
Reasoning about Coding Theory:
The Benefits We Get from Computer Algebra

Clemens Ballarin and Lawrence C. Paulson

Computer Laboratory, University of Cambridge, Cambridge CB2 3QG, UK
{Clemens.Ballarin, Larry.Paulson}@cl.cam.ac.uk

http://www.cl.cam.ac.uk/users/{cmb33, lcp}

Abstract. The use of computer algebra is usually considered beneficial
for mechanised reasoning in mathematical domains. We present a case
study, in the application domain of coding theory, that supports this
claim: the mechanised proofs depend on non-trivial algorithms from com-
puter algebra and increase the reasoning power of the theorem prover.
The unsoundness of computer algebra systems is a major problem in in-
terfacing them to theorem provers. Our approach to obtaining a sound
overall system is not blanket distrust but based on the distinction be-
tween algorithms we call sound and ad hoc respectively. This distinction
is blurred in most computer algebra systems. Our experimental interface
therefore uses a computer algebra library. It is based on theorem tem-
plates, which provide formal specifications for the algorithms.
Keywords. Computer algebra, mechanised reasoning, combining sys-
tems, soundness of computer algebra systems, specialisation problem,
coding theory.
AISC topics. Integration of logical reasoning and computer algebra,
automated theorem provers.

1 Motivation

Is the use of computer algebra technology beneficial for mechanised reasoning in
and about mathematical domains? Usually it is assumed that it is. Many works in
this area have, however, either only little reasoning content, or the contribution
of symbolic computation is only the simplification of expressions. Exceptions
are Analytica [Clarke and Zhao, 1993] and work by [Harrison, 1996]. Both these
approaches do not scale up. The former trusts the computer algebra system too
much, the latter, too little. Computer algebra systems are not logically sound
reasoning systems, but collections of algorithms.

Apart from the verification of numerical hardware and software, linking mech-
anised reasoning and computer algebra gives insight into the design of logically
more expressive frameworks for computer algebra, has applications in educa-
tional software and is a step towards the development of mathematical assistants.
Among the applications, geometry theorem proving is a prospective candidate.
For a survey on this, see [Geddes et al., 1992, section 10.6].

This work presents a case study that requires hard techniques from both
sides. The proofs we mechanise require algorithms from computer algebra in

order to be solved effectively. They also rely on the formalisation of natural
numbers, sets and lists, which are available in Isabelle, and make heavy use of
advanced proof procedures.

The outline of this article is as follows. In section 2 we briefly describe the
context of interactive theorem proving and the prover Isabelle. We then present
an analysis of the soundness problems in computer algebra and based on this
describe the design of an interface. The rest of the paper is devoted to our case
study. Section 3 introduces the mathematical background along the lines of its
mechanisation in Isabelle. Section 4 is a brief introduction to coding theory and
section 5 presents the mechanised proofs. Section 6 reviews important details of
the implementation and in section 7 we draw conclusions.

2 Interface between Isabelle and Sumit

The interface we present is between the prover Isabelle and the computer algebra
library Sumit. See [Paulson, 1994] and [Bronstein, 1996] respectively.

2.1 Isabelle

Isabelle is a natural deduction-style theorem prover. Proofs are carried out inter-
actively by the user by applying tactics to the proof state and so replacing sub-
goals by simpler ones until all the subgoals are proved. Isabelle provides tactics
that perform single inference steps and also highly automated proof procedures,
like the simplifier and a tactic that implements a tableau prover.

Isabelle, like other LCF-style theorem provers, allows the user to program
arbitrary tactics, which can implement specialised proof procedures. The design
of Isabelle ensures that unsoundness cannot be introduced to the system through
these procedures. This is achieved by using an abstract datatype thm for theo-
rems. Theorems can only be generated by operations provided by the datatype.
These operations implement the primitive inference rules of the logic.

Isabelle also provides an oracle mechanism to interface trusted external pro-
vers. An oracle can create a theorem, i.e. an object of type thm, without proving
it through the inference rules. This, of course, weakens the rigour of the LCF-
approach, but theorems proved later on can record on which external theorems
they depend.

We use Isabelle’s object logic HOL, which implements Church’s theory of
simple types, also known as higher order logic. This is a typed version of the
λ-calculus. The logic has the usual connectives (∧,∨,−→, . . .) and quantifiers
(∀,∃). Currying is used for function application. We write f ab instead of f(a, b).
Equality = on the type bool is used to express if-and-only-if. For definitions we
use ≡, and =⇒ expresses entailment in a deduction rule. Some definitions require
Hilbert’s ε-operator, which is actually a quantifier: εx.P x denotes the unique
value for which the predicate P holds. The notation for formulae in this paper
is close to their representation in Isabelle. We have omitted all type information
from formulae to improve their legibility. If type information is necessary, we
give it informally in the context.

2.2 Soundness in Computer Algebra

Computer algebra systems have been designed as tools that perform complicated
algebraic computations. Their soundness or, as some authors might prefer to
say, unsoundness has become a focus, see [Harrison, 1996, Homann, 1997] for
examples. A systematic presentation of more examples is [Stoutemyer, 1991]. We
have identified the following reasons for unsoundness in the design of computer
algebra systems:

– They present a misleadingly uniform interface to collections of algorithms.
An object, which is used with a particular meaning in one algorithm, can be
used with a different meaning in another algorithm. Particularly problematic
are symbols, which are used as formal indeterminates in polynomials and as
variables in expressions. Interfacing to a computer algebra system through
its user interface is therefore problematic.

– They have only limited capabilities for handling side conditions or case splits,
if they exist at all. An example is

∫
xn dx. Computer algebra systems return

xn+1

n+1 . Substituting n = −1 yields an undefined term, while the solution of
the integral is lnx. This problem is known as specialisation problem, but
hardly ever referred to in the literature, see [Corless and Jeffrey, 1997].

– Many of the algorithms that are implemented in computer algebra systems
rest on mathematical theory and their correctness is well established: proofs
for their correctness have been published. Examples for these are factorisa-
tion algorithms for polynomials, Gaussian elimination and Risch’s method
for integration in finite terms. The design of other algorithms is less rigorous.
Simplification rules like (x2)

1
2 = x are cause for some of the reported sound-

ness problems. [Corless and Jeffrey, 1996] argue that a satisfactory treat-
ment of these requires extending the underlying mathematical model. In this
case Riemann surfaces are appropriate. We call the former sort of algorithms
sound and the latter ad hoc. See [Calmet and Campbell, 1997, section 2] for
a historic perspective on this distinction.

Of course, computer algebra systems also contain implementation errors. De-
pending on how rigorous one wants to be, one can reject any result of a com-
puter algebra system without formal verification in the prover. Considering the
amount of work required to re-implement these algorithms in a theorem prover,
and the poor efficiency one could expect, we decide to live with possible bugs
but look for ways of avoiding the systematic errors.

2.3 Design of the Interface

The interface obviously needs to translate objects between Isabelle’s and the
computer algebra system’s representation. The translation cannot be performed
uniformly, but needs to take into account which algorithm the objects are passed
to or returned from. As we can only use a selection of algorithms of the system
safely, we need to interface to these directly rather than to the system as a whole.

Unfortunately, it turns out to be difficult to tell sound algorithms from ad
hoc ones in large, multipurpose computer algebra systems. Without lengthy code
inspections one cannot be sure that a piece of otherwise sound code depends on
a module that is ad hoc. We have therefore chosen the rather small computer
algebra library Sumit, which is written in the strongly typed language Aldor,
originally designed for the computer algebra system Axiom. References to the
literature for the algorithms this library implements are available. From these,
formal specifications can be extracted.

The implementation of a prototype interface between Isabelle and Sumit is
straightforward. We provide stubs that translate between Isabelle’s λ-terms and
Sumit’s algebraic objects. More than one stub is provided for Sumit types that
are used for several mathematical domains. This is, for example, the case for
Sumit’s type Integer, which is used to represent both natural numbers and
integers. Arguments and results of the computation are then composed to a λ-
term representing a theorem. This is done using what we call a theorem template:
at this experimental stage, simply a piece of code. The generated theorem is an
instance of the algorithm’s formal specification. The algebraic algorithms, stubs
and theorem templates are wrapped to a server dealing with Isabelle’s requests.
The server we obtain this way is only a skeleton: stubs and theorem templates
are added incrementally for algorithms that are to be used.

3 Polynomial Algebra

The algebraic approach to cyclic codes is based upon the theory of polynomial
rings. We sketch this theory briefly and also show to what extent it has been
formalised within Isabelle/HOL. The type system of this logic supports simple
types extended by axiomatic type classes, which we use to represent abstract
algebraic structures. Subtyping has to be made explicit using suitable embedding
functions.

3.1 The Hierarchy of Ring Structures

One obtains various kinds of rings by imposing conditions on the ring’s mul-
tiplicative monoid. Integral domains, or domains for short, do not contain any
zero divisors other than zero: formally, a 6= 0 and b 6= 0 implies a · b 6= 0.

An element a is said to divide b, if there is an element d such that a · d = b.
We write a | b. Two elements are associated a ∼ b, if both a | b and b | a. An
element that divides 1 is called a unit. Associated elements differ by a unit factor
only. An element is called irreducible if it is nonzero, not a unit and all its proper
factors are units. Formally, irred a ≡ a 6= 0 ∧ a - 1 ∧ (∀d. d | a −→ d | 1 ∨ a | d).
An element is called prime if it is nonzero, not a unit and, whenever it divides a
product, it already divides one of the factors. This is, formally, prime p ≡ p 6=
0 ∧ p - 1 ∧ (∀a b. p | a · b −→ p | a ∨ p | b). The factorisation of an element x into
irreducible elements is defined by the following predicate:

Factorisationx F u ≡ (x = foldr · F u) ∧ (∀a ∈ F. irred a) ∧ u | 1 (1)

F is the list of irreducible factors and u is a unit element. The list operator foldr
combines all the elements of a list, here by means of the multiplication operation
“·”. The product of the elements of F and of u is x.

An integral domain R is called factorial if the factorisation of the elements
into irreducible factors is unique up to the order of the factors and associated
elements. This is equivalent to R satisfying a divisor chain condition and every
irreducible element of R being prime. The divisor chain condition is not needed
in our proofs. We therefore formalise factorial domains only using the second
condition, which is also called the primeness condition. Fields are commutative
rings where every non-zero element has a multiplicative inverse.

3.2 Polynomials

Polynomials are a generic construction over rings. For every ring R there is a ring
of polynomials R[X]. The symbol X is called the indeterminate of the polynomial
ring. Further to the ring operations there is the embedding const :

{
R → R[X]

a 7→ aX0

}
.

We derive the representation theorem deg p ≤ n =⇒
∑n
i=0 piX

i = p, where the
pi denote the coefficients of p.

Polynomials must not be confused with polynomial functions.1 Their relation
is described in terms of the evaluation homomorphism. Given another ring S
and a homomorphism φ : R → S we define EVALφ a p ≡

∑deg p
i=0 φpi · an.

EVALφa : R[X]→ S is a homomorphism as well and evaluates a polynomial in
S substituting a ∈ S for the indeterminate and mapping the coefficients of p to
S by φ.

3.3 Fields and Minimal Polynomial

The field F2 = {0, 1} is fundamental in an algebraic treatment of binary codes.
Codewords are represented as polynomials in F2[X]. Note that associated ele-
ments are equal in these domains.

Let h be an irreducible polynomial of degree n. The residue ring obtained
from F2[X] by “computing modulo h” is a field with 2n elements. For our purpose
we do not carry out this quotient construction of a field extension explicitly, as
we only need it to define the notion of minimal polynomial. Let G be an extension
field of F and a ∈ G. The nonzero polynomial m ∈ F [X] of smallest degree, such
that m evaluated at a is zero, is the minimal polynomial. Our definition of the
minimal polynomial is as follows:

minimal g S ≡ g ∈ S ∧ g 6= 0 ∧ (∀v ∈ S. v 6= 0 −→ deg g ≤ deg v) (2)
min poly h a ≡ εg.minimal g {p.EVAL const a p remh = 0} (3)

Note that here a ∈ F2[X] and hence the embedding const is needed to lift the
coefficients of p to F2[X]. The computation is carried out modulo h by means of
the remainder function rem associated with polynomial division.
1 Polynomial functions are a subtype of R → R and not isomorphic to R[X] when R

is finite: for F2 we have |F2[X]| =∞, but |F2 → F2| = 4.

4 Coding Theory

This discipline studies the transmission of information over communication chan-
nels. In practice, information gets distorted because of noise. Coding theory
therefore seeks to design codes that allow for high information rates and the
correction of errors introduced in the channel. At the same time, fast encoding
and decoding algorithms are required to permit high transmission speeds.

The following presentation of coding theory follows [Hoffman et al., 1991].
The codes we are interested in for the purpose of this case study belong to a
class of binary codes with words of fixed length, so called block codes. n-error-
detecting codes have the capability to detect n errors in the transmission of a
word; n-error-correcting codes can even correct n errors. The distance between
two codewords is the number of differing bit-positions between them. The dis-
tance of a code is the minimum distance between any two words of that code.

Definition 1 A code is linear if the exclusive or of two codewords is also a
codeword. It is cyclic if for every codeword a0 · · · an its cyclic shift ana0 · · · an−1

is also a codeword.

Codes that are linear and cyclic can be studied using algebraic methods. Linear
codes are F2-vector spaces. A code with 2k codewords has dimension k and there
is a basis of codewords that span the code. It is convenient to identify codewords
with polynomials:

a0 · · · an−1 ←→ a0 + a1X + . . .+ an−1X
n−1

The cyclic shift of a codeword a is then X · a rem(Xn − 1), where rem is the
remainder function associated with polynomial division.

There is a nonzero codeword of least degree in every linear cyclic code. This
is called the generator polynomial. It is unique and its cyclic shifts form a basis
for the code. It is important, because a linear cyclic code is fully determined
by its length and its generator polynomial. The generator polynomial has the
following algebraic characterisation:

Theorem 2 (Generator polynomial) There exists a cyclic linear code of
length n such that the polynomial g is the generator polynomial of that code
if and only if g divides Xn − 1.

4.1 Hamming Codes

Hamming codes are linear codes of distance 3 and are 1-error-correcting. They
are perfect codes: they attain a theoretical bound limiting the number of code-
words of a code of given length and distance. For every r ≥ 2 there are cyclic
Hamming codes of length 2r − 1.

An irreducible polynomial of degree n that does not divide Xm − 1 for m ∈
{n + 1, . . . , 2n − 2} is called primitive.2 This allows us to state the following
structural theorem on cyclic Hamming codes:
2 Note that the term primitive polynomial is used with a different meaning in other

areas of algebra.

Theorem 3 (Hamming code) There exists a cyclic Hamming code of length
2r − 1 with generator polynomial g, if and only if g is primitive and deg g = r.

4.2 BCH Codes

Bose-Chaudhuri-Hocquengham (BCH) codes can be constructed according to
a required error-correcting capability. We only consider 2-error-correcting BCH
codes. These are of length 2r − 1 for r ≥ 4 and have distance 5.

An element a of a field F is primitive if ai = 1 is equivalent to i = |F | − 1
or i = 0. Let G be an extension field of F2 with 2r elements and b ∈ G a
primitive element. The generator polynomial of the BCH code of length 2r−1 is
mb ·mb3 , where ma denotes the minimal polynomial of a in the field extension.
If we describe the field extension in terms of a primitive polynomial h, then
X corresponds to a primitive element. Note that, because h is irreducible, it is
minimal polynomial of X. Therefore we can define BCH codes a follows:

Definition 4 Let h ∈ F2[X] be a primitive polynomial of degree r. The code of
length 2r − 1 generated by h ·min poly h X3 is called a BCH code.

5 Formalising Coding Theory

We formalise properties of codes with the following predicates. Codewords are
polynomials over F2 and codes are sets of them. The statement coden C means
C is a code of length n. The definitions of linear and cyclic are straightforward
while generatorn g C states that g is generator polynomial of the code C of
length n.

coden C ≡ ∀x ∈ C. deg x < n
linearC ≡ ∀x ∈ C.∀y ∈ C. x+ y ∈ C
cyclicn C ≡ ∀x ∈ C.X · x rem(Xn − 1) ∈ C
generatorn g C ≡ coden C ∧ linearC ∧ cyclicn C ∧minimal g C

5.1 The Hamming Code Proofs

We now describe our first application of the interface between Isabelle and Sumit.
We use it to prove which Hamming codes of a certain length exist. Restricting the
proof to a certain length allows us to make use of computational results obtained
by the computer algebra system. The predicate Hamming describes which codes
are Hamming codes of a certain length. Theorems 2 and 3 are required and
formalised as follows:

0 < n −→ (∃C. generatorn g C) = g | Xn − 1 (4)
(∃C. generator(2r − 1) g C ∧Hamming r C) = (deg g = r ∧ primitive g)

(5)

These equations are asserted as axioms and are the starting point of the proof
that follows. Note that (5) axiomatises the predicate Hamming. The generators

of Hamming codes are the primitive polynomials of degree 2r− 1. The primitive
polynomials of degree 4 are X4 + X3 + 1 and X4 + X + 1. Thus for codes of
length 15 we prove

(∃C. generator 15 g C ∧Hamming r C) = (g ∈ {X4 +X3 + 1, X4 +X + 1}).

We now give a sketch of this proof, which is formally carried out in Isabelle. The
proof idea for the direction from left to right is that we obtain all irreducible
factors of a polynomial by computing its factorisation. The generator g is irre-
ducible by (5) and a divisor of X15 − 1 by (4). The factorisation of X15 − 1 is
computed using Berlekamp’s algorithm:

Factorisation(X15 − 1) [X4 +X3 + 1, X + 1, X2 +X + 1,

X4 +X3 +X2 +X + 1, X4 +X + 1] 1

Since associates are equal in F2[X] every irreducible divisor of X15− 1 is in this
list. This follows from the lemma

irred c ∧ Factorisationx F u ∧ c | x =⇒ ∃d. c ∼ d ∧ d ∈ F, (6)

whose proof requires an induction over the list F . It follows in particular that
the generator polynomials are in the list above. But some polynomials in the
list cannot be generators: X + 1 and X2 + X + 1 do not have degree 4 and
X4 +X3 +X2 +X + 1 divides X5 − 1 and is therefore not primitive. The only
possible generators are thus X4 +X3 + 1 and X4 +X + 1.

It remains to show that these are indeed generator polynomials of Hamming
codes. This is the direction from right to left. According to (5) we need to show
that X4 +X3 + 1 and X4 +X + 1 are primitive and have degree 4. The proof is
the same for both polynomials. Let p be one of these. The irreducibility of p is
proved by computing the factorisation, which is Factorisation p [p] 1, and follows
from the definition of Factorisation, equation (1).

The divisibility condition of primitiveness is shown by verifying p - Xm − 1
for m = 5, . . . , 14. ¤

5.2 The BCH Code Proofs

The predicate BCH is, in line with definition 4, defined as follows:

BCH r C ≡ (∃h.primitiveh ∧ deg h = r ∧
generator(2r − 1) (h ·min poly h X3) C)

(7)

We prove that a certain polynomial is generator of a BCH code of length 15:

generator 15 (X8 +X7 +X6 +X4 + 1) C =⇒ BCH 4 C

Here is the outline of the proof: X8 + X7 + X6 + X4 + 1 is the product of the
primitive polynomial X4+X+1 and the minimal polynomial X4+X3+X2+X+

1. According to the definition (7) we need to show that the former polynomial
is primitive. This has been described in the second part of the Hamming proof.
Secondly, we need to show that the latter is a minimal polynomial:

min poly(X4 +X + 1)X3 = X4 +X3 +X2 +X + 1

In order to prove this statement, we need to show that X4 +X3 +X2 +X + 1
is a solution of

EVAL const X3 p rem(X4 +X + 1) = 0 (8)

of minimal degree, and that it is the only minimal solution.

– Minimal solution: Simplification establishes that X4 +X3 +X2 +X + 1 is
a solution of the equation. That there are no solutions of smaller degree can
be shown as follows:
Assume deg p ≤ 3, so p = p0 + p1X + p2X

2 + p3X
3 for p0, . . . , p3 ∈ F2. We

substitute this representation of p in (8) and obtain, after simplification,

p0 + p1X
3 + p2(X2 +X3) + p3(X +X3) = 0.

Comparing coefficients leads to a linear equation system, which we can solve
using the Gaussian algorithm. The only solution is p0 = · · · = p3 = 0, so
p = 0. This is a contradiction to the definition of minimal.

– Uniqueness: We need to show that X4 + X3 + X2 + X + 1 is the only
polynomial of smallest degree satisfying (7). We study the solutions of (8)
of degree of ≤ 4 by setting p = p0 + . . .+ p4X

4 and obtain another equation
system

p0 + p1X
3 + p2(X2 +X3) + p3(X +X3) + p4(1 +X +X2 +X3) = 0.

Its set of solutions, again computed by the Gaussian algorithm, is {0, X4 +
X3 + X2 + X + 1}. The definition of minimality excludes p = 0. Therefore
there are indeed no other solutions of minimal degree. ¤

6 Review of the Development

We have mechanised the mathematics outlined in section 3 and the proofs de-
scribed in section 5 in our combination of Isabelle and Sumit. The mathematical
background presented in section 3 has been formalised by asserting definitions
for the entities and deriving the required theorems mechanically. This is advis-
able to maintain consistency. We have not done the same for coding theory. Here
we have only asserted the results, namely theorems 2 and 3 and then mechanised
the proofs described in section 5. This part is therefore considerably shorter than
the development of the mathematical background.

The following table gives an overview on the effort. The figures are, however,
misleading in such that developing proof scripts is much harder than ordinary
programming.

Isabelle Sumit
Interface 23.7 Interface 43.3
Formalisation of algebra 61.8 Stubs and
Coding theory proofs 14.6 theorem templates 20.4

Size of the development (code sizes in 1000 bytes)

The interface of Sumit is considerably larger, because datatypes for λ-terms
and the server functionality are provided as well. The entry “Coding theory
proofs” includes the implementation of proof procedures for irreducibility and
primitiveness of polynomials, which automatically examine the proof state and
retrieve the required theorems from Sumit.

6.1 Contributions of the Prover

We prove theorems about polynomial algebra, which do not have computational
content, in Isabelle. We also establish the relation between coding theory and
the specifications of the algebraic algorithms. In our informal presentation these
translations may appear simple, but some of them are in fact rather difficult.

For the Hamming code proofs take lemma (6), for example, which is proved
by list induction. The induction step, after unfolding definitions, is a quantifier
expression, which is solved almost automatically by Isabelle’s tableau prover.
However, it requires search to a depth of six, which means that six “difficult”
rules have to be applied, and produces a proof with 221 inferences. A depth of six
is unusually deep in interactive proof. The complete proof of (6) is 372 inferences
long but only requires 8 invocations of tactics, which resemble the manual proof
steps.

In the proofs about BCH codes, reasoning about minimality needs the full
power of first order logic. Note that the definition of minimality (2) contains
a quantifier and phrases like “x is the only element, such that P” are really
statements that involve quantifiers.

6.2 Contributions of Computer Algebra

Sumit computes normal forms for expressions that do not contain variables; here
in the domains N,F2,F2[X]. This includes the decision of equality, inequalities
and divisibility over these expressions. Their theorem templates are of the form
a¯ b = B, where ¯ is the corresponding connective and B becomes either True
or False.

Polynomials are decomposed into square-free factors and then factorised over
F2[X] using Berlekamp’s algorithm. We pass a polynomial p to this procedure
and obtain a list of irreducible factors [x1, . . . , xk] and a unit element u. These
are then assembled to the theorem

Factorisationx [x1, . . . , xk] u.

Linear equation systems over F2 are solved by Gaussian elimination. The
matrix (a0| · · · |an) is passed to the algorithm, where ai is the ith column vector.

The algorithm returns a list of vectors [v1, . . . , vk] that span the solution space.
The theorem template generates the theorem

(
n∑
i=0

xiai = 0) = (∃t1 · · · tk. x = t1v1 + . . .+ tkvk)

or (
n∑
i=0

xiai = 0) = (x = 0), if k = 0.

The ti are variables in F2 and the xi are elements of the vector x. Note that we
use polynomials to denote vectors in Isabelle, as indicated in the proof.

Mechanising the proofs in a system that integrates the computer algebra com-
ponent without trusting it would require to additionally prove the theorems gen-
erated by these templates formally. This holds in particular for [Harrison, 1996,
chapter 6] and [Kerber et al., 1996], who try to reconstruct the proofs using the
result of the computation and possibly further information, which resembles a
certificate for the computation.

In the case of our proofs, the irreducibility of the factors, which constitute
a factorisation, is hard to establish and also the direction from left to right in
the theorems generated by Gaussian elimination.3 This direction states that the
solution is complete, and it is the direction needed in the proofs.

7 Conclusion

Our approach is pragmatic: we trust the computer algebra component in our
system rather than reconstruct proofs for the results of computations within the
prover’s logic. The approach relies on implementations of algorithms that are
trustworthy. This can be achieved by restricting the use of computer algebra to
algorithms, for which proofs of their correctness have been published. This is
sufficient to avoid systematic soundness problems of computer algebra systems.
Errors in the implementation of these algorithms still jeopardise the integrity
of the prover, but bugs of this sort should not be more frequent in computer
algebra systems than in other software (including provers themselves).

Computational results are turned into theorems using theorem templates
that can produce arbitrary theorems. This is more flexible than the approach
suggested by one of us [Ballarin et al., 1995], which only allowed conditional
rewrite rules, because the logical meaning of the result can be exploited more
easily.

Our case study shows that theorems that are rather difficult to verify occur
naturally in proofs. It presents a challenge to the approach that does not trust
the computer algebra component. But it also makes a contribution: it clarifies
which theorems need to be certified.
3 Over some domains theorems of this kind can be proved by decision procedures for

linear arithmetic. Here, because |F2| = 2, this could be done by checking all the 2n+1

cases.

Our approach avoids Analytica’s soundness problems. This means, of course,
that we cannot make use of algorithms that are ad hoc. In an interactive envi-
ronment it does not matter too much that these are not complete. They need,
however, to be made sound. Expressive formalisms that are able to deal with side
conditions and case splits are used in mechanised reasoning. Expertise gained
here could prove useful in the redesign of these algorithms as well.

Acknowledgements. This work has been funded in part by the Studien-
stiftung des deutschen Volkes and by EPSRC grant GR/K57381 “Mechanizing
Temporal Reasoning”.

References

[Ballarin et al., 1995] Clemens Ballarin, Karsten Homann, and Jacques Calmet. The-
orems and algorithms: An interface between Isabelle and Maple. In A. H. M. Levelt,
editor, ISSAC ’95: International symposium on symbolic and algebraic computation
— July 1995, Montréal, Canada, pages 150–157. ACM Press, 1995.

[Bronstein, 1996] Manuel Bronstein. Sumit — a strongly-typed embeddable computer
algebra library. In Calmet and Limongelli [1996], pages 22–33.

[Calmet and Campbell, 1997] J. Calmet and J. A. Campbell. A perspective on sym-
bolic mathematical computing and artificial intelligence. Annals of Mathematics and
Artificial Intelligence, 19(3–4):261–277, 1997.

[Calmet and Limongelli, 1996] Jacques Calmet and Carla Limongelli, editors. Design
and Implementation of Symbolic Computation Systems: International Symposium,
DISCO ’96, Karlsruhe, Germany, September 18–20, 1996: proceedings, number 1128
in Lecture Notes in Computer Science. Springer-Verlag, 1996.

[Clarke and Zhao, 1993] Edmund Clarke and Xudong Zhao. Analytica: A theorem
prover for Mathematica. The Mathematica Journal, 3(1):56–71, 1993.

[Corless and Jeffrey, 1996] Robert M. Corless and David J. Jeffrey. The unwinding
number. ACM SIGSAM Bulletin, 30(2):28–35, 1996.

[Corless and Jeffrey, 1997] R. M. Corless and D. J. Jeffrey. The Turing factorization
of a rectangular matrix. ACM SIGSAM Bulletin, 31(3):20–28, 1997.

[Geddes et al., 1992] Keith O. Geddes, Stephen R. Czapor, and George Labahan. Al-
gorithms for Computer Algebra. Kluwer Academic Publishers, 1992.

[Harrison, 1996] John Robert Harrison. Theorem proving with the real numbers. Tech-
nical Report 408, University of Cambridge, Computer Laboratory, November 1996.

[Hoffman et al., 1991] D. G. Hoffman, D. A. Leonard, C. C. Lindner, K. T. Phelps,
C. A. Rodger, and J. R. Wall. Coding Theory: The Essentials. Number 150 in
Monographs and textbooks in pure and applied mathematics. Marcel Dekker, Inc.,
New York, 1991.

[Homann, 1997] Karsten Homann. Symbolisches Lösen mathematischer Probleme
durch Kooperation algorithmischer und logischer Systeme. Number 152 in Disserta-
tionen zur Künstlichen Intelligenz. infix, St. Augustin, 1997.

[Kerber et al., 1996] Manfred Kerber, Michael Kohlhase, and Volker Sorge. Integrating
computer algebra with proof planning. In Calmet and Limongelli [1996], pages 204–
215.

[Paulson, 1994] Lawrence C. Paulson. Isabelle: a generic theorem prover. Number 828
in Lecture Notes in Computer Science. Springer-Verlag, 1994.

[Stoutemyer, 1991] David R. Stoutemyer. Crimes and misdemeanors in the computer
algebra trade. Notices of the American Mathematical Society, 38(7):778–785, 1991.

