
The TrustNo 1 Cryptoprocessor Concept
Markus Kuhn — kuhn@cs.purdue.edu — 1997-04-30

Abstract: Cryptoprocessors feature an on-chip block
cipher hardware between the cache and the bus inter-
face. Code and data are decrypted on-the-fly while be-
ing fetched from RAM and are encrypted while being
written into RAM. Even someone with full physical
access to the printed circuit board cannot observe the
executed cleartext software and its data structures.
Cryptoprocessors have been used for many years as
microcontrollers in security sensitive applications like
financial transaction terminals. This paper explores
the hardware, firmware, operating system, and key
management mechanisms necessary in order to apply
the cryptoprocessor concept in multitasking operating
system workstations.

Introduction

Technical protection of software against unauthorized
execution is usually performed by binding the usabil-
ity of the software to a piece of hardware that only the
legitimate owner of a software license has available.
Commonly used mechanisms include small tamper-
resistant plug-in modules (“dongles”) that implement
a cryptographic challenge-response authorization pro-
tocol, recording media with a special formatting that
the operating system I/O functions can detect but
not reproduce, and unique workstation serial numbers
hardwired into the firmware that application programs
can check. These software license protection mecha-
nisms are today widely used in applications with a
high risk of software piracy such as computer games
or very expensive special purpose software (e.g., CAD,
expert systems, computer security tools). These tech-
niques do not prevent the unauthorized reverse en-
gineering and modification of software, and the pro-
tection mechanism itself can relatively easily be de-
activated by a skilled programmer who analyzes the
machine code and removes the protection functions.
They also do not prevent system-wide cryptographic
keys and certificates that might have to be stored in
the software against observation and modification.

In order to not only prevent the execution of a pro-
gram on other machines, but to protect the entire
software code from any access, we require a security
perimeter that keeps unauthorized reverse engineers
from observing the memory and the execution of in-
structions. Solutions range from putting the whole
computer into a locked room to storing the entire

protected software in a single chip, as this is done
in smartcard applications. Both extremes have their
drawbacks: few people can use a computer applica-
tion if the hardware is locked away, and only very tiny
applications fit into a single chip. An intermediate ap-
proach was demonstrated in IBM’s µABYSS project
[8,9]. Here, the security perimeter protects a single
printed circuit board inside a workstation. The op-
erating system and cryptographic keys are stored in
battery buffered static RAM chips that are located
on the same board as the CPU, the system bus, the
harddisk controller, a real-time clock, and a battery.
The board is surrounded from all sides by an alarm
mechanism that consists of a dense multi-layer wind-
ing pattern of a pair of fine wires, which is embedded
in hard opaque epoxy resin. Any attempt to open the
security package will trigger the alarm mechanism and
wipe out the software and encryption keys stored in
the battery buffered RAM. The software is stored on
external mass storage devices in encrypted form and is
decrypted by the operating system when loaded into
RAM. Various cryptographic protocols allow the in-
stallation of new software and the transfer of software
to other systems while the number of usable copies
is under the control of the software vendor and the
owner of the hardware gets never access to the clear-
text software.

The concept of a bus-encryption microprocessor that
encrypts both the data and address bus and stores
only encrypted values in external memory for the pro-
tection of software was first described by Best [1,2,3,4].
In this approach, the security perimeter is reduced
from the entire circuit board as with µABYSS to just
the CPU chip. Software is stored in encrypted form
in external RAM chips and mass storage devices, and
it exists in decrypted form only inside the CPU chip
in the cache and instruction decoder logic. The en-
cryption key is stored in a protected register inside the
CPU that is designed such that the key is destroyed by
attempts to read it out using even sophisticated micro-
electronics testing equipment. The protected register
is usually a static RAM that is buffered by an external
battery and that keeps the key value throughout the
entire lifetime of the system.

Bus encryption processors have commercially success-
fully been used for almost a decade in the form of 8-
bit microcontrollers such as the Dallas Semiconductor



The TrustNo 1 Cryptoprocessor Concept 2

DS5000 series. They have been applied for instance
in credit card terminals, automatic teller machines,
pay-TV access control devices, and communication en-
cryption modules.

A highly interesting new application field of bus en-
cryption microprocessors that has not yet been stud-
ied are the main processors in powerful personal com-
puters and workstations with virtual memory man-
agement and multitasking operating systems, includ-
ing up-coming set-top boxes for multimedia entertain-
ment applications. We will have a closer look at the
possible design of such a processor in the remainder
of this paper.

Microcontrollers contain usually one single application
software and often not even a separate operating sys-
tem. In a multitasking environment, multiple pro-
cesses that are encrypted by different keys must be
handled simultaneously. It is therefore necessary, not
to simply use a single key K for the entire address
space like in bus-encryption microcontrollers, but to
provide for separate keys per process and memory seg-
ment. In order to achieve this, the bus encryption
logic has to be integrated with the memory manage-
ment unit.

We will now have a more detailed look at the hypo-
thetical “TrustNo 1” security microprocessor design.
It is a design for applications, in which we do not
even trust the operating system, since it might like
any complex software system feature numerous secu-
rity vulnerabilities and since it might have been modi-
fied by our adversary. In addition, we do not trust any
system hardware since it is observable by the attacker
and might even have been modified, for example for a
RAM emulation attack. The concept presented here
allows to achieve a highly effective copy protection for
valuable software. In addition, security critical soft-
ware can be protected against manipulations, even if
the attacker has full access to the hardware except the
internals of the CPU chip itself.

Hardware Foundations

A suitable basis for the design of the TrustNo 1 would
be a processor like the Intel i386, which allows to par-
tition the virtual memory not only into pages but also
into segments. There, a memory address consists of a
segment selector and an offset. The segment selector
identifies a segment descriptor, which is a table entry
that describes the accessed memory segments by at-
tributes such as its base address, length, and whether
this segment is writable or executable. When access-
ing an address, the processor gets the segment de-
scriptor identified by the segment selector, compares

the offset with the segment length, checks the access
permissions, and adds the offset to the base address.
This results in what is called the linear address, which
will be converted using a page table into a physical ad-
dress.

Our processor features as protected on-chip mem-
ory a key table that can store n segment keys Ki

(0 < i ≤ n). A key table size of for instance n = 255
should normally be sufficient. This key table can only
be accessed by a firmware that is also stored in pro-
tected on-chip memory. Not even the operating sys-
tem kernel in supervisor mode has any access to the
content of the key table. The operating system can
only call firmware functions that access the key table
according to the rules described below. The segment
descriptors are extended by a new field, which contains
the index i of a key Ki found in the key table that is
used to decrypt this segment. The special index value
i = 0 indicates that this segment is not encrypted.

While loading the content of a cache line into the on-
chip cache, the memory logic can either transfer the
data as it is stored externally, or it can decrypt it.
We use a write-back cache, i.e., every write access is
first performed into the cache and only at a later time,
for instance when the memory occupied by the cache
line is needed to hold a different portion of the main
memory, the entire cache line will be written back into
the external RAM. Each line of the cache is associ-
ated with a key index i, which holds the information
if (i 6= 0) and with which key Ki this cache line has
been decrypted when it was loaded from RAM and has
therefore to be encrypted again before being written
back to external RAM. When the processor accesses
a memory location for which the content is already
located in the cache, then it will first check whether
the key index in the segment descriptor is equal to the
key index associated with the cache line. If this is the
case, the processor can immediately access the data in
the cache. If the key indices in the segment descrip-
tor and the cache line do not match, then the cache
line will be written back to RAM under the key index
associated with the old cache line and reloaded under
the required new key index in the segment descriptor,
which will then be loaded into the key index register
associated with the cache line. If the accessed memory
location is not present in the cache, then we load the
required cache line into the cache while applying the
decryption indicated by the segment descriptor key in-
dex and update the cache line key index accordingly.

The encryption units operate in electronic codebook
mode (ECB) and treat entire cache lines as input and
output blocks. The key supplied to the encryption



The TrustNo 1 Cryptoprocessor Concept 3

function is a combination of the key Ki found in the
processors key table, and the more significant address
bits that identify the cache lines. This way, every
cache line is effectively encrypted using a different key.
Extending the block size to the entire cache line en-
sures that an attacker can not perform a cipher in-
struction search attack and tabulate the entire per
byte codebook of the encryption function, as this was
possible for cryptoprocessors with a too small block
size [10]. The application of stream ciphers are not
feasible for cryptoprocessors, as the main memory is
accessed in a random access fashion, and not in a pre-
dictable linear sequence.

The memory manager of the processor has to ensure
that read, write, or execution access to data stored in
a segment encrypted under a key Ki is only granted if
the machine instruction that performed the access—
or in the case of execution simply the previously ex-
ecuted instruction—has also been fetched from a seg-
ment that is encrypted with Ki. This prevents even
the operating system from reading or modifying the
cleartext of an encrypted segment and from calling
parts of the code in an uncontrolled fashion. Jumps
into code in the encrypted segment is only allowed
at certain gate locations, for instance only at offset
0. This ensures that the encrypted program has con-
trol over under which circumstances parts of it can be
called. The firmware of the processor is as well located
in encrypted ROM and can be called by the operating
system at certain entry points, but cannot be read.

Secure context switches

If during the execution of instructions that have been
fetched from an encrypted code segment an interrupt
occurs, then the entire state Z of the processor that
is related to the current thread of execution includ-
ing the program counter and the register content will
automatically be transfered to an on-chip temporary
storage T that is not accessible to the operating sys-
tem. After this, the registers will be initialized be-
fore the interrupt handler of the operating system is
called. This way, the processor can resume the pre-
vious thread of execution after the interrupt handler
has finished, without giving the operating system any
chance to see any register values of the process exe-
cuting in the encrypted segment. After the interrupt
handler has finished its job, the processor just restores
the processor state Z that had been stored in T . The
temporary storage T is actually a small LIFO mem-
ory, which allows even interrupts of higher priority to
interrupt the encrypted handlers of lower priority in-
terrupts.

In operating systems with preemptive scheduling, it
is possible that an interrupt handler will not return
control over the processor to the interrupted thread
of execution. Therefore, we need a way to store the
content of T in a process descriptor table that is main-
tained by the operating system in a way that does
not endanger the confidentiality and integrity of the
state of the process. For this purpose, our processor
features a special SAVE STATE instruction, which pops
the top processor state from the stack T , encrypts
it, and stores it at a location that is specified as a
parameter of this function. Similarly, a second spe-
cial instruction RESTORE STATE decrypts the processor
state loaded from a specified location and reactivates
this state. This way, an interrupt handler can perform
a context switch between application processes with-
out getting access to the protected register contents
of these processes.

We also need a mechanism for ensuring that a state
that has been saved this way can only be reactivated
once. Otherwise, the operating system could without
agreement of the protected application execute unau-
thorized loops by simply reactivating the protected
process at the same state and aborting it shortly later,
for instance due to a page fault. This could be used by
an attacker to bring the protected software in an inse-
cure state, or to work around software license enforce-
ment mechanisms that limit the number of executions
of certain program functions.

As a counter measure, our processor features an on-
chip table with an entry Hj for every protected thread
of execution j. This table can also not be accessed
directly by the operating system. The SAVE STATE
command has an additional parameter j, an index of
the currently executed thread. The SAVE STATE in-
struction generates a random key and stores it in Hj .
This key is generated using a cryptographic hardware
pseudo random number generator that is continuously
spiced by an on-chip noise source in order to ensure a
continuous flow of high entropy randomness into the
generator state. This random number generator is also
available to application software for the generation
of cryptographic keys and nonces. SAVE STATE then
adds some redundant information like a checksum or
just a few zero bytes to the state in T and encrypts
both together with the key Hj and stores the result
at the specified address in main memory. The RE-
STORE STATE instruction also gets the thread index j
as a parameter, as well as the location of the encrypted
state in main memory. It decrypts the stored proces-
sor state with Hj , then clears the value Hj , and checks
the redundant information in the decrypted state. If



The TrustNo 1 Cryptoprocessor Concept 4

it is intact, the stored processor state will be reacti-
vated and the thread can resume its execution. Since
RESTORE STATE deletes the value Hj to which the op-
erating system never had access, the thread cannot be
reactivated again from the same state, because with-
out the Hj value, the state will not be reconstructed
correctly, which the processor can detect using the
redundant information that is part of the state, and
therefore the RESTORE STATE instruction will fail.

In order to create new threads of execution, ap-
plication processes use a special instruction TRANS-
FER STATE in order to copy the current state to T ,
but unlike during an interrupt, the registers are not
initialized. It can then call an operating system func-
tion that will find a new thread index j and will store
the state in T using SAVE STATE in a new entry in the
thread descriptor table. Similar to the return value of
a Unix fork() system call, TRANSFER STATE sets a sta-
tus bit in the saved state that is not set in the actual
status bit. This way, the application can distinguish
between the old and the new thread.

For system calls to the operating system, we use a spe-
cial SUPERVISOR CALL instruction, which like in a clas-
sical processor design switches into a special privileged
context of the operating system kernel, and which in
addition also hides the current processor state from
the operating system similar to what happens during
an interrupt. A major difference between an inter-
rupt and the execution of a SUPERVISOR CALL is that
the latter does not initialize all register values. This
is the responsibility of the application software, since
some of the registers will be used to pass parameters
to the system call. The transfer of larger pieces of data
can be performed using unencrypted data segments to
which both the application and the operating system
kernel have unrestricted access.

Key management

Let us assume, we want to cryptographically enforce
a software license that will the buyer of a software not
allow to use it concurrently on more than one proces-
sor. The software vendor V sells a usage license for
the software S to be used on the processor P . In or-
der to do this, V has to generate for S a distribution
key KS and distribute S only encrypted by KS . The
encryption algorithm is the same algorithm that is im-
plemented in the bus encryption unit of the processor
type for which S has been designed. In order to allow
the customer to use the software S on her processor
P , the vendor V has to make KS available to P in
a secure way that will not allow the buyer or anyone
else to execute S on another processor in addition.

This key transfer problem is an application for asym-
metric or public key cryptosystems, i.e. encryption
and decryption functions where the key information
is generated as a pair (K,K−1), such that data that
has been encrypted with K (the public key) can only
be decrypted with K−1 (the secret key) or vice-versa
and such that finding a matching K−1 for a given K
is extremely difficult. We will denote the result of en-
crypting or decrypting the message M with the key
K by {M}K .

One fundamental assumption in this scheme is that
the software vendor V who distributes protected soft-
ware for the TrustNo 1 processor trusts the manufac-
turer C of this processor in that this manufacturer will
not support or participate in application program re-
verse engineering and software piracy. Like with most
security systems, the user has to rely on the trustwor-
thiness of the system manufacturer and we have to
hope that market forces will keep untrustworthy man-
ufacturers out of doing business for a long time. The
chip producer C of the security processor could always
easily get access to any software protected under this
scheme if he wants.

First, C generates its public and secret key pair
(KC ,K

−1
C ) and makes sure that KC is well known at

all participating software vendors. Each software ven-
dor can decide, which chip manufacturer C is trust-
worthy in a configuration list of its distribution sys-
tem.

The manufacturer has generated for any individual
TrustNo 1 security processor P an asymmetric key
pair (KP ,K

−1
P ), as well as a secret key K ′P for a

symmetric cryptosystem. The additional symmetric
key is used because currently known symmetric cryp-
tosystems are much more efficient in key length and
throughput than currently known asymmetric sys-
tems. The key KP is publicly known, i.e. the oper-
ating system can call a firmware function of the pro-
cessor in order to get a copy of it, and the processor
manufacturer could even print it as a sort of serial
number on the chip package. In contrast, K−1

P and
K ′P are stored in a well-protected security register in-
side the processor that is designed to be destroyed by
any attempt to open the processor package [7]. Not
even the operating system or any other non-firmware
instruction can access these secrets. Apart from the
processor’s public key KP , the operating system can
also request from the processor a certificate {KP}K−1

C

that has been precomputed by the manufacturer and
is stored in the firmware. It can be used to proof to
the software vendor that KP is really the public key
of a processor that has been generated by the trusted



The TrustNo 1 Cryptoprocessor Concept 5

processor manufacturer C and not by some intruder.

The vendor V generates for his software product S
a single key KS for the bus encryption algorithm
and makes the encrypted software {S}KS commonly
available, for instance downloadable over public net-
work servers or on cheap portable storage media (CD-
ROM). Since S has been encrypted, nobody can use it
directly. If the owner of processor P wants to purchase
a usage license for S, then she has to send to the ven-
dor of S her processor key KP and the manufacturer
certificate {KP}K−1

C
. Then she pays for the software

and gets in return the encrypted key {KS}KP .

The operating software running on P now has a copy
of the encrypted software {S}KS as well as the pur-
chased license key {KS}KP . In order to install the
software, the operating system sends {KS}KP to the
protected firmware of P , which will then calculate
{{KS}KP }K−1

P
= KS. This asymmetric cryptosys-

tem application is quite time consuming and {KS}KP
is a relatively large (e.g., 128 bytes) long data packet.
Therefore we perform this calculation not for every in-
vocation of S, but only once during installation. The
firmware hands back to the operating system the more
compact (e.g., 10 bytes) and quickly decryptable key
{KS}K′

P
, which can be stored together with {S}KS on

the mass storage device.

In a real implementation, {S}KS would not simply
be a single big chunk of binary data that has been
entirely encrypted with KS, but it would be a file
format with a cleartext header that contains informa-
tion about the number, lengths, and types of segments
needed by S, as well as for every preloaded code and
data segment the withKS encrypted content. When S
is to be started, the operating system opens according
to the information in the file header of S the required
new memory segments in non-encrypted mode and fills
them with the corresponding contents of {S}KS . Then
it selects a free key index i and uses a firmware call
with the parameters i and {KS}K′

P
in order to load

KS into the on-chip key table entry Ki. Then, the op-
erating system writes the key index i into the segment
descriptors of S, and from this point on, the processor
can see the cleartext of S in those segments, but only
while executing commands inside these segments.

Before we can start the new process, the operating
system also has to create a new thread table entry.
We have to find a free entry Hj in the processor’s
thread key table, in which we will store the key that
will encrypt the register state at the next thread con-
text switch. The thread table of the operating system
contains apart from the usual entries also a field for

storing j as well as a location for storing the encrypted
processor state.

After all these preparations, we can call the software
S with suitable register values over the allowed entry
gates in the code segment.

Revocation of licenses

We can even implement with little additional cost a
mechanism that allows the revocation of software li-
censes, or their transfer to other processors. For this,
each processor P needs a “black list”, a small on-chip
write-once memory table, into which the owner of P
can put via some firmware function an entry for every
software S which she does not want to use any more
on P . In order to revoke a software license, we give
the license {KS}KP that we have originally purchased
from the vendor V to a revocation firmware routine,
which will calculate the shorter key {KS}K′

P
and will

store it in the black list. In addition, this firmware
routine will erase any key table entry Ki = KS that
might still be there.

Each time, when the firmware receives a data packet
{KS}K′

P
in order to set a new Ki entry in the key

table to KS , it will first check, whether this data
packet has not yet already been added to the black
list. In this case, it will prevent that KS can be writ-
ten into the processor key table. Since the black list
is an unerasable memory, entered licenses can never
be removed again without destroying the processor.
This means that the processor P will never again ex-
ecute any software that has been encrypted with KS ,
and the owner of P has effectively terminated the us-
age license for S. The firmware has a function that
generates a signed certificate B = {h(KS)}K−1

P
for

any entry {KS}K′
P

in the blacklist, where h is a cryp-
tographic one-way hash function. The owner of the
processor can now send B together with KP back to
the software vendor V . V will find in his customer
database the license agreement for the processor P
identified by KP . By calculating {B}KP and verify-
ing that indeed {B}KP = h(KS), the vendor can be
sure that the processor P has rendered the software li-
cense unusable. V can now for instance stop charging
a monthly usage fee, or he can offer to his customer
a new license {KS}KQ for her new processor Q if the
customer has bought a new computer and wants to
use the software now on the new machine instead.

In case a customer has accidentally written a value
{KS}K′

P
into the black list, then it is not sufficient

if the vendor simply issues a new license {KS}KP , as
this would be exactly the same now invalid license



The TrustNo 1 Cryptoprocessor Concept 6

that she knew already before. Instead, the vendor
would have to reencrypt the entire software for this
customer with a new key K ′S and redeliver the entire
(potentially huge) software package. In order to avoid
this problem, a real implementation could insert an-
other symmetric key layer between the KS and KP

encryption of S, such that P uses K−1
P in order to

decrypt a license key KL, which is then again used to
decrypt {KS}KL . This way, only {KL}K′

P
will be en-

tered into the black list, and the next license will have
a different KL value and the software will not have to
be completely reencrypted.

In case a processor P breaks down before it can gen-
erate license revocation certificates for all programs
licensed for it, the owner has to send the defect chip
back to the manufacturer C, who will verify the se-
rial number printed on the package, destroy the chip,
and issue a death certificate back to the former owner
that has been signed with K−1

C . The customer can
then forward this death certificate to all software ven-
dors in order to confirm that the processor has been
destroyed and that thereby the old license for P has
been terminated. This way, the vendors can issue a
free second license for the replacement processor. As a
useful side effect, this mechanism ensures that proces-
sor manufacturers get back a large number of defect
processors, which allows them to recycle material and
to perform detailed quality control studies in order to
extend the lifetime and reliability of their processors
and provide exact statistical time-to-failure estimates
for customers.

Application fields and outlook

The software protection concept that has been out-
lined here might on first glance look pretty compli-
cated, since in order acquire a software data packets
have to be exchanged with a server of the software
vendor. However, with the Internet and various on-
line service providers, an infrastructure for the elec-
tronic delivery of software to customers is emerging,
in which for electronic payment there have anyway
cryptographic data packets to be exchanged with the
software vendors. In these applications, exchanging
the license data won’t create any additional hassle.

Whether a security processor design like the here pre-
sented TrustNo 1 concept will get a significant mar-
ket share does not only depend on technical considera-
tions. So far, hardware manufacturers have often prof-
ited from the large number of available pirate copies
of software, since this increased availability of appli-
cation software makes the hardware platform much
more attractive. Especially in the private consumer

market, the wide availability of numerous freely copy-
able software can be a significant factor for choosing a
certain system architecture. Therefore, it is quite pos-
sible that many hardware manufacturers do not have a
particularly high interest in a powerful software pro-
tection mechanism. First main applications for bus
encryption processors in workstations might therefore
very well be security critical applications with secret
algorithms and data that have to be protected against
criminal manipulation and industrial espionage.

References:

[1] Best, R. M.: Preventing Software Privacy with
Crypto-Microprocessors, Proceed. IEEE Spring
COMPCON 80, San Francisco, California, Febru-
ary 25–28, 1980, pp. 466–469.

[2] Best, R. M.: Microprocessor for Executing En-
ciphered programs, U.S. Patent No. 4 168 396,
September 18, 1979.

[3] Best, R. M.: Crypto Microprocessor for Executing
Enciphered Programs, U.S. Patent No. 4 278 837,
July 14, 1981.

[4] Best, R. M.: Crypto Microprocessor that Exe-
cutes Enciphered Programs, U.S. Patent No. 4
465 901, August 14, 1984.

[7] Security Requirements for Cryptographic Mod-
ules, FIPS PUB 140-1, Federal Information Pro-
cessing Standards Publication, National Institute
of Standards and Technology, U.S. Department of
Commerce, January 11, 1994.

[8] Weingart, Steve H.: Physical Security for the
µABYSS System, Proc. 1987 IEEE Symposium
on Security and Privacy, April 27–29, 1987, Oak-
land, California, IEEE Computer Society Press,
pp. 52–58.

[9] White, Steve R.; Comerford, Liam: ABYSS: A
Trusted Architecture for Software Protection.
Proc. 1987 IEEE Symposium on Security and
Privacy, April 27–29, 1987, Oakland, California,
IEEE Computer Society Press, pp. 38–51.

[10] Kuhn, Markus: Sicherheitsanalyse eines Mikro-
prozessors mit Busverschlüsselung, diploma the-
sis, Lehrstuhl für Rechnerstrukturen, University
of Erlangen-Nürnberg, Erlangen, July 1996.


