BUF3 = initco(buf, 500)
LET TEE1 = initco(tee, 100, BUF1, BUF2)
LET TEE2 = initco(tee, 100, BUF2, BUF3)
LET X2 = initco(mul, 100, 2, TEE1)
LET X3 = initco(mul, 100, 3, TEE2)
LET X5 = initco(mul, 100, 5, BUF3)
LET MER1 = initco(merge, 100, X2, X3)
LET MER2 = initco(merge, 100, MER1, X5)

LET val = 1
FOR i = 1 TO 100 DO { writef(" %i6", val)

IF i REM 10 = 0 DO newline()
callco(BUF1, val)
val := callco(MER2)

}

deleteco(BUF1); deleteco(BUF2); deleteco(BUF3)
deleteco(TEE1); deleteco(TEE2)
deleteco(X2); deleteco(X3); deleteco(X5)
deleteco(MER1); deleteco(MER2)
RESULTIS 0

}
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6.3.14 Scaled Arithmetic

The library function muldiv makes full precision scaled arithmetic convenient.

res := muldiv(a, b, c)

The result is the value obtained by dividing c into the double length product

of a and b. The remainder of this division is left in the global variable result2.

The result is undefined if it is too large to fit into a single length word or if c is

zero. In this implementation, the result is also undefined if any of a, b or c is the

largest negative integer. As an example, the function defined below calculates

the cosine of the angle between two unit vectors in three dimensions using scaled

integers to represent numbers with 6 digits after the decimal point.

MANIFEST { Unit=1000000 } // Scaling factor for numbers of the
// form ddd.dddddd

FUN inprod(v, w) = muldiv(v!0, w!0, Unit) +
muldiv(v!1, w!1, Unit) +
muldiv(v!2, w!2, Unit)

On some processors, such as the Pentium, muldiv can be encoded very effi-

ciently in assembly language.
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Chapter 7

Streams

As has been seen in the previous chapter, streams provide a convenient method of

obtaining device independent input and output. Information needed to process

a stream is held in its stream control block (SCB) whose fields are given in the

following table.

Field Purpose

scb.id Specifies the direction: in, out or inout

scb.type Type of stream: terminal, file, mailbox, etc

scb.task The task, if any, to handle this stream

scb.buf The buffer for this stream

scb.pos Position in buf of next character to transfer

scb.end Position of end of valid data in buf

scb.rdfn Function to refill the buffer

scb.wrfn Function to write out the buffer

scb.endfn Function to close a stream

scb.block The block number in a disc file

scb.write True when data in buf need to be written out

scb.bufend The size of buf in bytes

scb.lblock The number of the last block of a disc file

scb.ldata The number of data bytes in the last block of a disc file

scb.blength The size in bytes of a disc block

scb.reclen The number of bytes in a record (for some files)

scb.fd The file descriptor for this stream

Throughout this section id, type, task, buf, pos and so on will be used

represent to the values of the corresponding SCB fields.

The field id has value id.inscb,id.outscb or id.inoutscb specifying re-

spectively whether the stream is for input, output or both.

75
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The type field holds the type of the stream. The possible values are given in

the following table.

Type Purpose

scbt.file A disc file

scbt.ram A stream entirely held in RAM

scbt.console A stream controlled by the console handler

scbt.mbx A mailbox stream

scbt.tcp A stream using TCP/IP

Console and TCP streams have negative types for which output to the device

is triggered by the newline character ’*n’ and certain other control characters

(’*p’, ’*c’, ’*e’). The use of ’*e’ to flush output is deprecated and will, in

due course, be replaced by calls of flushstream(scb).

The task field is either zero or specifies the task that controls the device asso-

ciated with the stream. Currently there are four resident stream tasks: COHAND

for the keyboard and screen, FH0 for the main disc filing system, MBXHAND for

mailbox streams, and TCPHAND for TCP/IP streams.

The field buf is either zero or points to a buffer of length buflen bytes. The

buffer is often, but not always, allocated by getvec when the stream was opened,

and is freed in a stream dependent way when closing the stream by calling the

stream function in endfn.

The fields rdfn, wrfn and endfn contain either zero or stream dependent

functions to put data into the buffer, extract data from the buffer, or close down

the stream, respectively. These functions are set up at the time the stream is

opened. They each take the stream control block as argument and return TRUE

if the operation was successful. On error, the result is FALSE and an error code

is placed in result2. For input streams, a false result with result2=0 indicates

that end of file has been reached. These functions typically update several SCB

fields, typically including pos and end.

The bytes in a stream buffer between buf%0 ... buf%(end-1) represent

valid data that has either been recently read in from a device, or is being prepared

for output to a device. If 0<=pos<end then buf%pos refers to the location of the

next byte to be read (by rdch) or written (by wrch). If pos>=end, then either

end must be advanced, or more data must be read from or written to the device.

Input streams can be stepped back using unrdch provided pos is not zero.

For output streams, data is normally appended to the end of the file and

both pos and end advanced together. These pointers cannot become larger than

buflen, the size of the buffer. When the buffer becomes full, data is extracted
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from it and the pointers reset. If the file position is changed (using point) then

output may be placed in the middle of the file and only pos is advanced.

For disc files, if the buffer currently holds data from the last block of a file

then block=lblock and end points just beyond the last byte of the file. The

number of bytes in the last disc block of a file is held in ldata. As a file is being

extended end is typically larger than ldata and only synchronised when the last

block is written to disc. Normally ldata needs correcting when the last block of

a file is written to disc.

For input operations, if pos>=end the stream is either exhausted or more data

must be read into the buffer. For any stream, the condition end=-1 indicates

that no more data can be transferred to or from the stream. Reading from such

a stream will yield endstreamch.

The functions note and point can be used with any stream but only have any

effect on streams connected to disc files. The call note(scb, posv) will place

block and pos in the first two elements of posv. The call point(scb, posv)

will set block and pos for stream scb from the first two elements of posv. This

sometimes causes the current block to be written and the buffer reloaded with

the contents of another disc block. Clearly, subsequent read or write operations

will use (and change) the newly specified position.

Some disc files are treated as a sequence of fixed length records. For such files

the record length is held in reclen which can be set by a call of setrecordlength.

The functions recordnote and recordpoint can be used to control the position

in a record file.

The following SCB fields are (probably) obsolete and will be removed.

Field Purpose

scb.devtype Used only in termroot.bpl

scb.fab File access block (not used)

scb.rab Record access block (not used)

scb.name Name of stream

7.1 Implementation of rdch and unrdch

Characters are read using rdch whose definition is as follows:
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LET rdch() = VALOF
{ LET pos = cis!scb.pos

IF pos < cis!scb.end DO { LET ch = cis!scb.buf%pos
cis!scb.pos := pos+1
RESULTIS ch

}
UNLESS replenish(cis) RESULTIS endstreamch

} REPEAT

If a byte is available in the buffer, it is returned after incrementing pos,

otherwise an attempt is made to replenish the buffer by calling replenish(cis).

If this fails endstreamch is returned, otherwise rdch is re-entered and this time

it will be successful.

After a call of rdch that it did not yield endstreamch, pos>1 and the stream

will be capable able to be backed up by at least one position using unrdch whose

definition is as follows.

AND unrdch() = VALOF
{ LET pos = cis!scb.pos

IF pos<=0 RESULTIS FALSE
cis!scb.pos := pos-1
RESULTIS TRUE

}

This function in used in functions like readn when a character must be put back

into the input stream. A call of unrdch returns TRUE if the backup was successful

and FALSE otherwise. Repeated calls of unrdch can backup the stream to the

start the current buffer, but this is not often useful.

The function replenish is only called from rdch when pos>=end. Its defini-

tion is as follows:

AND replenish(scb) = VALOF
{ LET rdfn = scb!scb.rdfn

result2 := 0
IF rdfn & rdfn(scb) RESULTIS TRUE
scb!scb.pos, scb!scb.end := 0, 0
RESULTIS FALSE

}

It attempts to replenish the buffer by calling the function held in rdfn, but if

rdfn=0 the stream is taken to be exhausted. The result is TRUE if the buffer was

successfully replenished with at least one new byte. It otherwise returns FALSE

and a error code in result2. The condition result2=0 indicates that the stream

was exhausted. A non zero value indicate an error.
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7.2 Implementation of wrch

Bytes can be written to the currently selected output stream by calling wrch

whose definition is as follows.

AND wrch(ch) = VALOF
{ LET pos = cos!scb.pos

IF pos >= scb!scb.bufend DO
{ UNLESS deplete(scb} RESULTIS FALSE

pos := cos!scb.pos
}

cos!scb.buf%pos := ch
pos := pos+1
cos!scb.pos := pos
IF cos!scb.end < pos DO cos!scb.end := pos
cos!scb.write := TRUE

UNLESS cos!scb.type<0 & ch<’*s’ RESULTIS TRUE

IF ch=’*n’ | ch=’*e’ | ch=’*p’ | ch=’*c’ RESULTIS deplete(cos)
RESULTIS TRUE

}

If pos>=bufend the buffer must be depleted before the write operation can

be done. If this is successful there will be room in the buffer for at least on

byte. The byte can now be placed in the buffer and pos advanced. It is often

necessary to advance end as well. The write flag is then set to indicate that new

data is present. For interactive streams certain control characters, typically ’*n’,

trigger depletion of the completed line. The result is TRUE if wrch is successful,

and FALSE otherwise.

The function deplete is only called from wrch and closestream. It causes

the data between buf%0 and buf%(end-1) to be written out. The definition of

deplete is as follows.

AND deplete(scb) = VALOF
{ LET wrfn = scb!scb.wrfn
IF wrfn & wrfn(scb) RESULTIS TRUE
scb!scb.pos, scb!scb.end, scb!scb.write := 0, 0, FALSE
RESULTIS FALSE

}

If the write function wrfn exists and its call is successful, deplete returns

TRUE. Otherwise, the buffered data is thrown away and the buffer pointers reset.
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7.3 Console streams

A console stream has type scbt.console and is typically connected to a keyboard

or a screen. Communication is controlled by the console handler task COHAND.

Console streams are interactive causing data transmission to be triggered by ’*n’

and certain control characters. Data is can only be read from a console input

stream when a complete line is available.

At any time COHAND is connected to a particular client task called the client.

As it builds a line for the client, COHAND performs simple line editing and other

control operations as shown in the following table.

Control sequence Meaning

backspace or rubout Remove latest character from current line

ctrl-a Cause the client task to enter hold state

ctrl-b Set flag bit 0 in the client task

ctrl-c Exit from the Cintpos system

ctrl-d Set flag bit 3 in the client task

ctrl-e Set flag bit 4 in the client task

@f Throw away all lines pending for the client task

@l Throw away the line currently being built

@q Insert an end of file mark

@z Disable echoing of the current line

@ooo Insert character with octal code 000

@xhh Insert character with hex code hh

@sdd Make task dd the current client

@tdd Make task dd the current client and disable

output from other tasks

The maximum line length for console input is 128 characters, and output lines

have a limit of 1024. When a console stream is created, it has no buffer and the

fields pos, end, buf and buflen are all set to zero. Stream buffers are allocated

and deallocated on demand on a line by line basis. For console input streams,

successive calls of unrdch can ’unread’ to the start of the current line.

7.4 File streams

A file stream has type scbt.file and is controlled by the file handler task FH0.

When such a stream is opened the fields blength and buflen are set to the block

size which is typically 4096 bytes, and a buffer of this size allocated. For input

and inout streams the first disc block of the file is then read into the buffer, and
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block and pos set to 1 and 0, respectively. The fields lblock and ldata are

also set to reflect the size of the file. For output streams, the file size is initially

zero and so block=lblock=1 and pos=end=ldata=0. For any file stream, write

is initially FALSE, and only changes when new data is placed into the buffer.

All low level file operations are performed within FH0. These include openning

and closing files, setting the read/write position of a file, and reading and writing

data between a disc block and the buffer. Reading a disc block is performed by the

call: fh0getbuf(scb) and writing by the call: fh0putbuf(scb). They both use

block to calculate where to position the file before the read or write operation.

The low level file positioning in fh0getbuf and fh0putbuf is performed by the

following code.

UNLESS sys(Sys_seek, scb!scb.fd, offset) RESULTIS FALSE

Both fh0getbuf and fh0putbuf return FALSE if there is a position failure. If

fh0putbuf is writing to the last block of a file, ldata is updated appropriately.

The user can discover and set the position in a file stream using the calls

note(scb, posv) and point(scb, posv) where scb is the pointer to the stream

control block and posv is a two element vector representing the position within

the stream. When note is called it sends a packet to FH0 containing scb and

posv. This, in turn, calls fh0note which simply copies the current values of

block and pos into the first two elements of posv. Its definition is as follows.

AND fh0note(scb, posv) = VALOF
{ posv!0 := scb!scb.block
posv!1 := scb!scb.pos
RESULTIS TRUE

}

Setting the stream position is more complicated since it may involve writing

the buffer out to the current disc block and reading data from another block.
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Again, point sends a packet to FH0 which in turn calls fh0point to do the work.

AND fh0point(scb, posv) = VALOF
{ LET blkno = posv!0

LET pos = posv!1
LET id = scb!scb.id
LET block = scb!scb.block
LET lblock = scb!scb.lblock
LET end = scb!scb.end

// Check the stream is suitable
UNLESS scb!scb.type=scbt.file &

(id=id.inscb | id=id.inoutscb) RESULTIS FALSE

IF pos=0 & blkno=lblock+1 DO blkno, pos := lblock, buflen

IF blkno<=0 | // Perform safety check
blkno>lblock |
blkno=lblock & pos > (block=lblock->end, scb!scb.ldata) DO abort(5001)

IF blkno=block DO { scb!scb.pos := pos; RESULTIS TRUE }

// The move is to a different block,
// so check whether this block must be written
IF scb!scb.write UNLESS fh0putbuf(scb) DO abort(5001)

scb!scb.block := blkno
UNLESS fh0getbuf(scb) DO abort(5001)

// Safety check
UNLESS end=buflen |

blkno=lblock & end=scb!scb.ldata DO abort(5001)

scb!scb.pos := pos
RESULTIS TRUE

}

In this implementation, it is only permissable to set the stream pointer in disc

file streams that allow read operations. The stream pointer is also restricted to

be between the start and end of the file. If the new position is within the current

block the it is only necessary to change the pos field in the SCB. If the position

is to a different block it may be necessary to write the current block to disc befor

reading the new block in. Note that fh0point cautiously performs several safety

checks.

7.5 Mailbox streams

Mailbox streams are based loosely on similar streams available the VAX VMS

system. A mailbox is a globally named FIFO queue of variable length records

that typically consist of text terminated by newlines. Cintpos tasks can write and
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read such records to a mailbox on a first come first served basis. In the current

implementation records cannot exceed 1024 bytes in length and the maximum

size of a mailbox FIFO buffer is 4096 bytes. Writing a record to a mailbox is

blocked if there is insufficient room in the buffer for it, and reading is blocked if

the mailbox is empty.

Mailboxes have names starting with "MBX:", for example: "MBX:box1". The

functions findoutput and findinput are used to connect streams to mailboxes.

On the first such call an new empty mailbox will be created. If the named

mailbox already exists, it will be attached to the newly created stream. A count

is maintained of how many open streams are connected to a mailbox. If the count

reaches zero and the mailbox is empty, it is deleted.

The mailbox mechanism is implemented using a handler task called MBXHAND.

This has an interface with the stream system very similar to that used by COHAND

and FH0. MBXHAND maintains a simple linked list of existing mailbox. Each

mailbox has a control block in the list with the following fields.

Field Purpose

mbx.link Zero or a pointer to the next mailbox

mbx.rp Position of the next record to read

mbx.wp Position of the next record to write

mbx.refcount Count of the number of streams referring to this mailbox

mbx.rdq List of blocked read request packets

mbx.wrq List of blocked write request packets

mbx.namebase Base of space to hold the mailbox name

mbx.bufbase Base of the 4096 byte FIFO buffer

The FIFO is implemented as a circular buffer using rp and wp as the pointers

to the next bytes to read or write. The FIFO is empty when rp=wp, and full

when rp+4095 equals wr modulo 4096. The buffer always contains a queue of

complete records.

If MBXHAND receives a write request packet whose record is too large to cur-

rently fit into the FIFO then the packet is placed at the end of wrq. Also, any

write packet received when wrq is non empty is blocked and appended to the list,

even though there may be room for it record in the FIFO. This preserves the

necessary ordering of the records. When a read request extracts a record from

the FIFO, the first packet on wrq is inspected to see if its record will now fit.

Note that one read of a large record may causes several writes to complete.

Similarly, blocked read request packets are held in rdq in the order in which

they were received. They are released as write requests are received.
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The current implementation limits the total length of a mailbox name to less

than 31 characters.

7.6 TCP streams

TCP streams may be opened using findinput and findoutput using stream

names starting with TCP: or NET:. Such names contain host and port names

separated by a colon. Some examples are as follows:

TCP:spice:echo
TCP:127.0.0.1:9050
TCP::9000
NET:shep.cl.cam.ac.uk:9200

As can be seen, both hosts and ports may be specified by name or numerically.

If the port is omitted, port 9000 is used by default. If the host is specified,

both findinput and findoutput will try to establish as TCP connection with

the given port on the specified machine. The stream will not be opened if the

connection is refused. If the host is omitted, the the stream will be opened but

not be able to transfer data until a connection via the specified local port is

established by another machine. Read and write requests will be blocked until

this happens.

TCPHAND maintains a list of connection identified by the IP address and port

number. If stream is opened with an IP address and port number that already

exists in the list, then its SCB will reference the existing connecting. Multiple

input and output streams may thus use the same connection. Sequences of read

and write requests using different streams but the same connection will be pro-

cessed in the order in which they are received by TCPHAND. A connection is made

when the first stream refering to it is opened, and delete when the last stream

refering to it is closed.

Streams with names starting with TCP: are interactive having data transmis-

sion typically triggered by ’*n’. Such streams are normally used for communi-

cation with slow serial devices such as terminals and printers. For applications

requiring rapid transmission of large volumes of data it is preferable to use streams

with names starting with NET: since these typically transmit data in blocks of

4096 bytes. For both kind of streams, output can be triggered using flushstream

if necessary.

The use of several streams attached to the same connection is analogous to

the mailbox mechanism and is normally only useful with interactive streams.

Both TCP: and NET: streams are implemented using the same handler task

called TCPHAND. This task has an interface with the stream system similar to
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that used by COHAND and FH0. TCPHAND maintains a simple linked list of existing

tcp connection. Each each connection has a control block in the list with the

following fields.

Field Purpose

tcp.link Zero or a pointer to the next connection

tcp.ipaddr The IP address of this connection

tcp.port The post associated with this connection

tcp.refcount Count of the number of streams referring to this mailbox

tcp.rdq List of blocked read request packets

tcp.wrq List of blocked write request packets

tcp.sock Zero or the socket for this connection

tcp.namebase Base of space to hold the stream name

7.7 RAM streams

A RAM stream is one which is only used for input and for which all the data

is preloaded into its buffer. The length of the buffer is held in buflen and end,

and pos is initially zero. The stream function rdfn is set to zero, so when all the

buffered data has been read rdch will yield endstreamch. There is no need for

an end function (endfn) since the buffer is appended to the stream control block

and so freeing the SCB also frees the buffer. Although wrfn should never be used,

it is also set to zero. A typical use of a RAM stream is in the implementation of

the run command. One could also have been used in the implementation of the

c command.
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Chapter 8

The Command Language

The Command Language Interpreter (CLI) is a simple interactive interface be-

tween the user and the system. It is implemented in BCPL and its source code

can be found in cintcode/sys/CLI.b. It loads and executes previously compiled

programs that are held either in the current directory or a directory specified by

the shell variable BCPLPATH. The source of the system provided commands can be

found in cintcode/com. These commands are described in below in Section 8.2.

Since any compiled program can be regarded as a command, the command lan-

guage can be extended easily by the user.

8.1 Bootstrapping

When the Cintcode System is started, control is passed to the interpreter which,

after a few initial checks, allocates vectors for the memory of the cintcode abstract

machine and the tally vector available for statistics gathering. The cintcode

memory is initialised suitably for sub-allocation by getvec, which is then used

to allocate space for the root node, the initial stack and the initial global vector.

The initial state shown in figure 8.1 is completed by loading the object modules

SYSLIB, BLIB and BOOT, and initialising the root node, the stack and global vector.

Interpretation of cintcode instructions now begins with the Cintcode register PC,

P and G set as shown in the figure, and Count set to -1. The other registers are

cleared. The first Cintcode instruction to be executed is the first instruction of the

body of the routine start defined in sys/BOOT.b. Since no return link has been

stored into the stack, this call of start must not attempt to return in the normal

way; however, its execution can still be terminated using sys(Sys quit,0).

The global vector and stack shown in figure 8.1 are used by start and form the

running environment both during initialization and while running the debugger.

87
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The CLI, on the other hand, is provided with a new stack and a separate global

vector, thus allowing the debugger to use its own globals freely without interfering

with the command language interpreter or running commands. The global vector

of 1000 words is allocated for CLI and this is shared by the CLI program and its

running commands. The stack, on the other hand, is used exclusively by the

command language interpreter since it creates a coroutine for each command it

runs.

stack globals

P Grootnode

0

PC

Entry to start

Tally vector

blklist

MSYSLIB MLIB MBOOT

Figure 8.1: The initial state

Control is passed to the CLI by means of the call sys(Sys interpret,regs)

which recursively enters the intepreter from an initial Cintcode state specified by

the vector regs in which that P and G are set to point to the bases of a new stack

and a new global vector for CLI, respectively, PC is the location of the first instruc-

tion of startcli, and count is set to -1. This call of sys(Sys interpret,regs)

is embedded in the loop shown below that occurs at the end of the body of start.

{ LET res = sys(Sys\_interpret, regs) // Call the interpreter
IF res=0 DO sys(Sys\_quit, 0)
debug(res) // Enter the debugger

} REPEAT

At the moment sys(Sys interpret,regs) is first called, only globsize, sys

and rootnode have been set in the CLI global vector and so the body of startcli

must be coded with care to avoid calling global functions before their entry points

have been placed in the global vector. Thus, for instance, instead of calling

globin to initialise the globals defined in SYSLIB and BLIB, the following code is

used:

sys(Sys\_globin, rootnode!rtn_syslib)
sys(Sys\_globin, rootnode!rtn_blib)

If a fault occurs during the execution of CLI or a command that it is running,

the call of sys(1,regs) will return with the fault code and regs will hold the
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dumped Cintcode registers. A result of zero, signifying successful completion,

causes execution of the Cintcode system to terminate; however, if a non zero

result is returned, the debugger is entered by means of the call debug(res).

Note that the Cintcode registers are available to the debugger since regs is a

global variable. When debug returns, the REPEAT-loop ensures that the command

language interpreter is re-entered. The debugger is briefly described in section 9.

On entry to startcli, the coroutine environment is initialised by setting

currco and colist to point to the base of the current stack which is then setup

as the root coroutine. The remaining globals are then initialised and the standard

input and output streams opened before loading the CLI program by means of

the following statement:

rootnode!rtn_cli := globin(loadseg("CLI"))

The command language interpreter is now entered by the call start().

8.2 Commands

This section describes the commands whose source code can be found in

cintcode/com. Each command is introduced by its name and rdargs argument

format string.

abort NUMBER

The command: abort n calls the BLIB function abort with argument n. If

n = 0, this will cause a successful return from the Cintcode system. If n is non

zero, the interactive debugger is entered with fault code n. The default value for

n is 99. A brief description of the debugger is given in section 9.

bcpl FROM/A,TO/K,VER/K,SIZE/K,TREE/S,NONAMES/S,

D1/S,D2/S,OENDER/S,EQCASES/S,BIN/S:

This invokes the BCPL compiler. The FROM argument specified the name of

the file to compile. If the TO argument is given, the compiler generates code to the

specified file. Without the TO argument the compiler will just output the OCODE

intermediate form to the file OCODE. This is used for compiler debugging and cross

compilation. The VER argument redirects the standard output to a named file.

The SIZE argument specified the size of the compiler’s work space. The default is

40000 words. If the NONAMES switch is given the compiler will not include section

and function names in the compiled code. These are only useful for debugging.

The switches D1 and D2 control compiler debugging output. D1 causes a readable

form of the compiled cintcode to be output. D2 causes a trace of the internal
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working of the codegenerator to be output. D1 and D2 together causes a slightly

more detailed trace of the internal working of the codegenerator to be output.

OENDER causes code to be generated for a machine with the opposite endianess

of the machine on which the compiler is running. EQCASES causes all identifiers

to be converted to uppercase during compilation. This allows very old BCPL

programs to be compiled. BIN causes the target cintcode to be in binary rather

than ASCII encoded hexadecimal. This is primarily for Windows CE machines

where reducing the size of code modules may be important.

bcplxref FROM/A,TO/K,PAT/K

This command outputs a cross reference listing of the program given by the

FROM argument. This consists of a list of all identifiers used in the program each

having a list of line numbers where the identifier was used and a letter indicating

how the identifier was declared. The letters have the following meanings:

V Local variable

P Function or Routine

L Label

G Global

M Manifest

S Static

F FOR loop variable

The TO argument can be used to redirect the output to a file, and the PAT

argument supplies a pattern to restrict which names are to be cross referenced.

Within a pattern an asterisk will match any sequence of characters, so the pattern

a*b* will match identifiers such as ab, axxbor axbyy. Upper and lower case letters

are equated.

c command-file arguments

The c command allows a file of commands to be executed as though they

had just been typed in. The argument command-file gives the name of the file

containing the command sequence.

Unless explicitly changed, the characters ’=’, ’<’, ’>’, ’$’ and ’.’ have special

meanings within a command command. A dot ’.’ at the start of a line starts a

directive which can specify the command command’s argument format, or replace

one of the special character with an alternative. There are six possible directives

as follows:
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.KEY or .K str argument format string

.DEFAULT or .DEF key value give key a default value

.BRA ch use ch instead of <

.KET ch use ch instead of >

.DOLLAR ch use ch instead of $

.DOT ch use ch instead of .

All directives must occur at the start of the command file. The .KEY directive

specifies a format string of the form used by rdargs (see page 63) that describes

what arguments can follow the command file name. The .DEFAULT directive

specifies the default value that a specified key should have if the corresponding

argument was omitted. The remaining directives allow the special characters to

be changed.

The command sequence occurs after all the directives and may contain items

of the form <key$value> or <key> where key is one of the keys in the format

string and value is a default value. Such items are textually replaced by its

corresponding argument or a default value. If $value is present, this overrides (for

this item only) any default that might have been given by a .DEFAULT directive.

casech FROM/A,TO/A,DICT/K,U/S,L/S,A/S

This command systematically processes a BCPL program converting all re-

served words to upper case and changing all identifiers to upper case (U), lower

case (L, or in the form given by a specified dictionary (DICT).

checksum FROM/A,TO/K

This command calculates a check sum for the file specified by the FROM argu-

ment, sending the result to the file specified by the TO argument.

delete ,,,,,,,,,

This command will delete up to ten given files.

detab FROM/A,TO/K,SEP/K

This command copies the file give by the FROM argument to the file given by

the TO argument replacing all tab characters by spaces. The tabs are separated

by a distance specified by the SEP argument. The default is 8.

echo TEXT,N/S

This command will output its first argument TEXT, if given. The text will be

followed by a newline unless the switch N is set.
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edit FROM/A,TO,WITH/K,VER/K,OPT/K

This command is meant to provide a simple line editor. It used to run on

the Tripos Portable Operating System but has not been modified to run on this

system.

fail CODE

This command just returns to the CLI with a completion code given by CODE.

The default code is 20.

input TO/A,TERM/K

This command will copy text from the current input sending it the the file

specified by the AS argument. The input is terminated by a line starting with /*

or the value of the TERM argument if given.

interpreter FAST/S,SLOW/S

This command allows the user to select the fast (cintasm) or the slow

(cinterp) version of the interpreter. If no arguments are given the fast one

is selected. It is implemented using sys(0,-1) or sys(0,-2) as described on

page 48.

join ,,,,,,,,,,,,,,,AS/A/K,CHARS/S

This command will concatenate several files sending the result to the file

specified by the AS argument. If the CHARS switch is given the files are treated as

text files, otherwise they are copied in binary.

logout

This command causes an exit from the BCPL Cintcode System, typical re-

turning to an operating system shell.

map BLOCKS/S,NAMES/S,CODE/S,MAPSTORE/S,TO/K,PIC/S

This command outputs the state of the Cintcode memory in a form that

depends on the arguments given. The output goes to the screen unless a filename

is given using the TO keyword.

nlconv FILE,TOUNIX/S,TODOS/S,Q/S

Thus command replaces the specified file with one in which line endings have

been replaced by those appropriate for the destination system which is speci-

fied by the switches TOUNIX (the default) or Windows systems (TODOS). The Q

argument quietens the command.
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prefix PREFIX,UNSET/S

If the first argument is given, it becomes the current prefix string. If UNSET is

specified, the prefix string is unset, and if no argument is given the current prefix

is output. This command is implemented using sys(32,prefix) and sys(33)

described on page 52. See also Section 6.3.6.

preload ,,,,,,,,,

This command will preload up to 10 commands into the Cintcode memory.

Without arguments it outputs the list of preloaded commands. Preloading im-

proves the efficiency of command execution and is also useful in conjunction with

the stats command, see below.

procode FROM,TO/K

This command converts an OCODE (intermediate code) file specified by FROM

to a more readable form. If FROM is missing it reads from the file OCODE. If the

TO argument is missing it send the result to the screen.

prompt PROMPT

This command allows the user to change the prompt string. The prompt is

output by the CLI using code of the form:

writef(prompt, msecs)

where prompt is the prompt format string and msecs is the time in milliseconds

used by the previous command. The default prompt format is: "%d> ".

raster COUNT,SCALE,TO/K,HELP/S

This command controls the collection of rastering information but only works

when the BCPL Cintcode system is running under the rastering interpreter

rasterp. The implementation uses sys(27,...) calls that are described on

page 52. If raster is given an argument it activates the rastering mechanism.

Once rastering is activated information will be written to a raster data file for

the duration of the next CLI command. The format of this file is also outlined

on page 52.

The COUNT argument allows the user to specify how many Cintcode instruc-

tions to obey for each raster line. The default is 1000. The SCALE argument

gives the raster line granularity in bytes per pixel. The default being 12. The TO

argument specifies the name of the raster data file to be written. The default file

name is RASTER.

If raster is called without any arguments, it closes the raster data file. The

raster data file can be processed and converted to Postscript using the rast2ps
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command described below. Typical use of the raster command is the following

script:

raster count 1000 scale 12 to RASTER
bcpl com/bcpl.b to junk
raster
rast2ps fh 18000000 mh 301000

This will create the Postscript file RASTER.ps for the BCPL compiler compiling

itself, similar to that shown in Figure 8.2.

rast2ps FROM,SCALE,TO/K,ML,MH,MG,FL,FH,FG,

DPI/K,INCL/K,A4/S,A3/S,A2/S,A1/S,A0/S

This command converts a raster data file (written using the raster command

described above) into a postscript file suitable for printing. There are parameters

to control the region to convert, the output paper size and other parameters. It

is also possible to include annotations in the resulting picture.

The FROM parameter specifies the name of the raster data file. RASTER is the

default. SCALE specifies a magnification as a percentage. The default is 80. The

TO parameter specifies the name of the postscript file to be generated. RASTER.ps

is the default. The parameters ML and MH specify the low and high limits of the

address space to be processed. MG specifies the separation of the grid line on

the memory axis. The defaults are ML=0 MH=300100 and MG=100000. The units

are in bytes. The parameters FL and FH specify the low and high limits of the

instruction count axis to be processed. FG specifies the separation of the grid line

on the memory axis. The defaults are FL=0 FH=20000000 and FG=1000000. DPI

specifies the approximate number of dots per inch used by the output device.

The default is 300. An specifies the output page size. The default is A4. The

INCL parameter specifies the name of a file to be copied into the postscript file.

The default is psincl. This file allows annotations to be made in the picture.

The file cintcode/psincl was used to annotate the memory time graph shown

in Figure 8.2. This file contains lines such as:

F2 setfont
(SYN) 1.1 35 2 PDL
(TRN) 8.1 30 1.7 PUL
(CG) 15.3 36 2.1 PUR
(GET Stream) 0.45 270 1.7 PUL
...
(OCODE Buffer) 13.9 245 2 PDR
% 8.5 150 MVT (HELLO WORLD) SC
F3 setfont
(Self Compilation of the Cintcode BCPL Compiler) TITLE

The postscript macros PDL, PUL, PUR and PDR draw arrows with specified

labels, byte address, instruction count and arrow lengths. The arrow directions
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are respectively: down left, Up left, up right and down right. The macro MVT

moves to the specified position in the graph and SC draws a string centered at

that position. The TITLE macro draws the graph title and F2 and F3 are fonts

suitable for the labels and title. The resulting postscript file can, of course, be

further edited by hand.

rename FROM/A,TO=AS/A/K

This will rename the file given by FROM to that specified by the AS argument.

stack SIZE

The command stack n causes the size of the coroutine stack allocated for

subsequent commands to be n words long. If called without an argument stack

outputs the current setting.

stats TO/K,PROFILE/S,ANALYSIS/S

This command controls the tallying facility which counts the execution of

individual Cintcode instructions. If no arguments are given, stats turns on

tallying by clearing the tally vector and causing tallying to be enabled for the

next command to be executed. Subsequent commands are not tallied, making it

possible to process the tally vector while it is in a static state. Typical usage of

the stats command is illustrated below:

preload queens Preload the program to study

stats Enable stats gathering on next command

queens Execute the command to study

interpreter Select the fast interpreter (cintasm)

stats automatically selects the slow one

stats to STATS Send instruction frequencies to file

or

stats profile to PROFILE Send detailed profile info to file

or

stats analysis to ANALYSIS Generate statistical analysis to file

type FROM/A,TO,N/S

This command will output the file given by the FROM argument, sending it to

the screen unless the TO argument is given. The switch argument N causes line

numbers to be added.

typehex FROM/A,TO/K

This will output the file specified by FROM in hexadecimal and send the result

to the TO file if this argument is given.
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unpreload ,,,,,,,,,,ALL/S

This command will remove preloaded commands from the Cintcode memory.

The ALL switch will cause all preloaded commands to be removed.

8.3 The implementation of CLI, newcli and run

The main command language interpreter runs as task 1 and is implemented by the

program whose source is CLI.b. This code is shared by the CLI tasks created by

the commands newcli and run. When a CLI task is started it initialises itself by

calling cli.init(parm.pkt) where parm.pkt is the startup packet for the task.

Every CLI task has a segment list structure of size 4, with seglist!1 containing

the KLIB segments, seglist!2 the segmemts belonging to BLIB, seglist!3 is the

segment containing the function cli.init and seglist!4 contains the compiled

form of CLI.b.

For the main CLI task, the definition of cli.init is in a separate file

CLI INIT.b whose compiled form is placed in seglist!3. The commands newcli

and run have their own definition of cli.init embedded in the same segment

as their start functions. They can thus both be executed as commands as well

as being placed in seglist!3 of a CLI task to provide its initialisation code.

During the activation of a task, its global vector is initialised by the following

code (in KLIB).

seglist := tcb.seglist!tcb

FOR i = 1 TO seglist!0 DO sys(Sys_globin(seglist!i)

For the CLI tasks created by newcli and run, the order in which the segment

lists are initialised is important. They both put their own code in seglist!3

(so that cli.init is defined) and the compilation of CLI.b in seglist!4. The

definition of start in CLI.b thus overrides any definition of start in seglist!3.

In CLI.b, the code to call cli.init is as follows:

{ LET f = cli.init(parm.pkt)

IF f DO f(result2)

}

If the returned result is non zero, it must be a function that can be applied

to result2. This mechanism is used by CLI INIT.b and newcli.b to invoke

unloadseg(seglist!3) after cli.init has completed.
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Chapter 9

The Standalone Debugger

When Cintpos starts up, the first BCPL code to be executed is the function start

in BOOT. This runs using the global vector and stack it was given. It initialises

BOOT’s own coroutine environment

This initialises the system and creates a running environment for the ker-

nel. This includes the creation of four tasks. Task 1 is an interactive command

language interpreter (CLI). Task 2 is an interactive debugging task. Task 3 is

the console handler that controls interaction between the other tasks and the

main keyboard and screen attached to the computer. Task 4 is the file handler

controlling access to the main filing system.

Once the kernel data structure and these tasks have been setup, control is

passed to the scheduler by means of a recursive call to the Cincode interpreter

by means of the call sys(Sys interpret, klibregs). This causes normal exe-

cution of Cintpos to start, including the processing of asynchronous interrupts.

This continues until the Cintpos system is explicitly terminated or until a fault

is encountered. On encountering a fault, control returns from the recursive in-

vocation of the interpreter and resumes in the original BOOT environment. The

Cintcode registers at the time of the fault will have been saved in klibregs, and

the fault code stored in the BOOT variable res. If res is zero BOOT returns to the

host operating system shell, if it is -1 it immediately re-enters the interpreter,

possibly using a different interpreter if register count has changed. Otherwise,

the standalone debugger in entered.

The standalone debugger can read and update Cintpos memory, set and clear

breakpoints and perform single step execution. The single step execution facility

allows for single step execution of user programs, kernel code and even interrupt

routines. For this to be useful, it is commonly necessary to disable most inter-

rupts. The way the debugger behaves depends on the value held in the Cintcode

status register st. There are four cases as follows:
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st=0

Execution is in user mode with interrupts enabled, running code be-

longing to the current task (held in rootnode!rtn.crntask). The task

will have a stack rootnode!rtn.crntask!rtn.sbase and a global vector

rootnode!rtn.crntask!rtn.gbase). If the fault occurred early on during

task activation, the stack and global vectors may not be fully initialised

and there may be no proper coroutine environment. During this activation

stage the field tcb.active is FALSE only being set to TRUE when task acti-

vation is complete. If the field tcb.active in a task’s TCB is TRUE, the

globals and coroutine environment can be assumed to be properly setup.

When tcb.active is FALSE, some debugging commands will either be

disallowed or have unexpected results.

st=1

Execution is performing some kernel operation involving the kernel data

structure with interrupts disabled. All rootnode fields are set, but may be

temporarily inconsistent while the kernel operation is being executed.

st=2

Execution is within BOOT which is typically assumed to be debugged. The

rootnode fields cannot be assumed to be set.

st=3

Execution is in an interrupt routine. Interrupt routines each have their

own stack but share the kernel’s global vector and run with interrupts dis-

abled. While in an interrupt routine, the user level registers belonging to

the current task are held in saveregs. Execution of the interrupt routine

terminated either directly by the call sys(Sys rti, saveregs) or indi-

rectly via a call of srchwk. Interrupt routines typically use movepkt to

return packets to their tasks.

9.1 Entering the Standalone Debugger

As stated above, the standalone debugger can be entered as a result of a fault

such as division by zero, but can also be entered explicitly using the CLI abort
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command, as follows:

560> abort

!! ABORT 99: User requested
a1#

The standalone debugger’s prompt, in this case a1#, consists of a letter indicating

the current status of the code being debugged, followed by the number of the cur-

rently selected task and ending with a # to indicate that the standalone debugger

(not the DEBUG task) has been entered. The status codes are as follows:

Code Meaning

a The selected task is fully active, st=0

d The selected task is becoming active or dying, st=0

k Obeying code in KLIB, st=1

b Obeying code in BOOT, st=2

i Executing the interrupt service routine, st=3

9.2 Debugger Commands

A brief description of the available debug commands can be displayed using the

query (?) command.
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a1# ?
? Print list of debug commands
Gn Pn Rn Vn Variables
G P R V Pointers
n #b101 #o377 #x7FF ’c Constants
*e /e %e +e -e |e &e Dyadic operators
< > ! Postfixed operators
SGn SPn SRn SVn SWn SAn Store current value
Sn Select task n
S. Select current task
H Hold/Release selected task
K Enable/Disable clock interrupts
= Print current value
Tn Print n consecutive locations
$c Set print style C, D, F, B, O, S, U or X
I Print current instruction
N Print next instruction
Q Quit -- leave the cintpos system
M Set/Reset memory watch address
B 0Bn eBn List, Unset or Set breakpoints
C Continue execution
X Set breakpoint 9 at start of clihook
Z Set breakpoint 9 at return of current fn
\ Execute one instruction
. Move to current coroutine
, Move down one stack frame
; Move to parent coroutine
[ Move to first coroutine
] Move to next coroutine
a1#

The debugger has a current value that can be loaded, modified and displayed.

For example:

a1# 12 Set the current value to 12
a1# -2 Subtract 2
a1# *3 Multiply by 3
a1# = 30 Display the current value
a1# < Shift left one place
a1# = 60 Display the current value
a1# 12 -2 *3 < = 60 Do it all on one line
a1#

Six areas of memory, namely: the global vector, the current stack frame, the

Cintcode register dump, 10 scratch variables, the TCB of the currently selected

task and the entire cintpos memory are easily accessed using the letters G, P, R,

V, W and A, respectively.
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a1# 10sv1 11sv2 Put 10 and 11 in variables 1 and 2
a1# vt5 Display the first 5 variables

V 0: 0 10 11 0 0
a1#
a1# v1*50+v2= 511 A calculation using variables
a1# g0= 1000 Display global zero (globsize)
a1# g= 28089 Display the address of global zero
a1# ! = 1000 Indirect and display
a1# gt10 Display the first 10 globals

G 0: 1000 start stop sys clihook
G 5: #G005# changec 48673 48673 srchwk
a1#

Notice that values that appear to be entry points display the first 7 characters

of the function’s name. Other display styles can be specified by the commands

$C, $D, $F, $B, $O, $S, $U or $X. These styles are respectively: characters, decimal

number, in function style (the default), binary, octal, string, unsigned decimal

and hexadecimal.

It is possible to display Cintcode instructions using the commands I and N.

For example:

a1# g4= clihook Get the entry to clihook
a1# i 24844: K4G 1 Call global 1, incrementing P by 4
a1# n 24846: RTN Return from the function
a1#

A breakpoint can be set at the first instruction of clihook and the debugged

program re-entered by the following:

a1# g4= clihook Get the entry to clihook
a1# b9 Set break point 9
a1# c Resume execution
1>

The X command could have been used since it is a shorthand for G4B9C. The

function clihook is defined in BLIB and is called whenever a CLI command is

invoked. For example:

1> echo ABC Invoke the echo command

!! BPT 9: clihook Breakpoint 9 reached
A= 0 B= 0 24844: K4G 1

a1#

Notice that the values of the Cintcode registers A and B are displayed, followed

by the program counter PC and the Cintcode instruction at that point. Single

step execution is possible, for example:
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a1# \A= 0 B= 0 80700: LLP 4
a1# \A= 48687 B= 0 80702: SP3
a1# \A= 48687 B= 0 80703: SP 89
a1# \A= 48687 B= 0 80705: L 80
a1# \A= 80 B= 48687 80707: SP 90
a1# \A= 80 B= 48687 80709: LLL 80736
a1# \A= 20184 B= 80 80711: LG 78
a1# \A= rdargs B= 20184 80713: K 85
a1# \A= 20184 B= 20184 19932: LP4
a1#

At this point the first instruction of rdargs is about to be executed. Its return

address is in P1, so a breakpoint can be set to catch the return, as follows:

a1# p1b8
a1# c

!! BPT 8: 80715
A= 40689 B= 0 80715: JNE0 80718

a1#

A breakpoint can be set at the start of sys, as follows:

a1# g56b1 Set breakpoint 1 in wrch
a1# b Display the currently set of breakpoints
1: wrch
8: 80715
9: clihook
a1# 0b8 0b9 Unset breakpoints 8 and 9
a1# b Display the remaining breakpoint
1: wrch
a1#

The next three calls of wrch will write the characters ABC. The following example

steps through these and stops at the moment the newline character is about to

be written.

a1# c

!! BPT 1: wrch
A= 65 B= 48694 17992: LG 53

a1# c

!! BPT 1: wrch
A= 66 B= 48694 17992: LG 53

a1# c

!! BPT 1: wrch
A= 67 B= 48694 17992: LG 53

a1# c

!! BPT 1: wrch
A= 10 B= 48694 17992: LG 53

a1#
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The state of the runtime stack is now inspected and normal execution after re-

moving the remaining breakpoint.

a1# . 48679: Active coroutine clihook Size 1000 Hwm 152
48811: wrch 10 83 195204 43090

a1# , 48801: write.f 20191 48799 48800 1
a1# , 48744: writef 20191 48694 80 48695
a1# , 48689: start 48693 48694 1128415492 0
a1# , 48685: clihook 0 194740
a1# , Base of stack
a1# 0b1c Clear breakpoint 1 and resume
ABC
1>

Notice that the characters ABC are buffered and not written to the screen until

the newline character is written.

The following debugging commands allow the coroutine structure to be ex-

plored.

Command Effect

. Select and display the current coroutine of the currently selected task

, Select and display its next stack frame

; Select and display the parent coroutine

[ Select and display the first coroutine belonging to the selected task

] Select and display the next coroutine

Finally, the command Q causes a return from the Cintcode system.
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Chapter 10

Installation

The following needs change.

The implementation of BCPL described in this report is is available free via

my Home Page [Ric] to individuals for private use and to academic institutions.

If you install the system, please send me a message (to mr@cl.cam.ac.uk) so I

can keep a record of who is interested in it.

This implementation is designed to be machine independent being based on

an interpreter written in C. There are, however, hand written assembly language

versions of the interpreter for several architectures (including i386, MIPS, AL-

PHA and Hitachi SH3). For Windows 95/98/NT and Windows CE there are

precompiled .exe files, but for all the other architectures it is necessary to re-

build the system.

The simplest installation is for Linux machines.

10.1 Linux Installation

This section describes how to install the BCPL Cintcode System on an IBM PC

running Linux.

• First create a directory named BCPL and copy either bcpl.targz or

bcpl.zip into it. They are available (free) via my home page [Ric] and

both contain the same set of packed files and directories.

• Either unpack bcpl.targz by:

tar zxvf bcpl.targz

or unpack bcpl.zip using:
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unzip -v bcpl.zip

This will create the directories cintcode, bcplprogs and natbcpl. The di-

rectory cintcode contains all the source files of the BCPL Cintcode System,

bcplprogs contains a collection of demonstration programs, and natbcpl

contains a version of BCPL that compiles into native code (for Intel and

ALPHA machines.

• Now change directory to cintcode.

cd cintcode

• Re-build enter the BCPL system:

make

This should generate output that ends with:

BCPL Cintcode System
0>

indicating that the Command Langage Interpreter has been successfully

entered.

• It is now necessary to recompile all the system software and commands.

This is done by typing:

c compsys

• Now try out a few commands, eg:

echo hello
bcpl com/echo.b to junk
junk hello
map pic
logout
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• The BCPL programs that are part of the system are: BOOT.b, BLIB.b and

CLI.b. These reside in BCPL/cintcode/sys and can be compiled by the

following commands (in the BCPL Cintcode System).

c bs BOOT
c bs BLIB
c bs CLI

The standard commands are in BCPL/cintcode/com may be compiled using

bc.

c bc echo
c bc abort
c bc logout
c bc stack
c bc map
c bc prompt

Read the documentation in cintcode/doc and any README files you can

find. A log of recent changes can be found in cintcode/doc/changes. A

postscript version of the current version of this BCPL manual is available

from my home page. There is a demonstration script of commands in

cintcode/doc/notes.

• In order to use the BCPL Cintcode System from another directory it is

necessary to define the shell variable BCPLPATH to be the absolute file name

of the cintcode directory and add this directory to your PATH, before entering

the BCPL Cintcode system. On Linux, this can be done by:

export BCPLPATH=/home/mr/distribution/BCPL/cintcode
export PATH=$PATH:$BCPLPATH

The shell variable BCPLPATH is used when loading Cintcode object modules,

reading BCPL header files and files read by the c command.

• To compile and run a demo program such as bcplprogs/demos/queens.b:

cd ../bcplprogs/demos
cinterp
c b queens
queens
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10.2 Command Line Arguments

The command cintpos that invokes the Cintcode interpreter can be given argu-

ments to control memory allocation. These are:

-m n Set the cintcode memory size to 1000n words

-t n Set the tally vector size to 1000n words

-h Output some help information

10.3 Installation on Other Machines

Not yet available.
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Appendix A

BCPL Syntax Diagrams

The syntax of BCPL is specified using the transition diagrams given in figures

A.1, A.2, A.3 and A.4. Within the diagrams the syntactic categories program,

section, declaration, command and expressionn are represented by the rounded

boxes: program , section , D , C and En , respectively.

The rectangular boxes are called test boxes and can only be traversed if the

condition labelling the box matches the current input. When the label is a token,

as in WHILE and := , it must match the next input token for the test to

succeed. The test box eof is only satisfied if the end of file has been reached.

Sometimes the test box contains a side condition, as in REM  n<6 , in which case

the side condition must also be satisfied. The only other test boxes are is call

and is name which are only satified if the most recently read expression is

syntactically a function call or a name, respectively. By setting n successively

from 0 to 8 in the definition of the category En , we obtain the definitions of

E0 to E8 . Starting from the definition of program , we can construct

an infinite transition diagram containing only test boxes by simply replacing all

rounded boxes by their definitions, recursively. The parsing algorithm searches

through this infinite diagram for a path with the same sequence of tokens as the

program being parsed. In order to eliminate ambiguities, the left hand branch at

a branch point is tried first. Notice how this rule causes the command

IF i>10 DO i := i/2 REPEATUNTIL i<5

to be equivalent to

IF i>10 DO { i := i/2 REPEATUNTIL i<5 }

and not
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{ IF i>10 DO i := i/2 } REPEATUNTIL i<5

A useful property of these diagrams is that, once a test box has been successfully

traversed, previous branching decisions need not be reconsidered and so the parser

need never backtrack.

eof

.

section

program

section

SECTION string ;

NEEDS string ;

name

STATIC

MANIFEST { = E0 ; } ;

{ E0 ;GLOBAL name : }

nameLET ( name

,

)

= E0

BE E0

AND

Figure A.1: Program, Section
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name

STATIC

MANIFEST { = E0 ; }

{ E0 ;GLOBAL name : }

LET ( name

,

)

= E0

BE

AND

D

name

VEC= E0

,

= E0

,

,

C

name

Figure A.2: Declarations
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C

BREAK

LOOP

GOTO

RETURN

FINISH

TEST

FOR name THEN

$(

UNLESS

IF

E0

;

INTO

,

E0 ,

:=

:=E0

E0

is call

is name : C

CASE

DEFAULT

E0

E0 TO E0 BY E0

DO

C

E0 THEN

DO

C ELSE C

E0

REPEATWHILE

REPEATUNTIL

REPEAT

E0

E0

;D

ENDCASE

RESULTIS

=

WHILE

UNTIL

SWITCHON

E0

,

C

{

}

Figure A.3: Commands
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TRUE

En

?

FALSE

name

number

character

string

!

@

+

-

ABS

(

NOT

TABLE

,

E0

E8

E5

E4

E3

E2

E1

E0 , E0

C

E0

,

E3

E5

E7

)

)

E0

VALOF

E4

(    n<9

!    n<8

*    n<6

/    n<6

REM  n<6

+    n<5

-    n<5

=    n<4 =    n<4

~=   n<4 ~=   n<4

<    n<4 <    n<4

>    n<4 >    n<4

<=   n<4 <=   n<4

>=   n<4 >=   n<4

<<   n<4

>>   n<4

&    n<3

|    n<2

EQV  n<1

NEQV n<1

->   n<1

E6

%    n<8

OF   n<8

SLCT E0

E0

E0

:

:

Figure A.4: Expressions
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