
A Generic Tableau Prover

and its Integration with Isabelle

Lawrence C. Paulson
lcp@cl.cam.ac.uk

Computer Laboratory, University of Cambridge, England

Abstract: A generic tableau prover has been implemented and integrated with Isa-
belle (Paulson, 1994). Compared with classical first-order logic provers, it has numerous
extensions that allow it to reason with any supplied set of tableau rules. It has a higher-
order syntax in order to support user-defined binding operators, such as those of set
theory. The unification algorithm is first-order instead of higher-order, but it includes
modifications to handle bound variables.
The proof, when found, is returned to Isabelle as a list of tactics. Because Isabelle
verifies the proof, the prover can cut corners for efficiency’s sake without compromis-
ing soundness. For example, the prover can use type information to guide the search
without storing type information in full.
Categories: F.4, I.1

1 Introduction

Interactive proof tools are popular because of their flexibility: they support ex-
pressive formalisms and large developments. Users must guide the proof, but
would like to have straightforward subgoals proved for them. Automatic proof
procedures can help provided they are well integrated with the interactive facil-
ities.

Isabelle (Paulson, 1994) is an interactive theorem prover. Unusually, Isabelle
is generic: it supports numerous formalisms, including higher-order logic (Isa-
belle/HOL), first-order logic, set theory (Isabelle/ZF), some modal logics and
linear logic. This paper describes a new tableau prover and its integration with
Isabelle. The prover handles higher-order syntax and accepts an arbitrary set of
rules.

I have previously (Paulson, 1997a) described Fast tac, a tableaux-like proof
tactic for Isabelle. Fast tac automatically finds proofs that consist only of so-
called obvious inferences (Davis, 1981; Rudnicki, 1987). Crucially, the tactic is
itself generic. It works in most of Isabelle’s classical logics and reasons directly
with user-defined primitives. New concepts from the application domain can
be supported without the search-space explosion that would result from simply
adding their definitions to the tableau.

Fast tac is not really an integration between automatic and interactive tools
because it runs on the same generalized Prolog engine that Isabelle uses for
single-step inferences. Isabelle itself provides the automation. This engine is
rather slow because it performs higher-order unification (Huet, 1975), handles
backtracking using lazy lists, etc. To improve decisively over Fast tac, I de-
cided to code a separate tableau prover and arrange that only a successful proof
(rather than the full search) went through Isabelle’s engine.



2 A Generic Tableau Prover

This paper makes two contributions. First, it describes a generic tableau
prover, listing the many differences between such a tool and a first-order prover.
Second, it describes the prover’s integration with Isabelle and how compatibility
constraints were overcome.

Both aspects of the work are pragmatic. The objective is to improve upon
Isabelle’s performance on hard problems arising in domains such as the veri-
fication of cryptographic protocols (Paulson, 1997b). Some well-known refine-
ments, such as generalized δ-rules, turn out to be unsuited to this application.
Even the most basic theoretical properties, soundness and completeness, are not
paramount. Soundness is not essential because the final proof is given to Isabelle
for checking, though we want few proofs to fail. Completeness in the seman-
tic sense is obviously impossible for the strong theories considered here, which
contain set theory and therefore arithmetic. Anyway, the user will interrupt the
prover after a minute or so: completeness is hardly relevant to interactive tools.

The paper begins with a review of tableau methods and introduces the notion
of generic tableau rules (§2). Then it outlines the methods used to design Isa-
belle’s tableau prover (§3). Some points require detailed discussion: instantiation
of variables (§4), Skolemization (§5), and types (§6). Several minor points are
briefly outlined (§7), and integration of the prover with Isabelle is discussed (§8).
A few statistics are presented (§9) and conclusions drawn (§10).

2 Generic Tableau Methods

As is well known, the tableau method operates on branches: lists of formulæ,
interpreted conjunctively. Tableau rules are of four types: α-rules, which divide a
conjunctive formula into two parts on one branch, β-rules, which split a branch
according to the two parts of a disjunctive formula, γ-rules, which instantiate a
universal quantifier, and δ-rules, which Skolemize an existential quantifier. Here
are examples of each type of rule, for first-order logic:

type α type β type γ type δ
φ ∧ ψ
φ
ψ

φ ∨ ψ
φ | ψ

∀xφ(x)
φ(?t)

∃xφ(x)
φ(s)

This paper identifies the formula ¬φ with the goal φ. For example, the goal of
establishing the conjunction φ ∧ ψ is identified with the formula ¬(φ ∧ ψ). This
formula is regarded as disjunctive. It has the α-rule

¬(φ ∧ ψ)
¬φ | ¬ψ ,

which reduces the goal φ∧ψ to the two subgoals φ and ψ. Note that identifying
goals with negative formulæ is only possible in classical logic, where we have
¬¬φ↔ φ; allowing a branch to hold more than one goal formula is essential for
classical reasoning.



Generic Tableau Methods 3

In the γ-rule (for ∀), the term that replaces x is written ?t to indicate that it
is a meta-variable and can be updated during unification.1 In the δ-rule (for ∃),
the symbol s can be generated in alternative ways discussed below.

For all rule types except γ, the formula above the line can be deleted after ap-
plying the rule. Limiting the expansion of γ-formulæ is a key problem in tableau
theorem-proving. Another problem is how to organize the search: if closing a
branch instantiates a variable, then that step might have to be undone later.

Tableau provers are less efficient than resolution provers. Their advantage for
interactive proof is that they can be extended to reason directly in application
domains. Take set theory, for example:

type α type β type γ/β type δ/α

t ∈ A ∩B
t ∈ A
t ∈ B

t ∈ A ∪B
t ∈ A | t ∈ B

A ⊆ B
¬(?x ∈ A) | ?x ∈ B

¬(A ⊆ B)
s ∈ A
¬(s ∈ B)

Generic tableau proving complicates matters; for a start, the tidy classification
of rules into types α, β, γ and δ fails. These rules can best be understood through
the equivalences that reduce them to first-order logic:

t ∈ A ∩B ⇐⇒ t ∈ A ∧ t ∈ B
t ∈ A ∪B ⇐⇒ t ∈ A ∨ t ∈ B

A ⊆ B ⇐⇒ ∀x (x ∈ A→ x ∈ B)

Using special tableau rules is much more efficient than adding the definitions of
∩, ∪ and ⊆ to the initial branch. A preliminary rewriting phase could eliminate
these symbols, but many application domains cannot be reduced to first-order
logic. Binding constructs such as

⋃
x∈A B(x) and {x | φ(x)} are common in

set theory, which is as fundamental to Isabelle/HOL as it is to Isabelle/ZF.2
A generic tableau prover therefore needs a higher-order syntax: a syntax that
includes the typed λ-calculus.

Normal forms bring further complications. With generic theorem proving,
the notion of normal form depends upon the precise set of primitives being used.
This set can vary from one invocation to the next. Although many conventional
tableau provers use a normal form, a generic one probably will not.

Finally, a format must be chosen for representing tableau rules. A more liberal
format yields a broader notion of ‘generic,’ but makes implementation harder.
In this case, the representation should be general enough to capture the sort of
rules that can be expressed in Isabelle’s meta-logic (Paulson, 1997a). Such a rule
has a fixed structure—for example, it has a fixed number of premises—but it is
schematic, perhaps with higher-order variables. There is no Skolemization, but
a rule can introduce eigenvariables. Such tableau rules can be given to tactics
such as Fast tac for execution on Isabelle’s proof engine. Before use, the rules
must themselves be proved in Isabelle, using tactics with existing rules.
1 The question mark is included for emphasis, but it could mislead. In the Isabelle

representation of such rules, all free variables are treated in the same way. Even the
formula φ, strictly speaking, should be written ?φ.

2 With higher-order syntax, Zermelo-Fraenkel set theory consists of finitely many ax-
ioms. We no longer have to use the Bernays-Gödel axioms and can reason directly
about expressions such as {x ∈ A | φ(x)}.



4 A Generic Tableau Prover

To improve upon Fast tac, I have written a new generic tableau prover. It
is independent of Isabelle’s proof mechanisms, but its design is constrained by
the requirements of integration and compatibility:

– Isabelle must be able to verify (efficiently!) any claimed proof.
– To the user, the prover should simply behave like a more powerful version

of Fast tac, despite using different technology.

The new tactic is called Blast tac.

3 Designing the Prover

As the starting point, I adopted leanTAP (Beckert and Posegga, 1995), a tableau
prover consisting of five Prolog clauses. Although it is far from being the top-
performing prover, it is much better than Fast tac on some standard bench-
marks (Pelletier, 1986). LeanTAP proves the first 46 problems in under half a
second each, while Fast tac takes several seconds for some of them and cannot
prove others at all. My strategy was to code leanTAP in ML (Paulson, 1996) and
to modify it as necessary.

Several features of leanTAP still remain in Blast tac.

– Depth-first iterative deepening (Korf, 1985) is now the search strategy of
choice for such systems. Fast tac can use depth-first search because of its
incomplete treatment of γ-rules, which ensures termination but proves only
obvious (Davis, 1981) theorems.

– The resource bounded by iterative deepening is mainly the number of γ-
rule applications, but it includes other ‘costs’ of the proof. (For the Prolog
Technology Theorem Prover (Stickel, 1988), the resource is the number of
subgoals allowed in a proof.)

– Formulæ in a branch are considered in a stack discipline. If a rule adds
the formula A to a branch, then A and the formulæ derived from A will be
expanded before any other formulæ on that branch. The usual effect is to
reduce A quickly to literals. Fast tac considers formulæ in a queue discipline
because Isabelle’s proof engine normally works that way.

Extensive experimentation suggested extensions to leanTAP ’s strategy. Prob-
lems were drawn from first-order logic (largely Pelletier’s) and from ZF set theory
(Paulson, 1993, 1995; Paulson and Gra̧bczewski, 1996). Though many of these
extensions were driven by the need for Blast tac to handle generic rules, most
of them can be explained in terms of first-order logic, which may be clearer to
some readers.

Deferral of γ-Formulæ

The stack discipline works well, with the exception of γ-formulæ. (Another ex-
ception concerns transitivity rules, see §7.) When a γ-formula such as ∀xA is
the next formula to expand, it is deferred until formulæ of all other types have
first been expanded. Great care is taken to preserve the stack discipline even
with this exception. The deferred γ-formula does not go to the end of a global
queue but merely after all other formulæ in the present group arising from some
expansion.



Inferences that Instantiate Variables 5

Retention of γ-Formulæ

When a γ-formula such as ∀xy A or ∀x (B → ∀y A) is expanded, the outer for-
mula must be retained. However, the inner γ-formula (which is ∀y A in both of
the examples above) can be discarded with no loss of completeness: equivalent
copies of it can be generated from the retained outer formula. This optimiza-
tion, which can be extended to generic tableau rules, suppresses an explosion of
redundant γ-formulæ.

Note that ∀x∃z ∀y A requires retaining the subformula ∀y A because each
instance of it will contain a different term for z, generated by a δ-rule. So, the
optimization works even better for provers that perform Skolemization during a
preprocessing phase, eliminating existential quantifiers at the outset. The δ++-
rule (Beckert et al., 1993) also avoids having to retain the subformula ∀y A.

Rules that Close Branches

In a first-order tableau, the only way to close a branch is by unifying comple-
mentary literals. But in generic tableau theorem-proving, many rules can close
branches. Here are three examples:

¬(x = x) 0 = Suc(n) n < 0

The first rule, reflexivity, accepts the goal formula x = x, while the other two
recognize the given formulæ as contradictory. The possibility of a rule’s closing a
branch complicates the treatment of backtracking. But it is more directional (and
therefore more effective) than the approach of regarding x = x, ¬(0 = Suc(n))
and ¬(n < 0) as axioms that can be added to a branch at any time.

Search-Space Pruning

The prover maintains an explicit list of choice points for backtracking. Clos-
ing a branch typically proves a number of parent subgoals. When a branch is
closed, the prover deletes the remaining choice points for the solved parent goals
provided their proofs do not instantiate variables present in other open branches.

4 Inferences that Instantiate Variables

A first-order tableau prover only instantiates variables when a branch is closed. A
generic tableau prover may be supplied rules that instantiate variables. Dealing
with this additional possibility is a major source of complications.

For example, suppose we are working in set theory and have the ‘big union’
operation

⋃
C, defined to satisfy

t ∈
⋃
C ⇐⇒ ∃X (t ∈ X ∧X ∈ C).

Suppose we have tableau rules for
⋃
C as well as for binary union (A ∪ B)

and intersection (A ∩B):

¬(t ∈
⋃
C)

¬(t ∈ ?X) | ¬(?X ∈ C)

¬(t ∈ A ∪B)
¬(t ∈ A)
¬(t ∈ B)

¬(t ∈ A ∩B)
¬(t ∈ A) | ¬(t ∈ B)



6 A Generic Tableau Prover

The rule for
⋃
C says that to show t ∈

⋃
C it suffices to show t ∈ ?X and

?X ∈ C, where ?X may get instantiated to any term. The other two rules, the
duals of those shown in §2, handle t ∈ A ∪B and t ∈ A ∩B as goal formulæ.

Given the goal t ∈
⋃
C, the first rule splits the branch adding ¬(t ∈ ?X)

and ¬(?X ∈ C). We now have the ingredients of disaster, because the new goal
t ∈ ?X matches all three rules given above, and in a realistic environment,
dozens of rules. If the A∩B rule is chosen next, then ?X will be instantiated to
?A1∩?B1, and the new goals will be the equally disastrous t ∈ ?A1 and t ∈ ?B1.

A partial solution (adopted in Isabelle) is for the user to replace the
⋃
C rule

shown above by one that creates goals in the opposite order: first ?X ∈ C, then
t ∈ ?X. The search for solutions to the first goal will be acceptably constrained,
and proving that goal will probably instantiate ?X, constraining the second goal.
In general, however, we must be prepared to handle unconstrained subgoals like
t ∈ ?X.

If a rule instantiates variables while closing the branch, no special treatment
is necessary. But if the rule does not close the branch, then something must be
done to prevent runaway instantiations. The search already imposes a bound on
the number of expansions of γ-formulæ; the same bound can control variable
instantiations.

The precise handling of this bound is problematical. Decreasing the bound
by one prevents looping, but allows goals such as t ∈ ?X to swamp the search
space. We need a greater penalty, depending upon the number N of rules that
are applicable to the formula being expanded. (Indexing of rules, needed anyway
for efficiency, can provide this information cheaply.) If the penalty is too great,
many theorems will not be proved. The penalty used at present is log4N , de-
termined after extensive experimentation; it is a compromise between banning
instantiation altogether and allowing it freely.

5 Skolemization and δ-Rules

Unlike leanTAP , my tableau prover cannot begin by Skolemizing the formula to
be proved. The proof reconstruction phase, where the tableau proof is given to
Isabelle for checking, would become difficult or impossible, because Isabelle does
not use Skolemization. Instead, the tableau prover uses δ-rules. A typical δ-rule
replaces the formula ∃xφ(x) on a branch by φ(s). The question is, what precisely
is s?

The standard answer is that s is a Skolem term constructed in the usual
manner by applying a fresh Skolem function to all the branch’s free variables.
Although it may resemble Skolemizing the formula before calling the prover, this
form of δ-rule poses no problems for proof reconstruction: it corresponds (in the
example above) to the standard ∃-elimination rule.

Several liberalizations of the δ-rule have been published. The first (Hähnle
and Schmitt, 1994) is to apply the Skolem function only to the variables free
in the formula ∃xφ(x) rather than to all those of the branch; having fewer
variables lets the Skolem term take part in more successful unifications. The
second liberalization (Beckert et al., 1993) goes further by allowing ∃xφ and
∃xψ to share one Skolem function provided the two formulæ are identical up
to variable renaming. (This includes the important case where both have arisen
through expansion of a formula such as ∀y ∃xφ.) Both liberalizations can be



Types and Overloading 7

understood intuitively as the replacement of existential variables by Hilbert ε-
terms, changing ∃xφ(x) to φ(εx φ(x)). Baaz and Fermüller (1995) have proved
that these liberalizations can yield gigantic (non-elementary) improvements over
conventional tableaux.

Limited experiments found that the first liberalization made little difference.
One proof got shorter: problem 43 of Pelletier (1986). However, the runtime
actually increased due to the greater branching factor! I did not investigate the
second liberalization. I did find that Skolemization made a big improvement in
the proof of a problem discussed by Lifschitz (1989).

With Skolemization and the liberalized δ-rules, the obvious method of proof
reconstruction involves manipulating ε-terms in Isabelle. This method would be
prohibitively inefficient: the terms are large. Perhaps another method of proof
reconstruction could be found, but my experiments gave no guarantee that the
effort would be sufficiently rewarded. Therefore, I decided to adopt standard
δ-rules with no liberalizations.

Finally, there is the question of prenexing. Baaz and Leitsch (1994) have
proved the folklore result that prenexing a formula makes its proof longer. Quan-
tifiers should be pushed in, not pulled out. Isabelle’s tableau prover can expect
that task to have been done for it. Users normally call the simplifier first, and it
is equipped with rewrite rules such as ∀x (φ(x) ∨ ψ)↔ (∀xφ(x)) ∨ ψ and even

(
⋃
i∈I

Ai ∩B) = (
⋃
i∈I

Ai) ∩B.

Omitted is the distributive law

∀x (φ(x) ∧ ψ(x))↔ (∀xφ(x)) ∧ (∀xψ(x))

and its ∃-∨ dual, which by increasing the number of Skolem functions can some-
times be harmful (Baaz and Leitsch, 1994).

6 Types and Overloading

Isabelle’s framework for specifying formalisms is typed. Some of its logics, such
as ZF set theory, are essentially typeless: types serve only to prevent absurd
expressions like

⋃
(
⋃

). Other logics, such as higher-order logic (HOL), are not
only typed but provide polymorphism and overloading.

Omitting types makes the tableau prover run faster than it could otherwise.
Its data structures become simpler, and unification has less work to do. But
HOL demands some knowledge of types. For example, the equality x = y can
be treated in three different ways, depending on the type of x. Every equality
satisfies the usual axioms such as transitivity. If x has type bool then the equality
means ‘x if and only if y.’ If x has type (τ)set then it is set equality, enjoying
additional axioms such as extensionality; moreover, τ is the type of the set’s
elements, determining which rules apply to them. Each of these three might
apply to the goal t = u, depending upon types:

transitivity iff introduction extensionality

¬(a = c)
¬(a = ?b) | ¬(?b = c)

¬(φ = ψ)
φ
¬ψ

∣∣∣ ψ¬φ
¬(A = B)

¬(A ⊆ B) | ¬(B ⊆ A)



8 A Generic Tableau Prover

The collection of rules supplied to the prover can be different at each invocation,
so it needs a general strategy for using type information.

Storing the types of all constants is prohibitively expensive, and storing only
the types of overloaded constants is insufficient. Consider the constant insert,
defined to satisfy

(x ∈ insert y A) = (x = y ∨ x ∈ A).
One tableau rule resembles the corresponding α-rule for disjunction:

¬(x ∈ insert y A)
¬(x = y)
¬(x ∈ A)

Because of Isabelle’s polymorphism, static analysis of this rule cannot reveal the
type of x. After applying the rule, if x turns out to have a set type, then the
prover will not know to try the set equality rule on the goal formula x = y.
Overloading resolution by static type analysis is workable—I used it in an early
version of Blast tac—but it cannot find proofs involving such inferences.

The solution I have adopted is to store some types dynamically. The prover
can be directed to record the types of certain constants. These should include not
just the overloaded constants but other basic, polymorphic constants such as ∈.
To keep the prover simple, it represents Isabelle types using its data structure
for terms; unification propagates type constraints.

Omitting types could allow non-normalizing terms such as (λx. xx)(λx. xx)
to form during a proof, resulting in non-termination. There is no evidence that
this possibility occurs in practice, and it seems unlikely, but it cannot simply be
dismissed.

7 Minor Points

Now, let us briefly consider some additional features of the prover. Most of them
are required in order to handle generic rules.

Unification

Isabelle uses higher-order unification (Huet, 1975). For efficiency, the tableau
prover uses first-order unification. Bound variables are represented by de Bruijn
indices: by their numeric depth in the formula. (My ML book explains de Bruijn
indices in more detail (Paulson, 1996, page 376).) The two λ-abstractions λx.M
and λx.N unify if M and N do. A variable ?x and term M are unifiable provided
?x does not occur in M and the instantiation captures no bound variables. This
extension to the occurs check, easily performed with the de Bruijn representation,
prevents errors such as unifying λx.x with λx.?y. A bound variable unifies only
with itself. Redundant λ-abstractions are erased using η-reduction, which takes
(λx.Mx) to M provided x is not free in M . Also, β-reductions are performed,
simplifying (λx.M)N to M [N/x].

A possible improvement is to use pattern unification (Miller, 1992), allowing
function variables to be instantiated in simple cases. However, pattern unifica-
tion’s main use is to support quantifier reasoning by a technique called lifting
(Paulson, 1989). (Miller calls it raising.) The tableau prover does not use this
technique and thus can get by with first-order unification, which is much easier
to implement.



Minor Points 9

Literals

If the current formula can neither close the branch nor be expanded, then it is
moved to a list of literals. However, in generic tableau proof, the notion of literal
depends upon the available rules. For example, x ∈ A ∪ B is not a literal if the
corresponding rule from §2 is available.

Equality

The treatment of equality is simple and incomplete. Suitable assumptions of
the form s = t are deleted, replacing s by t throughout the branch. Which
assumptions are suitable?

Typically, s is a Skolem term, introduced by a δ-rule. We require that s
does not occur in t—otherwise the substitution will not eliminate s—but this
condition is not strong enough. If the branch contains the formulæ s = ?y and
∀z z 6= Suc z, then we should hope eventually to close the branch with ?y 7→ Suc s.
The equality assumption must not be deleted.

If s is a Skolem constant, then s = ?y is not suitable for substitution because
?y might later be instantiated with a term containing s. If s is the Skolem term
f(x1, . . . , xm), then t may contain only the variables x1, . . . , xm, because those
variables cannot be instantiated with s. (In Isabelle’s meta-logic, which does not
use Skolemization, the corresponding condition is literally that s does not occur
in t.)

Any literals affected by the substitution are moved back to the list of unex-
panded literals for reconsideration. For example, after eliminating the equality
s = A ∪ B, the literal x ∈ s becomes the compound formula x ∈ A ∪ B. The
ensuing rearrangement of the formulæ interferes with proof reconstruction, oc-
casionally making it fail.

Undoable rules

Classical tableau rules are purely analytic: each rule captures the full logical
content of the expanded connective. Backtracking from a rule application is
never necessary. Choice points arise only when closing a branch with unification.

We already have to allow backtracking for rule applications that instantiate
a variable (which cannot happen in a first-order tableau), so it is easy to allow
backtracking for other reasons. Isabelle has a concept of unsafe rule: those where
backtracking might be necessary. (This concept was first used to allow backtrack-
ing over γ-rules in Fast tac.) A rule is unsafe if its conclusion is weaker than
its premises. A generic tableau prover can expect to be supplied rules that need
backtracking. For example, if our problem domain involves transitive closure, we
might supply three rules:

¬(xR∗ x) ¬(xR∗ y)
¬(xR y)

¬(xR∗ z)
¬(xR∗ ?y) | ¬(?y R∗ z)

These rules should be tried in the order shown, trying to prove the goal aR∗ b first
by reflexivity, then by reduction to aR b and only as a last resort by transitivity.

A rule application may be undone if other unifiable rules exist (as in our
example), if it instantiates variables, or if the inference does not introduce new
variables (and thus is not a true γ-rule). The overall effect is to allow backward
chaining over a variety of rule types. Equally important, it makes Blast tac
treat such rules similarly to Fast tac.



10 A Generic Tableau Prover

Transitivity

Transitivity and similar ‘recursive’ rules are notoriously hard to deal with, but
some proofs require them. They are unfortunately incompatible with the stack
discipline of §3. If the current subgoal is aR∗ c, then expanding by the transitiv-
ity rule shown above replaces it by the subgoals aR∗ ?b and ?bR∗ c. Expanding
these subgoals before the rest of the branch, as the stack dictates, could perma-
nently exclude the latter from consideration as the R∗ subgoals multiply. The
prover checks whether the conclusion of the current rule matches any premises
of the same rule. If so, then those premises are potentially recursive; the formulæ
they generate will be put at the end of the branch to be expanded last. Mutually
recursive rules could defeat this simple heuristic, but they seem not to occur in
practice.

8 Integration with Isabelle

The purpose of this tableau prover is to improve the degree of automation avail-
able to Isabelle users. Because the prover is generic, integration has two aspects:

– translation of Isabelle rules to tableau rules
– translation of tableau proofs to Isabelle proofs

The translation of Isabelle rules has to contend with different treatments
of eigenvariables in quantifiers, since Isabelle does not employ Skolemization.
Moreover, it discards virtually all type information. Both of these points could
render the resulting tableau proof incorrect; Isabelle must check the tableau
proof to ensure soundness.

8.1 The Translation of Isabelle Rules

The translation from Isabelle rules to tableau rules is largely straightforward.
I have elsewhere described the connection between Isabelle and tableau rules
(Paulson, 1997a), and more details are available in the documentation (Paulson,
1994, Chap. 14).

Some further points can be seen in the treatment of a standard natural
deduction rule, ∀ introduction:

φ(x)
∀xφ(x)

This inference rule takes the premise φ to the conclusion ∀xφ and is subject to
the usual proviso that x is not free in the assumptions. The rule is represented
in Isabelle as an axiom: (∧

x. Tr(φ(x))
)

=⇒ Tr(Allφ)

Here,
∧

is Isabelle’s meta-level universal quantifier, Tr is a meta-level predicate
to recognize true formulæ, and All is a constant used to represent the first-order
universal quantifier. The Isabelle axiom states that if φ(x) is true for all x, then
the formula ∀xφ(x) is also true. Like all Isabelle axioms, it can be seen as a
generalized Horn clause.



Integration with Isabelle 11

The axiom must be translated to a tableau rule, which in this case intro-
duces Skolemization. Isabelle formalizes quantifier reasoning using higher-order
variables (Miller, 1992; Paulson, 1989). During translation, the bound variable
in the premise (namely x) is replaced by a Skolem term (call it s) containing the
free variables of the current branch. Thus, translating the axiom yields a δ-rule
of the tableau calculus.

The conclusion of the rule, namely Tr(Allφ), involves no variable-binding.
Unification will probably instantiate φ, which is a function variable, to a λ-
term representing some quantified formula. Although the generic prover does
not implement higher-order unification, it can perform the β-reduction needed
to replace the quantified variable by the Skolem term s.

One difference between Isabelle rules and tableau rules is that the former can
have only one goal formula, while the latter can have many. Isabelle represents
multiple goal formulæ as negative formulæ, but retains its natural deduction
concept of goal formula too. Therefore, the rule (∀I) becomes two tableau rules:

Goal(Allφ)
Goal(φ(s))

¬(Allφ)
¬(φ(s))

If a rule is to generate multiple goal formulæ, then all but one of them must be
negative.

Blast tac also has to translate an Isabelle proof state to an initial tableau.
This process resembles that of translating rules. Rarely, it fails, for example if
the proof state contains function variables.

8.2 Giving Tableau Proofs to Isabelle

Translating a proof found by one tool for checking by another is an old idea.
Proof planning (Bundy et al., 1991) involves conducting searches in a specialized
formalism and applying the resulting plans in a general, complex formalism.
Translating proofs can be difficult and slow, so I have taken pains to make
the tableau proofs closely resemble Isabelle proofs. The main advantage of the
tableau prover over Isabelle is its greater search speed.

Of the many minor differences between the tableau proof style and Isabelle’s
style, only one could not be settled straightforwardly. A key heuristic of the
tableau approach is to expand formulæ using a stack, while Isabelle’s normal
mode would yield a queue; I had to add an Isabelle primitive for re-ordering a
subgoal’s assumptions.

Proof reconstruction is a simple idea, but the details can be complicated. Dur-
ing its search, each time the tableau prover proposes some inference, it records
the corresponding Isabelle tactic. If a proof is found, then the full list of tactics
is applied to the original Isabelle subgoal. Isabelle’s tactic mechanism supports
backtracking, but for efficiency, most of the tactics returned by Blast tac do
not offer alternative outcomes. Backtracking is supposed to occur during the
search, not during the proof reconstruction.

Isabelle’s proof engine repeats the unifications done during the search. An at-
tempt to deliver those instantiations to Isabelle yielded no speed-up; the tableau
prover only finds first-order unifiers, which Isabelle can reconstruct easily.



12 A Generic Tableau Prover

Rarely, proof reconstruction fails. After printing a warning, the tableau prover
backtracks, but it seldom recovers. It prunes its search space under the presup-
position that its inferences are legal. Pruning is essential for efficiency, but it
reduces the chances of finding alternative proofs.

The usual cause of failed proof reconstruction is that the tableau and Isa-
belle proofs have somehow diverged. Typically, the tableau prover has allowed
a branch’s formulæ to get out of order. If two similar formulæ are exchanged,
then the wrong one might get expanded. Proof reconstruction occasionally fails
because the tableau proof is unsound; almost certainly, because it has used a
rule that involves overloading. Such a rule expects a constant to have a certain
type. The techniques described in §6 cope even with overloading, except for uses
of axiomatic type classes (Nipkow and Snelting, 1991).

Stenz et al. (1999) describe integrating the tableau prover 3TAP with KIV
(Karlsruhe Interactive Verifier). Their proof transformations can cope with uni-
versal variables: free variables that can be instantiated independently to close
several branches. The great complexity of this transformation is justified if uni-
versal variables can speed up the search. LeanTAP ’s statistics offer little support
for universal variables (Beckert and Posegga, 1995, page 350), but Stenz says
that they are sometimes useful.

9 Results

There are no recognized benchmarks for generic theorem provers: in particular,
none involving higher-order syntax. The TPTP library is typical in consisting
largely of first-order problems in clause form (Sutcliffe and Suttner, 1998). For
evaluation purposes, I have chosen some problems from Pelletier (1986). They
are relatively easy and are available in a non-clausal form. I have added the
halting problem and four examples of my own.

Isabelle’s existing classical reasoner provided Fast tac (based on depth-first
search) and Best tac (based on best-first search). Blast tac outperforms them
in most cases: it is faster and proves many theorems that they cannot.

Table 1 compares the performance of Blast tac, Fast tac and leanTAP on
several examples. Search refers to the tableau prover, while Verify refers to
the Isabelle reconstruction of the proof. The numbered problems are Pelletier’s;
problem 34 is also known as Andrews’ Challenge. Halting II refers to the halting
problem presented by Dafa (1997).3 The benchmarks were run on a 300Mhz
Pentium Pro running Linux. Isabelle was compiled using Standard ML of New
Jersey version 110.0.3. LeanTAP , with iterative deepening and universal variables,
was compiled using SICStus Prolog version 3.

Statistics for the first-order problems are for Isabelle/FOL, though they also
run in Isabelle/HOL. The last four problems are formulated in the set theory
of Isabelle/HOL; Blast tac can also prove their ZF equivalents. Blast tac is
indeed generic.

3 This theorem is large rather than deep: even Fast tac can prove it. It contains
many large subformulæ that are repeated—presumably they are shared in Dafa’s
short proof.



Results 13

⋃
x∈C

(
f(x) ∪ g(x)

)
=
⋃

(f“C) ∪
⋃

(g“C) Union-image⋂
x∈C

(
f(x) ∩ g(x)

)
=
⋂

(f“C) ∩
⋂

(g“C) Inter-image

(∀x∈S ∀y∈S x ⊆ y)→ ∃z S ⊆ {z} Singleton I

(∀x∈S
⋃

(S) ⊆ x)→ ∃z S ⊆ {z} Singleton II

Here “ is the image operator, satisfying y ∈ f“A ⇐⇒ ∃x∈A y = f(x).

Search Verify Fast tac leanTAP
Problem depth branches time tactics time time time
24 4 16 40 52 30 210 540
26 3 17 30 43 40 430 0
28 3 7 20 29 30 140 0
34 7 100 200 431 2090 failed 24,170
38 4 30 50 100 130 840 70
43 5 24 50 48 60 failed 10
46 7 15 610 48 50 2,090 590
52 7 86 140 101 540 1,370 n/a
62 1 17 10 46 40 130 0
Halting II 7 2,015 10,990 1,086 8,310 220,000 ∞
Union-image 3 12 90 40 50 560 n/a

Inter-image 3 12 90 36 50 1430† n/a
Singleton I 4 117 370 19 20 ∞ n/a
Singleton II 4 115 370 19 10 ∞ n/a

runtimes given in milliseconds
∞ = still running after 5 minutes
† = using Best tac; would be ∞ for Fast tac
n/a = not applicable

Table 1: Blast tac Compared With Fast tac

The set theory problems are largely insensitive to the set of rules used, pro-
vided they cover all of set theory. However, the two Singleton problems are
proved without the trivial rule for the universal set, ¬(?x ∈ UNIV). Adding this
rule greatly increases the search space, probably by closing too many branches.

Proof reconstruction time often exceeds search time, especially when the
proof is long and is found with little search. Examples include problems 34
and 38, and there are instances throughout the Isabelle proof scripts. Coding
the tableau prover directly in ML makes it decisively faster than Isabelle’s proof
engine.

Benchmarks can give a distorted picture. For most first-order problems,
Blast tac outperforms Fast tac, but the latter is occasionally much faster be-
cause of its incomplete search strategy. First-order problems allow comparison
with other systems, but are of little relevance to Isabelle. Blast tac is most
important in application domains such as security protocols (Paulson, 1997b),



14 A Generic Tableau Prover

whose use of inductive definitions cannot be reduced to first-order logic. A major
advantage of Blast tac is its ability to cope with transitivity and similar rules.

Blast tac compares favourably with leanTAP , especially if we ignore the time
taken for proof reconstruction. Blast tac’s greater generality slows it down, but
its additional heuristics compensate for that loss.

10 Conclusions

This work has two aspects, (1) as a contribution to tableau theorem proving and
(2) as an extension to Isabelle. Regarding (1), a generic tableau prover is pos-
sible, but is much more complicated than a first-order prover. LeanTAP consists
of five Prolog clauses; Blast tac is around 1,300 lines of ML (or 46K bytes).
Higher-order syntax is essential in a generic prover, and it is easily implemented.
The integration with Isabelle causes many complications and restricts the use
of refinements. A stand-alone generic prover could use liberalized δ-rules, etc.
Another obvious area for improvement is equality handling.

Regarding (2), Blast tac is certainly useful, though it is not a killer tool.
Its complete treatment of quantifiers makes little difference in practice, which
comes as a surprise. It makes some proofs significantly faster and some proof
scripts shorter. Most security protocol proofs (Paulson, 1997b) consist of calls
to Blast tac on the simplified subgoals arising from induction. Each subgoal
corresponds to one protocol action, and typically is proved by one Blast tac
call, using relevant lemmas. The next level of automation involves supplying most
lemmas by default so that users do not have to think about them. Blast tac
can often cope with the resulting search space.

Perhaps the work makes a third contribution: that the experience reported
here may benefit the implementors of other proof tools.

Acknowledgement

The research was funded by the epsrc, grants GR/K77051 ‘Authentication Log-
ics’ and GR/K57381 ‘Mechanizing Temporal Reasoning.’ Nikolaj Bjørner, Fabio
Massacci and various referees commented on previous versions.

References

Baaz, M. and Fermüller, C. G. (1995). Non-elementary speedups between
different versions of tableaux. In P. Baumgartner, R. Hähnle, and
J. Posegga, editors, Theorem Proving with Analytic Tableaux and Related
Methods: 4th International Workshop, TABLEAUX ’95 , LNAI 918, pages
217–230. Springer.

Baaz, M. and Leitsch, A. (1994). On Skolemization and proof complexity.
Fundamenta Informaticae, 20, 353–379.

Beckert, B. and Posegga, J. (1995). LeanTAP: Lean tableau-based deduction.
Journal of Automated Reasoning , 15(3), 339–358.

Beckert, B., Hähnle, R., and Schmitt, P. H. (1993). The even more liberalized
δ-rule in free variable semantic tableaux. In G. Gottlob, A. Leitsch, and
D. Mundici, editors, Computational Logic and Proof Theory: Third Kurt
Gödel Colloquium, KGC’93 Colloquium, LNCS 713, pages 108–119. Springer.



Conclusions 15

Bundy, A., van Harmelen, F., Hesketh, J., and Smaill, A. (1991). Experiments
with proof plans for induction. Journal of Automated Reasoning , 7(3),
303–324.

Dafa, L. (1997). Unification algorithms for eliminating and introducing
quantifiers in natural deduction automated theorem proving. Journal of
Automated Reasoning , 18(1), 105–134.

Davis, M. (1981). Obvious logical inferences. In 7th International Joint
Conference on Artificial Intelligence (IJCAI ’81), pages 530–531.

Hähnle, R. and Schmitt, P. H. (1994). The liberalized δ-rule in free variable
semantic tableaux. Journal of Automated Reasoning , 13(2), 211–221.

Huet, G. P. (1975). A unification algorithm for typed λ-calculus. Theoretical
Computer Science, 1, 27–57.

Korf, R. E. (1985). Depth-first iterative-deepening: an optimal admissible tree
search. Artificial Intelligence, 27, 97–109.

Lifschitz, V. (1989). What is the inverse method? Journal of Automated
Reasoning , 5(1), 1–23.

Miller, D. (1992). Unification under a mixed prefix. Journal of Symbolic
Computation, 14(4), 321–358.

Nipkow, T. and Snelting, G. (1991). Type classes and overloading resolution
via order-sorted unification. In 5th ACM Conf. Functional Programming
Languages and Computer Architecture, pages 1–14. Springer. LNCS 523.

Paulson, L. C. (1989). The foundation of a generic theorem prover. Journal of
Automated Reasoning , 5(3), 363–397.

Paulson, L. C. (1993). Set theory for verification: I. From foundations to
functions. Journal of Automated Reasoning , 11(3), 353–389.

Paulson, L. C. (1994). Isabelle: A Generic Theorem Prover . Springer. LNCS
828.

Paulson, L. C. (1995). Set theory for verification: II. Induction and recursion.
Journal of Automated Reasoning , 15(2), 167–215.

Paulson, L. C. (1996). ML for the Working Programmer . Cambridge
University Press, 2nd edition.

Paulson, L. C. (1997a). Generic automatic proof tools. In R. Veroff, editor,
Automated Reasoning and its Applications: Essays in Honor of Larry Wos,
chapter 3. MIT Press.

Paulson, L. C. (1997b). Proving properties of security protocols by induction.
In 10th Computer Security Foundations Workshop, pages 70–83. IEEE
Computer Society Press.

Paulson, L. C. and Gra̧bczewski, K. (1996). Mechanizing set theory: Cardinal
arithmetic and the axiom of choice. Journal of Automated Reasoning , 17(3),
291–323.

Pelletier, F. J. (1986). Seventy-five problems for testing automatic theorem
provers. Journal of Automated Reasoning , 2, 191–216. Errata, JAR 4
(1988), 235–236 and JAR 18 (1997), 135.

Rudnicki, P. (1987). Obvious inferences. Journal of Automated Reasoning ,
3(4), 383–393.

Stenz, G., Ahrendt, W., and Beckert, B. (1999). Proof transformations from
search-oriented into interaction-oriented tableau calculi. Journal of
Universal Computer Science, 5(this number).



16 A Generic Tableau Prover

Stickel, M. E. (1988). A Prolog technology theorem prover: Implementation by
an extended Prolog compiler. Journal of Automated Reasoning , 4(4),
353–380.

Sutcliffe, G. and Suttner, C. (1998). The TPTP problem library: CNF Release
v1.2.1. Journal of Automated Reasoning , 21(2), 177–203.


