
Linking ACL2 and HOL:

past achievements and future prospects

ABSTRACT. Over the years there have been several attempts to obtain the
amazing automation and efficiency of ACL2 theorem proving within various
versions of the HOL proof assistant. These include building a Boyer-Moore
waterfall as a tactic, dynamically linking to ACL2 using the PROSPER
Plug-In Interface and, most recently, embedding the ACL2 logic in the HOL
logic and then using ACL2 as an trusted oracle. These activities have
differed in goals and methods, e.g. placing different emphases on usability,
efficiency and logical coherence. The talk will start with a critical historical
overview, and will end with thoughts on possible future projects.

What’s coming

◮ History overview

◮ Critical discussion

◮ What next (includes cool ideas from Matt)

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 1 / 27

History overview (partial)

◮ 1992: Richard Boulton “Boyer-Moore Automation for HOL”

◮ implementation of waterfall from “A Computational Logic”

◮ just a prototype ‘proof of concept’ experiment

◮ 1999: Mark Staples ACL2PII

◮ linked HOL and ACL2 via the PROSPER Plug-In Interface

◮ connect interactive HOL and ACL2 sessions

◮ 2004-2011: Gordon, Hunt, Kaufmann, Reynolds

◮ ACL2 logic defined in HOL

◮ called “ACL2-in-HOL” here

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 2 / 27

Related projects

◮ 1993 UC Davis PM proof manager (Archer, Fink & Yang)

◮ linked other theorem provers to HOL using Emacs

◮ not considered further

◮ Edinburgh-Cambridge CLAM-HOL project

◮ partly suggested by Boulton’s work ... then hired him

◮ Edinburgh proof planning influenced by Boyer-Moore ideas

◮ European Esprit PROSPER project

◮ provided tools used in ACL2PII and CLAM-HOL

◮ revealed challenges of prover-linking ‘middleware’

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 3 / 27

Boulton’s Boyer-Moore prover inside HOL
% --- %

% %

% DESCRIPTION: Boyer-Moore Automation for HOL %

% %

% AUTHORS: Richard J. Boulton %

% %

% ADDRESS: University of Cambridge Computer Laboratory %

% New Museums Site %

% Pembroke Street %

% Cambridge, CB2 3QG %

% England %

% %

% email: rjb@cl.cam.ac.uk %

% %

% DATE: 92.10.16 %

% --- %

This directory contains an implementation for the HOL system (HOL88

Version 2.01) of Boyer and Moore's automatic proof heuristics. The

code is based on the description in `A Computational Logic' and so

does not reflect the advances made to the Boyer-Moore theorem prover

since 1979. There are many limitations, the most significant of which

is the assumption that recursive functions are defined in a

`constructor-style' according to the restrictions of the automatic

definition tools currently available in HOL. The code was written more

as an experiment than as a practical tool. However, it may be found to

be useful. Minimal documentation can be found below.

Richard Boulton, 16th October 1992.

http://

bazaar.launchpad.net/~ubuntu-branches/ubuntu/trusty/hol88/trusty/files/head:/contrib/boyer-moore/

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 4 / 27

http://
bazaar.launchpad.net/~ubuntu-branches/ubuntu/trusty/hol88/trusty/files/head:/contrib/boyer-moore/

Example: proving |- REVERSE(REVERSEl)=l

←− goal

←− base case

←− step case
←− clausal form

←− expand definitions

←− simplify
←− simplify
←− generalise "REVERSE t" to "l"

←− new induction: base case

←− expand definitions

←− new induction: step case

←− clausal form

←− expand definitions

←− simplify
←− simplify

←− expand definitions - theorem proved

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 5 / 27

Comments on Boulton’s Boyer-Moore automation

◮ Not nearly as sophisticated as real Boyer-Moore provers

◮ An early “fully expansive” automated prover

◮ Boulton invented the phrase “fully expansive”

(he also invented “deep embedding“, “shallow embedding”

and the first fully-expansive arithmetic decision procedure)

◮ Not much used — possible reasons:

◮ simple inductive proofs not a problem for users

◮ not good at remembering and using pre-proved lemmas

◮ Boulton and research thread shifted to CLAM-HOL project

The investigation described in this paper has shown that automation
in the style of Boyer and Moore can be achieved within the HOL
system. However, the question remains as to whether this is a good
approach. An alternative is to interface HOL to another system such
as the Boyer-Moore theorem prover or the proof planner CLAM.

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 6 / 27

CLAM-HOL Project
◮ Not directly related to ACL2, but relevant

◮ it’s what Richard Boulton did next
◮ influenced Staples’ ACL2PII

◮ CLAM produces ‘proof plans’ for Martin Löf type theory

◮ CLAM-HOL uses CLAM to plan HOL proofs

◮ HOL goal converted to CLAM constructive logic problem
◮ CLAM searches for a proof plan
◮ found CLAM plan converted to a HOL tactic
◮ tactic executed in HOL to solve goal

◮ Could an ACL2 proof trace be a proof plan?
◮ maybe like Isabelle’s Sledgehammer

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 7 / 27

Mark Staples’ ACL2PII

◮ Transfer theorems from ACL2 to HOL in ‘real-time’

◮ Ad-hoc translation: pattern matching + type ‘guessing’

◮ user creates HOL types to approximate ACL2 ‘types’

◮ user defines heuristic translation rules

◮ ACL2 NIL
?
 F:bool or []:α list or NONE:α option

◮ default translation to values of a HOL type sexp

◮ unverified trusted rules and implementation

◮ HOL oracle theorems tagged with "ACL2"

◮ Uses of ACL2PII

◮ importing ‘small machine’ theory from ACL2

◮ an example in Susanto’s PhD supervised by Tom Melham
(A Verification Platform for System on Chip)

◮ Built with rather complex PROSPER Plug-In Interface (PII)

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 8 / 27

PROSPER and ACL2PII
(illustration of complexity – not an explanation)

◮ PROSPER is ‘middleware’ for linking to HOL

◮ ACL2PII connects running HOL and ACL2 sessions

D ACL2PII Maintenan
e Referen
e

We �rst give an overview of the ar
hite
ture for ACL2PII, and then

an introdu
tion to the
ode stru
ture.

D.1 Behind the S
enes

ACL2PII works by intera
ting with ACL2 just as a normal human user

would. Command strings are send to an ACL2 session, and output

strings are read up to ACL2's next prompt. Figure 1 provides an

ar
hite
tural overview of how users intera
t with Hol and ACL2PII,

and how those systems
onne
t with the PROSPER PII and ACL2.

HOL

ACL2

ACL2PII
PROSPER PII

resultscommands

U
s
e
r

Figure 1: How ACL2 Talks with Hol

The results from ACL2 may be strings representing s-expressions

from normal exe
ution, or they may be strings representing error
on-

ditions in abnormal
ir
umstan
es. ACL2PII attempts to
at
h these

error strings and reports them as ex
eptions in ML.

If the return string represents a normal behaviour, then ACL2PII

will often attempt to parse the string as an s-expression. Parsing ACL2

s-expressions should mostly be a trivial matter, but in an ACL2 inter-

a
tive session, the pa
kage names of symbols in (or imported into) the

urrent pa
kage are not printed. ACL2PII keeps a lo
al
opy of this

part of ACL2's logi
al
ontext to enable parsed s-expressions to be

properly normalised.

D.2 Code Stru
ture

Figure 2 shows dependen
ies for the sour
e
ode �les of the ACL2PII

system. It depi
ts the following modules (and also the PlugIn module

from the PROSPER PlugIn system):

ACL2PlugInBoss presents an interfa
e to single ACL2 session. It

keeps tra
k of referen
es about the session, as well as manag-

ing lo
al logi
al
ontext, translations and type-guessing fun
-

tions. This provides simpli�ed versions of
ommand fun
tions

from ACL2PlugIn.

17

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 9 / 27

From ACL2PII to ACL2-in-HOL

◮ ACL2PII was pioneering, but:

◮ soundness dependent on user-supplied translation rules

◮ no way to verify this soundness other than by intuition

◮ only supported one-way translation from ACL2 to HOL

◮ used complex no-longer-supported PROSPER toolkit

◮ ACL2-in-HOL addressed these issues:

◮ built on ACL2PII default translation to HOL sexp values

◮ initial experiments by Gordon, Hunt and Kaufmann

◮ James Reynolds’ PhD research

◮ case study by Gordon, Kaufmann and Ray

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 10 / 27

ACL2-in-HOL: ACL2-HOL link by reading/writing files

ACL2sexpHOL
(native)(ACL2 objects in HOL)

(parse/print)

◮ File-based interface indicated by green arrow

◮ Trustworthiness of depends on its simplicity

◮ Blue arrows are proof verified translations inside HOL

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 11 / 27

Defining of S-expressions in HOL
◮ Datatype sexp has five constructors

Category ACL2 HOL term representation

Symbol sym ACL2_SYMBOL pkg sym

String str ACL2_STRING str

Character chr ACL2_CHARACTER chr

Number n ACL2_NUMBER n

Dotted pair (s1.s2) ACL2_PAIR s1 s2

◮ Values of type sexp correspond to ACL2 S-expressions
◮ after macro expansion and other preprocessing

◮ Definition of sexp in HOL:
(***)

(* ACL2 S-expressions defined as a HOL datatype. *)

(* Definition below adapted from Mark Staples' code. *)

(***)

val _ = Hol_datatype

`sexp = ACL2_SYMBOL of packagename => name (* only curried for style *)

| ACL2_STRING of string

| ACL2_CHARACTER of char

| ACL2_NUMBER of complex_rational

| ACL2_PAIR of sexp => sexp`; (* only curried for style *)

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 12 / 27

ACL2 and HOL logics
◮ ACL2 logic is first-order axiomatic theory in axioms.lisp

◮ Axiomatizes Lisp atoms nil, t and 31 ACL2 primitives:
acl2-numberp bad-atom<= binary-* binary-+ unary-- unary-/

< car cdr char-code characterp code-char complex

complex-rationalp coerce cons consp denominator equal if

imagpart integerp intern-in-package-of-symbol numerator

pkg-witness rationalp realpart stringp symbol-name

symbol-package-name symbolp

◮ HOL theory SEXP defines these as constants

◮ ACL2 formulae are S-expressions, HOL’s are bool terms

◮ ACL2 term p is true if and only if it is not nil

◮ HOL formula |= p defined to mean that p is true:
⊢ ∀p. (|= p) = ¬(p = nil)

◮ Axiom car-cdr-elim is verified in HOL by proving:
⊢ ∀x. |= implies (consp x) (equal (cons (car x) (cdr x)) x)

◮ Many axioms in axioms.lisp verified in HOL4

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 13 / 27

HOL theory SEXP is the ACL2 ‘Standard Model’

◮ HOL definitions formalise ACL2 Standard Model

◮ ACL2 logic is first-order so also has non-standard models

◮ ACL2(r) depends on this

◮ Exist formulas true in standard model but not in all models

◮ Exist formulas provable in HOL theory but not in ACL2

◮ HOL theory is stronger – not equivalent to ACL2

◮ but can’t prove things inconsistent with the ACL2 axioms

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 14 / 27

From higher-order logic to first-order S-expressions
◮ ACL2 is not typed but HOL is typed

◮ Constants defined in SEXP must have a HOL type

HOL constants HOL type
t, nil sexp
|= sexp → bool
car, cdr sexp → sexp
cons, equal, implies sexp → sexp → sexp
acl2_if sexp → sexp → sexp → sexp

◮ Reynolds implemented translation tools (blue arrows below)

◮ Recursive: encodes and decodes sub-functions

◮ Builds library for encoding/decoding primitive functions

◮ HOL datatypes are encoded as s-expressions

◮ HOL functions as first-order functions on s-expressions

σ τ
f

encode_ f

encode_σ decode_τ

στ ()
sexpsexp

ACL2sexpHOL
(native)(ACL2 objects in HOL)

(parse/print)

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 15 / 27

Flow between HOL and ACL2

Higher-order logic

Automatically generated
first-order ACL2 logic in HOL

Manually adjusted
first-order ACL2 logic in HOL

Automatically generated
ACL2 input file

Manually adjusted
ACL2 specification

proof in HOL4

proof in HOL4

trusted code
translating
ML and LISP
S-expressions

proof in ACL2

◮ arrows preserve semantic equivalence

◮ solid arrows checked by proof

◮ dotted arrows trusted

◮ validated by ‘round-trip’ testing:

⊢ACL2 x = toACL2(toHOL x)

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 16 / 27

ACL2-in-HOL: discussion

◮ Initial goal was fast trustworthy execution

◮ Results below are only illustrative

◮ involves 3 different systems: Moscow ML, MLton , ACL2
◮ not clear if the same things are being timed
◮ HOL EVAL timed out!

Executing a million instructions on a toy interpreter

HOL Moscow MLton ACL2 Common ACL2 +

EVAL ML Lisp stobj

∞? 5.8 1.26 8.16 5.6 0.06

◮ Suggests executing Fox’s ARM model worth exploring

◮ intended use co-simulation with actual ARM
◮ bug finding: not soundness-critical
◮ ARM not done; Reynolds’ VFP benchmarks encouraging
◮ VFP: ARM Vector Floating-point Coprocessor

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 17 / 27

James Reynolds’ arithmetic and FP results
◮ James Reynolds’ PhD: export HOL model of VFP to ACL2
◮ Ground arithmetic benchmarks (optimised Poly/ML HOL4)

◮ numbers are triples: (sign, exponent , fraction)

◮ ACL2 enormously faster

◮ Benchmarks for FP calculations in VFP less spectacular

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 18 / 27

Another application: cone of influence reduction

◮ Started with an ACL2-proved first-order theorem

◮ ACL2 used non-standard finite-path LTL semantics

◮ HOL can express standard infinite path semantics

◮ Proof done in HOL by importing main lemma from ACL2

◮ Combined imported lemma with HOL LTL semantics

◮ Result is a HOL theorem in ACL2 standard model

◮ Details in 2011 JAR paper (Gordon, Kaufmann, Ray)

◮ Title:
The Right Tools for the Job: Correctness of Cone of Influence Reduction Proved Using ACL2 and HOL4

◮ Abstract:
We present a case study illustrating how to exploit the expressive power of higher-order logic to complete
a proof whose main lemma is already proven in a first-order theorem prover. Our proof exploits a link
between the HOL4 and ACL2 proof systems to show correctness of a cone of influence reduction algorithm,
implemented in ACL2, with respect to the classical semantics of linear temporal logic, formalized in HOL4.

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 19 / 27

Is there a future for linking ACL2 and HOL?

◮ Incremental projects with existing ACL2-in-HOL

◮ convert HOL ARM, MIPS, RISC-V models to ACL2
◮ convert ACL2 JVM model to HOL

◮ validate Cryptol-to-ACL2 translation with HOL semantics
◮ hard to motivate without some wider research context

◮ Solving HOL goals by trusting native ACL2 automation

◮ an ‘ACL2 tactic’ in HOL

◮ convert HOL goal G to ACL2 formula GACL2

◮ import HOL definitions used in G to ACL2 definitions

◮ use imported context to prove GACL2

◮ if success, import GACL2 into HOL (tagged ACL2)

◮ this trusts ACL2; doesn’t replay in HOL (cf. CLAM-HOL)

◮ HOL ←→ {L3, SAIL, LEM}
︸ ︷︷ ︸

formal specification DSLs

←→ ACL2 ?

◮ Matt has experimented with translating L3 to ACL2

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 20 / 27

Matt’s idea: HOL-in-ACL2

◮ HOL implemented in ACL2 with ACL2 as metalanguage

◮ Matt emphasises ideas inspired by Jared Davis’s Milawa

◮ represent HOL terms in ACL2
◮ define provable-p in ACL2

◮ fast evaluator hol-eval
⊢ACL2 (provable-p(make-equality x (hol-eval x ...)))

◮ Potential customers

◮ HOL users wanting to use ACL2 for fast evaluation

◮ HOL users wanting to use ACL2 to prove lemmas

◮ ACL2 users wanting to do higher-order proof developments

◮ Example target application: fast evaluation for CakeML

◮ see: cakeml.org

◮ compiler is written in HOL then translated to CakeML
◮ perform bootstrap ground evaluation
(hol-eval(CakeMLCompile pCakeMLCompileq) ...)

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 21 / 27

cakeml.org

Matt’s plan and what he’s done so far

◮ Define a notion of HOL term in ACL2

◮ STATUS: simplified version done, e.g., no polymorphism

◮ Define a function (hol-eval x defs depth)

◮ x an ACL2 representation of a HOL term

◮ (hol-eval x defs depth) provably equal to x

◮ STATUS: initial version of hol-eval done
(the “provably equal” part is only barely begun)

◮ Write tool to import HOL developments into ACL2

◮ import ACL2 representations of HOL definitions

◮ import ACL2 representations of HOL theorems

◮ maybe use OpenTheory?

◮ STATUS: TO DO

◮ Collaborators sought

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 22 / 27

Defining HOL provability in ACL2
◮ Get Matt to explain this after the talk!

◮ Model HOL proof theory in ACL2 with:
(provable-p x gamma defs axioms)

◮ Inference rules correctness from definition of provable-p

◮ Idea not new – similar thing done by Jared Davis

◮ Prove correctness of hol-eval:
(defthm hol-eval-correct

(let ((y (hol-eval x defs depth)))

(implies (and (def-list-p defs)

(hol-term-p x defs)

(hol-ground-term-p x)

(subsetp-equal (base-axioms) axioms)

(not (equal y *out-of-time*)))

(provable-p (make-hol-binary-ap '= x y :bool)

gamma defs axioms))))

◮ Optional: prove a completeness theorem for hol-eval
(terminating-p defs ...)==>
(exists depth) (hol-value-p (hol-eval x defs depth))

◮ Collaborators sought

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 23 / 27

Cool stuff becomes possible with HOL-in-ACL2

◮ Verify HOL rule optimisations with ACL2
◮ install verified derived rules of inference

◮ Matt’s example (STATUS: DONE)
◮ Matt coded a HOL primitive rule in ACL2

⊢ a0 = b0, ⊢ a1 = b1

⊢ a0(a1) = b0(b1)

◮ Matt also coded a derived rule in ACL2

⊢ a0 = b0, ⊢ a1 = b1, . . . ⊢ ak = bk

⊢ a0 a1 · · · ak = b0 b1 · · · bk

◮ Matt then proved that:
◮ if there is a proof using the derived rule
◮ then there is a proof using only the primitive rule
◮ uses an ACL2 representation of HOL proofs
◮ ask Matt about ACL2 details

◮ verifies one can trust the non-fully-expansive ACL2 code

◮ Collaborators sought

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 24 / 27

More ideas from Matt

◮ Verify other kinds of derived rules of inference
◮ BDDs, symbolic execution, ACL2(h)

◮ Implement even faster evaluation
◮ replace hol-eval interpreter by direct ACL2 evaluation

(preliminary benchmark: 2 seconds−→ 1/100 second)

◮ use stobjs?

◮ Employ native ACL2 reasoning to do HOL proofs
◮ e.g. prove HOL theorem
⊢ (hol-app (hol-app x y) z) = (hol-app x (hol-app y z))

by converting to trivial associativity-of-append in ACL2

◮ Build infrastructure for seamless mixing of HOL and ACL2
(suggested by Warren Hunt)

◮ rework Right Tools for the Job in HOL-in-ACL2

◮ Collaborators sought

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 25 / 27

Final thoughts

◮ Activities possible at several levels

◮ undergraduate: experiment with hol-eval

◮ masters: verify and use derived HOL rules inside ACL2

◮ PhD: build infrastructure and study trust challenges

◮ funded international projects: above + major applications

◮ Many extremely cool possibilities ahead!

◮ Collaborators sought

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 26 / 27

THE END

Mike Gordon International Workshop on the ACL2 Theorem Prover and its Applications (ACL2’14) 27 / 27

	PROSPER and ACL2PII
	Two way translation between HOL and ACL2: ACL2-in-HOL

