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ABSTRACT We present a theoretical and practical approach to the modular natural
deduction presentation of modal logics and their implementation in a logical framework.
Our work treats a large and well-known class of modal logics (including K, KD, T, B,
5S4, 54.2, S5) in a uniform way with respect to soundness and completeness for semantics,
and faithfulness and adequacy of the implementation. Moreover, it results in a pleasingly
simple and usable implementation of these logics.

§1 INTRODUCTION
Logical Frameworks such as the Edinburgh LF [7] and Isabelle [10] have been proposed as a
solution to the problem of the explosion of logics and specialized provers for them. However,
it is also acknowledged that this solution is not perfect: these frameworks are best suited for
encoding ‘well-behaved’ natural deduction formalisms whose metatheory does not deviate too
far from the metatheory of the framework logic. Modal logics, in particular, are considered
difficult to implement in a clean direct way (e.g. [2, §4.4.1] and [6]). Encodings in both the
LF and Isabelle have been proposed (see section 5), but they have been either Hilbert-style or
quite specialized, and their correctness is subtle. We present a method for encoding a large and
useful class of propositional modal logics (including K, KD, T, B, S4, 5§4.2, §5) in a natural
deduction setting, and show, once and for all, correctness for every encoding in the class.
We have implemented our work in Isabelle and the result is a simple, usable, and completely
modular natural deduction implementation of these logics.

Let us consider in more detail the difficulty with modal logics, since the problem motivates
the approach that we pursue. The deduction theorem,

If by adding A as an ariom we can prove B, then we can prove A — B without A,

fails in modal logics. A semantic explanation of this is that the standard completeness theorem
for modal logics says that = A iff A is true at every world in every suitable Kripke frame
(W, R) (where W is the set of worlds, and R is the accessibility relation). Basically, - A means
Vw € W(Ey A) and the deduction theorem states that

Vi € W(lEw A) = Yw € W=y B) = Yw € W(l=y A — B),

where — is implication in the meta-language and — is implication in the object language.
But this is false; we have only

Yw € W(Ey A=k, B) = Yw € W(E, A — B).

Thus, a naive embedding of a modal logic in a logical framework captures the wrong conse-
quence relation. One solution to this problem is to turn to Hilbert presentations; we reject this
as it is well-known that they are difficult to use in practice. Instead, motivated by the above
semantic account, we take the view of a logic as a Labelled Deductive System (LDS) proposed



by Gabbay [5], among others. This approach pairs formulae with labels: instead of proving
F A, one proves | w: A, where w represents the current world, and Yw € W (- w: A) iff - A.
Then it becomes possible to give a proof-theoretic statement of the deduction theorem which
is the analogue of the semantic version. The same mechanism yields a direct formalization of
modal operators like OI:

Fw:04 iff V' € W(Fw Rw — w': A),

given that we are able to capture the behavior of R. Using these observations, we present a
modal logic parameterized over the behavior of R, which we separately present as a simple
theory of one binary relation; this allows us to specify particular modal logics by modifying
this separate theory.

We show that, when appropriately formalized, the LDS approach yields a simple imple-
mentation of natural deduction presentations of modal logics within logical framework based
theorem provers (Gabbay’s proposals cannot directly be so implemented, see section 5) with
many pleasant properties. First, since all logics are produced by extensions of the theory of R,
we get a natural hierarchy of logics, inheriting theorems and derived rules. This has important
practical applications for the interactive construction of complex theories (see appendix A for
a simple example). Second, we use the parameterized relational theory to provide parameter-
ized completeness (with respect to a Kripke-style semantics), and correctness (of the encoding)
theorems. These theorems show that our implementation not only properly captures modal
provability within our hierarchy, but also the appropriate consequence relations [1]. Moreover,
the use of explicit labels leads to simple proofs of these properties, but they are substantially
modified compared to the standard ones. For example, to show completeness we provide a
new kind of canonical model construction that accounts for the explicit formalization of labels
and of the accessibility relation (see section 3). Finally, although not formally quantifiable, our
experience shows that proof construction using our presentation is natural and intuitive.

§1.1 Qutline of the paper This paper is structured as follows. In section 2 we introduce a
labelled natural deduction version of the modal logic K and a language for creating extensions.
We then introduce a Kripke-style semantics for our systems, and modularly prove soundness
and completeness results for K and any relational theory extension (section 3). In section 4 we
present the Isabelle implementation of labelled modal logics and prove its correctness. Finally,
in sections 5 and 6, we discuss related and future work. Due to lack of space, proofs have been
considerably shortened. More details can be found in the full version of the paper, available at
http://wuw.mpi-sb.mpg.de/guide/staff/luca/luca.html.

§2 HIERARCHICAL MODAL LoGICS AS LABELLED DEDUCTIVE SYSTEMS

We introduce a labelled, natural deduction [11, 12] version of K and a language for creating
extensions.

§2.1 Labelled K We use labels to associate possible worlds with formulae. Let W be a set of
objects (called labels) representing worlds, and let R C W x W be a binary relation. If « is
a propositional modal formula built in the standard way from 1,—.[0,0, then, for any labels
z,y,w, x Ry is a relational formula (rwff), and w: o is a labelled formula (lwff). Hence, if p
is a sentence letter, and A, B are propositional modal formulae, then w:p, w: 1, w: A = B,
w:0A, w: QA are all lwffs. Lwffs over other connectives (e.g. =, A, V) can be straightforwardly
defined.

As notation, we shall henceforth assume that the (possibly subscripted) variablest, u, ...,z
range over labels, the variables A, B, ..., a, 3, ...range over propositional modal formulae, and
F'={ur:B1,.. . un:fn} and A ={x1 Ryq,...,2m R yn} are arbitrary sets of lwifs and rwifs.

The rules of the basic natural deduction system which formalize a labelled version of the
modal logic K (which we concisely call K) are given in figure 1.
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O (resp. O F) has the restriction that y must be different from « (resp. z and w) and occur only in
the distinguished occurrences of @ R y (resp. y: A and = R y).

Figure 1: The rules of K

§2.2 Relational Theories Anticipating our implementation in the universal /implicational frag-
ment of a meta-logic, we formulate a restricted class of rules about the accessibility relation that
can be directly implemented without requiring additional axioms (e.g. for auxiliary predicates
or judgements).

DeFINITION 1 A Horn formula (over the binary relation R) is a closed formula of the form
Vay ... Ve,(t1t Rsi Ao Aty Rsy =t Rs).
Corresponding to each such Horn formula is @ Horn rule
t1 R s tm R sm
tRs

A Horn theory is a theory generated by a set of Horn inference rules. i

In what follows we consider extensions of K by arbitrary relational Horn theories, i.e. Horn
theories of one binary predicate R. Since the addition of a Horn formula to a theory is equivalent
to adding the corresponding rule, we shall talk about additions based on either formulae or
rules as is convenient.!

Let n be a natural number, and let O" (resp. ¢") stand for a sequence of n consecutive
Os (resp. ¢s). Thus 0°4 is simply A, (200%4 is QOOOOA, and so on. A large and important
class of modal logics falls under the generalized Geach ariom schema (e.g. [3]):

O'OmA - Q" A
which corresponds to the semantic notion of (i, 7, m,n) convergency (or ‘incestuality’ in the
terminology of [3]):

(where i, j, m, and n are natural numbers)

VaVyVz(e Ry Az R 2 — Ju(y R™ uw A z R™ u)),
where z R® y means z = y and Rt y means Jv(z Rv Av R y).

There are instances of (4, j, m, n) convergency that explicitly require the equality predicate,
e.g. (1,0,0,0) convergency yields vacuity, VaVy(x Ry — & = y), which corresponds to ¢4 — A
[3, p.90]. We here introduce the subclass of restricted (i,j, m,n) convergency axioms, as the
class of properties of the accessibility relation which (1) yield, among others, all the modal

! This equivalence holds for first-order theories, or, as in our case, propositional theories, embedded
in a higher-order logic, where universal quantification is at the metalevel (e.g. see section 4).



logics usually of actual interest (IK,KD,T,B,54,54.2,55,...); (2) can be expressed as Horn
rules in the theory of one binary predicate R.

DEFINITION 2 Restricted (4, j, m,n) convergency axioms are closed formulae of the form
VaVyVz(e Ry Az R 2 — Ju(y R™ uw A z R™ u)),

where m = n = 0 implies i = j = 0. 1

PROPOSITION 3 [IfTg is a theory corresponding to a collection of restricted (i, j, m,n) conver-
gency axioms, then there is a Horn theory of the binary relation R, Txr, conservatively extending
it.

PrOOF (Sketch) The restriction that m = n = 0 implies ¢ = j = 0 is a necessary and sufficient
condition for equality to be inessential (the necessity can be checked semantically), as noted in
[14]. Now, for each convergency axiom A*, let B* be formed by prenexing quantifiers followed
by skolemizing remaining existential quantifiers. B¥ must be of the form

Vay... Vo (tt RsiA...At, Rs, — (8} Rs'l/\.../\t; ng)),
where ¢ = m 4+ n # 0, and where Skolem functions only occur in the consequent. We can
translate B* into ¢ Horn formulae, BY for r € {1,...,q}, of the form
Vay...Va(tt RsiA...At, Rs, > 1. Rs)).
Let Tr be the theory generated by the union of the BX rules; the conservativity of Tg
follows by the theorem on functional extensions [13, p.55], and the observation that Skolem

constants only occur positively in the B%. 1

D: 0OA— QA 5: 0A—00A R R

(seriality) z R f(z) R_ser (euclideaness) % R_eucl
T: O0A—- A Rorefl 2: QUA—-DOA | z Ry szR

flexivit -re —— R. 1
(reflexivity) TRz (convergency) Y Rg.9.7) conv
B: A—-00A tRy xRz
(symmetry) Z};i} R_symm m R_conv2
4: 0A—-00A | s Ry yRz

(transitivity) T R_trans

z Rz

R_ser: f: W — W is a (Skolem) function constant.
R_convl, Rconv2: g: (W x W x W) — W is a (Skolem) function constant.

Figure 2: Characteristic axioms, properties of R, and relational rules

All the properties given in figure 2 are instances of restricted (i, j, m, n) convergency, e.g.
seriality, transitivity and convergency are expressed by (0,0,1, 1), (0,2,1,0), and (1,1,1,1)
convergency respectively. We also present there the Horn rules that result by applying the above
translation to these axioms, together with the corresponding characteristic modal axioms.

Various combinations of relational rules define labelled equivalents of standard modal log-
ics: The logic L = K 4 7T is obtained by extending K with a given relational Horn theory



7.2 Figure 3 shows a fragment of the hierarchical dependency that results (for the sake of
readability, we omit many logics and the obvious inclusion relations, e.g. K D is a sublogic of
KT). For example, KT4 (54) is obtained by extending K with the rules R_refl and R_trans,
or alternatively by extending either K'T" with the rule R_trans or K4 with the rule R_refl.

KT5 (S5) KT42 (54.2) K D45

R_convl,R_conv2 R _ser R_TUCl

B (B) R_quel KT4 (54) A45 K D4
_Lf, S

/
"\

trans/ _7‘8 _eucl /1; tians
\ e
KD
_symm\R_refl R_trdns _se/
\ //‘ﬂ

Figure 3: A hierarchy of modal logics (fragment)

This approach can be generalized at the cost of a more complex labelling algebra. For
instance, ‘unrestricted’ (4, j, m, n) convergency can be captured by extending the Horn theory of
the binary predicate R with equality, and similar extensions allow us to capture the accessibility
conditions that can be expressed in the Horn fragment; first-order calculi can be used to deal
with the relational theories which can not be expressed as Horn theories; and so on. Such
extensions are not required though to capture most of the modal logics used in practice.

§2.3 Derivations We adapt the standard definition from [12] to define derivations of lwffs and
rwifs relative to a given relational Horn theory 7 used to extend K. Given a modal logic
L = K+ 7T, an L-deriwation of a consequent ¢, either an lwff or an rwff, from a set of lwifs
I and a set of rwifs A, is a tree formed using the rules in L, ending with ¢ and depending
only on I' U A. We write I'; A -1 ¢ when ¢ can be so derived. ¢ is an L-theorem, Fr ¢, if it
is L-derivable from empty I' and A. We then call F; ¢ an L-proof of . As an example, we
present a K 2-proof of the characteristic axiom z:0OA — OO A.

[r Ry]' [x R=z)?

p:04! gy Rglwpe) O Ry @R
gty 7)A or “Rg(2,9,7) IR.coan
[z:00A4)3 z: QA L 0
2:0A oF
A
z:00A

A 3

z:00A — O0A -1
Notice the use of the relational rules of figure 2, and that we use superscripts to associate
discharged assumptions with rule applications.

2We adopt the convention of naming the modal logic K +7 as K Az, where Ax is a string consisting
of the standard names of the characteristic axioms corresponding to the relational rules contained in

T. As an example, K, KT, KTB, KT4, KT5 identify the logics also known as K, T, B, 54, 55.



§3 CORRECTNESS OF MoDAL LDSs

We adapt standard definitions (e.g. [3]) to introduce a Kripke-style semantics for our systems,
after which, we modularly prove soundness and completeness results for K and any relational
theory extension.

DEFINITION 4 A modal model M is a triple (w,r,v), where w is a non-empty set, r Cw X W,
and v maps an element of w and a sentence letter to a truth value (0 or 1).
M s said to have some property of binary relations iff v has that property. 1

DEFINITION 5 Truth for an rwff or an lwff ¢ in a model M, EM ¢ (¢ is true in the model
M ), is defined inductively as the smallest relation satisfying:

EMz Ry if (x,y)€r

EMaw:p if v(w,p)=1

EMw:A—- B if EMw:A implies EM w:B

EM w:0A4 if  for allv, EM w Rv implies EM v: A
EMaw:OA if there is some v, EM w Rv and =M v: A

By extension, for a set TUA, EM TUA means that, for all ¢ € TUA, EM ¢, and T, A |= ¢
means that, for any model M, =M T'U A implies =M . x

Truth for Iwffs is related to the standard truth relation for ‘unlabelled” modal logics, e.g. [3],
by observing that =" w:a iff EM a.

DEFINITION 6 The modal logic L = K + T is sound (wrt. the semantics) iff for every T and
A, and for every rwff or lwff o, if T,Abp ¢ then T, A Ew. L = K+ 7T iscomplete (wrt. the
semantics) iff the converse holds. 1

The explicit embedding of properties of the models, via the rwffs, and the possibility of explicitly
reasoning about accessibility relations, requires us to consider also soundness and completeness
results for rwffs. Hence, we have that

THEOREM 7 L = K + T is sound and complete (wrt. the semantics).

We omit the proof due to space limitations, and only provide some remarks. Soundness follows
by induction on the structure of the L-derivation of ¢ from I' and A. Completeness follows
by a modification of the standard canonical model (M¢ = (w¢,1¢,v¢)) construction (see, for
instance, [3]). In particular, given the presence of labelled formulae and of explicit assumptions
on the relations between the labels (i.e. A), we consider ‘global’ consistent sets of labelled
formulae, where consistency is checked also against Ay (the closure of A with respect to the
logic L), instead of the usual sets of unlabelled formulae consistent with respect to some world.
w¢ is then obtained by partitioning the resulting, unique, maximal consistent set of lwffs with
respect to the labels. Moreover we do not adopt the standard definition of 1%, i.e. (z,y) € r¢
iff {A|0A € 2} Cy, since {A |OA € 2} C y does not imply -1, @ R y. We would therefore
loose completeness for rwffs, there being cases (e.g. if L = K4 and A is empty) where i/ # Ry
but (z,y) € r¢. Hence, we define (z,y) € 1¢ iff # Ry € Ar. This guarantees completeness for
rwifs and allows us to investigate completeness for 1wffs.



§4 IMPLEMENTATION AND ITS CORRECTNESS

§4.1 Implementation We have used Paulson’s Isabelle System [10] to implement the modal log-
ics we presented. The logical basis of Isabelle, the meta-logic M, is the universal /implicational
fragment of higher-order logic® [9]; to prevent object/meta confusion we use A to represent
Isabelle’s universal quantifier and = for implication.

The object logic L = K + 7T is represented by the logic M, obtained by extending the
signature and rules of M with (1) the types label and o denoting labels and unlabelled modal
formulae, respectively; (2) constant symbols representing the object-level connectives (e.g. box
of type 0 = 0); (3) the unary constant symbols £ and A (standing for ‘Labelled Formula’ and
‘Accessibility’) mapping Iwffs and rwffs to types which represent judgements: L£(w:«) and
A(z R y) respectively express the judgements that w : « is a provable lwff and that # R y
is a provable rwff; (4) constant symbols representing the (Skolem) contants appearing in the
relational rules of L; (5) meta-level axioms representing the rules of L.

As an example, I, R_convl and R_conv2 are represented by the following axioms, where
¢ is a meta-level constant (see also appendix A and [10]):

boxI Az A (Ay. (Alx Ry) = L(y:A))) = L(x:0A4)
R_convl Azyz. Alx Ry) = (A(x Rz) = Ay Rg(x,y,2)))
R_conv2 Azyz. Alx Ry) = (A(x Rz) = A(z Rg(x,y,2)))

As notation, we respectively write £(T') and A(A) for {L(u1:61), ..., L(un:5s)} and {A(x1 R
yl)a .. 7A($m R ym)}

Isabelle presents a theory as an instance of a defined ML-datatype. It also provides a
library of functions for extending and combining objects of this type. Our implementation
allows users to specify theory extensions by choosing a relevant theory and adding new Horn
rules. In appendix A we give examples of theory specification, extension, and use: We give
there the entire signature of Mg, provide examples to demonstrate theory extension, and
show how this allows hierarchical development where derived theorems and rules are inherited.
Our implementation has proven both very simple and flexible. We have used it to carry out,
interactively, case studies of theorem proving in a variety of modal logics. It has also been used
for teaching modal logic at the University of Saarbriicken.

§4.2 Correctness When one logic encodes another, correctness must be shown. A technique
established with the Edinburgh LF is to demonstrate a correspondence between derivations
in the object-logic and derivations in the meta-logic by considering certain normal forms for
derivations in the meta-logic. In our work we use a kind of expanded normal form considered
by Prawitz [12]: A derivation is in expanded normal form if (1) in every branch no elimination
rule immediately follows an introduction rule (thus every branch begins with an assumption
or an axiom, then has a series of eliminations, in which the formulae shrink to a minimum
formula, and ends with a series of introductions), and (2) every minimum formula is atomic.
Following a standard result of proof-theory [12], every Isabelle derivation can be so normalized
(see also [9]). Our minimum formulae are of the form £L(w:a) and A(x R y).

DEFINITION 8 M is faithful (wrt. L) iff L(T), A(A) Fa, L(w:e) impliesT, A g w:e, and
L), A(A) Fa, A(x Ry) impliesT)AFp x Ry. Mg is adequate (wrt. L) iff the converse
of these conjuncts holds. 1

#Isabelle’s logic also contains equality (that of the A-calculus under «, 3, and n-conversion), but we
do not need to consider this, since, in the analysis of derivations in the meta-logic, we shall identify
terms with their 87 normal forms. This is possible as terms in our modal meta-theories are terms in
the simply-typed A-calculus (with additional function constants) and hence every term can be reduced
to a normal form that is unique up to a-conversion.



THEOREM 9 My is faithful and adequate (wrt. L).

ProoF (Sketch) The proof of faithfulness divides into two parts and is by induction on the
size of the expanded normal form of Mp-derivations of £(w:ea) and of A(z R y) from L(T)
and A(A). Since L(w:«) (resp. A(z R y)) is atomic, the branch terminating with £(w: «)
(resp. A(z R y)) cannot contain introduction rules and thus cannot discharge assumptions.
Therefore the branch consists entirely of elimination rules, and so its first formula is non-
atomic and must be an axiom.

There are a number of axioms for K and we can consider each in turn; e.g. consider the
axiom boxl, where w:« is v:Oy for some v and for some y. The M-derivation must have
the structure shown at the top of figure 4. It contains an M -derivation of Ay. A(z B y) =
L(y:7) from L£(T') and A(A), which, by expanded normal form, consists of an M -derivation
of L(v:y) from L(T') and A(A U {v R y}), where y is not free in the assumptions, followed
first by a = I, discharging the assumption A(z R y), and then by a A I. An L-derivation
of y:v from T and A U {v Ry}, where y is not free in the assumptions, is given by inductive
hypothesis. Applying OI gives an L-derivation of v:Oy from I and A.

Alternatively, the axiom is a relational Horn axiom. By induction on its structure, the
M -derivation must comprise a sequence of A E steps, one for each quantifier, followed by a
sequence of = F steps, one for each premise. For concreteness, consider the axiom R_convl,
where # R y is u R g(v,u,t) for some v,u,t. The My-derivation must have the structure
shown at the bottom of figure 4. L-derivations of v R u and v R from I' and A are given by
inductive hypotheses. Applying R_convl gives an L-derivation of u R g(v, u,t) from T" and A.

The proof of adequacy is by induction on the structure of the L-derivations of w:a and of
z Ry from I' and A.

First, we consider the propositional and the modal rules (i.e. the rules of K) individually.
For example, for O/, w: « is v: Oy, and OJ is applied to an L-derivation of y : v from T
and AU{v Ry}, where y is not free in the assumptions. An M-derivation of L(y:~) from
L(T) and A(AU {v R y}), where y is not free in the assumptions, i.e. an Mp-derivation of
Ay. Alv Ry) = L(y:v) from L(T) and A(A), is given by inductive hypothesis. Conclude
by building an M-derivation like that at the top of figure 4.

In second case, a Horn rule has been applied and by induction on its structure we may
construct an My derivation. Consider the case of R.convl: © Ryisu R g(v,u,t), and R_convl
is applied to L-derivations of v R v and v R ¢ from T' and A. M-derivations of A(v R u)
and A(v R t) from £(T'), A(A) are given by inductive hypotheses. Conclude by building an
M -derivation like that at the bottom of figure 4. '

§5 RELATED WORK
Prawitz [11] discusses a rule for necessitation (O) introduction in $4 with the ‘non-local’ side
condition that all the supporting assumptions are modal (i.e. the main connective is O) or
essentially modal (i.e. obtained from modal formulae by arbitrary combinations of conjunction,
disjunction and double negation). A solution to this problem is given by Avron [2, §4.4], whose
natural deduction presentation of 5S4 for the Edinburgh LF uses two judgements, factoring
out a subtheory where only propositional reasoning is possible, with ‘modal’ reasoning allowed
only outside. Unfortunately, the result is far removed from the standard presentations based
on accessibility relations or characteristic axioms. Also there is no attempt to modularize
structure or correctness: Only a particular modal logic is analyzed and it is not apparent how
to generalize the results in a uniform and hierarchical way.

Another approach to the formalization of ‘non-local’ conditions in a logical framework is
to manage assumptions explicitly with sequents, e.g. [4, 15]. The Isabelle system distribution



(A R y)!
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= F

Figure 4: The meta-level derivations formalizing OI and R_convl

contains such an encoding due to Martin Coen which uses several auxiliary judgements to
give (complex) encodings of T, S4, and S4.3. Similar problems would result from trying to
formalize directly the kind of prefixed tableaux systems suggested, for example, by Fitting [4].

As we have mentioned, our work is inspired by the LDS approach proposed by Gabbay.
He introduces LDSs as a general and unifying methodology for presenting almost any logic
[5]. To support this generality his LDS metatheory and presentations are based on a notion
of diagrams and logic data-bases, which are manipulated by rules with multiple premises and
conclusions. For example [5, p.57] presents the rule for O F as

s:0B

create v, s <r and r: B

the application of which updates a modal data-base with the two new conclusions. The formal
details are quite different from our proposal and not directly implementable in a logical frame-
work. On the other hand, the rule for O £ given in figure 1 is represented in the meta-level of
Isabelle by the following axiom, which directly formalizes a natural deduction rule:

diaE ArwAB. L(x:0A) = (Ay. L(y:4A) = Az Ry) = L(w:B)) = L(w:B)

The kind of labelled natural deduction encoding we employ is closest to the work of Simp-
son [14]. However his focus, proof techniques, and applications are based on using LDSs to
investigate intuitionistic versions of modal logics, and his correctness considerations are quite
different. Moreover, his relations have no independent theory with which one can work.

We conclude by mentioning work on translating modal logics into first-order logics, e.g. [8].
These approaches typically label all subformulae with worlds and combine the modal and
labelling theory in a first-order theory suitable for standard first-order provers. The emphasis
is on automatic, but not necessarily ‘natural’, theorem proving. Moreover, by design, there is
no separation between the labelling theory, any kind of basic modal theory, and first-order logic
itself. This brings us back to our initial discussion about the deduction theorem and logical
consequence. Qur encoding captures not just provability, but more generally the corresponding
consequence relation defined by the modal logics: We can not only reason about - p — ¢ by
formalizing £(z : p — ¢) but we can reason about F ¢ under the assumption F p, i.e. L(xz:



p) = L(y :q). This distinction between provability and consequence (see also [1, 2]) is
especially important in the case of modal logics and argues in favor of an explicit formalization
of provability in a meta-logic.

§6 CONCLUSIONS AND FUTURE WORK

We have given a modular presentation and completeness and correctness proofs for implement-
ing a large and well-known class of propositional modal logics in the Isabelle logical frame-
work. Our approach is based on relational Horn rules and demonstrates, we think, that they
fit particularly well into the logical framework setting, capture a very large class of standardly
considered propositional modal logics, and have pleasant metatheoretic properties (e.g., one
can use induction on their structure to show faithfulness and adequacy across an infinite set of
extensions). Related techniques could be used to allow extensions (1) by arbitrary first-order
relational theories; (2) by rules explicitly obtained from the ‘labelled versions’ of the character-
istic axioms of the desired logic; (3) enabling us to present first-order modal logics. However,
the Horn-fragment is attractive, not just for its simplicity, but also from the perspective of
automating proof construction which is a topic we shall address in forthcoming work.
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§A ISABELLE SIGNATURE FOR K AND EXTENSIONS

The following is our entire Isabelle declaration for K (the encoding of the meta-logic Mg).

Notice that

(1) Pure encodes Isabelle’s meta-logic M

(2) the use of mixfix operators [10] allows us to abbreviate £(x: A) with z: 4 and A(z R y)
with z Ry

(3) ==>and !! are Isabelle’s implication and universal quantification

(4) the free variables in the axioms are implicitly outmost universally quantified

Comments are added between ‘(*’ and ‘*)’. Further details on the syntax of Isabelle can be

found in [10].

K = Pure +
types (* Definition of type constructors x)
label,o O

arities (* Addition of the arity ‘logic’ to the existing types *)
label, o :: logic

consts
(* Logical Connectives *)
False HE A
-—> :: "[o, o] => o" (infixr 25)
box :: "o => o" ("[]_" [50] 50)
dia i1 "o => o ("<>_" [50] 50)

(* Judgements *)
L :: "[label, o] => prop" ("(_ : )" [0,0] 100)
A :: "[label, label] => prop" (R )" [0,0] 100)

rules (* Axioms representing the object-level rules *)

Falsel "x:False ==> y:A"

FalseC "(x:4 --> False ==> x: False) ==> x:A"

impI "(x:4 ==> x:B) ==> x:4 --> B"

impE "x:A ==> x:A --> B ==> x:B"

boxI "(My. (x Ry ==>7y:4)) ==>x:[]a"

boxE "x:[JA ==> x R y ==> y:A"

dial "y:A ==> x R y ==> x:<>A"

diaE "x:<>A ==> (!!'y. y:A ==>x Ry ==> w:B) ==> w:B"
end

We may now extend X by adding axioms. So, for instance, KT is obtained by extending XK
with the axiom R_ref1:

KT = K +

rules  (* reflexivity *)
R_refl "x R x"

end

and K4 is obtained by extending K with the axiom R_trans:



K4 =K +
rules (* transitivity *)

R_trans "*xRy==>yRz==>xRz"
end

KT (resp. K4) can equivalenty be obtained by using the ML-function extend_theory with
K and the axiom R_refl (resp. R_trans) as some of its arguments.

KT4, i.e. S4, is then obtained by similarly extending KT (or K4 or K), or by using the ML-
function merge_theories with KT and K4 as arguments. As explained in the introduction, KT4
inherits theorems and derived rules from its ancestor logics. As an example, consider the KT4
theorem x: [14 <-> [J[JA.x:[0 & --> [OJ[JAand x: [J[JA --> []A are theorems of K4 and
KT, respectively:

[z Ry]* [y R

[z:04]3 x Rz Rtrans
A ar
: 1 _—
y:0A o7 [z:004]' z Rz Rorefl
——— [OI? ar
z:00A4 G z:0A 5
z:0A -5 0O0A z:00A4 > 0A

and they may be directly applied to prove the theorem in KT4, where < and its rules are
defined in the standard way:
z:04A 004 2:004—-04
z:0A4 « 0O0OA4

As a further example, K2 is obtained by extending K with the constant function symbol g
and with the rules R_conv1 and R_conv2:

1

K2 = K +
consts
g :: "[label,label,label] => label"

rules (* convergency *)
R_convil "x Ry==>xRz==>yR glx,y,z)"
R_conv2 "x Ry ==>xRz==>2zR glx,y,z)"
end



