
λ
→

∀
=Is

ab
el
le

β

α

jEdit

Isabelle/jEdit

Makarius Wenzel

17 February 2016

Abstract

Isabelle/jEdit is a fully-featured Prover IDE, based on Isabelle/Scala and the
jEdit text editor. This document provides an overview of general principles
and its main IDE functionality.

i

Isabelle’s user interface is no advance over LCF’s, which is widely
condemned as “user-unfriendly”: hard to use, bewildering to begin-
ners. Hence the interest in proof editors, where a proof can be con-
structed and modified rule-by-rule using windows, mouse, and menus.
But Edinburgh LCF was invented because real proofs require millions
of inferences. Sophisticated tools — rules, tactics and tacticals, the
language ML, the logics themselves — are hard to learn, yet they are
essential. We may demand a mouse, but we need better education and
training.

Lawrence C. Paulson, “Isabelle: The Next 700 Theorem Provers”

Acknowledgements

Research and implementation of concepts around PIDE and Isabelle/jEdit
has started in 2008 and was kindly supported by:

• TU München http://www.in.tum.de

• BMBF http://www.bmbf.de

• Université Paris-Sud http://www.u-psud.fr

• Digiteo http://www.digiteo.fr

• ANR http://www.agence-nationale-recherche.fr

http://www.in.tum.de
http://www.bmbf.de
http://www.u-psud.fr
http://www.digiteo.fr
http://www.agence-nationale-recherche.fr

Contents

1 Introduction 1
1.1 Concepts and terminology . 1
1.2 The Isabelle/jEdit Prover IDE 2

1.2.1 Documentation . 3
1.2.2 Plugins . 4
1.2.3 Options . 4
1.2.4 Keymaps . 5

1.3 Command-line invocation . 5
1.4 GUI rendering . 7

1.4.1 Look-and-feel . 7
1.4.2 Displays with very high resolution 8

2 Augmented jEdit functionality 10
2.1 Dockable windows . 10
2.2 Isabelle symbols . 11
2.3 Scala console . 14
2.4 File-system access . 15
2.5 SideKick parsers . 16

3 Prover IDE functionality 17
3.1 Document model . 17

3.1.1 Editor buffers and document nodes 17
3.1.2 Theories . 18
3.1.3 Auxiliary files . 19

3.2 Output . 20
3.3 Proof state . 23
3.4 Query . 24

3.4.1 Find theorems . 25
3.4.2 Find constants . 26

ii

CONTENTS iii

3.4.3 Print context . 26
3.5 Tooltips and hyperlinks . 27
3.6 Completion . 28

3.6.1 Varieties of completion 29
3.6.2 Semantic completion context 32
3.6.3 Input events . 32
3.6.4 Completion popup . 33
3.6.5 Insertion . 34
3.6.6 Options . 35

3.7 Automatically tried tools . 36
3.8 Sledgehammer . 38

4 Isabelle document preparation 40
4.1 Document outline . 40
4.2 Markdown structure . 41
4.3 Citations and BibTEX entries 41

5 ML debugging within the Prover IDE 44

6 Miscellaneous tools 47
6.1 Timing . 47
6.2 Low-level output . 48

7 Known problems and workarounds 49

Bibliography 51

Index 53

List of Figures

1.1 The Isabelle/jEdit Prover IDE 2
1.2 Metal look-and-feel with custom fonts for very high resolution 9

2.1 The Isabelle NEWS file with SideKick tree view 16

3.1 Theories panel with an overview of the document-model, and
jEdit text areas as editable views on some of the document
nodes . 18

3.2 Multiple views on prover output: gutter with icon, text area
with popup, text overview column, Theories panel, Output panel 21

3.3 Proof state display within the regular output panel 22
3.4 Separate proof state display (right) and other output (bottom). 23
3.5 An instance of the Query panel: find theorems 25
3.6 Tooltip and hyperlink for some formal entity 27
3.7 Nested tooltips over formal entities 28
3.8 Result of automatically tried tools 37
3.9 An instance of the Sledgehammer panel 39

4.1 Isabelle document outline via SideKick tree view 40
4.2 Markdown structure within document text 41
4.3 Semantic completion of citations from open BibTEX files . . . 42
4.4 BibTEX mode with context menu and SideKick tree view . . . 43

5.1 ML debugger session . 45

iv

Chapter 1

Introduction

1.1 Concepts and terminology
Isabelle/jEdit is a Prover IDE that integrates parallel proof checking [6, 11]
with asynchronous user interaction [7, 10, 12, 13], based on a document-
oriented approach to continuous proof processing [8, 9]. Many concepts and
system components are fit together in order to make this work. The main
building blocks are as follows.

Isabelle/ML is the implementation and extension language of Isabelle, see
also [4]. It is integrated into the logical context of Isabelle/Isar and
allows to manipulate logical entities directly. Arbitrary add-on tools
may be implemented for object-logics such as Isabelle/HOL.

Isabelle/Scala is the system programming language of Isabelle. It extends
the pure logical environment of Isabelle/ML towards the outer world
of graphical user interfaces, text editors, IDE frameworks, web services
etc. Special infrastructure allows to transfer algebraic datatypes and
formatted text easily between ML and Scala, using asynchronous pro-
tocol commands.

PIDE is a general framework for Prover IDEs based on Isabelle/Scala. It
is built around a concept of parallel and asynchronous document pro-
cessing, which is supported natively by the parallel proof engine that
is implemented in Isabelle/ML. The traditional prover command loop
is given up; instead there is direct support for editing of source text,
with rich formal markup for GUI rendering.

jEdit is a sophisticated text editor1 implemented in Java2. It is easily ex-
tensible by plugins written in any language that works on the JVM. In
the context of Isabelle this is always Scala3.

1http://www.jedit.org
2http://www.java.com
3http://www.scala-lang.org

1

http://www.jedit.org
http://www.java.com
http://www.scala-lang.org

CHAPTER 1. INTRODUCTION 2

Isabelle/jEdit is the main application of the PIDE framework and the de-
fault user-interface for Isabelle. It targets both beginners and experts.
Technically, Isabelle/jEdit consists of the original jEdit code base with
minimal patches and a special plugin for Isabelle. This is integrated as
a desktop application for the main operating system families: Linux,
Windows, Mac OS X.

End-users of Isabelle download and run a standalone application that exposes
jEdit as a text editor on the surface. Thus there is occasionally a tendency
to apply the name “jEdit” to any of the Isabelle Prover IDE aspects, without
proper differentiation. When discussing these PIDE building blocks in public
forums, mailing lists, or even scientific publications, it is particularly impor-
tant to distinguish Isabelle/ML versus Standard ML, Isabelle/Scala versus
Scala, Isabelle/jEdit versus jEdit.

1.2 The Isabelle/jEdit Prover IDE

Figure 1.1: The Isabelle/jEdit Prover IDE

CHAPTER 1. INTRODUCTION 3

Isabelle/jEdit (figure 1.1) consists of some plugins for the jEdit text editor,
while preserving its general look-and-feel as far as possible. The main plugin
is called “Isabelle” and has its own menu Plugins / Isabelle with access to
several panels (see also §2.1), as well as Plugins / Plugin Options / Isabelle
(see also §1.2.3).
The options allow to specify a logic session name, but the same selector
is also accessible in the Theories panel (§3.1.2). After application startup,
the selected logic session image is provided automatically by the Isabelle
build tool [3]: if it is absent or outdated wrt. its sources, the build process
updates it while the text editor is running. Prover IDE functionality is only
activated after successful termination of the build process. A failure may
require changing some options and restart the application. Changing the
logic session, or the underlying ML system platform (32 bit versus 64 bit)
requires a restart of the application to take effect.

The main job of the Prover IDE is to manage sources and their changes, tak-
ing the logical structure as a formal document into account (see also §3.1).
The editor and the prover are connected asynchronously in a lock-free man-
ner. The prover is free to organize the checking of the formal text in parallel
on multiple cores, and provides feedback via markup, which is rendered in
the editor via colors, boxes, squiggly underlines, hyperlinks, popup windows,
icons, clickable output etc.
Using the mouse together with the modifier key CONTROL (Linux, Windows)
or COMMAND (Mac OS X) exposes formal content via tooltips and/or hyperlinks
(see also §3.5). Output (in popups etc.) may be explored recursively, using
the same techniques as in the editor source buffer.
Thus the Prover IDE gives an impression of direct access to formal content of
the prover within the editor, but in reality only certain aspects are exposed,
according to the possibilities of the prover and its add-on tools.

1.2.1 Documentation
The Documentation panel of Isabelle/jEdit provides access to some exam-
ple theory files and the standard Isabelle documentation. PDF files are
opened by regular desktop operations of the underlying platform. The sec-
tion “Original jEdit Documentation” contains the original User’s Guide of
this sophisticated text editor. The same is accessible via the Help menu
or F1 keyboard shortcut, using the built-in HTML viewer of Java/Swing.
The latter also includes Frequently Asked Questions and documentation of
individual plugins.

CHAPTER 1. INTRODUCTION 4

Most of the information about jEdit is relevant for Isabelle/jEdit as well, but
one needs to keep in mind that defaults sometimes differ, and the official jEdit
documentation does not know about the Isabelle plugin with its support for
continuous checking of formal source text: jEdit is a plain text editor, but
Isabelle/jEdit is a Prover IDE.

1.2.2 Plugins
The Plugin Manager of jEdit allows to augment editor functionality by JVM
modules (jars) that are provided by the central plugin repository, which is
accessible via various mirror sites.
Connecting to the plugin server-infrastructure of the jEdit project allows to
update bundled plugins or to add further functionality. This needs to be
done with the usual care for such an open bazaar of contributions. Arbitrary
combinations of add-on features are apt to cause problems. It is advisable
to start with the default configuration of Isabelle/jEdit and develop some
understanding how it is supposed to work, before loading too many other
plugins.

The main Isabelle plugin is an integral part of Isabelle/jEdit and needs
to remain active at all times! A few additional plugins are bundled with
Isabelle/jEdit for convenience or out of necessity, notably Console with its
Isabelle/Scala sub-plugin (§2.3) and SideKick with some Isabelle-specific
parsers for document tree structure (§2.5). The Navigator plugin is par-
ticularly important for hyperlinks within the formal document-model (§3.5).
Further plugins (e.g. ErrorList, Code2HTML) are included to saturate the
dependencies of bundled plugins, but have no particular use in Isabelle/jEdit.

1.2.3 Options
Both jEdit and Isabelle have distinctive management of persistent options.
Regular jEdit options are accessible via the dialogs Utilities / Global Options
or Plugins / Plugin Options, with a second chance to flip the two within the
central options dialog. Changes are stored in $ISABELLE_HOME_USER/jedit/
properties and $ISABELLE_HOME_USER/jedit/keymaps.
Isabelle system options are managed by Isabelle/Scala and changes are stored
in $ISABELLE_HOME_USER/etc/preferences, independently of other jEdit
properties. See also [3], especially the coverage of sessions and command-line
tools like isabelle build or isabelle options.

CHAPTER 1. INTRODUCTION 5

Those Isabelle options that are declared as public are configurable in
Isabelle/jEdit via Plugin Options / Isabelle / General. Moreover, there
are various options for rendering of document content, which are config-
urable via Plugin Options / Isabelle / Rendering. Thus Plugin Options /
Isabelle in jEdit provides a view on a subset of Isabelle system options.
Note that some of these options affect general parameters that are rele-
vant outside Isabelle/jEdit as well, e.g. threads or parallel_proofs for
the Isabelle build tool [3], but it is possible to use the settings variable
ISABELLE_BUILD_OPTIONS to change defaults for batch builds without af-
fecting the Prover IDE.
The jEdit action isabelle.options opens the options dialog for the Isabelle
plugin; it can be mapped to editor GUI elements as usual.

Options are usually loaded on startup and saved on shutdown of
Isabelle/jEdit. Editing the machine-generated $ISABELLE_HOME_USER/
jedit/properties or $ISABELLE_HOME_USER/etc/preferences manually
while the application is running is likely to cause surprise due to lost update!

1.2.4 Keymaps
Keyboard shortcuts are managed as a separate concept of keymap that is
configurable viaGlobal Options / Shortcuts. The imported keymap is derived
from the initial environment of properties that is available at the first start
of the editor; afterwards the keymap file takes precedence and is no longer
affected by change of default properties.
This subtle difference of jEdit keymaps versus properties is relevant for
Isabelle/jEdit due to various fine-tuning of global defaults, with additional
keyboard shortcuts for Isabelle-specific functionality. Users may change their
keymap later, but need to copy some keyboard shortcuts manually (see
also $ISABELLE_HOME_USER/jedit/keymaps versus shortcut properties in
$ISABELLE_HOME/src/Tools/jEdit/src/jEdit.props).

1.3 Command-line invocation
Isabelle/jEdit is normally invoked as a single-instance desktop application,
based on platform-specific executables for Linux, Windows, Mac OS X.
It is also possible to invoke the Prover IDE on the command-line, with
some extra options and environment settings. The command-line usage of
isabelle jedit is as follows:

CHAPTER 1. INTRODUCTION 6

Usage: isabelle jedit [OPTIONS] [FILES ...]

Options are:
-D NAME=X set JVM system property
-J OPTION add JVM runtime option
-b build only
-d DIR include session directory
-f fresh build
-j OPTION add jEdit runtime option
-l NAME logic image name
-m MODE add print mode for output
-n no build of session image on startup
-s system build mode for session image

Start jEdit with Isabelle plugin setup and open FILES
(default "$USER_HOME/Scratch.thy" or ":" for empty buffer).

The -l option specifies the session name of the logic image to be used for
proof processing. Additional session root directories may be included via
option -d to augment that name space of isabelle build [3].
By default, the specified image is checked and built on demand. The -s
option determines where to store the result session image of isabelle build.
The -n option bypasses the implicit build process for the selected session
image.
The -m option specifies additional print modes for the prover process. Note
that the system option jedit_print_mode allows to do the same persis-
tently (e.g. via the Plugin Options dialog of Isabelle/jEdit), without requiring
command-line invocation.
The -J and -j options allow to pass additional low-level options to the JVM
or jEdit, respectively. The defaults are provided by the Isabelle settings
environment [3], but note that these only work for the command-line tool
described here, and not the regular application.
The -D option allows to define JVM system properties; this is passed directly
to the underlying java process.
The -b and -f options control the self-build mechanism of Isabelle/jEdit.
This is only relevant for building from sources, which also requires an aux-
iliary jedit_build component from http://isabelle.in.tum.de/components.
The official Isabelle release already includes a pre-built version of
Isabelle/jEdit.

It is also possible to connect to an already running Isabelle/jEdit process via
isabelle jedit_client:
Usage: isabelle jedit_client [OPTIONS] [FILES ...]

http://isabelle.in.tum.de/components

CHAPTER 1. INTRODUCTION 7

Options are:
-c only check presence of server
-n only report server name
-s NAME server name (default Isabelle)

Connect to already running Isabelle/jEdit instance and open FILES

The -c option merely checks the presence of the server, producing a process
return code accordingly.
The -n option reports the server name, and the -s option provides a different
server name. The default server name is the official distribution name (e.g.
Isabelle2016). Thus isabelle jedit_client can connect to the Isabelle
desktop application without further options.
The JVM system property isabelle.jedit_server provides a different
server name, e.g. use isabelle jedit -Disabelle.jedit_server=name
and isabelle jedit_client -s name to connect later on.

1.4 GUI rendering
1.4.1 Look-and-feel
jEdit is a Java/AWT/Swing application with some ambition to support “na-
tive” look-and-feel on all platforms, within the limits of what Oracle as Java
provider and major operating system distributors allow (see also §7).
Isabelle/jEdit enables platform-specific look-and-feel by default as follows.

Linux: The platform-independent Metal is used by default.
The Linux-specific GTK+ also works under the side-condition that the
overall GTK theme and options are selected in a way that works with
Java AWT/Swing. The JVM has no direct influence of GTK rendering.

Windows: Regular Windows is used by default.

Mac OS X: Regular Mac OS X is used by default.
The bundled MacOSX plugin provides various functions that are ex-
pected from applications on that particular platform: quit from menu
or dock, preferences menu, drag-and-drop of text files on the applica-
tion, full-screen mode for main editor windows. It is advisable to have
the MacOSX plugin enabled all the time on that platform.

CHAPTER 1. INTRODUCTION 8

Users may experiment with different Swing look-and-feels, but need to keep
in mind that this extra variance of GUI functionality is unlikely to work in
arbitrary combinations. The platform-independentMetal and Nimbus should
always work on all platforms, although they are technically and stylistically
outdated. The historic CDE/Motif should be ignored.
After changing the look-and-feel in Global Options / Appearance,
Isabelle/jEdit should be restarted to take full effect.

1.4.2 Displays with very high resolution
In distant past, displays with 1024×768 or 1280×1024 pixels were considered
“high resolution” and bitmap fonts with 12 or 14 pixels as adequate for text
rendering. In 2016, we routinely see much higher resolutions, e.g. “Full HD”
at 1920× 1080 pixels or “Ultra HD” / “4K” at 3840× 2160.
GUI frameworks are usually lagging behind, with hard-wired icon sizes and
tiny fonts. Java and jEdit do provide reasonable support for very high reso-
lution, but this requires manual adjustments as described below.

The operating-system usually provides some configuration for global scal-
ing of text fonts, e.g. 120%–250% on Windows. This impacts regular GUI ele-
ments, when used with native look-and-feel: Linux GTK+,Windows,Mac OS
X, respectively. Alternatively, it is possible to use the platform-independent
Metal look-and-feel and readjust its main font sizes via jEdit options ex-
plained below. The Isabelle/jEdit application provides further options to
adjust font sizes in particular GUI elements. Here is a summary of all relevant
font properties:

• Global Options / Text Area / Text font: the main text area font, which
is also used as reference point for various derived font sizes, e.g. the
Output (§3.2) and State (§3.3) panels.

• Global Options / Gutter / Gutter font: the font for the gutter area left
of the main text area, e.g. relevant for display of line numbers (disabled
by default).

• Global Options / Appearance / Button, menu and label font as well as
List and text field font: this specifies the primary and secondary font
for the Metal look-and-feel (§1.4.1).

• Plugin Options / Isabelle / General / Reset Font Size: the main text
area font size for action isabelle.reset-font-size, e.g. relevant for
quick scaling like in common web browsers.

CHAPTER 1. INTRODUCTION 9

• Plugin Options / Console / General / Font: the console window font,
e.g. relevant for Isabelle/Scala command-line.

In figure 1.2 the Metal look-and-feel is configured with custom fonts at 30
pixels, and the main text area and console at 36 pixels. This leads to decent
rendering quality, despite the old-fashioned appearance of Metal.

Figure 1.2: Metal look-and-feel with custom fonts for very high resolution

Chapter 2

Augmented jEdit functionality

2.1 Dockable windows
In jEdit terminology, a view is an editor window with one or more text areas
that show the content of one or more buffers. A regular view may be sur-
rounded by dockable windows that show additional information in arbitrary
format, not just text; a plain view does not allow dockables. The dockable
window manager of jEdit organizes these dockable windows, either as floating
windows, or docked panels within one of the four margins of the view. There
may be any number of floating instances of some dockable window, but at
most one docked instance; jEdit actions that address the dockable window
of a particular kind refer to the unique docked instance.
Dockables are used routinely in jEdit for important functionality like Hyper-
Search Results or the File System Browser. Plugins often provide a central
dockable to access their main functionality, which may be opened by the user
on demand. The Isabelle/jEdit plugin takes this approach to the extreme:
its plugin menu provides the entry-points to many panels that are managed
as dockable windows. Some important panels are docked by default, e.g.
Documentation, State, Theories Output, Query. The user can change this
arrangement easily and persistently.
Compared to plain jEdit, dockable window management in Isabelle/jEdit is
slightly augmented according to the the following principles:

• Floating windows are dependent on the main window as dialog in the
sense of Java/AWT/Swing. Dialog windows always stay on top of the
view, which is particularly important in full-screen mode. The desktop
environment of the underlying platform may impose further policies on
such dependent dialogs, in contrast to fully independent windows, e.g.
some window management functions may be missing.

• Keyboard focus of the main view vs. a dockable window is carefully
managed according to the intended semantics, as a panel mainly for
output or input. For example, activating the Output (§3.2) or State

10

CHAPTER 2. AUGMENTED JEDIT FUNCTIONALITY 11

(§3.3) panel via the dockable window manager returns keyboard focus
to the main text area, but for Query (§3.4) or Sledgehammer §3.8 the
focus is given to the main input field of that panel.

• Panels that provide their own text area for output have an additional
dockable menu item Detach. This produces an independent copy of the
current output as a floating Info window, which displays that content
independently of ongoing changes of the PIDE document-model. Note
that Isabelle/jEdit popup windows (§3.5) provide a similar Detach op-
eration as an icon.

2.2 Isabelle symbols
Isabelle sources consist of symbols that extend plain ASCII to allow infinitely
many mathematical symbols within the formal sources. This works without
depending on particular encodings and varying Unicode standards.1 See [8].
For the prover back-end, formal text consists of ASCII characters that
are grouped according to some simple rules, e.g. as plain “a” or symbolic
“\<alpha>”. For the editor front-end, a certain subset of symbols is ren-
dered physically via Unicode glyphs, in order to show “\<alpha>” as “α”,
for example. This symbol interpretation is specified by the Isabelle system
distribution in $ISABELLE_HOME/etc/symbols and may be augmented by
the user in $ISABELLE_HOME_USER/etc/symbols.
The appendix of [5] gives an overview of the standard interpretation of finitely
many symbols from the infinite collection. Uninterpreted symbols are dis-
played literally, e.g. “\<foobar>”. Overlap of Unicode characters used in
symbol interpretation with informal ones (which might appear e.g. in com-
ments) needs to be avoided. Raw Unicode characters within prover source
files should be restricted to informal parts, e.g. to write text in non-latin
alphabets in comments.

Encoding. Technically, the Unicode interpretation of Isabelle symbols is
an encoding called UTF-8-Isabelle in jEdit (not in the underlying JVM). It
is provided by the Isabelle/jEdit plugin and enabled by default for all source
files. Sometimes such defaults are reset accidentally, or malformed UTF-8

1Raw Unicode characters within formal sources would compromise portability and re-
liability in the face of changing interpretation of special features of Unicode, such as
Combining Characters or Bi-directional Text.

CHAPTER 2. AUGMENTED JEDIT FUNCTIONALITY 12

sequences in the text force jEdit to fall back on a different encoding like
ISO-8859-15. In that case, verbatim “\<alpha>” will be shown in the text
buffer instead of its Unicode rendering “α”. The jEdit menu operation File /
Reload with Encoding / UTF-8-Isabelle helps to resolve such problems (after
repairing malformed parts of the text).

Font. Correct rendering via Unicode requires a font that contains glyphs for
the corresponding codepoints. There are also various unusual symbols with
particular purpose in Isabelle, e.g. control symbols and very long arrows.
Isabelle/jEdit prefers its own application fonts IsabelleText, which ensures
that standard collection of Isabelle symbols is actually shown on the screen
(or printer) as expected.
Note that a Java/AWT/Swing application can load additional fonts only if
they are not installed on the operating system already! Some outdated version
of IsabelleText that happens to be provided by the operating system would
prevent Isabelle/jEdit to use its bundled version. This could lead to missing
glyphs (black rectangles), when the system version of IsabelleText is older
than the application version. This problem can be avoided by refraining to
“install” any version of IsabelleText in the first place, although it might
be tempting to use the same font in other applications.
HTML pages generated by Isabelle refer to the same IsabelleText font as
a server-side resource. Thus a web-browser can use that without requiring a
locally installed copy.

Input methods. In principle, Isabelle/jEdit could delegate the problem to
produce Isabelle symbols in their Unicode rendering to the underlying oper-
ating system and its input methods. Regular jEdit also provides various ways
to work with abbreviations to produce certain non-ASCII characters. Since
none of these standard input methods work satisfactorily for the mathemati-
cal characters required for Isabelle, various specific Isabelle/jEdit mechanisms
are provided.
This is a summary for practically relevant input methods for Isabelle symbols.

1. The Symbols panel: some GUI buttons allow to insert certain symbols
in the text buffer. There are also tooltips to reveal the official Isabelle
representation with some additional information about symbol abbrevi-
ations (see below).

2. Copy/paste from decoded source files: text that is rendered as Unicode
already can be re-used to produce further text. This also works between

CHAPTER 2. AUGMENTED JEDIT FUNCTIONALITY 13

different applications, e.g. Isabelle/jEdit and some web browser or mail
client, as long as the same Unicode interpretation of Isabelle symbols
is used.

3. Copy/paste from prover output within Isabelle/jEdit. The same prin-
ciples as for text buffers apply, but note that copy in secondary
Isabelle/jEdit windows works via the keyboard shortcuts C+c or
C+INSERT, while jEdit menu actions always refer to the primary text
area!

4. Completion provided by the Isabelle plugin (see §3.6). Isabelle sym-
bols have a canonical name and optional abbreviations. This can be
used with the text completion mechanism of Isabelle/jEdit, to replace
a prefix of the actual symbol like \<lambda>, or its name preceded by
backslash \lambda, or its ASCII abbreviation % by the Unicode render-
ing.
The following table is an extract of the information provided by the
standard $ISABELLE_HOME/etc/symbols file:

symbol name with backslash abbreviation
λ \lambda %
⇒ \Rightarrow =>
=⇒ \Longrightarrow ==>∧

\And !!
≡ \equiv ==
∀ \forall !
∃ \exists ?
−→ \longrightarrow -->
∧ \and &
∨ \or |
¬ \not ~
6= \noteq ~=
∈ \in :
/∈ \notin ~:

Note that the above abbreviations refer to the input method. The
logical notation provides ASCII alternatives that often coincide, but
sometimes deviate. This occasionally causes user confusion with old-
fashioned Isabelle source that use ASCII replacement notation like !
or ALL directly in the text.

CHAPTER 2. AUGMENTED JEDIT FUNCTIONALITY 14

On the other hand, coincidence of symbol abbreviations with ASCII re-
placement syntax syntax helps to update old theory sources via explicit
completion (see also C+b explained in §3.6).

Control symbols. There are some special control symbols to modify the
display style of a single symbol (without nesting). Control symbols may be
applied to a region of selected text, either using the Symbols panel or key-
board shortcuts or jEdit actions. These editor operations produce a separate
control symbol for each symbol in the text, in order to make the whole text
appear in a certain style.

style symbol shortcut action
superscript \<^sup> C+e UP isabelle.control-sup
subscript \<^sub> C+e DOWN isabelle.control-sub
bold face \<^bold> C+e RIGHT isabelle.control-bold
emphasized \<^emph> C+e LEFT isabelle.control-emph
reset C+e BACK_SPACE isabelle.control-reset

To produce a single control symbol, it is also possible to complete on \sup,
\sub, \bold, \emph as for regular symbols.
The emphasized style only takes effect in document output (when used with
a cartouche), but not in the editor.

2.3 Scala console
The Console plugin manages various shells (command interpreters), e.g.
BeanShell, which is the official jEdit scripting language, and the cross-
platform System shell. Thus the console provides similar functionality than
the Emacs buffers *scratch* and *shell*.
Isabelle/jEdit extends the repertoire of the console by Scala, which is
the regular Scala toplevel loop running inside the same JVM process as
Isabelle/jEdit itself. This means the Scala command interpreter has access
to the JVM name space and state of the running Prover IDE application.
The default environment imports the full content of packages isabelle and
isabelle.jedit.
For example, PIDE refers to the Isabelle/jEdit plugin object, and view to the
current editor view of jEdit. The Scala expression PIDE.snapshot(view)
makes a PIDE document snapshot of the current buffer within the current
editor view.

CHAPTER 2. AUGMENTED JEDIT FUNCTIONALITY 15

This helps to explore Isabelle/Scala functionality interactively. Some care is
required to avoid interference with the internals of the running application.

2.4 File-system access
File specifications in jEdit follow various formats and conventions according
to Virtual File Systems, which may be also provided by additional plugins.
This allows to access remote files via the http: protocol prefix, for example.
Isabelle/jEdit attempts to work with the file-system model of jEdit as far as
possible. In particular, theory sources are passed directly from the editor to
the prover, without indirection via physical files.
Despite the flexibility of URLs in jEdit, local files are particularly important
and are accessible without protocol prefix. The file path notation is that
of the Java Virtual Machine on the underlying platform. On Windows the
preferred form uses backslashes, but happens to accept forward slashes like
Unix/POSIX as well. Further differences arise due to Windows drive letters
and network shares.
The Java notation for files needs to be distinguished from the one of
Isabelle, which uses POSIX notation with forward slashes on all platforms.
Isabelle/ML on Windows uses Unix-style path notation, too, and driver let-
ter representation as in Cygwin (e.g. /cygdrive/c). Moreover, environment
variables from the Isabelle process may be used freely, e.g. $ISABELLE_HOME/
etc/symbols or $POLYML_HOME/README. There are special shortcuts: ~ for
$USER_HOME and ~~ for $ISABELLE_HOME.

Since jEdit happens to support environment variables within file specifica-
tions as well, it is natural to use similar notation within the editor, e.g.
in the file-browser. This does not work in full generality, though, due to
the bias of jEdit towards platform-specific notation and of Isabelle towards
POSIX. Moreover, the Isabelle settings environment is not yet active when
starting Isabelle/jEdit via its standard application wrapper, in contrast to
isabelle jedit run from the command line (§1.3).
Isabelle/jEdit imitates $ISABELLE_HOME and $ISABELLE_HOME_USER within
the Java process environment, in order to allow easy access to these important
places from the editor. The file browser of jEdit also includes Favorites for
these two important locations.

Path specifications in prover input or output usually include formal markup
that turns it into a hyperlink (see also §3.5). This allows to open the corre-
sponding file in the text editor, independently of the path notation. If the

CHAPTER 2. AUGMENTED JEDIT FUNCTIONALITY 16

path refers to a directory, the jEdit file browser is opened on it.
Formally checked paths in prover input are subject to completion (§3.6): par-
tial specifications are resolved via directory content and possible completions
are offered in a popup.

2.5 SideKick parsers
The SideKick plugin provides some general services to display buffer structure
in a tree view. Isabelle/jEdit provides SideKick parsers for its main mode
for theory files, as well as some minor modes for the NEWS file (see figure 2.1),
session ROOT files, system options, and BibTEX files (§4.3).

Figure 2.1: The Isabelle NEWS file with SideKick tree view

The special SideKick parser isabelle-markup exposes the uninterpreted
markup tree of the PIDE document model of the current buffer. This is
occasionally useful for informative purposes, but the amount of displayed
information might cause problems for large buffers.

Chapter 3

Prover IDE functionality

3.1 Document model
The document model is central to the PIDE architecture: the editor and the
prover have a common notion of structured source text with markup, which
is produced by formal processing. The editor is responsible for edits of doc-
ument source, as produced by the user. The prover is responsible for reports
of document markup, as produced by its processing in the background.
Isabelle/jEdit handles classic editor events of jEdit, in order to connect the
physical world of the GUI (with its singleton state) to the mathematical
world of multiple document versions (with timeless and stateless updates).

3.1.1 Editor buffers and document nodes
As a regular text editor, jEdit maintains a collection of buffers to store text
files; each buffer may be associated with any number of visible text areas.
Buffers are subject to an edit mode that is determined from the file name
extension. The following modes are treated specifically in Isabelle/jEdit:

mode file name content
isabelle *.thy theory source
isabelle-ml *.ML Isabelle/ML source
sml *.sml or *.sig Standard ML source
isabelle-root ROOT session root
isabelle-options Isabelle options
isabelle-news Isabelle NEWS

All jEdit buffers are automatically added to the PIDE document-model as
document nodes. The overall document structure is defined by the theory
nodes in two dimensions:

1. via theory imports that are specified in the theory header using con-
crete syntax of the theory command [5];

17

CHAPTER 3. PROVER IDE FUNCTIONALITY 18

2. via auxiliary files that are loaded into a theory by special load com-
mands, notably ML_file and SML_file [5].

In any case, source files are managed by the PIDE infrastructure: the physical
file-system only plays a subordinate role. The relevant version of source text
is passed directly from the editor to the prover, using internal communication
channels.

3.1.2 Theories
The Theories panel (see also figure 3.1) provides an overview of the status
of continuous checking of theory nodes within the document model. Unlike
batch sessions of isabelle build [3], theory nodes are identified by full
path names; this allows to work with multiple (disjoint) Isabelle sessions
simultaneously within the same editor session.

Figure 3.1: Theories panel with an overview of the document-model, and
jEdit text areas as editable views on some of the document nodes

Certain events to open or update editor buffers cause Isabelle/jEdit to resolve
dependencies of theory imports. The system requests to load additional

CHAPTER 3. PROVER IDE FUNCTIONALITY 19

files into editor buffers, in order to be included in the document model for
further checking. It is also possible to let the system resolve dependencies
automatically, according to the system option jedit_auto_load.

The visible perspective of Isabelle/jEdit is defined by the collective view on
theory buffers via open text areas. The perspective is taken as a hint for
document processing: the prover ensures that those parts of a theory where
the user is looking are checked, while other parts that are presently not
required are ignored. The perspective is changed by opening or closing text
area windows, or scrolling within a window.
The Theories panel provides some further options to influence the process
of continuous checking: it may be switched off globally to restrict the prover
to superficial processing of command syntax. It is also possible to indicate
theory nodes as required for continuous checking: this means such nodes and
all their imports are always processed independently of the visibility status
(if continuous checking is enabled). Big theory libraries that are marked as
required can have significant impact on performance!

Formal markup of checked theory content is turned into GUI rendering, based
on a standard repertoire known from mainstream IDEs for programming
languages: colors, icons, highlighting, squiggly underlines, tooltips, hyper-
links etc. For outer syntax of Isabelle/Isar there is some traditional syntax-
highlighting via static keywords and tokenization within the editor; this
buffer syntax is determined from theory imports. In contrast, the painting of
inner syntax (term language etc.) uses semantic information that is reported
dynamically from the logical context. Thus the prover can provide additional
markup to help the user to understand the meaning of formal text, and to
produce more text with some add-on tools (e.g. information messages with
sendback markup by automated provers or disprovers in the background).

3.1.3 Auxiliary files
Special load commands like ML_file and SML_file [5] refer to auxiliary
files within some theory. Conceptually, the file argument of the command
extends the theory source by the content of the file, but its editor buffer may
be loaded / changed / saved separately. The PIDE document model prop-
agates changes of auxiliary file content to the corresponding load command
in the theory, to update and process it accordingly: changes of auxiliary file
content are treated as changes of the corresponding load command.

As a concession to the massive amount of ML files in Isabelle/HOL itself,
the content of auxiliary files is only added to the PIDE document-model on

CHAPTER 3. PROVER IDE FUNCTIONALITY 20

demand, the first time when opened explicitly in the editor. There are further
tricks to manage markup of ML files, such that Isabelle/HOL may be edited
conveniently in the Prover IDE on small machines with only 8GB of main
memory. Using Pure as logic session image, the exploration may start at the
top $ISABELLE_HOME/src/HOL/Main.thy or the bottom $ISABELLE_HOME/
src/HOL/HOL.thy, for example.
Initially, before an auxiliary file is opened in the editor, the prover reads its
content from the physical file-system. After the file is opened for the first
time in the editor, e.g. by following the hyperlink (§3.5) for the argument of
its ML_file command, the content is taken from the jEdit buffer.
The change of responsibility from prover to editor counts as an update of
the document content, so subsequent theory sources need to be re-checked.
When the buffer is closed, the responsibility remains to the editor: the file
may be opened again without causing another document update.
A file that is opened in the editor, but its theory with the load command is
not, is presently inactive in the document model. A file that is loaded via
multiple load commands is associated to an arbitrary one: this situation is
morally unsupported and might lead to confusion.

Output that refers to an auxiliary file is combined with that of the corre-
sponding load command, and shown whenever the file or the command are
active (see also §3.2).
Warnings, errors, and other useful markup is attached directly to the posi-
tions in the auxiliary file buffer, in the manner of standard IDEs. By using
the load command SML_file as explained in $ISABELLE_HOME/src/Tools/
SML/Examples.thy, Isabelle/jEdit may be used as fully-featured IDE for
Standard ML, independently of theory or proof development: the required
theory merely serves as some kind of project file for a collection of SML
source modules.

3.2 Output
Prover output consists of markup and messages. Both are directly attached
to the corresponding positions in the original source text, and visualized in
the text area, e.g. as text colours for free and bound variables, or as squiggly
underlines for warnings, errors etc. (see also figure 3.2). In the latter case,
the corresponding messages are shown by hovering with the mouse over the
highlighted text — although in many situations the user should already get
some clue by looking at the position of the text highlighting, without seeing
the message body itself.

CHAPTER 3. PROVER IDE FUNCTIONALITY 21

Figure 3.2: Multiple views on prover output: gutter with icon, text area with
popup, text overview column, Theories panel, Output panel

The “gutter” on the left-hand-side of the text area uses icons to provide a
summary of the messages within the adjacent text line. Message priorities
are used to prefer errors over warnings, warnings over information messages;
other output is ignored.
The “text overview column” on the right-hand-side of the text area uses
similar information to paint small rectangles for the overall status of the
whole text buffer. The graphics is scaled to fit the logical buffer length into
the given window height. Mouse clicks on the overview area move the cursor
approximately to the corresponding text line in the buffer.
The Theories panel provides another course-grained overview, but without
direct correspondence to text positions. The coloured rectangles represent
the amount of messages of a certain kind (warnings, errors, etc.) and the ex-
ecution status of commands. A double-click on one of the theory entries with
their status overview opens the corresponding text buffer, without moving
the cursor to a specific point.

The Output panel displays prover messages that correspond to a given com-

CHAPTER 3. PROVER IDE FUNCTIONALITY 22

mand, within a separate window. The cursor position in the presently active
text area determines the prover command whose cumulative message output
is appended and shown in that window (in canonical order according to the
internal execution of the command). There are also control elements to mod-
ify the update policy of the output wrt. continued editor movements: Auto
update and Update. This is particularly useful for multiple instances of the
Output panel to look at different situations. Alternatively, the panel can be
turned into a passive Info window via the Detach menu item.
Proof state is handled separately (§3.3), but it is also possible to tick the
corresponding checkbox to append it to regular output (figure 3.3). This is a
globally persistent option: it affects all open panels and future editor sessions.

Figure 3.3: Proof state display within the regular output panel

Following the IDE principle, regular messages are attached to the original
source in the proper place and may be inspected on demand via popups.
This excludes messages that are somehow internal to the machinery of proof
checking, notably proof state and tracing.
In any case, the same display technology is used for small popups and big
output windows. The formal text contains markup that may be explored

CHAPTER 3. PROVER IDE FUNCTIONALITY 23

recursively via further popups and hyperlinks (see §3.5), or clicked directly
to initiate certain actions (see §3.7 and §3.8).

3.3 Proof state
The main purpose of the Prover IDE is to help the user editing proof docu-
ments, with ongoing formal checking by the prover in the background. This
can be done to some extent in the main text area alone, especially for well-
structured Isar proofs.
Nonetheless, internal proof state needs to be inspected in many situations
of exploration and “debugging”. The State panel shows exclusively such
proof state messages without further distraction, while all other messages
are displayed in Output (§3.2). Figure 3.4 shows a typical GUI layout where
both panels are open.

Figure 3.4: Separate proof state display (right) and other output (bottom).

Another typical arrangement has more than one State panel open (as float-
ing windows), with Auto update disabled to look at an old situation while

CHAPTER 3. PROVER IDE FUNCTIONALITY 24

the proof text in the vicinity is changed. The Update button triggers
an explicit one-shot update; this operation is also available via the action
isabelle.update-state (keyboard shortcut S+ENTER).
On small screens, it is occasionally useful to have all messages concatenated
in the regular Output panel, e.g. see figure 3.3.

The mechanics of Output versus State are slightly different:

• Output shows information that is continuously produced and already
present when the GUI wants to show it. This is implicitly controlled
by the visible perspective on the text.

• State initiates a real-time query on demand, with a full round trip
including a fresh print operation on the prover side. This is controlled
explicitly when the cursor is moved to the next command (Auto update)
or the Update operation is triggered.

This can make a difference in GUI responsibility and resource usage within
the prover process. Applications with very big proof states that are only
inspected in isolation work better with the State panel.

3.4 Query
The Query panel provides various GUI forms to request extra information
from the prover, as a replacement of old-style diagnostic commands like
find_theorems. There are input fields and buttons for a particular query
command, with output in a dedicated text area.
The main query modes are presented as separate tabs: Find Theorems, Find
Constants, Print Context, e.g. see figure 3.5. As usual in jEdit, multiple
Query windows may be active at the same time: any number of floating
instances, but at most one docked instance (which is used by default).

The following GUI elements are common to all query modes:

• The spinning wheel provides feedback about the status of a pending
query wrt. the evaluation of its context and its own operation.

• The Apply button attaches a fresh query invocation to the current
context of the command where the cursor is pointing in the text.

CHAPTER 3. PROVER IDE FUNCTIONALITY 25

Figure 3.5: An instance of the Query panel: find theorems

• The Search field allows to highlight query output according to some
regular expression, in the notation that is commonly used on the Java
platform.1 This may serve as an additional visual filter of the result.

• The Zoom box controls the font size of the output area.

All query operations are asynchronous: there is no need to wait for the eval-
uation of the document for the query context, nor for the query operation
itself. Query output may be detached as independent Info window, using a
menu operation of the dockable window manager. The printed result usually
provides sufficient clues about the original query, with some hyperlink to its
context (via markup of its head line).

3.4.1 Find theorems
The Query panel in Find Theorems mode retrieves facts from the theory or
proof context matching all of given criteria in the Find text field. A single

1https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

CHAPTER 3. PROVER IDE FUNCTIONALITY 26

criterium has the following syntax:

�
� -

����
�
�

name
�� ��:

����nameref�
�intro

�� ���elim
�� ���dest
�� ���solves
�� ���simp
�� ��:

����term

�term

�
�
�
�
�
�
�

See also the Isar command find_theorems in [5].

3.4.2 Find constants
The Query panel in Find Constants mode prints all constants whose type
meets all of the given criteria in the Find text field. A single criterium has
the following syntax:

�
� -

����
�
�

name
�� ��:

����nameref�
�strict

�� ��:
����type

�type

�
�
�

See also the Isar command find_consts in [5].

3.4.3 Print context
The Query panel in Print Context mode prints information from the theory
or proof context, or proof state. See also the Isar commands print_context,
print_cases, print_term_bindings, print_theorems, described in [5].

CHAPTER 3. PROVER IDE FUNCTIONALITY 27

3.5 Tooltips and hyperlinks
Formally processed text (prover input or output) contains rich markup that
can be explored by using the CONTROL modifier key on Linux and Windows,
or COMMAND on Mac OS X. Hovering with the mouse while the modifier is
pressed reveals a tooltip (grey box over the text with a yellow popup) and/or
a hyperlink (black rectangle over the text with change of mouse pointer); see
also figure 3.6.

Figure 3.6: Tooltip and hyperlink for some formal entity

Tooltip popups use the same rendering technology as the main text area, and
further tooltips and/or hyperlinks may be exposed recursively by the same
mechanism; see figure 3.7.
The tooltip popup window provides some controls to close or detach the
window, turning it into a separate Info window managed by jEdit. The
ESCAPE key closes all popups, which is particularly relevant when nested
tooltips are stacking up.

A black rectangle in the text indicates a hyperlink that may be followed by a
mouse click (while the CONTROL or COMMAND modifier key is still pressed). Such
jumps to other text locations are recorded by the Navigator plugin, which
is bundled with Isabelle/jEdit and enabled by default. There are usually

CHAPTER 3. PROVER IDE FUNCTIONALITY 28

Figure 3.7: Nested tooltips over formal entities

navigation arrows in the main jEdit toolbar.
Note that the link target may be a file that is itself not subject to formal
document processing of the editor session and thus prevents further explo-
ration: the chain of hyperlinks may end in some source file of the underlying
logic image, or within the ML bootstrap sources of Isabelle/Pure.

3.6 Completion
Smart completion of partial input is the IDE functionality par excellance.
Isabelle/jEdit combines several sources of information to achieve that. De-
spite its complexity, it should be possible to get some idea how completion
works by experimentation, based on the overview of completion varieties in
§3.6.1. The remaining subsections explain concepts around completion more
systematically.

Explicit completion is triggered by the action isabelle.complete, which is
bound to the keyboard shortcut C+b, and thus overrides the jEdit default for
complete-word.
Implicit completion hooks into the regular keyboard input stream of the

CHAPTER 3. PROVER IDE FUNCTIONALITY 29

editor, with some event filtering and optional delays.

Completion options may be configured in Plugin Options / Isabelle / Gen-
eral / Completion. These are explained in further detail below, whenever
relevant. There is also a summary of options in §3.6.6.
The asynchronous nature of PIDE interaction means that information from
the prover is delayed — at least by a full round-trip of the document up-
date protocol. The default options already take this into account, with a
sufficiently long completion delay to speculate on the availability of all rel-
evant information from the editor and the prover, before completing text
immediately or producing a popup. Although there is an inherent danger of
non-deterministic behaviour due to such real-time parameters, the general
completion policy aims at determined results as far as possible.

3.6.1 Varieties of completion
Built-in templates

Isabelle is ultimately a framework of nested sub-languages of different kinds
and purposes. The completion mechanism supports this by the following
built-in templates:

‘ (single ASCII back-quote) supports quotations via text cartouches. There
are three selections, which are always presented in the same order and
do not depend on any context information. The default choice pro-
duces a template “〈�〉”, where the box indicates the cursor position
after insertion; the other choices help to repair the block structure of
unbalanced text cartouches.

@{ is completed to the template “@{�}”, where the box indicates the cursor
position after insertion. Here it is convenient to use the wildcard “__”
or a more specific name prefix to let semantic completion of name-space
entries propose antiquotation names.

With some practice, input of quoted sub-languages and antiquotations of em-
bedded languages should work fluently. Note that national keyboard layouts
might cause problems with back-quote as dead key: if possible, dead keys
should be disabled.

CHAPTER 3. PROVER IDE FUNCTIONALITY 30

Syntax keywords

Syntax completion tables are determined statically from the keywords of the
“outer syntax” of the underlying edit mode: for theory files this is the syntax
of Isar commands according to the cumulative theory imports.
Keywords are usually plain words, which means the completion mechanism
only inserts them directly into the text for explicit completion (§3.6.3), but
produces a popup (§3.6.4) otherwise.
At the point where outer syntax keywords are defined, it is possible to specify
an alternative replacement string to be inserted instead of the keyword itself.
An empty string means to suppress the keyword altogether, which is occa-
sionally useful to avoid confusion, e.g. the rare keyword simproc_setup vs.
the frequent name-space entry simp.

Isabelle symbols

The completion tables for Isabelle symbols (§2.2) are determined stati-
cally from $ISABELLE_HOME/etc/symbols and $ISABELLE_HOME_USER/etc/
symbols for each symbol specification as follows:

completion entry example
literal symbol \<forall>
symbol name with backslash \forall
symbol abbreviation ALL or !

When inserted into the text, the above examples all produce the same Uni-
code rendering ∀ of the underlying symbol \<forall>.
A symbol abbreviation that is a plain word, like ALL, is treated like a syntax
keyword. Non-word abbreviations like --> are inserted more aggressively,
except for single-character abbreviations like ! above.
Completion via abbreviations like ALL or --> depends on the semantic
language context (§3.6.2). In contrast, backslash sequences like \forall
\<forall> are always possible, but require additional interaction to confirm
(via popup).
The latter is important in ambiguous situations, e.g. for Isabelle document
source, which may contain formal symbols or informal LATEX macros. Back-
slash sequences also help when input is broken, and thus escapes its normal
semantic context: e.g. antiquotations or string literals in ML, which do not
allow arbitrary backslash sequences.

Additional abbreviations may be specified in $ISABELLE_HOME/etc/abbrevs
and $ISABELLE_HOME_USER/etc/abbrevs. The file content follows general

CHAPTER 3. PROVER IDE FUNCTIONALITY 31

Isar outer syntax [5]. Abbreviations are specified as “abbrev = text” pairs.
The replacement text may consist of more than just one symbol; otherwise
the meaning is the same as a symbol specification “sym abbrev: abbrev”
within etc/symbols.

Name-space entries

This is genuine semantic completion, using information from the prover, so it
requires some delay. A failed name-space lookup produces an error message
that is annotated with a list of alternative names that are legal. The list of
results is truncated according to the system option completion_limit. The
completion mechanism takes this into account when collecting information
on the prover side.
Already recognized names are not completed further, but completion may
be extended by appending a suffix of underscores. This provokes a failed
lookup, and another completion attempt while ignoring the underscores. For
example, in a name space where foo and foobar are known, the input foo
remains unchanged, but foo_ may be completed to foo or foobar.
The special identifier “__” serves as a wild-card for arbitrary completion:
it exposes the name-space content to the completion mechanism (truncated
according to completion_limit). This is occasionally useful to explore an
unknown name-space, e.g. in some template.

File-system paths

Depending on prover markup about file-system paths in the source text, e.g.
for the argument of a load command (§3.1.3), the completion mechanism
explores the directory content and offers the result as completion popup.
Relative path specifications are understood wrt. the master directory of the
document node (§3.1.1) of the enclosing editor buffer; this requires a proper
theory, not an auxiliary file.
A suffix of slashes may be used to continue the exploration of an already
recognized directory name.

Spell-checking

The spell-checker combines semantic markup from the prover (regions of plain
words) with static dictionaries (word lists) that are known to the editor.
Unknown words are underlined in the text, using spell_checker_color
(blue by default). This is not an error, but a hint to the user that some

CHAPTER 3. PROVER IDE FUNCTIONALITY 32

action may be taken. The jEdit context menu provides various actions, as
far as applicable:

isabelle.complete-word
isabelle.exclude-word
isabelle.exclude-word-permanently
isabelle.include-word
isabelle.include-word-permanently

Instead of the specific isabelle.complete-word, it is also possible to use the
generic isabelle.complete with its default keyboard shortcut C+b.

Dictionary lookup uses some educated guesses about lower-case, upper-case,
and capitalized words. This is oriented on common use in English, where
this aspect is not decisive for proper spelling (in contrast to German, for
example).

3.6.2 Semantic completion context
Completion depends on a semantic context that is provided by the prover,
although with some delay, because at least a full PIDE protocol round-trip is
required. Until that information becomes available in the PIDE document-
model, the default context is given by the outer syntax of the editor mode
(see also §3.1.1).
The semantic language context provides information about nested sub-
languages of Isabelle: keywords are only completed for outer syntax, and
antiquotations for languages that support them. Symbol abbreviations only
work for specific sub-languages: e.g. “=>” is not completed in regular ML
source, but is completed within ML strings, comments, antiquotations. Back-
slash representations of symbols like “\foobar” or “\<foobar>” work in any
context — after additional confirmation.
The prover may produce no completion markup in exceptional situations, to
tell that some language keywords should be excluded from further completion
attempts. For example, “:” within accepted Isar syntax looses its meaning
as abbreviation for symbol “∈”.

3.6.3 Input events
Completion is triggered by certain events produced by the user, with optional
delay after keyboard input according to jedit_completion_delay.

CHAPTER 3. PROVER IDE FUNCTIONALITY 33

Explicit completion works via action isabelle.complete with keyboard
shortcut C+b. This overrides the shortcut for complete-word in jEdit,
but it is possible to restore the original jEdit keyboard mapping of
complete-word via Global Options / Shortcuts and invent a different
one for isabelle.complete.

Explicit spell-checker completion works via isabelle.complete-word,
which is exposed in the jEdit context menu, if the mouse points to a
word that the spell-checker can complete.

Implicit completion works via regular keyboard input of the editor. It
depends on further side-conditions:

1. The system option jedit_completion needs to be enabled (de-
fault).

2. Completion of syntax keywords requires at least 3 relevant char-
acters in the text.

3. The system option jedit_completion_delay determines an addi-
tional delay (0.5 by default), before opening a completion popup.
The delay gives the prover a chance to provide semantic comple-
tion information, notably the context (§3.6.2).

4. The system option jedit_completion_immediate (en-
abled by default) controls whether replacement text should
be inserted immediately without popup, regardless of
jedit_completion_delay. This aggressive mode of comple-
tion is restricted to symbol abbreviations that are not plain words
(§2.2).

5. Completion of symbol abbreviations with only one relevant char-
acter in the text always enforces an explicit popup, regardless of
jedit_completion_immediate.

3.6.4 Completion popup
A completion popup is a minimally invasive GUI component over the text area
that offers a selection of completion items to be inserted into the text, e.g.
by mouse clicks. Items are sorted dynamically, according to the frequency
of selection, with persistent history. The popup may interpret special keys
ENTER, TAB, ESCAPE, UP, DOWN, PAGE_UP, PAGE_DOWN, but all other key events
are passed to the underlying text area. This allows to ignore unwanted

CHAPTER 3. PROVER IDE FUNCTIONALITY 34

completions most of the time and continue typing quickly. Thus the popup
serves as a mechanism of confirmation of proposed items, while the default
is to continue without completion.
The meaning of special keys is as follows:

key action
ENTER select completion (if jedit_completion_select_enter)
TAB select completion (if jedit_completion_select_tab)
ESCAPE dismiss popup
UP move up one item
DOWN move down one item
PAGE_UP move up one page of items
PAGE_DOWN move down one page of items

Movement within the popup is only active for multiple items. Otherwise the
corresponding key event retains its standard meaning within the underlying
text area.

3.6.5 Insertion
Completion may first propose replacements to be selected (via a popup),
or replace text immediately in certain situations and depending on certain
options like jedit_completion_immediate. In any case, insertion works
uniformly, by imitating normal jEdit text insertion, depending on the state
of the text selection. Isabelle/jEdit tries to accommodate the most common
forms of advanced selections in jEdit, but not all combinations make sense.
At least the following important cases are well-defined:

No selection. The original is removed and the replacement inserted, de-
pending on the caret position.

Rectangular selection of zero width. This special case is treated by
jEdit as “tall caret” and insertion of completion imitates its normal
behaviour: separate copies of the replacement are inserted for each line
of the selection.

Other rectangular selection or multiple selections. Here the original
is removed and the replacement is inserted for each line (or segment)
of the selection.

Support for multiple selections is particularly useful for HyperSearch: clicking
on one of the items in the HyperSearch Results window makes jEdit select all

CHAPTER 3. PROVER IDE FUNCTIONALITY 35

its occurrences in the corresponding line of text. Then explicit completion
can be invoked via C+b, e.g. to replace occurrences of --> by −→.

Insertion works by removing and inserting pieces of text from the buffer.
This counts as one atomic operation on the jEdit history. Thus unintended
completions may be reverted by the regular undo action of jEdit. According
to normal jEdit policies, the recovered text after undo is selected: ESCAPE is
required to reset the selection and to continue typing more text.

3.6.6 Options
This is a summary of Isabelle/Scala system options that are relevant for
completion. They may be configured in Plugin Options / Isabelle / General
as usual.

• completion_limit specifies the maximum number of items for various
semantic completion operations (name-space entries etc.)

• jedit_completion guards implicit completion via regular jEdit key
events (§3.6.3): it allows to disable implicit completion altogether.

• jedit_completion_select_enter and jedit_completion_select_tab
enable keys to select a completion item from the popup (§3.6.4). Note
that a regular mouse click on the list of items is always possible.

• jedit_completion_context specifies whether the language context
provided by the prover should be used at all. Disabling that option
makes completion less “semantic”. Note that incomplete or severely
broken input may cause some disagreement of the prover and the user
about the intended language context.

• jedit_completion_delay and jedit_completion_immediate deter-
mine the handling of keyboard events for implicit completion (§3.6.3).
A jedit_completion_delay > 0 postpones the processing of key
events, until after the user has stopped typing for the given time span,
but jedit_completion_immediate = true means that abbreviations
of Isabelle symbols are handled nonetheless.

• jedit_completion_path_ignore specifies “glob” patterns to ignore
in file-system path completion (separated by colons), e.g. backup files
ending with tilde.

CHAPTER 3. PROVER IDE FUNCTIONALITY 36

• spell_checker is a global guard for all spell-checker operations: it
allows to disable that mechanism altogether.

• spell_checker_dictionary determines the current dictionary,
taken from the colon-separated list in the settings variable
JORTHO_DICTIONARIES. There are jEdit actions to specify local
updates to a dictionary, by including or excluding words. The
result of permanent dictionary updates is stored in the directory
$ISABELLE_HOME_USER/dictionaries, in a separate file for each dic-
tionary.

• spell_checker_elements specifies a comma-separated list of markup
elements that delimit words in the source that is subject to spell-
checking, including various forms of comments.

3.7 Automatically tried tools
Continuous document processing works asynchronously in the background.
Visible document source that has been evaluated may get augmented by
additional results of asynchronous print functions. An example for that is
proof state output, if that is enabled in the Output panel (§3.2). More heavy-
weight print functions may be applied as well, e.g. to prove or disprove parts
of the formal text by other means.
Isabelle/HOL provides various automatically tried tools that operate on out-
ermost goal statements (e.g. lemma, theorem), independently of the state
of the current proof attempt. They work implicitly without any arguments.
Results are output as information messages, which are indicated in the text
area by blue squiggles and a blue information sign in the gutter (see fig-
ure 3.8). The message content may be shown as for other output (see also
§3.2). Some tools produce output with sendback markup, which means that
clicking on certain parts of the text inserts that into the source in the proper
place.

The following Isabelle system options control the behavior of automatically
tried tools (see also the jEdit dialog window Plugin Options / Isabelle /
General / Automatically tried tools):

• auto_methods controls automatic use of a combination of standard
proof methods (auto, simp, blast, etc.). This corresponds to the Isar
command try0 [5].

CHAPTER 3. PROVER IDE FUNCTIONALITY 37

Figure 3.8: Result of automatically tried tools

The tool is disabled by default, since unparameterized invocation of
standard proof methods often consumes substantial CPU resources
without leading to success.

• auto_nitpick controls a slightly reduced version of nitpick, which
tests for counterexamples using first-order relational logic. See also the
Nitpick manual [2].
This tool is disabled by default, due to the extra overhead of invoking
an external Java process for each attempt to disprove a subgoal.

• auto_quickcheck controls automatic use of quickcheck, which tests
for counterexamples using a series of assignments for free variables of
a subgoal.
This tool is enabled by default. It requires little overhead, but is a bit
weaker than nitpick.

• auto_sledgehammer controls a significantly reduced version of
sledgehammer, which attempts to prove a subgoal using external
automatic provers. See also the Sledgehammer manual [1].

CHAPTER 3. PROVER IDE FUNCTIONALITY 38

This tool is disabled by default, due to the relatively heavy nature of
Sledgehammer.

• auto_solve_direct controls automatic use of solve_direct, which
checks whether the current subgoals can be solved directly by an exist-
ing theorem. This also helps to detect duplicate lemmas.
This tool is enabled by default.

Invocation of automatically tried tools is subject to some global policies of
parallel execution, which may be configured as follows:

• auto_time_limit (default 2.0) determines the timeout (in seconds) for
each tool execution.

• auto_time_start (default 1.0) determines the start delay (in seconds)
for automatically tried tools, after the main command evaluation is
finished.

Each tool is submitted independently to the pool of parallel execution tasks in
Isabelle/ML, using hardwired priorities according to its relative “heaviness”.
The main stages of evaluation and printing of proof states take precedence,
but an already running tool is not canceled and may thus reduce reactivity
of proof document processing.
Users should experiment how the available CPU resources (number of cores)
are best invested to get additional feedback from prover in the background,
by using a selection of weaker or stronger tools.

3.8 Sledgehammer
The Sledgehammer panel (figure 3.9) provides a view on some independent
execution of the Isar command sledgehammer, with process indicator (spin-
ning wheel) and GUI elements for important Sledgehammer arguments and
options. Any number of Sledgehammer panels may be active, according to
the standard policies of Dockable Window Management in jEdit. Closing
such windows also cancels the corresponding prover tasks.
The Apply button attaches a fresh invocation of sledgehammer to the com-
mand where the cursor is pointing in the text — this should be some pending
proof problem. Further buttons like Cancel and Locate help to manage the
running process.

CHAPTER 3. PROVER IDE FUNCTIONALITY 39

Figure 3.9: An instance of the Sledgehammer panel

Results appear incrementally in the output window of the panel. Proposed
proof snippets are marked-up as sendback, which means a single mouse click
inserts the text into a suitable place of the original source. Some manual
editing may be required nonetheless, say to remove earlier proof attempts.

Chapter 4

Isabelle document preparation

The ultimate purpose of Isabelle is to produce nicely rendered documents
with the Isabelle document preparation system, which is based on LATEX;
see also [3, 5]. Isabelle/jEdit provides some additional support for document
editing.

4.1 Document outline
Theory sources may contain document markup commands, such as chapter,
section, subsection. The Isabelle SideKick parser (§2.5) represents this
document outline as structured tree view, with formal statements and proofs
nested inside; see figure 4.1.

Figure 4.1: Isabelle document outline via SideKick tree view

It is also possible to use text folding according to this structure, by adjust-
ing Utilities / Buffer Options / Folding mode of jEdit. The default mode

40

CHAPTER 4. ISABELLE DOCUMENT PREPARATION 41

isabelle uses the structure of formal definitions, statements, and proofs.
The alternative mode sidekick uses the document structure of the SideKick
parser, as explained above.

4.2 Markdown structure
Document text is internally structured in paragraphs and nested lists, using
notation that is similar to Markdown1. There are special control symbols
for items of different kinds of lists, corresponding to itemize, enumerate,
description in LATEX. This is illustrated in for itemize in figure 4.2.

Figure 4.2: Markdown structure within document text

Items take colour according to the depth of nested lists. This helps to explore
the implicit rules for list structure interactively. There is also markup for
individual paragraphs in the text: it may be explored via mouse hovering
with CONTROL / COMMAND as usual (§3.5).

4.3 Citations and BibTEX entries
Citations are managed by LATEX and BibTEX in .bib files. The Isabelle
session build process and the isabelle latex tool [3] are smart enough to
assemble the result, based on the session directory layout.

1http://commonmark.org

http://commonmark.org

CHAPTER 4. ISABELLE DOCUMENT PREPARATION 42

The document antiquotation @{cite} is described in [5]. Within the Prover
IDE it provides semantic markup for tooltips, hyperlinks, and completion
for BibTEX database entries. Isabelle/jEdit does not know about the actual
BibTEX environment used in LATEX batch-mode, but it can take citations
from those .bib files that happen to be open in the editor; see figure 4.3.

Figure 4.3: Semantic completion of citations from open BibTEX files

Isabelle/jEdit also provides some support for editing .bib files themselves.
There is syntax highlighting based on entry types (according to standard
BibTEX styles), a context-menu to compose entries systematically, and a
SideKick tree view of the overall content; see figure 4.4.

CHAPTER 4. ISABELLE DOCUMENT PREPARATION 43

Figure 4.4: BibTEX mode with context menu and SideKick tree view

Chapter 5

ML debugging within the
Prover IDE

Isabelle/ML is based on Poly/ML1 and thus benefits from the source-level
debugger of that implementation of Standard ML. The Prover IDE provides
the Debugger dockable to connect to running ML threads, inspect the stack
frame with local ML bindings, and evaluate ML expressions in a particular
run-time context. A typical debugger session is shown in figure 5.1.
ML debugging depends on the following pre-requisites.

1. ML source needs to be compiled with debugging enabled. This may
be controlled for particular chunks of ML sources using any of the
subsequent facilities.

(a) The system option ML_debugger as implicit state of the Isabelle
process. It may be changed in the menu Plugins / Plugin Op-
tions / Isabelle / General. ML modules need to be reloaded and
recompiled to pick up that option as intended.

(b) The configuration option ML_debugger , with an attribute of the
same name, to update a global or local context (e.g. with the
declare command).

(c) Commands that modify ML_debugger state for individual files:
ML_file_debug, ML_file_no_debug, SML_file_debug,
SML_file_no_debug.

The instrumentation of ML code for debugging causes minor run-time
overhead. ML modules that implement critical system infrastructure
may lead to deadlocks or other undefined behaviour, when put under
debugger control!

2. The Debugger panel needs to be active, otherwise the program ignores
debugger instrumentation of the compiler and runs unmanaged. It is

1http://www.polyml.org

44

http://www.polyml.org

CHAPTER 5. ML DEBUGGING WITHIN THE PROVER IDE 45

also possible to start debugging with the panel open, and later undock
it, to let the program continue unhindered.

3. The ML program needs to be stopped at a suitable breakpoint, which
may be activated individually or globally as follows.
For ML sources that have been compiled with debugger support, the
IDE visualizes possible breakpoints in the text. A breakpoint may be
toggled by pointing accurately with the mouse, with a right-click to
activate jEdit’s context menu and its Toggle Breakpoint item. Alter-
natively, the Break checkbox in the Debugger panel may be enabled to
stop ML threads always at the next possible breakpoint.

Note that the state of individual breakpoints gets lost when the corespond-
ing ML source is re-compiled! This may happen unintentionally, e.g. when
following hyperlinks into ML modules that have not been loaded into the
IDE before.

Figure 5.1: ML debugger session

The debugger panel (figure 5.1) shows a list of all threads that are presently
stopped. Each thread shows a stack of all function invocations that lead to
the current breakpoint at the top.

CHAPTER 5. ML DEBUGGING WITHIN THE PROVER IDE 46

It is possible to jump between stack positions freely, by clicking on this list.
The current situation is displayed in the big output window, as a local ML
environment with names and printed values.
ML expressions may be evaluated in the current context by entering snip-
pets of source into the text fields labeled Context and ML, and pushing the
Eval button. By default, the source is interpreted as Isabelle/ML with the
usual support for antiquotations (like ML, ML_file). Alternatively, strict
Standard ML may be enforced via the SML checkbox (like SML_file).
The context for Isabelle/ML is optional, it may evaluate to a value of type
theory, Proof.context, or Context.generic. Thus the given ML expres-
sion (with its antiquotations) may be subject to the intended dynamic run-
time context, instead of the static compile-time context.

The buttons labeled Continue, Step, Step over, Step out recommence ex-
ecution of the program, with different policies concerning nested function
invocations. The debugger always moves the cursor within the ML source to
the next breakpoint position, and offers new stack frames as before.

Chapter 6

Miscellaneous tools

6.1 Timing
Managed evaluation of commands within PIDE documents includes timing
information, which consists of elapsed (wall-clock) time, CPU time, and GC
(garbage collection) time. Note that in a multithreaded system it is difficult
to measure execution time precisely: elapsed time is closer to the real require-
ments of runtime resources than CPU or GC time, which are both subject
to influences from the parallel environment that are outside the scope of the
current command transaction.
The Timing panel provides an overview of cumulative command timings
for each document node. Commands with elapsed time below the given
threshold are ignored in the grand total. Nodes are sorted according to their
overall timing. For the document node that corresponds to the current buffer,
individual command timings are shown as well. A double-click on a theory
node or command moves the editor focus to that particular source position.
It is also possible to reveal individual timing information via some tooltip for
the corresponding command keyword, using the technique of mouse hovering
with CONTROL / COMMAND modifier (§3.5). Actual display of timing depends
on the global option jedit_timing_threshold, which can be configured in
Plugin Options / Isabelle / General.

The Monitor panel visualizes various data collections about recent activity
of the Isabelle/ML task farm and the underlying ML runtime system. The
display is continuously updated according to editor_chart_delay. Note
that the painting of the chart takes considerable runtime itself — on the
Java Virtual Machine that runs Isabelle/Scala, not Isabelle/ML. Internally,
the Isabelle/Scala module isabelle.ML_Statistics provides further access
to statistics of Isabelle/ML.

47

CHAPTER 6. MISCELLANEOUS TOOLS 48

6.2 Low-level output
Prover output is normally shown directly in the main text area or specific
panels like Output (§3.2) or State (§3.3). Beyond this, it is occasionally useful
to inspect low-level output channels via some of the following additional
panels:

• Protocol shows internal messages between the Isabelle/Scala and
Isabelle/ML side of the PIDE document editing protocol. Recording of
messages starts with the first activation of the corresponding dockable
window; earlier messages are lost.
Actual display of protocol messages causes considerable slowdown, so
it is important to undock all Protocol panels for production work.

• Raw Output shows chunks of text from the stdout and stderr chan-
nels of the prover process. Recording of output starts with the first
activation of the corresponding dockable window; earlier output is lost.
The implicit stateful nature of physical I/O channels makes it difficult
to relate raw output to the actual command from where it was originat-
ing. Parallel execution may add to the confusion. Peeking at physical
process I/O is only the last resort to diagnose problems with tools that
are not PIDE compliant.
Under normal circumstances, prover output always works via
managed message channels (corresponding to writeln, warning,
Output.error_message in Isabelle/ML), which are displayed by regu-
lar means within the document model (§3.2). Unhandled Isabelle/ML
exceptions are printed by the system via Output.error_message.

• Syslog shows system messages that might be relevant to diagnose prob-
lems with the startup or shutdown phase of the prover process; this
also includes raw output on stderr. Isabelle/ML also provides an ex-
plicit Output.system_message operation, which is occasionally useful
for diagnostic purposes within the system infrastructure itself.
A limited amount of syslog messages are buffered, independently of the
docking state of the Syslog panel. This allows to diagnose serious prob-
lems with Isabelle/PIDE process management, outside of the actual
protocol layer.
Under normal situations, such low-level system output can be ignored.

Chapter 7

Known problems and
workarounds

• Problem: Odd behavior of some diagnostic commands with global
side-effects, like writing a physical file.
Workaround: Copy/paste complete command text from elsewhere, or
disable continuous checking temporarily.

• Problem: No direct support to remove document nodes from the col-
lection of theories.
Workaround: Clear the buffer content of unused files and close without
saving changes.

• Problem: Keyboard shortcuts C+PLUS and C+MINUS for adjusting the
editor font size depend on platform details and national keyboards.
Workaround: Rebind keys via Global Options / Shortcuts.

• Problem: The Mac OS X key sequence COMMAND+COMMA for application
Preferences is in conflict with the jEdit default keyboard shortcut for
Incremental Search Bar (action quick-search).
Workaround: Rebind key via Global Options / Shortcuts according
to national keyboard, e.g. COMMAND+SLASH on English ones.

• Problem: On Mac OS X with native Apple look-and-feel, some exotic
national keyboards may cause a conflict of menu accelerator keys with
regular jEdit key bindings. This leads to duplicate execution of the
corresponding jEdit action.
Workaround: Disable the native Apple menu bar via Java runtime
option -Dapple.laf.useScreenMenuBar=false.

• Problem: Mac OS X system fonts sometimes lead to character drop-
outs in the main text area.
Workaround: Use the default IsabelleText font.

49

CHAPTER 7. KNOWN PROBLEMS AND WORKAROUNDS 50

• Problem: Mac OS X with Retina display has problems to determine
the font metrics of IsabelleText accurately, notably in plain Swing
text fields (e.g. in the Search and Replace dialog).
Workaround: Install IsabelleText and IsabelleTextBold on the
system with Font Book, despite the warnings in §2.2 against that!
The .ttf font files reside in some directory $ISABELLE_HOME/contrib/
isabelle_fonts-XYZ.

• Problem: Some Linux/X11 input methods such as IBus tend to dis-
rupt key event handling of Java/AWT/Swing.
Workaround: Do not use X11 input methods. Note that environment
variable XMODIFIERS is reset by default within Isabelle settings.

• Problem: Some Linux/X11 window managers that are not “re-
parenting” cause problems with additional windows opened by Java.
This affects either historic or neo-minimalistic window managers like
awesome or xmonad.
Workaround: Use a regular re-parenting X11 window manager.

• Problem: Various forks of Linux/X11 window managers and desktop
environments (like Gnome) disrupt the handling of menu popups and
mouse positions of Java/AWT/Swing.
Workaround: Use suitable version of Linux desktops.

• Problem: Full-screen mode via jEdit action toggle-full-screen (de-
fault keyboard shortcut F11) works on Windows, but not on Mac OS
X or various Linux/X11 window managers.
Workaround: Use native full-screen control of the window manager
(notably on Mac OS X).

Bibliography

[1] J. C. Blanchette. Hammering Away: A User’s Guide to Sledgehammer for
Isabelle/HOL. http://isabelle.in.tum.de/doc/sledgehammer.pdf.

[2] J. C. Blanchette. Picking Nits: A User’s Guide to Nitpick for Isabelle/HOL.
http://isabelle.in.tum.de/doc/nitpick.pdf.

[3] M. Wenzel. The Isabelle System Manual.
http://isabelle.in.tum.de/doc/system.pdf.

[4] M. Wenzel. The Isabelle/Isar Implementation.
http://isabelle.in.tum.de/doc/implementation.pdf.

[5] M. Wenzel. The Isabelle/Isar Reference Manual.
http://isabelle.in.tum.de/doc/isar-ref.pdf.

[6] M. Wenzel. Parallel proof checking in Isabelle/Isar. In G. Dos Reis and
L. Théry, editors, ACM SIGSAM Workshop on Programming Languages for
Mechanized Mathematics Systems (PLMMS 2009). ACM Digital Library,
2009.

[7] M. Wenzel. Asynchronous proof processing with Isabelle/Scala and
Isabelle/jEdit. In C. S. Coen and D. Aspinall, editors, User Interfaces for
Theorem Provers (UITP 2010), FLOC 2010 Satellite Workshop, ENTCS.
Elsevier, July 2010.

[8] M. Wenzel. Isabelle as document-oriented proof assistant. In J. H.
Davenport, W. M. Farmer, F. Rabe, and J. Urban, editors, Conference on
Intelligent Computer Mathematics / Mathematical Knowledge Management
(CICM/MKM 2011), volume 6824 of LNAI. Springer, 2011.

[9] M. Wenzel. Isabelle/jEdit — a Prover IDE within the PIDE framework. In
J. Jeuring et al., editors, Conference on Intelligent Computer Mathematics
(CICM 2012), volume 7362 of LNAI. Springer, 2012.

[10] M. Wenzel. READ-EVAL-PRINT in parallel and asynchronous
proof-checking. In User Interfaces for Theorem Provers (UITP 2012),
EPTCS, 2013.

51

http://isabelle.in.tum.de/doc/sledgehammer.pdf
http://isabelle.in.tum.de/doc/nitpick.pdf
http://isabelle.in.tum.de/doc/system.pdf
http://isabelle.in.tum.de/doc/implementation.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf

BIBLIOGRAPHY 52

[11] M. Wenzel. Shared-memory multiprocessing for interactive theorem proving.
In S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors, Interactive
Theorem Proving — 4th International Conference, ITP 2013, Rennes,
France, July 22-26, 2013. Proceedings, volume 7998 of Lecture Notes in
Computer Science. Springer, 2013.

[12] M. Wenzel. Asynchronous user interaction and tool integration in
Isabelle/PIDE. In G. Klein and R. Gamboa, editors, 5th International
Conference on Interactive Theorem Proving, ITP 2014, volume 8558 of
Lecture Notes in Computer Science. Springer, 2014.

[13] M. Wenzel. System description: Isabelle/jEdit in 2014. In C. Benzmüller
and B. Woltzenlogel Paleo, editors, User Interfaces for Theorem Provers
(UITP 2014), EPTCS, July 2014.
http://eptcs.web.cse.unsw.edu.au/paper.cgi?UITP2014:11.

http://eptcs.web.cse.unsw.edu.au/paper.cgi?UITP2014:11

Index

auto_methods (system option), 36
auto_nitpick (system option), 37
auto_quickcheck (system option), 37
auto_sledgehammer (system option),

37
auto_solve_direct (system option),

38
auto_time_limit (system option), 38
auto_time_start (system option), 38

chapter (command), 40
complete-word (action), 28, 33
completion_limit (system option),

31, 35

editor_chart_delay (system option),
47

find_consts (command), 26
find_theorems (command), 26

isabelle.complete (action), 28, 32, 33
isabelle.complete-word (action), 32,

33
isabelle.control-bold (action), 14
isabelle.control-emph (action), 14
isabelle.control-reset (action), 14
isabelle.control-sub (action), 14
isabelle.control-sup (action), 14
isabelle.exclude-word (action), 32
isabelle.exclude-word-permanently

(action), 32
isabelle.include-word (action), 32
isabelle.include-word-permanently

(action), 32
isabelle.options (action), 5

isabelle.reset-font-size (action), 8

jedit (tool), 5
jedit_client (tool), 6
jedit_completion (system option),

33, 35
jedit_completion_context (system

option), 35
jedit_completion_delay (system op-

tion), 33, 35
jedit_completion_immediate (sys-

tem option), 33, 35
jedit_completion_path_ignore (sys-

tem option), 35
jedit_completion_select_enter (sys-

tem option), 35
jedit_completion_select_tab (sys-

tem option), 35
jedit_print_mode (system option), 6
jedit_timing_threshold (system op-

tion), 47
JORTHO_DICTIONARIES (set-

ting), 36

ML_debugger (attribute), 44
ML_debugger (system option), 44
ML_file (command), 18, 19
ML_file_debug (command), 44
ML_file_no_debug (command), 44

nitpick (command), 37

print_cases (command), 26
print_context (command), 26
print_term_bindings (command), 26
print_theorems (command), 26

53

INDEX 54

quick-search (action), 49
quickcheck (command), 37

section (command), 40
sledgehammer (command), 37, 38
SML_file (command), 18, 19
SML_file_debug (command), 44
SML_file_no_debug (command), 44
solve_direct (command), 38
spell_checker (system option), 36
spell_checker_color (system option),

31
spell_checker_dictionary (system

option), 36
spell_checker_elements (system op-

tion), 36

theory (command), 17
toggle-full-screen (action), 50
try0 (command), 36

	Introduction
	Concepts and terminology
	The Isabelle/jEdit Prover IDE
	Documentation
	Plugins
	Options
	Keymaps

	Command-line invocation
	GUI rendering
	Look-and-feel
	Displays with very high resolution

	Augmented jEdit functionality
	Dockable windows
	Isabelle symbols
	Scala console
	File-system access
	SideKick parsers

	Prover IDE functionality
	Document model
	Editor buffers and document nodes
	Theories
	Auxiliary files

	Output
	Proof state
	Query
	Find theorems
	Find constants
	Print context

	Tooltips and hyperlinks
	Completion
	Varieties of completion
	Semantic completion context
	Input events
	Completion popup
	Insertion
	Options

	Automatically tried tools
	Sledgehammer

	Isabelle document preparation
	Document outline
	Markdown structure
	Citations and BibTeX entries

	ML debugging within the Prover IDE
	Miscellaneous tools
	Timing
	Low-level output

	Known problems and workarounds
	Bibliography
	Index

