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Abstract— Pain in farm animals harms the economics of
farming and affects animal welfare. However, prey animals
tend to not openly express signs of weakness, making the pain
assessment process difficult. We propose a novel hierarchical
model for disease progression evaluation, adapted for a wide
range of head poses, according to which relevant information
is extracted. A fine-tuned CNN is applied for face detection,
followed by a CNN-based pose estimation and pose-informed
landmark location method. Then multi-modal features are
extracted, combining the appearance of regions-of-interest,
described using a Histogram of Oriented Gradients, with
geometric features and the pose values, leading to a binary
Support Vector Machine classifier. To evaluate the efficiency of
the complete pipeline, videos of the same sheep recorded at
initial and advanced stages of treatment were tested, showing a
decrease in the average pain score detected. The pain evaluation
method significantly outperformed the existing state-of-the-
art approach, being the first to apply a pose-based feature
extraction in sheep pain detection.

I. INTRODUCTION

Animal welfare and responsible farming have seen an
increase in legislation in the past few years. Many diseases
that affect animals are usually painful and cause distress.
However, as prey species, sheep tend to not openly express
signs of pain or weakness. The lack of human ability to
recognise signs of pain is one of the most common causes of
the untreated pain experienced by these animals [21], which
is often associated with diseases such as footrot [5], mastitis
[4] and pregnancy toxaemia [20]. The identification and
quantification of pain are crucial for subsequent treatment
and suffering relief [7].

Facial expressions have been used as an indicator of pain
level in multiple species, including sheep [10], [22]. The
Sheep Pain Facial Expression Scale (SPFES), introduced by
McLennan et al. [22], provides a reliable tool for pain assess-
ment associated with naturally occurring painful diseases in
sheep. This scale analyses regions-of-interest, particularly the
eyes, nose, ears, lips and cheeks, to determine levels of pain.
It has shown high accuracy in identifying sheep pain and
signs of illness. Studies also showed that changes in the facial
expressions were detected after treatment. Nevertheless, the
training of observers to manually assess of pain on large
numbers of animals is very time-consuming, supporting a
clear advantage in an automatic method.

We propose a hierarchical model for automatic pain as-
sessment. The system is composed of a Convolutional Neural
Network (CNN) - based face detection, followed by head

pose estimation to assist the landmark localisation process.
To automatically predict the pain level, multi-modal features
are extracted then a single classifier is trained for pain
prediction, thus this process removes the bias associated with
individual action unit classifiers.

The main contributions of this paper can be summarised
as follows:

• Proposing a robust sheep face detection model based
on a fine-tuned SSD-Mobilenet networked trained on
a varied dataset of sheep in farm and in the wild
with varied head rotations. We also suggest a tracking
algorithm that allows continuous detection and analysis
of video.

• Introducing a pose informed automatic pain estimation
method that adapts to different head rotation and con-
sequent self-occlusion. When compared with previous
work, the proposed method allows analysis of new facial
regions that are only visible from profile viewpoints.

• Evaluating our proposed multi-step model on videos,
thus making use of the temporal nature of facial expres-
sions, in opposition to single image pain evaluation that
has been the common evaluation method in previous
state-of-the-art models. This improves the robustness of
the system to momentary pain variations.

• Demonstrating the effectiveness of our global pain es-
timation model compared to models utilising regions-
of-interest, hence, removing the bias introduced by
annotations of different face areas.

To the best of our knowledge, this is the first complete
pipeline for automatic analysis of animal disease progression
in video.

II. RELATED WORK
Pain assessment in animals, based on their facial ex-

pressions, was firstly introduced by Langford et al. [16]
describing a three-point scale for a set of relevant face
features, such as orbital tightening, nose bulge, cheek bulge
and ear position. This approach has been applied to multiple
species, such as rats [25], rabbits [15], horses [3], [28] and
more recently sheep [10], [22].

Manual scoring is still the usual practice for applying
grimace scales, yet, it is very time-consuming and can
introduce bias into the final score. A partially automated
approach was proposed by Sotocinal et al. [25] aiming to
extract scoring-ready images from videos of mice, replacing



the manually frame selection process. For this purpose, a
Haar feature cascade classifier was used to detect the eye
and ear, returning the frames where the key features were
detected. Despite partially solving the labour-intensive prob-
lem of manual scoring, the pain assessment remains manual.
This process was later automated [27] using a convolutional
neural network based on the Inception V3 model, getting a
greater proportion of images classified as “pain” following a
laparotomy surgery when compared to sham surgery or post-
surgical analgesic. This suggests that the proposed model
provides an objective way to identify pain and pain relief in
mice.

Previous work in sheep [19] showed the potential of
an automatic pain assessment system, combining the pain
prediction for several facial action units described in the
SPFES. To detect the regions of interest, 8 facial land-
marks were located using a modified version of Ensemble
of Regression Trees (ERT) [14] with triplet interpolated
feature (TIF) extraction [31]. However, the limited number
of landmarks restricted the definition of the key facial areas
and thus the pain estimation step was only defined for frontal
faces. Further work on landmark detection was developed
by Hewitt et al. [12] adding a pose estimation step to the
pipeline and improving the landmark localisation for extreme
poses. The main limitation found in previous work was the
face detection step with both the Viola-Jones object detection
framework [19], [29] and HOG-based face detection models
[2], [12] proving to be insufficient to detect faces with the
variety of head poses necessary.

III. DATA

In this section, we describe the dataset used in our work,
according to the source and characteristics of the image. The
dataset defined in [19] was augmented with new photographs
leading to a final labelled set of 1306 images with bounding
box annotations, with 1075 of them having face landmarks
annotations. Additionally, 86 still images were taken from
videos of sheep in the wild and fully annotated, including
pain assessment following the SPFES. Moreover, 8 videos
corresponding to an initial and an advanced stage of treat-
ment of 4 different sheep were added for disease progression
analysis.

A. Main Dataset and Annotations

The two subsets described by Mahmoud et al. [19] were
revised and updated following the labelling criteria described
in the present section. The two subsets include:

• Sheep from a farm (SFF): 559 images taken on a
similar farm setting.

• Sheep from the internet (SFI): 98 images collected
from the Internet.

Additionally, in the wild images with different head poses
and scenarios were added to create a more representative set,
as follows:

• Sheep from WSID-100 (SFW): 239 images selected
from the WSID-100 dataset [32] under the category
sheep.

Fig. 1. Sample images from each subset showing the diversity in head
pose and breed present in the complete dataset. From top to bottom, left to
right: SFF, SFI, SFW, SFFli.

• Sheep from Flickr (SFFli): 410 images extracted from
Flickr under the tag “sheep”.

In total, the main dataset includes 1306 images. SFF is
composed of images with a consistent resolution ( 1333 ×
1000 px or 755×1000 px) and background, a barn or fenced
grassland. The diversity in breed and colour is limited and the
illumination conditions are shared by a significant number
of images. In contrast, the SFI, SFW, and SFFli showcase a
mixture of sheep breeds, scenarios, and overall acquisition
conditions. Regarding image resolution, all images of SFFli
have 800 px on the longest edge while the SFW and SFI
resolutions vary greatly. All subsets include a diverse number
of sheep faces in each image - from cluttered images to
frontal clean shots - as well as different head poses (see
Fig. 1).

To guarantee the coherence of the annotations, a set of cri-
teria was defined, with further revisions of previously made
annotations [19]. Additionally, a qualitative pose (looking
right, left or frontal) was assessed to all faces in the dataset.

For face bounding box annotations, the criteria proposed
by Su et al. [26] was used as a starting point. Additionally,
we defined what would be a suitable face detection for pain
recognition according to the SPFES, guaranteeing that the
key features were present.

The annotation criteria can be summarised as follows:
1) Regarding occlusion, only self-occlusion is accepted,

not considering the examples where the face is oc-
cluded by external elements.

2) The different key features present must be distinguish-
able. Therefore, in photographs with a small depth of
field, only the sheep near the focal plans are noted, as
only on these cases it is possible to distinguish clearly
the changes in the facial features. The same applies to
faces that are very far from the camera.

3) Only head poses with a yaw angle of approximately
0 to 180o are considered. This excludes sheep looking
backwards.

4) Lambs and goats are not labelled since the SPFES does
not apply to them.



5) The face is defined from the chin level to the forehead
level. If the forehead is not visible due to fur a
consistent estimation of its position is made.

Faces were then annotated following the 25 landmarks
scheme presented by Hewitt et al. [12]. Additionally, the
occluded landmarks were labelled. The quantitative pose was
calculated by transforming the mean face shape into the
shape defined by the landmark, applying two approaches for
solving the Perspective-n-Point problem: an iterative method
based on Levenberg-Marquardt optimization and RANdom
SAmple Consensus (RANSAC) algorithm by Fischler et al.
[6]. The Mean Normalized Euclidean Error (MNE) between
the transformed mean shape and the ground truth was calcu-
lated for both methods and the most accurate transformation
was considered to be our head pose. The faces with an
MNE value larger than 15% were considered invalid for
the training of both pose estimator and the pose-informed
landmark detector.

After the previously described data selection process, the
landmarks and pose annotations subset included: 649 SFF
faces, 123 SFI faces, 39 SFW faces, and 264 SFFli faces,
with a total of 1075 faces.

From these, 879 correspond to poses between 0o and 30o,
107 to poses between 30o and 60o and 89 to poses between
60o and 90o.

B. Pain Dataset and Annotations

The pain score annotations were made by specialists in
assessing facial expressions in sheep following the guidelines
described by McLennan et al. [22].

The pain dataset contains a total of 86 images extracted
from videos in a farm context (see Fig. 2), with annotations
for the face and landmarks.

Each facial feature was scored individually from “0”
(“pain not present”) to “2” (“pain present”). The number of
“2” annotations was small since it represents a higher state
of pain and was always associated with pain in other facial
features. Contemplating this fact, the sheep were considered
in pain if the average score of the visible facial features was
higher than 0.5, corresponding to signs of pain in at least
two regions of interest.

Furthermore, a set of videos from 4 sheep in different
stages of the disease, ranging from day 1 / 7 to day 42 of
treatment, was selected to test the full pipeline. The data
represents natural footage of sheep, often including extreme
camera movements with the image following a specific sheep
around the farm. The length of the videos is also variable,
between 1 and 8 minutes.

IV. METHODOLOGY

In this section, we present the hierarchical model proposed
(see Fig. 3). First, we explain how we detected the sheep
faces and estimated the head pose. Then, we outlined how we
used this information for facial landmark detection. Finally,
we describe the normalisation and extraction of key facial
features and how appearance and geometry features are used
to predict pain.

Fig. 2. Sample images from the dataset collected for pain estimation. The
upper row shows samples of “no pain” while the lower row shows samples
of “pain”. From left to right: 0 to 30 degrees; 30 to 60 degrees and 60 to
90 degrees head pose.

A. Face Detection: SSD-MobileNet

With the emergence of Convolutional Neural Networks
(CNN), it is important to compare the performance of the
traditional strategies applied in previous work [12], [19] and
complex features based methods. Zhang at al. [33] studied
the performance of classical detection algorithms of human
faces, including Viola-Jones [29] cascade and a fine-tuned
Faster R-CNN [9], for monkey face detection. Applying
the previously described detectors to real world images the
AdaBoost [8] resulted in a high number of false positives
contrasting with the Faster R-CNN model, that displays
a high Area Under the Curve (AUC) and detections for
different head poses.

Following a similar line of thought, we propose fine-tuning
a convolutional neural network model, giving preference to
faster models, aiming at video applications. For this reason, a
Single Shot MultiBox Detector (SSD) was used, introduced
by Liu et al. [18], built on the MobileNets architecture [13],
[17]. This method has proven to have comparable accuracy
with slower object detection models such as Faster R-CNN
and has shown higher accuracy than YOLO [23], the previous
state-of-the-art for single-shot detectors.

B. Pose Estimation: Hopenet

Considering the satisfactory results obtained by Hewitt
et al. [12], a Hopenet [24] was applied to the updated
dataset, with 1075 faces. For this purpose, the faces were
flipped according to the relative yaw, normalising the pose.
Additionally, to improve the balance between the different
head poses, a negatively correlated augmentation similar to
the one proposed by Yang et al. [30] was performed. From
the distribution of the absolute yaw angles, an augmenta-
tion factor for each pose bin was determined according to
Equation 1 where countmax is the maximum count for any
pose bin and countb is the count for pose bin b. The level of
boosting is controlled by parameter α with 0 ≤ α ≤ 1, in this
case α = 0.6. This method allowed to get a more balanced
set of images, without losing the underlying distribution.

augb =

[(
countmax
countb

)α]
(1)



Fig. 3. The full pipeline of the proposed automatic approach for disease progression monitoring.

The augmentation algorithm applied to the images in-
cluded rotation, flipping and thin-plate splines warping [1]
generating slight variations from the input image, using the
landmarks as a reference.

The multi-loss convolutional neural network was ini-
tialised using a pre-trained model on the 300W-LP [34], a
large-pose human face images dataset.

C. Landmark Location: Ensemble of Regressions Trees

To optimise the landmark detection presented by Hewitt et
al. [12], we propose setting three pose-informed Ensemble
of Regressions Trees (PI-ERT) model [14] introducing the
occlusion information for each range of poses to define the
relevant landmarks for each model.

For this purpose, the faces - after pose normalisation -
were divided into three bins according to their absolute
yaw ([0, 30]; [30, 60]; [60, 90] degrees). For each range, the
landmarks that were occluded in more than 70% of the faces
in a specific bin were excluded from the shape model.

D. Pain Estimation

To assess the pain based on facial expressions, the correla-
tion between appearance/geometric features and the overall
pain score was studied. As mentioned in section IV-C, the
head rotation leads to self-occlusion of facial areas, therefore,
for each yaw angle range, the visible facial features were
defined. Accordingly, after pose normalisation, both ears and
eyes, as well as the nose were defined visible for yaw values
until 10 degrees. With further rotation until 60 degrees, the
nose, left eye, left cheek, and both ears are visible, with the
right eye occluded. Lastly, for yaw from 60 to 90 degrees,
the visible facial features were the nose, left eye, left ear and
left cheek, with the entire right side occluded (profile view).

Similar to what was proposed by Mahmoud et al. [19],
Histogram of Oriented Gradients were used as an appear-
ance feature descriptor for each facial area. This descriptor,
defined by Dalal et al. [2], represents the distribution of local
intensity gradients and edge directions, providing pertinent
information regarding the shape/appearance of the object. As
geometric features, the global angle of each ear, between its
root and tip, and the distance between the ears roots were
used. Additionally, considering the changes in the appearance

of each area of interest with the point of view, the quantitative
pose was also added to our feature set by concatenation.

The final feature vector was defined with the HOGs for the
left and right ear, left and right eye, nose and left cheek, the
geometric features, and the pose. A Support Vector Machine
model, with a linear kernel, was then trained.

V. EXPERIMENTAL EVALUATION

To evaluate our models, a 5-fold cross-validation was used
for all the experiments and the average value was reported.
Each fold was balanced according to the classification label
of interest in each section; For face detection, this was the
qualitative pose of each face. For the pose detection, this was
the quantitative pose. For the pain estimation, this was the
pain score. When augmenting the data, the evaluation was
always performed on an unaugmented test fold, not used for
the training phase. Each step of the pipeline was trained and
evaluated independently and then all combined in the disease
progression evaluation step in the pain dataset.

A. Implementation Details

1) Sheep Face Detection: The larger side of each image
was resized to 300 and the other was updated proportionally.
After resizing, the bounding boxes with less than 4500 px of
area were not considered viable for training purposes.

The SSD-Mobilenet network was initialised using a model
pre-trained on the Common Objects in Context (COCO)
dataset presented by Lin et al. [17]. The batch size used
was 12 and, regarding the hyperparameters, the number
of training steps (total number of training iterations) used
was 10000, corresponding to 185 epochs, with 648 training
images.

A detection was considered a true positive if the In-
tersection over Union (IoU) with a ground truth box was
higher than 0.5. We only considered one true positive for
each ground truth bounding box, considering the rest of the
detections as false positives. Additionally, the detections with
an IoU higher than 0.7 were replaced by their mean shape,
since they likely refer to the same face.

For the full pipeline implementation, a tracking system
using Kernelized Correlation Filters (KCF) [11] was intro-
duced, only running the CNN-based face detector once every
second.



2) Landmark Location: Different amount of perturbations
were introduced on the training phase (30, 50, 70 and 90),
with the final models being the ones were the performance
plateau, with 50 perturbations for the bins [30,60] and [60,
90], with a smaller number of examples, and 30 perturbations
for the bin [0, 30]. The error was normalised according to
the mean edge length of the bounding box.

3) Pain Estimation: Firstly, all faces were flipped accord-
ing to their relative yaw, thus normalising the pose. The facial
areas were extracted and the ears and nose were normalised,
rotating the ears horizontally in relation to the line defined by
the ear root and tip, and rotating the nose vertically following
the line defined by the nose tip and the middle of the mouth.
The set dimensions for each facial feature were 100× 80 px
for the ears, 80 × 80 px for eyes and cheeks and 80 × 120
px for the nose. The hyperparameters of HOGs were defined
experimentally through a nested cross-validation, according
to the F1-score of the final score. The HOGs parameters used
were 9 orientations, 16 pixels per cell and 2 cells per block.
When a region of interest was not visible from a particular
pose, it was replaced by a zeros matrix of the same size
for the appearance feature assessment. For the geometric
features, the missing parameters were considered as “-1”.
An SVM model with a linear kernel was trained and each
feature was tested individually to verify their relevance and
then they were all combined and evaluated.

4) Disease progression: For pain estimation algorithm,
we used a leave-one-animal-out testing approach. In total,
four models were trained, with each model removing one of
the four sheep of interest from the training set. Considering
the nature of the videos, with a moving “handheld” camera,
the sheep face could be cropped or outside the frame. For
this reason, only sections where the specific sheep is in
focus were considered. All example video segments showed
a diversity of head poses, including frontal and profile views.
The full pipeline was applied every 10 frames and the
average pain score in the video was then calculated.

B. Sheep Face Detection
The SSD-Mobilenet proved to be efficient in detecting

sheep faces in different environments (see Fig. 4), with
diverse characteristics both intrinsic (breed and pose) and
extrinsic (illumination and scenario). In comparison with the
models previously described, HOG-SVM [12] and a Viola-
Jones based detector [19], the algorithm overcomes the lack
of flexibility in regards to the head pose, recognising faces
through a wide set of poses, a crucial feature for detection
in the wild.

Our proposed model showed a precision of 94.17 %, recall
of 94.02 % and an F1-score of 94.00 %. In contrast, the
HOG-SVM model, trained on the same data was unable to
detect the non-frontal faces, achieving a precision of 94.44%
with the low recall of 8.73 %.

C. Pose Estimation
The metrics used to evaluate the pose results were the

mean absolute error (MAE), the Pearson’s Correlation Co-
efficient (PCC), that measures the correlation between the

Fig. 4. Examples of the CNN-based face detection, displaying detections
over a wide range of head poses on the SFF, SFI, SFW and SFFli datasets

TABLE I
POSE ESTIMATION RESULTS SHOWING RESULTS FOR PITCH, YEW AND

ROLL WHEN APPLIED ON THE PROPOSED DATASET

Yaw Pitch Roll Average

MAE 10.38 9.42 6.78 8.86
PCC 0.82 0.42 0.43 0.59

SAGR 0.72 0.73 0.77 0.74

predictions and the ground truth, and the Sign Agreement
metric, indicating if the prediction matches the general
direction of the head.

Considering the diversity of poses in the dataset, the
results showed satisfactory values (Table I), especially for the
yaw angle, with a high agreement in sign and a reasonable
error for the 30 degrees bin division used in the pose-
informed landmark location step. Compared with the values
presented by Hewitt et al. [12], there is an increase of 2.28
degrees in the average MAE, which can be a consequence
of the augmentation of the diversity of head poses in the
dataset, in particular extreme head poses, that continue to be
underrepresented after data augmentation.

D. Landmark Localisation

Our occlusion-informed method achieved a significantly
higher success rate (SR) than the previous method, with an
increase of 14% for faces with a head pose within 30 and
60 degrees and 21% for faces with a head pose higher than
90 degrees (Table II).

As expected the model generalised better for the 0 to 30
degrees bin, since the number of images, in this case, is 879,
which is more than eight times higher than the other two:
107 and 89 for poses between 30 and 60 degrees and 60 and
90 degrees, respectively (see Fig. 5).

However, it is noticeable that the system does not gen-
eralise well for poses underrepresented in the dataset, for
instance, with an extreme pitch angle, such as the one
presented in the last column of Fig. 5. This suggests that,
although there is an increase in the range of yaw angles
represented in the dataset, it is still necessary to introduce
more representation of head poses, with angle variations
following all three directions, to get a more robust model.



TABLE II
LANDMARK LOCALISATION PERFORMANCE, FOR THE PI-ERT WITH ALL

THE 25 LANDMARKS AND THE PROPOSED OCCLUSION-INFORMED

PI-ERT (OPI-ERT)

OPI-ERT PI-ERT

MNE SR AUC MNE SR AUC

0 - 30o - - - 0.05 0.87 0.94
30 - 60o 0.10 0.64 0.90 0.11 0.50 0.89
60 - 90o 0.12 0.39 0.88 0.15 0.18 0.85

Fig. 5. Qualitative examples of the landmark location results for the
occlusion-informed ERT. The right-most column shows an example where
the method struggles, due to an extreme head pose. Rows (from top to
bottom): ground-truth, standard PI-ERT; occlusion informed PI-ERT

E. Pain Estimation

Considering a majority vote accuracy baseline of 55%, all
the three classes of features proposed showed a significant
improvement over the baseline. Additionally, the combined
model showed impressive results, with an F1-score of 73%
(Table III). Comparing to the previous model defined by
Mahamoud et al. [19], there is an accuracy increase of 11%,
which is remarkable considering the diversity of the dataset
used, with a range of different head poses in opposition to
datasets with only frontal faces, which were used previously.

F. Disease progression

To evaluate the validity of the full pipeline proposed for
disease progression analysis, the model was applied to videos
from the same sheep at the beginning of the disease (first or
seventh day) and after treatment (after 42 days). Two animals
had mastitis while the other two had pregnancy toxaemia.

TABLE III
PAIN ESTIMATION RESULTS FOR THE SVM MODELS TRAINED WITH THE

INDIVIDUAL FEATURES AND THE COMBINED FEATURE VECTOR WHEN

APPLIED TO THE DATASET PROPOSED (MAJORITY VOTE: 55 %)

Precision Recall F1- score Accuracy

HOGs 0.74 0.66 0.69 0.74
Pose 0.76 0.54 0.63 0.71

Geometry 0.75 0.49 0.58 0.68
Combined 0.83 0.68 0.73 0.78

The pain score returned for each video was, on average,
0.89 in videos showing initial stages of the treatment. Then
an average decrease of 0.30, was observed in the advanced
treatment videos. This decline was detected in all the four
examples consistently, leading us to argue that there is a clear
relationship between the pain score returned and the illness
progression.

The mean pain score after 42 days was 0.59, which was
higher than what we expected considering the duration of
the treatment by this point. However, we had a few possible
explanations for that. Since the pain analysis is the last step
of a hierarchical pipeline, preceded by face detection, pose
estimation and landmark detection, the error obtained in
each step will propagate and affect the final classification.
That is normal and anticipated in any hierarchical model.
Additionally, the facial pain score will not be constant, with
natural fluctuations in the pain level and with sheep tending
to mask their signs of pain when observed, which is an
expected behaviour considering that in the videos used the
camera operator is on the field, following the animal. Finally,
external factors such as the wind and loud noises will have
a noticeable effect on the ear position, making them go
backwards in a similar manner to what happens in cases
of pain.

VI. CONCLUSIONS AND FUTURE WORK

This paper introduced an optimised dataset for sheep
face detection, pose estimation and landmark localisation,
containing a total of 1306 images annotated for face detection
and 1075 faces with both the bounding box annotation and
landmark locations. Additionally, a set of 86 frames extracted
from natural footage of sheep was described and used for
pain estimation purposes.

The CNN-based face detection proved to be effective
in detecting sheep faces through a variety of head poses,
being adequate for applications in the wild and providing
the possibility to extend the pipeline to accommodate profile
faces. This model allowed the integration of the cheek region
described in the SPFES scale, not seen from a frontal point
of view.

The pose and landmark localisation models proposed in
previous work [12] were extended based on the improved
dataset defined in this paper. Three pose-informed ERT (PI-
ERT) models were trained for landmark localisation, redefin-
ing their shape by removing the self-occluded landmarks for
each pose’s yaw range.

Finally, we propose a pain assessment model, based on
pose-informed appearance and geometric features as well as
the head pose. Our experiments showed an accuracy of 78%
outperforming state-of-the-art models.

The performance of the hierarchical pipeline in predicting
disease progression in the wild was evaluated using footage
from the same sheep, with a total of four different animals,
in an initial and advanced stage of the treatment, observing
a correlation between the average pain score and the stage
of the treatment in all four cases.



For future work, we recommend the implementation of
a better video capturing system with a hidden camera, for
example, that can be set close to a manger, to record the
animals in an undisturbed manner when it is more likely for
them to not hide signs of pain. Additionally, we would like to
develop an interface and design user tests to better understand
the needs of the farmers and consider possible points of
improvement of our models based on their feedback.
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[10] C. Häger, S. Biernot, M. Buettner, S. Glage, L. Keubler, N. Held,
E. Bleich, K. Otto, C. Müller, S. Decker, et al. The sheep grimace
scale as an indicator of post-operative distress and pain in laboratory
sheep. PloS one, 12(4), 2017.

[11] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-speed
tracking with kernelized correlation filters. IEEE transactions on
pattern analysis and machine intelligence, 37(3):583–596, 2014.

[12] C. Hewitt and M. Mahmoud. Pose-informed face alignment for
extreme head pose variations in animals. In 2019 8th International
Conference on Affective Computing and Intelligent Interaction (ACII),
pages 1–6. IEEE, 2019.

[13] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[14] V. Kazemi and J. Sullivan. One millisecond face alignment with an
ensemble of regression trees. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1867–1874, 2014.

[15] S. C. Keating, A. A. Thomas, P. A. Flecknell, and M. C. Leach.
Evaluation of emla cream for preventing pain during tattooing of
rabbits: changes in physiological, behavioural and facial expression
responses. PloS one, 7(9), 2012.

[16] D. J. Langford, A. L. Bailey, M. L. Chanda, S. E. Clarke, T. E.
Drummond, S. Echols, S. Glick, J. Ingrao, T. Klassen-Ross, M. L.
LaCroix-Fralish, et al. Coding of facial expressions of pain in the
laboratory mouse. Nature methods, 7(6):447, 2010.

[17] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick. Microsoft coco: Common objects in
context. In European conference on computer vision, pages 740–755.
Springer, 2014.

[18] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu,
and A. C. Berg. Ssd: Single shot multibox detector. In European
conference on computer vision, pages 21–37. Springer, 2016.

[19] M. Mahmoud, Y. Lu, X. Hou, K. McLennan, and P. Robinson.
Estimation of pain in sheep using computer vision. In Handbook
of Pain and Palliative Care, pages 145–157. Springer, 2018.

[20] J. V. Marteniuk and T. H. Herdt. Pregnancy toxemia and ketosis of
ewes and does. Veterinary Clinics of North America: Food Animal
Practice, 4(2):307–315, 1988.

[21] K. M. McLennan. Why pain is still a welfare issue for farm animals,
and how facial expression could be the answer. Agriculture, 8(8):127,
2018.

[22] K. M. McLennan, C. J. Rebelo, M. J. Corke, M. A. Holmes, M. C.
Leach, and F. Constantino-Casas. Development of a facial expression
scale using footrot and mastitis as models of pain in sheep. Applied
Animal Behaviour Science, 176:19–26, 2016.

[23] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 779–
788, 2016.

[24] N. Ruiz, E. Chong, and J. M. Rehg. Fine-grained head pose estimation
without keypoints. In Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, pages 2074–2083, 2018.

[25] S. G. Sotocina, R. E. Sorge, A. Zaloum, A. H. Tuttle, L. J. Martin, J. S.
Wieskopf, J. C. Mapplebeck, P. Wei, S. Zhan, S. Zhang, et al. The rat
grimace scale: a partially automated method for quantifying pain in the
laboratory rat via facial expressions. Molecular pain, 7:1744–8069,
2011.

[26] H. Su, J. Deng, and L. Fei-Fei. Crowdsourcing annotations for visual
object detection. In Workshops at the Twenty-Sixth AAAI Conference
on Artificial Intelligence, 2012.

[27] A. H. Tuttle, M. J. Molinaro, J. F. Jethwa, S. G. Sotocinal, J. C. Prieto,
M. A. Styner, J. S. Mogil, and M. J. Zylka. A deep neural network
to assess spontaneous pain from mouse facial expressions. Molecular
pain, 14:1744806918763658, 2018.

[28] J. P. van Loon and M. C. Van Dierendonck. Monitoring equine head-
related pain with the Equine Utrecht University scale for facial assess-
ment of pain (EQUUS-FAP). Veterinary Journal, 220(January):88–90,
2017.

[29] P. Viola and M. Jones. Rapid object detection using a boosted cascade
of simple features. In Proceedings of the 2001 IEEE computer society
conference on computer vision and pattern recognition. CVPR 2001,
volume 1, pages I–I. IEEE, 2001.

[30] H. Yang and X. A. Wang. Cascade classifier for face detection. Journal
of Algorithms & Computational Technology, 10(3):187–197, 2016.

[31] H. Yang, R. Zhang, and P. Robinson. Human and sheep facial
landmarks localisation by triplet interpolated features. In 2016 IEEE
Winter Conference on Applications of Computer Vision (WACV), pages
1–8. IEEE, 2016.

[32] Y. Yao, J. Zhang, F. Shen, L. Liu, F. Zhu, D. Zhang, and H. T.
Shen. Towards automatic construction of diverse, high-quality image
datasets. IEEE Transactions on Knowledge and Data Engineering,
2019.

[33] M. Zhang, S. Guo, and X. Xie. Towards automatic detection of
monkey faces. In 2018 24th International Conference on Pattern
Recognition (ICPR), pages 2564–2569. IEEE, 2018.

[34] X. Zhu, Z. Lei, X. Liu, H. Shi, and S. Z. Li. Face alignment across
large poses: A 3d solution. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 146–155, 2016.


