
******* Very Rough Draft ********
Experiments with a

Tautology Checking Algorithm

by

Martin Richards1

mr@uk.ac.cam.cl

http://www.cl.cam.ac.uk/users/mr/

Computer Laboratory

University of Cambridge

September 15, 2005

Abstract

This paper presents various versions of a tautology checking algorithm that is related

both to St̊almarck’s algorithm and the mechanism described by Kunz and Stoffel

in Reasoning in Boolean Networks[KS97]. The algorithm uses as its central data

structure the conjunction of a set of terms, with each term being a relation over

a small number of variables. In St̊almarck’s algorithm the relation is limited to

Boolean operators with up to two operand variables and one result variable. This

representation has been generalised to allow arbitrary relations on three boolean

variables, and then further extended to allow relations over as many as eight boolean

variables.

Another extension is to increase the richness of the variable mapping information

obtained from the inference rule applications. In St̊almarck’s algorithm the mapping

information is a set of equalities/inequalities between pairs of variables. This has

been extended to arbitrary relations over boolean pairs.

The paper includes test results showing the effect these various extensions have

depth of recursion needed and the number of terms required at each level.

Keywords

Tautology checking, Boolean satisfiability, Boolean networks, digital circuit verifi-

cation, MCPL

1Currently visiting: School of Computer Science, Carnegie Mellon University, Pittsburgh

Acknowledgements

I gratefully acknowledge the encouragements and the many helpful discussions I

have had with Ed Clarke and Randy Bryant in the course of this work.

1

1 Introduction

Tautology checking is useful — Applications, previous work — Mention Stalmarck’s

Algorithm and Recursive learning.

2 Stalmarck’s Algorithm

In essence, Stalmarck’s algorithm works as follows. Take a given propositional calcu-

lus expression, E say, consisting of propositional variables (v1, v2, . . .) and Boolean

operators, and convert it into a set of terms of the form op(ti, a, b), one for each

subexpression of E. The first argument ti is a newly assigned variable holding the

result of the subexpession, and the other two arguments are either subterm vari-

ables or propositional variables. From now on, we will use v1, v2, . . . , vn to identify

both subterm and propositional variables. We will let op range over all of the 16

possible dyadic Boolean operators. Applying this transformation to the following

propositional expression:

((a ≡ b)→ c) ∧ (¬(b ≡ a) ∨ c)

yields the following set of terms:

eqv(t1, a, b)

imp(t2, t1, c)

eqv(t3, b, a)

noty(t4, t3, 0)

or(t5, t4, c)

and(t6, t2, t5)

where eqv, imp, noty, or and and denote relations between the arguments and results

of the corresponding boolean operators. For instance,

eqv(x, y, z) = (x ≡ (y ≡ z))

imp(x, y, z) = (x ≡ (y → z))

noty(x, y, z) = (x ≡ (¬y))

or(x, y, z) = (x ≡ (y ∨ z))

and(x, y, z) = (x ≡ (y ∧ z))

To test whether the original expression is a tautology, the root variable (t6 in

this case) is set to 0 denoting false, and then the set of terms analysed to see if

this leads to an inconsistency. If it does then the original expression is a tautology,

otherwise it is possible to assign values to all the variables in such a way that

every term is satisfied. During the analysis, information about possible variable

assignments is built up. This variable mapping information is held as a set of items

of the form: vi = 0, vi = 1, vi = vj or vi = v̄j . Whenever an item is added to this

set, it is immediately used to simplify the set of terms. However, a new item may be

inconsistent with items already in the mapping. For instance, vi = vj and vi = v̄j
cannot simultaneously be satisfied. If such an inconsistency arises then the set of

terms cannot be satisfied.

There are several obvious inference rules that can be applied to the terms to

simplify them and to generate new items in the variable mapping set. In this

2 2 STALMARCK’S ALGORITHM

example, the term noty(t4, t3, 0) generated the mapping item t4 = t̄3, and this

simplifies the terms to:

eqv(t1, a, b)

imp(t2, t1, c)

eqv(t3, b, a)

imp(t5, t3, c)

and(0, t2, t5)

The terms eqv(t1, a, b) and eqv(t3, b, a) can be combined to yield the mapping t3 =

t1, resulting in the following set of terms:

eqv(t1, a, b)

imp(t2, t1, c)

imp(t5, t1, c)

and(0, t2, t5)

The terms imp(t2, t1, c) and imp(t5, t1, c) can be combined to yield the mapping

t5 = t2, resulting in the following set of terms:

eqv(t1, a, b)

imp(t2, t1, c)

and(0, t2, t2)

The term and(0, t2, t2) gives t2 = 0, resulting in:

eqv(t1, a, b)

imp(0, t1, c)

The term imp(0, t1, c) gives t1 = 1 and c = 0, resulting in:

eqv(1, a, b)

and finally, this give a = b resulting in the empty set of terms. The original

expression was thus not a tautology.

In general we cannot expect to be so lucky. For instance, if we apply the same

transformation to the expression:

((a ∨ b) ∧ (¬a ∨ b) ∧ (a ∨ ¬b))→ ¬(¬a ∨ ¬b)
we obtain the following terminal set of terms:

and(0, a, b)

lt(0, a, b)

gt(0, a, b)

nor(0, a, b)

Here, lt(x, y, z) = (x ≡ (y = 0 ∧ z = 1)), and gt(x, y, z) = (x ≡ (y = 1 ∧ z = 0)).

The first term restricts the possible settings of ab to 00, 01 and 10. The second to

00,10 and 11, the third to 00,01 and 11, and the fourth to 01,10 and 11, so clearly

no setting of ab can satisfy all four terms. Unfortunately, with this kind of term set

and form of variable mapping, no direct inferences are applicable to these terms.

The solution to in Stalmarck’s algorithm is to apply the dilemma rule.

2.1 The dilemma rule 3

2.1 The dilemma rule

Select a variable vi, say, that has not already been assigned a value and try setting

it to 0 and 1 in turn, and apply the direct inferences in each case until convergence.

This will give two new variable mappings M0 and M1, say. If an inconsistency

was discovered while forming either of these, a special result ω is returned. A new

mapping M is now formed by taking the intersection of M0 and M1, consisting of

mapping items that occur in both mappings. However, if both M0 and M1 are ω

then no consistent mapping is possible, and, if either M0 or M1 is ω, the other is

returned. As an example of the general case, suppose M0 = {v1 = 0, v2 = 1, v3 =

v̄4, v5 = v6} and M1 = {v1 = 0, v2 = 0, v3 = v5, v5 = v6} then the intersection

M = {v1 = 0, v5 = v6}.
This process is repeated on every remaining variable in turn. Often a solution is

found during this process either by encountering a variable for which both M1 = ω

and M2 = ω, or by the set of remaining terms becoming empty, but in general

this will not happen. If this happens, the dilemma rule will have to be applied to

all pairs of unset variables. For each pair (vi, vj), this involves intersecting four

possible mapping M00,M01,M10 and M11, corresponding the four possible settings

of (vi, vj). It may be found necessary to apply the dilemma rule to triplets or

even larger sets of variables before a solution is found. The recursion depth of the

dilemma rule is the number of variables simulataneously set during its iteration.

In many practical applications a solution can be found before this depth reaches

an unacceptable level. Results presented in section 11 give statistics of how the

algorithm performs on benchmark tests up to a maximam depth of 5.

The direct derivations can be performed in polynomial time, but the dilemma

rule has exponential time complexity, and so any scheme that potentially reduces

the recursion depth is likely to be advantageous. One such scheme is to use general

ternary relations over boolean variables, rather restricting them to the 16 dyadic

boolean operators. This is developed in the next section.

3 Using ternary relations

There are 256 relations over three boolean variables. They can be represented using

bit pattern of length eight shown in figure 1.

We give names to these relations of the form Rabcdefgh, so for example

and =R10000111

lt =R00101101

gt =R01001011

nor =R00011110

Returning to our previous example, the terms were:

and(0, a, b)

lt(0, a, b)

gt(0, a, b)

nor(0, a, b)

4 3 USING TERNARY RELATIONS

x 1 1 1 1 0 0 0 0

y 1 1 0 0 1 1 0 0

z 1 0 1 0 1 0 1 0

a b c d e f g h The bit pattern

h = 1⇔ 000εR

g = 1⇔ 001εR

f = 1⇔ 010εR

e = 1⇔ 011εR

d = 1⇔ 100εR

c = 1⇔ 101εR

b = 1⇔ 110εR

a = 1⇔ 111εR

Figure 1: Bit pattern representation of a relation R(x, y, z)

We can now combine and(0, a, b) and lt(0, a, b) (taking the bit-wise and of their

relations R10000111 and R00101101) giving:

R00000101(0, a, b)

gt(0, a, b)

nor(0, a, b)

The first two term can be combined to give:

R00000001(0, a, b)

nor(0, a, b)

and these two can be combined to give:

R00000000(0, a, b)

which cannot be satisfied. The original propositional expression is thus a tautology.

We have thus solved this problem without having to resort to the dilemma rule.

Having as many as 256 relations may seem to be a disadvantage but there are

compensations, in addition to the expected reduction in recursion depth. With 8-bit

relations, terms can be canonicalised by the following steps.

1. Replace r(x, y, z) by r(0, y, z), if the relation does not depend on x. For

example, replace R10111011(x, y, z) by R10111011(0, y, z), since the upper

and lower 4 bits of r are equal.

2. Replace r(1, y, z) by the equivalent r′(0, y, z). For example, replace

R00110101(1, y, z) by 01010011(0, y, z), i.e. swap the upper and lowers 4 bits

of r.

3. Replace r(x, y, y) by the equivalent r′(x, y, 0). For example, replace

R00110101(x, y, y) by R00010001(x, y, 0), i.e. mask r with R10011001.

4. Replace r(0, y, z) by the equivalent r′(0, y, z). For example, replace

R00110101(0, y, z) by R00000101(0, y, z), i.e. mask r with R00001111.

5. Do the above transformations for all permutations of (x, y, z).

3.1 Patterns 5

6. Return r(x, y, z) with the variables (x, y, z) in dictionary order.

The resulting term will have one of the following forms:

Rabcdefgh(x, y, z)

R0000abcd(0, y, z)

R000000ab(0, 0, z)

R0000000a(0, 0, 0)

3.1 Patterns

The arguments variables of a term can have one of 37 possible patterns, if we take

into account which are explicitly 0 or 1, and which variables are repeated. These

patterns are a subset of the relations described above and can be represented in the

same way. They are given mnemonic names such as Px1z, Pxyy and Pxyz. It is

easy to see that:

Px1z = R11001100 {111, 110, 011, 010}
Pxyy = R10011001 {111, 100, 011, 000}
Pxyz = R11111111 {111, 110, 101, 100, 011, 010, 001, 000}

3.2 Inferences

A general term r(x, y, z) thus has bit patterns for its relation and the pattern for its

arguments. From these it is possible to deduce the variables mappings implied by

the relation that are implicitly the result of the pattern. This can be done efficiently

by table lookup, and so provides a cheap mechanism finding inferences deducible

from an individual term.

More inferences can be made by considering terms in pairs. If there are two terms

r(x, y, z) and s(x, y, z) with identical arguments, they can be replaced by t(x, y, z)

where t is the bit pattern and of r and s. We have already seen an example of

this inference rule above. If, however, the two terms have only two arguments in

common, we can still make deductions. Suppose the terms are:

R01010011(a, x, y) {110, 100, 001, 000}
R10101100(b, x, y) {111, 101, 011, 010}

The first disallows the pattern xy = 11 and the second disallows xy = 00, so, taken

together we can deduce:

R01000010(a, x, y) {110, 001}
R00100100(b, x, y) {101, 010}

From these we can deduce information about ab, namely a = b̄, and taken separately

the terms allow us to deduce new information about axy, (namely: a = x = ȳ),

and bxy (namely: b = x̄ = ȳ). All these deductions can be made easily by means of

bitwise logical operations on the relation bit patterns.

Another possible inference rule applies to a pair of terms of the form r(x, 0, z)

and s(0, y, x), replacing them by t(x, y, z). Again, the bit pattern representation of

t is easily calculated from r and s.

6 4 USING LARGER RELATIONS

4 Using larger relations

Having seen that it is easy to apply the inference rules using a bit pattern repre-

sentation for the relations, it is natural to consider the effect of generalising the

relations to work over 4, 5 or more Boolean variables. The length of the relation

bit pattern is 2n for relations over n variables, and the number of variable mapping

items (x = 0, x = 1, x = y, x = ȳ) is n+ n+ n(n− 1)/2 + n(n− 1)/2 = n(n+ 1).

So when n is 4 there are 20 possible mapping items, and 16 bits are required to

represent a relation. By the time n is 8 the relation takes eight 32 bit words to

represent, which is typically equal to the space required to specify the arguments

variables. A term can thus be represented in 16 words. This seems like a reason-

able compromise. Note that terms over 6 variables would require 8 words for their

representation.

It is worth noting that the relation need not be represented as a bit pattern.

It would, for instance, be possible to use an Ordered Binary Decision Diagrams

(OBDDs) for the purpose, opening the possibility of handling terms with up to 16, or

possibly 32, variables with adequate efficiency, but in this paper only straightforward

bit patterns representations are considered.

We will use the notation Rn to denote the set of terms containing general rela-

tions over n Boolean variables, and BinOp to denote the subset of R3 in which all

terms are restricted to relations corresponding to the 16 dyadic Boolean functions.

The variable mapping can be thought of a subset of R2 restricted to 12 of the 16

possible relations over two Booleans. The four that are omitted involve implication,

possibly combined with negation. We denote this restricted set by EqNe since its

terms contain information about the equality or inequality of variables compared

to other variables or the constants 0 and 1. Its mapping terms are therefore of the

form x = 0, x = 1, x = y or x = ȳ. The four remaining mapping items in R2 are of

the form x → y, x → ȳ, x̄ → y or x̄ → ȳ, and we will denote this subset of R2 by

Imp. Any set R2 can thus be partioned into two subsets EqNe and Imp.

It is possible that the terms of R2 are inconsistent, R2 = {x = 0, y = 1, x̄→ ȳ},
for example. Such inconsistencies should be checked for whenever a new term is

added to the set. Assuming no inconsistencies are present, the EqNe set represents

a mapping function which, when applied to all terms in the system, will eliminate

all occurrences of the variables in its domain. For example, {x = ȳ and z = 0 in

EqNe will eliminate x and z from all other terms, including those in Imp. Once

this is done, these terms can be removed from EqNe, and we are left with only

terms of the form x → y, x → ȳ, x̄ → y or x̄ → ȳ, in which neither x nor y are 0

or 1. If these remaining terms contain a cycle then either the variables in the cycle

are all equal or there is an inconsistency. For example:

x→ y, ȳ → z, z → x̄ =⇒ x = y = z̄

x→ y, ȳ → z̄, z → x̄ =⇒ Inconsistent

Such deductions should be made as soon as they are detectable. We are thus

left with an R2 structure containing only terms from Imp that contain no cycles

and we need an efficient algorithm to allow us to detect cycles when new items are

added (to either Imp or EqNe). For our application the structure is likely to be

sparse.

. . .

7

5 Extending the variable mapping

The mapping set EqNe can be represented using a vector, that maps variable iden-

tifiers to other, possibly negated, variable identifiers. If all the links in this vector

refer to variables at lower subscript positions, the chains will be finite. Whenever

a variable is looked up, its chain pointer can be replaced by the result of the look

up, to improve the efficient subsequent look ups. This lazy optimization has the

advantage that new mappings are cheap to add, while look ups have a once only

chain following penalty.

It is natural to consider the effect of extending our mapping to include items

from the whole of R2 rather than restricting it to the EqNe subset.

The efficient representation of Imp is less easy than EqNe, but it can still be

done economically and it is well worth doing since it tends to reduce the recursion

depth of the (exponentionally expensive) dilemma rule.

6 Algorithm Rn

.

Organisation – inference rules –flow of control decisions – implementation details.

The given propositional expression is first converted to terms in Rn. A typical

term being r(v1, v2, . . . , vn), and the root variable set to 0.

The rewrite and inference rules are:

6.1 PERM

r(v1, v2, . . . , vn)

=⇒
r′(vi, vj , . . . , vk)

where i, j, ...k is a permutation of 1, 2, ..., n

6.2 ELIMEQ

r(v1, v1, v3, . . . , vn)

=⇒
r′(v1, 0, v3, . . . , vn)

By combining PERM and ELIMEQ, all repeated variables in a term can be

removed.

6.3 ELIMVAR

r(v1, v2, . . . , vn)

=⇒
r′(0, v2, . . . , vn)

if v1 is not used in any other term

6.4 INDEP

r(v1, v2, . . . , vn)

=⇒
r′(0, v2, . . . , vn)

if the truth of this term does not depend

on the value of v1

8 6 ALGORITHM RN

6.5 UNIT

r(v1, v2, . . . , vn)

=⇒
r′(v1, v2, . . . , vn)

s(vi, vj)

This rule should be applied whenever applicable to extract a dyadic relation

from r(v1, v2, . . . , vn). The extracted relation is s(vi, vj), and r′(v1, v2, . . . , vn) is

r(v1, v2, . . . , vn) with this constraint removed.

6.6 PAIR2

s(a, b)

r(v1, v2, . . . , vn)

=⇒
s(a, b)

s′(vi, vj)
r′(v1, v2, . . . , vn)

This rule combines a dyadic relation s(a, b) with a term to produce a new dyadic

relation s′(vi, vj) and a replacement term r′(v1, v2, . . . , vn) with this information

removed. This rule is applied whenever applicable. The motivation is that it is

always good to generate more dyadic terms. An example application of this rule is:

{x = 1}{x+ y + z ≤ 2, r + s+ t ≥ 1} =⇒ {x = 1}{y + z ≤ 1}{r + s+ t ≥ 1}

6.7 PAIRGEN

r(v1, v2, . . . , vn)

s(w1, w2, . . . , wn)

=⇒
r′(v1, v2, . . . , vn)

s′(w1, w2, . . . , wn)

t(a, b)

This rule should be applied whenever possible since it generates a dyadic term.

The relations r′ and s′ are r and s with the information in t(a, b) extracted.

6.8 PAIRSIMP

r(v1, v2, . . . , vn)

s(w1, w2, . . . , wn)

=⇒
r′(v1, v2, . . . , vn)

s′(w1, w2, . . . , wn)

This rule combine the information in two given terms to produce a pair of simpler

terms.

6.9 PAIRCOMB 9

6.9 PAIRCOMB

r(v1, 0, . . . , vn)

s(0, v2, . . . , vn)

=⇒
t(v1, v2, . . . , vn)

This rule combines the information in two given terms to produce a single result-

ing term. It decreases the total variable usage count, and decreases the number of

zeros occurring in terms. This rule may eliminate some variables from the system,

which in turn will reduce the fanout of the dilemma rule.

6.10 FACTOR

r(v1, . . . , vi, vi+1, . . . , vn)

=⇒
s(0, . . . , 0, v0, . . . , vi)

t(0, . . . , 0, vi+1, . . . , vn)

if the given relation can be partitioned

into two relations over independent sets

of variables.

This rule does not increase the variable usage count. It does, however, increase

the number of terms (but not neccesarily the space required to represent them),

but this is offset by an increase in the applicability of PAIRCOMB.

7 Remarks

Whenever a dyadic term r(a, b) is generated, it is subtracted from all other terms,

since the other terms no longer need to hold this information. By this policy we

can ensure that no individual term in the Rn set will imply a dyadic term.

This may not always be a good idea, but seems ok provided we never need any

inference rules with three antecedents.

New dyadic terms thus only arise from considering pairs of terms in Rn, but

once found it may immediately generate a cascade of others. These are used to

simplify the terms as much as possible before resorting to the pairwise rules.

Terms are deleted only when they are known to be satisfied under all value

assignments compatible with the current set of constraints. For example, if the

terms {x = y},{x = 1} and {y = 1} are present, the term {x = y} can be deleted.

8 Aside

This whole mechanism reminds me of chemistry. The terms are molecules of a

mixture of gases, and the variables are atoms. Molecules may spontaneously de-

compose into simpler molecules, or pairs of them may react to form larger molecules,

or possibly multiple fragments. Unlike in real chemistry, if two identical molecules

collide, one of them is annihilated. The whole process end with either an explosion

or complete annihilation.

9 The Algorithm

INIT: Rn <- input terms

R2 <- empty

10 10 IMPLEMENTATION

LOOP: Apply the deductions and simplification

rules to Rn and R2 untile no further change.

for d = 1,2,... <apply dilemma rule depth d>.

10 Implementation

10.1 The R2 structure

Use a vector (varmap, say) to represent the simple mappings to 0 and 1, and the

equality/inequality mappings.

varmap!x = -1 Map x to 1

varmap!x = 1 Map x to 1

varmap!x = 0 Nothing known about x

varmap!x = y (x>y) Map x to y.

varmap!x = -y (x>y) Map x to ~y.

The implication items in R2 (x → y, x → ȳ, x̄ → y and x̄ → ȳ) are held in

a another structure. The addition of one implication to this structure may cause

an inconsistency, or may allow some of the implication information to be stored in

varmap. Both need to be detected efficiently.

. . . Give design details . . .

What about using an ROBDD to represent R2?

10.2 The R8 structure

The terms are represented by 16 32-bit words, the first 8 represent the relation

and the remaining 8 the variables used in the relation. These are all non negative.

The terms are canoicalised by removing duplicate occurences of variables, removing

ignored variables, and then sorting them into increasing numerical order. identical

terms are now easy to located. Application of the unit rules are easy. Combination

rules require a search for all pairs of terms with at least one variable in common.

Such pairs, though numerous, will be relatively rare in proctice, and easy to find.

. . . Give details of the search tricks...

11

11 Results

Test/Relation/Mapping Initial Term/var counts after

term/var processing depth n

Counts 0 1 2 3 4

C6288/BoolOp/EqNe 6288/100 Y - - - -

C6288/BoolOp/R2 6288/100 Y - - - -

C6288/R3/EqNe 6288/100 Y - - - -

C6288/R3/R2 6288/100 Y - - - -

C6288/R4/EqNe 6288/100 Y - - - -

C6288/R4/R2 6288/100 Y - - - -

C6288/R5/EqNe 6288/100 Y - - - -

C6288/R5/R2 6288/100 Y - - - -

C6288/R6/EqNe 6288/100 Y - - - -

C6288/R6/R2 6288/100 Y - - - -

C6288/R7/EqNe 6288/100 Y - - - -

C6288/R7/R2 6288/100 Y - - - -

C6288/R8/EqNe 6288/100 Y - - - -

C6288/R8/R2 6288/100 Y - - - -

C7552/BoolOp/EqNe 7552/100 7123/68 6087/57 5611/45 4122/34 Y

C7552/BoolOp/R2 7552/100 Y - - - -

C7552/R3/EqNe 7552/100 Y - - - -

C7552/R3/R2 7552/100 Y - - - -

C7552/R4/EqNe 7552/100 Y - - - -

C7552/R4/R2 7552/100 Y - - - -

C7552/R5/EqNe 7552/100 Y - - - -

C7552/R5/R2 7552/100 Y - - - -

C7552/R6/EqNe 7552/100 Y - - - -

C7552/R6/R2 7552/100 Y - - - -

C7552/R7/EqNe 7552/100 Y - - - -

C7552/R7/R2 7552/100 Y - - - -

C7552/R8/EqNe 7552/100 Y - - - -

C7552/R8/R2 7552/100 Y - - - -

12 Conclusion

These results give a quantitative measure of the advantages of using multiadic rela-

tions over BoolOp relations to represent primary set of terms the algorithm works

on, and also the effect of using R2 relations to represent the variable mapping over

the more restrictive EqNe relations.

The figures should be read with care since they are dependent on the order in

which the inference rules are applied. They are not, however, dependent on the

order in which variables are selected when applying the dilemma rules, since the

tables only contain information about the number of terms remaining at the end of

each recursion level.

What the tables clearly show is that the larger the relations used the smaller the

number of terms and variables that have to be processed and more importantly the

12 13 FINAL SPECULATIVE REMARKS

reduction in recurion level required. The choice of relation size is a compromise. As

the arity of the relations increase the size of each term increases, prticularly the size

of the relation bit pattern since this grows exponentially. A sensible compromise

may well be 8 when 256 bits are require to represent the relation which equals the

space required to represent the eight variable of the term. The larger the relation

bit pattern to more paralleism is possible in the search for applicable inference

rules, and this efficiency gain is somewhat assisted by the reduction in the number

of terms and the number of variables. The efficiency of processing the variable

mapping information is improved by the reduction in number of variables.

Even with this rather straighforward and general implementation using an un-

optimising MCPL compiler the executions times are competitive with rival systems

13 Final speculative remarks

In many ways all tautology checking algorithms are similar. There all take some real

life problem and convert it into a form that is essentially a Boolean expression. The

expression could be closely related to a digital circuit or it may have been derived

from some sub-problem encountered in the course of theorem proving. The form of

the expression is sometimes canonicalized by restricting which Boolean operators it

contains and where they can be placed. One such is conjunctive normal form, but

this may be misguided since the resulting expression can be exponentially larger

than other representations. However, conjunctive normal form is the basis for the

so called SAT methods that have been extensively studied. Methods in which the

expression closely follows the form of the input data are sometimes called structured

methods, but when sophisticated heuristics are used during checking the distinction

becomes blurred.

Whatever form is chosen, it is essentially the conjunction of a set of terms.

This is immediately the case in conjunctive normal form, but even an arbitrary

Boolen expression can be viewed in this way since, when represented as an abstract

syntax tree, every node imposes a relation on the values of nearby quantities. The

expression, in whatever form, will contain propositional variables and it is the task

of the checker to discover whether or not there is an assignment that will cause all

terms in the conjunctive set to be satisfied.

All methods resort to simplification and deductive techniques to reduce the prob-

lem to one with an obvious result. Simplication may involve the removal of identical

terms, and deductions may discover necessary setting of some of the variables or

relationships between pairs of them. But all methods have to resort eventually to

some branch and bound technique, which is essentially an exhaustive search over a

tree where each node is a decision point and its edges correspond to the different

possible choices that can be made. In many methods, a decision point corresponds

to the setting of a particular variable to 1 or to 0. After making a decision a num-

ber of simplifications and deductions can usually be made before reaching the next

decision point. Methods differ in whether they use depth first, breadth first or some

combination of the two when exploring the tree, and they differ in the choices they

place at the decision points. In many methods, these may be straighforward variable

assignments, but the order in which they are selected is critical, and sophisticated

heuristics are sometimes used.

BIBLIOGRAPHY 13

References

[KS97] W. Kunz and D. Stoffel. Reasoning in Boolean Networks. Kluwer Academic

Publishers, 1997.

