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Abstract— Assessing pain levels in animals is a crucial, but
time-consuming process in maintaining their welfare. Facial
expressions in sheep are an efficient and reliable indicator of
pain levels. In this paper, we have extended techniques for
recognising human facial expressions to encompass facial action
units in sheep, which can then facilitate automatic estimation
of pain levels. Our multi-level approach starts with detection of
sheep faces, localisation of facial landmarks, normalisation and
then extraction of facial features. These are described using
Histogram of Oriented Gradients, and then classified using
Support Vector Machines. Our experiments show an overall
accuracy of 67% on sheep Action Units classification. We argue
that with more data, our approach on automated pain level
assessment can be generalised to other animals.

I. INTRODUCTION

Pain level assessment is critical to the welfare of sheep.
Severe pain in sheep often indicates diseases, such as footrot
[16] and mastitis [17]. Recognising and quantifying pain are
essential to the subsequent treatment and pain alleviation
[18]. Moreover, efficient and reliable pain assessment tools
would help with early diagnoses.

Facial expressions are often used as an indicator of pain
level in animals [2], [15]. The Sheep Pain Facial Expression
Scale (SPFES) [1] has recently been introduced. It is a
standardised measure to assess pain level based on facial
expressions of sheep, and has been shown to recognise pain
in sheep faces with high accuracy. However, training of
scorers and the scoring process can be time-consuming, and
individual bias may lead to inconsistent scores [1].

In this paper, we have used computer vision techniques
to automate the analysis of facial expressions in sheep. Our
approach can improve efficiency and ensure consistency in
estimation of pain. We have deployed techniques that are
widely used in human emotion recognition to address the
problem of automatically assessing pain in sheep.

The overall pipeline of our sheep pain level estimation
system is shown in Fig. 1. The main contributions of this
paper can be summarised as follows:

1) Introducing a preliminary taxonomy for sheep facial
Action Unit (AUs) based on the SPFES.

2) Presenting an automatic multi-level approach for es-
timating pain level in sheep by extending computer
vision techniques that have been widely used in human
emotion recognition.

3) Demonstrating that our approach can successfully clas-
sify 9 facial action units of sheep and can automatically
estimate pain levels. We also show that our approach
is generalisable across different dataset of sheep faces.

Finally, we argue that - with their pain scales cali-
brated - the proposed automatic pain level estimation
approach can be generallised to other animals, such as
mice [12] [5], rabbits [14] and horses [13].

We start by reviewing the related work in Section 2. A
description of our dataset is discussed in Section 3. Our
methodology is described in section 4 followed by the
experimental evaluation in Section 5. Finally, conclusions
and future work are presented in Section 6.

II. RELATED WORK

Analysing facial expressions of animals was first in-
troduced by Langford et al. [4] to facilitate detection of
pain level in mice. This approach has been advanced and
generalised to many other animals. Yet, manual scoring is
the usual practice and automatic assessment of pain level is
still an underdeveloped area.

Recently, a standardised sheep facial expression pain scale
SPFES was developed by McLennan et al. [1]. They showed
that their approach is able to recognise sheep pain face with
high degree of accuracy. Since manual labelling was used,
they found that for different scorers, the accuracy of the pain
assessment ranged from 60% to 75%. Their work is the basis
of our sheep AU taxonomy.

Sotocinal et al. [5] attempt to automate animal pain
assessment. They introduced a partially automated approach
for pain level assessment on rats. A Haar feature cascade
classifier is used for real time eye and ear detection. The
classifier served as a pre-screening tool so that only frames
detected with the key features are kept as candidates for
manual assessment. They found such partially automated
pain recognition largely solves the labour-intensive problem
of manual scoring.

Yang et al. [6] analysed sheep faces and proposed a
novel approach to localise sparsely distributed facial land-
marks, which uses triplet-interpolated feature (TIF) extrac-
tion scheme under the cascade pose regression (CPR) frame-
work [7]. They applied the TIF model on sheep, and reported
good results regardless of sheep breed, head pose, partial
occlusion, etc. Yet, their work assumed sheep face bounding
boxes are known. In our work, we implement sheep face
detection before applying the TIF model, then we use the
localised sheep facial landmarks for later AU detection.

III. DATA

Unlike human AU analysis, facial expression recognition
of sheep is still an underdeveloped area. Very few datasets
are available on sheep and fewer include ground truth labels978-1-5090-4023-0/17/$31.00 c©2017 IEEE



Fig. 1. The pipeline of our automatic approach to estimate pain level in sheep

of facial expressions. In this section, we describe our main
dataset and discuss the sheep facial AU taxonomy that is
used in our experimental evaluation.

Fig. 2. Sheep facial AU taxonomy with their description & sample. The
taxonomy is based on the SPFES [1]

A. Dataset
We’ve used the same dataset which has been described

by Yang et al.[6]. This dataset consists of a total of 480
images containing sheep faces. The face bounding boxes are
given, yet there are no labels for sheep facial expressions.
Therefore, we labelled the facial expressions. The labelling
criteria is discussed in the next section.

For the sake of our work, we divide the dataset into two
subsets:

1) The sheep from farm (SFF) dataset: this subset in-
cludes 380 photos taken from a farm. This set includes

sheep of different breed, skin colour and head pose.
The photos vary in lighting conditions with their
background being either barn or fenced grassland. The
image resolution is consistent throughout.

2) The sheep from the Internet (SFI) dataset: this subset
contains 100 images collected from the Internet. This
set is more diverse than SFF. Sheep of different breed,
skin colour and head pose are included. The lighting
condition, background and image resolution are all
different from one another.

B. AU Taxonomy and Labelling

Facial Action Units (AUs) has been widely used in human
facial expression analysis [19], [20]. Human AUs have been
indexed in the Facial Action Coding System (FACS) [3],
which forms the standard for automatic analysis of human
facial expression and emotion recognition. In contrast, sheep
facial expression is yet to be catagorised. We first discuss
the sheep AU taxonomy, then present our labelling approach
of SFF and SFI datasets accordingly.

The sheep facial AU taxonomy used in our work is based
on the SPFES [1]. As a preliminary AU taxonomy, only
frontal faces are considered. The key features that considered
are ears, eyes and nose. Although cheek and lip profile are
discussed in the SPFES, they are omitted in our work because
those features can hardly be seen on a frontal face. The main
differences between the SPFES and our AU taxonomy are
illustrated as follows:
• Ears: In the SPFES, three pain levels are defined

regarding the extent of the ear rotation with both profile
and frontal faces taken into account. In our work, we
map the three pain levels but only consider the frontal
faces.

• Nose: In the SPFES, three pain levels are defined
according to the nostril shape. In our work, we map
the three pain levels as they are.

• Eyes: In the SPFES, three pain levels are defined in
terms of the eye narrowing extent. In our work, we
define only two pain levels, namely pain and no-pain,
because the dataset is strongly biased towards the no
pain case. We also define a separate class for non-
classifiable pain level (AU8) when not enough infor-



mation can be drawn from the frontal face due to head
pose deviation.

Fig. 2 shows the detailed description of our taxonomy.
Based on these rules, we labelled SFF and SFI datasets
with AU numbers. The mapping between AU numbers and
feature-wise pain scores was developed based on the SPFES.
Each frontal face is labelled with five features, namely left
ear, right ear, left eye, right eye and nose. Although the
SPFES scores for symmetric features are expected to be the
same, our facial AU label might differ due to poor lighting,
partial occlusion or head pose deviation. The overall pain
rating was calculated from the feature-wise pain scores using
the same rule-based approach adopted by experts.

IV. METHODOLOGY

In our work, we propose a full pipeline for automatic
detection of pain level in sheep. We first present face
detection and facial landmark localisation. We then extract
appearance descriptors from the normalised facial features,
followed by the AU classification. The overall pain level is
estimated based on the classification results of facial features.
This pain assessment approach is not specific to sheep and
can be generalised to other animals if the proper taxonomies
are developed.

A. Face Detection

We use the Viola-Jones object detection framework [8] to
implement the frontal face detection. SSF dataset is used to
provide the ground truth. Due to the small number of ground
truth images, we adopt a boosting procedure to achieve larger
number of training samples. Sheep faces are clipped from the
ground truth images with ears excluded, then rotations and
intensity deviation are applied to each sheep face. Finally,
the processed sheep faces are put on top of some random
background images. A fixed window size of 32×24 is used
for positive samples. The final collection of positive images
consists of 5000 image windows boosted from 250 ground
truth images. The face detector gives an averaged accuracy
of 71% using a 10-fold cross validation approach.

B. Facial Landmark Detection

The Cascade Pose Regression (CPR) [7] scheme is used
for the facial landmark localisation. Due to the sparsely-
distributed nature of sheep facial landmarks, the TIF [6]
approach is adopted in our work. Compared with Robust
Cascade Pose Regression (RCPR) [9], which accesses the
features on the line segments between two landmarks by
linear interpolation, the TIF model is able to draw feature
from larger area. The shape indexed feature location is
defined as:

p(S, i, j,k,α,β ) = yi +(α ·−→v i, j +β ·−→v i,k)

where S is the current shape, i, j, k are landmark indices and
α , β are randomly generated constants. With −→v i, j denoting
the direction from landmark yi to y j (−→v i,k from yi to yk),
it can be shown that any feature is accessible on the area
spanned by these two vectors. Such approach is robust

against large head pose deviation and sparsely distributed
facial landmarks, which suits well with sheep facial landmark
localisation problem.

The localised sheep facial landmarks are: both ear tips (p1,
p6), both ear roots (p2, p5), both eyes(p3, p4), the crossing
of the nostrils (p7) and the mouth (p8). See Fig. 3 for an
illustration.

Fig. 3. Left: Localised facial landmarks (Note: the eight facial landmarks
are labelled from p1 to p8) Right: Normalised sheep face marked with
feature bounding boxes

C. Feature-wise Normalisation

Normalisation is commonly used in human face recogni-
tion [22] to ensure faces taken from various view points are
registered [21] and comparable. In our work, feature-wise
normalisation is applied on sheep face. Ears, eyes and nose
are extracted and normalised separately.

Eye normalisation is achieved by rotating the image to
keep the two eyes (p3, p4) aligned horizontally. The nostril
crossing and the mouth (p7, p8) are then automatically
aligned vertically since they are inherently in right angle to
the eye alignment regardless of the head pose. The scaling
factor for both eyes and nose is defined as the interpupilary
distance. The feature bounding boxes (see Fig. 3) can then be
drawn according to their dominant directions. The optimal
box size is determined by optimising the AU classification
accuracy. The bounding box sizes we have used are listed as
follows: Eyes - 50× 50 pixels; Nose - 100× 80 pixels (all
are rows× cols) with 172 pixel interpupilary distance.

Unlike human ears, sheep ears vary greatly in size de-
pending on their breed, and are able to show large rotations
regardless of the head pose. The dominant direction of each
ear is defined as the alignment of the ear tip and the ear root
(p1 with p2 and p5 with p6). The scaling factor for each
ear is the distance between the paired-up tip and root. The
normalised bounding box size for Ears is 56×80 pixels.

D. Feature Descriptor

Histogram of Oriented Gradients (HOG) [23] has been
widely used as an appearance feature descriptor for human
facial expressions. We make use of HOG to describe sheep
facial features. We used Dlib [11] implementation of HOGs.
As proposed by Felzenswalb et al.[10], each block of HOG
stands for a 31 dimensional vector: 4 normalisation masks are
applied on top of the 9-orientational histogram, followed by
PCA dimensional reduction [10]. Each HOG descriptor spans
(total number o f blocks) × 31 dimensions. In Fig. 1, HOG



TABLE I
CLASSIFICATION ACCURACY OF OUR 3-CLASS AU CLASSIFIERS COMPARED TO MAJORITY VOTE CLASSIFIER. WE COMPARE SVM LINEAR, REF KERNEL

AND SIGMOID FUNCTION. AS SHOWS, LNR OUTPERFORMS RBF AND SIG FOR MOST AU’S. LNR ALSO HAS THE HIGHEST OVERALL DETECTION RATE.
[TRAINED ON SFF, TESTED ON SFF]

Feature Ear (Left) Ear (Right) Nose Eye (Left) Eye (Right)
AU Number AU1 AU2 AU3 AU1 AU2 AU3 AU4 AU5 AU6 AU7 AU8 AU9 AU7 AU8 AU9 Mean
Sample size 210 80 40 200 80 50 100 160 70 230 90 10 220 100 10 -

Majority Vote 0.64 0.24 0.12 0.61 0.24 0.15 0.30 0.48 0.21 0.70 0.27 0.03 0.67 0.30 0.03 0.33
LNR SVM 0.80 0.61 0.83 0.85 0.65 0.72 0.64 0.49 0.63 0.72 0.82 0.50 0.77 0.88 0.20 0.67
RBF SVM 0.96 0.60 0.80 0.94 0.58 0.76 0.58 0.71 0.59 0.91 0.68 0.10 0.93 0.85 0.00 0.66
SIG SVM 0.96 0.55 0.88 0.97 0.35 0.82 0.47 0.64 0.36 0.85 0.60 0.30 0.82 0.60 0.10 0.62

descriptors are visualised, showing the block dimensions for
ear, eye and nose. It can be seen that HOGs are able to depict
the shape and texture of each feature.

E. Pain level estimation

With HOGs extracted and AUs labelled, we use Support
Vector Machine (SVM) [24] to train separate classifiers
for each facial feature. The overall pain level estimation
approach can be described as follows: we first map the
predicted AUs to feature-wise pain scores. Then we average
the scores for symmetric features (i.e.:eyes, ears) and average
all three feature-wise scores (ear, eye, nose) to get the overall
pain score. Finally, we define two thresholds (0.4, 0.8) to
generate the overall pain score.

TABLE II
COMPARISON BETWEEN THE CLASSIFICATION ACCURACIES OF OUR

2-CLASS & 3-CLASS CLASSIFIERS FOR ACTION UNITS AU1 & AU3
[TRAINED ON SFF, TESTED ON SFF]

AU Number AU1(L) AU1(R) AU3(L) AU3(R)
3-class 0.80 0.85 0.83 0.72

2-class(relabelling) 0.83 0.83 0.87 0.84
2-class(exclusion) 0.84 0.86 0.98 0.98

V. EXPERIMENTAL EVALUATION

In this section, we evaluate our approach presented in
the previous section. We compare 3-class and 2-class AU
classification approaches. We also discuss the effect of
data rebalancing as well as the generalisability of our AU
classifiers.

A. AU classification results

We first evaluated our AU detection approach using a 3-
class classifiers for each feature. The SFF dataset was used
for both training and testing. Each face is given five labels
(left ear, right ear, left eye, right eye and nose), and each
label is associated with 3 AUs (Ears-AU1,2,3; Nose-AU4,5,6;
Eyes-AU7,8,9). Altogether 15 SVM classifiers were trained
for all five features using linear kernel (LNR), radio basis
function (RBF) and sigmoid function (SIG). A 10-fold cross
validation approach was used in all of our experiments.

Table. I shows the evaluation results, with the distribution
of the ground truth and the corresponding majority vote
classifier accuracies. The accuracy is defined as true positives

divided by the total number of samples. With most AUs
achieving more than 60% detection rate, our experimental
evaluation confirms that the presented AU taxonomy is
reasonable and that our proposed AU detection approach are
able to classify AUs of sheep.

It can be seen that SVM with LNR outperforms RBF and
SIG for most AUs (as highlighted in Table. I). Moreover,
the overall accuracy of the LNR model is the highest among
the three - achieving a 67% detection rate in average.
We therefore use LNR SVM model for the rest of our
experiments due to its good performance as well as high
computation speed.

Among all three features, ear appears to be the strongest
pain level indicator. Our approach achieved high accuracy on
ear action units: AU1 (SPFES: no pain) and AU3 (SPFES:
great pain). This is expected as AU1&AU3 classes can be
unambiguously differentiated.

B. Confusion reduction

As seen in our classification results, our challenge is to
map evolutionary features into a fixed number of AU classes.

Sheep facial expression changes gradually as their pain
deteriorate. In manual scoring, the decision boundaries are
inherently soft due to human nature and can easily be re-
calibrated to fit in more pain levels (tighter decision bound-
ary) or less pain levels (wider decision boundary) assuming
the human scorer knows the trend of the evolution. However,
in computer vision, such sense of trend is missing when those
evolutionary features are simply split into different classes
and used in a one-vs-all training approach. In this case, the
number of classes, the taxonomy and the labelling of the
training samples become crucial.

In this section, we attempt to reduce the confusion by
reducing the number of AUs. As a sample feature, we
focus on ear-related AUs because the intermediate state
(AU2: 61%) shows obvious confusion compared with the
AU1(82%) and AU3 (78%).

1) AU reduction by relabelling: Training samples labelled
as AU2 are relabelled and split into AU1 and AU3. The
rationale here is that: the facial symptom indicating pain
would progressively become more obvious as the pain level
deteriorates. Since there is no solid boundary between two
consecutive pain levels, by splitting up AU2 (SPFES: slight
pain) into AU1 (SPFES: no pain) and AU3 (SPFES: great
pain), we are simply recalibrating the pain scale by making



TABLE III
COMPARISON BETWEEN THE CLASSIFICATION ACCURACIES OF OUR 3-CLASS LINEAR SVM CLASSIFIERS BEFORE AND AFTER DATA REBALANCING

[TRAINED ON SFF, TESTED ON SFF]

Feature Ear (Left) Ear (Right) Nose
AU Number AU1 AU2 AU3 AU1 AU2 AU3 AU4 AU5 AU6

Sample size before rebalancing 210 80 40 200 80 50 100 160 70
Majority Vote Accuracy 0.64 0.24 0.12 0.61 0.24 0.15 0.30 0.48 0.21

Accuracy 0.80 0.61 0.83 0.85 0.65 0.72 0.64 0.49 0.63
Sample size after rebalancing 40 40 40 50 50 50 70 70 70

Accuracy 0.85 0.53 0.73 0.84 0.60 0.76 0.66 0.51 0.74

TABLE IV
CROSS-DATASET TESTING, SHOWING THE CLASSIFICATION ACCURACY OF OUR 3-CLASS AU CLASSIFIERS. WE CAN SEE THAT OUR APPROACH IS

GENERALISABLE ACROSS DIFFERENT DATASETS [TRAINED ON SFF, TESTED ON SFI]

Feature Ear (Left) Ear (Right) Nose Eye (Left) Eye (Right)
AU Number AU1 AU2 AU3 AU1 AU2 AU3 AU4 AU5 AU6 AU7 AU8 AU9 AU7 AU8 AU9 Mean
Sample size 96 8 13 102 7 8 24 77 16 80 33 4 91 20 6 -
SVM LNR 0.65 0.63 0.62 0.77 0.43 0.63 0.54 0.65 0.31 0.60 0.39 0.00 0.37 0.10 0.67 0.49

each pain level cover a wider range of facial expressions. We
then train a binary classifier for each ear. The resulting ac-
curacy (see Table.II) exceeds our 3-class approach accuracy
by 6% in average.

2) AU reduction by exclusion: In this section, we change
the way of AU reduction: we exclude the confusing AU
and the associated samples from the classification stage.
AU2 training samples are excluded. Using this approach,
we managed to get a 15% increase in detection rate (see
Table.II). Such increase indicates that by excluding the
confusing intermediate class, a more reliable classifier can
be trained.

The results are reasonable since we are mapping between
a continuous scale of feature changes to a set of discrete
AU’s.

C. Training sample rebalancing

Some AUs perform worse than the others, such as
AU2,5&9. We have further explored our data to check if the
exceptionally low accuracies are resulted from the imbalance
in training samples. In this experiment, we enforce training
sample rebalancing and investigate its effect on accuracy.
Eyes are not examined because there are only 10 samples
labelled as AU9 in SFF dataset. Three 3-class linear kernel
SVM classifiers are trained.

By reducing the samples for AU4&5, the detection rate of
AU6 improves by 17% (see Table.IV) and the detection rates
of AU4&5 increase by about 4%. Note that the accuracy of
AU5 is the lowest among AU4,5,6 despise having large num-
ber of samples, while among AU1,2,3, AU3 has the highest
accuracy even with the smallest number of samples. The
accuracy of AU2 is about 30% lower than AU1&3 in both
the imbalanced and balanced cases. These results suggest that
data rebalancing would, to some extent, improve the accuracy
of the AU with the lowest majority vote accuracy. However,
the nature of the AU definition still takes the leading role in

affecting its detection rate.

D. Generalisation
Here we aimed to evaluate the generalisability of our

approach. In this experiment, we test if a classifier trained on
a specific dataset is generalisable to another dataset. Five 3-
class classifiers are trained using the SFF dataset, and then
tested on the SFI dataset. The SFI dataset varies a lot in
resolution and is strongly unbalanced and biased towards
AU1,5&7. This makes the cross-dataset testing a challenging
task.

The test results are shown in Table. IV. The detection rates
of AU1,2&3 show strong correlation with their test results
on the SFF set, while the accuracies of AU4,5,6,7,8,9 is
affected by the data distribution. Such result suggests that
ear is a strong pain indicator and its classifier generalises
well, whereas for noses and eyes, more data is needed in
order to achieve better classification results.

The overall pain level estimation is also tested on the SFI
and the confusion matrix is shown in Table. V. We adopt the
same rule-based method as used in manual scoring: we use
five classifiers to predict five feature-wise pain scores, then
those scores are averaged and compared with two thresholds
separating the three pain levels. No extra error is introduced
during the estimation stage, therefore the overall pain level
is expected to be a fair measure of our overall performance.
An obvious trend favouring higher pain levels can be seen
from the confusion matrix. It suggests that our automated
pain level estimation approach is able to detect, though
exaggerate, the pain level based on the five features. The
inherited softness in human decision boundary is expected
to be achieved by adjusting the two thresholds of the three
pain levels.

E. Concatenated feature
In this experiment, we attempt to test an alternative

approach to detect pain level in sheep. Instead of training



TABLE V
CROSS-DATASET TESTING, SHOWING THE CONFUSION MATRIX OF THE

ESTIMATED OVERALL PAIN LEVEL [TRAINED ON SFF, TESTED ON SFI]

Truth / Label P=0 P=1 P=2 Sample size Accuracy
P=0 35 27 18 80 0.44
P=1 3 12 11 26 0.46
P=2 1 1 9 11 0.82

TABLE VI
CONFUSION MATRICES OF THE PAIN LEVEL ESTIMATION (M.V.:

MAJORITY VOTE ACCURACY) [TRAINED ON SFF, TESTED ON SFF & SFI]

Truth / Label P=0 P=1 P=2 Total M.V. Accuracy
Concatenated feature - Trained on SFF, Tested on SFF

P=0 94 19 27 140 0.41 0.67
P=1 30 67 53 150 0.44 0.45
P=2 3 7 40 50 0.15 0.80

Concatenated feature - Trained on SFF, Tested on SFI
P=0 43 43 5 80 - 0.54
P=1 17 9 0 26 - 0.35
P=2 5 4 2 11 - 0.18

five separate AU classifiers, we train a single pain level
classifier. We concatenate all five feature descriptors to be a
3568 dimensional whole face descriptor and label the training
samples with the overall pain levels. A 3-class pain level
classifier is trained with linear SVM model on the SFF
dataset. The classifier is tested on both SFF and SFI dataset.
The confusion matrices are presented in Table. VI. In the
generic dataset (SFF) test, The pain level classifier shows
high accuracy on ′Pain = 0′ & ′Pain = 2′ classes regardless
of the small number of samples on ′Pain = 2′ class. Yet, in
the cross-dataset (SFI) test, the detection rate leans to the
majority vote accuracy. Larger amount of balanced dataset
is required for further exploration of this method.

VI. CONCLUSIONS

In this paper, we present a multi-level approach to au-
tomatically estimate pain levels in sheep. We propose a
preliminary sheep facial AU taxonomy based on the SPFES.
We automate the assessment of facial expressions in sheep
by adapting the techniques for human emotion recognition.
We demonstrate that our approach can successfully detect
facial AUs and assess pain levels of sheep. Our experiments
also show that our AU classifiers are generalisable across
different datasets.

For future work, we would like to further explore classifier
training with the concatenated feature descriptor to map
facial feature directly to pain levels. We would also like
to add geometry features as well as appearance features.
This will help our AU classifier to be more robust to head
pose deviation as well as breed variation. Larger number of
labelled data is needed to further investigate data balancing
and generalisation. Ultimately, we would like to test our
automatic pain assessment approach on different animals.
However, this will again require more efforts in data col-
lection and labelling.
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