A Comparison of HOL-ST and Isabelle/ZF

Sten Agerholm
University of Cambridge Computer Laboratory
New Museums Site, Cambridge CB2 3QG, UK

Abstract

The use of higher order logic (simple type theory) is often limited
by its restrictive type system. Set theory allows many constructions
on sets that are not possible on types in higher order logic. This
paper presents a comparison of two theorem provers supporting set
theory, namely HOL-ST and Isabelle/ZF, based on a formalization
of the inverse limit construction of domain theory; this construction
cannot be formalized in higher order logic directly. We argue that
whilst the combination of higher order logic and set theory in HOL-ST
has advantages over the first order set theory in Isabelle/ZF, the proof
infrastructure of Isabelle/ZF has better support for set theory proofs
than HOL-ST. Proofs in Isabelle/ZF are both considerably shorter and
easier to write.

1 Introduction

Though higher order logic (simple type theory) is a useful framework for
doing mathematics, there are situations where it is too weak, due to its
simple type system. Omne can then use a stronger type theory, or observe
that many constructions that are not possible on types in higher order logic
would be possible on sets in set theory (which is completely untyped). Set
theory might therefore provide a simple alternative to the increasing interest
in applying stronger type theories in theorem proving.

Paulson has done a lot of pioneering work on mechanizing set theory. He
has developed a very large amount of set theory in his Isabelle/ZF system
[7, 8], which is an extension of a first order logic instantiation of the generic

theorem prover Isabelle [9] with axioms of Zermelo-Fraenkel (ZF) set theo-
ry. Gordon has also been experimenting with mechanizing set theory in an
attempt to combine the usefulness of higher order logic with the expressive
power of set theory in a single system [5]. A prototype system, called HOL-
ST, has been implemented by extending the existing HOL system [4] with
axioms of ZI' set theory (this is not a conservative extension).

A larger case study on HOL-ST was presented in [1]. By formalizing the
inverse limit construction of domain theory, which would not be possible
in HOL directly [2], the case study demonstrated how one can make essen-
tial use of the additional expressive power of set theory. The inverse limit
construction is a method to give solutions to recursive domain equations
that may involve non-trivial constructions such as the (continuous) function
space. In [1], it was used to obtain a non-trivial model D, of the untyped
A-calculus, i.e. D, was proved to be isomorphic to its own (continuous)

function space:
Dy 2 [Doy — Do

This paper presents a comparison of HOL-ST and Isabelle/ZF based on
a formalization of the inverse limit construction in both systems. We con-
centrate on their different support for the formalization, i.e. for definitions,
theorems and proofs, but do not give a detailed presentation of the for-
malization (see [1]). The version of the inverse limit construction employed
here is based on categorical methods using embedding project pairs, see e.g.
[6, 11, 10].

Comparing systems is difficult. The lack of some feature supported by
one system does not mean that it could not be supported by another. In
this paper, we have chosen to freeze time in the sense that the systems are
compared in their state when this project started (Autumn 1994). The size
and scope of the paper could easily grow out of hand if we had to argue about
the alternatives for implementing all differences (and better proof support
in general).

The rest of the paper is organized as follows. In Section 2, we introduce
the HOL system briefly. Then the set theories of HOL-ST and Isabelle/ZF
are introduced in Section 3. The comparison starts in Section 4 where we
consider the definitions of the formalizations. It continues in Section 5 which
discusses how the systems support the proofs of theorems of the formaliza-
tion. Section 6 summarizes the conclusions. This paper assumes that the
reader is familiar with Isabelle.

2 The HOL System

The HOL system is a mechanized proof-assistant for proving theorems in
higher order logic. It implements on an expressive higher order logic (the
HOL logic) and is built on top of a functional programming environment
ML (which stands for Meta Language). The HOL logic is a typed logic
with terms, types, and theorems represented in ML. The logic, which is
described further below, is organized in theories each of which contains a
set of types, constants, definitions, axioms and theorems. The purpose of
the HOL system is to provide tools for constructing such theories.

Theories can be extended with new constants and types by giving def-
initions and axioms. Definitional extension is safe, which means that it
preserves consistency of the HOL logic, because new constants and types
are defined in terms of existing ones. Axiomatic extension is not safe and
usually not accepted in the HOL community.

The representation of theorems in ML as an abstract type guarantees
that theorems can only be created by formal proof. A proof is a derivation
using a number of inference rules, pre-proved theorems and axioms. An in-
ference rule is a function in ML which takes a number of theorems (premises)
as arguments and produces a theorem as a result. All inference rules are
derived from eight primitive rules, possibly using other so-called derived in-
ference rules. Conversions are special cases of inference rules which take no
theorem arguments but instead a term argument.

Inference rules support forward proofs of theorems. However, a more
natural goal-directed (or backwards) proof style is also supported—by the
subgoal package. This allows proofs of theorems to be constructed by ap-
plying tactics interactively, in order to reduce goal terms to truth. A tactic
is an ML function which typically implements the backwards use of one or
more inference rules.

2.1 Logic

While Isabelle [9] is a generic theorem prover, the HOL system [4] is not.
It has only one hardwired logic. This is a higher order logic which is very
similar to the higher order logic instantiation of Isabelle, which in turn shares
some notions with the Isabelle meta logic.

The HOL logic is a polymorphic (classical) higher order logic (simply
typed A-calculus). As in Isabelle’s meta logic, a term can be a constant, a
variable, an abstraction, or an application. A term must be well-typed in the

usual sense. The syntax of types and terms is a bit different than in Isabelle.
In HOL, the function type is written as ":a -> 3" and functions can be

curried "f:aq -> (ag -> ... => (a, => [)...)" or uncurried "g:aq #
as # ... # a, -> 8)...)", where #is the operator for the product type.
Function application is then written as faq... z, and g(a1,...,2,), re-

spectively. The A-abstraction is written as \x. e. Recall that in Isabelle’s
meta logic all functions must be uncurried and function application is always
written using parentheses f(z1,...,,).

Among others, the HOL logic provides the following symbols:

e Conjunction /\, disjunction \/, negation ~, implication ==>.

e Equality =.
e Universal quantification !, existential quantification 7.
e Choice operator @.

Only the choice operator requires further explanation. It is a binder like
the quantifiers which is used to obtain an arbitrary (fixed) value such that
a certain predicate is satisfied; if this is not possible, it yields any value of
the underlying type of the predicate (all types are non-empty to allow this).

Among the built-in types of the HOL system we find bool, which denotes
the type of boolean truth values T and F, and num, which denotes the type
of natural numbers whose elements are constructed from 0 and SUC.

2.2 Theorem Proving

The theorem proving infrastructure of Isabelle is mainly provided by the
principle of resolution, which is based on (higher-order) unification. This
elegantly supports a very small number of tools for forward and backward
proof. By forward resolution, a theorem can be used like a HOL inference
rule, whilst backward resolution turns the theorem into a HOL tactic. In
HOL there is a separate ML function for each inference rule and tactic.

In some sence, theorem proving in HOL is more primitive than in Is-
abelle. HOL’s notion of resolution is a derived form of a one way matching
modus ponens which is performed on the assumptions of a goal using a
conditional theorem. Further, it does not support quantifier reasoning via
unknown variables as in Isabelle. Existentials must be instantiated manually
and on the spot (though some very primitive user-contributed tools exist).

3 Set Theory

HOL-ST and Isabelle/ZF provide two slightly different ZF-like set theories.
Isabelle/ZF is an axiomatic extension of the object logic FOL, which pro-
vides a first order logic. HOL-ST is an axiomatic extension of HOL’s higher
order logic. This means that HOL’s set theory is slightly more powerful
than Isabelle’s (see [5]), though we shall not exploit this in an essential way
in this paper. Apart from this difference in logic, the two axiomatizations
of set theory are essentially the same. We will not consider the axioms of
the set theories in this paper since they are not important; they are easy to
look up in [5] and [9]. Instead we will focus on syntactic issues, to introduce
set theory syntax used later.

3.1 Representation and Notation

HOL is extended with set theory by declaring a new type V and a new
constant *: :” (set membership) of type " : V#V->bool",! and then postulating
eight new axioms about V and ‘::’. Similarly, Isabelle/FOL is extended by
declaring a new type i and a new constant ‘:’ (set membership) of type
“"[i,i] => o", and then postulating the eight axioms of set theory. In
Isabelle/ZF, the type i (for individuals) instantiates the many-sorted first
order logic. Hence, we can quantify over sets as in ALL x. x:X --> £(x):Y
(elements of sets are themselves sets), which could equivalently be written
as ALL x:X. £(x):Y, and compare sets by the FOL equality =. The subset
relation C is written Subset in HOL-ST and <= in Isabelle/ZF".

Both systems provide a notation for set abstraction {z € X | Pl[z]}. In
Isabelle/ZF this is written {x:X . P(x)} and in HOL-ST {x::X | P x}.

3.2 Pairs and Numbers

Isabelle/FOL does not provide pairs or natural numbers but these are pro-
vided in set theory. Pairs are written <x,y>, which is a set and therefore
has type i, and the usual destructors £st and snd are provided (both have
the type "1 => i"). The binary product X * Y consists of all pairs whose
first component is in X and whose second component is in Y. In HOL-ST,
we use pairs of higher order logic, but pairs are also available in set theory.

'In the type of the set membership operator, note that elements of sets are themselves
sets. Generally speaking, new sets must be constructed from existing sets some way, in
principle starting from the empty set and then using axioms.

In Isabelle/ZF, the set nat provides natural numbers, so O:nat and
succ(n) :nat, for any n:nat. In HOL-ST, natural numbers are available as
both the type ":num" and the set Num. The type and the set are isomorphic
with translation functions called num2Num and Num2num. The HOL constants
0 and SUC are used with the translation functions to build members of Num.

3.3 Functions and Dependent Products

We distinguish between set and logical functions. Set functions are ele-
ments of the function set, written X->Y in both systems. A set function is
represented by a set of pairs, which must satisfy the obvious conditions to
specify a function (definedness and uniqueness). In HOL-ST, logical func-
tions are functions of higher order logic. In Isabelle/ZF, logical functions
are functions of the meta logic (the object logic FOL does not provide func-
tions). Set function application is written £ ~~ x in HOL-ST and £ ¢ xin
Isabelle/ZF. If £ is in X->Y and x in X then we can conclude that £ applied
to x is in Y, otherwise not.

Set functions may be written using a certain (dependent) lambda ab-
straction whose syntax is Fn x::X. b[x] in HOL-ST and lam x:X. b[x]
in Isabelle/ZF. The lambda abstraction consists of all set theory pairs of
the form <x,b[x]>, where x is in X. Set function identity is written as id in
Isabelle/ZF and as Id in HOL-ST. Set function composition is written as 0
in both systems.

Finally, both systems also provide a dependent product construction.
The syntax is PT x::X. Y[x] in HOL-ST (see [1]) and PROD x:X. Y[x] in
Isabelle/ZF. The elements of a dependent product are sets of pairs, corre-
sponding to set functions that map elements x of the first set X to elements
of the second (dependent) set Y[x].

4 Definitions

In this section, we study the definitions of two formalizations of the inverse
limit construction in HOL-ST and Isabelle/ZF. We try to compare the defi-
nitions and discuss the issue of which notions to represent in the meta logic
of Isabelle/ZF and which to represent in first order logic and set theory.
This is related to the question of whether to work in higher order logic or
set theory in HOL-ST.

4.1 Basic Concepts

Recall that domain theory is the study of complete partial orders (cpos) and
continuous functions. A partial order is usually thought of as a set with an
associated ordering relation which is reflexive, transitive and antisymmetric
on all elements of the set. A complete partial order is a partial order in
which all non-decreasing chains (sequences) of elements of the partial order
have a least upper bound. Continuous functions are monotonic functions
that preserve such least upper bounds.

The differences between HOL-ST and Isabelle/ZF appear already in the
first definitions of basic concepts of domain theory. In HOL-ST, we can
represent the notion of partial order as a higher order logic pair consisting
of a set and a relation. The predicate po for partial orders can then be

defined by

po D =

('x :: set D. rel D x x) /\

('xyz ::8etD. relDxy /\Nrel Dy z==>rel Dxz)/\
('xy :: setD. rel Dxy /\NrelDyzx==>(x=y)),

where the type of po is ":V#(V->V->bool)", and for convenience

set D = FST D
rel D = SND D.

Neither Isabelle’s meta logic nor Isabelle/FOL support pairs. So, our
only choice is to use pairs of set theory, though, alternatively, we could rep-
resent a partial order as a relation, defining the set as the reflexive elements.
We chose the pair approach because it is closer to the HOL-ST formaliza-
tion, which was done first, and because we then avoid proofs to show what
the elements of the set component of cpo constructions are. Hence, the type
of the constant po is "i=>i" in Isabelle/ZF. Its definition is the same as
the one above, though the right-hand side uses symbols of first order logic
instead of higher order logic. The set and rel constants are defined by

"set(D) == fst(D)"
"rel(D, x, y) == <x, y> : snd(D)".

This makes rel a meta logic function of type "[i,i,i] => o'"; set has
type "i => i". It later turns out (when we consider subcpos) that it would
have been more appropriate to define rel slightly differently as a meta
logic function of just one argument (D) which returns a set function (or

relation) of two arguments (x and y). In terms, we would then write the less
convenient rel(D) ¢ x ¢ y (or <x, y> : rel(D)) instead of the present
rel(D, x, y).

Next, we introduce the notion of a chain, which is a sequence of values

in non-decreasing order:

chain D X =
('n. (X n) :: (set D)) /\ ('n. rel DX n)X(n + 1))).

Hence, in HOL-ST a chain is represented as a logical function of type
":num->V". Complete partial orders are then defined as follows

cpo D = po D /\ (!X. chain D X ==> (?x. islub D X x))
where the notion of least upper bound (lub) is defined by

isub D X x = x :: (set D) /\ ('n. rel DX n)x)
islub D X x =
isub D X x /\ ('y. isub D X y ==> rel D x y).

Using Hilbert’s choice operator we can give an expression for the least upper
bound (if it exists):

lub D X = (@x. islub D X x).

In Isabelle/ZF, neither the meta logic nor first order logic support natural
numbers so we must turn to the set of natural numbers, called nat, to
represent infinite sequences this way. One could represent chains as a meta
logic function of type "i=>i" where the first 1 would correspond to the set
of natural numbers and the second would correspond to the underlying set of
a cpo. However, this representation is problematic. In the definition of cpo
we must quantify over chains but in first order logic this is impossible since
we can only quantify over individuals, not meta logic functions like such
chains of type "i=>i". Hence, in Isabelle, chains must be represented as
functions in set theory; thus, chains have type i. The Isabelle/ZF definition
of chain looks as follows:

"chain(D,X) ==
X:nat->set(D) & (ALL n:nat. rel(D,X‘n,X‘(succ(n))))",

which use more set theory than the HOL-ST definition. The first order logic
definition of cpo is

"cpo(D) ==
po(D) & (ALL X. chain(D,X) --> (EX x. islub(D,X,x)))",

where islub is defined as in HOL-ST. As above, we define a constant for
the least upper bound but we use the definite description operator instead
of Hilbert’s choice operator (which is not available, though it probably could
be axiomatized):

"lub(D, X) == THE x. islub(D, X, x)".

The term "THE x. P(x)" is read ‘the a such that P(z) and requires both
existence and uniqueness. In contrast, the HOL logic provides the choice
operator, which just requires existence, and this is inherited by set theory,
which thus automatically satisfies the axiom of choice. The use of the def-
inite description operator made a few proofs slightly more complicated in
Isabelle/ZF than in HOL-ST, due to the additional obligation of proving
uniqueness.

A consequence of representing chains as functions in set theory is that
the type checking, which ensures arguments of chains are numbers, must be
done manually. Similarly, proving that chains are functions, and not just
relations, and proving that they are functions on the right domains must be
done manually as well (though usually the A-abstraction is used and then
it is only necessary to check the body of this due to a pre-proved theorem).
Thus, proving that terms are chains is more complicated in Isabelle/ZF than

in HOL-ST.

4.2 Continuous Functions

Monotonic and continuous functions have essentially the same definitions in
the two systems. We only list the HOL-ST definitions:

mono(D,E) =
{f :: (set D) -> (set E) |
Ix y :: set D. rel D x y ==> rel E(f "~ x)(f °~ v}
cont(D,E) =
{f :: mono(D,E) |
1X. chain D X ==> (£°"(lub D X) = 1ub E(\n. £~ X n)))7}.

Functions are represented in set theory because we wish continuous functions
to constitute a cpo, called the continuous function space, and the underlying
set of a cpo must be a set. The continuous function space construction is

defined as follows in HOL-ST:

cf(D,E) =
cont(D,E),(\f g. 'x :: set D. rel E(f "~ x)(g "~ x)).

However, the construction is defined slightly differently in Isabelle/ZF, due
to the fact that the cpo pair, and more importantly the underlying relation,
must be defined in set theory entirely:

"cf(D,E) ==
<cont(D,E),
{y : cont(D,E) * cont(D,E).
ALL x:set(D). rel(E,(fst(y)) ‘x,(snd(y)) ‘x)I>".

In Isabelle/ZF, the relation must be constructed from existing sets, i.e. it
must be constructed from the domains D and E in the function space. In con-
trast, the HOL-ST relation is just a higher order logic function. The Isabelle
relation not only looks more complicated: due to additional type checking,
it is also more complicated to use. Each time we define a construction on
cpos, which we do twice below, we will experience a similar complication
due to the set relation.

4.3 The Inverse Limit Construction

Next, we consider the definitions of some concepts associated with the in-
verse limit construction. Inverse limits may be viewed as “least upper
bounds” of “chains” of cpos, not just of chains of elements of cpos as above.
The ordering on elements of cpos is generalized to the notion of embed-
ding morphisms between cpos. A certain constant Dinf, parameterized by
a chain of cpos, can be proven once and for all to yield the inverse limit of
the chain. This cannot be defined in higher order logic directly (assuming
that the underlying set of a cpo is represented as a subset of a HOL type, as
in [2]), since it yields a cpo of infinite tuples whose components may be in
different cpos (subsets of types). Defining the construction in higher order
logic would require a (probably difficult) conservative derivation of a univer-
sal type with dependent products. However, formalizing the construction is
straightforward in set theory, exploiting the dependent product construction
on sets (see Section 3.3).

Embedding morphisms come in pairs with projections, forming the so-
called embedding projection pairs. The HOL-ST definition of (embedding)
projection pairs is stated as follows:

projpair(D,E) (e,p) =
e :: (cont(D,E)) /\
p :: (cont(E,D)) /\
(p 0 e = Id(set D)) /\
rel(cf(E,E))(e 0 p)(Id(set E)).

The Isabelle/ZF definition is similar. The conditions make sure that the
structure of E is richer than that of D (and can contain it). D is embedded
into E by e (one-one) which in turn is projected onto D by p.

Embeddings uniquely determine projections (and vice versa). Hence, it
is enough to consider embeddings

emb(D,E)e = (7p. projpair(D,E) (e,p))

and define the associated projections, or retracts as they are often called,
using the choice operator:

Rp(D,E)e = (@p. projpair(D,E)(e,p)).

Again, these are the HOL-ST definitions; the Isabelle/ZF definitions are
similar (though the definite description operator is used instead of the choice
operator as in Section 4.1).

Embeddings are used to form chains of cpos in a similar way to the
formation of chains from elements of cpos. Recall that standard chains are
represented as logical functions of type ":num->V'" in HOL-ST and as set
functions of type i in Isabelle/ZF. We choose to stick to this difference
when representing embedding chains of cpos. Hence, the HOL-ST definition
is stated like this:

emb_chain DD ee =
('n. cpo(DD n)) /\ (!n. emb(DD n,DD(SUC n))(ee n)).

And the Isabelle/ZF definition is:

"emb_chain(DD, ee) ==
(ALL n:nat. cpo(DD ¢ n)) &
(ALL n:nat. emb(DD ¢ n, DD ¢ succ(n), ee ‘ n))".

We do not quantify over embedding chains in any definitions immediately
and therefore we could perhaps represent such chains as meta logic functions
of type "i=>i" in Isabelle. However, the above choice is safer, in case it turns
out that we later wish to quantify over chains.

One is often in a situation where a function can be represented in the
meta logic or in the object logic (set theory). In general, one should only
choose the first alternative if the function is not really part of a formalization
and thus never would appear in the right-hand side of definitions (without
its arguments). Hence, it is fine to use meta logic functions for constants in
abbreviations (but one must be careful which I was not when I defined rel
and rho_emb, see below). However, a choice must be made when functions
are arguments of constants. For instance, due to the above criteria, we would
use a meta logic function for the predicate of the following construction

“"mkcpo(D, P) ==
<{x: set(D) . P(x)},
{x: set(D) * set(D) . rel(D, fst(x), snd(x))}>",

which is useful for constructing a subcpo of a cpo by restricting the set com-
ponent according to a predicate. Thus, the type of mkcpois "[1i,i=>o]=>i".
But most constants with function arguments would have a type of the form
"[i,i]=>0", e.g. emb_chain above, where functions are set functions.

The notion of subcpo is defined as follows in Isabelle/ZF:

"subcpo(D, E) ==
set(D) <= set(E) &
(ALL x:set(D).
ALL y:set(D). rel(D, x, y) <-> rel(E, x, y)) &
(ALL X. chain(D, X) --> 1ub(E, X) : set(D))".

Both this and the previous definition of mkcpo have simpler formulations in

HOL-ST:

mkcpo D P = {x :: set D | P x},rel D
subcpo D E =

(set D) Subset (set E) /\

(rel D = rel E) /\

('X. chain D X ==> (lub E X) :: (set D)).

In both Isabelle/ZF definitions, the complications are due to a mismatch
between the type of "rel(D)", namely "[i,i]=>0", and the type of the
relation component of cpos, namely i. As mentioned above, we probably
made a bad choice in not representing "rel(D)" as a set function (or a
set relation) instead of as a logical function. The problem in the mkcpo
definition arises due to the fact that each component of a pair must be

a set. The problem in the subcpo definition is that meta logic functions
cannot be compared using FOL equality =.
The constant mkcpo is used to define the inverse limit construction on

cpos as a subcpo of the infinite Cartesian product cpo. Let us first consider
the HOL-ST definition of the infinite product:

iprod DD =
(PI n :: Num. set(DD(Num2num n))),
(\x y. 'n. rel(DD n)(x ~~ (num2Num n))(y ~~ (num2Num n))).

The relation is defined componentwise and the set is the infinite tuples
whose i’th component is in "DD i"; in general, the dependent product
“PI x :: X. Y[x]" consists of the functions that map an element x of X
to an element of Y[x]. This construction cannot be defined on HOL types
(though it might be possible to derive a universal type with this construc-
tion). The annoying num2Num and Num2num conversions could be avoided
by using the set of numbers Num instead of the type of numbers " :num" to
represent chains of cpos. However, the present choice makes proofs simpler
in the long run (see [1]). The reason for this is associated with the choice
of using the type of numbers in the representation of ordinary chains. To
avoid the translation functions, we would have to stay within set theory all
the time, since the dependent product construction is only available there.
The Isabelle/ZF definition of the infinite product construction is:

"iprod(DD) ==
<PROD n:nat. set(DD ¢ n),
{x: (PROD n:nat. set(DD‘n)) * (PROD n:nat. set(DD‘n))
ALL n:nat. rel(DD ¢ n, fst(x) ¢ n, snd(x) ¢ n)}>".

Here, the translation functions are avoided since we do not have the choice
of leaving set theory. However, for the same reason, the definition and use
of the componentwise relation is much more complicated, since the relation
must be a set constructed from existing sets.

The definitions of the inverse limit construction are essentially the same
in the two system, both use the mkcpo constant. The HOL-ST definition is
stated as follows:

Dinf DD ee =
mkcpo
(iprod DD)
(\x.

'n.
(Rp(DD n,DD(SUC n))(ee n)) ~~ (x °~ (num2Num(SUC n))) =
x 77 (num2Num n)) .

The only difference is that the Isabelle/ZF definition quantifies over elements
of the set of natural numbers (instead of over elements of the type as above)
and it does not use translation functions. Informally, the underlying set
of Dinf is defined as the subset of all infinite tuples z on which the n-th
projection (retract) eX maps the (n + 1)-st index to the n-th index for all
n: e(z,41) = ,. The underlying relation is inherited from the infinite
product construction.

It takes a fairly large development to prove that Dinf yields an inverse
limit of any chain of cpos. For the proof, we need an embedding of any
element "DD n" of the chain "(DD,ee)'" into the inverse limit "Dinf DD
ee". This embedding is defined as follows in HOL-ST

rho_emb DD ee n =
(Fn x :: set(DD n).
Fnm :: Num. (eps DD ee n(Num2num m)) ~~ x),

which was copied almost directly to Isabelle/ZF (removing the translation
function):

"rho_emb(DD, ee, n) ==

lam x:set(DD ¢ n). lam m:nat. eps(DD, ee, n, m) ¢

x".

The definitions of the constant called eps in both systems are not important
here?. While the definition of rho_emb worked fine in HOL-ST we realized
at a later stage that the Isabelle/ZF definition should have been

"rho_emb(DD, ee) ==

lam n:nat. lam x:set(DD‘n). lam m:nat. eps(DD,ee,n,m) ‘x",

where rho_emb is a logical function of just two arguments instead of three;
thus, while "rho_emb(DD,ee)" above was a logical function of type "1 =>
1", it should have been a set function (of type 1). The present representation
would be unfortunate if we wanted to define a constant for the property
that Dinf always yields the inverse limit of a cpo. This is not possible
using a meta logic function for "rho_emb (DD, ee)", since the definition would

*By composing embeddings (and projections) eps generalizes the embeddings "ee n"
between consecutive cpos of a chain to convert between any two cpos.

need to quantify over such sequences of embeddings. Furthermore, similar
sequences like the sequences of cpos DD and embeddings ee are represented
as object logic functions. So, a constant may be a meta logic function of
some arguments and an object logic function of other arguments. If one is
not careful the wrong choices are made.

5 Proofs

In the previous section, we concentrated on the differences between using
HOL-ST and Isabelle/ZF to formalize the definitions of the inverse limit
construction of domain theory. In this section, we discuss how the two
systems support the proofs of related theorems (see [3] for a more detailed
discussion).

Due to limitations of Isabelle’s first-order set theory, we were forced to
work in set theory in situations where we could stay in higher order logic in
HOL-ST. As mentioned above, this obviously yields more complicated proofs
in Isabelle, in the sense of more type conditions to prove. For instance, in a
backward proof of a statement saying that two functions are related by the
continuous function space relation, we would first rewrite with the HOL-ST
theorem

rel(cf(D,E))f g =
('x. x :: (set D) ==> rel E(f "~ x)(g ~~ x)),

but in the Isabelle/ZF the first step would be to resolve with the theorem

"Il t'x. x : set(D) ==> rel(E, £ ¢ x, g x);
f : cont(D, E); g : cont(D, E) |] ==>
rel(cf(D, E), £, g)",

which, in contrast to the HOL-ST theorem, contains type assumptions. The
same thing is true of the other constructions on cpos, like the infinite Carte-
sian product and the inverse limit constructions. Similarly, the necessity
of representing chains as set functions yields a number of additional proof
obligations in the Isabelle/ZF proofs.

Despite these additional proof obligations, Isabelle proofs are usually
shorter in terms of number of lines, and easier to write. Usually, backward
proofs are reduced in size (number of lines) by more than 50% and in some
cases by 75%. The main reasons for this are Isabelle’s support for unknown
variables for quantifier reasoning and the design of its proof infrastructure.

The main method of proof in Isabelle is based on resolution (with higher
order unification), which supports both the forward and the backward style
of proof. In fact, the same theorem can be used as an inference rule by
forward resolution and as a tactic by backward resolution. In this way,
Isabelle elegantly avoids the need for a large collection of ML functions
implementing derived inference rules and tactics. Furthermore, it supports a
compact notation for proofs since the main resolution tactic can be employed
with a theorem list argument, and repeated.

Further, the notion of resolution in Isabelle supports ‘real’ backward
proof better than in HOL. One almost always works from the conclusion of
a goal backward towards the assumptions, which is supported by Isabelle
resolution tactics. In HOL, one often ends up doing a lot of sometimes
ugly assumption hacking working forward using HOL resolution from the
assumptions towards the conclusion. More natural backward strategies like
conditional rewriting and a matching modus ponens style strategy (which
may be viewed as a simplified version of Isabelle resolution) are not sup-
ported well in HOL.

Real backward strategies are useful due the fact that many theorems
have assumptions. It is irritating to have to first derive the antecedents of
theorems for HOL resolution. On the other hand, a negative consequence of
using theorems in a real backward fashion is that existential quantifiers are
often introduced. For instance, this happens when we employ the transitivity
of a cpo relation or the fact that function composition preserves the function
set (or continuity or embeddings):

"[l g: A->B; £f:B->C |]==>f0g:A->C".

In HOL, we must provide witnesses for existentials on the spot and manually.
But in Isabelle, both universally and existentially quantified variables are
represented as unknown variables that are usually instantiated behind the
scenes in proofs, possibly in stages.

Finally, the Isabelle subgoal module provides a kind of flat structure on
proof states which makes it possible to access all goals at any time and to
prove many (or all) subgoals by just repeating a tactic—no matter where
the subgoals would appear in a HOL proof tree. Isabelle takes care of
applying the theorems for resolution, instantiating unknowns and proving
the assumptions by adding them as new subgoals; we do not have to think
about the tree structure of proofs and about which tactics (or theorems) to
apply where.

6 Conclusions

We have presented a comparison of HOL-ST and Isabelle/ZF based on a
case study from domain theory. The case study formalizes an important con-
struction which yields the inverse limit of any embedding projection chains
of cpos. This formalization exploits set theory in an essential way since it
requires a dependent product construction that cannot be defined on HOL
types. The main observations say that HOL-ST is supported by the powerful
HOL logic whereas Isabelle/ZF provides better proof support for set theory.
The HOL logic gives a more convenient set theory because set and type the-
oretic reasoning can be mixed to advantage. However, generally speaking,
HOL lacks ways of handling conditional theorems conveniently, and does not
provide the support for unknown variables for quantifier reasoning available
in Isabelle. Set theory introduces a lot of set membership assumptions in
theorems as well as the need for real backward proof strategies and good
support for quantifier reasoning.

It is advantageous to be able to exploit higher order logic where pos-
sible, as in HOL-ST, since one of the main disadvantages of set theory is
the presence of explicit type (set membership) conditions. This means that
type checking is done late by theorem proving whereas in higher order logic
type checking is done early in ML. Furthermore, type checking is automatic
in HOL but cannot be fully automated in set theory. On the other hand,
a disadvantage of mixing higher order logic and set theory as in HOL-ST
is the need for translation functions to identify HOL types with their cor-
responding sets. Therefore, it is not obvious whether set theory in higher
order logic is right, or just more support for set theory in first order logic is
needed.

Acknowledgements

The research described here is partly supported by EPSRC grant GR/G23654
and partly by an HCMP fellowship under the EuroForm network. I am
grateful to Mike Gordon for encouragements and discussions concerning this
work. I would also like to thank Larry Paulson for answering my questions
about Isabelle promptly and the Isabelle users at Cambridge, in particular
Sara Kalvala, for help and discussions. Mark Staples commented on a draft
of the paper.

References

[1]

S. Agerholm. Formalising a model of the A-calculus in HOL-ST. Techni-
cal Report 354, University of Cambridge Computer Laboratory, Novem-
ber 1994.

S. Agerholm. A HOL Basis for Reasoning about Functional Programs.
PhD thesis, BRICS, Department of Computer Science, University of
Aarhus, December 1994. Available as Technical Report RS5-94-44.

S. Agerholm. A comparison of HOL-ST and Isabelle/ZF. Technical
Report 369, University of Cambridge Computer Laboratory, 1995.

M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL:
A Theorem-proving Fnvironment for Higher-Order Logic. Cambridge
University Press, 1993.

M.J.C. Gordon. Merging HOL with set theory: preliminary experi-
ments. Technical Report 353, University of Cambridge Computer Lab-
oratory, November 1994.

L. C. Paulson. Logic and Computation: Interactive Proof with Cam-
bridge LCF. Cambridge Tracts in Theoretical Computing 2, Cambridge
University Press, 1987.

L. C. Paulson. Set theory for verification: I. From foundations to func-
tions. Journal of Automated Reasoning, 11(3):353-389, 1993.

L. C. Paulson. Set theory for verification: II. Induction and recursion.
Technical Report 312, University of Cambridge Computer Laboratory,
1993.

L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of
Lecture Notes in Computer Science. Springer-Verlag, 1994.

G. Plotkin. Domains. Course notes, Department of Computer Science,
University of Edinburgh, 1983.

M. Smyth and G. D. Plotkin. The category-theoretic solution of recur-
sive domain equations. STAM Journal of Computing, 11, 1982.

