
Kerberos Version IV: Inductive Analysis
of the Secrecy Goals?

Giampaolo Bella Lawrence C Paulson

Computer Laboratory – University of Cambridge
New Museums Site, Pembroke Street

Cambridge CB2 3QG (UK)

{gb221, lcp}@cl.cam.ac.uk

Abstract. An operational model of crypto-protocols is tailored to the
detailed analysis of the secrecy goals accomplished by Kerberos Version
IV. The model is faithful to the specification of the protocol presented
by the MIT technical plan [14] — e.g. timestamping, double session key
delivery mechanism are included. It allows an eavesdropper to exploit
the shared keys of compromised agents, and admits the accidental loss
of expired session keys. Confidentiality is expressed from the viewpoint
of each party involved in a protocol run, with particular attention to
the assumptions the party relies on. If such assumptions are unrealistic,
they highlight weaknesses of the protocol. This is particularly so from the
viewpoint of the responder: the model suggests and proves a reasonable
correction.
Keywords: secrecy, secure key, non-expired timestamp, inductive meth-
od, machine proof.

1 Overview

Crypto-protocols are highly error-prone, but formal methods can be used to limit
the risks deriving from their execution. Different kinds of methods could be used
in combination to achieve the best results.

Burrows et al. [6] developed a belief logic, i.e. a modal logic suitable to express
the beliefs of parties, and analysed the authenticity properties of several classical
protocols. Because of the failure to discover errors found by other methods, many
extensions and variations have been proposed (e.g. [5]).

State enumeration deals instead with systems of limited size, and checks
that all the states reachable are safe. This has led to several encouraging results
(e.g. [8, 11, 12, 20]).

Another approach relying on the simple concept of mathematical induction
comprises few methods that enhance state enumeration by inductive features
(e.g [13]), and a purely inductive one. This method, simply called the “inductive

? In J. -J. Quisquater, Y. Deswarte, C. Meadows and D. Gollmann, editors,
ESORICS’98 — European Symposium On Research In Computer Security, LNCS
1485, pages 361–375, Springer, 1998.

method” in the sequel, deals with systems of infinite size and is based on theorem
proving. It has achieved promising results with classical protocols such as Otway-
Rees, Needham-Schroeder and Yahalom [17, 18], and with real-world protocols
such as the Internet protocol TLS [19] and Kerberos.

The work on Kerberos was started by the authors last summer, and has gone
through several stages. Several technical results about the Version IV1 of the
protocol were proven soon [1], but the analysis of its secrecy goals turned out to
be a major task because of the mechanism that delivers session keys.

The subsequent analysis [2] of the simpler BAN version of the same protocol
(i.e. the version presented by Burrows et al. [6]) allowed the development of suit-
able proof strategies thanks to which the formal analysis of the secrecy goals of
Version IV has recently been achieved. This work shows a strong protection over
non-expired session keys even from attacks that exploit expired ones. However,
the risk of loss of expired session keys weakens Bob’s confidentiality guarantees.
To strengthen them, we suggest to add a simple temporal check to the operation
of the trusted party of the protocol, and prove it to be an efficacious cure.

It has to be mentioned that Version IV is much harder to analyse than the
BAN version. The mechanisation of the former executes in six times the CPU
time required by the mechanisation of the latter.

Section 2 sketches the main concepts of the inductive method. Kerberos Ver-
sion IV is introduced in Section 3 and analysed in Section 4. Some related work
is mentioned in Section 5, and Section 6 concludes.

2 Inductive Method Reminder

Crypto-protocols aim at keeping secret certain pieces of information in order to
infer the secrecy of new ones. This can be naturally expressed by mathematical
induction.

The inductive method models a crypto-protocol as the set of all possible
traces of events deriving from its execution by an infinite number of agents. The
basic event has the form SaysABmsg. In the real world, networks are often
threatened by an eavesdropper trying to access resources he is not entitled to
get. A dishonest agent spy is therefore included in the model. He controls a set
bad of compromised agents. Besides, honest agents can leak by accident valuable
information such as session keys.

Security properties typically concern sets of messages. Three operators map
a given set H of messages in another such set:

partsH yields all information contained in H, components of compound mes-
sages, and bodies of all encrypted messages;

analzH yields all information accessible in H, components of compound mes-
sages, and bodies of messages encrypted under keys (recursively) extracted
from H;

1 Version IV is the “original” Kerberos. Version V is based on the same message
structure.

synthH yields all compound messages and encrypted messages that can be built
using elements of H as components.

The spy’s ability of monitoring the network traffic is formalised by spies evs,
inductively defined as the set of messages over the trace evs — the traffic over evs
— plus the shared keys of compromised agents. Therefore, from the observation
of the trace evs, the spy can send messages belonging to the set

synth(analz(spies evs))

Confidentiality of a key K is formally stated in terms of the analz operator

K 6∈ analz(spies evs)

while K not appearing in traffic at all, even encrypted, is formalised in terms of
parts

K 6∈ parts(spies evs)

Encryption is assumed to be safe, i.e. bodies of encrypted messages can not be
read without knowing the corresponding key.

Guarantees are expressed in form of theorems mechanised by Isabelle [16].
The inductive method is described in greater detail elsewhere [17].

3 Kerberos Version IV Overview

The development of Kerberos started during the mid 1980s within project Athe-
na at MIT. After three trial versions, Version IV was released in 1989 [14].

1 2 3 4

5
6

database

A B

Kas Tgs

Kerberos System

Fig. 1. Basic Kerberos Layout

Kerberos is a shared key protocol based on timestamps. Its basic layout is
shown in Fig. 1. Kerberos is meant to provide secure communication over a

local area network (LAN) and its use has become more and more widespread
during this decade. However, we believe that the actual protocol has not yet been
formally analysed extensively (see also Sec. 5). This might be due to the double
authentication procedure that the initiator of the protocol has to go through,
a feature that seems to provide reassuring guarantees by inspection, but also
makes its formal analysis a lot harder.

Shared-key protocols normally rely on a trusted third party: Kerberos relies
on two. The first to take part to the protocol execution is the Kerberos Authen-
tication Server (abbreviated by Kas), the second is the Ticket Granting Server
(abbreviated by Tgs). A database contains the shared keys of all network users
and only Kas can access it.

The protocol in Fig. 2 is faithfully quoted from the MIT Athena technical
plan [14]. Lifetimes are omitted because sending them over the network does
not enhance secrecy, as pointed out by Bellovin and Meritt [4]. Kas does not
need a shared key of its own, because it uses Alice’s shared key looked up in the
Kerberos database to communicate with her. Kas knows the shared key of Tgs.

I. Authentication

1. A→ Kas : A,Tgs,Ta1

2. Kas→ A : {|AuthKey ,Tgs,Tk , {|A,Tgs,AuthKey ,Tk |}Ktgs︸ ︷︷ ︸
AuthTicket

|}Ka

II. Authorisation

3. A→ Tgs : {|A,Tgs,AuthKey ,Tk |}Ktgs︸ ︷︷ ︸
AuthTicket

, {|A,Ta2 |}AuthKey︸ ︷︷ ︸
authenticator

, B

4. Tgs→ A : {|ServKey , B,Tt , {|A,B,ServKey ,Tt |}Kb︸ ︷︷ ︸
ServTicket

|}AuthKey

III. Service

5. A→ B : {|A,B,ServKey ,Tt |}Kb︸ ︷︷ ︸
ServTicket

, {|A,Ta3 |}ServKey︸ ︷︷ ︸
authenticator

6. B → A : {|Ta3 + 1|}ServKey

Fig. 2. Kerberos Version IV

The Authentication phase (messages 1 and 2) sees Alice logging onto a
workstation in order to access the network. Alice sends her identifier to Kas and
gets in reply a session key and an encrypted ticket, respectively called authkey
and authticket in the sequel, which will be used in the next phase. They are sent
encrypted under Alice’s shared key that Kas has retrieved from the database.
Alice can not decrypt the authticket as this is encrypted under the shared key of

Tgs. The authkey has a lifetime of several hours: Alice is automatically logged
out when this key expires.

The Authorisation phase (messages 3 and 4) occurs each time Alice wants
to access the network resource Bob. Alice presents the authticket to Tgs together
with an authenticator to show that the authticket was issued to her. Tgs issues her
with a new session key and a new ticket, respectively called servkey and servticket
below. The servkey has a short lifetime of few minutes, and the servticket is
unintelligible to Alice, being encrypted under Bob’s shared key.

The Service phase (messages 5 and 6) follows each authorisation phase.
Alice presents the servticket to Bob along with a new authenticator. Bob’s reply
is borrowed from the Needham-Schroeder protocol.

4 Kerberos Version IV Inductive Analysis

We define the function

Ct : event list −→ bool

expressing the current time over a given trace, for creating timestamps. It is
defined as the length of a trace, since traces never shrink.

Four natural numbers formalise the lifetimes Kerberos relies on.

1. AuthLife is the lifetime of the authkey. Tgs checks the authkey against this
lifetime before issuing Alice with a servkey.

2. ServLife is the lifetime of the servkey. Bob checks the servkey to have not
expired w.r.t. this lifetime before setting up a communication with Alice.

3. AutcLife is the lifetime of any authenticator. Both Tgs and Bob check the
authenticator they receive to have not expired w.r.t. this lifetime in order to
prevent the replay of past authenticators.

4. RespLife is the lifetime of any server response. Once Alice has contacted Kas
or Tgs, she checks their replies to be not late w.r.t. this lifetime. A late reply
would indicate some messages of the communication to be possibly faked.

The first three lifetimes were introduced by the Athena Technical Plan [14]. The
fourth is meant to safeguard Alice, and was suggested by the first author and
Riccobene [3] from the observation that late server replies could indicate illegal
actions to have been performed. Our model does not force agents to act. They
could even reply late, but Alice would discard late replies.

Note that temporal checks must involve timestamps. Therefore, saying that
a session key has not expired means that the timestamp accompanying it inside
the ticket has not expired. Similarly, saying that an authenticator has not expired
means that the timestamp inside it has not expired. To enhance readability, we
define the predicates

1. ExpirAuth Tk evs ≡ (Ct evs) > Tk + AuthLife

2. ExpirServ Tt evs ≡ (Ct evs) > Tt + ServLife

3. ExpirAutc Ta evs ≡ (Ct evs) > Ta + AutcLife

4. RecentResp T T ′ ≡ T ≤ T ′ + RespLife

The inductive definition of Kerberos is presented in Appendix. Rules K1 to K6
formalise the protocol describing how to build new traces from each message. The
other rules express respectively the spy’s illegal activity (Fake), the accidental
leak of expired authkeys (Oops1), and of expired servkeys (Oops2). Traces are
formed in reverse: the new event is put on the front. The temporal checks follow
a pattern that is maintained throughout the protocol.

The current model allows the accidental leakage of session keys that have
expired (see Oops1 and Oops2), because there is some risk increasing over time
that the spy might get hold of some keys used in past runs. Our analysis

– discovers that non-expired session keys are strongly protected even from the
illegal use of expired ones;

– discovers that Bob’s guarantees of confidentiality over the servkeys are weak-
ened by the risk of loss of expired authkeys;

– shows how to strengthen Bob’s guarantees.

4.1 The Secrecy Goals

The technical results about Kerberos, such as possibility and regularity proper-
ties, are discussed elsewhere [1].

The secrecy goals are typically of two sorts: to limit the damage arising from
a key compromise, and to keep keys confidential. The goals met by Kerberos are
expressed by the following theorems.2

Key-Compromise Theorems typically state that some keys remain secret
even when some session keys have been leaked to the spy. Their proofs can be
hard, as they can often require case analysis under the analz operator. They also
serve as crucial simplification lemmas for proving confidentiality theorems.

Most shared-key protocols prudently never use session keys to encrypt other
session keys. Doing so would let the spy easily exploit the theft of one key to
learn others.

Kerberos takes the risk of encrypting the servkey by the authkey in the mes-
sage sent by Tgs. Therefore, the compromise of the authkey would obviously
compromise also the servkey, as confirmed by the following theorem, proven
straightforwardly from the definition of analz.

Theorem 1 (Compromise of servkey from compromise of authkey).
[| Says Tgs A (Crypt AuthKey {|Key ServKey, Agent B, Number Tt,

ServTicket|}) ∈ set evs;

Key AuthKey ∈ analz (spies evs); evs ∈ kerberos |]

=⇒ Key ServKey ∈ analz (spies evs)

Despite this weakness, three other important goals are expected to to be met.
2 Proofs are omitted here for the sake of brevity. They are available from the authors

at http://www.cl.cam.ac.uk/~gb221/Kerberos/

1. Both authkeys and shared keys should remain secure from the compromise
of any session keys, as session keys never encrypt them.

2. If Tgs encrypts a servkey by an authkey, then the compromise of another
authkey should not compromise that servkey, because a servkey should never
be encrypted by more than one authkey.

3. All keys should remain secure from the compromise of a servkey, since
servkeys never encrypt other keys.

Tackling the first goal required the definition of a set AuthKeys evs yielding the
authkeys over a trace evs, and several lemmas to simplify it. The result was a
long and time-consuming proof. The proofs of the remaining goals turned out to
be a major task, so different strategies were investigated.

When Tgs sends the fourth message, a stable association between a servkey
and an authkey is created, which resembles the association between nonces cre-
ated by the Yahalom protocol [18]. A servkey is associated with only one au-
thkey, but an authkey can be associated with several servkeys (i.e. an authkey
can encrypt several servkeys), and these facts could be proven. Such association
is formalised by the predicate KeyCryptKey authkey servkey evs, which holds if
Tgs sends a fourth message containing authkey and servkey in the trace evs.

Lemma 2 (Protection from a set of compromised session keys).
evs ∈ kerberos =⇒

(SK ⊆ Compl (range shrK) −→
(K ∈ SK. ¬ KeyCryptKey K SesKey evs) −→

Key SesKey ∈ analz (Key‘‘SK ∪ (spies evs)))

⇐⇒ (SesKey ∈ SK | Key SesKey ∈ analz (spies evs))

This lemma states that a set of compromised session keys SK that are never
used by Tgs to encrypt the given session key does not help the spy to learn the
session key. Precisely, the session key can be analysed from the traffic together
with SK if and only if the session key belongs to SK or could be analysed from the
traffic alone. The result is very general because the assumption on the predicate
KeyCryptKey can be refined to define the type of session key — whether authkey
or servkey — as shown below.

The proof consists of 40 Isabelle commands, necessary to apply several sim-
plification lemmas — e.g. KeyCryptKey never holds on shared keys or on session
keys not yet appeared on the traffic — structural lemmas — e.g. KeyCryptKey
never associates an authkey with another authkey — and unicity lemmas — e.g.
KeyCryptKey associates a servkey with one and only one authkey. This lemma
is applied by the following three theorems that prove respectively the three ex-
pected goals stated above.

Theorem 3 (Protection from compromised session key).
[| AuthKey ∈ (AuthKeys evs) ∪ range shrK; SesKey 6∈ range shrK;

evs ∈ kerberos |]

=⇒ Key AuthKey ∈ analz (insert (Key SesKey) (spies evs))

⇐⇒ (AuthKey = SesKey | Key AuthKey ∈ analz (spies evs))

The theorem reads as follows: an authkey can be analysed from the traffic plus a
session key if and only if the session key is the authkey or the authkey could be
analysed from the traffic alone. This means that the spy can not exploit stolen
session keys to learn new authkeys: the authkeys are safe from the compromise
of any other session keys. The guarantee is strong and desirable — authkeys are
valuable pieces of information, as they have a long lifetime — and also applies
to shared keys.

The new proof simply applies the lemma stating that an authkey (or a shared
key) is never treated by Tgs as a servkey

[| K ∈ AuthKeys evs ∪ range shrK; evs ∈ kerberos |]

=⇒ ∀ K’. ¬ KeyCryptKey K’ K evs

and then concludes by lemma 2: only 2 Isabelle commands.

Theorem 4 (Protection from compromised different authkey).
[| KeyCryptKey AuthKey ServKey evs;

AuthKey 6= AuthKey’; AuthKey’ 6∈ range shrK; evs ∈ kerberos |]

=⇒ Key ServKey ∈ analz (insert (Key AuthKey’) (spies evs))

⇐⇒ (ServKey = AuthKey’ | Key ServKey ∈ analz (spies evs))

If an authkey is associated with a servkey, then the compromise of a different
authkey does not help the spy to learn the servkey. The form is the same as that
of the previous theorem. The proof uses lemma 2 as well as a unicity lemma
about the unique association of a servkey to an authkey:

[| KeyCryptKey AuthKey ServKey evs;

AuthKey’ 6= AuthKey; evs ∈ kerberos |]

=⇒ ¬ KeyCryptKey AuthKey’ ServKey evs

Theorem 5 (Protection from compromised servkey).
[| ServKey 6∈ (AuthKeys evs); ServKey 6∈ (range shrK);

evs ∈ kerberos |]

=⇒ Key K ∈ analz (insert (Key ServKey) (spies evs))

⇐⇒ (K = ServKey | Key K ∈ analz (spies evs))

The theorem states that no keys can be learned from the compromise of a servkey.
The proof applies lemma 2 and a lemma stating that a servkey is never treated
by Tgs as an authkey:

[| K 6∈ AuthKeys evs; K 6∈ range shrK; evs ∈ kerberos |]

=⇒ ∀ K’. ¬ KeyCryptKey K K’ evs

Confidentiality Theorems typically express the assumptions upon which each
party can infer that a certain session key is secure from the spy.

They have a common feature. Any parties mentioned by the assumptions are
required to be uncompromised in order to protect the secrets they know. With
Kerberos, an agent has to trust that the agent at the other end of the com-
munication is not conspiring with the spy. However, there are other real-world
protocols for situations when nobody trusts anybody else.

Theorem 6 (Confidentiality for Kas).
[| Says Kas A (Crypt Ka {|Key AuthKey, Agent Tgs, Number Tk,

AuthTicket|}) ∈ set evs;

¬ ExpirAuth Tk evs; A 6∈ bad; evs ∈ kerberos |]

=⇒ Key AuthKey 6∈ analz (spies evs)

The only session keys administered by Kas are authkeys. This theorem assures
Kas that an authkey is safe as long as it has not expired. The proof exploits a
unicity lemma stating that Kas never distributes the same authkey to different
parties, and applies theorems 3 and 4.

Theorem 7 (Weak confidentiality for Tgs).
[| Says Tgs A (Crypt AuthKey {|Key ServKey, Agent B, Number Tt,

ServTicket|}) ∈ set evs;

Key AuthKey 6∈ analz (spies evs);

¬ ExpirServ Tt evs; A 6∈ bad; B 6∈ bad; B 6= Tgs; evs ∈ kerberos |]

=⇒ Key ServKey 6∈ analz (spies evs)

The theorem is targeted to the confidentiality of a servkey, as Tgs never sees
any authkeys. In order to protect the servkey, the theorem assumes the authkey
to be confidential (otherwise theorem 1 would apply). This is a weak guarantee:
although Tgs can check the freshness of the timestamp, it can not check the
confidentiality of the authkey. Theorems 3, 4, and 5 crucially help the proof.

Theorem 8 (Realistic confidentiality for Tgs).
[| Says Tgs A (Crypt AuthKey {|Key ServKey, Agent B, Number Tt,

ServTicket|}) ∈ set evs;

Says Kas A (Crypt Ka {|Key AuthKey, Agent Tgs, Number Tk,

AuthTicket|}) ∈ set evs;

¬ ExpirAuth Tk evs; ¬ ExpirServ Tt evs;

A 6∈ bad; B 6∈ bad; B 6= Tgs; evs ∈ kerberos |]

=⇒ Key ServKey 6∈ analz (spies evs)

This version is more realistic because Tgs and Kas are part of the same system,
so they can inspect each other’s activity: Tgs could check whether Kas has issued
the authkey. The proof refines theorem 7 by theorem 6.

Theorem 9 (Confidentiality for Tgs).
[| Says Tgs A (Crypt AuthKey {|Key ServKey, Agent B, Number Tt,

ServTicket|}) ∈ set evs;

Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key AuthKey, Number Tk|}

∈ parts (spies evs);

¬ ExpirAuth Tk evs; ¬ ExpirServ Tt evs;

A 6∈ bad; B 6∈ bad; B 6= Tgs; evs ∈ kerberos |]

=⇒ Key ServKey 6∈ analz (spies evs)

This is the most general version of confidentiality for Tgs because, if the involved
parties can be trusted, Tgs gets the guarantee as soon as it receives the authticket
{|A,Tgs,AuthKey,Tk|}Ktgs which is encrypted under its own shared key. The proof
applies first a lemma stating that the authtickets originate with Kas, and then
the previous theorem.

Note that the theorem holds since the authticket mentioned by the second
assumption appears in the traffic, but becomes useful to Tgs only when Tgs gets
hold of the authticket, perhaps later. The same remark applies to other theorems
involving parts.

Theorem 10 (Confidentiality over authkey for Alice).
[| Crypt (shrK A) {|Key AuthKey, Agent Tgs, Number Tk, AuthTicket|}

∈ parts (spies evs);

¬ ExpirAuth Tk evs; A 6∈ bad; evs ∈ kerberos |]

=⇒ Key AuthKey 6∈ analz (spies evs)

Alice gets a strong guarantee of confidentiality over the authkey from the re-
ception of a non-expired message encrypted under her shared key. The proof is
based on a lemma stating that, since Alice is uncompromised, the message en-
crypted under her shared key has originated with Kas. Theorem 6 is then applied.

Theorem 11 (Confidentiality over servkey for Alice).
[| Crypt (shrK A) {|Key AuthKey, Agent Tgs, Number Tk, AuthTicket|}

∈ parts (spies evs);

Crypt AuthKey {|Key ServKey, Agent B, Number Tt, ServTicket|}

∈ parts (spies evs);

¬ ExpirAuth Tk evs; ¬ ExpirServ Tt evs;

A 6∈ bad; B 6∈ bad; B 6= Tgs; evs ∈ kerberos |]

=⇒ Key ServKey 6∈ analz (spies evs)

The guarantee for Alice over the servkey is strong too, as she can check the re-
ception of a message of the expected form encrypted under her shared key, then
extract the authkey, and hence check again whether she gets an acceptable mes-
sage encrypted under the authkey. The proof is based on the following sketch.
Since Alice is uncompromised, the message mentioned by the first assumption
originated with Kas. Theorem 6 then derives that the authkey is confidential, so
the message mentioned by the second assumption originated with Tgs. Theorem
8 concludes.

Theorem 12 (Weak confidentiality for Bob).
[| Crypt (shrK B) {|Agent A, Agent B, Key ServKey, Number Tt|}

∈ parts (spies evs);

Crypt AuthKey {|Key ServKey, Agent B, Number Tt, ServTicket |}

∈ parts (spies evs));

Crypt (shrK A) {|Key AuthKey, Agent Tgs, Number Tk, AuthTicket|}

∈ parts (spies evs);

¬ ExpirAuth Tt evs; ¬ ExpirServ Tk evs;

A 6∈ bad; B 6∈ bad; B 6= Tgs; evs ∈ kerberos |]

=⇒ Key ServKey 6∈ analz (spies evs)

The theorem says that the servkey is secure provided that it has not expired and
that the authkey encrypting it has not expired either. This is a weak guarantee
because Bob has no role in the Authentication phase, never sees any authkeys,
and can not check whether the authkey encrypting the servkey he gets has
expired or not. However, the assumptions on the authkey are indispensable to
the theorem because, should the authkey expire, it could be then leaked by
accident and disclose (theorem 1) also the servkey to the spy.

Not only is the weakness highlighted by the previous theorem due to the
incautious design of the fourth message, but also to the lack of a connection be-
tween the expiring times of the two kinds of session keys. The following scenario
could happen: an authkey expires, its user is logged out from the workstation;
the authkey is somehow leaked; the servkeys encrypted under that authkey are
still non-expired (i.e. can be used) but compromised to the spy.

If Tgs only issued new servkeys when prompted with an authkey still valid
for the whole lifetime of the servkeys, then the problem might be fixed. This
intuition is confirmed by machine proofs. Rule K4 can be strengthened by the
temporal check

(Ct evs)+ ServLife ≤ Tk+ AuthLife

In this stronger protocol, when Bob receives a non-expired servkey, he is also
assured that the authkey encrypting it has not expired either. This lemma lets
us remove from the previous theorem those assumptions about the authkey that
could not be checked by Bob, so that his confidentiality guarantee is strength-
ened as follows.

Theorem 13 (Confidentiality for Bob — fixed model).
[| Crypt (shrK B) {|Agent A, Agent B, Key ServKey, Number Tt|}

∈ parts (spies evs);

¬ ExpirServ Tt evs;

A 6∈ bad; B 6∈ bad; B 6= Tgs; evs ∈ kerberos |]

=⇒ Key ServKey 6∈ analz (spies evs)

5 Related Work

The approaches that have been tailored to the formal analysis of Kerberos Ver-
sion IV are surprisingly not many. By contrast, a great number has been applied
to the simpler BAN version.

The first author and Riccobene analyse Version IV [3] by Gurevich’s Abstract
State Machine [7]. They use a detailed algebraic model to formalise all possible
actions of honest agents, but the eavesdropper’s potentialities are finite. Theo-
rems are stated from the viewpoint of the single agent of an infinite set. Proofs
are carried out by hand thanks to the little formal overhead, but automated
support is under development.

Mitchell et al. [15] model check a highly simplified version of Kerberos Ver-
sion IV derived from Kohl et al. [10]. Timestamps are not included, and multiple
runs are not allowed. They find no attacks on a system of size three — initiator,
Kerberos servers and responder — and a “redirection” attack on a system of size
four — with two responders — by which Alice might believe to be talking with
Bob when in fact she has been redirected to Charlie, who is possibly compro-
mised. They also check that the problem can be fixed according to the directions
of RFC-1510 [9] by upgrading the authenticator. However, the official Kerberos
Version IV [14] easily solves the problem by quoting Bob’s name in message 4.

6 Conclusion

Kerberos Version IV has proven to be a remarkable case study.3 Its analysis is
far more complicated than the analysis of the BAN version [2].

The risks arising from the accidental loss of the different kinds of session
keys have been formally tackled. Strong confidentiality assurances have been
provided to each uncompromised party involved in the protocol, showing that
non-expired session keys are not compromised by the accidental loss of expired
ones. However, Kerberos requires the network clocks to be synchronised, which
is a well known intrinsic weakness.

Each party has been provided with certain assumptions to check in order to
infer valuable guarantees. If a party is not able to check some of these assump-
tions, then the involved guarantee is weak. This is how it is discovered that,
in a realistically hostile environment, Bob gets a weak confidentiality guarantee
unless Tgs makes a suitable temporal check, not stated by the Athena Technical
Plan [14].

Modelling the possible compromise of session keys has greatly complicated
the analysis. However, a deployed protocol such as Kerberos Version IV must be
resilient against such losses. A litmus test for any protocol analysis method is
whether it addresses such issues.

3 The full Isabelle proof script executes in approximately 4 minutes on a 300 MHz
Pentium Pro, the longest time amongst the protocols analysed thus far.

Acknowledgement. The research was funded by EPSRC, grants GR/K57381
‘Mechanizing Temporal Reasoning’ and GR/K77051 ‘Authentication Logics’.

References

1. G. Bella, L. C. Paulson. Using Isabelle to Prove Properties of the Kerberos Authen-
tication System. Proc. of DIMACS Workshop on Design and Formal Verification
of Security Protocols, Orman and Meadows (eds.), 1997.

2. G. Bella, L. C. Paulson. Mechanising BAN Kerberos by the Inductive Method.
Proc. of Conference on Computer Aided Verification, Springer, LNCS Series, 1998.

3. G. Bella, E. Riccobene. Formal Analysis of the Kerberos Authentication System.
Journal of Universal Computer Science: Special Issue on Gurevich’s Abstract State
Machine, Springer, 1997.

4. S. M. Bellovin, M. Meritt. Limitations of the Kerberos authentication system.
Computer Comm. Review, 20(5) 119-132, 1990.

5. S. H. Brackin. A HOL Extension of GNY for Automatically Analyzing Crypto-
graphic Protocols. Proc. of Computer Security Foundations Workshop, IEEE Press,
1996.

6. M. Burrows, M. Abadi, R. M. Needham. A logic of authentication. Proceedings of
the Royal Society of London, 426:233-271, 1989.

7. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In Specification and Validation
Methods, Oxford University Press, E. Börger (ed.), 1995.

8. R. Kemmerer, C. Meadows, J. Millen. Three Systems for Cryptographic Protocol
Analysis. Journal of Cryptology, 7(2), 79-130, 1994.

9. J. Kohl, B. Neuman. The Kerberos Network Authentication Service (Version V).
Internet Request for Comment RFC-1510, 1993.

10. J. Kohl, B. Neuman, T. Ts’o. The Evolution of the Kerberos Authentication
Service. IEEE Press, 78-94, 1994.

11. G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol using
FDR. Tools and Algorithms for the Construction and Analysis of Systems, Margaria
and Steffen (eds.), LNCS1055, Springer Verlag, 147-166, 1996.

12. G. Lowe. Casper: a Compiler for the Analysis of Security Protocols. Oxford
University, Computing Laboratory, Technical Report, 1996.

13. C. Meadows. The NRL Protocol Analyzer: An Overview. Journal of Logic Pro-
gramming, 26(2), 113-131, 1996.

14. S. P. Miller, J. I. Neuman, J. I. Schiller, J. H. Saltzer. Kerberos authentication and
authorisation system. Project Athena Technical Plan, Sec. E.2.1, 1-36, MIT, 1989.

15. J. C. Mitchell, M. Mitchell, U. Stern: Automated Analysis of Cryptographic Pro-
tocols Using Murphi. Proc. of IEEE Symposium on Security and Privacy, 141-151,
1997.

16. L. C. Paulson. Isabelle: A Generic Theorem Prover. Springer, 1994. LNCS 828.
17. L. C. Paulson. Proving properties of security protocols by induction. Proc. of

Computer Security Foundations Workshop, IEEE Press, 1997.
18. L. C. Paulson. On Two Formal Analyses of the Yahalom Protocol. Cambridge

University, Computer Laboratory, Technical Report No. 432, July 1997.
19. L. C. Paulson. Inductive Analysis of the Internet Protocol TLS. Cambridge Uni-

versity, Computer Laboratory, Technical Report No. 440, Dec. 1997.
20. S. Schneider. Verifying Authentication Protocols Using CSP. Proc. of Computer

Security Foundations Workshop, IEEE Press, 1997.

Appendix. Kerberos Version IV Inductive Definition

kerberos :: event list set

inductive kerberos

Base [] ∈ kerberos

Fake [| evs ∈ kerberos; B 6= Spy; X ∈ synth (analz (spies evs)) |]

=⇒ Says Spy B X # evs ∈ kerberos

K1 [| evs ∈ kerberos; A 6= Kas |]

=⇒ Says A Kas {|Agent A, Agent Tgs, Number (Ct evs)|}

evs ∈ kerberos

K2 [| evs ∈ kerberos; A 6= Kas; Key AuthKey 6∈ used evs;

Says A’ Kas {|Agent A, Agent B, Number Ta1|} ∈ set evs |]

=⇒ Says Kas A (Crypt (shrK A)

{|Key AuthKey, Agent Tgs, Number (Ct evs),

(Crypt (shrK Tgs) {|Agent A, Agent Tgs,

Key AuthKey, Number (Ct evs)|}) |})

evs ∈ kerberos

K3 [| evs ∈ kerberos; A 6= Tgs;

Says A Kas {|Agent A, Agent Tgs, Number Ta1|} ∈ set evs;

Says Kas’ A (Crypt (shrK A) {|Key AuthKey, Agent Tgs,

Number Tk, AuthTicket|}) ∈ set evs;

RecentResp Tk Ta1 |]

=⇒ Says A Tgs {|AuthTicket,

(Crypt AuthKey {|Agent A, Number (Ct evs)|}),

Agent B|}

evs ∈ kerberos

K4 [| evs ∈ kerberos; A 6= Tgs; B 6= Tgs; Key ServKey 6∈ used evs;

Says A’ Tgs {|(Crypt (shrK Tgs) {|Agent A, Agent Tgs,

Key AuthKey, Number Tk|}),

(Crypt AuthKey {|Agent A, Number Ta2|}),

Agent B|} ∈ set evs;

¬ ExpirAuth Tk evs; ¬ ExpirAutc Ta2 evs |]

=⇒ Says Tgs A (Crypt AuthKey

{|Key ServKey, Agent B, Number (Ct evs),

(Crypt (shrK B) {|Agent A, Agent B,

Key ServKey, Number (Ct evs)|}) |})

evs ∈ kerberos

K5 [| evs ∈ kerberos; A 6= B;

Says A Tgs {|AuthTicket,

(Crypt AuthKey {|Agent A, Number Ta2|}),

Agent B|} ∈ set evs;

Says Tgs’ A (Crypt AuthKey {|Key ServKey, Agent B, Number Tt,

ServTicket|}) ∈ set evs;

RecentResp Tt Ta2 |]

=⇒ Says A B {|ServTicket,

(Crypt ServKey {|Agent A, Number (Ct evs5)|}) |}

evs ∈ kerberos

K6 [| evs ∈ kerberos; A 6= B;

Says A’ B {|(Crypt (shrK B) {|Agent A, Agent B, Key ServKey,

Number Tt|}), (Crypt ServKey {|Agent A,

Number Ta3|}) |} ∈ set evs;

¬ ExpirServ Tt evs; ¬ ExpirAutc Ta3 evs |]

=⇒ Says B A Crypt ServKey (Number (Ta3 + 1))

evs ∈ kerberos

Oops1 [| evs ∈ kerberos; A 6= Spy;

Says Kas A (Crypt (shrK A) {|Key AuthKey, Agent Tgs,

Number Tk, AuthTicket|}) ∈ set evs;

ExpirAuth Tk evs |]

=⇒ Says A Spy {|Agent A, Agent Tgs, Number Tk, Key AuthKey|}

evs ∈ kerberos

Oops2 [| evs ∈ kerberos; A 6= Spy;

Says Tgs A (Crypt AuthKey {|Key ServKey, Agent B,

Number Tt, ServTicket|}) ∈ set evs;

ExpirServ Tk evs |]

=⇒ Says A Spy {|Agent A, Agent B, Number Tt, Key ServKey|}

evs ∈ kerberos

