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Higher Order Logi versus Set Theory

� Higher order logi is based on funtions{ primitive notions are� appliation f x� abstration � x : t� Traditional `text book' mathematis is founded on set theory{ primitive notions are� membership x 2 S� set onstrution priniples { e.g. fx j tg
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Theorem Proving Perspetive & Vision 2Type Theory is Popular

� Automath uses de Bruijn's own logi{ antiipated muh reent work� HOL, Isabelle/HOL, TPS and Lambda{ support lassial higher order logis with simple types� IMPS{ supports simple types with non-denoting terms� PVS and Veritas{ lassial higher order logis with dependent types� Coq and LEGO{ versions of the Calulus of Construtions� ALF and Nuprl{ versions of Martin L�of type theoryMike GordonKonrad Slind University of CambridgeUniversity of Utah
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Why is Type Theory Popular?

� Funtions are a natural primitive{ tedious to derive laws like �-onversion{ funtional programming idiom popular� Types improve spei�ation{ doument overall struture{ ath errors early� Laws are simpler with types{ x + 0 = x is an equation if x has type num{ without types: x 2 N ) x + 0 = x� suh a onditional is harder to use� Simple set theory an be represented in type theory
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� Represent a set by its harateristi funtion{ set of elements of type � is a prediate on �{ fx : � j P(x )g represented by P : � ! bool� All elements of a set have the same type{ in pratie often only need simple set operations on a type� Can de�ne usual set theoreti operationsSet Theory Higher Order Logi? � x : Ffag � x : x = afx j P(x )g � x : P(x )x 2 P P(x )P [Q � x : P(x ) _Q(x )P \Q � x : P(x ) ^Q(x )
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Set Theoreti Toolkit in HOL

� HOL has lots of set theoreti infrastruture in setLib{ standard properties relating of 2, �, �, =, [, \ et{ properties of �nite and in�nite sets� Finite s = 8P : P? ^ (8s: P s ) 8e:P(feg [ s))) P s� In�nite s = 8 t : Finite t ) t � s ) t � s{ properties of the size of �nite sets� (Size ? = 0)^8s: Finite s )8x : Size (fxg [ s) = (if x 2 s then Size s else Size s + 1)� SuÆient for ordinary set theoreti reasoning� Not the traditional textbook set theory though
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� There are several lassial formulations of set theory{ ZF: Zermelo-Fraenkel set theory� most popular: only has sets, needs axiom shemes{ NBG: Neumann-Bernays-G�odel� �nite axiomatisation using sets and lasses{ MKM: Mostowski-Kelley-Morse� more powerful version of NBG{ NF: Quine's New Foundations� weird system not muh used but theoretially interesting� Reommended bookThe Logial Foundations of MathematisWilliam S. Hather, Pergamon Press, 1982ISBN 0-08-025800-X (out of print)
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Set Theory Axioms

� Axioms assert existene of a universe V of sets{ start with the empty set ?{ new sets using union, powerset et{ omprehension: S a set implies fx 2 S j P(x )g a set{ everything is a set { no separation into types{ Von Neuman numerals: 0 = fg, 1 = ffgg, 2 = fffggg, : : :� Logiians worry about onsisteny of axioms{ fx j x 62 xg 2 fx j x 62 xg , fx j x 62 xg 62 fx j x 62 xg{ Russell's Paradox
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Theorem Proving Perspetive & Vision 8Attrations of Untyped ZF-type Set Theory

� More standard{ taught in shool and university� Underlies popular spei�ation methods{ Z, VDM, TLA+ ...� Well understood axiomatisations (e.g. ZF){ stable ompared with type theory{ lots of metatheory� More expressive than typed set theory{ Von Neuman numerals: 0 = fg, 1 = ffgg, 2 = fffggg, : : :{ onstrution of D1 by Sten Agerholm� Can be e�etively mehanised{ Isabelle/ZF, Mizar, EVES ...Mike GordonKonrad Slind University of CambridgeUniversity of Utah



Theorem Proving Perspetive & Vision 9First-order Versus Higher-order Axiomatisation

� Usual axioms of set theory (ZF, NBG et) are �rst order (FOL)� Can formulate axioms in higher order logi (HOL){ examples given later� ZF axioms in HOL makes them stronger than �rst order ZF{ an de�ne a deep embedding of �rst order ZF language� then de�ne a semantis of �rst order ZF formulae in V� then prove ZF axioms as theorems� Inaessible ardinal + ZF is stronger than HOL + V{ an model HOL + V inside an inaessible ardinal� FOL + ZF � HOL + V � FOL + ZF + large ardinal{ I am not a set theory expert!{ details thanks to email from noted set theorist Ken KunenMike GordonKonrad Slind University of CambridgeUniversity of Utah
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Why Consider Higher Order Axiomatization of Set Theory?

� Formulating axioms in HOL logi makes them more readable{ �rst order shemas replaed by single higher order terms{ examples given later� HOL provides useful infrastruture{ Axiom of Choie: "x : x 2 s{ de�nitional mehanisms for de�ning onstants� Must distinguish higher order syntax from higher order axioms{ Isabelle/ZF higher order syntax equivalent to FOL ZF{ HOL + V higher order axioms not equivalent to FOL ZF{ see Corella's 1991 Cambridge PhD Mehanizing Set Theory
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Two Ways of Using HOL + V

1 Utilise V as a resoure for HOL� De�ne datatypes via set lassial set theoreti methods

2 Build a opy of HOL inside V� Makes HOL type system `soft' and extensible{ add more powerful types (e.g. � and � types)� Platform for experiments{ exploring spetrum: HOL  ! PVS  ! Nuprl/Coq
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Theorem Proving Perspetive & Vision 12De�nition of V : Primitive and Derived Notions

� Only the binary operator 2 is primitive{ postulate type V and onstant 2: V�V! bool� Prediates an be de�ned� Subset � de�ned by:s � t = 8x. x 2 s ) x 2 t� Proper subset � de�ned by:s � t = s � t ^ :(s=t)� Set operators an be justi�ed by set theory axioms� Empty set axiom9s. 8x. :(x 2 s)legitimates ? de�ned to have the property 8 x : :(x 2 ?)
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Axioms and De�nitions

� Extensionality8s t. (s = t) � (8x. x 2 s = x 2 t)� Empty set9s. 8x. :(x 2 s)justi�es de�nition of ?� Union8s. 9t. 8x. x 2 t � (9u. x 2 u ^ u 2 s)justi�es de�nition of S8s x. x 2 Ss = (9u. x 2 u ^ u 2 s)
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� Power sets8s. 9t. 8x. x 2 t � x � sjusti�es de�nition of P8s x. x 2 P s = x � s� Separation8p s. 9t. 8x. x 2 t � x 2 s ^ p xNote: not �rst order!justi�es the notation fx 2 s | P(x)gwhih an be used to de�ne \ where:s \ t = fx 2 s | x 2 tg� Foundation (sometimes omitted)8s. :(s = ?) ) 9x. x 2 s ^ (x \ s = ?)

Mike GordonKonrad Slind University of CambridgeUniversity of Utah



Theorem Proving Perspetive & Vision 15First Order Versus Higher Order Formulation of Set-theoreti Axioms� Notation{ � is \if and only if" { i.e. = restrited to booleans{ 8 x 2 s: P(x ) means 8 x : x 2 s ) P(x ){ 9 x 2 s: P(x ) means 9 x : x 2 s ^ P(x )� First Order Axiom of Replaement8s. (8x 2 s. 8y z. �(x,y) ^ �(x,z) ) y = z))9t. 8y. y 2 t � 9x 2 s. �(x,y){ a �rst order axiom shema: �(x ; y) ranges over formulae� Higher Order Axiom of Replaement8f s. 9t. 8y. y 2 t = 9x 2 s. y = f x{ a single term expressing same onept as �rst order shema� type V� onstant 2 : V�V! boolMike GordonKonrad Slind University of CambridgeUniversity of Utah
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Axioms and De�nitions { 3

� Replaement8f s. 9t. 8y. y 2 t � 9x. x 2 s ^ (y = f x)legitimates Image where:8f s y. y 2 Image f s = 9x. x 2 s ^ (y = f x)and the notation fsg where:8s. fsg = Image (�x.s) (P ?)whih satis�es:8s x. x 2 fsg = (x = s)� In�nity9s. ? 2 s ^ 8x. x 2 s ) (x [ fxg) 2 sjusti�es Inf: ? 2 Inf ^ 8 x : x 2 Inf) (x [ fxg) 2 Inf
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Summary of ZF Axioms in HOL

Extensionality 8s t. (s = t) � (8x. x 2 s = x 2 t)Empty set 9s. 8x. :(x 2 s)Union 8s. 9t. 8x. x 2 t � (9u. x 2 u ^ u 2 s)Power sets 8s. 9t. 8x. x 2 t � x � sSeparation 8p s. 9t. 8x. x 2 t � x 2 s ^ p xFoundation 8s. :(s = ?) ) 9x. x 2 s ^ (x \ s = ?)Replaement 8f s. 9t. 8y. y 2 t � 9x. x 2 s ^ (y = f x)In�nity 9s. ? 2 s ^ 8x. x 2 s ) (x [ fxg) 2 s
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Review and some Related Work on ZF in HOL

� Postulate a type V that satis�es the ZF axioms{ this guaranties lots of sets exist� Result is ordinary set theory within higher order logi{ more sets than ordinary �rst order formulation{ HOL provides powerful de�nitional mehanisms� Larry Paulson's work on Isabelle/ZF{ demonstrates that set theory is pratial{ many tour de fores of proof (e.g. Vre){ Agerholm omparison of �rst & higher order axiomatisations� Corella's 1991 Cambridge PhD Mehanizing Set Theory{ disusses uses of type theory� for higher order syntax (Isabelle/ZF)� as the underlying logi (HOL-ST)
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Reall: Two Ways of Using HOL + V

1 Utilise V as a resoure for HOL� De�ne datatypes via set lassial set theoreti methods

2 Build a opy of HOL inside V� Makes HOL type system `soft' and extensible{ add more powerful types (e.g. � and � types)� Platform for experiments{ exploring spetrum: HOL  ! PVS  ! Nuprl/Coq
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1 V as a Resoure for HOL

� Example: onstrution of type of lists of numbers� List are already de�ned in HOL98{ de�nition from srath quite triky and non-obvious{ example here illustrates idea { not a killer ap for V� First onstrut numbers in V� Then de�ne lists of numbers� Construting polymorphi lists raises interesting issues{ � list rather than num list
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Representing Numbers in V
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Theorem Proving Perspetive & Vision 22Take N to be Von Neuman Numbers� De�ne by reursion (in HOL in logi)num2V 0 = ?num2V(n+1) = (num2V n) [ fnum2V ng� Reursion done `outside' set theory� Funtion num2V : num! V is injetive� Set-theoreti numbers N are range of num2VN = fx 2 Inf j 9n: x = num2V ng� Funtion V2num : V! num is inverse of num2V on N8n: V2num(num2V n) = n� Can `opy' operations from HOL logi to Vx � y = num2V((V2num x ) + (V2num y))
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Lists in V
� Traditionally in HOL (�)list a subtype of (num! �)� num{ [x1; x2; : : : ; xm ℄ represented as pair (f ;m){ where f (i) = xi+1 (0 � i < m)� Simpler representation of [x1; x2; : : : ; xm ℄ is (x1; (x2; ( � � � ))){ but this has a di�erent type for eah di�erent length m{ so an't be used in HOL� However, inside untyped V the simpler de�nition is possible

Mike GordonKonrad Slind University of CambridgeUniversity of Utah



Theorem Proving Perspetive & Vision 24

Pairs in V
� De�ne hx ; yi = ffxg; fx ; ygg{ normal properties of pairing easily follow� De�neX �� Y = fhx; yi 2 P(P(X [ Y)) | x 2 X ^ y 2 Yg� De�neFalse = ?True = f?gBool = fTrue,Falseg
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Construting Lists via Countable Unions in V

� A ountable sequene of sets is a funtion s : num! V� The union of the sequene is s(0) [ s(1) [ � � � [ s(n) [ � � �� This is the `big union' (S) of the image of N under s Æ V2numUnionSeq s = S(Image(s o V2num)N )� The notation [n t [n℄ abbreviates UnionSeq(�n: t [n℄)� De�ne(FiniteList X 0 = fTrueg)(FiniteList X (n+1) = FiniteList X n [ (X �� FiniteList X n))List X = [n FiniteList X n
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Properties of Lists

� Follows that8X. List X = fTrueg [ (X �� List X)8P X.P True ^ (8l 2 List X. P l ) 8x 2 X. Phx; li))8l 2 List X. P l� Can de�ne HOL list of numbers{ as a subtype of V{ by prediate � s: s 2 List N� What about (�)list?
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� List X is the set of �nite lists of members of X� To de�ne a set to represent (�)list need set representing �� Ching Tsun Chou suggests set theory polymorphi over atoms{ i.e. a type operator (�)V{ represents ZFU with the atoms isomorphi to type �� Polymorphi list type ould be de�ned set theoretially� Seems like an interesting idea to explore{ not done any work on this{ ZFU well understood, but more messy than ZF� need a prediate to distinguish sets from atoms� extensionality restrited to sets (atoms have no elements)8s t. IsSet s ^ IsSet t ) ((s = t) � (8x. x 2 s = x 2 t))Mike GordonKonrad Slind University of CambridgeUniversity of Utah



Theorem Proving Perspetive & Vision 28

Sten Agerholm's Experiments with V

� Lists an be onstruted without V� Other onstrutions are hard or impossible without V� Sten Agerholm onstruted Sott's �-alulus model D1 in V{ ould not be done in pure HOL (I think)� Comparison with Isabelle/ZF done{ had to think about what to do inside versus outside V{ e.g. hains ould be HOL funtions or pure sets{ an bene�t from HOL metalanguage{ but also more deisions to make
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V as a Resoure for HOL { Conlusions

� Having a ZF set theory inside HOL is powerful{ possibility of using textbook onstrutions{ then exploiting in higher order logi{ seem to be bene�ts over �rst order logi� Type V not de�nitional{ ZF seems pretty trustworthy though!{ ZFU maybe a bit more dodgy?� Conlusion: ase for V not proven{ more experiments (e.g. with (�)V) needed
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Reall the Two Possible Ways of Using HOL + V

1 Utilise V as a resoure for HOL� this has just been disussed

2 Build a opy of HOL inside V� Makes HOL type system `soft' and extensible{ add more powerful types (e.g. � and � types)� Platform for experiments{ exploring spetrum: HOL  ! PVS  ! Nuprl/Coq
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A Soft HOL Inside V

� The HOL kernel is `hard oded' in ML{ diÆult and logially hazardous to make hanges� Higher oder logi has a set theoreti semantis{ due to Andrew Pitts (DSTO ontrat){ ould do a semanti embedding of HOL inside V� Dream: a single system ombining{ power and simpliity of ZF-style set theory{ types and funtions as in higher order logi{ strong typeheking, but extensible soft types

Mike GordonKonrad Slind University of CambridgeUniversity of Utah



Theorem Proving Perspetive & Vision 32

An Experiment to Combine Higher Order Logi and Set Theory

� Start with higher order logi{ simple type theory as in HOL� Add set theory{ axiomatise a type V using ZF axioms� Embed higher order logi into set theory{ typeheking derived { not `hardwired'{ `soft' types are exible { � and � an be added
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First Order versus Higher Order Set Theory

� Could use �rst order set theory (e.g. Isabelle/ZF)� First order: everything inside set theory{ well-founded reursion� Isabelle's wfre used to de�ne numbers{ reursion on rank of set� Isabelle's Vre used to de�ne lists{ these methods powerful, but `advaned'� Higher order: onstrutions possible in logi{ use normal HOL methods{ then map into type V{ more `high level' and light weight?
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First Order Metalogi versus Higher Order Metalogi

� Can `talk about' sets using HOL{ (s1; s2) : V�V is a pair of sets� hs1; s2i : V is a set representing a pair{ f : num! V is a sequene of sets� f T rejeted by typeheking{ S f is an in�nite union� S : (num! V)! V� Sten Agerholm has interesting data from D1� Like informal mathematis{ onstrutions done in a higher order logi{ use of set theory loalised to where needed
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Theorem Proving Perspetive & Vision 35Funtion Appliation and Abstration inside V� Funtions represented by sets of ordered pairs{ i.e. funtions in set theory are sets� Set-theoreti funtion appliation:f � x = "y : hx ; yi 2 f{ " is Hilbert's hoie operator� Set-theoreti funtion abstration:��x 2 X : t [x ℄ = fhx ; yi 2 X �� Image(� x :t [x ℄)X j y = t [x ℄g{ �� is set-theoreti Cartesian Produt{ Image F X is image of set X under F� exists via Axiom of Replaement� Set-theoreti version of �-redution:y 2 X ) (��x 2 X : t [x ℄) � y = t [y ℄
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� Relations:X $ Y = P(X � Y)� Funtions (partial and total):X 7! Y =ff 2 X $ Y |8x y1 y2.hx; y1i 2 f ^ hx; y2i 2 f)(y1 = y2)g� Total funtions:X !! Y =ff 2 X 7! Y |8x. x 2 X)9y. y 2 Y ^ hx; yi 2 fg
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Types as Sets� Set-theoreti type operators:{ X��Y { Cartesian produt of X and Y{ X !! Y { set of funtions from X to Y{ List X { set of lists over X� Partiular types:true 2 Bool; false 2 Bool; j^j 2 Bool��Bool!! Bool; j+j 2 N��N !! N� General typeheking theorems:x 2 X ^ x 2 Y ) hx ; yi 2 X��Yf 2 (X !! Y ) ^ x 2 X ) f � x 2 Y(8 x : x 2 X ) t [x ℄ 2 Y ) ) (��x : t [x ℄) 2 (X !! Y )x1 2 X ^ � � � ^ xn 2 X ) hx1; : : : ; hxn ;?i : : :i 2 List X

Mike GordonKonrad Slind University of CambridgeUniversity of Utah



Theorem Proving Perspetive & Vision 38

Translation of HOL Types to Sets� Types variable � translates to ordinary an variable � : V� Type onstant  translates to term jj{ e.g. jboolj = ftrue; falseg� Type operator op translates to funtion jopj{ if opn is an n-ary operator thenjopn j : V! V! � � � ! V| {z }n parameters ! V{ j�j = �� where �� : V! V! V{ j!j = !! where !!: V! V! V{ jlistj = List where List : V! V� Type � reursively translated to term [[�℄℄[[(�1; : : : ; �n)opn ℄℄ = jopn j [[�1℄℄ : : : [[�n ℄℄
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Embedding Constants in V

� Interpretation of onstant  is jj� If  is monomorphi then jj will have type V{ e.g. jFj = j0j = ?� If type of  ontains n distint type variables{ jj will be a (urried) funtion:� taking n arguments of type V� returning a result of type V� Example: I : �! �{ for any type �, I is the identity on �{ jIj is the identity set-funtion on some set A{ set-valued variable A orresponds to the type variable �{ jIj : V! V maps set A to identity set-funtion on A
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Polymorphism� Consider identity funtion I : �! �{ type variable � ranges over sets A{ identity set-funtion on A:(jIj A) = fhx ; yi 2 A��A j x = yg{ type variables represented by set variables� Compare with the identity operator ^I on sets{ ^I = � x : V: x{ ^I : V! V{ x 2 X ) ^I x = (jIj X ) � x� ^I doesn't need expliit parameter{ `polymorphi' operators like ^I onvenient{ use funtion appliation rather than �
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HOL Polymorphism versus Set Parameters

� Type parameterisation of funtions like I is hidden{ HOL logi lean and unluttered ompared with set theory� Challenge{ graefully manage� orrespondene between impliit type variables� and expliit set-valued variables{ standard problem in type theories like Nuprl and Coq� various type variable omitting onventions used{ many examples from Isabelle/ZF
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� HOL term t is translated to a term [[t ℄℄ of type V[[x : �℄℄ = x : V (variables)[[  : �[�1; : : : ; �n ℄ ℄℄ = jj [[�1℄℄ : : : [[�n ℄℄ (onstants)[[� x : �: t ℄℄ = ��x 2 [[�℄℄: [[t ℄℄ (abstrations)[[t1 t2℄℄ = [[t1℄℄ � [[t2℄℄ (appliations)� Example: applying this translation to 8m n: m + n = n +m(j8j jN j) �(�� m 2 jN j:(j8j jN j) �(�� n 2 jN j:((j=j jN j) � ((j+j �m) � n)) � ((j+j � n) �m)))
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Typeheking is Syntati

� Suppose false = ?N = f?; f?g; f?; f?gg; : : : gthen false 2 N beause false = j0j� Want typeheking to rejet false � j3j{ x � y = j+j � hx ; yi{ j+j 2 N��N !! N{ theorem proving redues false � j3j 2 N to� false 2 N� j3j 2 N{ typeheker should rejet false 2 N� even though it is true!� in fat false � j3j = j3j
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Problems with Translation

� Another example:[[(� x : x ) (1;T)℄℄ = (��x 2 jnumj��jboolj: x )� (((j;j jnumj jboolj) � j1j)� jTj)� Would prefer: [[(� x : x ) (1;T)℄℄ = ^I hj1j; truei� Ahievable by logial simpli�ation if:jTj = truex 2 X ^ y 2 Y ) (((j;j X Y ) � x ) � y) = hx ; yiy 2 X ) (��x 2 X : x ) � y = ^I y� Must override HOL de�nitions of T, pairing (,) et.
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Theories versus Theorems

� HOL theories an't be enoded as theoremsDefinition: 8x : �: f x = xTheorems: ` f 0 = 0` 8x : �:~ f(f~x ) = xis not equivalent to:8 f : (8 x : �: f x = x ) ) (f 0 = 0) ^ (8 x : �: f (f x ) = x )beause variable f is used at di�erent types� With set theory:{ theories an be enoded as theorems{ `theory interpretation' = speialisation{ theories abbreviated with de�nitions
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Theories as Theorems

� From the previous transpareny:Definition: 8x : �: f x = xTheorems: ` f 0 = 0` 8x : �:~ f(f~x ) = x� Translated to set theory:Definition: 8� x : x2� ) (jfj �)�x = xTheorems: ` j0j2jnumj ) (jfj jnumj)�j0j = 0` 8� x : x2� ) (jfj �)�((jfj �)�x ) = x� As a single theorem:` 8f : V! V: (8� x : x2� ) (f �)�x = x ))(j0j2jnumj ) (f jnumj)�j0j = j0j )^8� x : x2� ) (f �)�((f �)�x ) = x
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Set Theory Or Higher Order Logi?

� Answer: BOTH� Set theory is a more exible foundation� Types improve spei�ation{ type system should be ustomisable� Proposed solution:{ start with higher-order set theory{ support type theoreti notations on top� Researh questions:{ is this general sheme good{ an types-as-sets be made pratial� i.e. as eÆient as native type theories{ are `soft types' really useful
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