
Proving Security Protocols Correct

Lawrence C. Paulson

Computer Laboratory
University of Cambridge

Cambridge CB2 3QG
England

E-mail: lcp@cl.cam.ac.uk

Abstract

Security protocols use cryptography to set up private
communication channels on an insecure network. Many
protocols contain flaws, and because security goals are sel-
dom specified in detail, we cannot be certain what consti-
tutes a flaw. Thanks to recent work by a number of re-
searchers, security protocols can now be analyzed formally.

The paper outlines the problem area, emphasizing the
notion of freshness. It describes how a protocol can be spec-
ified using operational semantics and properties proved by
rule induction, with machine support from the proof tool
Isabelle. The main example compares two versions of the
Yahalom protocol. Unless the model of the environment is
sufficiently detailed, it cannot distinguish the correct proto-
col from a flawed version.

The paper attempts to draw some general lessons on the
use of formalisms. Compared with model checking, the in-
ductive method performs a finer analysis, but the cost of
using it is greater.

1 Introduction

Computer networks are vulnerable. Suppose that Mon-
ica sends an e-mail to her friend Bill. Since her message
must pass through other computers, other people can read
or alter it (Fig. 1). They can send bogus messages that ap-
pear to come from Bill.

Cryptography can help, if it is used correctly. Monica
and Bill can run asecurity protocol: a previously agreed
message handshake. Figure 2 presents SSL (Secure Sock-
ets Layer), which is used in Web servers. In the first two
messages, Monica and Bill contact each other. Then, using
public-key cryptography, they generate temporary encryp-
tion keys. Eventually they have their electronic conversa-
tion, using the new keys for encryption. Nobody can listen

Figure 1. A vulnerable network

in, and Monica or Bill will notice if a message they receive
has been modified during transmission.

An SSL handshake consists of up to eight messages and
relies on several different cryptographic primitives. There
are good reasons for this complexity. The protocol must
thwart all known forms of attack, such as somebody’s send-
ing messages built from parts of messages she has inter-
cepted. The protocol also tries to minimize the use of slow
public-key operations.

Security protocols often contain serious errors. Formal
verification can find errors and can increase our understand-
ing of a protocol by making essential properties explicit.
Communications protocols, which must work over an un-
reliable medium, have been verified for years. Researchers
specify how the medium can go wrong: whether messages
can be reordered, duplicated, etc. Similarly, with security
protocols we must specify the adversary’s capabilities. An
active attacker—one who can send messages—is more dan-
gerous than a passive eavesdropper. The former can launch
amiddle-person attack(Fig. 3), placing herself between the

1

Hi Linda, itÕs Monica! Hi Linda, itÕs Monica!Bill

So how are you, Monica?So how are you, Monica?

Fine, Linda. Now listen... Fine, Linda. Now listen...Bill

Figure 3. A middle-person attack

A,Na,Sid,Pa

client server

client hello

Nb,Sid,Pb

server hello

cert(B,Kb)

server certificate

cert(A,Ka)

client certificate

{PMS}Kb

client key exchange

{Hash(Nb,B,PMS)}Ka
-1

certificate verify

{Finished}clientK(Na,Nb,M)

client finished

 M = PRF(PMS,Na,Nb)

Finished = Hash(M,messages)

{Finished}serverK(Na,Nb,M)

server finished

Figure 2. An Internet security protocol

two parties and typically modifying their messages before
forwarding them. While the adversary is often called the
“intruder”, she could be a corrupt insider, trusted by the oth-
ers. We must assume the worst possible case.

Considering how simple they are, security protocols are
surprisingly hard to verify. The main reason is that their
goals are informally stated and poorly understood [10].Se-
crecy is an obvious goal, but just as important isauthenti-
cation: knowing who originated a message. Both proper-
ties are necessary in order to be sure that we are talking to
the right person. Other security goals might be anonymity
or non-repudiation [33]. The security community debates
these concepts endlessly and delights in finding flaws in
other people’s work.

By way of comparison, a floating-point division unit is
much more complicated than a security protocol. However,
there is a standard specification of what the unit should do.
The verifier does not have to consider the risks posed by a
hostile environment.

This paper presents a tutorial on security protocols, with
the hope of pointing out some pitfalls. It begins (§2) by
distinguishing long-term keys from session keys and ex-
plaining why the latter need to be fresh. It presents two
very different protocol flaws in order to illustrate their
diversity (§3). Then it introduces my work (theinduc-
tive method[23]), with some notes on its origins in other
work (§4). To demonstrate the method, the paper describes
how the Yahalom protocol is modelled (§5) and how sim-
ple properties can be proved (§6). Secrecy properties are
harder to prove, but they are more interesting (§7). The con-
cluding section discusses the general limitations of formal
analysis (§8).

2 Freshness of nonces and keys

Suppose you find a fish in the back of the fridge. You
don’t know how old it is. It smells all right, and if cooked
thoroughly it might be OK to eat—but most of us would
prefer to go hungry. Freshness is equally important in secu-
rity, and some items have a short shelf-life.

Most security protocols ultimately rely on long-term
keys. Each participant (or their institution) will have one.
They are guarded like the Crown Jewels: their loss compro-

2

mises everything derived from them. Setting up these se-
crets takes considerable effort, including face-to-face con-
tact. Even with public-key cryptography, Monica needs
someone trustworthy to deliver her public key to Bill: how
can he be sure the key is Monica’s?

Since each encrypted message gives another hint to any
code-breakers, long-term keys should be used as little as
possible. Normally they are used to set up short-termses-
sion keysthat carry the bulk of the traffic. With public-key
systems, the two parties can exchange encrypted random
numbers, then scramble them to arrive at a session key. An
alternative is to rely on a trusted third party: theauthentica-
tion server.

As their name implies, session keys are used for one ses-
sion only. They cannot be guarded like the Crown Jewels
because there are too many of them: they are generated in
great quantities. Moreover, some of them are shared with
our adversary or her co-conspirators. Like that fish, we must
regard an old session key as potentially compromised.

By replaying past messages, an adversary might deceive
Bill into using an old session key. To thwart replay attacks,
most protocols usenonces: numbers that are generated to
identify protocol runs uniquely. During a run, each party
must be able to insert a nonce of their choice. Later, when
accepting a session key or other credentials, they will ex-
pect to see the same nonce attached to it in a tamper-evident
message (one that is protected by a cryptographic integrity
check). They conclude that the message is new: it must
have been generated more recently than their nonce.

Other protocols use synchronized clocks and timestamps
in order to detect the use of old messages. Burrows et al. [6]
have abstracted the notion of freshness from such mecha-
nisms. An item isfreshif it has not been used before.

3 Protocol failure: two examples

We can see these concepts at work in the Otway-Rees
protocol, which is designed to let anybody establish a se-
cure connection with anybody else. The protocol assumes
a shared-key cryptosystem: every user has a unique long-
term key, which they share withS, the authentication server.
Consider this faulty variant of the protocol (Fig. 4), by Bur-
rows et al. [6]:

1. A→ B : Na, A, B, {|Na, A, B|}Ka

2. B→ S : Na, A, B, {|Na, A, B|}Ka,Nb, {|Na, A, B|}Kb

3. S→ B : Na, {|Na,Kab|}Ka, {|Nb,Kab|}Kb

4. B→ A : Na, {|Na,Kab|}Ka

In this notation,Ka is A’s long-term key andKb is B’s. Note
that{|X|}K stands for the messageX encrypted with keyK .
The encryption is assumed to be strong: given{|X|}K , no-
body can obtain the plaintextX or create a new ciphertext

{|X′|}K unless they have the keyK . Here is an informal de-
scription of each protocol step.

3: Na, {|Na, Kab|}Ka,

{|Nb, Kab|}Kb

1: Na, A, B, {|Na, A, B|}Ka

B

S

A

2: Na, A, B, {|Na, A, B|}Ka,

Nb, {|Na, A, B|}Kb

4: Na, {|Na, Kab|}Ka

Figure 4. A bad variant of Otway-Rees

1. A contactsB, choosing a fresh nonceNa to identify
the run.

2. B contactsS, choosing a fresh nonceNb. He cannot
read the message{|Na, A, B|}Ka because it is encrypted
using A’s key. He simply forwards it toS, along with
a similar encrypted message of his own.

3. Sknows everybody’s keys, so he can readA’s andB’s
encrypted messages. He chooses a fresh session key,
Kab. For A he encryptsKab together withNa using
Ka. Such a ciphertext is sometimes called acertificate
or ticket. He prepares a similar certificate forB and
sends him both of them.

4. B takes his certificate. He verifies that the nonce it
contains is the same one (Nb) that he sent out in step
two. Once satisfied, he forwards the other certificate
to A, who will similarly inspect her certificate. If both
of them are satisfied, then they will proceed to com-
municate usingKabas a session key.

A lot of things are going on here, but we might expect
this protocol to be correct—especially as it is claimed to
be in a landmark paper on protocol verification [6, p. 247].
However, a malicious userC can attack it (Fig. 5). The at-
tack involves two interleaved runs. It works because the two
certificates sent in message 3 have identical formats and be-
cause nonceNb is unprotected in message 2. (The notation
CA stands forC masquerading asA.)

Clearly, protocols must be checked by mechanical tools.
Attacks of such complexity are hard even for experts to no-
tice. But protocols can fail in other ways. For the second
example, I have inserted a subtle flaw into the Yahalom1

1pronounced Ya-ha-LOM

3

1. A→ CB : Na, A, B, {|Na, A, B|}Ka

1′. C→ A : Nc,C, A, {|Nc,C, A|}Kc

A tries to contactB. However,C intercepts the message
and starts a new run, contactingA in the normal way.

2′. A→ CS : Nc,C, A, {|Nc,C, A|}Kc,Na′, {|Nc,C, A|}Ka

2′′. CA→ S : Nc,C, A, {|Nc,C, A|}Kc,Na, {|Nc,C, A|}Ka

A responds toC’s message as the protocol requires, by try-
ing to contactS. But C modifies her message, replacing
nonceNa′ by Na (circled above).

3′. S→ CA : Nc, {|Nc,Kca|}Kc, {|Na,Kca|}Ka

In reponse to the modified message,SsendsA a session key
to be shared between her andC.

4. CB → A : Na, {|Na,Kca|}Ka

C grabs the two certificates and sendsA the wrong one. It
containsNa, so A acceptsKcaas a session key sent byB in
the first run. But this key is actually shared withC.

Figure 5. An attack on Otway-Rees

2: B, Nb, {|A, Na|}Kb

B

S

A
1: A, Na

3: {|B, Kab, Na, Nb|}Ka,

{|A, Kab|}Kb

4: {|A, Kab|}Kb, {|Nb|}Kab

Figure 6. A bad variant of Yahalom

protocol:

1. A→ B : A,Na

2. B→ S : B,Nb, {|A,Na|}Kb

3. S→ A : {|B,Kab,Na,Nb|}Ka, {|A,Kab|}Kb

4. A→ B : {|A,Kab|}Kb, {|Nb|}Kab

The triangular configuration (Fig. 6) is designed to allow
both A andB to know that the other party has been active.
But the variant shown above is vulnerable:B’s certificate
{|A,Kab|}Kb contains no nonce and thus gives no evidence of
freshness. LetK be an old session key that had once been
shared byA andB. If C has somehow obtainedK and has
kept the old certificate{|A, K |}Kb containing this key, then
she can execute a bogus run withB:

1. CA→ B : A,Nc

2. B→ CS : B,Nb, {|A,Nc|}Kb

4. CA→ B : {|A, K |}Kb, {|Nb|}K
Now B has accepted an old, compromised session key and
regards it as shared withA. As with Otway-Rees, the cor-
rect version of the protocol encrypts nonceNb in message 2.
But the similarity is superficial: the two attacks could hardly
be more different.

• Otway-Rees requiresNb to be protected from modifi-
cation. The attack involves interleaved runs and a ma-
licious insider. The victim receives a fresh key, shared
unfortunately with the wrong person.

• Yahalom requiresNb to be kept secret. The attack is
trivial and can be carried out by an outsider. The victim
receives a key that was once fit for the purpose but has
become compromised.

It is hard to find a verification method that is sensitive
to both types of problem, even in such simple protocols as
these. The BAN logic of Burrows, Abadi and Needham [6]
was for many years the basis of most research on proto-
col verification. Freshness reasoning is its main strength:
it can analyze Yahalom. But it does not attempt to cover
every aspect of correctness; it is silent on matters of se-
crecy. It finds nothing wrong with the version of Otway-
Rees given above. Other protocols verified using BAN have
since been attacked, for example by Lowe’s model checking
techniques [13].

Model checking is inexpensive and highly effective, but
it too has limitations. The state-space explosion forces the
model to be kept simple, typically limiting the number of
participants and other parameters to one or two. Recently,
Lowe [15] and Roscoe [27] have made advances on this
problem; for some types of protocol, correctness in the gen-
eral case can be shown by checking a finite model.

4

An alternative is to rely entirely on proof. The rest of this
paper is devoted to my own work: inductive proofs mecha-
nized using the Isabelle system. Other recent work deserves
attention: the theory ofstrand spaces[31] is a promising
foundation for proving protocols correct.

4 An inductive model of security protocols

This section outlines the inductive method [23]. It at-
tempts to suggest principles about how to model a system
using mechanical proof tools; towards this end, it describes
how the main primitives evolved.

A model must be detailed enough to be useful and simple
enough to be usable. If proofs are to be performed by ma-
chine, then simplicity becomes even more important. (Me-
chanical proofs are harder than paper ones, not easier, be-
cause even obvious steps must be justified formally.) Also, a
model should be easy to explain to other people, especially
to sceptical security experts.

When people reason about protocols informally, they
often use induction. They argue that each protocol step
preserves the desired safety properties. If we model pro-
tocols inductively, then the machine proofs will have the
same structure as informal ones, which is a major advan-
tage. Note that an inductive definition can be seen as an
operational semantics.

Lowe [13] applies model checking to a theory jointly
developed with Schneider [30] under the supervision of
Roscoe [26, 28]. This outstanding work is based on Com-
municating Sequential Processes [11], but in essence it uses
an operational semantics. Its ideas, with suitable modifica-
tions, form the basis for the inductive method.

4.1 Agents and messages

Before we can talk about particular protocols, we must
formalize the agent population and the general structure of
messages. These are defined in Isabelle [22] essentially as
follows (some details are omitted):

datatype agent = Server | Friend nat | Spy
datatype msg = Agent agent

| Nonce nat
| Key key
| MPair msg msg
| Crypt key msg

There are three kinds of agents: the serverS (called
Server in the text), the friendly agents (which are indexed
by natural numbers) and the spy. The spy is an active at-
tacker and is accepted as a valid user. The spy has taken
control of an arbitrary set of compromised agents, but the
server is always trustworthy.

A message can be the name of an agent, a nonce, a key, a
pair of messages, or a message encrypted using a key. The

familiar notation{|X1, . . . Xn−1, Xn|} is defined to abbrevi-
ateMPair X1 . . . (MPair Xn−1 Xn).

Thedatatype declarations specify types that are free
algebras: the constructors are injective and their ranges are
mutually disjoint. In particular, we have

Crypt K X = Crypt K ′X′ H⇒ K = K ′ ∧ X = X′.

This theorem states that a ciphertext can be decrypted using
only one key and can yield only one plaintext. Some real-
world encryption methods do not fit this black-box model.
With RSA for example, multiplication commutes with en-
cryption [25]. Fortunately, most security protocols assume
an underlying implementation of strong encryption. It is not
clear how to model those that do not.

4.2 The functionparts

The next step is to define operations on messages. They
are needed for expressing assertions and describing the pos-
sible actions of the adversary. The functionparts maps
sets of messages to sets of messages:parts H consists of
the components of elements ofH . The components of
a message include the message itself; the components of
Crypt K X include all the components of the plaintextX,
but not necessarily the keyK . An obvious inductive defini-
tion givesparts H the required closure properties.

Why should the notion of component be formalized as
a function from sets to sets? Lowe [13, §5.1] defines the
contains relation on messages, whereX contains Y holds
providedY is a component ofX. This approach may look
straightforward, but it is cumbersome in practice. Lowe
immediately defines the set of all sub-messages of a mes-
sage, namely the set of all messages that it contains. He
then derives lemmas that contain many formulæ of the form
∃X ∈ H . X contains Y. Isabelle supports logical vari-
ables and can prove existential formulæ automatically, but
we should not burden it needlessly. Socontains is not
a good basis for mechanization. It happens thatparts H
equals

{Y | ∃X ∈ H . X contains Y},

but we can dispense withcontains entirely.
A further advantage ofparts is that it enjoys equational

reasoning. Obviouslycontains is transitive, but transitiv-
ity reasoning requires search and can diverge. Withparts,
transitivity is expressed by a neat equation:

parts(parts H) = parts H

This equation and others shown below are easy to prove.
The two inclusions of the set equality are shown separately,
typically by rule induction (induction over the definition).

5

4.3 The functionanalz

The functionanalz is intended to model what the adver-
sary can extract from a corpus of messages. The closure
properties of the setanalz H are defined inductively. The
only difference from the definition ofparts H is in the rule
for Crypt:

Crypt K X ∈ analz H K−1 ∈ analz H
X ∈ analz H

This rule states that decryption requires the matching key.
(The inverse of a key is meaningful for public-key cryp-
tosystems; for shared keys,K−1 = K .)

As with parts, set equalities can be proved by rule in-
duction. Transitivity is again expressed by idempotence:

analz(analz H) = analz H,

The close relationship between the two operators is revealed
by two further equations:

parts(analz H) = parts H analz(parts H) = parts H.

Again, introducing a map from sets to sets may seem un-
conventional. Schneider [30] writesH ` X to state that an
intruder can deriveX from a setH of messages. (Bolig-
nano’sknownin relation [5] is similar.) This relation al-
ready concerns a set of messages, so by analogy withparts
we could formalize the setentails H = {X | H ` X}. The
set would be both upwards and downwards closed under
message construction. But this approach can be simplified.
The relationH ` X comprises two distinct questions:

1. CanX be extracted fromH by decrypting ciphertexts
with available keys?

2. CanX can be built up from elements ofH?

Most of the time we are only interested in question 1, which
expresses safety properties. We only care about question 2
when considering what active attacks the intruder could
launch. It is better to replaceentails H by two separate
operators,analz H andsynth H .

4.4 The functionsynth

The setsynth H captures the “building up” aspect of en-
tailment. Its inductive definition says that it includes all
agent names but no nonces or keys other than those inH .
(Agent names are guessable, while nonces and keys aren’t.)
If X and Y belong tosynth H then so does{|X,Y|} and
Crypt K X, providedK ∈ H . (Two elements can be com-
bined and can be encrypted using available keys.)

This operator is also idempotent,

synth(synth H) = synth H.

Two other equations express its relationship withparts and
analz.

parts(synth H) = parts H ∪ synth H

analz(synth H) = analz H ∪ synth H

These equations show that the “breaking down” and “build-
ing up” aspects of entailment are independent. There do
not appear to be similar equations forsynth(parts H) and
synth(analz H). The latter combination of operators ex-
presses the set of fake messages that an intruder could in-
vent starting fromH . By analogy with modal logic, we
have five modalities:parts, analz, synth, synth ◦parts
andsynth ◦analz. The last of these seems to satisfy only a
few equational laws, such as

{|X,Y|} ∈ synth(analz H)

⇐⇒ X ∈ synth(analz H) ∧ Y ∈ synth(analz H).

Symbolic evaluation is another benefit of separating
entails into analz andsynth. Proof by induction typically
requires symbolic evaluation to reduce an assertion about
{X} ∪ H to one aboutH , where we have an induction hy-
pothesis aboutH and X is a new message. This is ob-
viously impossible forsynth (and entails would be even
worse) because infinitely many new messages can be gen-
erated fromX. However, if X is sufficiently definite then
analz({X} ∪ H) can be simplified to a complicated expres-
sion built from analz H . The simplifier therefore does a
tremendous amount of work that would otherwise have to
be done manually, with many case splits.

4.5 Traces of events

Still following the CSP approach [13, 30], let us spec-
ify the system’s behaviour as the set of possible traces of
events. A trace model is concrete and easy to explain. An
eventis an atomic action, one of three forms:

• Says A B X occurs whenA attempts to sendB the
messageX.

• Gets A X occurs whenA receives the messageX. She
cannot be expected to know where it came from.

• Notes A X occurs whenA stores the messageX inter-
nally. (HereX may be the result of a calculation.)

For eachGets event there is a correspondingSays
event. G. Bella [2] introduced theGets event to allow ex-
plicit reasoning about agent knowledge. We can do much
without it [23], but it improves the readability of protocol
definitions and theorem statements.

6

5 Modelling the Yahalom protocol

The Yahalom protocol [6, p. 257] is a good example for
evaluating verification methods. It is short (four messages)
but its analysis is difficult. As mentioned above, it demon-
strates the importance of freshness: session keys degrade
with age. It also involves a particularly tricky treatment of
secrecy.

Many authors, including myself, have demonstrated their
work on a different example: the Needham-Schroeder
public-key protocol. Lowe famously found a flaw in this
protocol [13]. However, Yahalom is richer in every way.

Protocol specifications make use of additional functions
that operate on a traceevs. Their intuitive meanings are as
follows:

• ev#evs extends the trace with the new eventev. (The
operator # is the familiar list “cons”; traces are con-
structed in reverse order.)

• set evs is the set of all past events. (The functionset
maps a list to the set of its elements.)

• knows Spy evs is the set of messages the spy can see,
which includes all messages sent over the network.

• used evs contains all components of all past mes-
sages.

The functionsset, knows andused are defined by list re-
cursion.

Figure 7 presents the Isabelle specification of the Ya-
halom protocol. It defines the correct version, with nonce
Nb encrypted in message 2. As usual with operational se-
mantics, the rules are quite readable; compare with the in-
formal description given in §3. Full details of the Yahalom
proofs appear elsewhere [21].

The inductive definition ofyahalom, which is a set of
traces, comprises eight rules. The first three are required
in all specifications. There is a rule to allow the empty
trace. TheFake rule models an active attacker sending a
message built from components taken from past traffic. In
detail, he can extend the current trace,evs, with the event
Says Spy B X, whereX is constructed from previous traf-
fic, knows Spy evs, using the functionssynth andanalz.
The Reception rule says that ifA sends a message toB
thenB might receive it. (But he might not: the rules do not
have to be applied, so there will be traces in which some
messages are lost.)

The next four rules are the protocol steps themselves, as
they would be performed by honest agents. The function
used expresses that agents choosefresh nonces, presum-
ably by generating big random numbers. Also,shrK A is
the formal syntax forKa, the long-term key thatA shares
with the authentication server.

The last and most interesting rule isOops, which com-
promises session keys. Such a rule is necessary; otherwise
session keys remain secure forever and the model cannot
distinguish the correct version of Yahalom from the bad one
presented in §3.

The simplest type of Oops rule states that any session
key distributed by the server can reach the spy. Naturally,
any security guarantees proved about a keyK will require
thatK has not been lost in this way. With such a model, we
can show that a protocol still works even if some session
keys are lost. However, that model is not detailed enough to
distinguish between these two scenarios:

• B received a bad session key because it became com-
promised soon after being issued. (B was unlucky.)

• B received a bad session key because an intruder man-
aged to replace the good key by an old one. (The pro-
tocol has a bug.)

Time is the missing parameter: the Oops message must in-
dicate when the key was lost. Bella modelled the BAN-
Kerberos protocol [4] making time explicit, and his Oops
rule simply said that no session key could be lost during its
stated lifetime. (It is reasonable to assume that session keys
are safe for this short period.) Time is implicit for Yahalom,
so the Oops event hands{|Na,Nb, K |} to the spy. Since the
key and the relevant nonces are bundled together, we can
distinguish between a recent loss and an old one.

6 Simple lemmas about Yahalom

Protocol analyses using the inductive method follow the
usual techniques for reasoning about an operational seman-
tics. Lemmas are established, mostly using rule induction,
until finally the desired properties are proved. Quite a va-
riety of protocols have been analyzed: using public-key
encryption or shared-key encryption (or both), distributing
nonces or keys (or both) or even calculating session keys.
While there is some variety in the theorems that are proved,
there is also much uniformity.

Assertions such as

X ∈ parts(knows Spy evs) H⇒ · · ·

or

ev ∈ set evsH⇒ · · ·

are often easy to prove. (The functionparts has good sim-
plification laws.) Such facts are calledregularity lemmas.
For example, long-term keys remain secret:

Key(shrK A) ∈ parts(knows Spy evs) H⇒ A ∈ bad .

7

empty trace
[] ∈ yahalom

Fake
[[evs ∈ yahalom; X ∈ synth (analz (knows Spy evs))]]
H⇒ Says Spy B X # evs ∈ yahalom

Reception
[[evsr ∈ yahalom; Say s A B X ∈ set evsr]]
H⇒ Gets B X # evsr ∈ yahalom

Message 1
[[evs1 ∈ yahalom; Nonce NA 6∈ used evs1]]
H⇒ Says A B {|Agent A, Nonce NA|} # evs1 ∈ yahalom

Message 2
[[evs2 ∈ yahalom; Nonce NB 6∈ used evs2;

Gets B {|Agent A, Nonce NA|} ∈ set evs2]]
H⇒ Says B Server

{|Agent B, Crypt (shrK B) {|Agent A, Nonce NA, Nonce NB|}|}
evs2 ∈ yahalom

Message 3
[[evs3 ∈ yahalom; Key KAB 6∈ used evs3;

Gets Server {|Agent B, Crypt (shrK B) {|Agent A, Nonce NA, Nonce NB|}|}
∈ set evs3]]

H⇒ Says Server A
{|Crypt (shrK A) {|Agent B, Key KAB, Nonce NA, Nonce NB|},

Crypt (shrK B) {|Agent A, Key KAB|}|}
evs3 ∈ yahalom

Message 4
[[evs4 ∈ yahalom; A 6= Server;

Gets A {|Crypt (shrK A) {|Agent B, Key K, Nonce NA, Nonce NB|}, X|}
∈ set evs4;

Says A B {|Agent A, Nonce NA|} ∈ set evs4]]
H⇒ Says A B {|X, Crypt K (Nonce NB)|} # evs4 ∈ yahalom

Oops
[[evso ∈ yahalom;

Says Server A
{|Crypt (shrK A) {|Agent B, Key K, Nonce NA, Nonce NB|}, X|}

∈ set evso]]
H⇒ Notes Spy {|Nonce NA, Nonce NB, Key K|} # evso ∈ yahalom

Figure 7. Specifying the Yahalom protocol

8

Here, the constantbad stands for the set of compromised
agents, and the definition ofknows makes their keys avail-
able to the spy. The theorem says that ifA is honest thenKa
will never form part of any traffic, let alone reach the spy.

Unicity lemmasare useful. For example, if the server has
sent the two messages

{|B,K ,Na,Nb|}Ka

{|B′,K ,Na′,Nb′|}Ka′

(with the sameK each time) then all the corresponding mes-
sage components agree. This theorem holds because the
server never uses a session key twice.

Authenticity theoremsare important. A trivial induction
shows that if

{|B,Kab,Na,Nb|}Ka

appears in traffic then it was sent by the server in message 3
(if A 6∈ bad). This simple result assuresA that this message
came from the server. Because the session key is securely
bundled withA’s nonce, she knows it to be fresh. Similarly,
one can prove inductively that the server sends this message
only after receiving a copy of message 2. Continuing in this
vein, we can reason backwards from any point in a protocol
run.

For Yahalom,B’s authenticity theorem is hard to prove.
We can easily show that if{|A,Kab|}Kb appears in traffic (and
B 6∈ bad) then it was sent by the server. But this certificate
contains no nonces, so it says nothing about the freshness
of Kab. For that we must turn to the second half of mes-
sage 4. If{|Nb|}Kab appears in a trace then the server used
Kab andNb in the same instance of message 3. Together
with the result about{|A,Kab|}Kb, this theorem assuresB
that the session key is fresh. However, the theorem makes
a significant assumption: thatNb is kept secret. A crucial
step in its proof is that the spy could not have created the
message{|Nb|}Kab because he does not knowNb.

7 Secrecy theorems for Yahalom

For all protocols that involve session keys, we must
prove that those keys remain secret. For Yahalom, we must
moreover prove thatNb remains secret. We must prove se-
crecy in the presence of the Oops rule, which compromises
some keys and nonces; we must establish bounds on the
damage caused by such losses. Secrecy theorems are ex-
pressed in terms ofanalz, the function that returns all that
can be decrypted from its argument, and the simplification
rules foranalz are inconvenient. For all these reasons, se-
crecy is hard to prove.

The session key secrecy theoremasserts correctness of
the protocol from the server’s point of view. It is subject to
several conditions:

• evs is a Yahalom trace.

• A andB are honest agents.

• The server has sent message 3, issuing the keyK to A
andB:

Says S A {|Crypt(shrK A){|B, K ,Na,Nb|},
Crypt(shrK B){|A, K |}|} ∈ set evs

• The session key was not lost in this run, that is, in an
Oops event involving thesamenonces:

Notes Spy {|Na,Nb, K |} 6∈ set evs

If these hypotheses hold, the theorem concludes that the key
is safe from the spy:

K 6∈ analz(knows Spy evs).

As mathematicians know, sometimes a lemma can be as
interesting as the main result. Proving the theorem above
requires such a lemma. The induction presents us with goals
of the form

K 6∈ analz(knows Spy (ev#evs))

whereev#evs is the current trace extended withev, the lat-
est event. If that event is an instance of message 3, then
it contains another session keyK ′, which is possibly be-
ing distributed to a bad agent. So we have to simplify the
formula

K ∈ analz({K ′} ∪ knows Spy evs), (1)

where bothK and K ′ are session keys. A little thought
reveals that the formula ought to be equivalent to

K = K ′ ∨ K ∈ analz(knows Spy evs). (2)

Knowing the extra keyK ′ does not make it any easier to
decryptK from past traffic because the protocol never en-
crypts session keys using other session keys.

When we try to prove the equivalence between (1)
and (2), induction fails. Message 3 is again the culprit; it
introduces yet another session key. We have to generalize
the induction formula to a setK of session keys:

K ∈ analz(K ∪ knows Spy evs)

⇐⇒ K ∈ K ∨ K ∈ analz(knows Spy evs)

With this lemma in hand, we can prove the session key se-
crecy theorem. The lemma is important in its own right
because it expresses a robustness principle: the loss of one
session key does not compromise others. So I call it theses-
sion key compromise theorem. Some protocols do not sat-
isfy this theorem, such as Kerberos IV, where the loss of one

9

session key can compromise any number of other keys. Yet
the losses do not cascade; the protocol can be verified [3].

Yahalom poses similar problems: we must prove secrecy
of Nb, but the loss of a session key compromises the cor-
responding nonce. It was for Yahalom that the necessary
technique was first developed [21]. Very briefly, the idea is
to formalize the relation between session keys and the items
they encrypt. Then use this relation to express the session
key compromise theorem in restricted form. If the server
has associatedNb′ with K in message 3 then

Nb∈ analz({K } ∪ knows Spy evs)

⇐⇒ Nb∈ analz(knows Spy evs)

providedNb 6= Nb′. In other words,Nb′ is the only nonce
that could be affected by the loss ofK .

Let us review the analysis of Yahalom. Near the end
of §6, I outlined the proof thatB receives a fresh key. In
part, the proof argued that the spy could not have created the
message{|Nb|}Kab because he did not knowNb. To prove that
Nbwas secret required a complicated and lengthy argument.

As an experiment, I have formalized the bad version of
Yahalom (Fig. 6)withoutOops to demonstrate why that rule
is needed. In this version,Nb is not secret. But the session
key secrecy theorem holds as usual, and with Oops omitted,
session keys remain secret for ever. So we can argue that
the spy could not have created the message{|Nb|}Kab because
he did not knowKab. This proof concludes thatKab is a
good session key even though it is not fresh. This unrealistic
proof is only half as long as the original one and is easy to
find: the experiment described in this paragraph took only
an hour, starting from the original Yahalom proof script.

Yahalom could be dismissed as a toy; a real-world exam-
ple is the Internet protocol SSL (Fig. 2). It has more mes-
sages than Yahalom and uses fancier cryptographic prim-
itives, but its design is straightforward. The primitives it
needs are easily modelled [24]. A cryptographic hash func-
tion is expected to be collision-free, so the model assumes
it to be injective. Hashing is expected to be non-invertible
in practice, so the model does not equip the spy with the
means to invert it. (But we must add a rule to let the spy to
perform hashing.) Unlike Yahalom, there is nothing tricky
about this protocol; it is hard to analyze simply because it is
big and complicated.

8 Conclusions

Dijkstra has famously remarked [9, p. 6] that testing can
show the presence of bugs but never their absence. Program
proofs are generally thought to be free of this limitation. But
we must abandon this claim as soon as we try to model an
unreliable or hostile environment. Our proof has to be based

upon a formal model, and a real-world adversary need not
conform to our model.

Mao [16, p. 45] has commented “when BAN logic finds a
proof of correctness, people seem to have trouble believing
that it is a proof.” The BAN paper itself makes only mod-
est claims: “[the logic] guides us in identifying mistakes
and suggesting corrections” [6, p. 269]. BAN reasons cor-
rectly about freshness, but it does not attempt to prove se-
crecy. It is also insensitive to attacks such as that of Fig. 5:
although the session key is fresh, it is associated with the
wrong agent.

Is model checking better? Mitchell et al.’s model of
SSL [18] is rather abstract. The same authors’ analysis
of Kerberos [17] does not cover multiple runs or freshness.
Model checking amounts to exhaustive testing of a system
cut down to finite size.

At first sight, the inductive approach appears to give a
high level of confidence. The protocols analyzed include
three of industrial strength:

• The model of the SSL protocol (actually TLS, its suc-
cessor) includes some details of the calculation of ses-
sion keys for both initial runs and resumptions [24].

• Bella’s inductive analysis of Kerberos [3] found a flaw
in the treatment of session key lifetimes. The model
admits the compromise of session keys and the proof
copes with the cascading losses that can ensue.

• The analysis of the Recursive Authentication Proto-
col [23] copes with runs of arbitrary length.

All that may sound wonderful, but Ryan and Schneider
found serious flaws in the Recursive Authentication Proto-
col [29]—or rather in the proposed implementation, which
replaced the encryption by exclusive-OR and cryptographic
hashing. Once we realize that perfection is not attain-
able, model checking regains its attraction, especially since
Lowe’s work [14] makes it almost cost-free.

Security analysts know that any system can be broken,
given enough effort. Too many things can go wrong. Sup-
pose that Monica’s messages to Bill are always YESor NO,
encrypted with Bill’s public key. After observing the traffic
for some time, a spy can probably work out which cipher-
text means YES and which means NO. Such deductions lie
outside of most models. However complicated our model is,
significant details will be left out. Even stray electromag-
netic radiation from equipment is a security risk; Wright
gives an amusing account inSpycatcher[32, pp. 109–111].

Formulæ can be misinterpreted; here is an example. A
recent version of Otway-Rees [1] is particularly easy to ver-
ify: certificates, if received, are genuine. But nothing in
the Isabelle proofs requires nonces to be fresh, so what hap-
pens if somebody keeps using the same nonce? It takes a
little thought to realize that even a genuine certificate would

10

become worthless, since the nonce could give no evidence
of freshness.

Alert readers may have noticed similarities between this
paper and Roger Needham’s of last year [19], in which he
outlined the history of the BAN logic. BAN’s main con-
tribution, he said, was to express protocol mechanisms in
terms of abstractions such as freshness. Abstractions made
BAN usable but also made its analysis incomplete. We have
considered similar issues above. Adding detail to our model
(the Oops rule, for example) allows it to make important
distinctions, but the proofs become much harder.

BAN derivations are short and straightforward; they do
not require automated support. Model checking establishes
properties automatically, and the preliminary formalization
needs typically hours or days. Proofs using the induc-
tive method typically require days or weeks of specialist
work. When certifying a system, somebody must decide
how much confidence is required and balance the cost of
verification against that of failure. Often a combination of
tools will be used, along with expert scrutiny. Automation
can never replace informed judgement.

Acknowledgement Prof. C. A. R. Hoare scrutinized this
paper and made extensive suggestions. G. Bella, K. Eas-
taughffe and F. Massacci also commented. The research
was funded by theEPSRCgrants GR/K77051Authentica-
tion Logicsand GR/K57381Mechanizing Temporal Rea-
soningand by theESPRITworking group 21900Types.

References

[1] Martı́n Abadi and Roger Needham. Prudent
engineering practice for cryptographic protocols.
IEEE Transactions on Software Engineering,
22(1):6–15, January 1996.

[2] Giampaolo Bella. Message reception in the inductive
approach. Technical Report 460, CUCL, March 1999.

[3] Giampaolo Bella and Lawrence C. Paulson. Kerberos
version IV: Inductive analysis of the secrecy goals. In
J.-J. Quisquater, Y. Deswarte, C. Meadows, and
D. Gollmann, editors,Computer Security —
ESORICS 98, LNCS 1485, pages 361–375. Springer,
1998.

[4] Giampaolo Bella and Lawrence C. Paulson.
Mechanising BAN Kerberos by the inductive method.
In Alan J. Hu and Moshe Y. Vardi, editors,Computer
Aided Verification: 10th International Conference,
CAV ’98, LNCS 1427, pages 416–427. Springer,
1998.

[5] Dominique Bolignano. An approach to the formal
verification of cryptographic protocols. InThird ACM
Conference on Computer and Communications
Security, pages 106–118. ACM Press, 1996.

[6] M. Burrows, M. Abadi, and R. M. Needham. A logic
of authentication.Proceedings of the Royal Society of
London, 426:233–271, 1989.

[7] 8th Computer Security Foundations Workshop. IEEE
Computer Society Press, 1995.

[8] 11th Computer Security Foundations Workshop.
IEEE Computer Society Press, 1998.

[9] Edsger W. Dijkstra. Notes on structured
programming. In O.-J. Dahl, E. W. Dijkstra, and
C. A. R. Hoare, editors,Structured Programming.
Academic Press, 1972.

[10] Dieter Gollmann. What do we mean by entity
authentication? InSymposium on Security and
Privacy[12], pages 46–54.

[11] C. A. R. Hoare.Communicating Sequential
Processes. Prentice-Hall, 1985.

[12] IEEE Computer Society.Symposium on Security and
Privacy, 1996.

[13] Gavin Lowe. Breaking and fixing the
Needham-Schroeder public-key protocol using CSP
and FDR. In T. Margaria and B. Steffen, editors,
Tools and Algorithms for the Construction and
Analysis of Systems: second international workshop,
TACAS ’96, LNCS 1055, pages 147–166. Springer,
1996.

[14] Gavin Lowe. Casper: A compiler for the analysis of
security protocols.Journal of Computer Security,
6:53–84, 1998.

[15] Gavin Lowe. Towards a completeness result for
model checking of security protocols. In Computer
Security Foundations Workshop [8], pages 96–105.

[16] Wenbo Mao. An augmentation of BAN-like logics.
In Computer Security Foundations Workshop [7],
pages 44–56.

[17] John C. Mitchell, Mark Mitchell, and Ulrich Stern.
Automated analysis of cryptographic protocols using
Murϕ. In Symposium on Security and Privacy, pages
141–153. IEEE Computer Society, 1997.

[18] John C. Mitchell, Vitaly Shmatikov, and Ulrich Stern.
Finite-state analysis of SSL 3.0 and related protocols.
In Orman and Meadows [20].

11

[19] Roger M. Needham. Logic and over-simplification.
In 13th Annual Symposium on Logic in Computer
Science, pages 2–3.IEEE Computer Society Press,
1998.

[20] Hilarie Orman and Catherine Meadows, editors.
Workshop on Design and Formal Verification of
Security Protocols. DIMACS, September 1997.

[21] Lawrence C. Paulson. Relations between secrets:
Two formal analyses of the Yahalom protocol.
Journal of Computer Security. in press.

[22] Lawrence C. Paulson.Isabelle: A Generic Theorem
Prover. Springer, 1994. LNCS 828.

[23] Lawrence C. Paulson. The inductive approach to
verifying cryptographic protocols.Journal of
Computer Security, 6:85–128, 1998.

[24] Lawrence C. Paulson. Inductive analysis of the
Internet protocol TLS.ACM Transactions on
Information and System Security, in press.

[25] R. L. Rivest, A. Shamir, and L. Adleman. A method
for obtaining digital signatures and public-key
cryptosystems.Communications of the ACM,
21(2):120–126, February 1978.

[26] A. W. Roscoe. Modelling and verifying key-exchange
protocols using CSP and FDR. In Computer Security
Foundations Workshop [7], pages 98–107.

[27] A. W. Roscoe. Proving security protocols with model
checkers by data independence techniques. In
Computer Security Foundations Workshop [8], pages
84–95.

[28] A. W. Roscoe and M. H. Goldsmith. The perfect
“spy” for model-checking cryptoprotocols. In Orman
and Meadows [20].

[29] Peter Y. A. Ryan and Steve A. Schneider. An attack
on a recursive authentication protocol: A cautionary
tale. Information Processing Letters, 65(1):7–10,
January 1998.

[30] Steve Schneider. Security properties and CSP. In
Symposium on Security and Privacy[12], pages
174–187.

[31] J. Thayer, J. Herzog, and J. Guttman. Honest ideals
on strand spaces. In Computer Security Foundations
Workshop [8], pages 66–77.

[32] Peter Wright.Spycatcher: The Candid
Autobiography of a Senior Intelligence Officer.
Heinemann Australia, 1987.

[33] Jianying Zhou and Dieter Gollmann. A fair
non-repudiation protocol. InSymposium on Security
and Privacy[12], pages 55–61.

12

