Old Isabelle Reference Manual

Lawrence C. Paulson
Computer Laboratory
University of Cambridge
lcp@cl.cam.ac.uk

With Contributions by Tobias Nipkow and Markus Wenzel

22 May 2012

Note: this document is part of the earlier Isabelle documentation and is
mostly outdated. Fully obsolete parts of the original text have already been
removed. The remaining material covers some aspects that did not make it
into the newer manuals yet.

Acknowledgements

Tobias Nipkow, of T. U. Munich, wrote most of Chapters ?? and 5. Markus
Wenzel contributed to Chapter 3. Jeremy Dawson, Sara Kalvala, Martin
Simons and others suggested changes and corrections. The research has
been funded by the EPSRC (grants GR/G53279, GR/H40570, GR/K57381,
GR/K77051, GR/M75440) and by ESPRIT (projects 3245: Logical Frame-
works, and 6453: Types), and by the DFG Schwerpunktprogramm Deduktion.

Contents

1 Tactics

1.1

1.2

2
2.1
2.2
2.3
3
3.1
3.2

3.3
3.4
3.5

Other basic tactics
1.1.1 Inserting premises and facts
1.1.2 Composition: resolution without lifting
*Managing lots of rules
1.2.1 Combined resolution and elim-resolution
1.2.2 Discrimination nets for fast resolution.

Theorems and Forward Proof

2.0.3 Instantiating unknowns in a theorem
2.0.4 Miscellaneous forward rules
2.0.5 Taking a theorem apart
2.0.6 *Sort hypotheses
2.0.7 Tracing flags for unification
*Primitive meta-level inference rules
2.1.1 Logical equivalence rules
2.1.2 Equality rules oL
2.1.3 The A-conversion rules
Derived rules for goal-directed proof
2.21 Resolution
2.2.2 Composition: resolution without lifting
2.2.3 Other meta-rules
Proof terms
2.3.1 Reconstructing and checking proof terms
2.3.2 Parsing and printing proof terms

Syntax Transformations

Abstract syntax trees
Transforming parse trees to ASTs
Transforming ASTs to terms
Printing of termso oo
Macros: syntactic rewriting
3.5.1 Specifying macros
3.5.2 Applyingrules.

i

CONTENTS

3.5.3 Example: the syntax of finitesets
3.5.4 Example: a parse macro for dependent types

3.6 Translation functions
3.6.1 Declaring translation functions
3.6.2 The translation strategy
3.6.3 Example: a print translation for dependent types

Substitution Tactics

4.1 Substitutionrules
4.2 Substitution in the hypotheses
4.3 Setting up the packageo

Simplification
5.1 Simplification for dummies
5.1.1 Simplification tactics
5.1.2 Modifying the current simpset
5.2 Simplification setso
5.2.1 Inspecting simpsets,
5.2.2 Building simpsetso
5.2.3 Rewriterules L.
5.2.4 *The subgoaler
525 *Thesolver
5.2.6 *Thelooper
5.3 The simplification tactics
5.4 Forward rules and conversions
5.5 Permutative rewriterules L
5.5.1 Example: sums of natural numbers
5.5.2 Re-orienting equalities
5.6 *Setting up the Simplifier
5.6.1 A collection of standard rewrite rules
5.6.2 Functions for preprocessing the rewrite rules
5.6.3 Making the initial simpset

The Classical Reasoner

6.1 Classicalrulesets,
6.1.1 Modifying the search step

6.2 The classical tactics
6.2.1 Other classical tactics
6.2.2 Other useful tactics

6.3 Setting up the classical reasoner

111

27
28
29
29
30
31

33
33
34
35

CONTENTS

v

Chapter 1

Tactics

1.1 Other basic tactics

1.1.1 Inserting premises and facts

cut_facts_tac : thm list -> int -> tactic

These tactics add assumptions to a subgoal.

cut_facts_tac thms ¢ adds the thms as new assumptions to subgoal i.
Once they have been inserted as assumptions, they become subject
to tactics such as eresolve_tac and rewrite_goals_tac. Only rules
with no premises are inserted: Isabelle cannot use assumptions that
contain = or A. Sometimes the theorems are premises of a rule being
derived, returned by goal; instead of calling this tactic, you could state
the goal with an outermost meta-quantifier.

1.1.2 Composition: resolution without lifting

compose_tac: (bool * thm * int) -> int -> tactic

Composing two rules means resolving them without prior lifting or renam-
ing of unknowns. This low-level operation, which underlies the resolution
tactics, may occasionally be useful for special effects. A typical application
is res_inst_tac, which lifts and instantiates a rule, then passes the result
to compose_tac.

compose_tac (flag, rule, m) 4 refines subgoal i using rule, without lift-
ing. The rule is taken to have the form [¢y;...;v¢,] = 9, where ¢
need not be atomic; thus m determines the number of new subgoals.
If flag is true then it performs elim-resolution — it solves the first
premise of rule by assumption and deletes that assumption.

CHAPTER 1. TACTICS 2

1.2 *Managing lots of rules

These operations are not intended for interactive use. They are concerned
with the processing of large numbers of rules in automatic proof strategies.
Higher-order resolution involving a long list of rules is slow. Filtering tech-
niques can shorten the list of rules given to resolution, and can also detect
whether a subgoal is too flexible, with too many rules applicable.

1.2.1 Combined resolution and elim-resolution

biresolve_tac : (bool*thm)list -> int -> tactic
bimatch_tac : (bool*thm)list -> int -> tactic
subgoals_of_brl : bool*thm -> int

lessb : (bool*thm) * (bool*thm) -> bool

Bi-resolution takes a list of (flag, rule) pairs. For each pair, it applies
resolution if the flag is false and elim-resolution if the flag is true. A single
tactic call handles a mixture of introduction and elimination rules.

biresolve_tac brls ¢ refines the proof state by resolution or elim-resolution
on each rule, as indicated by its flag. It affects subgoal i of the proof
state.

bimatch_tac is like biresolve_tac, but performs matching: unknowns in
the proof state are never updated (see §77).

subgoals_of_brl(flag,rule) returns the number of new subgoals that bi-
resolution would yield for the pair (if applied to a suitable subgoal).
This is n if the flag is false and n — 1 if the flag is true, where n is
the number of premises of the rule. Elim-resolution yields one fewer
subgoal than ordinary resolution because it solves the major premise
by assumption.

lessb (brll,brl2) returns the result of
subgoals_of_brl brll < subgoals_of_brl bri2
Note that sort lessb bris sorts a list of (flag, rule) pairs by the number

of new subgoals they will yield. Thus, those that yield the fewest subgoals
should be tried first.

CHAPTER 1. TACTICS 3

1.2.2 Discrimination nets for fast resolution

net_resolve_tac : thm list -> int -> tactic

net_match_tac : thm list -> int -> tactic

net_biresolve_tac: (bool*thm) list -> int -> tactic

net_bimatch_tac : (bool*thm) list -> int -> tactic

filt_resolve_tac : thm list -> int -> int -> tactic

could_unify : term*term->bool

filter_thms : (term*term->bool) -> int*term*thm list -> thmlist

The module Net implements a discrimination net data structure for fast selec-
tion of rules [3, Chapter 14]. A term is classified by the symbol list obtained
by flattening it in preorder. The flattening takes account of function appli-
cations, constants, and free and bound variables; it identifies all unknowns
and also regards A-abstractions as unknowns, since they could n-contract to
anything.

A discrimination net serves as a polymorphic dictionary indexed by terms.
The module provides various functions for inserting and removing items from
nets. It provides functions for returning all items whose term could match or
unify with a target term. The matching and unification tests are overly lax
(due to the identifications mentioned above) but they serve as useful filters.

A net can store introduction rules indexed by their conclusion, and elim-
ination rules indexed by their major premise. Isabelle provides several func-
tions for ‘compiling’ long lists of rules into fast resolution tactics. When
supplied with a list of theorems, these functions build a discrimination net;
the net is used when the tactic is applied to a goal. To avoid repeatedly con-
structing the nets, use currying: bind the resulting tactics to ML identifiers.

net_resolve_tac thms builds a discrimination net to obtain the effect of a
similar call to resolve_tac.

net_match_tac thms builds a discrimination net to obtain the effect of a
similar call to match_tac.

net_biresolve_tac brils builds a discrimination net to obtain the effect of
a similar call to biresolve_tac.

net_bimatch_tac brls builds a discrimination net to obtain the effect of a
similar call to bimatch_tac.

filt_resolve_tac thms maxr ¢ uses discrimination nets to extract the
thms that are applicable to subgoal 7. If more than maxr theorems
are applicable then the tactic fails. Otherwise it calls resolve_tac.

This tactic helps avoid runaway instantiation of unknowns, for example
in type inference.

CHAPTER 1. TACTICS 4

could_unify (¢,u) returns false if ¢ and u are ‘obviously’ non-unifiable,
and otherwise returns true. It assumes all variables are distinct, re-
porting that 7a=7a may unify with 0=1.

filter_thms could (limit, prem, thms) returns the list of potentially resolv-
able rules (in thms) for the subgoal prem, using the predicate could to
compare the conclusion of the subgoal with the conclusion of each rule.
The resulting list is no longer than limit.

Chapter 2

Theorems and Forward Proof

Theorems, which represent the axioms, theorems and rules of object-logics,
have type thm. This chapter describes operations that join theorems in for-
ward proof. Most theorem operations are intended for advanced applications,
such as programming new proof procedures.

2.0.3 Instantiating unknowns in a theorem

read_instantiate : (string*string) list -> thm -> thm
read_instantiate_sg : Sign.sg -> (string*string) list -> thm -> thm
cterm_instantiate : (ctermxcterm) list -> thm -> thm
instantiate’ : ctyp option list -> cterm option list -> thm -> thm

These meta-rules instantiate type and term unknowns in a theorem. They
are occasionally useful. They can prevent difficulties with higher-order uni-
fication, and define specialized versions of rules.

read_instantiate insts thm processes the instantiations insts and instan-
tiates the rule thm. The processing of instantiations is described in
§7?, under res_inst_tac.

Use res_inst_tac, not read_instantiate, to instantiate a rule and
refine a particular subgoal. The tactic allows instantiation by the sub-
goal’s parameters, and reads the instantiations using the signature as-
sociated with the proof state.

Use read_instantiate_sg below if insts appears to be treated incor-
rectly.

read_instantiate_sg sg insts thm is like read_instantiate insts thm,
but it reads the instantiations under signature sg. This is necessary to
instantiate a rule from a general theory, such as first-order logic, using
the notation of some specialized theory. Use the function sign_of to
get a theory’s signature.

cterm_instantiate ctpairs thm is similar to read_instantiate, but the
instantiations are provided as pairs of certified terms, not as strings to
be read.

CHAPTER 2. THEOREMS AND FORWARD PROOF 6

instantiate’ ctyps cterms thm instantiates thm according to the posi-
tional arguments ctyps and cterms. Counting from left to right,
schematic variables 7z are either replaced by ¢ for any argument Some ¢,
or left unchanged in case of None or if the end of the argument list is
encountered. Types are instantiated before terms.

2.0.4 Miscellaneous forward rules

standard : thm -> thm
zero_var_indexes : thm -> thm
make_elim : thm -> thm
rule_by_tactic : tactic -> thm -> thm
rotate_prems : int -> thm -> thm
permute_prems : int -> int -> thm -> thm
rearrange_prems int list -> thm -> thm

standard thm puts thm into the standard form of object-rules. It discharges
all meta-assumptions, replaces free variables by schematic variables,
renames schematic variables to have subscript zero, also strips outer
(meta) quantifiers and removes dangling sort hypotheses.

zero_var_indexes thm makes all schematic variables have subscript zero,
renaming them to avoid clashes.

make_elim thm converts thm, which should be a destruction rule of the form
[Pi;...; Pn] = @, to the elimination rule [Py;...; Pp; Q@ = R] =
R. This is the basis for destruct-resolution: dresolve_tac, etc.

rule_by_tactic tac thm applies tac to the thm, freezing its variables first,
then yields the proof state returned by the tactic. In typical usage,
the thm represents an instance of a rule with several premises, some
with contradictory assumptions (because of the instantiation). The
tactic proves those subgoals and does whatever else it can, and returns
whatever is left.

rotate_prems k thm rotates the premises of thm to the left by k positions
(to the right if £ < 0). It simply calls permute_prems, below, with
j = 0. Used with eresolve_tac, it gives the effect of applying the
tactic to some other premise of thm than the first.

permute_prems j k thm rotates the premises of thm leaving the first j
premises unchanged. It requires 0 < j < n, where n is the num-
ber of premises. If k£ is positive then it rotates the remaining n — j
premises to the left; if k is negative then it rotates the premises to the
right.

CHAPTER 2. THEOREMS AND FORWARD PROOF 7

rearrange_prems ps thm permutes the premises of thm where the value
at the i-th position (counting from 0) in the list ps gives the position
within the original thm to be transferred to position 7. Any remaining
trailing positions are left unchanged.

2.0.5 Taking a theorem apart

cprop_of : thm -> cterm

concl_of : thm -> term

prems_of : thm -> term list
cprems_of : thm -> cterm list
nprems_of : thm -> int

tpairs_of : thm -> (term*term) list

theory_of_thm : thm -> theory

cprop_of thm returns the statement of thm as a certified term.
concl_of thm returns the conclusion of thm as a term.

prems_of thm returns the premises of thm as a list of terms.
cprems_of thm returns the premises of thm as a list of certified terms.

nprems_of thm returns the number of premises in thm, and is equivalent to
length (prems_of thm).

tpairs_of thm returns the flex-flex constraints of thm.

theory_of_thm thm returns the theory associated with thm. Note that this
does a lookup in Isabelle’s global database of loaded theories.

2.0.6 *Sort hypotheses

strip_shyps : thm -> thm
strip_shyps_warning : thm -> thm

Isabelle’s type variables are decorated with sorts, constraining them to
certain ranges of types. This has little impact when sorts only serve for
syntactic classification of types — for example, FOL distinguishes between
terms and other types. But when type classes are introduced through axioms,
this may result in some sorts becoming empty: where one cannot exhibit a
type belonging to it because certain sets of axioms are unsatisfiable.

If a theorem contains a type variable that is constrained by an empty sort,
then that theorem has no instances. It is basically an instance of ex falso
quodlibet. But what if it is used to prove another theorem that no longer

CHAPTER 2. THEOREMS AND FORWARD PROOF 8

involves that sort? The latter theorem holds only if under an additional
non-emptiness assumption.

Therefore, Isabelle’s theorems carry around sort hypotheses. The shyps
field is a list of sorts occurring in type variables in the current prop and hyps
fields. It may also includes sorts used in the theorem’s proof that no longer
appear in the prop or hyps fields — so-called dangling sort constraints. These
are the critical ones, asserting non-emptiness of the corresponding sorts.

Isabelle automatically removes extraneous sorts from the shyps field at
the end of a proof, provided that non-emptiness can be established by looking
at the theorem’s signature: from the classes and arities information. This
operation is performed by strip_shyps and strip_shyps_warning.

strip_shyps thm removes any extraneous sort hypotheses that can be wit-
nessed from the type signature.

strip_shyps_warning is like strip_shyps, but issues a warning message of
any pending sort hypotheses that do not have a (syntactic) witness.

2.0.7 Tracing flags for unification

Unify.trace_simp : bool ref initially false
Unify.trace_types : bool ref initially false
Unify.trace_bound : int ref initially 10
Unify.search_bound : int ref initially 20

Tracing the search may be useful when higher-order unification behaves un-
expectedly. Letting res_inst_tac circumvent the problem is easier, though.

set Unify.trace_simp; causes tracing of the simplification phase.

set Unify.trace_types; generates warnings of incompleteness, when uni-
fication is not considering all possible instantiations of type unknowns.

Unify.trace_bound := n; causes unification to print tracing information
once it reaches depth n. Use n = 0 for full tracing. At the default
value of 10, tracing information is almost never printed.

Unify.search_bound := n; prevents unification from searching past the
depth n. Because of this bound, higher-order unification cannot return
an infinite sequence, though it can return an exponentially long one.
The search rarely approaches the default value of 20. If the search is
cut off, unification prints a warning Unification bound exceeded.

CHAPTER 2. THEOREMS AND FORWARD PROOF 9

2.1 *Primitive meta-level inference rules

2.1.1 Logical equivalence rules
equal_intr : thm -> thm -> thm
equal_elim : thm -> thm -> thm

equal_intr thmy thmy applies (=I) to thm; and thmy. It maps the
premises 1 and ¢ to the conclusion ¢ = 1; the assumptions are those
of the first premise with ¢ removed, plus those of the second premise
with ¢ removed.

equal_elim thmy thmy applies (=F) to thmy; and thmy. It maps the

premises ¢ = ¢ and ¢ to the conclusion).

2.1.2 Equality rules

reflexive : cterm -> thm
symmetric : thm -> thm
transitive : thm -> thm -> thm

reflexive ct makes the theorem ct = ct.
symmetric thm maps the premise a = b to the conclusion b = a.
transitive thm; thms maps the premises a = b and b = ¢ to the conclu-

sion a = c.

2.1.3 The)\-conversion rules

beta_conversion : cterm -> thm

extensional : thm -> thm
abstract_rule : string -> cterm -> thm -> thm
combination : thm -> thm -> thm

There is no rule for a-conversion because Isabelle regards a-convertible the-
orems as equal.

beta_conversion ct makes the theorem ((Az . a)(b)) = a[b/z], where ct is
the term (Az . a)(b).

extensional thm maps the premise f(z) = g(z) to the conclusion f = g.
Parameter z is taken from the premise. It may be an unknown or a
free variable (provided it does not occur in the assumptions); it must
not occur in f or g.

CHAPTER 2. THEOREMS AND FORWARD PROOF 10

abstract_rule v z thm maps the premise ¢ = b to the conclusion (Az .
a) = (A\z . b), abstracting over all occurrences (if any!) of z. Parame-
ter z is supplied as a cterm. It may be an unknown or a free variable
(provided it does not occur in the assumptions). In the conclusion, the
bound variable is named v.

combination thm; thmy maps the premises f = g and a = b to the conclu-

sion f(a) = g(b).

2.2 Derived rules for goal-directed proof

Most of these rules have the sole purpose of implementing particular tactics.
There are few occasions for applying them directly to a theorem.

2.2.1 Resolution

biresolution : bool -> (bool*thm)list -> int -> thm
-> thm Seq.seq

biresolution match rules i state performs bi-resolution on subgoal ¢ of
state, using the list of (flag, rule) pairs. For each pair, it applies res-
olution if the flag is false and elim-resolution if the flag is true. If
match is true, the state is not instantiated.

2.2.2 Composition: resolution without lifting

compose : thm * int * thm -> thm list

COMP : thm * thm -> thm

bicompose : bool -> bool * thm * int -> int -> thm
-> thm Seq.seq

In forward proof, a typical use of composition is to regard an assertion of the
form ¢ = 1 as atomic. Schematic variables are not renamed, so beware of
clashes!

compose (thmy, i, thmy) uses thm;, regarded as an atomic formula, to
solve premise ¢ of thmy. Let thmy and thmy be ¢ and [¢y;. .. ¢,] = ¢.
For each s that unifies v and ¢;, the result list contains the theorem

([f15. - 5 0im1; Big1s .. ;] = @)s.

CHAPTER 2. THEOREMS AND FORWARD PROOF 11

thm; COMP thms calls compose (thm;, 1, thmy) and returns the result, if
unique; otherwise, it raises exception THM. It is analogous to RS.

For example, suppose that thm; is a = b = b = a, a symmetry
rule, and that thmy is [P = @; Q] = —P, which is the principle
of contrapositives. Then the result would be the derived rule —(b =
a) = —(a =0).

bicompose match (flag, rule, m) i state refines subgoal i of state us-
ing rule, without lifting. The rule is taken to have the form
[t ... ;] = 1, where ¢ need not be atomic; thus m determines the
number of new subgoals. If flag is true then it performs elim-resolution
— it solves the first premise of rule by assumption and deletes that as-
sumption. If match is true, the state is not instantiated.

2.2.3 Other meta-rules

rename_params_rule : string list * int -> thm -> thm

rename_params_rule (names,) thm uses the names to rename the pa-
rameters of premise i of thm. The names must be distinct. If there
are fewer names than parameters, then the rule renames the innermost
parameters and may modify the remaining ones to ensure that all the
parameters are distinct.

2.3 Proof terms

Isabelle can record the full meta-level proof of each theorem. The proof term
contains all logical inferences in detail. Resolution and rewriting steps are
broken down to primitive rules of the meta-logic. The proof term can be
inspected by a separate proof-checker, for example.

According to the well-known Curry-Howard isomorphism, a proof can be
viewed as a A-term. Following this idea, proofs in Isabelle are internally
represented by a datatype similar to the one for terms described in §77.

CHAPTER 2. THEOREMS AND FORWARD PROOF 12

infix 8 % %%;

datatype proof =

PBound of int

Abst of string * typ option * proof

AbsP of string * term option * proof

op % of proof * term option

op %% of proof * proof

Hyp of term

PThm of (string * (string * string list) list) *
proof * term * typ list option

| PAxm of string * term * typ list option

| Oracle of string * term * typ list option

| MinProof of proof list;

Abst (a, 7, prf) is the abstraction over a term wvariable of type 7 in the
body prf. Logically, this corresponds to A introduction. The name a
is used only for parsing and printing.

AbsP (a, ¢, prf) is the abstraction over a proof variable standing for a
proof of proposition ¢ in the body prf. This corresponds to = intro-
duction.

prf % t is the application of proof prf to term ¢ which corresponds to A
elimination.

prfi %%k prfy is the application of proof prf; to proof prfy which corresponds
to = elimination.

PBound i is a proof variable with de Bruijn [4] index i.
Hyp ¢ corresponds to the use of a meta level hypothesis .

PThm ((name, tags), prf, ¢, T) stands for a pre-proved theorem, where
name is the name of the theorem, prf is its actual proof, ¢ is the proven
proposition, and 7 is a type assignment for the type variables occurring
in the proposition.

PAxm (name, @, T) corresponds to the use of an axiom with name name
and proposition ¢, where 7 is a type assignment for the type variables
occurring in the proposition.

Oracle (name, ¢, T) denotes the invocation of an oracle with name name
which produced a proposition ¢, where 7 is a type assignment for the
type variables occurring in the proposition.

CHAPTER 2. THEOREMS AND FORWARD PROOF 13

MinProof prfs represents a minimal proof where prfs is a list of theorems,
axioms or oracles.

Note that there are no separate constructors for abstraction and application
on the level of types, since instantiation of type variables is accomplished via
the type assignments attached to Thm, Axm and Oracle.

Each theorem’s derivation is stored as the der field of its internal record:

#2 (#der (rep_thm conjI));
PThm (("HOL.conjI", [1),
AbsP ("H", None, AbsP ("H", Nomne, ...)), ..., None)
None 7, None : Proofterm.proof

This proof term identifies a labelled theorem, conjI of theory HOL, whose
underlying proof is AbsP ("H", None, AbsP ("H", None, ...)). The the-
orem is applied to two (implicit) term arguments, which correspond to the
two variables occurring in its proposition.

Isabelle’s inference kernel can produce proof objects with different levels
of detail. This is controlled via the global reference variable proofs:

proofs := 0; only record uses of oracles

proofs := 1; record uses of oracles as well as dependencies on other theo-
rems and axioms

proofs := 2; record inferences in full detail

Reconstruction and checking of proofs as described in §2.3.1 will not work for
proofs constructed with proofs set to 0 or 1. Theorems involving oracles will
be printed with a suffixed [!] to point out the different quality of confidence
achieved.

The dependencies of theorems can be viewed using the function thm_deps:

thm_deps [thmy, ..., thm,];

generates the dependency graph of the theorems thmy, ..., thm, and displays
it using Isabelle’s graph browser. For this to work properly, the theorems in
question have to be proved with proofs set to a value greater than 0. You
can use

ThmDeps.enable : unit -> unit
ThmDeps.disable : unit -> unit

to set proofs appropriately.

CHAPTER 2. THEOREMS AND FORWARD PROOF 14

2.3.1 Reconstructing and checking proof terms

When looking at the above datatype of proofs more closely, one notices that
some arguments of constructors are optional. The reason for this is that
keeping a full proof term for each theorem would result in enormous memory
requirements. Fortunately, typical proof terms usually contain quite a lot of
redundant information that can be reconstructed from the context. There-
fore, Isabelle’s inference kernel creates only partial (or implicit) proof terms,
in which all typing information in terms, all term and type labels of abstrac-
tions AbsP and Abst, and (if possible) some argument terms of % are omitted.
The following functions are available for reconstructing and checking proof
terms:

Reconstruct.reconstruct_proof :

Sign.sg -> term —-> Proofterm.proof -> Proofterm.proof
Reconstruct.expand_proof :

Sign.sg -> string list -> Proofterm.proof -> Proofterm.proof
ProofChecker.thm_of_proof : theory -> Proofterm.proof -> thm

Reconstruct.reconstruct_proof sg t prf turns the partial proof prf
into a full proof of the proposition denoted by ¢, with respect to signa-
ture sg. Reconstruction will fail with an error message if prf is not a
proof of t, is ill-formed, or does not contain sufficient information for
reconstruction by higher order pattern unification [6, 1]. The latter may
only happen for proofs built up “by hand” but not for those produced
automatically by Isabelle’s inference kernel.

Reconstruct.expand_proof sg [name;, ..., name,] prf expands and
reconstructs the proofs of all theorems with names namey, ..., name,
in the (full) proof prf.

ProofChecker.thm_of _proof thy prf turns the (full) proof prf into a the-
orem with respect to theory thy by replaying it using only primitive
rules from Isabelle’s inference kernel.

2.3.2 Parsing and printing proof terms

[sabelle offers several functions for parsing and printing proof terms. The
concrete syntax for proof terms is described in Fig.2.1. Implicit term argu-
ments in partial proofs are indicated by “_”. Type arguments for theorems
and axioms may be specified using % or with an argument of the form
TYPE (type) (see §?7). They must appear before any other term argument of
a theorem or axiom. In contrast to term arguments, type arguments may be
completely omitted.

(132

CHAPTER 2. THEOREMS AND FORWARD PROOF 15

proof = Lam params. proof | Aparams. proof
| proof % any | proof - any
| proof %% proof | proof - proof
| id | longid
param = 4dt | idt : prop | (param)
params = param | param params

Figure 2.1: Proof term syntax

ProofSyntax.read_proof : theory -> bool -> string -> Proofterm.proof
ProofSyntax.pretty_proof : Sign.sg -> Proofterm.proof -> Pretty.T
ProofSyntax.pretty_proof_of : bool -> thm -> Pretty.T
ProofSyntax.print_proof_of : bool -> thm -> unit

The function read_proof reads in a proof term with respect to a given
theory. The boolean flag indicates whether the proof term to be parsed
contains explicit typing information to be taken into account. Usually, typing
information is left implicit and is inferred during proof reconstruction. The
pretty printing functions operating on theorems take a boolean flag as an
argument which indicates whether the proof term should be reconstructed
before printing.

The following example (based on Isabelle/HOL) illustrates how to parse
and check proof terms. We start by parsing a partial proof term

val prf = ProofSyntax.read_proof Main.thy false
"impl % _ % _ %% (Lam H : _. conjE % _ % _ % _ W% H %%
(Lam (H1 : _) H2 : _. conjI % _ % _ %% H2 %% H1))";
val prf = PThm (("HOL.impI", []), ..., ..., None) 7, None 7, None %}
AbsP ("H", None, PThm (("HOL.conjE", [1), ..., ..., None) 7
None J, None J, None }7 PBound 0 77
AbsP ("H1", None, AbsP ("H2", None, ...))) : Proofterm.proof

The statement to be established by this proof is

val t = term_of
(read_cterm (sign_of Main.thy) ("A & B --> B & A", propT));
val t = Const ("Trueprop", "bool => prop") $
(Const ("op -->", "[bool, bool] => bool") $
... $... : Term.term

Using t we can reconstruct the full proof

CHAPTER 2. THEOREMS AND FORWARD PROOF 16

val prf’ = Reconstruct.reconstruct_proof (sign_of Main.thy) t prf;
val prf’ = PThm (("HOL.impI", []), ..., ..., Some []) /%
Some (Const ("op &", ...) $ Free ("A", ...) $ Free ("B", ...)) 1
Some (Const ("op &", ...) $ Free ("B", ...) $ Free ("A", ...)) 1%
AbsP ("H", Some (Const ("Trueprop", ...) $...), ...)

: Proofterm.proof

This proof can finally be turned into a theorem

val thm = ProofChecker.thm_of_proof Main.thy prf’;
val thm = "A & B --> B & A" : Thm.thm

Chapter 3

Syntax Transformations

This chapter is intended for experienced Isabelle users who need to define
macros or code their own translation functions. It describes the transforma-
tions between parse trees, abstract syntax trees and terms.

3.1 Abstract syntax trees

The parser, given a token list from the lexer, applies productions to yield a
parse tree. By applying some internal transformations the parse tree becomes
an abstract syntax tree, or AST. Macro expansion, further translations and
finally type inference yields a well-typed term. The printing process is the
reverse, except for some subtleties to be discussed later.

Figure 3.1 outlines the parsing and printing process. Much of the com-
plexity is due to the macro mechanism. Using macros, you can specify most
forms of concrete syntax without writing any ML code.

Abstract syntax trees are an intermediate form between the raw parse
trees and the typed A-terms. An AST is either an atom (constant or variable)
or a list of at least two subtrees. Internally, they have type Syntax.ast:

datatype ast = Constant of string

| Variable of string
| Appl of ast list

[sabelle uses an S-expression syntax for abstract syntax trees. Constant
atoms are shown as quoted strings, variable atoms as non-quoted strings and
applications as a parenthesised list of subtrees. For example, the AST

Appl [Constant "_constrain",
Appl [Constant "_abs", Variable "x", Variable "t"],
Appl [Constant "fun", Variable "’a", Variable "’b"]]

is shown as ("_constrain" ("_abs" x t) ("fun" ’a ’b)). Both () and
(£) are illegal because they have too few subtrees.

The resemblance to Lisp’s S-expressions is intentional, but there are two
kinds of atomic symbols: Constantz and Variablez. Do not take the

17

CHAPTER 3. SYNTAX TRANSFORMATIONS 18

string
i lexer, parser
parse tree
4 parse AST translation
AST
l AST rewriting (macros)
AST
d parse translation, type inference
— well-typed term —
d print translation
AST
i} AST rewriting (macros)
AST
i print AST translation
string

Figure 3.1: Parsing and printing

names Constant and Variable too literally; in the later translation to terms,
Variable z may become a constant, free or bound variable, even a type
constructor or class name; the actual outcome depends on the context.

Similarly, you can think of (f z; ... z,) as the application of f to the
arguments zj,...,x,. But the kind of application is determined later by
context; it could be a type constructor applied to types.

Forms like (("_abs" x t) u) are legal, but ASTs are first-order: the
"_abs" does not bind the x in any way. Later at the term level, ("_abs"
x t) will become an Abs node and occurrences of x in ¢ will be replaced by
bound variables (the term constructor Bound).

3.2 Transforming parse trees to AST's

The parse tree is the raw output of the parser. Translation functions, called
parse AST translations, transform the parse tree into an abstract syntax
tree.

The parse tree is constructed by nesting the right-hand sides of the pro-
ductions used to recognize the input. Such parse trees are simply lists of
tokens and constituent parse trees, the latter representing the nonterminals
of the productions. Let us refer to the actual productions in the form dis-
played by print_syntax (see §?7? for an example).

CHAPTER 3. SYNTAX TRANSFORMATIONS 19

input string AST

g f

" ‘a

"t == u" ("=="t u)

"f(x)" ("_appl" f x)

"f(x, y)" ("_appl" f ("_args" x y))

"f(x, y, z)" ("_appl" f ("_args" x ("_args" y z)))
"hx y. t" ("_lambda" ("_idts" x y) t)

Figure 3.2: Parsing examples using the Pure syntax

Ignoring parse AST translations, parse trees are transformed to ASTs by
stripping out delimiters and copy productions. More precisely, the mapping
[—] is derived from the productions as follows:

e Name tokens: [t] = Variables, where ¢ is an id, var, tid, tvar, num,
xnum or xstr token, and s its associated string. Note that for xstr
this does not include the quotes.

e Copy productions: [...P...] = [P]. Here ... stands for strings of
delimiters, which are discarded. P stands for the single constituent
that is not a delimiter; it is either a nonterminal symbol or a name
token.

e (O-ary productions: [...=>c] = Constant c. Here there are no con-
stituents other than delimiters, which are discarded.

e n-ary productions, where n > 1: delimiters are discarded and the
remaining constituents Py, ..., P, are built into an application whose
head constant is c:

[...P1...P,...=>c] = Appl [Constant ¢, [P1], ..., [P.]]

Figure 3.2 presents some simple examples, where ==, _appl, _args, and so
forth name productions of the Pure syntax. These examples illustrate the
need for further translations to make ASTs closer to the typed A-calculus.
The Pure syntax provides predefined parse AST translations for ordinary
applications, type applications, nested abstractions, meta implications and
function types. Figure 3.3 shows their effect on some representative input
strings.

The names of constant heads in the AST control the translation process.
The list of constants invoking parse AST translations appears in the output
of print_syntax under parse_ast_translation.

CHAPTER 3. SYNTAX TRANSFORMATIONS 20

input string AST

"f(x, y, z)" (f xy 2)

n)a ty" (ty ;a)

n(;a, 7b) ty" (ty ;a)b)

"%X y z. t" ("_abs" X ("_abs" y ("_abs" = t)))
"%x i a. t" ("_abs" ("_constrain" x ’a) t)

ll[l P’ Q’ R |:| => gn" (n==>|| P (n==>u Q (||==>n R S)))
n[;a,)b, ’C] => gq" (”fun" ’a ("fun" ’b ("fun" e ;d)))

Figure 3.3: Built-in parse AST translations

3.3 Transforming ASTs to terms

The AST, after application of macros (see §3.5), is transformed into a term.
This term is probably ill-typed since type inference has not occurred yet.
The term may contain type constraints consisting of applications with head
"_constrain"; the second argument is a type encoded as a term. Type
inference later introduces correct types or rejects the input.

Another set of translation functions, namely parse translations, may affect
this process. If we ignore parse translations for the time being, then ASTs are
transformed to terms by mapping AST constants to constants, AST variables
to schematic or free variables and AST applications to applications.

More precisely, the mapping [—] is defined by

e Constants: [Constant z] = Const(z,dummyT).

e Schematic variables: [Variable "?x:"] = Var((z, ¢), dummyT), where
is the base name and 7 the index extracted from wi.

e Free variables: [Variable z] = Free(z, dummyT).

e Function applications with n arguments:

Here Const, Var, Free and $ are constructors of the datatype term, while
dummyT stands for some dummy type that is ignored during type inference.
So far the outcome is still a first-order term. Abstractions and bound
variables (constructors Abs and Bound) are introduced by parse translations.
Such translations are attached to "_abs", "!!" and user-defined binders.

CHAPTER 3. SYNTAX TRANSFORMATIONS 21

3.4 Printing of terms

The output phase is essentially the inverse of the input phase. Terms are
translated via abstract syntax trees into strings. Finally the strings are
pretty printed.

Print translations (§3.6) may affect the transformation of terms into ASTs.
Ignoring those, the transformation maps term constants, variables and appli-
cations to the corresponding constructs on ASTs. Abstractions are mapped
to applications of the special constant _abs.

More precisely, the mapping [—] is defined as follows:

e [Const(z,7)] = Constant z.

[Free(z,T)] = constrain(Variable z, 7).

[Var((z,4),7)] = constrain(Variable "?x:", 7), where ?zi is the string
representation of the indexname (z, 7).

e For the abstraction Az :: 7. ¢, let 2/ be a variant of z renamed to
differ from all names occurring in ¢, and let ¢ be obtained from ¢
by replacing all bound occurrences of = by the free variable z’. This
replaces corresponding occurrences of the constructor Bound by the
term Free(z’, dummyT):

[Abs(z,T,t)] = Appl [Constant "_abs", constrain(Variable z’, 7), [¢]]
e [Boundi] = Variable"B.:". The occurrence of constructor Bound

should never happen when printing well-typed terms; it indicates a de
Bruijn index with no matching abstraction.

e Where f is not an application,
[f$2:8...8z]=appl[[f] [=] ..., [2]]

Type constraints are inserted to allow the printing of types. This is governed
by the boolean variable show_types:

e constrain(z,7) = x if 7 = dummyT or show_types is set to false.

e constrain(z,T) = Appl [Constant "_constrain", z, [7]] otherwise.

Here, [7] is the AST encoding of 7: type constructors go to Constants;
type identifiers go to Variables; type applications go to Appls with
the type constructor as the first element. If show_sorts is set to true,
some type variables are decorated with an AST encoding of their sort.

CHAPTER 3. SYNTAX TRANSFORMATIONS 22

The AST, after application of macros (see §3.5), is transformed into the final
output string. The built-in print AST translations reverse the parse AST
translations of Fig. 3.3.

For the actual printing process, the names attached to productions of
the form ... Agpl) ... AlP) =>¢ play a vital role. Each AST with constant
head ¢, namely "¢" or ("¢" 21 ...1,), is printed according to the production
for ¢. Each argument z; is converted to a string, and put in parentheses if
its priority (p;) requires this. The resulting strings and their syntactic sugar
(denoted by ... above) are joined to make a single string.

If an application ("¢" z; ... z,,) has more arguments than the correspond-
ing production, it is first split into (("¢" 2y ...2,) Tpy1 ... Tn). Applications
with too few arguments or with non-constant head or without a correspond-
ing production are printed as f(z,...,2) or (aq,...,a;)ty. Multiple pro-
ductions associated with some name ¢ are tried in order of appearance. An
occurrence of Variable z is simply printed as z.

Blanks are not inserted automatically. If blanks are required to sepa-
rate tokens, specify them in the mixfix declaration, possibly preceded by a
slash (/) to allow a line break.

3.5 Macros: syntactic rewriting

Mixfix declarations alone can handle situations where there is a direct con-
nection between the concrete syntax and the underlying term. Sometimes we
require a more elaborate concrete syntax, such as quantifiers and list nota-
tion. Isabelle’s macros and translation functions can perform translations
such as

ALL x:A.P
[x, y, z]

= Ball(A, %x.P)
= Cons(x, Cons(y, Cons(z, Nil)))
Translation functions (see §3.6) must be coded in ML; they are the most
powerful translation mechanism but are difficult to read or write. Macros
are specified by first-order rewriting systems that operate on abstract syntax
trees. They are usually easy to read and write, and can express all but the
most obscure translations.

Figure 3.4 defines a fragment of first-order logic and set theory.! Theory
SetSyntax declares constants for set comprehension (Collect), replacement
(Replace) and bounded universal quantification (Ball). Each of these binds

!This and the following theories are complete working examples, though they specify
only syntax, no axioms. The file ZF/ZF . thy presents a full set theory definition, including
many macro rules.

CHAPTER 3. SYNTAX TRANSFORMATIONS 23

SetSyntax = Pure +

types
io
arities
i, o :: logic
consts
Trueprop 1 0 => prop ("_" 5)
Collect :: [i, 1 => 0] => i
Replace 20 [i, [i, 41 => o]l => i
Ball :: [, 1 => 0] => o
syntax
"@Collect" i [idt, i, o] => i Mm@/ ZH"m
"@Replace" :: [idt, idt, i, o] => i M./ 2, 2"
"@Ball" ;0 [idt, i, o] => o ("(3ALL _:_./)" 10)
translations
"{x:A. P}" == "Collect(A, %x. P)"
"{y. x:A, Q}" == "Replace(4, Jx y. Q"
"ALL x:A. P" == "Ball(A, %x. P)"
end

Figure 3.4: Macro example: set theory

some variables. Without additional syntax we should have to write Vo € A.P
as Ball(A,%x.P), and similarly for the others.

The theory specifies a variable-binding syntax through additional produc-
tions that have mixfix declarations. Each non-copy production must specify
some constant, which is used for building AsTs. The additional constants
are decorated with @ to stress their purely syntactic purpose; they may not
occur within the final well-typed terms, being declared as syntax rather than
consts.

The translations cause the replacement of external forms by internal forms
after parsing, and vice versa before printing of terms. As a specification of the
set theory notation, they should be largely self-explanatory. The syntactic
constants, @Collect, @Replace and @Ball, appear implicitly in the macro
rules via their mixfix forms.

Macros can define variable-binding syntax because they operate on ASTs,
which have no inbuilt notion of bound variable. The macro variables x and y
have type idt and therefore range over identifiers, in this case bound vari-
ables. The macro variables P and Q range over formulae containing bound
variable occurrences.

Other applications of the macro system can be less straightforward, and
there are peculiarities. The rest of this section will describe in detail how
Isabelle macros are preprocessed and applied.

CHAPTER 3. SYNTAX TRANSFORMATIONS 24

3.5.1 Specifying macros

Macros are basically rewrite rules on ASTs. But unlike other macro systems
found in programming languages, Isabelle’s macros work in both directions.
Therefore a syntax contains two lists of rewrites: one for parsing and one for
printing.

The translations section specifies macros. The syntax for a macro is

=>
(root) string <= (root) string

This specifies a parse rule (=>), a print rule (<=), or both (==). The two
strings specify the left and right-hand sides of the macro rule. The (root)
specification is optional; it specifies the nonterminal for parsing the string
and if omitted defaults to logic. AST rewrite rules (I, 7) must obey certain
conditions:

e Rules must be left linear: [must not contain repeated variables.

e Every variable in r must also occur in /.

Macro rules may refer to any syntax from the parent theories. They may
also refer to anything defined before the current translations section —
including any mixfix declarations.

Upon declaration, both sides of the macro rule undergo parsing and parse
AST translations (see §3.1), but do not themselves undergo macro expansion.
The lexer runs in a different mode that additionally accepts identifiers of the
form - letter quasiletter* (like _idt, _K). Thus, a constant whose name starts
with an underscore can appear in macro rules but not in ordinary terms.

Some atoms of the macro rule’s AST are designated as constants for match-
ing. These are all names that have been declared as classes, types or constants
(logical and syntactic).

The result of this preprocessing is two lists of macro rules, each stored as a
pair of ASTs. They can be viewed using print_syntax (sections parse_rules
and print_rules). For theory SetSyntax of Fig. 3.4 these are

parse_rules:
("@Collect" x A P) -> ("Collect" A ("_abs" x P))
("@Replace" y x A Q) -> ("Replace" A ("_abs" x ("_abs" y Q)))
("@Ball" x A P) -> ("Ball" A ("_abs" x P))

print_rules:
("Collect" A ("_abs" x P)) -> ("@Collect" x A P)
("Replace" A ("_abs" x ("_abs" y Q))) -> ("@Replace" y x A Q)
("Ball" A ("_abs" x P)) -> ("@Ball" x A P)

CHAPTER 3. SYNTAX TRANSFORMATIONS 25

' Avoid choosing variable names that have previously been used as constants,

types or type classes; the consts section in the output of print_syntax lists all
such names. If a macro rule works incorrectly, inspect its internal form as shown
above, recalling that constants appear as quoted strings and variables without
quotes.

| If eta_contract is set to true, terms will be n-contracted before the AST

rewriter sees them. Thus some abstraction nodes needed for print rules to
match may vanish. For example, Ball(A, %x. P(x)) contracts to Ball(A, P);
the print rule does not apply and the output will be Ball(A, P). This problem
would not occur if ML translation functions were used instead of macros (as is done
for binder declarations).

| Another trap concerns type constraints. If show_types is set to true, bound

variables will be decorated by their meta types at the binding place (but not
at occurrences in the body). Matching with Collect (A, %x. P) binds x to some-
thing like ("_constrain" y "i") rather than only y. AST rewriting will cause
the constraint to appear in the external form, say {y::i:A::i. P::o}.

To allow such constraints to be re-read, your syntax should specify bound
variables using the nonterminal idt. This is the case in our example. Choosing
id instead of idt is a common error.

3.5.2 Applying rules

As a term is being parsed or printed, an AST is generated as an intermediate
form (recall Fig.3.1). The AST is normalised by applying macro rules in the
manner of a traditional term rewriting system. We first examine how a single
rule is applied.

Let ¢ be the abstract syntax tree to be normalised and ([, r) some trans-
lation rule. A subtree u of ¢ is a redex if it is an instance of [; in this case
[is said to match u. A redex matched by [may be replaced by the corre-
sponding instance of r, thus rewriting the AST ¢. Matching requires some
notion of place-holders that may occur in rule patterns but not in ordinary
ASTs; Variable atoms serve this purpose.

The matching of the object u by the pattern [is performed as follows:

e Every constant matches itself.

e Variablez in the object matches Constant z in the pattern. This
point is discussed further below.

e Every AST in the object matches Variable z in the pattern, binding z
to w.

CHAPTER 3. SYNTAX TRANSFORMATIONS 26

e One application matches another if they have the same number of sub-
trees and corresponding subtrees match.

e In every other case, matching fails. In particular, Constant z can only
match itself.

A successful match yields a substitution that is applied to r, generating the
instance that replaces u.

The second case above may look odd. This is where Variables of non-
rule ASTs behave like Constants. Recall that ASTs are not far removed from
parse trees; at this level it is not yet known which identifiers will become
constants, bounds, frees, types or classes. As §3.1 describes, former parse
tree heads appear in ASTs as Constants, while the name tokens id, var, tid,
tvar, num, xnum and xstr become Variables. On the other hand, when ASTs
generated from terms for printing, all constants and type constructors become
Constants; see §3.1. Thus ASTs may contain a messy mixture of Variables
and Constants. This is insignificant at macro level because matching treats
them alike.

Because of this behaviour, different kinds of atoms with the same name
are indistinguishable, which may make some rules prone to misbehaviour.
Example:

types
Nil
consts
Nil 1 ’a list
syntax
n[]n .. ;a 1lSt (n[]n)
translations
" == "Nil"

The term Nil will be printed as [], just as expected. The term %Nil.t will
be printed as %[] .t, which might not be expected! Guess how type Nil is
printed?

Normalizing an AST involves repeatedly applying macro rules until none
are applicable. Macro rules are chosen in order of appearance in the theory
definitions. You can watch the normalization of ASTs during parsing and
printing by setting Syntax.trace_ast to true. The information displayed
when tracing includes the AST before normalization (pre), redexes with re-
sults (rewrote), the normal form finally reached (post) and some statistics
(normalize).

CHAPTER 3. SYNTAX TRANSFORMATIONS 27

3.5.3 Example: the syntax of finite sets

This example demonstrates the use of recursive macros to implement a con-
venient notation for finite sets.

FinSyntax = SetSyntax +

types
is
syntax
o i i = is ™_"
"@Enum" i [i, is] => is Mm_,/ _"
consts
empty i i {3
insert : [i, i] => i
syntax
"Q@Finset" irois = i LM
translations
"{x, xs}" == "insert(x, {xs})"
{x" == "insert(x, {})"
end

Finite sets are internally built up by empty and insert. The declarations
above specify {x, y, z} as the external representation of

insert(x, insert(y, insert(z, empty)))

The nonterminal symbol is stands for one or more objects of type i separated
by commas. The mixfix declaration "_,/ _" allows a line break after the
comma for pretty printing; if no line break is required then a space is printed
instead.

The nonterminal is declared as the type is, but with no arities dec-
laration. Hence is is not a logical type and may be used safely as a new
nonterminal for custom syntax. The nonterminal is can later be re-used for
other enumerations of type i like lists or tuples. If we had needed polymor-
phic enumerations, we could have used the predefined nonterminal symbol
args and skipped this part altogether.

Next follows empty, which is already equipped with its syntax {}, and
insert without concrete syntax. The syntactic constant @Finset provides
concrete syntax for enumerations of i enclosed in curly braces. Remember
that a pair of parentheses, as in "{(_) }", specifies a block of indentation for
pretty printing.

The translations may look strange at first. Macro rules are best under-
stood in their internal forms:

CHAPTER 3. SYNTAX TRANSFORMATIONS 28

parse_rules:
("@Finset" ("@Enum" x xs)) -> ("insert" x ("@Finset" xs))
("@Finset" x) -> ("insert" x "empty")

print_rules:
("insert" x ("@Finset" xs)) -> ("@Finset" ("@Enum" x xs))
("insert" x "empty") -> ("@Finset" x)

This shows that {x,xs} indeed matches any set enumeration of at least two
elements, binding the first to x and the rest to xs. Likewise, {xs} and {x}
represent any set enumeration. The parse rules only work in the order given.

| The AST rewriter cannot distinguish constants from variables and looks only
® for names of atoms. Thus the names of Constants occurring in the (internal)
left-hand side of translation rules should be regarded as reserved words. Choose
non-identifiers like @Finset or sufficiently long and strange names. If a bound
variable’s name gets rewritten, the result will be incorrect; for example, the term

%empty insert. insert(x, empty)

is incorrectly printed as %empty insert. {x}.

3.5.4 Example: a parse macro for dependent types

As stated earlier, a macro rule may not introduce new Variables on the
right-hand side. Something like "K(B)" => "%x.B" is illegal; if allowed, it
could cause variable capture. In such cases you usually must fall back on
translation functions. But a trick can make things readable in some cases:
calling translation functions by parse macros:

ProdSyntax = SetSyntax +

consts
Pi i [, 1i=>1i] => 1
syntax
"@PROD" 20 [ddt, i, il => 1 ("(3PROD _:_./ _)" 10)
ng->" e [1, 1] => i ("(_ —>/ _)" [51, 50] 50)
translations
"PROD x:A. B" => "Pi(A, %x. B)"
"A -> B" => "Pi(A, _K(B))"
end
ML

val print_translation = [("Pi", dependent_tr’ ("@PROD", "@->"))];

Here Pi is a logical constant for constructing general products. Two
external forms exist: the general case PROD x:A.B and the function space A
-> B, which abbreviates Pi(A, %x.B) when B does not depend on x.

CHAPTER 3. SYNTAX TRANSFORMATIONS 29

The second parse macro introduces _K(B), which later becomes %x.B due
to a parse translation associated with _K. Unfortunately there is no such
trick for printing, so we have to add a ML section for the print translation
dependent_tr’.

Recall that identifiers with a leading _ are allowed in translation rules,
but not in ordinary terms. Thus we can create ASTs containing names that
are not directly expressible.

The parse translation for _K is already installed in Pure, and the function
dependent_tr’ is exported by the syntax module for public use. See §3.6
below for more of the arcane lore of translation functions.

3.6 Translation functions

This section describes the translation function mechanism. By writing ML
functions, you can do almost everything to terms or ASTs during parsing
and printing. The logic LK is a good example of sophisticated transforma-
tions between internal and external representations of sequents; here, macros
would be useless.

A full understanding of translations requires some familiarity with Isa-
belle’s internals, especially the datatypes term, typ, Syntax.ast and the
encodings of types and terms as such at the various stages of the parsing or
printing process. Most users should never need to use translation functions.

3.6.1 Declaring translation functions

There are four kinds of translation functions, with one of these coming in two
variants. Each such function is associated with a name, which triggers calls
to it. Such names can be constants (logical or syntactic) or type constructors.

Function print_syntax displays the sets of names associated with the
translation functions of a theory under parse_ast_translation, etc. You
can add new ones via the ML section of a theory definition file. Even though
the ML section is the very last part of the file, newly installed translation
functions are already effective when processing all of the preceding sections.

The ML section’s contents are simply copied verbatim near the beginning
of the ML file generated from a theory definition file. Definitions made here
are accessible as components of an ML structure; to make some parts private,
use an ML local declaration. The ML code may install translation functions
by declaring any of the following identifiers:

CHAPTER 3. SYNTAX TRANSFORMATIONS 30

val parse_ast_translation : (string * (ast list -> ast)) list
val print_ast_translation : (string * (ast list -> ast)) list
val parse_translation : (string * (term list -> term)) list
val print_translation : (string * (term list -> term)) list

val typed_print_translation :
(string * (bool -> typ -> term list -> term)) list

3.6.2 The translation strategy

The different kinds of translation functions are called during the transfor-
mations between parse trees, ASTs and terms (recall Fig.3.1). Whenever
a combination of the form ("¢" z;...x,) is encountered, and a translation
function f of appropriate kind exists for ¢, the result is computed by the ML
function call f[xy,...,z,].

For AST translations, the arguments i, ..., z, are ASTs. A combination
has the form Constant ¢ or Appl [Constant ¢, 7, ..., 2,]. For term transla-
tions, the arguments are terms and a combination has the form Const(c, 7)
or Const(c,7) $ 21 $... $ x,. Terms allow more sophisticated transfor-
mations than ASTs do, typically involving abstractions and bound variables.
Typed print translations may even peek at the type 7 of the constant they are
invoked on; they are also passed the current value of the show_sorts flag.

Regardless of whether they act on terms or ASTs, translation functions
called during the parsing process differ from those for printing more funda-
mentally in their overall behaviour:

Parse translations are applied bottom-up. The arguments are already in
translated form. The translations must not fail; exceptions trigger an
error message. There may never be more than one function associated
with any syntactic name.

Print translations are applied top-down. They are supplied with argu-
ments that are partly still in internal form. The result again undergoes
translation; therefore a print translation should not introduce as head
the very constant that invoked it. The function may raise exception
Match to indicate failure; in this event it has no effect. Multiple func-
tions associated with some syntactic name are tried in an unspecified
order.

Only constant atoms — constructor Constant for ASTs and Const for
terms — can invoke translation functions. This causes another difference
between parsing and printing.

Parsing starts with a string and the constants are not yet identified.
Only parse tree heads create Constants in the resulting AST, as described in

CHAPTER 3. SYNTAX TRANSFORMATIONS 31

§3.2. Macros and parse AST translations may introduce further Constants.
When the final AST is converted to a term, all Constants become Consts, as
described in §3.3.

Printing starts with a well-typed term and all the constants are known.
So all logical constants and type constructors may invoke print translations.
These, and macros, may introduce further constants.

3.6.3 Example: a print translation for dependent types

Let us continue the dependent type example (page 28) by examining the
parse translation for _K and the print translation dependent_tr’, which are
both built-in. By convention, parse translations have names ending with _tr
and print translations have names ending with _tr’. Search for such names
in the Isabelle sources to locate more examples.

Here is the parse translation for _K:

fun k_tr [t] = Abs ("x", dummyT, incr_boundvars 1 t)
| k_tr ts = raise TERM ("k_tr", ts);

If k_tr is called with exactly one argument ¢, it creates a new Abs node
with a body derived from ¢. Since terms given to parse translations are
not yet typed, the type of the bound variable in the new Abs is simply
dummyT. The function increments all Bound nodes referring to outer abstrac-
tions by calling incr_boundvars, a basic term manipulation function defined
in Pure/term.ML.
Here is the print translation for dependent types:
fun dependent_tr’ (q, r) (A :: Abs (x, T, B) :: ts) =
if 0 mem (loose_bnos B) then
let val (x’, B’) = Syntax.variant_abs’ (x, dummyT, B) in
list_comb

(Const (q,dummyT) $
Syntax.mark_boundT (x’,T) $ A $ B’, ts)

end
else list_comb (Const (r, dummyT) $ A $ B, ts)
| dependent_tr’ _ _ = raise Match;

The argument (q, r) is supplied to the curried function dependent_tr’ by
a partial application during its installation. For example, we could set up
print translations for both Pi and Sigma by including

val print_translation =

[("Pi", dependent_tr’ ("@PROD", "@->")),
("Sigma", dependent_tr’ ("@SUM", "@*"))];

within the ML section. The first of these transforms Pi(A, Abs(z, T, B)) into
@PROD(z', A, B') or @->(A, B), choosing the latter form if B does not de-

CHAPTER 3. SYNTAX TRANSFORMATIONS 32

pend on z. It checks this using loose_bnos, yet another function from
Pure/term.ML. Note that 2’ is a version of x renamed away from all names
in B, and B’ is the body B with Bound nodes referring to the Abs node
replaced by Free(z', dummyT) (but marked as representing a bound variable).

We must be careful with types here. While types of Consts are ignored,
type constraints may be printed for some Frees and Vars if show_types is set

to true. Variables of type dummyT are never printed with constraint, though.
The line

let val (x’, B’) = Syntax.variant_abs’ (x, dummyT, B);

replaces bound variable occurrences in B by the free variable z’ with type
dummyT. Only the binding occurrence of z’ is given the correct type T, so this
is the only place where a type constraint might appear.

Also note that we are responsible to mark free identifiers that actually
represent bound variables. This is achieved by Syntax.variant_abs’ and
Syntax.mark_boundT above. Failing to do so may cause these names to be
printed in the wrong style.

Chapter 4

Substitution Tactics

Replacing equals by equals is a basic form of reasoning. Isabelle supports
several kinds of equality reasoning. Substitution means replacing free oc-
currences of ¢ by v in a subgoal. This is easily done, given an equality ¢t = u,
provided the logic possesses the appropriate rule. The tactic hyp_subst_tac
performs substitution even in the assumptions. But it works via object-level
implication, and therefore must be specially set up for each suitable object-
logic.

Substitution should not be confused with object-level rewriting. Given
equalities of the form ¢ = u, rewriting replaces instances of ¢ by corresponding
instances of u, and continues until it reaches a normal form. Substitution
handles ‘one-off’ replacements by particular equalities while rewriting handles
general equations. Chapter 5 discusses Isabelle’s rewriting tactics.

4.1 Substitution rules

Many logics include a substitution rule of the form
[7a = ;7P (%a)] = 7P(7) (subst)

In backward proof, this may seem difficult to use: the conclusion 7P(7)
admits far too many unifiers. But, if the theorem eqth asserts ¢t = wu, then
eqth RS subst is the derived rule

WP(t) = P (u).

Provided « is not an unknown, resolution with this rule is well-behaved.! To
replace u by t in subgoal 7, use

resolve_tac [eqth RS subst] :.

To replace t by u in subgoal 7, use

Unifying ?P(u) with a formula @ expresses @ in terms of its dependence upon u.
There are still 2% unifiers, if Q has k occurrences of u, but Isabelle ensures that the first
unifier includes all the occurrences.

33

CHAPTER 4. SUBSTITUTION TACTICS 34

resolve_tac [eqth RS ssubst] i,

where ssubst is the ‘swapped’ substitution rule
[7a = 70; 7P ()] = 7P (a). (ssubst)

If sym denotes the symmetry rule 7a = 7% = 7 = %a, then ssubst is
just sym RS subst. Many logics with equality include the rules subst and
ssubst, as well as refl, sym and trans (for the usual equality laws). Ex-
amples include FOL and HOL, but not CTT (Constructive Type Theory).

Elim-resolution is well-behaved with assumptions of the form ¢ = u. To
replace u by t or ¢ by u in subgoal 7, use

eresolve_tac [subst] ¢ or eresolve_tac [ssubst] 1.
Logics HOL, FOL and ZF define the tactic stac by

fun stac eqth = CHANGED o rtac (eqth RS ssubst);

Now stac eqth is like resolve_tac [eqth RS ssubst] but with the valu-
able property of failing if the substitution has no effect.

4.2 Substitution in the hypotheses

Substitution rules, like other rules of natural deduction, do not affect the
assumptions. This can be inconvenient. Consider proving the subgoal

[c=a;c=0b] = a=0hb.

Calling eresolve_tac [ssubst] ¢ simply discards the assumption ¢ = a,
since ¢ does not occur in a = b. Of course, we can work out a solution. First
apply eresolve_tac [subst] ¢, replacing a by c:

c=b=—=rc¢c=0b

Equality reasoning can be difficult, but this trivial proof requires nothing
more sophisticated than substitution in the assumptions. Object-logics that
include the rule (subst) provide tactics for this purpose:

hyp_subst_tac : int -> tactic
bound_hyp_subst_tac : int -> tactic

hyp_subst_tac i selects an equality assumption of the form ¢ = u or v = {,
where t is a free variable or parameter. Deleting this assumption, it
replaces t by u throughout subgoal 4, including the other assumptions.

CHAPTER 4. SUBSTITUTION TACTICS 35

bound_hyp_subst_tac ¢ is similar but only substitutes for parameters
(bound variables). Uses for this are discussed below.

The term being replaced must be a free variable or parameter. Substitution
for constants is usually unhelpful, since they may appear in other theorems.
For instance, the best way to use the assumption 0 = 1 is to contradict a
theorem that states 0 # 1, rather than to replace 0 by 1 in the subgoal!

Substitution for unknowns, such as 7z = 0, is a bad idea: we might
prove the subgoal more easily by instantiating 7z to 1. Substitution for
free variables is unhelpful if they appear in the premises of a rule being
derived: the substitution affects object-level assumptions, not meta-level as-
sumptions. For instance, replacing a by b could make the premise P(a)
worthless. To avoid this problem, use bound_hyp_subst_tac; alternatively,
call cut_facts_tac to insert the atomic premises as object-level assump-
tions.

4.3 Setting up the package

Many Isabelle object-logics, such as FOL, HOL and their descendants, come
with hyp_subst_tac already defined. A few others, such as CTT, do not
support this tactic because they lack the rule (subst). When defining a
new logic that includes a substitution rule and implication, you must set
up hyp_subst_tac yourself. It is packaged as the ML functor HypsubstFun,
which takes the argument signature HYPSUBST_DATA:

signature HYPSUBST_DATA =

sig

structure Simplifier : SIMPLIFIER

val dest_Trueprop : term -> term

val dest_eq 1 term -> (term¥term)*typ

val dest_imp : term -> termxterm

val eq_reflection : thm (* a=b ==> a==b *)

val rev_eq_reflection: thm (* a==b ==> a=b *)

val imp_intr : thm (x(P ==> Q) ==> P-->Q %)
val rev_mp : thm (x [| P; P-—>Q |] ==> Q *)
val subst : thm (x [| a=b; P(a) |] ==> P(b) *)
val sym : thm (x a=b ==> b=a *)

val thin_refl : thm (x [lx=x; P|] ==> P x)

end;

Thus, the functor requires the following items:

Simplifier should be an instance of the simplifier (see Chapter 5).

CHAPTER 4. SUBSTITUTION TACTICS 36

dest_Trueprop should coerce a meta-level formula to the corresponding
object-level one. Typically, it should return P when applied to the
term Trueprop P (see example below).

dest_eq should return the triple ((¢,), T'), where T is the type of ¢ and u,
when applied to the ML term that represents ¢ = u. For other terms,
it should raise an exception.

dest_imp should return the pair (P, @) when applied to the ML term that
represents the implication P — (). For other terms, it should raise an
exception.

eq_reflection is the theorem discussed in §5.6.
rev_eq_reflection is the reverse of eq_reflection.
imp_intr should be the implies introduction rule (7P —= 7Q)) — 7P — 7Q).

rev_mp should be the ‘reversed’ implies elimination rule [?P; 7P — Q] =

Q.
subst should be the substitution rule [7a = 7%; ?P(7a)] = 7P (7).
sym should be the symmetry rule 7a = 7% — 7% = 7a.

thin_refl should be the rule [?a = %a; ?P] = 7P, which is used to erase
trivial equalities.

The functor resides in file Provers/hypsubst.ML in the Isabelle distribution
directory. It is not sensitive to the precise formalization of the object-logic.
It is not concerned with the names of the equality and implication symbols,
or the types of formula and terms.

Coding the functions dest_Trueprop, dest_eq and dest_imp requires
knowledge of Isabelle’s representation of terms. For FOL, they are declared
by

fun dest_Trueprop (Const ("Trueprop", _) $ P) =P
| dest_Trueprop t = raise TERM ("dest_Trueprop", [t]);

fun dest_eq (Const("op =",T) $ t $ u) = ((t, u), domain_type T)

fun dest_imp (Const("op -->",_) $ A $ B) = (A, B)
| dest_imp t = raise TERM ("dest_imp", [t]);

Recall that Trueprop is the coercion from type o to type prop, while op = is
the internal name of the infix operator =. Function domain_type, given the

CHAPTER 4. SUBSTITUTION TACTICS 37

function type § = T, returns the type S. Pattern-matching expresses the
function concisely, using wildcards (_) for the types.

The tactic hyp_subst_tac works as follows. First, it identifies a suit-
able equality assumption, possibly re-orienting it using sym. Then it moves
other assumptions into the conclusion of the goal, by repeatedly calling
etac rev_mp. Then, it uses asm_full_simp_tac or ssubst to substitute
throughout the subgoal. (If the equality involves unknowns then it must use
ssubst.) Then, it deletes the equality. Finally, it moves the assumptions
back to their original positions by calling resolve_tac [imp_intr].

Chapter 5

Simplification

This chapter describes Isabelle’s generic simplification package. It performs
conditional and unconditional rewriting and uses contextual information (‘lo-
cal assumptions’). It provides several general hooks, which can provide au-
tomatic case splits during rewriting, for example. The simplifier is already
set up for many of Isabelle’s logics: FOL, ZF, HOL, HOLCF.

The first section is a quick introduction to the simplifier that should be
sufficient to get started. The later sections explain more advanced features.

5.1 Simplification for dummies

Basic use of the simplifier is particularly easy because each theory is equipped
with sensible default information controlling the rewrite process — namely
the implicit current simpset. A suite of simple commands is provided that
refer to the implicit simpset of the current theory context.

| Make sure that you are working within the correct theory context. Executing
proofs interactively, or loading them from ML files without associated theories
may require setting the current theory manually via the context command.

5.1.1 Simplification tactics

Simp_tac : int -> tactic
Asm_simp_tac : int -> tactic
Full_simp_tac ¢ int -> tactic
Asm_full_simp_tac : int -> tactic
trace_simp : bool ref initially false
debug_simp : bool ref initially false

Simp_tac ¢ simplifies subgoal 7 using the current simpset. It may solve the
subgoal completely if it has become trivial, using the simpset’s solver
tactic.

Asm_simp_tac is like Simp_tac, but extracts additional rewrite rules from
the local assumptions.

38

CHAPTER 5. SIMPLIFICATION 39

Full_simp_tac is like Simp_tac, but also simplifies the assumptions (with-
out using the assumptions to simplify each other or the actual goal).

Asm_full_simp_tac is like Asm_simp_tac, but also simplifies the assump-
tions. In particular, assumptions can simplify each other. !

set trace_simp; makes the simplifier output internal operations. This in-
cludes rewrite steps, but also bookkeeping like modifications of the
simpset.

set debug_simp; makes the simplifier output some extra information about
internal operations. This includes any attempted invocation of simpli-
fication procedures.

As an example, consider the theory of arithmetic in HOL. The (rather
trivial) goal 0+ (z+0) = 2 +0+0 can be solved by a single call of Simp_tac
as follows:

context Arith.thy;
Goal "0 + (x + 0)
1. 0+ (x +0)
by (Simp_tac 1);
Level 1
0+ (x+0) =x+0+0
No subgoals!

x+ 0+ 0"
x+0+0

The simplifier uses the current simpset of Arith.thy, which contains
suitable theorems like 7n + 0 = "n and 0 + "7n = "n.

In many cases, assumptions of a subgoal are also needed in the simplifica-
tion process. For example, x = 0 ==> x + x = 0issolved by Asm_simp_tac
as follows:

1. x=0==>x+x=0
by (Asm_simp_tac 1);
Asm_full_simp_tac is the most powerful of this quartet of tactics but

may also loop where some of the others terminate. For example,

1. ALL x. fx=g (f (gx)) ==>f0=1f0+0

is solved by Simp_tac, but Asm_simp_tac and Asm_full_simp_tac loop be-
cause the rewrite rule f 7z = ¢ (f (g 7)) extracted from the assumption does

lpasm_full_simp_tac used to process the assumptions from left to right. For back-
wards compatibilty reasons only there is now Asm_lr_simp_tac that behaves like the old
Asm_full_simp_tac

CHAPTER 5. SIMPLIFICATION 40

not terminate. Isabelle notices certain simple forms of nontermination, but
not this one. Because assumptions may simplify each other, there can be very
subtle cases of nontermination. For example, invoking Asm_full_simp_tac
on

1. [P x); y=x; fx=Ffy|] ==>4Q

gives rise to the infinite reduction sequence
P(fa) BBV P(fy) &S P (fa) DY -

whereas applying the same tactic to
1. [l y=x; fx=fy; P (fx) []==>¢8

terminates.

Using the simplifier effectively may take a bit of experimentation. Set
the trace_simp flag to get a better idea of what is going on. The resulting
output can be enormous, especially since invocations of the simplifier are
often nested (e.g. when solving conditions of rewrite rules).

5.1.2 Modifying the current simpset

Addsimps : thm list -> unit
Delsimps : thm list -> unit
Addsimprocs : simproc list -> unit
Delsimprocs : simproc list -> unit

Addcongs : thm list -> unit
Delcongs : thm list -> unit
Addsplits : thm list -> unit
Delsplits : thm list -> unit

Depending on the theory context, the Add and Del functions manipulate
basic components of the associated current simpset. Internally, all rewrite
rules have to be expressed as (conditional) meta-equalities. This form is
derived automatically from object-level equations that are supplied by the
user. Another source of rewrite rules are simplification procedures, that is
ML functions that produce suitable theorems on demand, depending on the
current redex. Congruences are a more advanced feature; see §77.

Addsimps thms; adds rewrite rules derived from thms to the current
simpset.

Delsimps thms; deletes rewrite rules derived from thms from the current
simpset.

CHAPTER 5. SIMPLIFICATION 41

Addsimprocs procs; adds simplification procedures procs to the current
simpset.

Delsimprocs procs; deletes simplification procedures procs from the cur-
rent simpset.

Addcongs thms; adds congruence rules to the current simpset.
Delcongs thms; deletes congruence rules from the current simpset.
Addsplits thms; adds splitting rules to the current simpset.
Delsplits thms; deletes splitting rules from the current simpset.

When a new theory is built, its implicit simpset is initialized by the union
of the respective simpsets of its parent theories. In addition, certain theory
definition constructs (e.g. datatype and primrec in HOL) implicitly aug-
ment the current simpset. Ordinary definitions are not added automatically!

It is up the user to manipulate the current simpset further by explicitly
adding or deleting theorems and simplification procedures.

Good simpsets are hard to design. Rules that obviously simplify, like
m + 0 = ", should be added to the current simpset right after they have
been proved. More specific ones (such as distributive laws, which duplicate
subterms) should be added only for specific proofs and deleted afterwards.
Conversely, sometimes a rule needs to be removed for a certain proof and
restored afterwards. The need of frequent additions or deletions may indicate
a badly designed simpset.

! The union of the parent simpsets (as described above) is not always a good

starting point for the new theory. If some ancestors have deleted simplification
rules because they are no longer wanted, while others have left those rules in, then
the union will contain the unwanted rules. After this union is formed, changes to
a parent simpset have no effect on the child simpset.

5.2 Simplification sets

The simplifier is controlled by information contained in simpsets. These
consist of several components, including rewrite rules, simplification proce-
dures, congruence rules, and the subgoaler, solver and looper tactics. The
simplifier should be set up with sensible defaults so that most simplifier calls
specify only rewrite rules or simplification procedures. Experienced users
can exploit the other components to streamline proofs in more sophisticated
manners.

CHAPTER 5. SIMPLIFICATION 42

5.2.1 Inspecting simpsets

print_ss : simpset -> unit

rep_ss : simpset -> {mss : meta_simpset,
subgoal_tac: simpset -> int -> tactic,
loop_tacs : (string * (int -> tactic))list,

finish_tac : solver list,
unsafe_finish_tac : solver list}

print_ss ss; displays the printable contents of simpset ss. This includes
the rewrite rules and congruences in their internal form expressed as
meta-equalities. The names of the simplification procedures and the
patterns they are invoked on are also shown. The other parts, functions
and tactics, are non-printable.

rep_ss ss; decomposes ss as a record of its internal components, namely
the meta’simpset, the subgoaler, the loop, and the safe and unsafe
solvers.

5.2.2 Building simpsets

empty_ss : simpset
merge_ss : simpset * simpset -> simpset

empty_ss is the empty simpset. This is not very useful under normal cir-
cumstances because it doesn’t contain suitable tactics (subgoaler etc.).
When setting up the simplifier for a particular object-logic, one will
typically define a more appropriate “almost empty” simpset. For ex-
ample, in HOL this is called HOL_basic_ss.

merge_ss (Ss;, $s2) merges simpsets ss; and ss; by building the union of
their respective rewrite rules, simplification procedures and congru-
ences. The other components (tactics etc.) cannot be merged, though;
they are taken from either simpset?.

5.2.3 Rewrite rules

addsimps : simpset * thm list -> simpset infix 4
delsimps : simpset * thm list -> simpset infix 4

2Actually from ss;, but it would unwise to count on that.

CHAPTER 5. SIMPLIFICATION 43

Rewrite rules are theorems expressing some form of equality, for example:

Suc(m)+Mm = Mm+ Suc(™n)
PANTIP < TP
AU = {x.x€?AVz e B}

Conditional rewrites such as ?m < n = ?m /™ = 0 are also permitted; the
conditions can be arbitrary formulas.

Internally, all rewrite rules are translated into meta-equalities, theorems
with conclusion l[hs = rhs. Each simpset contains a function for extracting
equalities from arbitrary theorems. For example, =(?z € {}) could be turned
into 7z € {} = False. This function can be installed using setmksimps but
only the definer of a logic should need to do this; see §5.6.2. The function
processes theorems added by addsimps as well as local assumptions.

ss addsimps thms adds rewrite rules derived from thms to the simpset ss.

ss delsimps thms deletes rewrite rules derived from thms from the simpset
ss.

| The simplifier will accept all standard rewrite rules: those where all unknowns
are of base type. Hence % + (% + %) = (% + %) + 7% is OK.

It will also deal gracefully with all rules whose left-hand sides are so-called
higher-order patterns [6]. These are terms in S-normal form (this will always
be the case unless you have done something strange) where each occurrence of an
unknown is of the form ?F(zi,...,z,), where the z; are distinct bound variables.
Hence (Vz.?7P(z)A\?Q(z)) <> (Vz.?P(z))A(Vz.?7Q(x)) is also OK, in both directions.

In some rare cases the rewriter will even deal with quite general rules: for
example ?f (7x) € range(?f) = True rewrites g(a) € range(g) to True, but will fail
to match ¢g(h(b)) € range(Ax . g(h(z))). However, you can replace the offending
subterms (in our case 7f(7z), which is not a pattern) by adding new variables and
conditions: %y = If(%x) = %y € range(f) = True is acceptable as a conditional
rewrite rule since conditions can be arbitrary terms.

There is basically no restriction on the form of the right-hand sides. They may
not contain extraneous term or type variables, though.

5.2.4 *The subgoaler

setsubgoaler :
simpset * (simpset -> int -> tactic) -> simpset infix 4
prems_of_ss : simpset -> thm list

The subgoaler is the tactic used to solve subgoals arising out of conditional
rewrite rules or congruence rules. The default should be simplification itself.

CHAPTER 5. SIMPLIFICATION 44

Occasionally this strategy needs to be changed. For example, if the premise
of a conditional rule is an instance of its conclusion, as in Suc(?m) < n =
"m < "n, the default strategy could loop.

ss setsubgoaler tacf sets the subgoaler of ss to tacf. The function tacf
will be applied to the current simplifier context expressed as a simpset.

prems_of_ss ss retrieves the current set of premises from simplifier context
ss. This may be non-empty only if the simplifier has been told to utilize
local assumptions in the first place, e.g. if invoked via asm_simp_tac.

As an example, consider the following subgoaler:

fun subgoaler ss =
assume_tac ORELSE’
resolve_tac (prems_of_ss ss) ORELSE’
asm_simp_tac ss;

This tactic first tries to solve the subgoal by assumption or by resolving with
with one of the premises, calling simplification only if that fails.

5.2.5 *The solver

mk_solver : string -> (thm list -> int -> tactic) -> solver

setSolver : simpset * solver -> simpset infix 4
addSolver : simpset * solver -> simpset infix 4
setSSolver : simpset * solver -> simpset infix 4
addSSolver : simpset * solver -> simpset infix 4

A solver is a tactic that attempts to solve a subgoal after simplification.
Typically it just proves trivial subgoals such as True and ¢ = ¢. It could
use sophisticated means such as blast_tac, though that could make simpli-
fication expensive. To keep things more abstract, solvers are packaged up in
type solver. The only way to create a solver is via mk_solver.

Rewriting does not instantiate unknowns. For example, rewriting cannot
prove a € ?A since this requires instantiating ?A. The solver, however, is
an arbitrary tactic and may instantiate unknowns as it pleases. This is the
only way the simplifier can handle a conditional rewrite rule whose condition
contains extra variables. When a simplification tactic is to be combined with
other provers, especially with the classical reasoner, it is important whether
it can be considered safe or not. For this reason a simpset contains two
solvers, a safe and an unsafe one.

The standard simplification strategy solely uses the unsafe solver, which
is appropriate in most cases. For special applications where the simplification

CHAPTER 5. SIMPLIFICATION 45

process is not allowed to instantiate unknowns within the goal, simplification
starts with the safe solver, but may still apply the ordinary unsafe one in
nested simplifications for conditional rules or congruences. Note that in this
way the overall tactic is not totally safe: it may instantiate unknowns that
appear also in other subgoals.

mk_solver s tacf converts tacf into a new solver; the string s is only at-
tached as a comment and has no other significance.

ss setSSolver tacf installs tacf as the safe solver of ss.

ss addSSolver tacf adds tacf as an additional safe solver; it will be tried
after the solvers which had already been present in ss.

ss setSolver tacf installs tacf as the unsafe solver of ss.

ss addSolver tacf adds tacf as an additional unsafe solver; it will be tried
after the solvers which had already been present in ss.

The solver tactic is invoked with a list of theorems, namely assumptions
that hold in the local context. This may be non-empty only if the simplifier
has been told to utilize local assumptions in the first place, e.g. if invoked
via asm_simp_tac. The solver is also presented the full goal including its
assumptions in any case. Thus it can use these (e.g. by calling assume_tac),
even if the list of premises is not passed.

As explained in §5.2.4, the subgoaler is also used to solve the premises
of congruence rules. These are usually of the form s = 7x, where s needs to
be simplified and 7z needs to be instantiated with the result. Typically, the
subgoaler will invoke the simplifier at some point, which will eventually call
the solver. For this reason, solver tactics must be prepared to solve goals of
the form ¢t = 7z, usually by reflexivity. In particular, reflexivity should be
tried before any of the fancy tactics like blast_tac.

It may even happen that due to simplification the subgoal is no longer
an equality. For example Fualse <+ () could be rewritten to =7¢). To cover
this case, the solver could try resolving with the theorem —False.

| If a premise of a congruence rule cannot be proved, then the congruence is

ignored. This should only happen if the rule is conditional — that is, contains
premises not of the form ¢ = 7x; otherwise it indicates that some congruence rule,
or possibly the subgoaler or solver, is faulty.

CHAPTER 5. SIMPLIFICATION 46

5.2.6 *The looper

setloop : simpset * (int -> tactic) -> simpset infix 4
addloop : simpset * (string * (int -> tactic)) -> simpset infix 4
delloop : simpset * string -> simpset infix 4
addsplits : simpset * thm list -> simpset infix 4
delsplits : simpset * thm list -> simpset infix 4

The looper is a list of tactics that are applied after simplification, in
case the solver failed to solve the simplified goal. If the looper succeeds, the
simplification process is started all over again. Each of the subgoals generated
by the looper is attacked in turn, in reverse order.

A typical looper is : the expansion of a conditional. Another possibility is
to apply an elimination rule on the assumptions. More adventurous loopers
could start an induction.

ss setloop tacf installs tacf as the only looper tactic of ss.

ss addloop (name,tacf) adds tacf as an additional looper tactic with name
name; it will be tried after the looper tactics that had already been
present in ss.

ss delloop name deletes the looper tactic name from ss.

ss addsplits thms adds split tactics for thms as additional looper tactics
of ss.

ss addsplits thms deletes the split tactics for thms from the looper tactics
of ss.

The splitter replaces applications of a given function; the right-hand side
of the replacement can be anything. For example, here is a splitting rule for
conditional expressions:

PG (7Q, %,) «» (7Q — P (7x)) A (=7Q — P (Ty))

Another example is the elimination operator for Cartesian products (which
happens to be called split):

TP (split(%f,7p)) <> (Va b .7 = (a, by — P(%f(a,Db)))

For technical reasons, there is a distinction between case splitting in the
conclusion and in the premises of a subgoal. The former is done by split_tac
with rules like split_if or option.split, which do not split the subgoal,
while the latter is done by split_asm_tac with rules like split_if_asm
or option.split_asm, which split the subgoal. The operator addsplits
automatically takes care of which tactic to call, analyzing the form of the
rules given as argument.

CHAPTER 5. SIMPLIFICATION 47

! Due to split_asm_tac, the simplifier may split subgoals!

Case splits should be allowed only when necessary; they are expensive

and hard to control. Here is an example of use, where split_if is the first
rule above:

by (simp_tac (simpset()
addloop ("split if", split_tac [split_ifl)) 1);

Users would usually prefer the following shortcut using addsplits:

by (simp_tac (simpset() addsplits [split_if]) 1);

Case-splitting on conditional expressions is usually beneficial, so it is enabled
by default in the object-logics HOL and FOL.

5.3 The simplification tactics

generic_simp_tac : bool -> bool * bool * bool ->
simpset -> int -> tactic
simp_tac : simpset -> int -> tactic
asm_simp_tac : simpset -> int -> tactic
full_simp_tac : simpset -> int -> tactic
asm_full_simp_tac : simpset -> int -> tactic

safe_asm_full_simp_tac : simpset -> int -> tactic

generic_simp_tac is the basic tactic that is underlying any actual sim-
plification work. The others are just instantiations of it. The rewriting
strategy is always strictly bottom up, except for congruence rules, which are
applied while descending into a term. Conditions in conditional rewrite rules
are solved recursively before the rewrite rule is applied.

generic_simp_tac safe (simp-asm, use-asm, mutual) gives direct ac-
cess to the various simplification modes:
e if safe is true, the safe solver is used as explained in §5.2.5,

o simp-asm determines whether the local assumptions are simpli-
fied,

e use_asm determines whether the assumptions are used as local
rewrite rules, and

e mutual determines whether assumptions can simplify each other
rather than being processed from left to right.

CHAPTER 5. SIMPLIFICATION 48

This generic interface is intended for building special tools, e.g. for
combining the simplifier with the classical reasoner. It is rarely used
directly.

simp_tac, asm_simp_tac, full_simp_tac, asm_full_simp_tac are the
basic simplification tactics that work exactly like their namesakes in
§5.1, except that they are explicitly supplied with a simpset.

Local modifications of simpsets within a proof are often much cleaner by
using above tactics in conjunction with explicit simpsets, rather than their
capitalized counterparts. For example

Addsimps thms;

by (Simp_tac) ;
Delsimps thms;

can be expressed more appropriately as

by (simp_tac (simpset() addsimps thms) i);

Also note that functions depending implicitly on the current theory con-
text (like capital Simp_tac and the other commands of §5.1) should be con-
sidered harmful outside of actual proof scripts. In particular, ML programs
like theory definition packages or special tactics should refer to simpsets only
explicitly, via the above tactics used in conjunction with simpset_of or the
SIMPSET tacticals.

5.4 Forward rules and conversions

simplify : simpset -> thm -> thm
asm_simplify : simpset -> thm -> thm
full_simplify : simpset -> thm -> thm
asm_full_simplify : simpset -> thm -> thm
Simplifier.rewrite : simpset -> cterm -> thm
Simplifier.asm_rewrite : simpset -> cterm -> thm
Simplifier.full_rewrite : simpset -> cterm -> thm
Simplifier.asm_full_rewrite : simpset -> cterm -> thm

The first four of these functions provide forward rules for simplification.
Their effect is analogous to the corresponding tactics described in §5.3, but
affect the whole theorem instead of just a certain subgoal. Also note that the
looper / solver process as described in §5.2.6 and §5.2.5 is omitted in forward
simplification.

The latter four are conversions, establishing proven equations of the form
t = u where the 1.h.s. ¢ has been given as argument.

CHAPTER 5. SIMPLIFICATION 49

| Forward simplification rules and conversions should be used rarely in ordinary
proof scripts. The main intention is to provide an internal interface to the
simplifier for special utilities.

5.5 Permutative rewrite rules

A rewrite rule is permutative if the left-hand side and right-hand side are
the same up to renaming of variables. The most common permutative rule is
commutativity: z+y = y+z. Other examples include (z—y)—2z = (z—2)—y
in arithmetic and insert(z, insert(y, A)) = insert(y, insert(z, A)) for sets.
Such rules are common enough to merit special attention.

Because ordinary rewriting loops given such rules, the simplifier employs
a special strategy, called ordered rewriting. There is a standard lexico-
graphic ordering on terms. This should be perfectly OK in most cases, but
can be changed for special applications.

settermless : simpset * (term * term -> bool) -> simpset infix 4

ss settermless rel installs relation rel as term order in simpset ss.

A permutative rewrite rule is applied only if it decreases the given term
with respect to this ordering. For example, commutativity rewrites b + a to
a+0b, but then stops because a+b is strictly less than b4a. The Boyer-Moore
theorem prover [2] also employs ordered rewriting.

Permutative rewrite rules are added to simpsets just like other rewrite
rules; the simplifier recognizes their special status automatically. They are
most effective in the case of associative-commutative operators. (Associativ-
ity by itself is not permutative.) When dealing with an AC-operator f, keep
the following points in mind:

e The associative law must always be oriented from left to right, namely
f(f(z,y),2) = f(z,f(y,2)). The opposite orientation, if used with
commutativity, leads to looping in conjunction with the standard term
order.

e To complete your set of rewrite rules, you must add not just associa-
tivity (A) and commutativity (C) but also a derived rule, left-com-

mutativity (LO): (s, f(y,2)) = (5,1 (7, 2)).
Ordered rewriting with the combination of A, C, and LC sorts a term lexi-
cographically:

(b+c)+arsb+(c+a)rSb+(ate) S a+ (b+c)

CHAPTER 5. SIMPLIFICATION 20

Martin and Nipkow [5] discuss the theory and give many examples; other
algebraic structures are amenable to ordered rewriting, such as boolean rings.

5.5.1 Example: sums of natural numbers

This example is again set in HOL (see HOL/ex/NatSum). Theory Arith
contains natural numbers arithmetic. Its associated simpset contains many
arithmetic laws including distributivity of x over +, while add_ac is a list
consisting of the A, C and LC laws for + on type nat. Let us prove the
theorem

zn:i:nx(n—i—l)/z

A functional sum represents the summation operator under the interpretation
sumf (n+1)=>",f1i. We extend Arith as follows:

NatSum = Arith +

consts sum :: [nat=>nat, nat] => nat
primrec

"sum £ 0 = O"

"sum f (Suc n) = f(n) + sum f n"
end

The primrec declaration automatically adds rewrite rules for sum to the
default simpset. We now remove the nat_cancel simplification procedures
(in order not to spoil the example) and insert the AC-rules for +:

Delsimprocs nat_cancel;
Addsimps add_ac;

Our desired theorem now reads sum(Ai .) (n+ 1) = n x (n + 1)/2. The
Isabelle goal has both sides multiplied by 2:

Goal "2 * sum (%i.i) (Suc n) = n * Suc n";
Level 0
2 * sum (4i. i) (Suc n) = n * Suc n
1. 2 * sum (%i. i) (Suc n) = n * Suc n

Induction should not be applied until the goal is in the simplest form:

by (Simp_tac 1);
Level 1
2 % sum (4i. i) (Suc n) = n * Suc n
1. n+ (sum (%i. i) n + sum (%i. i) n) = n * n

Ordered rewriting has sorted the terms in the left-hand side. The subgoal is
now ready for induction:

CHAPTER 5. SIMPLIFICATION o1

by (induct_tac "n" 1);
Level 2
2 % sum (4i. i) (Suc n) = n * Suc n
1. 0 + (sum (%i. i) O + sum (%i. i) 0) = 0 * 0O
2. !!'n. n+ (sum (4i. i) n + sum (4i. i) n) = n * n
==> Suc n + (sum (%i. i) (Suc n) + sum (%i.i) (Suc n)) =
Suc n * Suc n

Simplification proves both subgoals immediately:

by (ALLGOALS Asm_simp_tac);
Level 3
2 * sum (%i. i) (Suc n) = n * Suc n
No subgoals!

Simplification cannot prove the induction step if we omit add_ac from the
simpset. Observe that like terms have not been collected:

Level 3
2 % sum (}i. i) (Suc n) = n * Suc n
1. !'"'n. n + sum (i. i) n + (n + sum (4i. i) n) = n + n * n

=>n+ (n+ sum (4i. i) n) + (n + (n + sum (Ji. i) n)) =
n+ (@o+ (n+n *n))

Ordered rewriting proves this by sorting the left-hand side. Proving arith-
metic theorems without ordered rewriting requires explicit use of commuta-
tivity. This is tedious; try it and see!

Ordered rewriting is equally successful in proving 37, i* = n? x (n +
1)%/4.

5.5.2 Re-orienting equalities

Ordered rewriting with the derived rule symmetry can reverse equations:

val symmetry = prove_goal HOL.thy "(x=y) = (y=x)"
(fn _ => [Blast_tac 11);

This is frequently useful. Assumptions of the form s = ¢, where ¢ occurs
in the conclusion but not s, can often be brought into the right form. For
example, ordered rewriting with symmetry can prove the goal

fla)=bAfla)=c—b=c.

Here symmetry reverses both f(a) = b and f(a) = ¢ because f(a) is lexi-
cographically greater than b and c¢. These re-oriented equations, as rewrite
rules, replace b and c¢ in the conclusion by f(a).

CHAPTER 5. SIMPLIFICATION 52

Another example is the goal =(¢ = u) — —(u = t). The differing orienta-
tions make this appear difficult to prove. Ordered rewriting with symmetry
makes the equalities agree. (Without knowing more about ¢ and u we cannot
say whether they both go to ¢ = u or u = ¢.) Then the simplifier can prove
the goal outright.

5.6 *Setting up the Simplifier

Setting up the simplifier for new logics is complicated in the general case.
This section describes how the simplifier is installed for intuitionistic first-
order logic; the code is largely taken from FOL/simpdata.ML of the Isabelle
sources.

The case splitting tactic, which resides on a separate files, is not part of
Pure Isabelle. It needs to be loaded explicitly by the object-logic as follows
(below ~~ refers to $ISABELLE_HOME):

use ""7/src/Provers/splitter.ML";

Simplification requires converting object-equalities to meta-level rewrite
rules. This demands rules stating that equal terms and equivalent formu-
lae are also equal at the meta-level. The rule declaration part of the file
FOL/IFOL.thy contains the two lines

eq_reflection "(x=y) ==> (x==y)"
iff_reflection "(P<->Q) ==> (P==Q)"

Of course, you should only assert such rules if they are true for your par-
ticular logic. In Constructive Type Theory, equality is a ternary relation of
the form a = b € A; the type A determines the meaning of the equality
essentially as a partial equivalence relation. The present simplifier cannot
be used. Rewriting in CTT uses another simplifier, which resides in the file
Provers/typedsimp.ML and is not documented. Even this does not work for
later variants of Constructive Type Theory that use intensional equality [7].

5.6.1 A collection of standard rewrite rules

We first prove lots of standard rewrite rules about the logical connectives.
These include cancellation and associative laws. We define a function that
echoes the desired law and then supplies it the prover for intuitionistic FOL:

CHAPTER 5. SIMPLIFICATION 23

fun int_prove_fun s =
(writeln s;
prove_goal IFOL.thy s
(fn prems => [(cut_facts_tac prems 1),
(IntPr.fast_tac 1) 1));

The following rewrite rules about conjunction are a selection of those proved
on FOL/simpdata.ML. Later, these will be supplied to the standard simpset.

val conj_simps = map int_prove_fun

["P & True <-> P", "True & P <-> P",

"P & False <-> False", "False & P <-> False",
"P & P <-> P",

"P & “P <-> False", "“P & P <-> False",

"P&Q &R<>P& (@Q&R"];

The file also proves some distributive laws. As they can cause exponential
blowup, they will not be included in the standard simpset. Instead they are
merely bound to an ML identifier, for user reference.
val distrib_simps = map int_prove_fun
["P & (Q | R) <-> P&Q | P&R",
"(Q | R) & P <-> Q&P | R&P",
"P| Q-->R) <> (P -->R) & (Q -—> R)"];

5.6.2 Functions for preprocessing the rewrite rules
setmksimps : simpset * (thm -> thm list) -> simpset infix 4

The next step is to define the function for preprocessing rewrite rules. This
will be installed by calling setmksimps below. Preprocessing occurs when-
ever rewrite rules are added, whether by user command or automatically.
Preprocessing involves extracting atomic rewrites at the object-level, then
reflecting them to the meta-level.

To start, the function gen_all strips any meta-level quantifiers from the
front of the given theorem.

The function atomize analyses a theorem in order to extract atomic
rewrite rules. The head of all the patterns, matched by the wildcard _,
is the coercion function Trueprop.

fun atomize th = case concl_of th of
_ $ (Const("op &",.) $ _ $ _) => atomize(th RS conjunctl) @

atomize(th RS conjunct2)
_ $ (Const("op -—>",_) $ _ $ _) => atomize(th RS mp)

|

| _ $ (Const("All",) $ _) => atomize(th RS spec)
| _ $ (Const("True",_)) = []

| _ $ (Const("False",_)) => []

I => [th];

There are several cases, depending upon the form of the conclusion:

CHAPTER 5. SIMPLIFICATION o4

e Conjunction: extract rewrites from both conjuncts.

e Implication: convert P —) to the meta-implication P — @ and
extract rewrites from (); these will be conditional rewrites with the
condition P.

e Universal quantification: remove the quantifier, replacing the bound
variable by a schematic variable, and extract rewrites from the body.

e True and False contain no useful rewrites.
e Anything else: return the theorem in a singleton list.

The resulting theorems are not literally atomic — they could be disjunc-
tive, for example — but are broken down as much as possible. See the file
ZF/simpdata.ML for a sophisticated translation of set-theoretic formulae into
rewrite rules.

For standard situations like the above, there is a generic auxiliary func-
tion mk_atomize that takes a list of pairs (name, thms), where name is an
operator name and thms is a list of theorems to resolve with in case the
pattern matches, and returns a suitable atomize function.

The simplified rewrites must now be converted into meta-equalities. The
rule eq_reflection converts equality rewrites, while iff_reflection con-
verts if-and-only-if rewrites. The latter possibility can arise in two other
ways: the negative theorem —P is converted to P = False, and any other
theorem P is converted to P = True. The rules iff_reflection_F and
iff_reflection_T accomplish this conversion.

val P_iff F = int_prove_fun "“P ==> (P <-> False)";
val iff_reflection_F = P_iff_F RS iff_reflection;
val P_iff T = int_prove_fun "P ==> (P <-> True)";
val iff_reflection_T = P_iff_T RS iff_reflection;

The function mk_eq converts a theorem to a meta-equality using the case
analysis described above.

fun mk_eq th = case concl_of th of

$ (Const("op =",)$_$_) => th RS eqg_reflection
| _ $ (Const("op <->",_)$_$_) => th RS iff_reflection
| _ $ (Const("Not",_)$_) => th RS iff_reflection_F
|

=> th RS iff_reflection_T;

The three functions gen_all, atomize and mk_eq will be composed together
and supplied below to setmksimps.

CHAPTER 5. SIMPLIFICATION 95

5.6.3 Making the initial simpset

It is time to assemble these items. The list IFOL_simps contains the default
rewrite rules for intuitionistic first-order logic. The first of these is the reflex-
ive law expressed as the equivalence (a = a) <> True; the rewrite rule ¢ = a
is clearly useless.

val IFOL_simps =
[refl RS P_iff _T] @ conj_simps @ disj_simps @ not_simps @
imp_simps @ iff_simps @ quant_simps;

The list triv_rls contains trivial theorems for the solver. Any subgoal that
is simplified to one of these will be removed.

val notFalsel = int_prove_fun "“False";
val triv_rls = [Truel,refl,iff_refl,notFalsell;

We also define the function mk_meta_cong to convert the conclusion of con-
gruence rules into meta-equalities.

fun mk_meta_cong rl = standard (mk_meta_eq (mk_meta_prems rl));

The basic simpset for intuitionistic FOL is FOL_basic_ss. It preprocess
rewrites using gen_all, atomize and mk_eq. It solves simplified subgoals
using triv_rls and assumptions, and by detecting contradictions. It uses
asm_simp_tac to tackle subgoals of conditional rewrites.

Other simpsets built from FOL_basic_ss will inherit these items. In
particular, IFOL_ss, which introduces IFOL_simps as rewrite rules. FOL_ss
will later extend IFOL_ss with classical rewrite rules such as =—P < P.

CHAPTER 5. SIMPLIFICATION 26

fun unsafe_solver prems = FIRST’ [resolve_tac (triv_rls @ prems),
atac, etac FalseE];

fun safe_solver prems = FIRST’ [match_tac (triv_rls @ prems),
eq_assume_tac, ematch_tac [FalseE]];

val FOL_basic_ss =
empty_ss setsubgoaler asm_simp_tac
addsimprocs [defALL_regroup, defEX_regroup]
setSSolver safe_solver
setSolver unsafe_solver
setmksimps (map mk_eq o atomize o gen_all)
setmkcong mk_meta_cong;

val IFOL_ss =
FOL_basic_ss addsimps (IFOL_simps @
int_ex_simps @ int_all_simps)
addcongs [imp_cong];

This simpset takes imp_cong as a congruence rule in order to use contextual
information to simplify the conclusions of implications:

[7P < 2P'; 2P = 7Q > Q'] = (P — Q) > (P’ — Q')

By adding the congruence rule conj_cong, we could obtain a similar effect
for conjunctions.

Chapter 6

The Classical Reasoner

6.1 Classical rule sets

For elimination and destruction rules there are variants of the add operations
adding a rule in a way such that it is applied only if also its second premise
can be unified with an assumption of the current proof state:

addSE2 : claset * (string * thm) -> claset infix 4
addsD2 : claset * (string * thm) -> claset infix 4
addE2 : claset * (string * thm) -> claset infix 4
addD2 : claset * (string * thm) -> claset infix 4

! A rule to be added in this special way must be given a name, which is used

to delete it again — when desired — using delSWrappers or delWrappers, re-
spectively. This is because these add operations are implemented as wrappers (see
6.1.1 below).

6.1.1 Modifying the search step

For a given classical set, the proof strategy is simple. Perform as many safe
inferences as possible; or else, apply certain safe rules, allowing instantiation
of unknowns; or else, apply an unsafe rule. The tactics also eliminate as-
sumptions of the form x = t by substitution if they have been set up to do
so (see hyp_subst_tacs in §6.3 below). They may perform a form of Modus
Ponens: if there are assumptions P — () and P, then replace P — () by Q.

The classical reasoning tactics — except blast_tac! — allow you to
modify this basic proof strategy by applying two lists of arbitrary wrapper
tacticals to it. The first wrapper list, which is considered to contain safe
wrappers only, affects safe_step_tac and all the tactics that call it. The
second one, which may contain unsafe wrappers, affects the unsafe parts
of step_tac, slow_step_tac, and the tactics that call them. A wrapper
transforms each step of the search, for example by attempting other tactics
before or after the original step tactic. All members of a wrapper list are
applied in turn to the respective step tactic.

57

CHAPTER 6. THE CLASSICAL REASONER 28

Initially the two wrapper lists are empty, which means no modification

of the step tactics. Safe and unsafe wrappers are added to a claset with the
functions given below, supplying them with wrapper names. These names
may be used to selectively delete wrappers.

CcS

CcS

CcS

CS

CS

CS

CS

CS

CS

type wrapper = (int -> tactic) -> (int -> tactic);

addSWrapper : claset * (string * wrapper) => claset infix 4
addSbefore : claset * (string * (int -> tactic)) -> claset infix 4
addSafter : claset * (string * (int -> tactic)) -> claset infix 4
delSWrapper : claset * string -> claset infix 4
addWrapper : claset * (string * wrapper) -> claset infix 4
addbefore : claset * (string * (int -> tactic)) -> claset infix 4
addafter : claset * (string * (int -> tactic)) -> claset infix 4
delWrapper : claset * string -> claset infix 4
addSss : claset * simpset -> claset infix 4
addss : claset * simpset -> claset infix 4

addSWrapper (name,wrapper) adds a new wrapper, which should yield
a safe tactic, to modify the existing safe step tactic.

addSbefore (name,tac) adds the given tactic as a safe wrapper, such
that it is tried before each safe step of the search.

addSafter (name,tac) adds the given tactic as a safe wrapper, such that
it is tried when a safe step of the search would fail.

delSWrapper name deletes the safe wrapper with the given name.

addWrapper (name, wrapper) adds a new wrapper to modify the existing
(unsafe) step tactic.

addbefore (name,tac) adds the given tactic as an unsafe wrapper, such
that it its result is concatenated before the result of each unsafe step.

addafter (name,tac) adds the given tactic as an unsafe wrapper, such
that it its result is concatenated after the result of each unsafe step.

delWrapper name deletes the unsafe wrapper with the given name.

addSss ss adds the simpset ss to the classical set. The assumptions and
goal will be simplified, in a rather safe way, after each safe step of the
search.

CHAPTER 6. THE CLASSICAL REASONER 29

cs addss ss adds the simpset ss to the classical set. The assumptions and
goal will be simplified, before the each unsafe step of the search.

Strictly speaking, the operators addss and addSss are not part of the
classical reasoner. , which are used as primitives for the automatic tactics
described in §?77. are implemented as wrapper tacticals. they

' Being defined as wrappers, these operators are inappropriate for adding more
® than one simpset at a time: the simpset added last overwrites any earlier ones.

When a simpset combined with a claset is to be augmented, this should done before
combining it with the claset.

6.2 The classical tactics

6.2.1 Other classical tactics

slow_best_tac : claset -> int -> tactic

slow_best_tac cs i applies slow_step_tac with best-first search to prove
subgoal 7.

6.2.2 Other useful tactics

contr_tac : int -> tactic
mp_tac : int -> tactic
eq_mp_tac : int -> tactic

swap_res_tac : thm list -> int -> tactic

These can be used in the body of a specialized search.

contr_tac ¢ solves subgoal i by detecting a contradiction among two as-
sumptions of the form P and —P, or fail. It may instantiate unknowns.
The tactic can produce multiple outcomes, enumerating all possible
contradictions.

mp_tac ¢ is like contr_tac, but also attempts to perform Modus Ponens
in subgoal 7. If there are assumptions P —) and P, then it replaces
P — @ by @. It may instantiate unknowns. It fails if it can do nothing.

eq_mp_tac ¢ is like mp_tac 7, but may not instantiate unknowns — thus, it
is safe.

CHAPTER 6. THE CLASSICAL REASONER 60

swap_res_tac thms i refines subgoal ¢ of the proof state using thms, which
should be a list of introduction rules. First, it attempts to prove the
goal using assume_tac or contr_tac. It then attempts to apply each
rule in turn, attempting resolution and also elim-resolution with the
swapped form.

6.3 Setting up the classical reasoner

[sabelle’s classical object-logics, including FOL and HOL, have the classical
reasoner already set up. When defining a new classical logic, you should set
up the reasoner yourself. It consists of the ML functor ClassicalFun, which
takes the argument signature CLASSICAL_DATA:

signature CLASSICAL_DATA =

sig

val mp : thm

val not_elim : thm

val swap : thm

val sizef : thm -> int

val hyp_subst_tacs : (int -> tactic) list
end;

Thus, the functor requires the following items:

mp should be the Modus Ponens rule [?P — 7Q); 7P| = Q).
not_elim should be the contradiction rule [-7P; 7P] = 7R.
swap should be the swap rule [-?P; =7R — 7P| = "R.

sizef is the heuristic function used for best-first search. It should esti-
mate the size of the remaining subgoals. A good heuristic function
is size_of_thm, which measures the size of the proof state. Another
size function might ignore certain subgoals (say, those concerned with
type-checking). A heuristic function might simply count the subgoals.

hyp_subst_tacs is a list of tactics for substitution in the hypotheses, typi-
cally created by HypsubstFun (see Chapter 4). This list can, of course,
be empty. The tactics are assumed to be safe!

The functor is not at all sensitive to the formalization of the object-logic. It
does not even examine the rules, but merely applies them according to its
fixed strategy. The functor resides in Provers/classical.ML in the Isabelle
sources.

Bibliography

[1]

Stefan Berghofer and Tobias Nipkow. Proof terms for simply typed higher
order logic. In J. Harrison and M. Aagaard, editors, Theorem Proving in
Higher Order Logics: TPHOLs 2000, volume 1869 of Lecture Notes in
Computer Science, pages 38-52. Springer-Verlag, 2000.

Robert S. Boyer and J Strother Moore. A Computational Logic Handbook.
Academic Press, 1988.

E. Charniak, C. K. Riesbeck, and D. V. McDermott. Artificial Intelligence
Programming. Lawrence Erlbaum Associates, 1980.

N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
Theorem. Indag. Math., 34:381-392, 1972.

Ursula Martin and Tobias Nipkow. Ordered rewriting and confluence. In
Mark E. Stickel, editor, 10th International Conference on Automated
Deduction, LNAT 449, pages 366-380. Springer, 1990.

Tobias Nipkow. Functional unification of higher-order patterns. In M. Vardi,
editor, Eighth Annual Symposium on Logic in Computer Science, pages
64-74. IEEE Computer Society Press, 1993.

Bengt Nordstrom, Kent Petersson, and Jan Smith. Programming in
Martin-Léf’s Type Theory. An Introduction. Oxford University Press, 1990.

61

Index

$, 20

%y, 12

Doty 12

_K constant, 29, 31

Abs, 20

AbsP, 12

Abst, 12
abstract_rule, 10
addafter, 58
addbefore, 58
Addcongs, 41
addcongs, 55
addD2, 57
addE2, 57
addloop, 46
addSafter, 58
addSbefore, 58
addsSD2, 57
addSE2, 57
Addsimprocs, 41
Addsimps, 40
addsimps, 43, 55
addSolver, 45
Addsplits, 41
addsplits, 46
addss, 58, 59
addSSolver, 45
addSWrapper, 58
addWrapper, 58
ALLGOALS, 51
Appl, 17

args nonterminal, 27

Arith theory, 50

Asm_full_simp_tac, 39

asm_full_simp_tac, 48
asm_full_simplify, 48
Asm_simp_tac, 38
asm_simp_tac, 48, 55
asm_simplify, 48

associative-commutative operators,

49
assumptions
contradictory, 59
in simplification, 38, 45
inserting, 1
substitution in, 34
ASTs, 17-22

made from parse trees, 18

made from terms, 21

beta_conversion, 9
bicompose, 11
bimatch_tac, 2
biresolution, 10
biresolve_tac, 2
Bound, 18, 20, 21
bound_hyp_subst_tac, 35

case splitting, 46
classical reasoner, 57-60
setting up, 60
classical sets, 57
ClassicalFun, 60
combination, 10
COMP, 11
compose, 10
compose_tac, 1
concl_of, 7
Const, 20, 30

62

INDEX

Constant, 17, 30
constants

syntactic, 23
context, 38
contr_tac, 59
could_unify, 4
cprems_of, 7
cprop_of, 7
cterm_instantiate, 5
cut_facts_tac, 1, 35

datatype, 41
debug_simp, 39
definitions, see rewriting, meta-level
Delcongs, 41
delloop, 46
Delsimprocs, 41
Delsimps, 40
delsimps, 43
Delsplits, 41
delSWrapper, 58
delWrapper, 58
dependent_tr’, 29, 31
dest_eq, 36
dest_imp, 36
dest_Trueprop, 36
discrimination nets, 3
domain_type, 36
dummyT, 20, 21, 32

empty_ss, 42
eq_mp_tac, 59
eq_reflection theorem, 36, 52
equal_elim, 9
equal_intr, 9
equality, 33-37
eresolve_tac
on other than first premise, 6
eta_contract, 25
examples
of macros, 27, 28

of translations, 31
extensional, 9

filt_resolve_tac, 3
filter_thms, 4
flex-flex constraints, 7
FOL_basic_ss, 55
FOL_ss, 55

Free, 20
Full_simp_tac, 39
full_simp_tac, 48
full_simplify, 48

generic_simp_tac, 47

higher-order pattern, 43
HOL_basic_ss, 42

Hyp, 12
hyp_subst_tac, 34
hyp_subst_tacs, 60
HypsubstFun, 35, 60

id nonterminal, 19, 26

idt nonterminal, 25
iff_reflection theorem, 52
IFOL_ss, 55

imp_intr theorem, 36
incr_boundvars, 31
instantiate’, 6
instantiation, 5

is nonterminal, 27

A-abstractions, 3
A-calculus, 9
lessb, 2
loose_bnos, 32

macros, 22-29
make_elim, 6
Match exception, 30
merge_ss, 42
meta-equality, 9

63

INDEX

meta-rewriting, see also tactics, the-
orems

meta-rules, see meta-rules, 9-11

MinProof, 13

mk_atomize, 54

mk_meta_cong, 55

mk_solver, 45

ML section, 29, 31

mp theorem, 60

mp_tac, 59

net_bimatch_tac, 3
net_biresolve_tac, 3
net_match_tac, 3
net_resolve_tac, 3
not_elim theorem, 60
nprems_of, 7

num nonterminal, 19, 26

Oracle, 12

parameters
renaming, 11
parse trees, 17
parse_rules, 24
pattern, higher-order, 43
PAxm, 12
PBound, 12
permute_prems, 6
prems_of, 7
prems_of_ss, 44
pretty printing, 27
primrec, 41
print_rules, 24
print_ss, 42
productions
copy, 19
proof terms, 11-16
checking, 14
parsing, 14
partial, 14
printing, 14

64

reconstructing, 14
proofs, 13
PThm, 12

read_instantiate, 5
read_instantiate_sg, 5
rearrange_prems, 7
reflexive, 9
rename_params_rule, 11
rep_ss, 42
res_inst_tac, 1
reserved words, 28
resolution, 10

without lifting, 10
rev_eq_reflection theorem, 36
rev_mp theorem, 36
rewrite rules, 4243

permutative, 49-52
rewriting

object-level, see simplification

ordered, 49

syntactic, 22-29
rotate_prems, 6
rule_by_tactic, 6
rules

converting destruction to elimi-

nation, 6

safe_step_tac, 57
setloop, 46
setmksimps, 43, 53, 55
setSolver, 45, 55
setSSolver, 45, 55
setsubgoaler, 44, 55
settermless, 49
show_sorts, 21, 30
show_types, 21, 25, 32
Simp_tac, 38
simp_tac, 48
simplification, 38-56
conversions, 48

INDEX

forward rules, 48

from classical reasoner, 59

setting up, 52

tactics, 47
simplification sets, 41
Simplifier.asm_full_rewrite, 48
Simplifier.asm_rewrite, 48
Simplifier.full_rewrite, 48
Simplifier.rewrite, 48
simplify, 48
simpset

current, 38
size_of_thm, 60
sizef, 60
slow_best_tac, 59
slow_step_tac, H7
sort hypotheses, 7
ssubst theorem, 34
stac, 34
standard, 6
step_tac, 57
strip_shyps, 8
strip_shyps_warning, 8
subgoals_of_brl, 2
subst theorem, 33, 36
substitution

rules, 33
swap theorem, 60
swap_res_tac, 60
sym theorem, 34, 36
symmetric, 9
syntax

transformations, 17-32
Syntax.ast ML type, 17
Syntax.mark_boundT, 32
Syntax.trace_ast, 26
Syntax.variant_abs’, 32

tactics, 1-4
for composition, 1
for contradiction, 59

for inserting facts, 1
for Modus Ponens, 59
resolution, 2, 3
simplification, 47
substitution, 33-37
term ML type, 20
terms
made from ASTs, 20
theorems, 5-16
dependencies, 13
standardizing, 6
taking apart, 7
theory_of_thm, 7
thin_refl theorem, 36
THM exception, 11
thm ML type, 5
thm_deps, 13
tid nonterminal, 19, 26
tpairs_of, 7
trace_simp, 39
tracing
of macros, 26
of simplification, 40
of unification, 8
transitive, 9
translations, 29-32
parse, 20
parse AST, 18, 19
print AST, 22
translations section, 24
tvar nonterminal, 19, 26
type constraints, 21

Var, 20
var nonterminal, 19, 26
Variable, 17

xnum nonterminal, 19, 26
xstr nonterminal, 19, 26

zero_var_indexes, 6

65

	Tactics
	Other basic tactics
	Inserting premises and facts
	Composition: resolution without lifting

	*Managing lots of rules
	Combined resolution and elim-resolution
	Discrimination nets for fast resolution

	Theorems and Forward Proof
	Instantiating unknowns in a theorem
	Miscellaneous forward rules
	Taking a theorem apart
	*Sort hypotheses
	Tracing flags for unification

	*Primitive meta-level inference rules
	Logical equivalence rules
	Equality rules
	The -conversion rules

	Derived rules for goal-directed proof
	Resolution
	Composition: resolution without lifting
	Other meta-rules

	Proof terms
	Reconstructing and checking proof terms
	Parsing and printing proof terms

	Syntax Transformations
	Abstract syntax trees
	Transforming parse trees to ASTs
	Transforming ASTs to terms
	Printing of terms
	Macros: syntactic rewriting
	Specifying macros
	Applying rules
	Example: the syntax of finite sets
	Example: a parse macro for dependent types

	Translation functions
	Declaring translation functions
	The translation strategy
	Example: a print translation for dependent types

	Substitution Tactics
	Substitution rules
	Substitution in the hypotheses
	Setting up the package

	Simplification
	Simplification for dummies
	Simplification tactics
	Modifying the current simpset

	Simplification sets
	Inspecting simpsets
	Building simpsets
	Rewrite rules
	*The subgoaler
	*The solver
	*The looper

	The simplification tactics
	Forward rules and conversions
	Permutative rewrite rules
	Example: sums of natural numbers
	Re-orienting equalities

	*Setting up the Simplifier
	A collection of standard rewrite rules
	Functions for preprocessing the rewrite rules
	Making the initial simpset

	The Classical Reasoner
	Classical rule sets
	Modifying the search step

	The classical tactics
	Other classical tactics
	Other useful tactics

	Setting up the classical reasoner

