Theorem Proving Perspective & Vision 1

Higher Order Logic versus Set Theory

e Higher order logic is based on functions
— primitive notions are
x application f x

* abstraction \z. ¢

e Traditional ‘text book’ mathematics is founded on set theory

— primitive notions are

*x membership z € S

* set construction principles — e.g. {z | ¢}

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 2
g

Type Theory is Popular

e Automath uses de Bruijn’s own logic

— anticipated much recent work

e HOL, Isabelle/HOL, TPS and Lambda

— support classical higher order logics with simple types

e IMPS

— supports simple types with non-denoting terms

e PVS and Veritas
— classical higher order logics with dependent types

e Coq and LEGO

— versions of the Calculus of Constructions

e ALF and Nuprl
— versions of Martin Lof type theory

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 3
g

Why is Type Theory Popular?

e Functions are a natural primitive
— tedious to derive laws like 3-conversion
— functional programming idiom popular
e Types improve specification
— document overall structure

— catch errors early

e Laws are simpler with types
— x + 0 = z is an equation if z has type num
— without types: e N=2+0=12x

* such a conditional is harder to use

e Simple set theory can be represented in type theory

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 4
g

Set Theory in HOL

e Represent a set by its characteristic function

— set of elements of type o is a predicate on o

— {z :0| P(x)} represented by P : ¢ — bool

e All elements of a set have the same type

— in practice often only need simple set operations on a type

e Can define usual set theoretic operations

Set Theory Higher Order Logic

%) Az. F
{a} AT.x =a
{z|P(x)} Az.P(x)
r € P P(z)
PUQ Ax. P(z)V Q(x)
PNaQ Az. P(z) AN Q(z)
Mike Gordon University of Cambridge

Konrad Slind University of Utah

Theorem Proving Perspective & Vision 5

Set Theoretic Toolkit in HOL

e HOL has lots of set theoretic infrastructure in setLib

— standard properties relating of €, C, D, =, U, N etc

— properties of finite and infinite sets

* Finite s = VP. PO A (Vs. P s=Ve.P({e}Us))= P s
x Infinite s = V¢ Fintet=tCs=1¢Cs

— properties of the size of finite sets
x (Size @ =0)
A

Vs. Finite s =
Vz. Size ({x}Us) = (if © € s then Size s else Size s + 1)

e Sufficient for ordinary set theoretic reasoning

e Not the traditional textbook set theory though

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 6

Traditional Set Theories

e There are several classical formulations of set theory

— ZF': Zermelo-Fraenkel set theory

x most popular: only has sets, needs axiom schemes
— NBG: Neumann-Bernays-Godel

x finite axiomatisation using sets and classes

— MKM: Mostowski-Kelley-Morse

x more powerful version of NBG

— NF': Quine’s New Foundations

x weird system not much used but theoretically interesting

e Recommended book
The Logical Foundations of Mathematics
William S. Hatcher, Pergamon Press, 1982
ISBN 0-08-025800-X (out of print)

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 7

Set Theory Axioms

e Axioms assert existence of a universe V of sets

— start with the empty set &
— new sets using union, powerset etc
— comprehension: S a set implies {z € S | P(z)} a set

— everything is a set — no separation into types

— Von Neuman numerals: 0 = {}, 1 ={{}}, 2={{{}}}, ...

e Logicians worry about consistency of axioms

~zledrieis|ode} & (w|oda)din|a]

— Russell’s Paradox

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 8

Attractions of Untyped ZF-type Set Theory

e More standard

— taught in school and university

e Underlies popular specification methods
— 7, VDM, TLA+ ...

e Well understood axiomatisations (e.g. ZF)
— stable compared with type theory

— lots of metatheory

e More expressive than typed set theory
— Von Neuman numerals: 0 = {}, 1 ={{}}, 2={{{}}}, ...
— construction of D., by Sten Agerholm

e Can be effectively mechanised
— Isabelle/ZF, Mizar, EVES ...

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 9

First-order Versus Higher-order Axiomatisation

e Usual axioms of set theory (ZF, NBG etc) are first order (FOL)

e Can formulate axioms in higher order logic (HOL)

— examples given later

e ZF axioms in HOL makes them stronger than first order ZF
— can define a deep embedding of first order ZF language

x then define a semantics of first order ZF formulae in V
x then prove ZF axioms as theorems

e Inaccessible cardinal + ZF is stronger than HOL + V

— can model HOL + V inside an inaccessible cardinal

e FOL +7ZF C HOL+V <C FOL + ZF + large cardinal
— I am not a set theory expert!

— details thanks to email from noted set theorist Ken Kunen

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 10

Why Consider Higher Order Axiomatization of Set Theory?

e Formulating axioms in HOL logic makes them more readable
— first order schemas replaced by single higher order terms

— examples given later

e HOL provides usetul infrastructure
— Axiom of Choice: cx. = € s

— definitional mechanisms for defining constants

e Must distinguish higher order syntax from higher order axioms
— Isabelle/ZF higher order syntax equivalent to FOL ZF
— HOL + V higher order axioms not equivalent to FOL ZF
— see Corella’s 1991 Cambridge PhD Mechanizing Set Theory

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 11

Two Ways of Using HOL + V

1 Utilise V as a resource for HOL

e Define datatypes via set classical set theoretic methods

2 Build a copy of HOL inside V

e Makes HOL type system ‘soft’ and extensible
— add more powerful types (e.g. > and II types)

e Platform for experiments

— exploring spectrum: HOL <+— PVS <+— Nuprl/Coq

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 12

Definition of VV: Primitive and Derived Notions

e Only the binary operator € is primitive

— postulate type V and constant €: V x V — bool
e Predicates can be defined
e Subset C defined by:
s Ct=Vx. x€8 =>x¢€Et
e Proper subset C defined by:
s Ct=sCt A —(s=t)
e Set operators can be justified by set theory axioms

e Empty set axiom
ds. Vx. —(x € s)
legitimates @ defined to have the property Vz. —(z € @)

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 13

Axioms and Definitions

e Extensionality

Vs t. (s =t) = (Vx. x € s =x € t)

e Empty set
ds. Vx. —(x € s)

justifies definition of &

e Union
Vs. dt. Vx. x €t = (Ju. x € u A u € s)
justifies definition of [J
Vs x. x € s = (u. x € u A u € 8)

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 14

Axioms and Definitions — 2

e Power sets

Vs. dt. Vx. x € t = x C s
justifies definition of P
Vs x. x € Ps =xC s

e Separation
Vp s. dt. Vx. x € t =x € s A p X

Note: not first order!
justifies the notation {x € s | P(x)}
which can be used to define N where;

sNt={x € s | x € t}

e Foundation (sometimes omitted)

Vs. =(s = @) = dx. x € s AN (x N s =)

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 15

First Order Versus Higher Order Formulation of Set-theoretic Axioms

e Notation

— =is “if and only if” — i.e. = restricted to booleans
— Vz €s. P(zr) means Vz. x € s = P(x)
— Jdz € s. P(z) means dz. z € s A P(x)

e First Order Axiom of Replacement
Vs. (Vx € s. Vy z. ¢o(x,y) A ¢0(x,2) = y = z)
=

Jt. Vy. y € t = Jx € s. ¢(x,y)
— a first order axiom schema: ¢(z, y) ranges over formulae
e Higher Order Axiom of Replacement
VE s. Jt. Vy. y et = dxes. y=1°x

— a single term expressing same concept as first order schema

x type V
x constant € : V x V — bool

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 16

Axioms and Definitions — 3

e Replacement

VE s. 3t. Vy. y €t = dx. x € s A (y=1 %)
legitimates Image where:

Vi s y. y € lmage £f s = dx. x € s A (y = £ x)
and the notation {s} where:

Vs. {s} = Image (\x.s) (P 9)

which satisfies:

Vs x. x € {s} = (x = s)

o Infinity
ds. @ € s ANVx. x € s = (x U {x}) € s
justifies Inf: @ € InffAVz. z € Inf= (z U {z}) € Inf

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 17

Summary of ZF Axioms in HOL

Extenstonality Vs t. (s = t) = (Vx. x € s = x € t)

Empty set ds. Vx. = (x € s)

Union Vs. Jdt. Vx. x € t = (du. x € u A u € s)
Power sets Vs. dt. Vx. x € t = x C s

Separation Vp s. dt. Vx. x € t =x € s AN p X
Foundation Vs. =(s = @) = dx. x €s AN (xNs =)

Replacement VE s. Jdt. Vy. y €t = dx. x € s A (y=£f x)

Infinity ds. @ € s AVx. x € s = (x U {x}) €s

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 18
g

Review and some Related Work on ZF in HOL

e Postulate a type V that satisfies the ZF axioms

— this guaranties lots of sets exist

e Result is ordinary set theory within higher order logic
— more sets than ordinary first order formulation

— HOL provides powerful definitional mechanisms

e Larry Paulson’s work on Isabelle/ZF
— demonstrates that set theory is practical

— many tour de forces of proof (e.g. Vrec)

— Agerholm comparison of first & higher order axiomatisations

e Corella’s 1991 Cambridge PhD Mechanizing Set Theory
— discusses uses of type theory
* for higher order syntax (Isabelle/ZF)
* as the underlying logic (HOL-ST)

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 19

Recall: Two Ways of Using HOL + V

1 Utilise V as a resource for HOL

e Define datatypes via set classical set theoretic methods

2 Build a copy of HOL inside V

e Makes HOL type system ‘soft’ and extensible
— add more powerful types (e.g. > and II types)

e Platform for experiments

— exploring spectrum: HOL <+— PVS <+— Nuprl/Coq

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 20

1 V as a Resource for HOL

e Example: construction of type of lists of numbers

e List are already defined in HOL98

— definition from scratch quite tricky and non-obvious

— example here illustrates idea — not a killer ap for V
e First construct numbers in V
e Then define lists of numbers

e Constructing polymorphic lists raises interesting issues

— « list rather than num list

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 21

Representing Numbers in V

V2num
N ﬁ num

num2V

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 22

Take N to be Von Neuman Numbers

e Define by recursion (in HOL in logic)
num2V 0 = @
num2V(n+1) = (num2V n) U {num2V n}

e Recursion done ‘outside’ set theory
e Function num2V : num — V is injective

e Set-theoretic numbers N are range of num2V
N={z €lInf| d3n. z = num2V n}
e Function V2num : V — num is inverse of num2V on N

Vn.V2num(num2V n) = n

e Can ‘copy’ operations from HOL logic to V
@y =num2V((V2num z) + (V2num y))

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 23

e Traditionally in HOL (o)list a subtype of (num — o) X num
— |x1; x93 ...; x| represented as pair (f, m)
— where f(i) = z;01 (0 <@ < m)

e Simpler representation of [z1; Zo; ... x| is (21, (22, (-+)))
— but this has a different type for each different length m
— so can’t be used in HOL

e However, inside untyped V the simpler definition is possible

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision

24

e Define (z,y) = {{z},{z,y}}

— normal properties of pairing easily follow

e Define

XxY = {(x,y) e PPRUY)) | x€XAyeYV}
e Define

False = &

True = {o}

Bool = {True,False}

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 25

Constructing Lists via Countable Unions in V

e A countable sequence of sets is a function s : num — V

e The union of the sequence is s(0) Us(1)U---Us(n)U---

e This is the ‘big union’ (| J) of the image of N under s o V2num
UnionSeq s = (J(Image(s o V2num)N)

e The notation U t|n] abbreviates UnionSeq(A n. t[n])

e Define

(FiniteList X 0 = {True})
(FiniteList X (n+1) = FiniteList X n U (X x FinitelList X n))

List X = U FiniteList X n

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 26

Properties of Lists

e Follows that

VX. List X = {True} U (X x List X)

VP X.

P True A (V1 € List X. P 1 = Vx € X. P(x,1))
=

V1l € List X. P 1

e Can define HOL list of numbers

— as a subtype of V
— by predicate As. s € List N

e What about («)list?

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 27

/FU instead of ZF

e List X is the set of finite lists of members of X

e To define a set to represent (o)list need set representing o

e Ching Tsun Chou suggests set theory polymorphic over atoms
— i.e. a type operator (a)V

— represents ZFU with the atoms isomorphic to type «
e Polymorphic list type could be defined set theoretically

e Seems like an interesting idea to explore
— not done any work on this

— ZFU well understood, but more messy than ZF

*x need a predicate to distinguish sets from atoms
* extensionality restricted to sets (atoms have no elements)
Vs t. IsSet s A lsSet t = ((s =t) = (Vx. x € s = x € t))

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 28

Sten Agerholm’s Experiments with V

e Lists can be constructed without V

e Other constructions are hard or impossible without V

e Sten Agerholm constructed Scott’s A-calculus model D, in V

— could not be done in pure HOL (I think)

e Comparison with Isabelle/ZF done
— had to think about what to do inside versus outside V
— e.g. chains could be HOL functions or pure sets
— can benefit from HOL metalanguage

— but also more decisions to make

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 29

V as a Resource for HOL — Conclusions

e Having a ZF set theory inside HOL is powertful

— possibility of using textbook constructions
— then exploiting in higher order logic

— seem to be benefits over first order logic

e Type V not definitional
— ZF seems pretty trustworthy though!
— ZFU maybe a bit more dodgy?

e Conclusion: case for V not proven

— more experiments (e.g. with (a)V) needed

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 30

Recall the Two Possible Ways of Using HOL + V

1 Utilise V as a resource for HOL

e this has just been discussed

2 Build a copy of HOL inside V

e Makes HOL type system ‘soft’ and extensible
— add more powerful types (e.g. > and II types)

e Platform for experiments

— exploring spectrum: HOL <+— PVS <+— Nuprl/Coq

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 31

A Soft HOL Inside V

e The HOL kernel is ‘hard coded’ in ML

— difficult and logically hazardous to make changes

e Higher oder logic has a set theoretic semantics
— due to Andrew Pitts (DSTO contract)
— could do a semantic embedding of HOL inside V

e Dream: a single system combining
— power and simplicity of ZF-style set theory
— types and functions as in higher order logic

— strong typechecking, but extensible soft types

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 32

An Experiment to Combine Higher Order Logic and Set Theory

e Start with higher order logic

— simple type theory as in HOL

e Add set theory

— axiomatise a type V using ZF axioms

e Embed higher order logic into set theory
— typechecking derived — not ‘hardwired’
— ‘soft’ types are flexible — > and II can be added

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 33

First Order versus Higher Order Set Theory

e Could use first order set theory (e.g. Isabelle/ZF)

e First order: everything inside set theory

— well-founded recursion

* Isabelle’s wfrec used to define numbers

— recursion on rank of set

x Isabelle’s Vrec used to define lists

— these methods powerful, but ‘advanced’

e Higher order: constructions possible in logic
— use normal HOL methods
— then map into type V
— more ‘high level’ and light weight?

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 34

First Order Metalogic versus Higher Order Metalogic

e Can ‘talk about’ sets using HOL

— (81,82) : V x Vis a pair of sets

* (s1,82) : Vis a set representing a pair
— [:num — V is a sequence of sets

x f T rejected by typechecking
— |J f is an infinite union

* |J: (num — V) -V

e Sten Agerholm has interesting data from D,

e Like informal mathematics
— constructions done in a higher order logic

— use of set theory localised to where needed

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 35

Function Application and Abstraction inside V'

e Functions represented by sets of ordered pairs

— i.e. functions in set theory are sets

e Set-theoretic function application:

foxr = ey (z,y)€f
— ¢ 1s Hilbert’s choice operator

e Set-theoretic function abstraction:
Az € X. tlz] = {{z,y) € X x Image(Az.t[z])X | y = t[z]}
— x 1s set-theoretic Cartesian Product

— Image F X is image of set X under F

* exists via Axiom of Replacement

e Set-theoretic version of S-reduction:
yeX = Az eX. tz]) oy = tly]

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 36

Sets of Relations and Functions

e Relations:

X < Y=PX xY)

e Functions (partial and total):
X + Y =
{f e X+ Y|
Vx y1 y2.
(x,y1) € £ A (x,y2) € £
=
(y1 = y2)}

e Total functions:

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 37

Types as Sets

e Set-theoretic type operators:
— X x Y — Cartesian product of X and Y
— X — Y — set of functions from X to YV
— List X — set of lists over X

e Particular types:
true € Bool, false € Bool, |A| € BoolxBool — Bool, |+| € NxN — N

e General typechecking theorems:

reX NzeY = (z,y) € XxY
fe(X—=>Y)ANzreX = foxeY

Vz.z2e€ X = tlz]eY) = (Az. t[z]) e (X —>Y)
1 E€XAN---Naxpn € X = (z1,...,(Tn,D)...) € List X

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 38

Translation of HOL Types to Sets

e Types variable « translates to ordinary an variable o : V

e Type constant c translates to term |c|
— e.g. |bool| = {true, false}

e Type operator op translates to function |op
— if op,, is an n-ary operator then
op,| : V=+V—=... 2 VoV

n parameters

— |x| = x where x: V- V-V
- |—»| = — where »: V>V -V
— |list| = List where List: V— V

e Type o recursively translated to term [[o]

[(o1;-. s on)op,]| = |op,| [o1]] - - - [lon]

Mike Gordon

University of Cambridge
Konrad Slind

University of Utah

Theorem Proving Perspective & Vision 39

Embedding Constants in V

e Interpretation of constant c is |c|

e If c is monomorphic then |c| will have type V
—eg. |[F| = 10| = 2
e If type of c contains n distinct type variables

— |c| will be a (curried) function:

x taking n arguments of type V
* returning a result of type V
e Example: | : a0 — «
— for any type «, | is the identity on «
— |l is the identity set-function on some set A
— set-valued variable A corresponds to the type variable o

— || : V— V maps set A to identity set-function on A

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 40

Polymorphism

e Consider identity function | : a — «

— type variable o ranges over sets A

— identity set-function on A:
N A) = {{z,y) e AxA | z =y}

— type variables represented by set variables

A

e Compare with the identity operator | on sets
= Az:V.x

V-V

—zeX = lz=(| X))oz

A

A

I .
.

e | doesn’t need explicit parameter

— ‘polymorphic’ operators like | convenient

— use function application rather than ¢

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 41

HOL Polymorphism versus Set Parameters

e Type parameterisation of functions like | is hidden

— HOL logic clean and uncluttered compared with set theory

e Challenge

— gracefully manage

x correspondence between implicit type variables

x and explicit set-valued variables

— standard problem in type theories like Nuprl and Coq

x various type variable omitting conventions used

— many examples from Isabelle/ZF

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 42

Embedding HOL Terms in V

e HOL term ¢ is translated to a term |t] of type V

lz : o] = z:V (variables)
lc:oloy,...,o.]] = |c| [o1] .. [lon]] (constants)
Mz :o. t] = Az € [o]. [t] (abstractions)
[t to] = [t1] ¢ 2] (applications)
e Example: applying this translationtoVm n. m+n = n+m
(IV] IN]) <
(A m € |N].
(IV| [N]) <
(A n € |N].

(= IN[) o (([+]om) on)) o (([+] o n) om)))

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 43

Typechecking is Syntactic

e Suppose
false = @

N={g,{2},{9,{9}}, ... }

then false € N because false = |0

e Want typechecking to reject false @ |3]
—z®y=|+o(z,y)
— |[+| € NxN — N
— theorem proving reduces false ® [3| € N to

x false € N
* |3] € N

— typechecker should reject false € N

x even though it is true!
* in fact false @ |3] = |3]

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 44

Problems with Translation

e Another example:

[(Az. z) (1, T)] = (Az € |num|x|bool|. x)
o (((|,| [num]| [booll) ¢ [1])
o |[T])

e Would prefer:
[(Az. z) (1, T)] = 1(1],true)

e Achievable by logical simplification if:
I'T| = true
reXAyeY = ((,|X Y)oz)oy) = (z,9)
yeX=AzeX. z)oy = ly

e Must override HOL definitions of T, pairing (,) etc.

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 45

Theories versus T heorems

e HOL theories can’t be encoded as theorems

Definition: Vz:a. f 2 = =z

Theorems: F f 0 = 0
- Voo f(ffz) = =

is not equivalent to:
Vi.Vz:a.fz=2) = (f0=0) AN Vz:a. f(f r)=1)
because variable f is used at different types
e With set theory:
— theories can be encoded as theorems
— ‘theory interpretation’ = specialisation

— theories abbreviated with definitions

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 46

Theories as Theorems

e From the previous transparency:
Definition: Vz:a. f z ==z
Theorems: F f 0 = 0
- Ve:a” f(ffz) =2
e Translated to set theory:
Definition: Va z. z€a = (|f| a)or =z
Theorems: F |0|€|num| = (|f| |num|)o|0] = 0
- Va z. zea = (|f| a)o(([f] a)ox) =z

e As a single theorem:

- Vf: V= V. Va z. z€a = (f a)ox = 1)
=
ﬂolﬂﬂum\ = (f [numl)o|0] = |0[)
Va z. zea = (f a)o((f a)or) = x

Mike Gordon University of Cambridge
Konrad Slind University of Utah

Theorem Proving Perspective & Vision 47

Set Theory Or Higher Order Logic?

e Answer: BOTH
e Set theory is a more flexible foundation

e Types improve specification

— type system should be customisable

e Proposed solution:

— start with higher-order set theory
— support type theoretic notations on top

e Research questions:
— 1s this general scheme good

— can types-as-sets be made practical

x 1.e. as efficient as native type theories

— are ‘soft types’ really useful

Mike Gordon University of Cambridge
Konrad Slind University of Utah

