Higher Order Logic versus Set Theory

- Higher order logic is based on functions
 - primitive notions are
 - * application f x
 - * abstraction λx . t
- Traditional 'text book' mathematics is founded on set theory
 - primitive notions are
 - * membership $x \in S$
 - * set construction principles e.g. $\{x \mid t\}$

Type Theory is Popular

- Automath uses de Bruijn's own logic
 - anticipated much recent work
- HOL, Isabelle/HOL, TPS and Lambda
 - support classical higher order logics with simple types
- IMPS
 - supports simple types with non-denoting terms
- PVS and Veritas
 - classical higher order logics with dependent types
- Coq and LEGO
 - versions of the Calculus of Constructions
- ALF and Nuprl
 - versions of Martin Löf type theory

Mike Gordon Konrad Slind

Why is Type Theory Popular?

- Functions are a natural primitive
 - tedious to derive laws like β -conversion
 - functional programming idiom popular
- Types improve specification
 - document overall structure
 - catch errors early
- Laws are simpler with types
 - -x + 0 = x is an equation if x has type num
 - without types: $x \in \mathbb{N} \Rightarrow x + 0 = x$
 - * such a conditional is harder to use
- Simple set theory can be represented in type theory

Mike Gordon Konrad Slind

Set Theory in HOL

- Represent a set by its characteristic function
 - set of elements of type σ is a predicate on σ
 - $\{x : \sigma \mid P(x)\}$ represented by $P : \sigma \rightarrow bool$
- All elements of a set have the same type
 - in practice often only need simple set operations on a type
- Can define usual set theoretic operations

Set Theory Higher Order Logic

 $\begin{array}{ll} \varnothing & \lambda x. \ \mathsf{F} \\ \{a\} & \lambda x. \ x = a \\ \{x \mid \mathcal{P}(x)\} & \lambda x. \ \mathcal{P}(x) \\ x \in P & P(x) \\ P \cup Q & \lambda x. \ P(x) \lor Q(x) \\ P \cap Q & \lambda x. \ P(x) \land Q(x) \end{array}$

Mike Gordon Konrad Slind

Set Theoretic Toolkit in HOL

- HOL has lots of set theoretic infrastructure in **setLib**
 - standard properties relating of \in , \subset , \supset , =, \cup , \cap etc
 - properties of finite and infinite sets
 - * Finite $s = \forall P. P \varnothing \land (\forall s. P \ s \Rightarrow \forall e.P(\{e\} \cup s)) \Rightarrow P \ s$
 - * Infinite $s = \forall t$. Finite $t \Rightarrow t \subseteq s \Rightarrow t \subset s$
 - properties of the size of finite sets

* (Size
$$\emptyset = 0$$
)
 \land
 $\forall s.$ Finite $s \Rightarrow$
 $\forall x.$ Size $(\{x\} \cup s) = (if \ x \in s \text{ then Size } s \text{ else Size } s + 1)$

- Sufficient for ordinary set theoretic reasoning
- Not the traditional textbook set theory though

Mike Gordon Konrad Slind

Traditional Set Theories

- There are several classical formulations of set theory
 - ZF: Zermelo-Fraenkel set theory
 - * most popular: only has sets, needs axiom schemes
 - NBG: Neumann-Bernays-Gödel
 - * finite axiomatisation using sets and classes
 - MKM: Mostowski-Kelley-Morse
 - * more powerful version of NBG
 - NF: Quine's New Foundations
 - * weird system not much used but theoretically interesting
- Recommended book

The Logical Foundations of Mathematics William S. Hatcher, Pergamon Press, 1982 ISBN 0-08-025800-X (out of print)

Mike Gordon Konrad Slind

Set Theory Axioms

- Axioms assert existence of a universe V of sets
 - start with the empty set $\ensuremath{\varnothing}$
 - new sets using union, powerset etc
 - comprehension: S a set implies $\{x \in S \mid P(x)\}$ a set
 - everything is a set no separation into types
 - Von Neuman numerals: $0 = \{\}, 1 = \{\{\}\}, 2 = \{\{\{\}\}\}, \ldots$
- Logicians worry about consistency of axioms
 - $\{x \mid x \notin x\} \in \{x \mid x \notin x\} \iff \{x \mid x \notin x\} \notin \{x \mid x \notin x\}$
 - Russell's Paradox

Mike Gordon Konrad Slind

Attractions of Untyped ZF-type Set Theory

- More standard
 - taught in school and university
- Underlies popular specification methods
 - Z, VDM, TLA+ ...
- Well understood axiomatisations (e.g. ZF)
 - stable compared with type theory
 - lots of metatheory
- More expressive than typed set theory
 - Von Neuman numerals: $0 = \{\}, 1 = \{\{\}\}, 2 = \{\{\{\}\}\}, \ldots$
 - construction of D_{∞} by Sten Agerholm
- Can be effectively mechanised
 - Isabelle/ZF, Mizar, EVES ...

Mike Gordon Konrad Slind

First-order Versus Higher-order Axiomatisation

- Usual axioms of set theory (ZF, NBG etc) are first order (FOL)
- Can formulate axioms in higher order logic (HOL)
 - examples given later
- ZF axioms in HOL makes them stronger than first order ZF
 - can define a deep embedding of first order ZF language
 - * then define a semantics of first order ZF formulae in V
 - * then prove ZF axioms as theorems
- Inaccessible cardinal + ZF is stronger than HOL + V
 - can model HOL + V inside an inaccessible cardinal
- FOL + ZF \subset HOL + V \subset FOL + ZF + large cardinal
 - I am not a set theory expert!
 - details thanks to email from noted set theorist Ken Kunen

Mike Gordon Konrad Slind

Why Consider Higher Order Axiomatization of Set Theory?

- Formulating axioms in HOL logic makes them more readable
 - first order schemas replaced by single higher order terms
 - examples given later
- HOL provides useful infrastructure
 - Axiom of Choice: εx . $x \in s$
 - definitional mechanisms for defining constants
- Must distinguish higher order syntax from higher order axioms
 - Isabelle/ZF higher order syntax equivalent to FOL ZF
 - HOL + V higher order axioms not equivalent to FOL ZF
 - see Corella's 1991 Cambridge PhD Mechanizing Set Theory

Two Ways of Using HOL + V

1 Utilise V as a resource for HOL

• Define datatypes via set classical set theoretic methods

2 Build a copy of HOL inside V

- Makes HOL type system 'soft' and extensible
 - add more powerful types (e.g. Σ and Π types)
- Platform for experiments
 - exploring spectrum: HOL \longleftrightarrow PVS \longleftrightarrow Nuprl/Coq

Definition of V: Primitive and Derived Notions

- Only the binary operator \in is primitive
 - postulate type V and constant $\in V \times V \rightarrow bool$
- Predicates can be defined
- Subset \subseteq defined by:

 $s \subseteq t = \forall x. x \in s \Rightarrow x \in t$

• Proper subset \subset defined by:

 $s \subset t = s \subseteq t \land \neg(s=t)$

- Set operators can be justified by set theory axioms
- Empty set axiom

 $\exists s. \forall x. \neg (x \in s)$

legitimates \varnothing defined to have the property $\forall x. \neg (x \in \varnothing)$

Mike Gordon Konrad Slind

Axioms and Definitions

• Extensionality

 $\forall s t. (s = t) \equiv (\forall x. x \in s = x \in t)$

• Empty set

 $\exists s. \forall x. \neg (x \in s)$

justifies definition of \varnothing

• Union

 $\forall s. \exists t. \forall x. x \in t \equiv (\exists u. x \in u \land u \in s)$

justifies definition of \bigcup

 $\forall s x. x \in \bigcup s = (\exists u. x \in u \land u \in s)$

Mike Gordon Konrad Slind

Axioms and Definitions – 2

• Power sets

```
\forall s. \exists t. \forall x. x \in t \equiv x \subseteq s
   justifies definition of \mathbb{P}
     \forall s x. x \in \mathbb{P} s = x \subseteq s
• Separation
   \forall p \ s. \ \exists t. \ \forall x. \ x \in t \equiv x \in s \land p \ x
    Note: not first order!
   justifies the notation \{x \in s | \mathcal{P}(x)\}
   which can be used to define \cap where:
     \mathbf{s} \cap \mathbf{t} = \{\mathbf{x} \in \mathbf{s} \mid \mathbf{x} \in \mathbf{t}\}
```

• Foundation (sometimes omitted)

 $\forall s. \neg (s = \emptyset) \Rightarrow \exists x. x \in s \land (x \cap s = \emptyset)$

Mike Gordon Konrad Slind

First Order Versus Higher Order Formulation of Set-theoretic Axioms

• Notation

 $- \equiv$ is "if and only if" - i.e. = restricted to booleans

- $\forall x \in s. \mathcal{P}(x) \text{ means } \forall x. x \in s \Rightarrow \mathcal{P}(x)$
- $\exists x \in s. \mathcal{P}(x) \text{ means } \exists x. x \in s \land \mathcal{P}(x)$
- First Order Axiom of Replacement $\forall s. (\forall x \in s. \forall y z. \phi(x,y) \land \phi(x,z) \Rightarrow y = z)$ \Rightarrow $\exists t. \forall y. y \in t \equiv \exists x \in s. \phi(x,y)$
 - a first order axiom schema: $\phi(x, y)$ ranges over formulae
- Higher Order Axiom of Replacement

 $\forall f s. \exists t. \forall y. y \in t = \exists x \in s. y = f x$

- a single term expressing same concept as first order schema
 - * type V
 - * constant \in : $V \times V \rightarrow bool$

Mike Gordon Konrad Slind

Axioms and Definitions – 3

• Replacement

 $\forall f s. \exists t. \forall y. y \in t \equiv \exists x. x \in s \land (y = f x)$ legitimates **Image** where: $\forall f s y. y \in Image f s = \exists x. x \in s \land (y = f x)$ and the notation $\{s\}$ where: $\forall s. \{s\} = Image (\lambda x.s) (\mathbb{P} \varnothing)$ which satisfies: $\forall s x. x \in \{s\} = (x = s)$ Infinity $\exists s. \ \emptyset \in s \land \forall x. \ x \in s \Rightarrow (x \cup \{x\}) \in s$ justifies $Inf: \emptyset \in Inf \land \forall x. x \in Inf \Rightarrow (x \cup \{x\}) \in Inf$

Mike Gordon Konrad Slind

Summary of ZF Axioms in HOL

Extensionality	$\forall s t. (s = t) \equiv (\forall x. x \in s = x \in t)$
Empty set	$\exists s. \forall x. \neg (x \in s)$
Union	$\forall s. \exists t. \forall x. x \in t \equiv (\exists u. x \in u \land u \in s)$
Power sets	$\forall s. \exists t. \forall x. x \in t \equiv x \subseteq s$
Separation	$\forall p \ s. \ \exists t. \ \forall x. \ x \in t \equiv x \in s \ \land p \ x$
Foundation	$\forall s. \neg (s = \emptyset) \Rightarrow \exists x. x \in s \land (x \cap s = \emptyset)$
Replacement	$\forall f s. \exists t. \forall y. y \in t \equiv \exists x. x \in s \land (y = f x)$
<i>Infinity</i>	$\exists \mathtt{s.} \ \varnothing \ \in \ \mathtt{s} \ \land \ \forall \mathtt{x.} \ \mathtt{x} \ \in \ \mathtt{s} \ \Rightarrow \ (\mathtt{x} \ \cup \ \{\mathtt{x}\}) \ \in \ \mathtt{s}$

Mike Gordon Konrad Slind

Review and some Related Work on ZF in HOL

- Postulate a type V that satisfies the ZF axioms
 - this guaranties lots of sets exist
- Result is ordinary set theory within higher order logic
 - more sets than ordinary first order formulation
 - HOL provides powerful definitional mechanisms
- $\bullet\,$ Larry Paulson's work on Isabelle/ZF
 - demonstrates that set theory is practical
 - many *tour de forces* of proof (e.g. **Vrec**)
 - Agerholm comparison of first & higher order axiomatisations
- Corella's 1991 Cambridge PhD Mechanizing Set Theory
 - discusses uses of type theory
 - * for higher order syntax (Isabelle/ZF)
 - * as the underlying logic (HOL-ST)

Mike Gordon Konrad Slind

Recall: Two Ways of Using HOL + V

1 Utilise V as a resource for HOL

• Define datatypes via set classical set theoretic methods

2 Build a copy of HOL inside V

- Makes HOL type system 'soft' and extensible
 - add more powerful types (e.g. Σ and Π types)
- Platform for experiments
 - exploring spectrum: HOL \longleftrightarrow PVS \longleftrightarrow Nuprl/Coq

1 V as a Resource for HOL

- Example: construction of type of lists of numbers
- List are already defined in HOL98
 - definition from scratch quite tricky and non-obvious
 - example here illustrates idea not a killer ap for V
- First construct numbers in V
- Then define lists of numbers
- Constructing polymorphic lists raises interesting issues
 - $-\alpha$ list rather than num list

Mike Gordon Konrad Slind

Representing Numbers in V

Mike Gordon Konrad Slind

Take ℕ to be Von Neuman Numbers

- Define by recursion (in HOL in logic) $num2V \ 0 = \emptyset$ $num2V(n+1) = (num2V \ n) \cup \{num2V \ n\}$
- Recursion done 'outside' set theory
- Function $num2V : num \rightarrow V$ is injective
- $\bullet\,$ Set-theoretic numbers $\mathbb N$ are range of $\mathsf{num2V}$

 $\mathbb{N} = \{ x \in \mathsf{Inf} \mid \exists n. x = \mathsf{num2V} \ n \}$

• Function V2num : $V \rightarrow num$ is inverse of num2V on N

 $\forall n. V2num(num2V n) = n$

• Can 'copy' operations from HOL logic to V

 $x \oplus y = \mathsf{num2V}((\mathsf{V2num}\ x) + (\mathsf{V2num}\ y))$

Mike Gordon Konrad Slind

Lists in $\,V\,$

- Traditionally in HOL (σ) list a subtype of $(num \to \sigma) \times num$
 - $[x_1; x_2; \ldots; x_m]$ represented as pair (f, m)
 - where $f(i) = x_{i+1} \ (0 \le i < m)$
- Simpler representation of $[x_1; x_2; \ldots; x_m]$ is $(x_1, (x_2, (\cdots)))$
 - but this has a different type for each different length m
 - so can't be used in HOL
- However, inside untyped V the simpler definition is possible

• Define $\langle x, y \rangle = \{\{x\}, \{x, y\}\}$

- normal properties of pairing easily follow

• Define

 $X \gg Y = \{ \langle x, y \rangle \in \mathbb{P}(\mathbb{P}(X \cup Y)) \mid x \in X \land y \in Y \}$

• Define

False =
$$\emptyset$$

True = $\{\emptyset\}$
Bool = {True, False}

Mike Gordon Konrad Slind University of Cambridge University of Utah

 $\mathbf{24}$

Constructing Lists via Countable Unions in \ensuremath{V}

- A countable sequence of sets is a function $s: num \to V$
- The union of the sequence is $s(0) \cup s(1) \cup \cdots \cup s(n) \cup \cdots$
- This is the 'big union' (∪) of the image of N under s ∘ V2num
 UnionSeq s = ∪(Image(s ∘ V2num)N)
- The notation $\bigcup_{n} t[n]$ abbreviates UnionSeq $(\lambda n. t[n])$
- Define

(FiniteList X 0 = {True}) (FiniteList X (n+1) = FiniteList X n \cup (X \times FiniteList X n))

List
$$X = \bigcup_{n}$$
 FiniteList X n

Mike Gordon Konrad Slind

Properties of Lists

• Follows that

- Can define HOL list of numbers
 - as a subtype of V
 - − by predicate $\lambda s. s \in \text{List } \mathbb{N}$
- What about (α) list?

Mike Gordon Konrad Slind

$\mathsf{ZFU}\xspace$ instead of $\mathsf{ZF}\xspace$

- List X is the set of finite lists of members of X
- To define a set to represent (σ) list need set representing σ
- Ching Tsun Chou suggests set theory polymorphic over atoms
 - i.e. a type operator $(\alpha) V$
 - represents ZFU with the atoms isomorphic to type α
- Polymorphic list type could be defined set theoretically
- Seems like an interesting idea to explore
 - not done any work on this
 - ZFU well understood, but more messy than ZF
 - * need a predicate to distinguish sets from atoms
 - * extensionality restricted to sets (atoms have no elements)

 $\forall s t. IsSet s \land IsSet t \Rightarrow ((s = t) \equiv (\forall x. x \in s = x \in t))$

Mike Gordon Konrad Slind

Sten Agerholm's Experiments with V

- Lists can be constructed without \boldsymbol{V}
- $\bullet\,$ Other constructions are hard or impossible without V
- Sten Agerholm constructed Scott's $\lambda\text{-calculus model }D_\infty$ in V
 - could not be done in pure HOL (I think)
- Comparison with Isabelle/ZF done
 - had to think about what to do inside versus outside \boldsymbol{V}
 - e.g. chains could be HOL functions or pure sets
 - can benefit from HOL metalanguage
 - but also more decisions to make

V as a Resource for HOL – Conclusions

- Having a ZF set theory inside HOL is powerful
 - possibility of using textbook constructions
 - then exploiting in higher order logic
 - seem to be benefits over first order logic
- Type V not definitional
 - ZF seems pretty trustworthy though!
 - ZFU maybe a bit more dodgy?
- Conclusion: case for V not proven
 - more experiments (e.g. with $(\alpha) V$) needed

Mike Gordon Konrad Slind

Recall the Two Possible Ways of Using HOL + V

1 Utilise V as a resource for HOL

• this has just been discussed

2 Build a copy of HOL inside V

- Makes HOL type system 'soft' and extensible
 - add more powerful types (e.g. Σ and Π types)
- Platform for experiments
 - exploring spectrum: HOL \longleftrightarrow PVS \longleftrightarrow Nuprl/Coq

A Soft HOL Inside ${\it V}$

- The HOL kernel is 'hard coded' in ML
 - difficult and logically hazardous to make changes
- Higher oder logic has a set theoretic semantics
 - due to Andrew Pitts (DSTO contract)
 - could do a semantic embedding of HOL inside ${\it V}$
- Dream: a single system combining
 - power and simplicity of ZF-style set theory
 - types and functions as in higher order logic
 - strong typechecking, but extensible soft types

Mike Gordon Konrad Slind

An Experiment to Combine Higher Order Logic and Set Theory

- Start with higher order logic
 - simple type theory as in HOL
- Add set theory
 - axiomatise a type V using ZF axioms
- Embed higher order logic into set theory
 - typechecking derived not 'hardwired'
 - 'soft' types are flexible Σ and Π can be added

First Order versus Higher Order Set Theory

- Could use first order set theory (e.g. Isabelle/ZF)
- First order: everything inside set theory
 - well-founded recursion
 - * Isabelle's **wfrec** used to define numbers
 - recursion on rank of set
 - * Isabelle's **Vrec** used to define lists
 - these methods powerful, but 'advanced'
- Higher order: constructions possible in logic
 - use normal HOL methods
 - then map into type V
 - more 'high level' and light weight?

Mike Gordon Konrad Slind

First Order Metalogic versus Higher Order Metalogic

- Can 'talk about' sets using HOL
 - $(s_1, s_2): V \times V$ is a pair of sets
 - * $\langle s_1, s_2 \rangle$: V is a set representing a pair
 - $-f: num \rightarrow V$ is a sequence of sets
 - * f T rejected by typechecking
 - $-\bigcup f$ is an infinite union
 - $* \ \bigcup : (num \to V) \to V$
- Sten Agerholm has interesting data from D_∞
- Like informal mathematics
 - constructions done in a higher order logic
 - use of set theory localised to where needed

Mike Gordon Konrad Slind

Function Application and Abstraction inside \boldsymbol{V}

- Functions represented by sets of ordered pairs
 - i.e. functions in set theory are sets
- Set-theoretic function application:

$$f \diamond x = \varepsilon y. \langle x, y \rangle \in f$$

- ε is Hilbert's choice operator
- Set-theoretic function abstraction:

 $\mathbf{\lambda} x \in X. \ t[x] \quad = \quad \{ \langle x, y \rangle \in X \ \divideontimes \ \mathsf{Image}(\lambda \ x. t[x]) X \ \mid \ y = t[x] \}$

- \times is set-theoretic Cartesian Product
- Image $\mathcal{F} X$ is image of set X under \mathcal{F} * exists via Axiom of Replacement
- Set-theoretic version of β -reduction:

$$y \in X \Rightarrow (\lambda x \in X. t[x]) \diamond y = t[y]$$

Mike Gordon Konrad Slind

Sets of Relations and Functions

- Relations:
 - $X \leftrightarrow Y = \mathbb{P}(X \times Y)$
- Functions (partial and total):

$$\begin{array}{rcl} X & \leftrightarrow & Y & = \\ \{f \in X \leftrightarrow Y & | \\ & \forall x & y1 & y2. \\ & & \langle x, y1 \rangle \in f \land \langle x, y2 \rangle \in f \\ & \Rightarrow \\ & & (y1 = y2) \} \end{array}$$

• Total functions:

$$\begin{array}{rcl} X & \twoheadrightarrow & Y & = & \\ \{f \in X & \leftrightarrow & Y & | & \\ & \forall x. & x & \in & X & \\ & & \Rightarrow & \\ & \exists y. & y & \in & Y & \land & \langle x, y \rangle & \in & f \} \end{array}$$

Mike Gordon Konrad Slind

Types as Sets

- Set-theoretic type operators:
 - $X \times Y$ Cartesian product of X and Y
 - $X \twoheadrightarrow Y$ set of functions from X to Y
 - List X set of lists over X
- Particular types:

 $\mathsf{true} \in \mathsf{Bool}, \ |\mathsf{A}| \in \mathsf{Bool} \ast \mathsf{Bool} \twoheadrightarrow \mathsf{Bool}, \ |+| \in \mathbb{N} \ast \mathbb{N} \twoheadrightarrow \mathbb{N}$

• General typechecking theorems:

$$x \in X \land x \in Y \Rightarrow \langle x, y \rangle \in X \times Y$$

$$f \in (X \twoheadrightarrow Y) \land x \in X \Rightarrow f \diamond x \in Y$$

$$(\forall x. x \in X \Rightarrow t[x] \in Y) \Rightarrow (\lambda x. t[x]) \in (X \twoheadrightarrow Y)$$

$$x_1 \in X \land \dots \land x_n \in X \Rightarrow \langle x_1, \dots, \langle x_n, \varnothing \rangle \dots \rangle \in \text{List } X$$

Mike Gordon Konrad Slind

Translation of HOL Types to Sets

- Types variable α translates to ordinary an variable α : V
- Type constant c translates to term |c|
 - $e.g. |bool| = {true, false}$
- Type operator op translates to function |op|
 - if op_n is an *n*-ary operator then $|op_n| : \underbrace{V \to V \to \cdots \to V}_{} \to V$

n parameters

$$|\times| = \mathbb{X} \text{ where } \mathbb{X} : V \to V \to V$$

$$| \rightarrow | = \longrightarrow$$
 where $\longrightarrow: V \rightarrow V \rightarrow V$

 $-|list| = List \text{ where } List : V \rightarrow V$

• Type σ recursively translated to term $[\![\sigma]\!]$

 $\llbracket (\sigma_1, \ldots, \sigma_n) o p_n \rrbracket = |op_n| \llbracket \sigma_1 \rrbracket \ldots \llbracket \sigma_n \rrbracket$

Mike Gordon Konrad Slind

Embedding Constants in \ensuremath{V}

- Interpretation of constant ${\bf c}$ is $|{\bf c}|$
- If **c** is monomorphic then $|\mathbf{c}|$ will have type V
 - $\ \mathrm{e.g.} \ |\mathsf{F}| \ = \ |\mathbf{0}| \ = \ \varnothing$
- If type of **c** contains n distinct type variables
 - $\begin{array}{l} \ |\mathbf{c}| \ \text{will be a (curried) function:} \\ * \ \text{taking } n \ \text{arguments of type } V \\ * \ \text{returning a result of type } V \end{array}$
- Example: $I : \alpha \to \alpha$
 - for any type α , | is the identity on α
 - || is the identity set-function on some set A
 - set-valued variable A corresponds to the type variable α
 - $|\mathbf{I}| : \mathbf{V} \to \mathbf{V}$ maps set A to identity set-function on A

Mike Gordon Konrad Slind

Polymorphism

- Consider identity function $I : \alpha \to \alpha$
 - type variable α ranges over sets A
 - identity set-function on A:

 $(|\mathsf{I}|\ A)\ =\ \{\langle x,y\rangle\in A\!\times\!\!A\ |\ x=y\}$

- type variables represented by set variables
- Compare with the identity operator $\hat{\mathbf{I}}$ on sets

$$-\hat{\mathbf{I}} = \lambda x : V. x$$

- $-\hat{\mathsf{I}}:V \rightarrow V$
- $x \in X \Rightarrow \hat{\mathsf{I}} x = (|\mathsf{I}| X) \diamond x$
- Î doesn't need explicit parameter
 - 'polymorphic' operators like $\hat{\mathsf{I}}$ convenient
 - use function application rather than \diamond

Mike Gordon Konrad Slind

HOL Polymorphism versus Set Parameters

- Type parameterisation of functions like | is hidden
 - HOL logic clean and uncluttered compared with set theory
- Challenge
 - gracefully manage
 - * correspondence between implicit type variables
 - * and explicit set-valued variables
 - standard problem in type theories like Nuprl and Coq
 * various type variable omitting conventions used
 - many examples from Isabelle/ZF

Embedding HOL Terms in \ensuremath{V}

- HOL term t is translated to a term [t] of type V
 - $\begin{bmatrix} x : \sigma \end{bmatrix} = x : V \quad (variables)$ $\begin{bmatrix} c : \sigma[\sigma_1, \dots, \sigma_n] \end{bmatrix} = |c| [[\sigma_1]] \dots [[\sigma_n]] \quad (constants)$ $\begin{bmatrix} \lambda x : \sigma. t \end{bmatrix} = \lambda x \in [[\sigma]]. [[t]] \quad (abstractions)$ $\begin{bmatrix} t_1 \ t_2 \end{bmatrix} = [[t_1]] \diamond [[t_2]] \quad (applications)$
- Example: applying this translation to $\forall m \ n. \ m + n = n + m$ $(|\forall| \ |\mathbb{N}|) \diamond$ $(\mathbf{\lambda} \ m \in |\mathbb{N}|.$ $(|\forall| \ |\mathbb{N}|) \diamond$ $(\mathbf{\lambda} \ n \in |\mathbb{N}|) \diamond$ $((|=| \ |\mathbb{N}|) \diamond ((|+| \diamond m) \diamond n)) \diamond ((|+| \diamond n) \diamond m)))$

Mike Gordon Konrad Slind

Typechecking is Syntactic

• Suppose

$$false = \emptyset$$
$$\mathbb{N} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \dots\}$$

then false $\in \mathbb{N}$ because false = |0|

- Want typechecking to reject false \oplus |3|
 - $\ x \oplus y = |+| \diamond \langle x, y \rangle$
 - $\ |+| \in \mathbb{N} \! \ast \! \mathbb{N} \twoheadrightarrow \mathbb{N}$
 - theorem proving reduces false \oplus $|3| \in \mathbb{N}$ to
 - * false $\in \mathbb{N}$
 - * $|3| \in \mathbb{N}$
 - typechecker should reject $\mathsf{false} \in \mathbb{N}$
 - * even though it is true!
 - * in fact false \oplus |3| = |3|

Mike Gordon Konrad Slind

Problems with Translation

• Another example:

$$\begin{bmatrix} (\lambda x. x) (1, \mathsf{T}) \end{bmatrix} = (\lambda x \in |num| \times |bool|. x) \\ \diamond (((|, |num| |bool|) \diamond |1|) \\ \diamond |\mathsf{T}|) \end{bmatrix}$$

• Would prefer:

$$\llbracket (\lambda \, x. \, x) \, (1,\mathsf{T}) \rrbracket \hspace{0.2cm} = \hspace{0.2cm} \hat{\mathsf{I}} \, \langle |1|,\mathsf{true} \rangle$$

• Achievable by logical simplification if:

 $\begin{aligned} |\mathsf{T}| &= \mathsf{true} \\ x \in X \land y \in Y \Rightarrow (((|,|X Y) \diamond x) \diamond y) &= \langle x, y \rangle \\ y \in X \Rightarrow (\lambda x \in X. x) \diamond y &= \hat{\mathsf{I}} y \end{aligned}$

• Must override HOL definitions of **T**, pairing (,) etc.

Mike Gordon Konrad Slind

Theories versus Theorems

• HOL theories can't be encoded as theorems Definition: $\forall x : \alpha$. f x = xTheorems: \vdash f 0 = 0 \vdash $\forall x : \alpha$. $\tilde{f}(f x) = x$

is not equivalent to:

 $\forall f. \ (\forall x: \alpha. \ f \ x = x) \ \Rightarrow \ (f \ 0 = 0) \ \land \ (\forall x: \alpha. \ f(f \ x) = x)$

because variable f is used at different types

- With set theory:
 - theories can be encoded as theorems
 - 'theory interpretation' = specialisation
 - theories abbreviated with definitions

Mike Gordon Konrad Slind

Theories as Theorems

- From the previous transparency: Definition: $\forall x : \alpha$. f x = xTheorems: \vdash f 0 = 0 $\vdash \forall x : \alpha$. $\hat{f}(f^{T}x) = x$
- Translated to set theory: Definition: $\forall \alpha \ x. \ x \in \alpha \Rightarrow (|\mathbf{f}| \ \alpha) \diamond x = x$ Theorems: $\vdash |0| \in |num| \Rightarrow (|\mathbf{f}| \ |num|) \diamond |0| = 0$ $\vdash \ \forall \alpha \ x. \ x \in \alpha \Rightarrow (|\mathbf{f}| \ \alpha) \diamond ((|\mathbf{f}| \ \alpha) \diamond x) = x$
- As a single theorem:

Mike Gordon Konrad Slind

Set Theory Or Higher Order Logic?

- Answer: BOTH
- Set theory is a more flexible foundation
- Types improve specification
 - type system should be customisable
- Proposed solution:
 - start with higher-order set theory
 - support type theoretic notations on top
- Research questions:
 - is this general scheme good
 - can types-as-sets be made practical
 - * i.e. as efficient as native type theories
 - are 'soft types' really useful

Mike Gordon Konrad Slind