Hammering Away
A User’s Guide to Sledgehammer for Isabelle/HOL

Jasmin Blanchette

Institut fiir Informatik, Technische Universitat Miinchen
with contributions from

Martin Desharnais
Forschungsinstitut CODE, Universitidt der Bundeswehr Miinchen

Lawrence C. Paulson
Computer Laboratory, University of Cambridge

February 20, 2021

Contents
1 Introduction
2 Installation

3 First Steps

4.1
4.2

Hints

Presimplify the goal
Familiarize yourself with the main options .

5 Frequently Asked Questions
Which facts are passed to the automatic provers?

5.1
5.2
2.3

5.4

2.5
2.6
5.7
5.8

Why does Metis fail to reconstruct the proof?

What are the full_types, no_types, and

And what are the lifting and hide_lams

arguments to Metis?
Are the generated proofs minimal?
A strange error occurred—what should I do?

6 Command Syntax

6.1
6.2

Sledgehammer
Metiso oL

7 Option Reference

7.1
7.2
7.3
7.4
7.5
7.6

Mode of Operation
Relevance Filter
Problem Encoding

Output Format
Regression Testing
Timeouts

8 Mirabelle Testing Tool

8.1
8.2
8.3

Example of Benchmarking Sledgehammer . .
Example of Benchmarking Another Tool . .
Example of Generating TPTP Files

1 Introduction

10
10
10
10

11
11
12

13
13
18
19
22
23
24

Sledgehammer is a tool that applies automatic theorem provers (ATPs) and
satisfiability-modulo-theories (SMT) solvers on the current goal.! The sup-
ported ATPs include agsyHOL [12], Alt-Ergo [4], E [14], iProver [11], LEO-II

IThe distinction between ATPs and SMT solvers is convenient but mostly historical.

[3], Leo-IIT [15], Satallax [7], SPASS [17]|, Vampire [13], Waldmeister [10],
and Zipperposition [8]. The ATPs are run either locally or remotely via the
SystemOnTPTP web service [16]. The supported SMT solvers are CVC3 [2],
CVC4 (1], veriT [6], and Z3 [9]. These are always run locally.

The problem passed to the external provers (or solvers) consists of your cur-
rent goal together with a heuristic selection of hundreds of facts (theorems)
from the current theory context, filtered by relevance.

The result of a successful proof search is some source text that typically
reconstructs the proof within Isabelle. For ATPs, the reconstructed proof
typically relies on the general-purpose metis proof method, which integrates
the Metis ATP in Isabelle/HOL with explicit inferences going through the
kernel. Thus its results are correct by construction.

For Isabelle/jEdit users, Sledgehammer provides an automatic mode that can
be enabled via the “Auto Sledgehammer” option under “Plugins > Plugin Op-
tions > Isabelle > General.” In this mode, a reduced version of Sledgehammer
is run on every newly entered theorem for a few seconds.

To run Sledgehammer, you must make sure that the theory Sledgehammer is
imported—this is rarely a problem in practice since it is part of Main. Ex-
amples of Sledgehammer use can be found in the src/HOL/Metis_Examples
directory. Comments and bug reports concerning Sledgehammer or this man-
ual should be directed to the author at jasmin.blanchette@google.com.

2 Installation

Sledgehammer is part of Isabelle, so you do not need to install it. However,
it relies on third-party automatic provers (ATPs and SMT solvers).

Among the ATPs, agsyHOL, Alt-Ergo, E, LEO-II, Leo-III, Satallax, SPASS,
Vampire, and Zipperposition can be run locally; in addition, agsyHOL,
Alt-Ergo, E, iProver, LEO-II, Leo-III, Satallax, Vampire, Waldmeister, and
Zipperposition are available remotely via SystemOnTPTP [16]. The SMT
solvers CVC3, CV(C4, veriT, and Z3 can be run locally.

There are three main ways to install automatic provers on your machine:

e If you installed an official Isabelle package, it should already include
properly set up executables for CVC4, E, SPASS, Vampire, veriT, and
73, ready to use. To use Vampire, you must confirm that you are a

noncommercial user, as indicated by the message that is displayed when
Sledgehammer is invoked the first time.

e Alternatively, you can download the Isabelle-aware CVC3, CV(C4,
E, SPASS, Vampire, veriT, and Z3 binary packages from https:
//isabelle.in.tum.de/components/. Extract the archives, then add
a line to your $ISABELLE_HOME_USER/etc/components? file with the
absolute path to the prover. For example, if the components file does
not exist yet and you extracted SPASS to /usr/local/spass-3.8ds,
create it with the single line

/usr/local/spass-3.8ds
in it.

o If you prefer to build agsyHOL, Alt-Ergo, E, LEO-II, Leo-III, or Sa-
tallax manually, set the environment variable AGSYHOL_HOME, E_HOME,
LEO2_HOME, LEO3_HOME, or SATALLAX_HOME to the directory that con-
tains the agsyHOL, eprover (and/or eproof or eproof_ram), leo,
leo3, or satallax executable; for Alt-Ergo, set the environment vari-
able WHY3_HOME to the directory that contains the why3 executable.
Sledgehammer has been tested with agsyHOL 1.0, Alt-Ergo 0.95.2,
E 1.6 to 2.0, LEO-II 1.3.4, Leo-III 1.1, and Satallax 2.7. Since the
ATPs’ output formats are neither documented nor stable, other ver-
sions might not work well with Sledgehammer. Ideally, you should also
set E_VERSION, LEO2_VERSION, LEO3_VERSION, or SATALLAX_VERSION
to the prover’s version number (e.g., “2.7”); this might help Sledgeham-
mer invoke the prover optimally.

Similarly, if you want to install CVC3, CVC4, veriT, or Z3, set the
environment variable CVC3_SOLVER, CVC4_SOLVER, VERIT_SOLVER, or
Z3_SOLVER to the complete path of the executable, including the file
name. Sledgehammer has been tested with CVC3 2.2 and 2.4.1,
CVC(C4 1.5-prerelease, veriT 2020.10-rmx, and Z3 4.3.2. Since Z3’s out-
put format is somewhat unstable, other versions of the solver might
not work well with Sledgehammer. Ideally, also set CVC3_VERSION,
CVC4_VERSION, VERIT_VERSION, or Z3_VERSION to the solver’s version
number (e.g., “4.4.0”).

To check whether the provers are successfully installed, try out the example
in § 3. If the remote versions of any of these provers is used (identified by the

2The variable $ISABELLE_HOME_USER is set by Isabelle at startup. Its value can be
retrieved by executing isabelle getenv ISABELLE_HOME_USER on the command line.

https://isabelle.in.tum.de/components/
https://isabelle.in.tum.de/components/

prefix “remote_"), or if the local versions fail to solve the easy goal presented
there, something must be wrong with the installation.

Remote prover invocation requires Perl with the World Wide Web Library
(libwww-perl) installed. If you must use a proxy server to access the Inter-
net, set the http_proxy environment variable to the proxy, either in the envi-
ronment in which Isabelle is launched or in your $ISABELLE_HOME_USER/etc/
settings file. Here are a few examples:

http_proxy=http://proxy.example.org
http_proxy=http://proxy.example.org:3080
http_proxy=http://joeblow:pAsSwRdOproxy.example.org

3 First Steps

To illustrate Sledgehammer in context, let us start a theory file and attempt
to prove a simple lemma:

theory Scratch
imports Main

begin
lemma “[a] = [b] = a =10"
sledgehammer

Instead of issuing the sledgehammer command, you can also use the Sledge-
hammer panel in Isabelle/jEdit. Sledgehammer might produce something
like the following output after a few seconds:

Proof found. . .

“e” Try this: by simp (0.3 ms)
“cvc4”: Try this: by simp (0.4 ms)
“287 Try this: by simp (0.5 ms)
“spass”: Try this: by simp (0.3 ms)

Sledgehammer ran CVC4, E, SPASS, and Z3 in parallel. Depending on which
provers are installed and how many processor cores are available, some of the
provers might be missing or present with a remote_ prefix.

For each successful prover, Sledgehammer gives a one-line Isabelle proof.
Rough timings are shown in parentheses, indicating how fast the call is. You
can click the proof to insert it into the theory text.

In addition, you can ask Sledgehammer for an Isar text proof by enabling
the isar proofs option (§7.4):

sledgehammer [isar_proofs|

When Isar proof construction is successful, it can yield proofs that are more
readable and also faster than metis or smt one-line proofs. This feature is
experimental.

4 Hints

This section presents a few hints that should help you get the most out of
Sledgehammer. Frequently asked questions are answered in § 5.

4.1 Presimplify the goal

For best results, first simplify your problem by calling auto or at least safe
followed by simp all. The SMT solvers provide arithmetic decision proce-
dures, but the ATPs typically do not (or if they do, Sledgehammer does not
use it yet). Apart from Waldmeister, they are not particularly good at heavy
rewriting, but because they regard equations as undirected, they often prove
theorems that require the reverse orientation of a simp rule. Higher-order
problems can be tackled, but the success rate is better for first-order prob-
lems. Hence, you may get better results if you first simplify the problem to
remove higher-order features.

4.2 Familiarize yourself with the main options

Sledgehammer’s options are fully documented in §6. Many of the options
are very specialized, but serious users of the tool should at least familiarize
themselves with the following options:

e provers (§7.1) specifies the automatic provers (ATPs and SMT solvers)
that should be run whenever Sledgehammer is invoked (e.g., “provers =
cved e spass vampire”). For convenience, you can omit “provers = and
simply write the prover names as a space-separated list (e.g., “cvcs e
spass vampire”).

e maz_facts (§7.2) specifies the maximum number of facts that should
be passed to the provers. By default, the value is prover-dependent but
varies between about 50 and 1000. If the provers time out, you can try
lowering this value to, say, 25 or 50 and see if that helps.

e isar_proofs (§7.4) specifies that Isar proofs should be generated, in
addition to one-line metis or smt proofs. The length of the Isar proofs
can be controlled by setting compress (§7.4).

e timeout (§7.6) controls the provers’ time limit. It is set to 30 seconds
by default.

Options can be set globally using sledgehammer params (§6). The com-
mand also prints the list of all available options with their current value.
Fact selection can be influenced by specifying “(add: my_facts)” after the
sledgehammer call to ensure that certain facts are included, or simply
“(my_facts)” to force Sledgehammer to run only with my facts (and any
facts chained into the goal).

5 Frequently Asked Questions

This sections answers frequently (and infrequently) asked questions about
Sledgehammer. It is a good idea to skim over it now even if you do not have
any questions at this stage. And if you have any further questions not listed
here, send them to the author at jasmin.blanchette@google.com.

5.1 Which facts are passed to the automatic provers?

Sledgehammer heuristically selects a few hundred relevant lemmas from the
currently loaded libraries. The component that performs this selection is
called relevance filter (§7.2).

e The traditional relevance filter, MePo (Meng—Paulson), assigns a score
to every available fact (lemma, theorem, definition, or axiom) based
upon how many constants that fact shares with the conjecture. This
process iterates to include facts relevant to those just accepted. The
constants are weighted to give unusual ones greater significance. MePo
copes best when the conjecture contains some unusual constants; if
all the constants are common, it is unable to discriminate among the
hundreds of facts that are picked up. The filter is also memoryless: It

7

has no information about how many times a particular fact has been
used in a proof, and it cannot learn.

e An alternative to MePo is MaSh (Machine Learner for Sledgehammer).
It applies machine learning to the problem of finding relevant facts.

e The MeSh filter combines MePo and MaSh. This is the default.

The number of facts included in a problem varies from prover to prover, since
some provers get overwhelmed more easily than others. You can show the
number of facts given using the verbose option (§7.4) and the actual facts
using debug (§7.4).

Sledgehammer is good at finding short proofs combining a handful of existing
lemmas. If you are looking for longer proofs, you must typically restrict the
number of facts, by setting the maz_facts option (§7.2) to, say, 25 or 50.

You can also influence which facts are actually selected in a number of ways.
If you simply want to ensure that a fact is included, you can specify it using
the “(add: my _facts)” syntax. For example:

sledgehammer (add: hd.simps tl.simps)

The specified facts then replace the least relevant facts that would otherwise
be included; the other selected facts remain the same. If you want to direct
the selection in a particular direction, you can specify the facts via using:

using hd.simps tl.simps
sledgehammer

The facts are then more likely to be selected than otherwise, and if they are
selected at iteration j they also influence which facts are selected at iterations
j+ 1,5+ 2, etc. To give them even more weight, try

using hd.simps tl.simps

apply —
sledgehammer

5.2 Why does Metis fail to reconstruct the proof?

There are many reasons. If Metis runs seemingly forever, that is a sign that
the proof is too difficult for it. Metis’s search is complete for first-order logic
with equality, so if the proof was found by a superposition-based ATP such

as E, SPASS, or Vampire, Metis should eventually find it, but that is little
consolation.

In some rare cases, metis fails fairly quickly, and you get the error message
“One-line proof reconstruction failed.” This indicates that Sledgehammer
determined that the goal is provable, but the proof is, for technical reasons,
beyond metis’s power. You can then try again with the strict option (§7.3).

If the goal is actually unprovable and you did not specify an unsound encod-
ing using type enc (§7.3), this is a bug, and you are strongly encouraged to
report this to the author at jasmin.blanchette@google.com.

5.3 What are the full types, no types, and
mono_tags arguments to Metis?

The metis (full types) proof method and its cousin metis (mono_tags) are
fully-typed versions of Metis. It is somewhat slower than metis, but the
proof search is fully typed, and it also includes more powerful rules such as
the axiom “xz = True V z = False” for reasoning in higher-order places (e.g.,
in set comprehensions). The method is tried as a fallback when metis fails,
and it is sometimes generated by Sledgehammer instead of metus if the proof
obviously requires type information or if metis failed when Sledgehammer
preplayed the proof. At the other end of the soundness spectrum, metis
(no_types) uses no type information at all during the proof search, which
is more efficient but often fails. Calls to metis (no_types) are occasionally
generated by Sledgehammer. See the type enc option (§7.3) for details.

Incidentally, if you ever see warnings such as
Metis: Falling back on “metis (full types)”

for a successful metis proof, you can advantageously pass the full types op-
tion to metis directly.

5.4 And what are the lifting and hide_lams
arguments to Metis?

Orthogonally to the encoding of types, it is important to choose an appropri-
ate translation of A\-abstractions. Metis supports three translation schemes,
in decreasing order of power: Curry combinators (the default), A-lifting, and

a “hiding” scheme that disables all reasoning under A-abstractions. The more
powerful schemes also give the automatic provers more rope to hang them-
selves. See the lam_ trans option (§7.3) for details.

5.5 Are the generated proofs minimal?

Automatic provers frequently use many more facts than are necessary. Sledge-
hammer includes a proof minimization tool that takes a set of facts returned
by a given prover and repeatedly calls a prover or proof method with subsets
of those facts to find a minimal set. Reducing the number of facts typically
helps reconstruction, while decluttering the proof scripts.

5.6 A strange error occurred—uwhat should I do?

Sledgehammer tries to give informative error messages. Please report any
strange error to the author at jasmin.blanchette@google.com.

5.7 Auto can solve it—why not Sledgehammer?

Problems can be easy for auto and difficult for automatic provers, but the
reverse is also true, so do not be discouraged if your first attempts fail.
Because the system refers to all theorems known to Isabelle, it is particularly
suitable when your goal has a short proof but requires lemmas that you do
not know about.

5.8 Why are there so many options?

Sledgehammer’s philosophy is that it should work out of the box, without user
guidance. Most of the options are meant to be used by the Sledgehammer
developers for experiments.

10

6 Command Syntax

6.1 Sledgehammer

Sledgehammer can be invoked at any point when there is an open goal by
entering the sledgehammer command in the theory file. Its general syntax
is as follows:

? ? ? ?

sledgehammer (subcommand)® {options)® (facts override)’ (num)

In the general syntax, the (subcommand) may be any of the following:

e run (the default): Runs Sledgehammer on subgoal number (num)
(1 by default), with the given options and facts.

e supported provers: Prints the list of automatic provers supported
by Sledgehammer. See §2 and §7.1 for more information on how to
install automatic provers.

o refresh tptp: Refreshes the list of remote ATPs available at System-
OnTPTP [16].

In addition, the following subcommands provide finer control over machine
learning with MaSh:

e unlearn: Resets MaSh, erasing any persistent state.

e learn_isar: Invokes MaSh on the current theory to process all the
available facts, learning from their Isabelle/Isar proofs. This happens
automatically at Sledgehammer invocations if the learn option (§7.2)
is enabled.

e learn_prover: Invokes MaSh on the current theory to process all the
available facts, learning from proofs generated by automatic provers.
The prover to use and its timeout can be set using the prover (§7.1)
and timeout (§7.6) options. It is recommended to perform learning
using a first-order ATP (such as E, SPASS, and Vampire) as opposed
to a higher-order ATP or an SMT solver.

e relearn isar: Same as unlearn followed by learn_isar.

e relearn_prover: Same as unlearn followed by learn_ prover.

Sledgehammer’s behavior can be influenced by various (options), which can
be specified in brackets after the sledgehammer command. The (options)

11

are a list of key—value pairs of the form “|k; = vy, ..., k, = v,]”. For Boolean
options, “= true” is optional. For example:

sledgehammer [isar_proofs, timeout = 120]
Default values can be set using sledgehammer params:
sledgehammer params (options)
The supported options are described in §7.

The (facts _override) argument lets you alter the set of facts that go through
the relevance filter. It may be of the form “({facts))”, where (facts) is a space-
separated list of Isabelle facts (theorems, local assumptions, etc.), in which
case the relevance filter is bypassed and the given facts are used. It may
also be of the form “(add: (facts,))”, “(del: (factss))”, or “(add: (facts;) del:
(factsy))”, where the relevance filter is instructed to proceed as usual except
that it should consider (facts;) highly-relevant and (factsy) fully irrelevant.

If you use Isabelle/jEdit, Sledgehammer also provides an automatic mode
that can be enabled via the “Auto Sledgehammer” option under “Plugins >
Plugin Options > Isabelle > General.” For automatic runs, only the first
prover set using provers (§7.1) is considered (typically E), slice (§7.1) is
disabled, fewer facts are passed to the prover, fact filter (§7.2) is set to
mepo, strict (§7.3) is enabled, verbose (§7.4) and debug (§7.4) are disabled,
and timeout (§7.6) is superseded by the “Auto Time Limit” option in jEdit.
Sledgehammer’s output is also more concise.

6.2 Metis

The metis proof method has the syntax
metis ({options))’ (facts)’

where (facts) is a list of arbitrary facts and (options) is a comma-separated
list consisting of at most one A translation scheme specification with the same
semantics as Sledgehammer’s lam_ trans option (§ 7.3) and at most one type
encoding specification with the same semantics as Sledgehammer’s type enc
option (§7.3). The supported A translation schemes are hide lams, lifting,
and combs (the default). All the untyped type encodings listed in §7.3 are
supported. For convenience, the following aliases are provided:

o full types: Alias for poly_guards_query.

12

e partial types: Alias for poly args.

e no_types: Alias for erased.

7 Option Reference

Sledgehammer’s options are categorized as follows: mode of operation (§7.1),
problem encoding (§ 7.3), relevance filter (§ 7.2), output format (§7.4), regres-
sion testing (§7.5), and timeouts (§7.6).

The descriptions below refer to the following syntactic quantities:
e (string): A string.

e (bool): true or false.

int): An integer.

{
{
e (smart_bool): true, false, or smart.
(in
{

float): A floating-point number (e.g., 2.5 or 60) expressing a number
of seconds.

e (float pair): A pair of floating-point numbers (e.g., 0.6 0.95).
e (smart_int): An integer or smart.
Default values are indicated in curly brackets ({}). Boolean options have

a negative counterpart (e.g., minimize vs. dont_minimize). When setting
Boolean options or their negative counterparts, “= true” may be omitted.

7.1 Mode of Operation

[provers =| (string)

Specifies the automatic provers to use as a space-separated list (e.g.,
“cucq e spass vampire”). Provers can be run locally or remotely; see
§ 2 for installation instructions.

The following local provers are supported:

e agsyhol: agsyHOL is an automatic higher-order prover developed
by Fredrik Lindblad [12|. To use agsyHOL, set the environment
variable AGSYHOL_HOME to the directory that contains the agsyHOL
executable. Sledgehammer has been tested with version 1.0.

13

alt ergo: Alt-Ergo is a polymorphic ATP developed by Bobot et
al. [4]. It supports the TPTP polymorphic typed first-order format
(TF1) via Why3 [5]. To use Alt-Ergo, set the environment variable
WHY3_HOME to the directory that contains the why3 executable.
Sledgehammer requires Alt-Ergo 0.95.2 and Why3 0.83.

cved: CVC3is an SMT solver developed by Clark Barrett, Cesare
Tinelli, and their colleagues [2]. To use CVC3, set the environment
variable CVC3_SOLVER to the complete path of the executable,
including the file name, or install the prebuilt CVC3 package
from https://isabelle.in.tum.de/components/. Sledgeham-
mer has been tested with versions 2.2 and 2.4.1.

cve4: CVC4 [1] is the successor to CVC3. To use CVC4,
set the environment variable CVC4_SOLVER to the complete
path of the executable, including the file name, or install the
prebuilt CVC4 package from https://isabelle.in.tum.de/
components/. Sledgehammer has been tested with version 1.5-
prerelease.

e: E is a first-order resolution prover developed by Stephan Schulz
[14]. To use E, set the environment variable E_HOME to the di-
rectory that contains the eproof executable and E_VERSION to
the version number (e.g., “1.8”), or install the prebuilt E package
from https://isabelle.in.tum.de/components/. Sledgeham-
mer has been tested with versions 1.6 to 1.8.

iprover: iProver is a pure instantiation-based prover developed
by Konstantin Korovin [11|. To use iProver, set the environ-
ment variable IPROVER_HOME to the directory that contains the
iproveropt executable. Sledgehammer has been tested with ver-
sion 2.8. iProver depends on E to clausify problems, so make sure
that E is installed as well.

leo2: LEO-II is an automatic higher-order prover developed by
Christoph Benzmiiller et al. 3|, with support for the TPTP typed
higher-order syntax (THO). To use LEO-II, set the environment
variable LEO2_HOME to the directory that contains the leo exe-
cutable. Sledgehammer has been tested with version 1.3.4.

leo3: Leo-IlII is an automatic higher-order prover developed by
Alexander Steen, Max Wisniewski, Christoph Benzmiiller et al.
[15], with support for the TPTP typed higher-order syntax (THO).
To use Leo-III, set the environment variable LEO3_HOME to the

14

https://isabelle.in.tum.de/components/
https://isabelle.in.tum.de/components/
https://isabelle.in.tum.de/components/
https://isabelle.in.tum.de/components/

directory that contains the leo3 executable. Sledgehammer has
been tested with version 1.1.

satallax: Satallax is an automatic higher-order prover developed
by Chad Brown et al. |7], with support for the TPTP typed higher-
order syntax (THO). To use Satallax, set the environment variable
SATALLAX_HOME to the directory that contains the satallax exe-
cutable. Sledgehammer has been tested with version 2.2.

spass: SPASS is a first-order resolution prover developed by
Christoph Weidenbach et al. [17]. To use SPASS, set the en-
vironment variable SPASS_HOME to the directory that contains
the SPASS executable and SPASS_VERSION to the version number
(e.g., “3.8ds”), or install the prebuilt SPASS package from https:
//isabelle.in.tum.de/components/. Sledgehammer has been
tested with version 3.8ds.

vampire: Vampire is a first-order resolution prover developed by
Andrei Voronkov and his colleagues [13]. To use Vampire, set the
environment variable VAMPIRE_HOME to the directory that contains
the vampire executable and VAMPIRE_VERSION to the version num-
ber (e.g., “4.2.2”). Sledgehammer has been tested with versions 1.8
to 4.2.2 (in the post-2010 numbering scheme).

verit: veriT [6] is an SMT solver developed by David Déharbe,
Pascal Fontaine, and their colleagues. It is designed to produce
detailed proofs for reconstruction in proof assistants. To use veriT,
set the environment variable VERIT_SOLVER to the complete path
of the executable, including the file name. Sledgehammer has been
tested with version 2020.10-rmx.

z3: 73 is an SMT solver developed at Microsoft Research [9]. To
use 73, set the environment variable Z3_SOLVER to the complete
path of the executable, including the file name. Sledgehammer
has been tested with a pre-release version of 4.4.0.

z3 tptp: This version of Z3 pretends to be an ATP, exploiting
Z3’s support for the TPTP typed first-order format (TFO0). It
is included for experimental purposes. Sledgehammer has been
tested with version 4.3.1. To use it, set the environment vari-
able Z3_TPTP_HOME to the directory that contains the z3_tptp
executable.

zipperposition: Zipperposition [8| is a higher-order superposi-
tion prover developed by Simon Cruanes, Petar Vukmirovié¢, and

15

https://isabelle.in.tum.de/components/
https://isabelle.in.tum.de/components/

colleagues. To use Zipperposition, set the environment vari-
able ZIPPERPOSITION_HOME to the directory that contains the
zipperposition executable and ZIPPERPOSITION_VERSION to the
version number (e.g., “2.0.1”). Sledgehammer has been tested with
version 2.0.1.

Moreover, the following remote provers are supported:

e remote_ agsyhol: The remote version of agsyHOL runs on Geoff
Sutcliffe’s Miami servers [16].

e remote_ alt ergo: The remote version of Alt-Ergo runs on Geoff
Sutcliffe’s Miami servers [16].

e remote_e: The remote version of E runs on Geoff Sutcliffe’s
Miami servers [16].

e remote iprover: The remote version of iProver runs on Geoff
Sutcliffe’s Miami servers [16].

e remote_leo2: The remote version of LEO-II runs on Geoff Sut-
cliffe’s Miami servers [16].

e remote_leo3: The remote version of Leo-IIT runs on Geoff Sut-
cliffe’s Miami servers [16].

e remote_vampire: The remote version of Vampire runs on Geoff
Sutcliffe’s Miami servers.

e remote_waldmeister: Waldmeister is a unit equality prover
developed by Hillenbrand et al. [10]. It can be used to prove uni-
versally quantified equations using unconditional equations, cor-
responding to the TPTP CNF UEQ division. The remote version
of Waldmeister runs on Geoff Sutcliffe’s Miami servers.

e remote_ zipperposition: The remote version of Zipperposition
runs on Geoff Sutcliffe’s Miami servers.

By default, Sledgehammer runs a subset of CVC4, E, SPASS, Vampire,
veriT, and Z3 in parallel, either locally or remotely—depending on the
number of processor cores available and on which provers are actually
installed. It is generally desirable to run several provers in parallel.

prover = (string)

Alias for provers.

slice [= (bool)] {true} (neg.: dont_slice)

Specifies whether the time allocated to a prover should be sliced into

16

several segments, each of which has its own set of possibly prover-
dependent options. For SPASS and Vampire, the first slice tries the
fast but incomplete set-of-support (SOS) strategy, whereas the second
slice runs without it. For E, up to three slices are tried, with different
weighted search strategies and number of facts. For SMT solvers, sev-
eral slices are tried with the same options each time but fewer and fewer
facts. According to benchmarks with a timeout of 30 seconds, slicing
is a valuable optimization, and you should probably leave it enabled
unless you are conducting experiments.

See also verbose (§7.4).

minimize [= (bool)] {true} (neg.: dont minimize)
Specifies whether the proof minimization tool should be invoked auto-
matically after proof search.

See also preplay timeout (§7.6) and dont_preplay (§7.6).

spy |= (bool)] {false} (neg.: dont_ spy)
Specifies whether Sledgehammer should record statistics in $ISABELLE _
HOME_USER/spy_sledgehammer. These statistics can be useful to the
developers of Sledgehammer. If you are willing to have your interactions
recorded in the name of science, please enable this feature and send
the statistics file every now and then to the author of this manual
(jasmin.blanchette@google.com). To change the default value of
this option globally, set the environment variable SLEDGEHAMMER_SPY
to yes.

See also debug (§7.4).

overlord [= (bool)] {false} (neg.: no_overlord)

Specifies whether Sledgehammer should put its temporary files in $ISA-
BELLE_HOME_USER, which is useful for debugging Sledgehammer but
also unsafe if several instances of the tool are run simultaneously. The
files are identified by the prefixes prob_ and mash_; you may safely
remove them after Sledgehammer has run.

Warning: This option is not thread-safe. Use at your own risks.

See also debug (§7.4).

17

7.2 Relevance Filter

fact_filter = (string) {smart}
Specifies the relevance filter to use. The following filters are available:
e mepo: The traditional memoryless MePo relevance filter.
e mash: The MaSh machine learner. Three learning algorithms are
provided:
e nb is an implementation of naive Bayes.
e knn is an implementation of k-nearest neighbors.

e nb_knn (also called yes and sml) is a combination of naive
Bayes and k-nearest neighbors.

In addition, the special value none is used to disable machine
learning by default (cf. smart below).

The default algorithm is nb_knn. The algorithm can be selected
by setting the “MaSh” option under “Plugins > Plugin Options
> Isabelle > General” in Isabelle/jEdit. Persistent data for both
algorithms is stored in the directory $ISABELLE_HOME_USER/mash.

e mesh: The MeSh filter, which combines the rankings from MePo
and MaSh.

e smart: A combination of MePo, MaSh, and MeSh. If the learning
algorithm is set to be none, smart behaves like MePo.

mazx_facts = (smart_int) {smart}

Specifies the maximum number of facts that may be returned by the
relevance filter. If the option is set to smart (the default), it effectively
takes a value that was empirically found to be appropriate for the
prover. Typical values lie between 50 and 1000.

fact thresholds = (float pair) {0.45 0.85}

Specifies the thresholds above which facts are considered relevant by
the relevance filter. The first threshold is used for the first iteration of
the relevance filter and the second threshold is used for the last iteration
(if it is reached). The effective threshold is quadratically interpolated
for the other iterations. Each threshold ranges from 0 to 1, where 0
means that all theorems are relevant and 1 only theorems that refer to
previously seen constants.

learn [= (bool)] {true} (neg.: dont_learn)

Specifies whether Sledgehammer invocations should run MaSh to learn

18

the available theories (and hence provide more accurate results). Learn-
ing takes place only if MaSh is enabled.

maxr_new mono_instances = (int) {smart}

Specifies the maximum number of monomorphic instances to generate
beyond max_facts. The higher this limit is, the more monomorphic
instances are potentially generated. Whether monomorphization takes
place depends on the type encoding used. If the option is set to smart
(the default), it takes a value that was empirically found to be appro-
priate for the prover. For most provers, this value is 100.

See also type enc (§7.3).

max_mono_iters = (int) {smart}

Specifies the maximum number of iterations for the monomorphization
fixpoint construction. The higher this limit is, the more monomor-
phic instances are potentially generated. Whether monomorphization
takes place depends on the type encoding used. If the option is set to
smart (the default), it takes a value that was empirically found to be
appropriate for the prover. For most provers, this value is 3.

See also type enc (§7.3).

7.3 Problem Encoding

lam_trans = (string) {smart}

Specifies the A translation scheme to use in ATP problems. The sup-
ported translation schemes are listed below:

e hide lams: Hide the A-abstractions by replacing them by un-
specified fresh constants, effectively disabling all reasoning under
A-abstractions.

e lifting: Introduce a new supercombinator c for each cluster of
n A-abstractions, defined using an equation ¢ z; ... z, = t (A
lifting).

e combs: Rewrite lambdas to the Curry combinators (I, K, S, B, C).
Combinators enable the ATPs to synthesize A\-terms but tend to
yield bulkier formulas than A-lifting: The translation is quadratic
in the worst case, and the equational definitions of the combinators
are very prolific in the context of resolution.

19

combs and_lifting: Introduce a new supercombinator c for
each cluster of A-abstractions and characterize it both using a
lifted equation ¢ z; ... z, =t and via Curry combinators.

combs _or_lifting: For each cluster of A\-abstractions, heuristi-
cally choose between A-lifting and Curry combinators.

keep lams: Keep the A-abstractions in the generated problems.
This is available only with provers that support the THO syntax.

smart: The actual translation scheme used depends on the ATP
and should be the most efficient scheme for that ATP.

For SMT solvers, the A translation scheme is always lifting, irrespective
of the value of this option.

uncurried_ aliases = (smart_bool)] {smart}

(neg.: no_wuncurried aliases)

Specifies whether fresh function symbols should be generated as aliases
for applications of curried functions in ATP problems.

type enc = (string) {smart}

Specifies the type encoding to use in ATP problems. Some of the type
encodings are unsound, meaning that they can give rise to spurious
proofs (unreconstructible using metis). The type encodings are listed
below, with an indication of their soundness in parentheses. An asterisk
(*) indicates that the encoding is slightly incomplete for reconstruction
with metis, unless the strict option (described below) is enabled.

erased (unsound): No type information is supplied to the ATP,
not even to resolve overloading. Types are simply erased.

poly guards (sound): Types are encoded using a predicate
g(7, t) that guards bound variables. Constants are annotated with
their types, supplied as extra arguments, to resolve overloading.

poly tags (sound): Each term and subterm is tagged with its
type using a function t(7,t).

poly args (unsound): Like for poly guards constants are an-
notated with their types to resolve overloading, but otherwise no
type information is encoded. This is the default encoding used by
the metis proof method.

raw_mono_guards, raw _mono_ tags (sound);
raw_mono_args (unsound):
Similar to poly guards, poly tags, and poly args, respectively,

20

but the problem is additionally monomorphized, meaning that
type variables are instantiated with heuristically chosen ground
types. Monomorphization can simplify reasoning but also leads
to larger fact bases, which can slow down the ATPs.

mono__guards, mono_tags (sound); mono_ args
(unsound):

Similar to raw_mono_guards, raw_mono_ tags, and raw_mono_
args, respectively but types are mangled in constant names instead
of being supplied as ground term arguments. The binary predicate
g(7, t) becomes a unary predicate g _7(%), and the binary function
t(7, t) becomes a unary function t 7(t).

mono_native (sound): Exploits native first-order types if the
prover supports the TF0, TF1, THO, or THI1 syntax; otherwise,
falls back on mono_ guards. The problem is monomorphized.

mono_native_fool (sound): Exploits native first-order types,
including Booleans, if the prover supports the TFX0, TFX1, THO,
or TH1 syntax; otherwise, falls back on mono_native. The prob-
lem is monomorphized.

mono_natiwe_higher, mono_mnative_higher_fool
(sound): Exploits native higher-order types, including Booleans
if ending with “_fool”, if the prover supports the THO syntax;
otherwise, falls back on mono_native or mono_native fool. The
problem is monomorphized.

poly mnative, poly native fool, poly mnative higher,
poly native higher fool (sound): Exploits native first-order
polymorphic types if the prover supports the TF1, TFX1, or TH1
syntax; otherwise, falls back on mono_native, mono_native_ fool,
mono_native_higher, or mono_ native_higher _fool.

poly guards?, poly tags?, raw mono guards?,
raw_mono_tags?, mono guards?, mono_tags?,
mono_native? (sound*):

The type encodings poly guards, poly tags, raw mono guards,
raw_mono_tags, mono_ guards, mono_tags, and mono_ native are
fully typed and sound. For each of these, Sledgehammer also pro-
vides a lighter variant identified by a question mark (‘?’) that
detects and erases monotonic types, notably infinite types. (For
mono_ native, the types are not actually erased but rather re-
placed by a shared uniform type of individuals.) As argument

21

to the metis proof method, the question mark is replaced by a
“ query” suffix.

e poly guards??, poly tags??, raw mono guards??,
raw_mono_tags??, mono_guards??, mono_ tags??
(sound*):

Even lighter versions of the ‘7’ encodings. As argument to the
metis proof method, the ‘77" suffix is replaced by “_ query query”.

e poly guards@, poly tags@, raw mono_ guards@,
raw_mono_tags@ (sound*):
Alternative versions of the ‘7?7’ encodings. As argument to the
metis proof method, the ‘@’ suffix is replaced by “ at”.

e poly args?, raw_mono_args? (unsound):
Lighter versions of poly args and raw_mono_ args.

e smart: The actual encoding used depends on the ATP and should
be the most efficient sound encoding for that ATP.

For SMT solvers, the type encoding is always mono_ native, irrespective
of the value of this option.

See also max_new mono_instances (§7.2) and max_mono_iters (§7.2).

strict [= (bool)] {false} (neg.: non_ strict)

Specifies whether Sledgehammer should run in its strict mode. In that
mode, sound type encodings marked with an asterisk (*) above are
made complete for reconstruction with metis, at the cost of some clutter
in the generated problems. This option has no effect if type enc is
deliberately set to an unsound encoding.

7.4 Output Format

verbose [= (bool)] {false} (neg.: quiet)
Specifies whether the sledgehammer command should explain what
it does.

debug [= (bool)| {false} (neg.: no_ debug)

Specifies whether Sledgehammer should display additional debugging
information beyond what verbose already displays. Enabling debug also
enables verbose behind the scenes.

See also spy (§7.1) and overlord (§7.1).

22

isar_proofs [= (smart_bool)| {smart} (neg.: no_isar_ proofs)

Specifies whether Isar proofs should be output in addition to one-line
proofs. The construction of Isar proof is still experimental and may
sometimes fail; however, when they succeed they are usually faster and
more intelligible than one-line proofs. If the option is set to smart (the
default), Isar proofs are only generated when no working one-line proof
is available.

compress = (int) {smart}

Specifies the granularity of the generated Isar proofs if isar_proofs is
explicitly enabled. A value of n indicates that each Isar proof step
should correspond to a group of up to n consecutive proof steps in the
ATP proof. If the option is set to smart (the default), the compression
factor is 10 if the isar proofs option is explicitly enabled; otherwise, it
is oo.

dont _compress [: true]
Alias for “compress = 17.

try0 [= (bool)| {true} (neg.: dont_try0)

Specifies whether standard proof methods such as auto and blast should
be tried as alternatives to metis in Isar proofs. The collection of meth-
ods is roughly the same as for the try0 command.

smt_proofs [= (bool)] {true} (neg.: no_smt_proofs)

Specifies whether the smt proof method should be tried in addition to
Isabelle’s built-in proof methods.

7.5 Regression Testing

expect = (string)

Specifies the expected outcome, which must be one of the following:

some: Sledgehammer found a proof.

none: Sledgehammer found no proof.

timeout: Sledgehammer timed out.

o unknown: Sledgehammer encountered some problem.

23

Sledgehammer emits an error if the actual outcome differs from the
expected outcome. This option is useful for regression testing.

See also timeout (§7.6).

7.6 Timeouts

timeout = (float) {30}

Specifies the maximum number of seconds that the automatic provers
should spend searching for a proof. This excludes problem preparation
and is a soft limit.

preplay timeout = (float) {1}

Specifies the maximum number of seconds that metis or other proof
methods should spend trying to “preplay” the found proof. If this
option is set to 0, no preplaying takes place, and no timing information
is displayed next to the suggested proof method calls.

See also minimize (§7.1).

dont_preplay [= true]
Alias for “preplay_timeout = 07.

8 Mirabelle Testing Tool

The isabelle mirabelle tool executes Sledgehammer or other advisory
tools (e.g., Nitpick) or tactics (e.g., auto) on all subgoals emering in a the-
ory. It is typically used to measure the success rate of a proof tool on some
benchmark. Its command-line usage is as follows:

isabelle mirabelle [OPTIONS] ACTIONS FILES

Options are:

-L LOGIC parent logic to use (default HOL)

-0 DIR output directory for test data (default None)
-S FILE user-provided setup file (no actions required)
-T THEORY parent theory to use (default Main)

-d DIR include session directory

-q be quiet (suppress output of Isabelle process)

24

-t TIMEOUT timeout for each action in seconds (default 30)

Apply the given actions at all proof steps in the given theory
files.

Option -L LOGIC specifies the parent session to use. This is often a logic
(e.g., Pure, HOL) but may be any session (e.g., from the AFP). Using multiple
sessions is not supported. If a theory A needs to import theories from multiple
sessions, this limitation can be overcome as follows:

1. Define a custom session S with a single theory B.
2. Move all imports from A to B.

3. Build the heap image of S.

4. Import S.B from theory A.

5. Execute Mirabelle with C as parent logic (i.e., with -L S).

Option -0 DIR specifies the output directory, which is created if needed.
In this directory, one log file per theory records the position of each tested
subgoal and the result of executing the action.

Option -t TIMEOUT specifies a generic timeout that the actions may interpret
differently.

More specific documentation about the ACTIONS and FILES parameters and
their corresponding options can be found in the Isabelle tool usage by entering
isabelle mirabelle -7 on the command line.

8.1 Example of Benchmarking Sledgehammer

isabelle mirabelle -0 output/ \
sledgehammer [prover=e,prover_timeout=10] Huffman.thy

This command specifies Sledgehammer as the action, using the E prover with
a timeout of 10 seconds. The results are written to output/Huffman.log.

25

8.2 Example of Benchmarking Another Tool

isabelle mirabelle -0 output/ -t 10 tryO Huffman.thy

This command specifies the try0 command as the action, with a timeout of
10 seconds. The results are written to output/Huffman.log.

8.3 Example of Generating TPTP Files

isabelle mirabelle -0 output/ \
sledgehammer [prover=e,prover_timeout=1,keep=/tptp/files/] \
Huffman.thy

This command generates TPTP files using Sledgehammer. Since the file is
generated at the very beginning of every Sledgehammer invocation, a timeout
of one second making the prover fail faster speeds up processing the theory.
The results are written in the specified directory (/tptp/files/), which
must exist beforehand. A TPTP file is generated for each subgoal.

References

[1] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic,
T. King, A. Reynolds, and C. Tinelli. CVC4. In G. Gopalakrishnan
and S. Qadeer, editors, CAV 2011, volume 6806 of Lecture Notes in
Computer Science, pages 171-177. Springer, 2011.

[2] C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Hermanns,
editors, CAV, volume 4590 of Lecture Notes in Computer Science, pages
298-302. Springer, 2007.

[3] C. Benzmiiller, L. C. Paulson, F. Theiss, and A. Fietzke. LEO-IT—a
cooperative automatic theorem prover for higher-order logic. In A. Ar-
mando, P. Baumgartner, and G. Dowek, editors, Automated Reasoning:
IJCAR 2008, volume 5195 of Lecture Notes in Computer Science, pages
162-170. Springer-Verlag, 2008.

[4] F. Bobot, S. Conchon, E. Contejean, and S. Lescuyer. Implementing
polymorphism in SMT solvers. In C. Barrett and L. de Moura, editors,
SMT ’08, ICPS, pages 1-5. ACM, 2008.

26

[5]

6]

17l

8]

19]

[10]

[11]

12|

[13]

[14]

F. Bobot, J.-C. Filliatre, C. Marché, and A. Paskevich. Why3: Shepherd
your herd of provers. In K. R. M. Leino and M. Moskal, editors, Boogie
2011, pages 5364, 2011.

T. Bouton, D. C. B. de Oliveira, D. Déharbe, and P. Fontaine. veriT:
An open, trustable and efficient SMT-solver. In R. A. Schmidt, editor,
Automated Deduction — CADE-22, volume 5663 of Lecture Notes in
Computer Science, pages 151-156. Springer, 2009.

C. E. Brown. Reducing higher-order theorem proving to a sequence of
SAT problems. In N. Bjgrner and V. Sofronie-Stokkermans, editors,
Automated Deduction — CADE-23, volume 6803 of Lecture Notes in
Computer Science, pages 147-161. Springer-Verlag, 2011.

S. Cruanes. Logtk: A Logic ToolKit for automated reasoning, and its
implementation. In 4th Workshop on Practical Aspects of Automated
Reasoning, PAARQIJCAR 2014, Vienna, Austria, 2014, 2014. Presented
at the Practical Aspects of Automated Reasoning (PAAR) workshop.

L. de Moura and N. Bjgrner. Z3: An efficient SMT solver. In C. R.
Ramakrishnan and J. Rehof, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems — TACAS 2008, volume 4963 of
Lecture Notes in Computer Science, pages 337-340. Springer, 2008.

T. Hillenbrand, A. Buch, R. Vogt, and B. Léchner. Waldmeister: High-
performance equational deduction. Journal of Automated Reasoning,
18(2):265-270, 1997.

K. Korovin. Instantiation-based automated reasoning: From theory to
practice. In R. A. Schmidt, editor, Automated Deduction — CADE-22,
volume 5663 of LNAI pages 163-166. Springer, 2009.

F. Lindblad. A focused sequent calculus for higher-order logic. In
S. Demri, D. Kapur, and C. Weidenbach, editors, Automated Reason-
ing — IJCAR 2014, volume 8562 of Lecture Notes in Computer Science,
pages 61-75. Springer, 2014.

A. Riazanov and A. Voronkov. The design and implementation of Vam-
pire. Journal of AI Communications, 15(2/3):91-110, 2002.

S. Schulz, S. Cruanes, and P. Vukmirovi¢. Faster, higher, stronger: E
2.3. In P. Fontaine, editor, Automated Deduction — CADE-27, volume
11716 of Lecture Notes in Computer Science, pages 495-507. Springer,
2019.

27

[15]

[16]

17|

A. Steen, M. Wisniewski, and C. Benzmiiller. Agent-based HOL rea-
soning. In G.-M. Greuel, T. Koch, P. Paule, and A. Sommese, edi-
tors, Mathematical Software — ICMS 2016, volume 9725 of LNCS, pages
75-81. Springer, 2016.

G. Sutcliffe. System description: SystemOnTPTP. In D. McAllester,
editor, Automated Deduction — CADE-17 International Conference,
volume 1831 of Lecture Notes in Artificial Intelligence, pages 406—410.
Springer-Verlag, 2000.

C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and P. Wis-
chnewski. SPASS version 3.5. In R. A. Schmidt, editor, Automated
Deduction - CADE-22, 22nd International Conference on Automated
Deduction, Montreal, Canada, August 2-7, 2009. Proceedings, volume
5663 of Lecture Notes in Computer Science, pages 140-145. Springer,
20009.

28

	Introduction
	Installation
	First Steps
	Hints
	Presimplify the goal
	Familiarize yourself with the main options

	Frequently Asked Questions
	Which facts are passed to the automatic provers?
	Why does Metis fail to reconstruct the proof?
	What are the full_types, no_types, and mono_tags arguments to Metis?
	And what are the lifting and hide_lams arguments to Metis?
	Are the generated proofs minimal?
	A strange error occurred—what should I do?
	Auto can solve it—why not Sledgehammer?
	Why are there so many options?

	Command Syntax
	Sledgehammer
	Metis

	Option Reference
	Mode of Operation
	Relevance Filter
	Problem Encoding
	Output Format
	Regression Testing
	Timeouts

	Mirabelle Testing Tool
	Example of Benchmarking Sledgehammer
	Example of Benchmarking Another Tool
	Example of Generating TPTP Files

