
A Tautology Checker

loosely related to

St̊almarck’s Algorithm

by

Martin Richards

mr@cl.cam.ac.uk

http://www.cl.cam.ac.uk/users/mr/

University Computer Laboratory

New Museum Site

Pembroke Street

Cambridge, CB2 3QG

Martin Richards 1 Talk 13/Mar/98



Introduction

Consider the propositional expression:

((a ≡ b)→ c) ∧ (¬(b ≡ a) ∨ c)

The corresponding tree is:

a b

c

and

or

cnot

imp

eqv

eqv

b a

Martin Richards 2 Talk 13/Mar/98



Label Edges

Invent variable names for the unlabelled edges:

a b

c

and

or

cnot

imp

eqv

eqv

b a

t1

t2

t3

t4

t5

t6

Martin Richards 3 Talk 13/Mar/98



Set Root to Zero

Set the root variable to zero (false) and see if this

leads to an inconsistency.

a b

c

and

or

cnot

imp

eqv

eqv

b a

t1

t2

t3

t4

t5

0

Martin Richards 4 Talk 13/Mar/98



Set of Terms

The tree corresponds to the following set of terms.

0

and

t2

t2

imp

ct1

t1

eqv

a b

or

t4 c

t4

t3
ab

not eqv

t5 t3

t5

Martin Richards 5 Talk 13/Mar/98



Inference Rules

The terms are modified and possibly eliminated

by the application of inference rules which

sometimes yield variable mapping information.

Mapping information

Variable mapping information is a set of items of

the form:

x = 0

x = 1

x = y

or x = ȳ

where x and y are variables.

Martin Richards 6 Talk 13/Mar/98



0

and

t2

t2

imp

ct1

t1

eqv

a b

or

t4 c

t4

t3
ab

not eqv

t5 t3

t5

Mapping: t4 = t̄3

0

and

t2

t2

imp

ct1

t1

eqv

a b

imp

t3 c ab

eqv

t5 t3

t5

Martin Richards 7 Talk 13/Mar/98



0

and

t2

t2

imp

ct1

t1

eqv

a b

imp

t3 c ab

eqv

t5 t3

t5

Mapping: t4 = t̄3, t3 = t1

0

and

t2

t2

imp

ct1

t1

eqv

a b

imp

t1 c

t5

t5

Martin Richards 8 Talk 13/Mar/98



0

and

t2

t2

imp

ct1

t1

eqv

a b

imp

t1 c

t5

t5

Mapping: t4 = t̄3, t3 = t1, t5 = t2

0

and

t2

t2

imp

ct1

t1

eqv

a bt2

Martin Richards 9 Talk 13/Mar/98



0

and

t2

t2

imp

ct1

t1

eqv

a bt2

Mapping:

t4 = t̄3, t3 = t1, t5 = t2, t2 = 0

0

imp

ct1

t1

eqv

a b

Martin Richards 10 Talk 13/Mar/98



0

imp

ct1

t1

eqv

a b

Mapping:

t4 = t̄3, t3 = t1, t5 = t2,

t2 = 0, t1 = 1, c = 0

1

eqv

a b

Martin Richards 11 Talk 13/Mar/98



1

eqv

a b

Mapping:

t4 = t̄3, t3 = t1, t5 = t2,

t2 = 0, t1 = 1, c = 0, a = b

There are now no terms left. An inconsistency

has not been found, so the original expression was

not a tautology.

These direct derivations can be done in linear

time.

Martin Richards 12 Talk 13/Mar/98



Unfortunately

We cannot, in general, expect direct derivations

to solve the problem, (since tautology checking

has exponential cost).

If we apply the technique to:

((a ∧ b) ∨ (¬a ∧ b)→ ¬(¬a ∧ ¬b)
we obtain:

0

nor

a

0

gt

ba

0

lt

a b

and

a b

0

b

Martin Richards 13 Talk 13/Mar/98



We can easily see that

0

nor

a

0

gt

ba

0

lt

a b

and

a b

0

b

has no solution since

first term implies: ab = 01, 10, 11

second term implies: ab = 00, 01, 11

third term implies: ab = 00, 10, 11

fourth term implies: ab = 00, 01, 10

Martin Richards 14 Talk 13/Mar/98



The Dilemma Rule

1. Select a variable, vi, say, that has not yet

been assigned a value.

2. Set it to 0 and 1 in turn and apply the direct

inferences until convergence, yielding variable

mappings M0 and M1, respectively.

3. If both settings lead to inconsistencies then

the terms cannot be satisfied.

4. If just one setting leads to an inconsistency,

return the other mapping.

5. If neither setting leads to an inconsistency,

return the intesection of M0 and M1, i.e. the

set of mapping items that occur in both M0

and M1.

6. Repeat for all other variables.

Martin Richards 15 Talk 13/Mar/98



7. Repeat the process using pairs of variables,

vivj , setting them to all possible values (00,

01, 10 and 11), taking the intersection of the

four mappings produced.

8. Repeat similarly with all sets of 3, 4,. . .n

variables until either no terms remain or an

inconsistency is found.

When the algorithm is considering k variables, it

is said to be at recursion depth k.

Hopefully, the problem will be solved before the

recursion depth gets too large.

The problem will certainly be solved at recursion

depth n, if not before.

Any strategy to reduce the recursion depth is

valuable.

Martin Richards 16 Talk 13/Mar/98



Mapping Intersection

Suppose M0 ={v1 = 0, v2 = 1, v2 = v̄4, v5 = v6}
and M1 ={v1 = 0, v2 = 0, v3 = v5, v5 = v6}
then the intersection is

{v1 = 0, v5 = v6}

Martin Richards 17 Talk 13/Mar/98



Using Triadic Relations

The terms so far considered represent the relation

between the operands and result of dyadic

Boolean operators. For example,

x

zy

and

says that the only valid settings of xyz are:

000, 001, 010 or 111

There are just 16 dyadic Boolean operators, but

there are 256 relations over 3 Boolean variables.

We extend St̊amarck’s Algorithm to use such

relations in the term set.

Martin Richards 18 Talk 13/Mar/98



Eight Bit Representation

The relation R(x, y, z) can be represented using a

bit pattern of length 8, as follows:

x 1 1 1 1 0 0 0 0

y 1 1 0 0 1 1 0 0

z 1 0 1 0 1 0 1 0

a b c d e f g h The bits

h = 1⇔ 000εR

g = 1⇔ 001εR

f = 1⇔ 010εR

e = 1⇔ 011εR

d = 1⇔ 100εR

c = 1⇔ 101εR

b = 1⇔ 110εR

a = 1⇔ 111εR

Martin Richards 19 Talk 13/Mar/98



Notation

We will use Rabcdefgh to identify the relation

with bit pattern abcdefgh.

The terms in the previous example:

0

nor

a

0

gt

ba

0

lt

a b

and

a b

0

b

can be written as:

R00011110(0, a, b) R01001011(0, a, b)

R00101101(0, a, b) R10000111(0, a, b)

Martin Richards 20 Talk 13/Mar/98



New Inferences

Many more inference rules are now available. We

can, for instance, combine R00101101(0, a, b) and

R10000111(0, a, b) to yield R00000101(0, a, b).

Relation Triplets

R00101101 101 011 010 000

R10000111 111 010 001 000

R00000101 010 000

Martin Richards 21 Talk 13/Mar/98



Derivation

The terms in the previous example are:

R00011110(0, a, b)

R01001011(0, a, b)

R00101101(0, a, b)

R10000111(0, a, b)

Combining terms 3 and 4 gives:

R00011110(0, a, b)

R01001011(0, a, b)

R00000101(0, a, b)

Combining terms 2 and 3 gives:

R00011110(0, a, b)

R00000001(0, a, b)

Combining these two terms gives:

R00000000(0, a, b)

This is a term that cannot be satisfied, so an

inconsistency has been found.

Martin Richards 22 Talk 13/Mar/98



Observations

Having 256 relations may seem to be a

disadvantage, but there are compensations.

• As we have seen, the recursion depth may be

reduced.

• Terms can be put into canonical form to

allow easy elimination of equivalent terms.

• Many more inferences are possible.

• Inferences can be done by table lookup or by

simple bit pattern operations.

Martin Richards 23 Talk 13/Mar/98



Canonicalisation

A term can be put into canonical form by the

following steps:

1. Replace R(x, y, z) by R′(0, y, z), if the relation

does not depend on x. For example, replace

R10111011(x, y, z) by R00001011(0, y, z),

since the upper and lower 4 bits of R are

equal.

2. Replace R(x, y, y) by the equivalent

R′(x, y, 0). For example, replace

R00110101(x, y, y) by R00010001(x, y, 0), i.e.

mask R with R10011001.

3. Replace R(1, y, z) by the equivalent R′(0, y, z).

For example, replace R00110101(1, y, z) by

R00000011(0, y, z), i.e. right shift by 4.

Martin Richards 24 Talk 13/Mar/98



4. Replace R(0, y, z) by the equivalent

R′(0, y, z). For example, replace

R00110101(0, y, z) by R00000101(0, y, z), i.e.

mask R with R00001111.

5. Do the above transformations for all

permutations of (x, y, z).

6. Return R(x, y, z) with the variables (x, y, z)

in dictionary order.

The resulting canonical term will have one of the

following forms:

Rabcdefgh(x, y, z)

R0000abcd(0, y, z)

R000000ab(0, 0, z)

R0000000a(0, 0, 0)

Martin Richards 25 Talk 13/Mar/98



Deducing Mappings

Given a term Rabcdefgh(x, y, z), we may be able

to deduce new mapping information. For

instance, if abcd = 0000 then x = 0.

By similar means, we can deduce whether x = 1,

x = y or x = ȳ.

Term Deduction

R0000efgh(x, y, z) x = 0

Rabcd0000 (x, y, z) x = 1

Ra00de00h(x, y, z) x = y

R0bc00fg0 (x, y, z) x = ȳ

. . .

There are 12 such mappings.

They can be deduced by simple masking

operations or by table lookup.

Martin Richards 26 Talk 13/Mar/98



Pairwise Inferences

As we have already seen, if we have two terms

R(x, y, z) and S(x, y, z) referring to the same

variables, then they can be replaced by the single

term (R ∧ S)(x, y, z).

Martin Richards 27 Talk 13/Mar/98



Pairwise Inferences

If we have two terms R(a, x, y) and S(b, x, y) with

two variables in common then we can sometimes

simplify R and/or S, and we can sometimes

deduce a relation between a and b. For example,

Term Triplets

R01010011(a, x, y) 110 100 001 000

R10101100(b, x, y) 111 101 011 010

The first disallows the pattern xy = 11 and the

second disallows xy = 00, so, taken together we

can deduce:

R01000010(a, x, y) 110 001

R00100100(b, x, y) 101 010

Martin Richards 28 Talk 13/Mar/98



Pairwise Inferences

R01000010(a, x, y) 110 001

R00100100(b, x, y) 101 010

From these we can deduce information about ab,

namely a = b̄, and taken separately the terms

allow us to deduce new information about axy,

(namely: a = x = ȳ), and bxy (namely:

b = x̄ = ȳ).

All these deductions can be made easily by means

of bitwise operations on the relation bit patterns.

Another inference rule applies to a pair of terms

of the form R(x, 0, z) and S(0, y, z), replacing

them by T (x, y, z). Again, the bit pattern

representation of T is easily calculated from R

and S.

Martin Richards 29 Talk 13/Mar/98



Using Larger Relations

We have seen how the mechanism works with

relations over three Boolean variables.

What about relations over 4, 5,. . .n variables?

The length of the relation bit pattern is 2n and

the number of variable mapping items is n(n+ 1).

When n = 4, 16-bits are required to represent the

relation and there are 20 mapping items.

When n = 8, the relation takes eight 32-bit word

to represent, which is typically equal to the space

require to represent the eight variables. Such a

term can thus be represented in 16 32-bit words.

A term over 6 variables would require 8 words.

n = 8 is probably a good compromise.

Martin Richards 30 Talk 13/Mar/98



Notation

We will use Rn to denote the set of terms

containing general relations over n variables.

A typical element of Rn is R(v1, . . . vn).

BinOp is the subset of R3 in which all terms are

restricted to relations corresponding to the 16

dyadic Boolean operators.

St̊amarck’s variable mapping can be thought of as

the subset (EqNe) of R2, restricted to 12 of the

16 possible relations over 2 Booleans. The four

that are omitted involve implication, possibly

combined with negation. We will call this subset

of R2: Imp.

Martin Richards 31 Talk 13/Mar/98



R2 Relations

Relation xy Pairs Condition

R0000 False

R0001 00 x = 0 y = 0

R0010 01 x = 0 y = 1

R0011 01 00 x = 0

R0100 10 x = 1 y = 0

R0101 10 00 y = 0

R0110 10 01 x = ȳ

R0111 10 01 00 x→ ȳ

R1000 11 x = 1 y = 1

R1001 11 00 x = y

R1010 11 01 y = 1

R1011 11 01 00 x→ y

R1100 11 10 x = 1

R1101 11 10 00 x̄→ ȳ

R1110 11 10 01 x̄→ y

R1111 11 10 01 00 True

Martin Richards 32 Talk 13/Mar/98



R2

If a circular chain of implications can be found in

R2 then either all the variable in the chain are

equal or an inconsistency is present. For example:

x→ y, ȳ → z, z → x̄ =⇒ x = y = z̄

x→ y, ȳ → z̄, z → x̄ =⇒ Inconsistent

Such deductions should be made as soon as they

are detectable.

Elements of EqNe correspond to renaming, and

can be removed as soon as the renaming is done.

We are thus left with an R2 structure containing

only terms from Imp that contain no cycles and

we need an efficient algorithm to detect cycles

when new items are added (to either Imp or

EqNe). It is well known that R2 can be “solved”

in linear time.

Martin Richards 33 Talk 13/Mar/98



PERM

R(v1, v2, . . . , vn)

=⇒
R′(vi, vj , . . . , vk)

where i, j, ...k is a permu-

tation of 1, 2, ..., n

Example

R10110110(x, y, z) 111 101 100 010 001

=⇒
R10110110(x, z, y) 111 110 100 010 001

Martin Richards 34 Talk 13/Mar/98



UNDUP

R(v1, v1, v3, . . . , vn)

=⇒
R′(v1, 0, v3, . . . , vn)

Example

R10110110(x, x, y) 111 101 100 010 001

=⇒
R00100010(x, 0, y) 101 001

By combining PERM and UNDUP, all repeated

variables in a term can be removed.

Martin Richards 35 Talk 13/Mar/98



ELIMVAR

R(v1, v2, . . . , vn)

=⇒
R′(0, v2, . . . , vn)

if v1 is not used in any

other term

Example

R00110110(x, y, z) 101 100 010 001

=⇒
R00000111(0, y, z) 010 001 000

Martin Richards 36 Talk 13/Mar/98



INDEP

R(v1, v2, . . . , vn)

=⇒
R′(0, v2, . . . , vn)

if the truth of this term

does not depend on the

value of v1

Example

R01100110(x, y, z) 110 101 010 001

=⇒
R00000110(0, y, z) 010 001

Martin Richards 37 Talk 13/Mar/98



ONE

R(1, v2, . . . , vn)

=⇒
R′(0, v2, . . . , vn)

Example

R01100101(1, y, z) 110 101 010 000

=⇒
R00000110(0, y, z) 010 001

Martin Richards 38 Talk 13/Mar/98



ZERO

R(0, v2, . . . , vn)

=⇒
R′(0, v2, . . . , vn)

Example

R01100101(x, y, z) 110 101 010 000

=⇒
R00000101(0, y, z) 010 000

Martin Richards 39 Talk 13/Mar/98



UNIT

R(v1, v2, . . . , vn)

=⇒
S(vi, vj)

Example

R01001111(x, y, z) 110 011 010 001 000

=⇒
R1011(x, y) 11 01 00

Martin Richards 40 Talk 13/Mar/98



PAIR2

s(a, b)

R(v1, v2, . . . , vn)

=⇒
R′(v1, v2, . . . , vn)

Example

R1011(x, y) 11 01 00

R01111001(x, y, z) 110 101 100 011 000

=⇒
R01001001(x, y, z) 110 011 000

Martin Richards 41 Talk 13/Mar/98



PAIRGEN

R(v1, v2, . . . , vn)

S(w1, w2, . . . , wn)

=⇒
T (vi, wj)

Example

R01101011(a, y, z) 111 110 011 001 000

R01110011(b, y, z) 110 101 100 001 000

=⇒
R1011(a, b) 11 01 00

Martin Richards 42 Talk 13/Mar/98



PAIRSIMP

R(v1, v2, . . . , vn)

S(w1, w2, . . . , wn)

=⇒
R′(v1, v2, . . . , vn)

S′(w1, w2, . . . , wn)

Example

R01101011(a, y, z) 111 110 011 001 000

R01110011(b, y, z) 110 101 100 001 000

=⇒
R01101011(a, y, z) 110 001 000

R01110011(b, y, z) 110 101 100 001 000

Martin Richards 43 Talk 13/Mar/98



PAIRCOMB

R(v1, 0, . . . , vn)

S(0, v2, . . . , vn)

=⇒
T (v1, v2, . . . , vn)

Example

R0000110000001010(a, 0, y, z) 1011 1010 0011

0001

R0000000011100001(0, b, y, z) 0111 0110 0101

0000

=⇒
R1100000000101000(a, b, y, z) 1111 1110 0101

0011

Martin Richards 44 Talk 13/Mar/98



FACTOR

R(v1, . . . , vi, vi+1, . . . , vn)

=⇒
S(0, . . . , 0, v0, . . . , vi)

T (0, . . . , 0, vi+1, . . . , vn)

if the given relation

can be partitioned into

two relations over in-

dependent sets of vari-

ables.

This is only useful when n > 5.

It increases the applicability of PAIRCOMB.

Martin Richards 45 Talk 13/Mar/98



Final Remarks

• This approach reduces the number of terms,

the number of variables, and the depth and

fanout of the recursion.

• This approach increases the number of

inference rules and simplifies their

application.

• Multi-variate relations allow the

representation of higher level properties of a

circuit.

• Another form of dilemma rule is possible.

Pick a “random” relation over n variables

R11011100(x, y, z), say, and its complement

R00100011(x, y, z), and use these as the

alternatives in the dilemma rule. This is more

useful when n > 3.

Martin Richards 46 Talk 13/Mar/98



Last Thought

• If multi-variate relations are a good idea, it

might be worth using relations over 16 or

perhaps 32 variables, representing the

relations by OBDDs instead of a bit patterns.

Martin Richards 47 Talk 13/Mar/98



Analogy

Martin Richards 48 Talk 13/Mar/98


