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Preface

This volume is the reference manual for the HOL Light system. In contrast to the Tutorial,
it is mainly intended for reference purposes, though some readers will find it productive
to browse through it as part of the learning process. The main entries for the reference
manual are generated from the same database that is used by the online HOL Light help
system.

The entries that follow provide documentation on essentially all the pre-defined ML
variable bindings in the HOL Light system. These include: general-purpose functions,
such as ML functions for list processing, arithmetic, input/output, and interface config-
uration; functions for processing the types and terms of the HOL logic and for using the
subgoal package; primitive and derived forward inference rules; tactics and tacticals; and
pre-proved built-in theorems.

The manual entries for these ML identifiers are divided into two chapters. The first
chapter is an alphabetical sequence of manual entries for all ML identifiers in the system
except those identifiers that are bound to theorems (or pairs of theorems, etc.) The
theorems are listed in the second chapter, roughly grouped into sections based on subject
matter.

Our documentation does not cover basic functions in the OCaml toplevel, such as
addition, string concatenation etc. In fact, relatively few native OCaml functions are
used, and those are all documented in the Objective CAML Reference Manual:

http://caml.inria.fr/pub/docs/manual-ocaml/index.html
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Chapter 1

Pre-defined ML Identifiers

This chapter provides manual entries for all the pre-defined ML identifiers in the HOL
system, except the identifiers that are bound to pre-proved theorems (for these, see chapter
two). These include: general-purpose functions, such as functions for list processing,
arithmetic, input/output, and interface configuration; functions for processing the types
and terms of the HOL logic, for using the subgoal package; primitive and derived forward
inference rules; and tactics and tacticals. The arrangement is alphabetical.
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++

(#+) : CCa => ’b *x ’¢c) => (Pc -> ’d * ’e) -> ’a => (’b * ’d) * ’e

Synopsis

Sequentially compose two parsers.

Description

If p1 and p2 are two parsers, pl ++ p2 is a new parser that parses as much of the input as
possible using p1 and then as much of what remains using p2, returning the pair of parse
results and the unparsed input.

Failure
Never fails.

Comments

This is one of a suite of combinators for manipulating “parsers”. A parser is simply
a function whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The
function should take a list of objects of type :’a (e.g. characters or tokens), parse as
much of it as possible from left to right, and return a pair consisting of the object derived
from parsing (e.g. a term or a special syntax tree) and the list of elements that were not
processed.

See also
++, >>, |||, a, atleast, elistof, finished, fix, leftbin, listof, many,
nothing, possibly, rightbin, some.

ry = Ca=> o) -> (Ca -> ’b) -> ’a -> ’b

Synopsis

Produce alternative composition of two parsers.

Description

If p1 and p2 are two parsers, p1 ||| p2 is a new parser that first tries to parse the input

using p1, and if that fails with exception Noparse, tries p2 instead. The output is whatever
parse result was achieved together with the unparsed input.
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Failure
Never fails.

Comments

This is one of a suite of combinators for manipulating “parsers”. A parser is simply
a function whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The
function should take a list of objects of type :’a (e.g. characters or tokens), parse as
much of it as possible from left to right, and return a pair consisting of the object derived
from parsing (e.g. a term or a special syntax tree) and the list of elements that were not
processed.

See also
++, >>, a, atleast, elistof, finished, fix, leftbin, listof, many, nothing,
possibly, rightbin, some.

>>

>>) : (Ca->"’b* ’c) > (b ->’d) -> ’a ->’d * ’c

Synopsis
Apply function to parser result.

Description
If p is a parser and f a function from the parse result type, p >> f gives a new parser
that ‘pipes the original parser output through f’; i.e. applies £ to the result of the parse.

Failure
Never fails.

Comments

This is one of a suite of combinators for manipulating “parsers”. A parser is simply
a function whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The
function should take a list of objects of type :’a (e.g. characters or tokens), parse as
much of it as possible from left to right, and return a pair consisting of the object derived
from parsing (e.g. a term or a special syntax tree) and the list of elements that were not
processed.

See also
++, |||, a, atleast, elistof, finished, fix, leftbin, listof, many, nothing,
possibly, rightbin, some.
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|=>

(I=>) : ’a -> ’b -> (’a, ’b) func

Synopsis

Gives a one-point finite partial function.

Description

This is one of a suite of operations on finite partial functions, type (’a,’b)func. These
may sometimes be preferable to ordinary functions since they permit more operations
such as equality comparison, extraction of domain etc. The call x |=> y gives a finite
partial function that maps x to y and is undefined for all arguments other than x.

Example

# let £ = (1 |=> 2);;
val £ : (int, int) func = <func>

# apply f 1;;
val it : int = 2

# apply f 2;;
Exception: Failure "apply".

See also
|->, apply, applyd, choose, combine, defined, dom, foldl, foldr, graph,
is_undefined, mapf, ran, tryapplyd, undefine, undefined.

(--) : int -> int -> int list

Synopsis

Gives a finite list of integers between the given bounds.

Description
The call m—--n returns the list of consecutive numbers from m to n.




Example
# 1--10;;
val it : int list = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
# 5--5;;
val it : int 1list = [5]
# (-1)--1;;
val it : int 1list = [-1; 0; 1]
# 2--1;;
val it : int list = []
| ->
(l->) : ’a ->’b -> (P’a, ’b) func -> (’a, ’b) func
Synopsis

Modify a finite partial function at one point.

Description

This is one of a suite of operations on finite partial functions, type (’a,’b)func. These
may sometimes be preferable to ordinary functions since they permit more operations
such as equality comparison, extraction of domain etc. If £ is a finite partial function
then (x |-> y) f gives a modified version that maps x to y (whether or not £ was defined
on x before and regardless of the old value) but is otherwise the same.

Failure
Never fails.

Example

# let £ = (1 |-> 2) undefined;;

val £ : (int, int) func = <func>
# let g = (1 |-> 3) £f;;

val g : (int, int) func = <func>
# apply f 1;;

val it : int = 2

# apply g 1;;

val it : int = 3

See also
|=>, apply, applyd, choose, combine, defined, dom, foldl, foldr, graph,
is_undefined, mapf, ran, tryapplyd, undefine, undefined.
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a : ’a->’a list -> ’a *x ’a list

Synopsis

Parser that requires a specific item.

Description
The call a x gives a parser that parses a single item that is exactly x, raising Noparse if
the first item is something different.

Failure
The call a x never fails, though the resulting parser may raise Noparse.

Comments

This is one of a suite of combinators for manipulating “parsers”. A parser is simply
a function whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The
function should take a list of objects of type :’a (e.g. characters or tokens), parse as
much of it as possible from left to right, and return a pair consisting of the object derived
from parsing (e.g. a term or a special syntax tree) and the list of elements that were not
processed.

See also
++, |||, >, atleast, elistof, finished, fix, leftbin, listof, many, nothing,
possibly, rightbin, some.

ABBREV_TAC

ABBREV_TAC : term -> (string * thm) list * term -> goalstate

Synopsis

Tactic to introduce an abbreviation.

Description

The tactic ABBREV_TAC ‘x = t° abbreviates any instances of the term t in the goal (as-
sumptions or conclusion) with x, and adds a new assumption t = x. (Reversed so that
rules like ASM_REWRITE_TAC will not immediately expand it again.) The LHS may be of
the form £ x in which case abstraction will happen first.
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Failure
Fails unless the left-hand side is a variable or a variable applied to a list of variable
arguments.

Example
# g (12345 + 12345) + £(12345 + 12345) = £(12345 + 12345)°¢;;
Warning: Free variables in goal: f
val it : goalstack = 1 subgoal (1 total)

©(12345 + 12345) + f (12345 + 12345) = f (12345 + 12345)°

# e(ABBREV_TAC ‘n = 12345 + 123459);;
val it : goalstack = 1 subgoal (1 total)

0 [“12345 + 12345

n‘]
‘n +fn=1fn
Uses
Convenient for abbreviating large and unwieldy expressions as a sort of ‘local definition’.

See also
EXPAND_TAC.

ABS

ABS : term -> thm -> thm

Synopsis

Abstracts both sides of an equation.

Description

________________________ ABS ‘x°¢ [Where x is not free in A]
A - (\x.t1) = (\x.t2)

Failure
If the theorem is not an equation, or if the variable x is free in the assumptions A.
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Example
# ABS ‘m:num‘ (REFL ‘m:num‘);;

val it : thm = |- (\m. m) = (\m. m)

Comments
This is one of HOL Light’s 10 primitive inference rules.

See also
ETA_CONV.

ABS_CONV

ABS_CONV : conv -> conv

Synopsis

Applies a conversion to the body of an abstraction.

Description
If c is a conversion that maps a term ‘t¢ to the theorem |- t = t’, then the conversion
ABS_CONV c maps abstractions of the form ‘\x. t¢ to theorems of the form:

- A\x. t) = (\x. t7)
That is, ABS_CONV c ‘\x. t¢ applies c to the body of the abstraction ‘\x. t*.

Failure

ABS_CONV c tm fails if tm is not an abstraction or if tm has the form ‘\x. t¢ but the
conversion c fails when applied to the term t, or if the theorem returned has assumptions
in which the abstracted variable x is free. The function returned by ABS_CONV c¢ may also
fail if the ML function c:term->thm is not, in fact, a conversion (i.e. a function that maps
a term t to a theorem |- t = t’).

Example
# ABS_CONV SYM_CONV ‘\x. 1 = x°;;
val it : thm = |- (\x. 1 =x) = (\x. x = 1)

See also
GABS_CONV, RAND_CONV, RATOR_CONV, SUB_CONV.
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ABS_TAC

ABS_TAC : tactic

Synopsis

Strips an abstraction from each side of an equational goal.

Description

ABS_TAC reduces a goal of the form A 7- (\x. s[x]) = (\y. tlyl) by stripping away the
abstractions to give a new goal A ?- s[x’] = t[x’] where x’ is a variant of x, the bound
variable on the left-hand side, chosen not to be free in the current goal’s assumptions or
conclusion.

A 7- (\x. s[x]) = Q(\y. tlyD)

ABS_TAC

A 7- s[x’] = tlx’]
Failure
Fails unless the goal is equational, with both sides being abstractions.

See also
AP_TERM_TAC, AP_THM_TAC, BINOP_TAC, MK_COMB_TAC.

AC

AC : thm -> term -> thm

Synopsis

Proves equality of terms using associative, commutative, and optionally idempotence laws.

Description
Suppose _ is a function, which is assumed to be infix in the following syntax, and acth is
a theorem expressing associativity and commutativity in the particular canonical form:

acth = |-m _n=n_m/\
=m_n _p/\
n_m_p

(m _ n)

o1

m_mn_p

Then AC acth will prove equations whose left and right sides can be made identical using
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these associative and commutative laws. If the input theorem also has idempotence
property in this canonical form:

- (p_qgq=q_p /\

((p_q _r=p_q_1)/\
(p_q_r=q_p_1)/\
p_p=p /\

P_-pP-a=p_-a
then idempotence will also be applied.

Failure

Fails if the terms are not proved equivalent under the appropriate laws. This may happen
because the input theorem does not have the correct canonical form. The latter problem
will not in itself cause failure until it is applied to the term.

Example

# AC ADD_AC ‘1 +2+3=2+1+ 3‘;

val it : thm= |- 1+ 2 +3 =2+ 1+ 3

# AC CONJ_ACI ‘p /\ (@ /\' p) <=> (p/\ @ /\ (p /\ ©;;

val it : thm = |- p /N q/\p<=> (p /\Nq) /\p/\ g
Comments

Note that pre-proved theorems in the correct canonical form for AC are already present for
many standard operators, e.g. ADD_AC, MULT_AC, INT_ADD_AC, INT_MUL_AC, REAL_ADD_AC,
REAL_MUL_AC, CONJ_ACI, DISJ_ACI and INSERT_AC. The underlying algorithm is not partic-
ularly delicate, and normalization under the associative/commutative/idempotent laws
can be achieved by direct rewriting with the same canonical theorems. For some cases,
specially optimized rules are available such as CONJ_ACI_RULE and DISJ_ACI_RULE.

See also
ASSOC_CONV, CONJ_ACI_RULE, DISJ_ACI_RULE, SYM_CONV.

ACCEPT_TAC

ACCEPT_TAC : thm_tactic

Synopsis

Solves a goal if supplied with the desired theorem (up to alpha-conversion).
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Description
ACCEPT_TAC maps a given theorem th to a tactic that solves any goal whose conclusion is
alpha-convertible to the conclusion of th.

Failure
ACCEPT_TAC th (A 7- g) fails if the term g is not alpha-convertible to the conclusion of
the supplied theorem th.

Example
The theorem BOOL_CASES_AX = |- !'t. (t <=> T) \/ (t <=> F) can be used to solve the
goal:

#tg ‘lx. (x<=>T) \/ (x<=>F)°;;

by

# e(ACCEPT_TAC BOOL_CASES_AX);;
val it : goalstack = No subgoals

Uses

Used for completing proofs by supplying an existing theorem, such as an axiom, or a
lemma already proved. Often this can simply be done by rewriting, but there are times
when greater delicacy is wanted.

See also
MATCH_ACCEPT_TAC.

aconv

aconv : term -> term -> bool

Synopsis

Tests for alpha-convertibility of terms.

Description
When applied to two terms, aconv returns true if they are alpha-convertible, and false
otherwise.

Failure
Never fails.
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Example
A simple case of alpha-convertibility is the renaming of a single quantified variable:

# aconv ‘?x. x <=> T¢ ‘?y. y <=> T‘;;
val it : bool = true

but other cases can be more involved:

# aconv ‘\x yz. x+y+z° \yxz. y+zx+2zs;

val it : bool true

Comments
The code for alpha-conversion first checks for simple equality with pointer equality short-
cutting, and can therefore often returns true without a full traversal.

In principle, most of the HOL Light deductive apparatus should work modulo alpha-
conversion. With the exception of BETA, all the primitive inference rules do, as does
BETA_CONV, which properly generalizes BETA.

See also
ALPHA, ALPHA_CONV, alphaorder.

ADD_ASSUM

ADD_ASSUM : term -> thm -> thm

Synopsis
Adds an assumption to a theorem.
Description
When applied to a boolean term s and a theorem A |- t, the inference rule ADD_ASSUM
returns the theorem A u {s} |- t.
Al-t
—————————————— ADD_ASSUM ‘s
Au{s} |-t

ADD_ASSUM performs straightforward set union with the new assumption; it checks for
identical assumptions, but not for alpha-equivalent ones. The position at which the new
assumption is inserted into the assumption list should not be relied on.
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Failure
Fails unless the given term has type bool.

Example
# ADD_ASSUM ‘q:bool‘ (ASSUME ‘p:bool‘);;
val it : thm = p, q |- p

See also
ASSUME, UNDISCH.

allpairs

allpairs : (’a -=> ’b -> ’c) -> ’a list -> ’b list -> ’c list

Synopsis

Compute list of all results from applying function to pairs from two lists.

Description

The call allpairs f [x1;...;xm] [y1;...;yn] returns the list of results [f x1 y1; f x1 y2;
Failure

Never fails.

Example
# allpairs (fun x y -> (x,y)) [1;2;3] [4;5];;
val it : (int * int) list = [(1, 4); (1, B); (2, 4); (2, 5); (3, 4); (3, 5)]

See also
map2, zip.

ALL_CONV

ALL_CONV : conv
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Synopsis

Conversion that always succeeds and leaves a term unchanged.
Description

When applied to a term ‘t¢, the conversion ALL_CONV returns the theorem |- t = t. It
is just REFL explicitly regarded as a conversion.

Failure
Never fails.

Uses
Identity element for THENC.

See also
NO_CONV, REFL.

ALL_TAC

ALL_TAC : tactic

Synopsis

Passes on a goal unchanged.

Description
ALL_TAC applied to a goal g simply produces the subgoal list [g]. It is the identity for the
THEN tactical.

Failure
Never fails.

Example
Suppose we want to solve the goal:

# g ““(nMOD 2 =0) <=>n MOD 2 = 1¢;;

We could just solve it with e ARITH_TAC, but suppose we want to introduce a little
lemma that n MOD 2 < 2, proving that by ARITH_TAC. We could do

# e(SUBGOAL_THEN ‘n MOD 2 < 2¢ ASSUME_TAC THENL
[ARITH_TAC;
...rest of proof...1);;

However if we split off many lemmas, we get a deeply nested proof structure that’s a
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bit confusing. In cases where the proofs of the lemmas are trivial one-liners like this we
might just want to keep the proof basically linear with

# e(SUBGOL_THEN ‘n MOD 2 < 2¢ ASSUME_TAC THENL [ARITH_TAC; ALL_TAC] THEN
...rest of proof...);;

Uses
Keeping proof structures linear, as in the above example, or convenient algebraic combi-
nations in complicated tactic structures.

See also
NO_TAC, REPEAT, THENL.

ALL_THEN

ALL_THEN : thm_tactical

Synopsis

Passes a theorem unchanged to a theorem-tactic.

Description

For any theorem-tactic ttac and theorem th, the application ALL_THEN ttac th results
simply in ttac th, that is, the theorem is passed unchanged to the theorem-tactic.
ALL_THEN is the identity theorem-tactical.

Failure
The application of ALL_THEN to a theorem-tactic never fails. The resulting theorem-tactic
fails under exactly the same conditions as the original one

Uses

Writing compound tactics or tacticals, e.g. terminating list iterations of theorem-tacticals.

See also
ALL_TAC, FAIL_TAC, NO_TAC, NO_THEN, THEN_TCL, ORELSE_TCL.

alpha

alpha : term -> term -> term
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Synopsis

Changes the name of a bound variable.

Description

The call alpha ‘v’¢ ‘\v. t[v]‘ returns the second argument with the top bound variable

changed to v’, and other variables renamed if necessary.

Failure

Fails if the first term is not a variable, or if the second is not an abstraction, if the
corresponding types are not the same, or if the desired new variable is already free in the
abstraction.

Example

# alpha ‘y:num‘ ‘\x y. x + y + 2°;;
val it : term = ‘\y y’. y + y’ + 2¢

# alpha ‘y:num‘ ‘\x. x + y + 1¢;;

Exception: Failure "alpha: Invalid new variable".

See also
ALPHA, aconv.

alphaorder

alphaorder : term -> term —> int

Synopsis

Total ordering on terms respecting alpha-equivalence.

Description

The function alphaorder implements a total order on terms, using -1, 0 or +1 to indicate
that the first term argument is respectively ‘less than’, ‘equal to’ or ‘greater than’ the sec-
ond term argument. The ordering is largely arbitrary, but it is transitive and (in contrast
to the inbuilt OCaml polymorphic ordering) respects alpha-equivalence, i.e. returns 0 if
and only if the two terms are alpha-convertible.

Failure
Never fails.
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Example
Any two terms can be compared, and swapping the arguments negates the result:

# alphaorder ‘x + 1¢ ‘p ==> q°;;
val it : int = -1

# alphaorder ‘p ==> q‘ ‘x + 1¢;;
val it : int =1

while alpha-equivalent terms, and only alpha-convertible terms, are ‘equal’:

# alphaorder ‘!x. 7y. x + 1 < y¢ ‘ly. 7z. y + 1 < z;;
val it : int =0

# alphaorder ‘I!x. 7y. x + 1 < y‘ ‘Ix. ?y. x + 1 <y + 1%;

val it : int = -1

See also
aconv.

ALPHA_CONV

ALPHA_CONV : term -> term -> thm

Synopsis

Renames the bound variable of a lambda-abstraction.

Description

If ¢y¢ is a variable of type ty and ‘\x. t* is an abstraction in which the bound variable
x also has type ty and y does not occur free in t, then ALPHA_CONV ‘y‘¢ ‘\x. t° returns
the theorem:

- (\x. t) = (\y. tly/x])

Failure

Fails if the first argument is not a variable, the second is not an abstraction, if the types
of the new variable and the bound variable in the abstraction differ, or if the new variable
is already free in the body of the abstraction.
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Example

# ALPHA_CONV ‘y:num‘ ‘\x. x + 1¢;;
val it : thm = |- (\x. x + 1) = (\y. y + 1)

# ALPHA_CONV ‘y:num‘ ‘\x. x + y‘;;

Exception: Failure "alpha: Invalid new variable".

See also
ALPHA, GEN_ALPHA_CONV.

ALPHA

ALPHA : term -> term -> thm

Synopsis

Proves equality of alpha-equivalent terms.

Description
When applied to a pair of terms t1 and t1’ which are alpha-equivalent, ALPHA returns the
theorem |- t1 = t1°.

————————————— ALPHA ‘t1¢ ‘t1°¢

Failure
Fails unless the terms provided are alpha-equivalent.

Example

# ALPHA ‘!x:num. x = x¢ ‘lyinum. y = y“;;
val it : thm = |- (!x. x = x) <=> (ly. y = y)

# ALPHA ‘\w. w + z¢ ‘\z’. 2’ + z‘;;

val it : thm = |- (\w. w + z) = (\z’. 2’ + z)

See also
aconv, ALPHA_CONV, GEN_ALPHA_CONV.
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ANTE_RES_THEN

ANTE_RES_THEN : thm_tactical

Synopsis

Resolves implicative assumptions with an antecedent.

Description
Given a theorem-tactic ttac and a theorem A |- t, the function ANTE_RES_THEN produces
a tactic that attempts to match t to the antecedent of each implication

Ai |- 'x1...xn. ui ==> vi

(where Ai is just !'x1...xn. ui ==> vi) that occurs among the assumptions of a goal.
If the antecedent ui of any implication matches t, then an instance of A1 u A |- vi is
obtained by specialization of the variables x1, ..., xn and type instantiation, followed by
an application of modus ponens. Because all implicative assumptions are tried, this may
result in several modus-ponens consequences of the supplied theorem and the assumptions.
Tactics are produced using ttac from all these theorems, and these tactics are applied in
sequence to the goal. That is,

ANTE_RES_THEN ttac (A |- t) g
has the effect of:
MAP_EVERY ttac [A1 u A |- vl; ...; Amu A |- vm] g

where the theorems Ai u A |- vi are all the consequences that can be drawn by a (single)
matching modus-ponens inference from the implications that occur among the assump-
tions of the goal g and the supplied theorem A |- t.

Failure

ANTE_RES_THEN ttac (A |- t) fails when applied to a goal g if any of the tactics pro-
duced by ttac (Ai u A |- vi), where Ai u A |- vi is the ith resolvent obtained from
the theorem A |- t and the assumptions of g, fails when applied in sequence to g.

See also

IMP_RES_THEN, MATCH_MP, MATCH_MP_TAC.



20 Chapter 1. Pre-defined ML Identifiers

ANTS_TAC

ANTS_TAC : tactic

Synopsis

Split off antecedent of antecedent of goal as a new subgoal.

Description

A7 (p==>q) ==>r

ANTS_TAC
A7?7-p A7?7-qg==>r

Failure
Fails unless the goal is of the specified form.

Uses
Convenient for focusing on assumptions of an implicational theorem that one wants to
use.

See also
MP_TAC.

apply

apply : (’a, ’b) func -> ’a -> ’b

Synopsis

Applies a finite partial function, failing on undefined points.

Description

This is one of a suite of operations on finite partial functions, type (’a,’b)func. These
may sometimes be preferable to ordinary functions since they permit more operations
such as equality comparison, extraction of domain etc. If £ is a finite partial function and
x an argument, apply f x tries to apply £ to x and fails if it is undefined.
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Example

# apply undefined 1;;
Exception: Failure "apply".
# apply (1 |=> 2) 1;;

val it : int = 2

See also
[->, |=>, applyd, choose, combine, defined, dom, foldl, foldr, graph,
is_undefined, mapf, ran, tryapplyd, undefine, undefined.

applyd

applyd : (’a, ’b) func -> (’a -> ’b) -> ’a -> b

Synopsis

Applies a finite partial function, with a backup function for undefined points.

Description

This is one of a suite of operations on finite partial functions, type (’a,’b)func. These
may sometimes be preferable to ordinary functions since they permit more operations
such as equality comparison, extraction of domain etc. If £ is a finite partial function, g
a conventional function and x an argument, tryapply f g x tries to apply £ to x as with
apply f x, but instead returns g x is £ is undefined on x.

Failure
Can only fail if the backup function fails.

Example

# applyd undefined (fun x -> x) 1;;
val it : int =1
# applyd (1 |=> 2) (fun x -> x) 1;;
val it : int = 2

See also
[->, |=>, apply, choose, combine, defined, dom, foldl, foldr, graph,
is_undefined, mapf, ran, tryapplyd, undefine, undefined.
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apply_prover

apply_prover : prover -> term -> thm

Synopsis
Apply a prover to a term.

Description

The HOL Light simplifier (e.g. as invoked by SIMP_TAC) allows provers of type prover to be
installed into simpsets, to automatically dispose of side-conditions. These may maintain
a state dynamically and augment it as more theorems become available (e.g. a theorem
p |- p becomes available when simplifying the consequent of an implication ‘p ==> q°).
In order to allow maximal flexibility in the data structure used to maintain state, provers
are set up in an ‘object-oriented’ style, where the context is part of the prover function
itself. A call apply_prover p ‘tm‘ applies the prover with its current context to attempt
to prove the term tm.

Failure
The call apply_prover p never fails, but it may fail to prove the term.

Uses
Mainly intended for users customizing the simplifier.

Comments

I learned of this ingenious trick for maintaining context from Don Syme, who discovered
it by reading some code written by Richard Boulton. I was told by Simon Finn that there
are similar ideas in the functional language literature for simulating existential types.

See also
augment, mk_prover, SIMP_CONV, SIMP_RULE, SIMP_TAC.

AP_TERM

AP_TERM : term -> thm -> thm

Synopsis

Applies a function to both sides of an equational theorem.
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Description
When applied to a term £ and a theorem A |- x = y, the inference rule AP_TERM returns
the theorem A |- £ x = £ y.

———————————————— AP_TERM ‘f°

Failure
Fails unless the theorem is equational and the supplied term is a function whose domain
type is the same as the type of both sides of the equation.

Example

# NUM_ADD_CONV ‘2 + 2°;;
val it : thm = |- 2 + 2 =4

# AP_TERM ‘(+) 1°¢ it;;

val it : thm = |- 1 +2 + 2 =1+ 4

See also
AP_THM, MK_COMB.

AP_TERM_TAC

AP_TERM_TAC : tactic

Synopsis

Strips a function application from both sides of an equational goal.

Description
AP_TERM_TAC reduces a goal of the form A ?- £ x = £ y by stripping away the function
applications, giving the new goal A 7- x = y.

A7?7-fx=1=Ffy

AP_TERM_TAC

A7-x=y

Failure
Fails unless the goal is equational, with both sides being applications of the same function.
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See also
ABS_TAC, AP_TERM, AP_THM_TAC, BINOP_TAC, MK_COMB_TAC.

AP_THM

AP _THM : thm -> term -> thm

Synopsis

Proves equality of equal functions applied to a term.

Description

When applied to a theorem A |- £ = g and a term x, the inference rule AP_THM returns

the theorem A |- f x = g x.

———————————————— AP_THM (A |- f = g) ‘x

Failure
Fails unless the conclusion of the theorem is an equation, both sides of which are functions
whose domain type is the same as that of the supplied term.

Example

# REWRITE_RULE[GSYM FUN_EQ_THM] ADD1;;
val it : thm = |- SUC = (\m. m + 1)

# AP_THM it ‘11°¢;;

val it : thm = |- SUC 11 = (\m. m + 1) 11

See also
AP_TERM, ETA_CONV, MK_COMB.

AP_THM_TAC

AP_THM_TAC : tactic
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Synopsis

Strips identical operands from functions on both sides of an equation.

Description
When applied to a goal of the form A ?- £ x = g x, the tactic AP_THM_TAC strips away
the operands of the function application:

A77-fx=gx
AP_THM_TAC
A?7-f=g
Failure

Fails unless the goal has the above form, namely an equation both sides of which consist
of function applications to the same argument.

See also
ABS_TAC, AP_TERM_TAC, AP_THM, BINOP_TAC, MK_COMB_TAC.

ARITH_RULE

ARITH_RULE : term -> thm

Synopsis
Automatically proves natural number arithmetic theorems needing basic rearrangement
and linear inequality reasoning only.

Description

The function ARITH_RULE can automatically prove natural number theorems using basic
algebraic normalization and inequality reasoning. For nonlinear equational reasoning use
NUM_RING.

Failure

Fails if the term is not boolean or if it cannot be proved using the basic methods employed,
e.g. requiring nonlinear inequality reasoning.
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Example

# ARITH_RULE ‘x = 1 ==>y <=1 \/ x < y%;;
val it : thm = |- x =1 ==> y <=1 \/ x <y

# ARITH_RULE ‘x <= 127 ==> ((86 * x) DIV 256 = x DIV 3)°¢;;
val it : thm = |- x <= 127 ==> (86 * x) DIV 256 = x DIV 3

# ARITH_RULE

‘2% a*x b EXP2<=Dbx*a*xb==>(SUCc-SUC(a *xb *xDb) <=c);;
val it : thm =

|- 2 * a*xbEXP2<=Dbx*ax*xb==>8UCc-S8UC (a*Dbx*b)<=c

Uses
Disposing of elementary arithmetic goals.

See also
ARITH_TAC, INT_ARITH, NUM_RING, REAL_ARITH, REAL_FIELD, REAL_RING.

ARITH_TAC

ARITH_TAC : tactic

Synopsis
Tactic for proving arithmetic goals needing basic rearrangement and linear inequality
reasoning only.

Description

ARITH_TAC will automatically prove goals that require basic algebraic normalization and
inequality reasoning over the natural numbers. For nonlinear equational reasoning use
NUM_RING and derivatives.

Failure

Fails if the automated methods do not suffice.
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Example

#g‘1l<=x/\x<=3==>x=1\/x=2\/x=3;
Warning: Free variables in goal: x
val it : goalstack = 1 subgoal (1 total)

‘19 <=x /\x<=3=>x=1\/x=2\/x=3°¢

# e ARITH_TAC;;
val it : goalstack = No subgoals

Uses
Solving basic arithmetic goals.

See also
ARITH_RULE, ASM_ARITH_TAC, INT_ARITH_TAC, NUM_RING, REAL_ARITH_TAC.

ASM

ASM : (thm list -> tactic) -> thm list -> tactic

Synopsis

Augments a tactic’s theorem list with the assumptions.

Description

If tac is a tactic that expects a list of theorems as its arguments, e.g. MESON_TAC,
REWRITE_TAC or SET_TAC, then ASM tac converts it to a tactic where that list is augmented
by the goal’s assumptions.

Failure
Never fails (though the resulting tactic may do).

Example

The inbuilt {\small\verb%ASM_REWRITE_TAC%} is in fact defined as just {\small\verb%ASM R

See also
ASSUM_LIST, FREEZE_THEN, HYP, MESON_TAC, REWRITE_TAC, SET_TAC.
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ASM_ARITH_TAC

ASM_ARITH_TAC : tactic

Synopsis
Tactic for proving arithmetic goals needing basic rearrangement and linear inequality
reasoning only, using assumptions

Description

ASM_ARITH_TAC will automatically prove goals that require basic algebraic normalization
and inequality reasoning over the natural numbers. For nonlinear equational reasoning use
NUM_RING and derivatives. Unlike plain ARITH_TAC, ASM_ARITH_TAC uses any assumptions
that are not universally quantified as additional hypotheses.

Failure
Fails if the automated methods do not suffice.

Example

This example illustrates how ASM_ARITH_TAC uses assumptions while ARITH_TAC does not.
Of course, this is for illustration only: plain ARITH_TAC would solve the entire goal before
application of STRIP_TAC.

#g ‘1<=6x*x/\2%x<=3==>x=1%;
Warning: Free variables in goal: x
val it : goalstack = 1 subgoal (1 total)

‘1 <=6 *xx /\ 2 %x x<=3==>x=1°¢

# e STRIP_TAC;;
val it : goalstack

1 subgoal (1 total)

# e ARITH_TAC;;

Exception: Failure "linear_ineqs: no contradiction".
# e ASM_ARITH_TAC;;

val it : goalstack = No subgoals

Uses
Solving basic arithmetic goals.
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See also
ARITH_RULE, ARITH_TAC, INT_ARITH_TAC, NUM_RING, REAL_ARITH_TAC.

ASM_CASES_TAC

ASM_CASES_TAC : term -> tactic

Synopsis

Given a term, produces a case split based on whether or not that term is true.

Description
Given a term u, ASM_CASES_TAC applied to a goal produces two subgoals, one with u as an
assumption and one with ~u:

A7- t
== ASM_CASES_TAC ‘uf
Au {u} 7- t Au {"u} 7- t

Failure
Fails if u does not have boolean type.

Example
The tactic ASM_CASES_TAC ‘&0 <= u‘ can be used to produce a case analysis on ‘&0 <= u*:

# g ‘40 <= (u:real) pow 2¢;;

Warning: Free variables in goal: u

val it : goalstack = 1 subgoal (1 total)
‘%0 <= u pow 2°¢

# e(ASM_CASES_TAC ‘&0 <= u‘);;
val it : goalstack = 2 subgoals (2 total)

0 [“7(&0 <= w) ‘]
‘&0 <= u pow 2°
0 [‘&0 <= u‘]

‘%0 <= u pow 2°

Uses

Performing a case analysis according to whether a given term is true or false.
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See also
BOOL_CASES_TAC, COND_CASES_TAC, ITAUT, DISJ_CASES_TAC, STRUCT_CASES_TAC, TAUT.

ASM_FQOL_TAC

ASM_FOL_TAC : (string * thm) list * term -> goalstate

Synopsis

Fix up function arities for first-order proof search.

Description

This function attempts to make the assumptions of a goal more ‘first-order’. Functions
that are not consistently used with the same arity, e.g. a function £ that is sometimes
applied f(a) and sometimes used as an argument to other functions, g(£), will be identi-
fied. Applications of the function will then be modified by the introduction of the identity
function I (which can be thought of later as binary ‘function application’) so that £ (a) be-
comes I f a. This gives a more natural formulation as a prelude to traditional first-order
proof search.

Failure
Never fails.

Comments
This function is not intended for general use, but is part of the initial normalization in
MESON and MESON_TAC.

See also
MESON, MESON_TAC.

ASM_INT_ARITH_TAC

ASM_INT_ARITH_TAC : tactic

Synopsis

Attempt to prove goal using basic algebra and linear arithmetic over the integers.
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Description

The tactic ASM_INT_ARITH_TAC is the tactic form of INT_ARITH. Roughly speaking, it will
automatically prove any formulas over the reals that are effectively universally quantified
and can be proved valid by algebraic normalization and linear equational and inequal-
ity reasoning. See REAL_ARITH for more information about the algorithm used and its
scope. Unlike plain INT_ARITH_TAC, ASM_INT_ARITH_TAC uses any assumptions that are
not universally quantified as additional hypotheses.

Failure
Fails if the goal is not in the subset solvable by these means, or is not valid.

Example

This example illustrates how ASM_INT_ARITH_TAC uses assumptions while INT_ARITH_TAC
does not. Of course, this is for illustration only: plain INT_ARITH_TAC would solve the
entire goal before application of STRIP_TAC.

# g ‘Ixyiint. x <=y /\ &2 * y <= &2 * x + &1 ==> x = y*;;
val it : goalstack = 1 subgoal (1 total)

‘lx y. x <=y /\ &2 * y <= &2 * x + &l ==> x = y¢

# o (REPEAT STRIP_TAC);;
val it : goalstack = 1 subgoal (1 total)

0 [‘x <= y*]
1 [‘&2 x y <= &2 *x x + &1¢]

X =Yy

# e INT_ARITH_TAC;;

Exception: Failure "linear_ineqs: no contradiction".
# e ASM_INT_ARITH_TAC;;

val it : goalstack = No subgoals

See also
ARITH_TAC, INT_ARITH, INT_ARITH_TAC, REAL_ARITH_TAC.

ASM_MESON_TAC

ASM_MESON_TAC : thm list -> tactic
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Synopsis

Automated first-order proof search tactic using assumptions of goal.

Description

A call to ASM_MESON_TAC[theorems] will attempt to establish the goal using pure first-
order reasoning, taking theorems and the assumptions of the goal as the starting-point. It
will usually either solve the goal completely or run for an infeasible length of time before
terminating, but it may sometimes fail quickly. For more details, see MESON or MESON_TAC.

Failure
Fails if the goal is unprovable within the search bounds, though not necessarily in a
feasible amount of time.

See also
ASM_METIS_TAC, GEN_MESON_TAC, MESON, MESON_TAC.

ASM_METIS_TAC

ASM_METIS_TAC : thm list -> tactic

Synopsis

Automated first-order proof search tactic using assumptions of goal.

Description

A call to ASM_METIS_TAC[theorems] will attempt to establish the goal using pure first-
order reasoning, taking theorems and the assumptions of the goal as the starting-point. It
will usually either solve the goal completely or run for an infeasible length of time before
terminating, but it may sometimes fail quickly. For more details, see METIS or METIS_TAC.

Failure
Fails if the goal is unprovable within the search bounds.

See also
ASM_MESON_TAC, METIS, METIS_TAC.

ASM_REAL_ARITH_TAC

ASM_REAL_ARITH_TAC : tactic
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Synopsis

Attempt to prove goal using basic algebra and linear arithmetic over the reals.

Description

The tactic ASM_REAL_ARITH_TAC is the tactic form of REAL_ARITH. Roughly speaking, it will
automatically prove any formulas over the reals that are effectively universally quantified
and can be proved valid by algebraic normalization and linear equational and inequal-
ity reasoning. See REAL_ARITH for more information about the algorithm used and its
scope. Unlike plain REAL_ARITH_TAC, ASM_REAL_ARITH_TAC uses any assumptions that are
not universally quantified as additional hypotheses.

Failure
Fails if the goal is not in the subset solvable by these means, or is not valid.

Example

This example illustrates how ASM_REAL_ARITH_TAC uses assumptions while REAL_ARITH_TAC
does not. Of course, this is for illustration only: plain REAL_ARITH_TAC would solve the
entire goal before application of STRIP_TAC.

# g ‘Ixy z:ireal. abs(x) <= y ==> abs(x - z) <= abs(y + abs(z))‘;;
val it : goalstack = 1 subgoal (1 total)

‘Ix y z. abs x <= y ==> abs (x - z) <= abs (y + abs z)°

# e (REPEAT STRIP_TAC);;
val it : goalstack = 1 subgoal (1 total)

0 [‘abs x <= y*]
‘abs (x - z) <= abs (y + abs z)°

# e REAL_ARITH_TAC;;

Exception: Failure "linear_ineqs: no contradiction".
# e ASM_REAL_ARITH_TAC;;

val it : goalstack = No subgoals

Comments

For nonlinear equational reasoning, use CONV_TAC REAL_RING or CONV_TAC REAL_FIELD. For
nonlinear inequality reasoning, there are no powerful rules built into HOL Light, but the
additional derived rules defined in Examples/sos.ml and Rqe/make.ml may be useful.

See also
ARITH_TAC, INT_ARITH_TAC, REAL_ARITH, REAL_ARITH_TAC, REAL_FIELD, REAL_RING.
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ASM_REWRITE_RULE

ASM_REWRITE_RULE : thm list -> thm -> thm

Synopsis

Rewrites a theorem including built-in rewrites and the theorem’s assumptions.

Description

ASM_REWRITE_RULE rewrites with the tautologies in basic_rewrites, the given list of the-
orems, and the set of hypotheses of the theorem. All hypotheses are used. No ordering
is specified among applicable rewrites. Matching subterms are searched for recursively,
starting with the entire term of the conclusion and stopping when no rewritable expres-
sions remain. For more details about the rewriting process, see GEN_REWRITE_RULE. To
avoid using the set of basic tautologies, see PURE_ASM_REWRITE_RULE.

Failure
ASM_REWRITE_RULE does not fail, but may result in divergence. To prevent divergence
where it would occur, ONCE_ASM_REWRITE_RULE can be used.

See also
GEN_REWRITE_RULE, ONCE_ASM_REWRITE_RULE, PURE_ASM_REWRITE_RULE,
PURE_ONCE_ASM_REWRITE_RULE, REWRITE_RULE.

ASM_REWRITE_TAC

ASM_REWRITE_TAC : thm list -> tactic

Synopsis

Rewrites a goal including built-in rewrites and the goal’s assumptions.

Description

ASM_REWRITE_TAC generates rewrites with the tautologies in basic_rewrites, the set of
assumptions, and a list of theorems supplied by the user. These are applied top-down
and recursively on the goal, until no more matches are found. The order in which the set of
rewrite equations is applied is an implementation matter and the user should not depend
on any ordering. Rewriting strategies are described in more detail under GEN_REWRITE_TAC.
For omitting the common tautologies, see the tactic PURE_ASM_REWRITE_TAC.
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Failure

ASM_REWRITE_TAC does not fail, but it can diverge in certain situations. For rewriting to
a limited depth, see ONCE_ASM_REWRITE_TAC. The resulting tactic may not be valid if the
applicable replacement introduces new assumptions into the theorem eventually proved.

Example
The use of assumptions in rewriting, specially when they are not in an obvious equational
form, is illustrated below:

#g P==>C®/\NQ/\NR<=>R/\NQ/\P);;

Warning: Free variables in goal: P, Q, R
val it : goalstack = 1 subgoal (1 total)

‘P==>CP/NQ/NR<=>R/NQ/\P)

# e DISCH_TAC;;
val it : goalstack = 1 subgoal (1 total)

0 [‘P‘]
‘P /NQ/\R<=>R/\Q/\ P

# e(ASM_REWRITE_TAC[ID);;
val it : goalstack = 1 subgoal (1 total)

0 [‘P‘]
‘Q /\ R <=>R /\ Q°
See also
basic_rewrites, GEN_REWRITE_TAC, ONCE_ASM_REWRITE_TAC, ONCE_REWRITE_TAC,

PURE_ASM_REWRITE_TAC, PURE_ONCE_ASM_REWRITE_TAC, PURE_REWRITE_TAC, REWRITE_TAC,
SUBST_ALL_TAC, SUBST1_TAC.

ASM_SIMP_TAC

ASM_SIMP_TAC : thm list -> tactic

Synopsis
Perform simplification of goal by conditional contextual rewriting using assumptions and
built-in simplifications.



36 Chapter 1. Pre-defined ML Identifiers

Description

A call to ASM_SIMP_TAC [theorems] will apply conditional contextual rewriting with theorems
and the current assumptions of the goal to the goal’s conclusion, as well as the default
simplifications (see basic_rewrites and basic_convs). For more details on this kind of
rewriting, see SIMP_CONV. If the extra generality of contextual conditional rewriting is not
needed, REWRITE_TAC is usually more efficient.

Failure
Never fails, but may loop indefinitely.

See also
ASM_REWRITE_TAC, SIMP_CONV, SIMP_TAC, REWRITE_TAC.

asSsSocC
assoc : ’a -> (Pa * ’b) list -> ’b
Synopsis
Searches a list of pairs for a pair whose first component equals a specified value.
Description
assoc x [(x1,y1);...;(xn,yn)] returns the first yi in the list such that xi equals x.
Failure

Fails if no matching pair is found. This will always be the case if the list is empty.

Example
# assoc 2 [1,4; 3,2; 2,5; 2,6];;

val it : int = 5

See also
rev_assoc, find, mem, tryfind, exists, forall.

assocd

assocd : ’a -> (’a * ’b) list -> ’b -> ’b
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Synopsis

Looks up item in association list taking default in case of failure.

Description

The call assocd x [x1,y1; ...; xn,yn] y returns the first yi in the list where the cor-

responding xi is the same as x. If there is no such item, it returns the value y. This is
similar to assoc except that the latter will fail rather than take a default.

Failure
Never fails.

Example

# assocd 2 [1,2; 2,4; 3,6] (-1);;
val it : int = 4
# assocd 4 [1,2; 2,4; 3,6] (-1);;
val it : int = -1

Uses
Simple lookup without exception handling.

See also
assoc, rev_assocd .

ASSOC_CONV

ASSOC_CONV : thm -> term -> thm

Synopsis

Right-associates a term with respect to an associative binary operator.

Description
The conversion ASSOC_CONV expects a theorem asserting that a certain binary operator is
associative, in the standard form (with optional universal quantifiers):

x op (yopz) = (xopy)opz

It is then applied to a term, and will right-associate any toplevel combinations built up
from the operator op. Note that if op is polymorphic, the type instance of the theorem
needs to be the same as in the term to which it is applied.
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Failure
May fail if the theorem is malformed. On application to the term, it never fails, but
returns a reflexive theorem when itis inapplicable.

Example

# ASSOC_CONV ADD_ASSOC “((1 + 2) +3) + (4 +5) + (6 +7)°;;
val it : thm = |- (1 +2) +3) + (4 +5) +6+7=1+2+3+4+5+6+7

# ASSOC_CONV CONJ_ASSOC “((p /\ q@) /\ (xr /\ 8)) /\ t°;;
val it : thm = |- ((p /N @) /N r /AN s) /Nt <=>p /\Nq/\r /\s/\t

See also
AC, CNF_CONV, CONJ_ACI_RULE, DISJ_ACI_RULE, DNF_CONV.

ASSUME

ASSUME : term -> thm

Synopsis

Introduces an assumption.

Description
When applied to a term t, which must have type bool, the inference rule ASSUME returns
the theorem t |- t.

-------- ASSUME ‘t

Failure
Fails unless the term t has type bool.

Example
# ASSUME ‘p /\ q‘;;
val it : thm=p /\ q |- p /\ q

Comments
This is one of HOL Light’s 10 primitive inference rules.
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See also
ADD_ASSUM, REFL.

ASSUME_TAC

ASSUME_TAC : thm_tactic

Synopsis

Adds an assumption to a goal.

Description

Given a theorem th of the form A’ |- u, and a goal, ASSUME_TAC th adds u to the as-
sumptions of the goal.

A 7-t

ASSUME_TAC (A’ |- u)
Au{u} 7- ¢t

Note that unless A’ is a subset of A, this tactic is invalid. The new assumption is unlabelled;
for a named assumption use LABEL_TAC.

Failure

Never fails.

Example

One can add an external theorem as an assumption if desired, for example so that
ASM_REWRITE_TAC[] will automatically apply it. But usually the theorem is derived from
some theorem-tactical, e.g. by discharging the antecedent of an implication or doing
forward inference on another assumption. For example iff faced with the goal:

#g ‘0=x==>f(2x*x) =1f(x*f);;

one might not want to just do DISCH_TAC or STRIP_TAC because the assumption will be
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‘0 = x“. One can swap it first then put it on the assumptions by:

# e(DISCH_THEN(ASSUME_TAC o SYM));;
val it : goalstack = 1 subgoal (1 total)

‘f (2*x)=1f (x*xfx)°
after which the goal can very easily be solved:

# e (ASM_REWRITE_TAC[MULT_CLAUSES]);;
val it : goalstack = No subgoals

Uses

Useful as a parameter to various theorem-tacticals such as X_CHOOSE_THEN, DISCH_THEN etc.
when it is simply desired to add the theorem that has been deduced to the assumptions
rather than used further at once.

See also
ACCEPT_TAC, DESTRUCT_TAC, LABEL_TAC, STRIP_ASSUME_TAC.

ASSUM_LIST

ASSUM_LIST : (thm list -> tactic) -> tactic

Synopsis

Applies a tactic generated from the goal’s assumption list.

Description

When applied to a function of type thm list -> tactic and a goal, ASSUM_LIST constructs
a tactic by applying £ to a list of ASSUMEd assumptions of the goal, then applies that tactic
to the goal.

ASSUM_LIST f ({A1;...;An} 7- t)
=f [A1 |- A1; ... ; An |- An] ({A1;...;An} 7- t)

Failure
Fails if the function fails when applied to the list of ASSUMEd assumptions, or if the resulting
tactic fails when applied to the goal.
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Comments

There is nothing magical about ASSUM_LIST: the same effect can usually be achieved just
as conveniently by using ASSUME a wherever the assumption a is needed. If ASSUM_LIST is
used, it is extremely unwise to use a function which selects elements from its argument
list by number, since the ordering of assumptions should not be relied on.

Example
The tactic:

ASSUM_LIST(MP_TAC o end_itlist CONJ)

adds a conjunction of all assumptions as an antecedent of a goal.

Uses

Making more careful use of the assumption list than simply rewriting.

See also
ASM_REWRITE_TAC, EVERY_ASSUM, POP_ASSUM, POP_ASSUM_LIST, REWRITE_TAC.

atleast

atleast : int -> (’a -> ’b * ’a) -> ’a -> ’b list * ’a

Synopsis

Parses at least a given number of successive items using given parser.

Description

If p is a parser and n an integer, atleast n p is a new parser that attempts to parse at
least n successive items using parser p and fails otherwise. Unless n is positive, this is
equivalent to many p.

Failure
The call to atleast n p itself never fails.

Comments

This is one of a suite of combinators for manipulating “parsers”. A parser is simply
a function whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The
function should take a list of objects of type :’a (e.g. characters or tokens), parse as
much of it as possible from left to right, and return a pair consisting of the object derived
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from parsing (e.g. a term or a special syntax tree) and the list of elements that were not
processed.

See also
++, |||, >, a, atleast, elistof, finished, fix, leftbin, listof, many,
nothing, possibly, rightbin, some.

aty

aty : hol_type

Synopsis
The type variable <:A°.

Description
This name is bound to the HOL type :A.

Failure
Not applicable.

Uses

Exploiting the very common type variable :A inside derived rules (e.g. an instantiation
list for inst or type_subst) without the inefficiency or inconvenience of calling a quotation
parser or explicit constructor.

See also
bty, bool_ty.

augment

augment : prover -> thm list -> prover

Synopsis

Augments a prover’s context with new theorems.

Description
The HOL Light simplifier (e.g. as invoked by SIMP_TAC) allows provers of type prover to be
installed into simpsets, to automatically dispose of side-conditions. These may maintain
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a state dynamically and augment it as more theorems become available (e.g. a theorem
p |- p becomes available when simplifying the consequent of an implication ‘p ==> q¢).
In order to allow maximal flexibility in the data structure used to maintain state, provers
are set up in an ‘object-oriented’ style, where the context is part of the prover function
itself. A call augment p thl maps a prover p to a new prover with theorems thl added to
the initial state.

Failure
Never fails unless the prover is abnormal.

Uses

This is mostly for experts wishing to customize the simplifier.

Comments

I learned of this ingenious trick for maintaining context from Don Syme, who discovered
it by reading some code written by Richard Boulton. I was told by Simon Finn that there
are similar ideas in the functional language literature for simulating existential types.

See also
apply_prover, mk_prover, SIMP_CONV, SIMP_RULE, SIMP_TAC.

AUGMENT _SIMPSET

AUGMENT_SIMPSET : thm -> simpset -> simpset

Synopsis

Augment context of a simpset with a list of theorems.

Description

In their maximal generality, simplification operations in HOL Light (as invoked by SIMP_TAC)
are controlled by a ‘simpset’. Given a list of theorems thl and a simpset ss, the call
AUGMENT_SIMPSET thl ss augments the state of the simpset, adding the theorems as new
rewrite rules and also making any provers in the simpset process the new context appro-
priately.

Failure
Never fails unless some of the simpset functions are ill-formed.

Uses
Mostly for experts wishing to customize the simplifier.
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See also
augment, SIMP_CONV.

axioms

axioms : unit -> thm list

Synopsis

Returns the current set of axioms.

Description
A call axioms() returns the current list of axioms.

Failure
Never fails.

Example
Under normal circumstances, the list of axioms will be as follows, containing the axioms
of infinity, choice and extensionality.

# axioms();;

val it : thm list =
[|- ?f. ONE_ONE f /\ “ONTO f; |- !P x. P x ==> P ((@) P);
[- 't. (\x. t x) = t]

If other axioms are used, the consistency of the resulting theory cannot be guaranteed.
However, new definitions and type definitions are always safe and are not considered as
true ‘axioms’.

See also
define, definitions, new_axiom, new_definition, the_definitions.

b

b : unit -> goalstack

Synopsis

Restores the proof state, undoing the effects of a previous expansion.
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Description

The function b is part of the subgoal package. It allows backing up from the last state
change (caused by calls to e, g, r, set_goal etc.) The package maintains a backup list of
previous proof states. A call to b restores the state to the previous state (which was on
top of the backup list).

Failure
The function b will fail if the backup list is empty.

Example

# g ‘(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])°¢;;
val it : goalstack = 1 subgoal (1 total)

‘HD [1; 2; 3] =1 /\TL [1; 2; 3] = [2; 3]¢

# e CONJ_TAC;;
val it : goalstack = 2 subgoals (2 total)

‘TL [1; 2; 3] [2; 3]°¢

1(

‘HD [1; 2; 3]

#00;;
val it : goalstack = 1 subgoal (1 total)

‘HD [1; 2; 31 =1 /\ TL [1; 2; 3] = [2; 3]°¢
Uses
Back tracking in a goal-directed proof to undo errors or try different tactics.

See also
e, g, p, r, set_goal, top_goal, top_thm.

basic_congs

basic_congs : unit -> thm list

Synopsis

Lists the congruence rules used by the simplifier.
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Description

The HOL Light simplifier (as invoked by SIMP_TAC etc.) uses congruence rules to determine
how it uses context when descending through a term. These are essentially theorems
showing how to decompose one equality to a series of other inequalities in context. A call
to basic_congs() returns those congruences that are built into the system.

Failure
Never fails.

Example
Here is the effect in HOL Light’s initial state:

# basic_congs();;
val it : thm list =
[I- (Ix. x INs ==>fx=gx)==>sums (\i. £ i) = sum s g;
|- (1i. a<=i /\Ni<=b==>fi=gi)
==> sum (a..b) (\i. f i) = sum (a..b) g;
- (x. px==>fx=gx)==>sum{y | pyr (\i. £ i) =sum {y | p y} g;
|- ('x. x INs ==>f x=gx) ==>nsums (\i. £ i) = nsum s g;
|- (1i. a<=1i /\Ni<=b==>fi=gi)
==> nsum (a..b) (\i. f i) = nsum (a..b) g;
- (Ix. px==>fx=gx)==>nsum{y | py}r (\i. £ i) = nsum {y | p y} g;
- (g <=> g”)
==> (g’ ==>t = t’)
==> ("g’ ==> e = e’)
==> (if g then t else e) = (if g’ then t’ else e’);
|- (p <=>p?) ==> (p’ ==> (q <=> q’)) ==> (p ==> q <=> p’ ==> q’)]

See also
extend_basic_congs, set_basic_congs, SIMP_CONV, SIMP_RULE, SIMP_TAC.

basic_convs

basic_convs : unit -> (string * (term * conv)) list

Synopsis

List the current default conversions used in rewriting and simplification.

Description

The HOL Light rewriter (REWRITE_TAC etc.) and simplifier (SIMP_TAC etc.) have default
sets of (conditional) equations and other conversions that are applied by default, except
in the PURE_ variants. A call to basic_convs() returns the current set of conversions.



basic_net 47

Failure
Never fails.

Example

In the default HOL Light state the only conversions are for generalized beta reduction
and the reduction of pattern-matching constructs such as match...with. All the other
default simplifications are done by rewrite rules.

# basic_convs();;

val it : (string * (term * conv)) list =
[("FUN_ONEPATTERN_CONV", (‘_FUNCTION (\y z. P y z) x¢, <fun>));
("MATCH_ONEPATTERN_CONV", (‘_MATCH x (\y z. P y z)¢, <fun>));
("FUN_SEQPATTERN_CONV", (‘_FUNCTION (_SEQPATTERN r s) x‘, <fun>));
("MATCH_SEQPATTERN_CONV", (‘_MATCH x (_SEQPATTERN r s)‘, <fun>));
("GEN_BETA_CONV", (‘GABS (\a. b) c‘, <fun>))]

See also
basic_rewrites, extend_basic_convs, set_basic_convs.

basic_net

basic_net : unit -> gconv net

Synopsis

Returns the term net used to optimize access to default rewrites and conversions.

Description

The HOL Light rewriter (REWRITE_TAC etc.) and simplifier (SIMP_TAC etc.) have default
sets of (conditional) equations and other conversions that are applied by default, except in
the PURE_ variants. Internally, these are maintained in a term net (see enter and lookup
for more information), and a call to basic_net () returns that net.

Failure
Never fails.

Uses
Only useful for those who are delving deep into the implementation of rewriting.

See also
basic_convs, basic_rewrites, enter, lookup.



48 Chapter 1. Pre-defined ML Identifiers

basic_prover

basic_prover : (simpset -> ’a -> term -> thm) -> simpset -> ’a -> term -> thm

Synopsis

The basic prover use function used in the simplifier.

Description

The HOL Light simplifier (e.g. as invoked by SIMP_TAC) allows provers of type prover to
be installed into simpsets, to automatically dispose of side-conditions. There is another
component of the simpset that controls how these are applied to unproven subgoals arising
in simplification. The basic_prover function, which is used in all the standard simpsets,
simply tries to simplify the goals with the rewrites as far as possible, then tries the provers
one at a time on the resulting subgoals till one succeeds.

Failure
Never fails, though the later application to a term may fail to prove it.

See also
mk_prover, SIMP_CONV, SIMP_RULE, SIMP_TAC.

basic_rectype_net

basic_rectype_net : (int * (term -> thm)) net ref

Synopsis

Net of injectivity and distinctness properties for recursive type constructors.

Description

HOL Light maintains a net of theorems used to simplify equations between elements of
recursive datatypes; essentially these include injectivity and distinctness, e.g. CONS_11
and NOT_CONS_NIL for lists. This net is used in some situations where such things need to
be proved automatically, notably in define. A call to basic_rectype_net() returns that
net. It is automatically updated whenever a type is defined by define_type.

Failure
Never fails.
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See also
cases, define, distinctness, GEN_BETA_CONV, injectivity.

basic_rewrites

basic_rewrites : unit -> thm list

Synopsis

Returns the set of built-in theorems used, by default, in rewriting.

Description

The list of theorems returned by basic_rewrites() is applied by default in rewriting
conversions, rules and tactics such as ONCE_REWRITE_CONV, REWRITE_RULE and SIMP_TAC,
though not in the ‘pure’ variants like PURE_REWRITE_TAC. This default set can be mod-
ified using extend_basic_rewrites, set_basic_rewrites. Other conversions, not neces-
sarily expressible as rewriting with a theorem, can be added using set_basic_convs and

extend_basic_convs and examined by basic_convs.

Example
The following shows the list of default rewrites in the standard HOL Light state. Most of
them are basic logical tautologies.

# basic_rewrites();;
val it : thm list =

[I- FST (x,y) = x; |- SND (x,y) = y; |- FST x,SND x = x;

|- (if x = x then y else z) = y; |- (if T then tl else t2) = ti;

|- (if F then t1 else t2) = t2; |- ~ "t <=> t; |- "T <=>F; |- "F <=> T;
|- (@y. y =x) =%; |-x=x%x<=>T; |- (T <=>1t) <=> t;

[- (£ <=>T) <=>t; |- (F <=>1t) <=> "t; |- (t <=>F) <=> "t; |- "T <=> F;
|- "F<=>T; [-T/\t<=>1t; |-t /\NT<=>1t; |-F/\t<=TF;

-t /NF<=>F; |-t /\Nt<=>+t; [-T\/t<=>T; |-t \/T<=>T;
[-F\/ t<=>1t; |-t \/F<=>1t; |-t \ t<=>t; |-T-==>1t <=>t;

|-t =>T<=>T; |-F==>1t<=>T; |[-t==>1t<=>T; |-t ==>F <=> "t;
- (Ix. t) <=>t; |- (?x. t) <=>t; |- (\x. £ x) y=1fy;

|- x = x ==> p <=> p]

Uses

The basic_rewrites are included in the set of equations used by some of the rewriting
tools.
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See also

extend_basic_rewrites, set_basic_rewrites, set_basic_convs, extend_basic_convs,
basic_convs, REWRITE_CONV, REWRITE_RULE, REWRITE_TAC, SIMP_CONV, SIMP_RULE,
SIMP_TAC.

basic_ss

basic_ss : thm list -> simpset

Synopsis

Construct a straightforward simpset from a list of theorems.

Description

In their maximal generality, simplification operations in HOL Light (as invoked by SIMP_TAC)
are controlled by a ‘simpset’. A call basic_ss thl gives a straightforward simpset used
by the default simplifier instances like SIMP_TAC, which has the given theorems as well as
the basic rewrites and conversions, and no other provers.

Failure
Never fails.

See also
basic_convs, basic_rewrites, empty_ss, SIMP_CONV, SIMP_RULE, SIMP_TAC.

BETA

BETA : term -> thm

Synopsis

Special primitive case of beta-reduction.

Description
Given a term of the form (\x. t[x]) x, i.e. a lambda-term applied to exactly the same
variable that occurs in the abstraction, BETA returns the theorem |- (\x. t[x]) x = t[x].

Failure
Fails if the term is not of the required form.



BETAS_CONV 51

Example

# BETA ‘(\n. n + 1) n‘;;
val it : thm = |- (\n. n+ 1) n=n + 1

Note that more general beta-reduction is not handled by BETA, but will be by BETA_CONV:

# BETA ‘(\n. n + 1) m‘;;

Exception: Failure "BETA: not a trivial beta-redex".
# BETA_CONV ‘(A\n. n + 1) m‘;;

val it : thm = |- (\n. n + 1) m =m + 1

Uses
This is more efficient than BETA_CONV in the special case in which it works, because no
traversal and replacement of the body of the abstraction is needed.

Comments

This is one of HOL Light’s 10 primitive inference rules. The more general case of beta-
reduction, where a lambda-term is applied to any term, is implemented by BETA_CONV,
derived in terms of this primitive.

See also
BETA_CONV.

BETAS_CONV

BETAS_CONV : conv

Synopsis
Beta conversion over multiple arguments.
Description
Given a term t of the form ‘(\x1 ... xn. t[x1,...,xn]) s1 ... sn‘, the call BETAS_CONV t
returns
[- (\x1 ... xn. t[x1,...,xn]) s1 ... sn = t[sl,...,sn]
Failure

Fails if the term is not of the form shown, for some n.
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Example
# BETAS_CONV ‘(\x y. x + y) 1 2¢;;
val it : thm = |- (\x y. x+y) 1 2 =1+ 2

See also
BETA_CONV, RIGHT_BETAS.

BETA_CONV

BETA_CONV : term -> thm

Synopsis

Performs a simple beta-conversion.

Description
The conversion BETA_CONV maps a beta-redex ¢ (\x.u)v‘ to the theorem

|- (\x.w)v = ulv/x]

where ulv/x] denotes the result of substituting v for all free occurrences of x in u, after
renaming sufficient bound variables to avoid variable capture. This conversion is one of
the primitive inference rules of the HOL system.

Failure
BETA_CONV tm fails if tm is not a beta-redex.

Example

# BETA_CONV ‘(\x. x + 1) y‘;;
val it : thm = |- (\x. x + 1) y =y + 1

# BETA_CONV ‘(\x y. x +y) y;;
val it : thm = |- (\xy. x+ ) y= O\y’. y + y”)

Comments

The HOL Light primitive rule BETA is the special case where the argument is the same
as the bound variable. If you know that you are in this case, BETA is significantly more
efficient. Though traditionally a primitive, BETA_CONV is actually a derived rule in HOL
Light.
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See also
BETA, BETA_RULE, BETA_TAC, GEN_BETA_CONV, MATCH_CONV.

BETA_RULE

BETA_RULE : thm -> thm

Synopsis

Beta-reduces all the beta-redexes in the conclusion of a theorem.

Description

When applied to a theorem A |- t, the inference rule BETA_RULE beta-reduces all beta-
redexes, at any depth, in the conclusion t. Variables are renamed where necessary to
avoid free variable capture.

A - ....((\x. s1) 82)....
———————————————————————————— BETA_RULE
A - ....(s1[s2/x])....

Failure
Never fails, but will have no effect if there are no beta-redexes.

Example
The following example is a simple reduction which illustrates variable renaming;:

# let x = ASSUME ‘f = ((\x y. x +y) y);;
val x : thm=f = (\xy. x+y yl-f=Nxy.x+y)y

# BETA_RULE x;;
val it : thm=f = (\xy. x +y) y |- f = Q\y’. y +y’)

See also
BETA_CONV, BETA_TAC, GEN_BETA_CONV.

BETA_TAC

BETA_TAC : tactic
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Synopsis

Beta-reduces all the beta-redexes in the conclusion of a goal.

Description

When applied to a goal A ?- t, the tactic BETA_TAC produces a new goal which results
from beta-reducing all beta-redexes, at any depth, in t. Variables are renamed where
necessary to avoid free variable capture.

A7 ...((\x. s1) s2)...

BETA_TAC
A ?- ...(s1[s2/x])...

Failure

Never fails, but will have no effect if there are no beta-redexes.

Comments

Beta-reduction, and indeed, generalized beta reduction (GEN_BETA_CONV) are already among
the basic rewrites, so happen anyway simply on REWRITE_TAC[]. But occasionally it is con-
venient to be able to invoke them separately.

See also
BETA_CONV, BETA_RULE, GEN_BETA_CONV.

binders

binders : unit -> string list

Synopsis
Lists the binders.

Description

The function binders returns a list of all the binders declared so far. A binder b is then
parsed in constructs like b x. t[x] as an abbreviation for (b) (\x. t[x]). The set of
binders can be changed with parse_as_binder and unparse_as_binder.

Failure
Never fails
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Example

# binders();;
val it : string list = ["\\"; min, non. nopn. n@t. "pinimal"; "lambda"]

See also
parse_as_binder, parses_as_binder, parse_as_infix, parse_as_prefix,
unparse_as_binder.

BINDER_CONV

BINDER_CONV : conv -> term -> thm

Synopsis
Applies conversion to the body of a binder.

Description

If ¢ is a conversion such that ¢ ‘t¢ returns |- t = t’, then BINDER_CONV ¢ ‘b (\x. t)°¢
returns |- b (\x. t) = b (\x. t’), i.e. applies the core conversion to the body of a
‘binder’. In fact, b here can be any term, but it is typically a binder constant such as a
quantifier.

Failure
Fails if the core conversion does, or if the theorem returned by it is not of the right form.

Example

# BINDER_CONV SYM_CONV ‘Gn. n =m + 1°¢;;
val it : thm = |- (. n =m + 1) = (Gn. m + 1 = n)

# BINDER_CONV (REWR_CONV SWAP_FORALL_THM) ‘!x y z. x +y + 2z =y +x + 2°;;
val it : thm =
- (lxyz. x+y+z=y+x+2)<=>(xzy.x+y+z=y+x+2)

See also
ABS_CONV, RAND_CONV, RATOR_CONV.

BINOP2_CONV

BINOP2_CONV : conv -> conv —-> conv
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Synopsis

Applies conversions to the two arguments of a binary operator.

Description

If c1 is a conversion where c1 ‘1¢ returns |- 1 = 1’ and c2 is a conversion where c2 ‘r*
returns |- r = r’, then BINOP2_CONV c1 c2 ‘op 1 r‘returns |- op 1 r = op 1’ r’. The
term op is arbitrary, but is often a constant such as addition or conjunction.

Failure
Never fails when applied to the conversion. But may fail when applied to the term if one
of the core conversions fails or returns an inappropriate theorem on the subterms.

Example

# BINOP2_CONV NUM_ADD_CONV NUM_SUB_CONV ‘(3 + 3) * (10 - 3)°¢;;
val it : thm = |- (3 + 3) * (10 - 3) =6 * 7

Comments
The special case when the two conversions are the same is more briefly achieved using
BINOP_CONV.

See also
ABS_CONV, BINOP_CONV, COMB_CONV, COMB2_CONV, RAND_CONV, RATOR_CONV.

binops

binops : term -> term -> term list

Synopsis

Repeatedly breaks apart an iterated binary operator into components.

Description

The call binops op t repeatedly breaks down applications of the binary operator op within
t. If t is of the form (op 1) r (thinking of op as infix, 1 op r), then it recursively breaks
down 1 and r in the same way and appends the results. Otherwise, a singleton list of the
original term is returned.

Failure
Never fails.
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Example

# binops ‘(+):num->num->num‘ ‘((1 + 2) + 3) + 4 + 5 + 6°;;
val it : term list = [‘1¢; ‘2¢; ¢3¢; ‘4¢; ‘5‘; ‘6¢]

# binops ¢ (+):num->num->num‘ ‘F¢;;
val it : term list = [‘F¢]

See also
dest_binop, mk_binop, striplist.

BINOP_CONV

BINOP_CONV : conv —-> conv

Synopsis

Applies a conversion to both arguments of a binary operator.

Description

If ¢ is a conversion where ¢ ‘1¢ returns |- 1 = 1’ and ¢ ‘r‘ returns |- r = r’, then

BINOP_CONV ¢ ‘op 1 r‘ returns |- op 1 r = op 1’ r’. The term op is arbitrary, but is
often a constant such as addition or conjunction.

Failure
Never fails when applied to the conversion. But may fail when applied to the term if one
of the core conversions fails or returns an inappropriate theorem on the subterms.

Example
# BINOP_CONV NUM_ADD_CONV ‘(1 + 1) * (2 + 2)¢;;
val it : thm = |- (1 + 1) * (2 +2) =2 x 4
See also

ABS_CONV, BINOP2_CONV, COMB_CONV, COMB2_CONV, RAND_CONV, RATOR_CONV.

BINOP_TAC

BINOP_TAC : tactic
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Synopsis
Breaks apart equation between binary operator applications into equality between their
arguments.

Description

Given a goal whose conclusion is an equation between applications of the same curried
binary function £, the tactic BINOP_TAC breaks it down to two subgoals expressing equality
of the corresponding arguments:

A7-fx1yl=1%Fx2y2

BINOP_TAC
A 7- x1 =x2 A7?-y1=y2

Failure
Fails if the conclusion of the goal is not an equation between applications of the same
curried binary operator.

Example
We can set up the following goal which is an equation between applications of the binary
operator +:

#g f(2*xx+1) +w*z=1£(@UCKx+1) *2-1)+z*uw;;
and it is simplest to prove if we split it up into two subgoals:

# e BINOP_TAC;;
val it : goalstack = 2 subgoals (2 total)

‘wx z =2z *xw'
‘f 2*xx+1)=1Ff (SUC (x+1) *x2 - 1)¢
the first of which can be solved by ARITH_TAC, and the second by AP_TERM_TAC THEN ARITH_TAC.

See also
ABS_TAC, AP_TERM_TAC, AP_THM_TAC, MK_BINOP, MK_COMB_TAC.

BITS_ELIM_CONV

BITS_ELIM_CONV : conv
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Synopsis

Removes stray instances of special constants used in numeral representation

Description

The HOL Light representation of numeral constants like ‘6 uses a number of special
constants ‘NUMERAL‘, ‘BITO¢, ‘BIT1‘ and ‘_0¢, essentially to represent those numbers in
binary. The conversion BITS_ELIM_CONV eliminates any uses of these constants within the
given term not used as part of a standard numeral.

Failure
Never fails

Example

# BITS_ELIM_CONV ‘BITO(BIT1(BIT1 _0)) = 6°;;
val it : thm =
|- BITO (BIT1 (BIT1 _0)) =6 <=>2 % (2 x (2 *x0+ 1) +1) =6

# (BITS_ELIM_CONV THENC NUM_REDUCE_CONV) ‘BITO(BIT1(BIT1 _0)) = 6°;;
val it : thm = |- BITO (BIT1 (BIT1 _0)) =6 <=> T

Uses

Mainly intended for internal use in functions doing sophisticated things with numerals.

See also
ARITH_RULE, ARITH_TAC, NUM_RING.

bndvar

bndvar : term -> term

Synopsis

Returns the bound variable of an abstraction.

Description

bndvar ‘\var. t¢ returns ‘var‘.

Failure
Fails unless the term is an abstraction.
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Example

# bndvar ‘\x. x + 1¢;;
= (¢

val it : term X

See also
body, dest_abs.

body

body : term -> term

Synopsis

Returns the body of an abstraction.

Description
body ‘\var. t‘ returns ‘t°.

Failure

Fails unless the term is an abstraction.

Example
# body ‘\x. x + 1¢;;

val it : term = ‘x + 1°¢

See also
bndvar, dest_abs.

BOOL_CASES_TAC

BOOL_CASES_TAC : term —-> tactic

Synopsis

Performs boolean case analysis on a (free) term in the goal.
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Description

When applied to a term x (which must be of type bool but need not be simply a variable),
and a goal A ?- t, the tactic BOOL_CASES_TAC generates the two subgoals corresponding
to A 7- t but with any free instances of x replaced by F and T respectively.

A7-t

BOOL_CASES_TAC ‘xf
A 7- t[F/x] A 7- t[T/x]

The term given does not have to be free in the goal, but if it isn’t, BOOL_CASES_TAC will
merely duplicate the original goal twice. Note that in the new goals, we don’t have x and
~x as assumptions; for that use ASM_CASES_TAC.

Failure
Fails unless the term x has type bool.

Example
The goal:

can be completely solved by using BOOL_CASES_TAC on the variable b, then simply rewriting
the two subgoals using only the inbuilt tautologies, i.e. by applying the following tactic:

# e(BOOL_CASES_TAC ‘b:bool‘ THEN REWRITE_TACI[]);;
val it : goalstack = No subgoals

Uses
Avoiding fiddly logical proofs by brute-force case analysis, possibly only over a key term
as in the above example, possibly over all free boolean variables.

See also
ASM_CASES_TAC, COND_CASES_TAC, DISJ_CASES_TAC, ITAUT, STRUCT_CASES_TAC, TAUT.

bool_ty

bool_ty : hol_type

Synopsis
The type ¢ :bool*.



62 Chapter 1. Pre-defined ML Identifiers

Description
This name is bound to the HOL type :bool.

Failure
Not applicable.

Uses

Exploiting the very common type :bool inside derived rules without the inefficiency or
inconvenience of calling a quotation parser or explicit constructor.

See also
aty, bty.

bty

bty : hol_type

Synopsis
The type variable ¢:B¢.

Description
This name is bound to the HOL type :B.

Failure
Not applicable.

Uses

Exploiting the very common type variable :B inside derived rules (e.g. an instantiation
list for inst or type_subst) without the inefficiency or inconvenience of calling a quotation
parser or explicit constructor.

See also
aty, bool_ty.

butlast

butlast : ’a list -> ’a list
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Synopsis

Computes the sub-list of a list consisting of all but the last element.
Description

butlast [x1;...;xn] returns [x1;...;x(-1)].

Failure

Fails if the list is empty.

See also
last, hd, tl, el.

by

by : tactic -> refinement

Synopsis

Converts a tactic to a refinement.

Description
The call by tac for a tactic tac gives a refinement of the current list of subgoals that
applies tac to the first subgoal.

Comments
Only of interest to users who want to handle ‘refinements’ explicitly.

C: (’a-=>"’b->"’c) ->"’b->"’a->"c

Synopsis

Permutes first two arguments to curried function: ¢ £ x y =f y x.

Failure
Never fails.

See also
F.F, I, K, W.
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CACHE_CONV

CACHE_CONV : (term -> thm) -> term -> thm

Synopsis

Accelerates a conversion by cacheing previous results.

Description

If cnv is any conversion, then CACHE_CONV cnv gives a new conversion that is functionally
identical but keeps a cache of previous arguments and results, and simply returns the
cached result if the same input is encountered again.

Failure
Never fails, though the subsequent application to a term may.

Example
The following call takes a while, making several applications to the same expression:

# time (DEPTH_CONV NUM_RED_CONV) ‘31 EXP 31 + 31 EXP 31 + 31 EXP 31°¢;;
CPU time (user): 1.542
val it : thm =
|- 31 EXP 31 + 31 EXP 31 + 31 EXP 31 =
51207522392169707875831929087177944268134203293

whereas the cached variant is faster since the result for 31 EXP 31 is stored away and
re-used after the first call:

# time (DEPTH_CONV(CACHE_CONV NUM_RED_CONV))
31 EXP 31 + 31 EXP 31 + 31 EXP 31°;;
CPU time (user): 0.461
val it : thm =
|- 31 EXP 31 + 31 EXP 31 + 31 EXP 31 =
51207522392169707875831929087177944268134203293

See also

can

can : (’a -> ’b) -> ’a -> bool
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Synopsis

Tests for failure.

Description
can f x evaluates to true if the application of £ to x succeeds. It evaluates to false if
the application fails with a Failure _ exception.

Failure
Never fails.

Example

# can hd [1;2];;

val it : bool = true
# can hd [];;

val it : bool = false

See also
check.

cases

cases : string -> thm

Synopsis

Produce cases theorem for an inductive type.

Description

A call cases "ty" where "ty" is the name of a recursive type defined with define_type,
returns a “cases” theorem asserting that each element of the type is an instance of one
of the type constructors. The effect is exactly the same is if prove_cases_thm were ap-
plied to the induction theorem produced by define_type, and the documentation for
prove_cases_thm gives a lengthier discussion.

Failure
Fails if ty is not the name of a recursive type.
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Example

# cases "num";;
val it : thm = |- 'm. m

0\/ (?n. m = SUC n)

# cases "list";;
val it : thm = |- !x. x

[0 \/ (?a0 al. x = CONS a0 al)

See also

define_type, distinctness, injectivity, prove_cases_thm.

CASE_REWRITE_TAC

CASE_REWRITE_TAC : thm -> tactic

Synopsis

Performs casewise rewriting.

Description

Same usage as IMP_REWRITE_TAC but applies case rewriting instead of implicational rewrit-

ing, i.e. given a theorem of the form !'x_1... x_n. P ==> ly_1... y_m. 1 = r and a goal

with an atom A containing a subterm matching 1, turns the atom into (P> ==> A’) /\ ("P’ ==> A)

where A’ is the atom in which the matching subterm of 1 is rewritten, and where P’ is the
instantiation of P so that the rewrite is valid. Note that this tactic takes only one theorem
since in practice there is seldom a need to apply it subsequently with several theorems.

Failure

Fails if no subterm matching 1 occurs in the goal.
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Example

#glabc.a<b==>(a-b)/ (a->b)*xc=c;;
val it : goalstack = 1 subgoal (1 total)

labc.a<b==>(a-b)/(a-b) xc=c

# e(CASE_REWRITE_TAC REAL_DIV_REFL);;
val it : goalstack = 1 subgoal (1 total)

labc.
a<b
==> ("(a - b =8&0) ==> &1 * ¢ = ¢) /\
(a-b=& ==>(a-b) / (a-Db) *x c=c)

Uses

Similar to IMP_REWRITE_TAC, but instead of assuming that a precondition holds, one just
wants to make a distinction between the case where this precondition holds, and the one
where it does not.

See also
IMP_REWRITE_TAC, REWRITE_TAC, SIMP_TAC, SEQ_IMP_REWRITE_TAC,
TARGET_REWRITE_TAC.

CCONTR

CCONTR : term -> thm -> thm

Synopsis

Implements the classical contradiction rule.

Description
When applied to a term t and a theorem A |- F, the inference rule CCONTR returns the
theorem A - {"t} |- t.

——————————————— CCONTR ‘t°
A-{t} |-t

Failure
Fails unless the term has type bool and the theorem has F as its conclusion.
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Comments
The usual use will be when ~t exists in the assumption list; in this case, CCONTR corresponds
to the classical contradiction rule: if “t leads to a contradiction, then t must be true.

See also
CONTR, CONTR_TAC, NOT_ELIM.

CHANGED_CONV

CHANGED_CONV : conv -> conv

Synopsis

Makes a conversion fail if applying it leaves a term unchanged.

Description

For a conversion cnv, the construct CHANGED_CONV c gives a new conversion that has the
same action as cnv, except that it will fail on terms t such that cnv t returns a reflexive
theorem |- t = t, or more precisely |- t = t’ where t and t’ are alpha-equivalent.

Failure
Never fails when applied to the conversion, but fails on further application to a term if
the original conversion does or it returns a reflexive theorem.

Example

# ONCE_DEPTH_CONV num_CONV ‘x + 0°¢;;
val it : thm = |- x+ 0 =x + 0

# CHANGED_CONV(ONCE_DEPTH_CONV num_CONV) ‘x + 0°¢;;
Exception: Failure "CHANGED_CONV".

# CHANGED_CONV(ONCE_DEPTH_CONV num_CONV) ‘6°;;
val it : thm = |- 6 = SUC 5

# REPEATC (CHANGED_CONV (ONCE_DEPTH_CONV num_CONV)) ‘6°¢;;
val it : thm = |- 6 = SUC (SUC (SUC (SUC (SUC (SUC 0)))))

Uses

CHANGED_CONV is used to transform a conversion that may leave terms unchanged, and
therefore may cause a nonterminating computation if repeated, into one that can safely
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be repeated until application of it fails to substantially modify its input term, as in the
last example above.

CHANGED_TAC

CHANGED_TAC : tactic -> tactic

Synopsis

Makes a tactic fail if it has no effect.

Description
When applied to a tactic t, the tactical CHANGED_TAC gives a new tactic which is the same
as t if that has any effect, and otherwise fails.

Failure
The application of CHANGED_TAC to a tactic never fails. The resulting tactic fails if the
basic tactic either fails or has no effect.

Uses
Occasionally useful in controlling complicated tactic compositions. Also sometimes con-
venient just to check that a step did indeed modify a goal.

See also
TRY, VALID.

CHAR_EQ_CONV

CHAR_EQ_CONV : term -> thm

Synopsis

Proves equality or inequality of two HOL character literals.

Description
If s and t are two character literal terms in the HOL logic, CHAR_EQ_CONV ‘s = t‘ returns:

|- s =t <=>T or |- s =t <=>F

depending on whether the character literals are equal or not equal, respectively.



70 Chapter 1. Pre-defined ML Identifiers

Failure
CHAR_EQ_CONV tm fails f tm is not of the specified form, an equation between character
literals.

Example

# let t = mk_eq(mk_char ’A’,mk_char ’A’);;
val t : term = ‘ASCIT FTFFFFFT=ASCITFTFFFTFTFT

# CHAR_EQ_CONV t;;
val it : thm = |- ASCII FTFFFFFT=ASCIIFTFFFFFT<=>T

Uses

Performing basic equality reasoning while producing a proof about characters.

Comments

There is no particularly convenient parser/printer support for the HOL char type, but
when combined into lists they are considered as strings and provided with more intuitive
parser /printer support. There is a corresponding proof rule STRING_EQ_CONV for strings.

See also
dest_char, mk_char, NUM_EQ_CONV, STRING_EQ_CONV.

CHEAT_TAC

CHEAT_TAC : tactic

Synopsis

Proves goal by asserting it as an axiom.

Description
Given any goal A ?- p, the tactic CHEAT_TAC solves it by using mk_thm, which in turn
involves essentially asserting the goal as a new axiom.

Failure
Never fails.

Uses
Temporarily plugging boring parts of a proof to deal with the interesting parts.
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Comments
Needless to say, this should be used with caution since once new axioms are asserted there
is no guarantee that logical consistency is preserved.

See also
new_axiom, mk_thm.

check

check : (?a -> bool) -> ’a -> ’a

Synopsis

Checks that a value satisfies a predicate.

Description
check p x returns x if the application p x yields true. Otherwise, check p x fails.

Failure
check p x fails with Failure "check" if the predicate p yields false when applied to the
value x.

Example

# check is_var ‘x:bool‘;;

val it : term = ‘x°¢

# check is_var ‘x + 2¢;;
Exception: Failure "check".

Uses
Can be used to filter out candidates from a set of terms, e.g. to apply theorem-tactics to
assumptions with a certain pattern.

See also
can.

checkpoint

checkpoint : string -> unit
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Synopsis
Exits HOL Light but saves current state ready to restart.

Description

This is only available in Linux. A call checkpoint s calls the freeze function from
CryoPID to create a checkpoint of the current state of HOL Light, named hol.snapshot.
When this image is restarted, the string s is printed as well as the usual startup banner.

Failure
Never fails, except in the face of OS-level problems such as running out of disc space.

Uses
To quickly save the state of HOL Light when it would take a long time to regenerate.

Comments

Unfortunately I do not know of any checkpointing tool that can give this behaviour under
Windows or Mac OS X. See the README file and tutorial for additional information on
Linux checkpointing options.

See also
self_destruct, startup_banner.

choose

choose : (’a, ’b) func -> ’a * ’b

Synopsis

Picks an arbitrary element from the graph of a finite partial function.

Description

This is one of a suite of operations on finite partial functions, type (’a,’b)func. These
may sometimes be preferable to ordinary functions since they permit more operations
such as equality comparison, extraction of domain etc. If f is a finite partial function,
choose f picks an arbitrary pair of values from its graph, i.e. a pair x,y where £ maps x
to y. The particular choice is implementation-defined, and it is not likely to be the most
obvious ‘first’ value.

Failure
Fails if and only if the finite partial function is completely undefined.
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Example

# let £ = itlist I [1 |-> 2; 2 |-> 3; 3 |-> 4] undefined;;
val £ : (int, int) func = <func>

# choose f;;

val it : int * int = (2, 3)

See also
|->, |=>, apply, applyd, combine, defined, dom, foldl, foldr, graph,
is_undefined, mapf, ran, tryapplyd, undefine, undefined.

CHOOSE_TAC

CHOOSE_TAC : thm_tactic

Synopsis
Adds the body of an existentially quantified theorem to the assumptions of a goal.

Description

When applied to a theorem A’ |- ?x. t and a goal, CHOOSE_TAC adds t[x’/x] to the
assumptions of the goal, where x’ is a variant of x which is not free in the assumption
list; normally x’ is just x.

A 7-u

CHOOSE_TAC (A’ |- 7x. t)

Au {t[x’/x]} 7- u
Unless A’ is a subset of A, this is not a valid tactic.

Failure

Fails unless the given theorem is existentially quantified.

Example

Suppose we have a goal asserting that the output of an electrical circuit (represented as
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a boolean-valued function) will become high at some time:
?7- 7t. output(t)

and we have the following theorems available:

t1
t2

|- ?t. input(t)
't. input(t) ==> output(t+1)

Then the goal can be solved by the application of:

CHOOSE_TAC t1 THEN EXISTS_TAC ‘t+1°‘ THEN
UNDISCH_TAC ‘input (t:num) :bool¢ THEN MATCH_ACCEPT_TAC t2

See also
CHOOSE_THEN, X_CHOOSE_TAC.

CHOOSE_THEN

CHOOSE_THEN : thm_tactical

Synopsis
Applies a tactic generated from the body of existentially quantified theorem.

Description

When applied to a theorem-tactic ttac, an existentially quantified theorem A’ |- ?x. t,
and a goal, CHOOSE_THEN applies the tactic ttac (t[x’/x] |- t[x’/x]) to the goal, where
x’ is a variant of x chosen not to be free in the assumption list of the goal. Thus if:

A 7- s1
=========ttac (t[x’/x] |- tlx’/x])
B 7- s2
then
A 7- s1
==========CHOOSE_THEN ttac (A’ |- ?x. t)
B 7- s2

This is invalid unless A’ is a subset of A.
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Failure
Fails unless the given theorem is existentially quantified, or if the resulting tactic fails
when applied to the goal.

Example
This theorem-tactical and its relatives are very useful for using existentially quantified
theorems. For example one might use the inbuilt theorem

LT_EXISTS = |- 'mn. m < n <=> (?d. n = m + SUC d)
to help solve the goal
#g ‘x<y==>0<yx*y';;
by starting with the following tactic
# e(DISCH_THEN(CHOOSE_THEN SUBST1_TAC o REWRITE_RULE[LT_EXISTS]));;
reducing the goal to
val it : goalstack = 1 subgoal (1 total)
‘0 < (x +SUC d) * (x +SUC d)°¢
which can then be finished off quite easily, by, for example just ARITH_TAC, or
# e (REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES; LT_01);;

See also
CHOOSE_TAC, X_CHOOSE_THEN.

CHOOSE

CHOOSE : term * thm -> thm -> thm

Synopsis

Eliminates existential quantification using deduction from a particular witness.
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Description
When applied to a term-theorem pair (v,A1 |- ?x. s) and a second theorem of the form
A2 |- t, the inference rule CHOOSE produces the theorem A1 u (A2 - {s[v/x]}) |- t.

Al |- ?x. s[x] A2 |-t
_______________________________ CHOOSE (‘v‘, (Al |- ?x. s))
Al u (A2 - {s[v/x]}) |-t

Where v is not free in A2 - {s[v/x]}, s or t.

Failure

Fails unless the terms and theorems correspond as indicated above; in particular, v must
be a variable and have the same type as the variable existentially quantified over, and it
must not be free in A2 - {s[v/x]}, s or t.

Comments
For the special case of simply existentially quantifying an assumption over a variable,
SIMPLE_CHOOSE is easier.

See also
CHOOSE_TAC, EXISTS, EXISTS_TAC, SIMPLE_CHOOSE.

chop_1list

chop_list : int -> ’a list -> ’a list * ’a list

Synopsis

Chops a list into two parts at a specified point.

Description

chop_list i [x1;...;xn] returns ([x1;...;xi], [x(i+1);...;xn]).
Failure

Fails with chop_list if i is negative or greater than the length of the list.
Example
# chop_list 3 [1;2;3;4;5];;

val it : int list * int list = ([1; 2; 3], [4; 51)

See also
partition.
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CLAIM_TAC

CLAIM_TAC : string -> term -> tactic

Synopsis

Breaks down and labels an intermediate claim in a proof.

Description

Given a Boolean term t and a string s of the form expected by DESTRUCT_TAC indicating
how to break down and label that assertion, CLAIM_TAC s t breaks the current goal into
two or more subgoals. One of these is to establish t using the current context and the
others are to establish the original goal with the broken-down form of t as additional
assumptions.

Failure

Fails if the term is not Boolean or the pattern is ill-formed or does not match the form of
the theorem.

Example

Here we show how we can attack a propositional goal (admittedly trivial with TAUT).
#g ‘(p<=>q ==>p\ "q9‘;;
val it : goalstack = 1 subgoal (1 total)

“(p <=>q ==>p \/ "q

# e DISCH_TAC;;
val it : goalstack = 1 subgoal (1 total)

0 [‘p <=> q‘]

(p \/ ~q(

We establish the intermediate goal p /\ q \/ “p /\ ~q, the disjunction being in turn
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broken down into two labelled hypotheses yes and no:

# e(CLAIM_TAC "yes|no" ‘p /\ 9 \/ "p /\ "q99);;
val it : goalstack = 3 subgoals (3 total)

0 [‘p <=> q‘]
1 [“"p /\ "q‘] (no)

(p \/ ~q(

0 [‘p <=> q]
1 [‘p /\ q¢] (yes)

{p \/ 'Vq{
0 [‘p <=> q‘]
‘e /\a\/ p/\ "qf

See also
DESTRUCT_TAC, SUBGOAL_TAC, SUBGOAL_THEN.

CNF_CONV

CNF_CONV : conv

Synopsis

Converts a term already in negation normal form into conjunctive normal form.

Description

When applied to a term already in negation normal form (see NNF_CONV), meaning that all
other propositional connectives have been eliminated in favour of conjunction, disjunction
and negation, and negation is only applied to atomic formulas, CNF_CONV puts the term
into an equivalent conjunctive normal form, which is a right-associated conjunction of
disjunctions without repetitions. No reduction by subsumption is performed, however,
e.g. from a /\ (a \/ b) to just a).

Failure

Never fails; non-Boolean terms will just yield a reflexive theorem.
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Example

# CNF_CONV ‘(a /\ b) \/ (@ /\ b /\ c) \/ d;;
val it : thm =
I-a/\b\/ a/\b/\c\/d<=>
(@a\/d /N@\/b\/d /N @\ c\/d /N b\ Ad /N b\ c\/d

See also
DNF_CONV, NNF_CONV, WEAK_CNF_CONV, WEAK_DNF_CONV.

COMB2_CONV

COMB2_CONV : (term -> thm) -> (term -> thm) -> term -> thm

Synopsis

Applies two conversions to the two sides of an application.

Description

If c1 and c2 are conversions such that c1 ‘f¢ returns |- £ = £’ and c2 ‘x‘ returns

|- x = x’, then COMB2_CONV c1 c2 ‘f x‘ returns |- £ x = £’ x’. That is, the conver-
sions c1 and c2 are applied respectively to the two immediate subterms.

Failure
Never fails when applied to the initial conversions. On application to the term, it fails if
either c1 or c2 does, or if either returns a theorem that is of the wrong form.

Comments
The special case when the two conversions are the same is more briefly achieved using
COMB_CONV.

See also
BINOP_CONV, BINOP2_CONV, COMB_CONV, LAND_CONV, RAND_CONV, RATOR_CONV

combine

combine : (’a -> ’a -> ’a) -> (’a -> bool) -> (b, ’a) func -> (°b, ’a) func -> (b,

)a)
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Synopsis

Combine together two finite partial functions using pointwise operation.

Description

This is one of a suite of operations on finite partial functions, type (’a,’b)func. These
may sometimes be preferable to ordinary functions since they permit more operations such
as equality comparison, extraction of domain etc. If £ and g are finite partial functions,
then combine op z f g will combine them together in the following somewhat complicated
way. If just one of the functions £ and g is defined at point x, that will give the value of
the combined function. If both £ and g are defined at x with values y1 and y2, the value
of the combined function will be op y1 y2. However, if the resulting value y satisfies the
predicate z, the new function will be undefined at that point; the intuition is that the two
values y1 and y2 cancel each other out.

Failure
Can only fail if the given operation fails.

Example

# let f itlist I [1 |-> 2; 2 |-> 3; 3 |-> 6] undefined
and g = itlist I [1 |-> 5; 2 |-> -3] undefined;;

val f : (int, int) func = <func>

val g : (int, int) func = <func>

# graph(combine (+) (fun x -> x = 0) £ g);;
val it : (int * int) list = [(1, 7); (3, 6)]

Uses

When finite partial functions are used to represent values with a numeric domain (e.g.
matrices or polynomials), this can be used to perform addition pointwise by using addition
for the op argument. Using a zero test as the predicate z will ensure that no zero values
are included in the result, giving a canonical representation.

See also
|->, |=>, apply, applyd, choose, defined, dom, foldl, foldr, graph,
is_undefined, mapf, ran, tryapplyd, undefine, undefined.

COMB_CONV

COMB_CONV : conv -> conv
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Synopsis

Applies a conversion to the two sides of an application.

Description

If c is a conversion such that ¢ ‘f¢ returns |- £ = £> and ¢ ‘x‘ returns |- x = x’, then
COMB_CONV c¢ ‘f x‘ returns |- £ x = £? x’. That is, the conversion c is applied to the
two immediate subterms.

Failure
Never fails when applied to the initial conversion. On application to the term, it fails if
conversion given as the argument does, or if the theorem returned by it is inappropriate.

See also
BINOP_CONV, BINOP2_CONV, COMB2_CONV, LAND_CONV, RAND_CONV, RATOR_CONV

comment_token

comment_token : lexcode ref

Synopsis
HOL Light comment token.

Description

Users may insert comments in HOL Light terms that are ignored in parsing. Comments
are introduced by a special comment token and terminated by the next end of line. (There
are no multi-line comments supported in HOL Light terms.) The reference comment_token
stores the token that introduces a comment, which by default is Resword "//" as in BCPL,
C++, Java etc. The user may change it to another token, though this should be done
with care in case other proofs break.

Failure
Not applicable.

Example
Here we change the comment token to be ‘- (as used in Ada, Eiffel, Haskell, Occam and
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several other programming languages):

# comment_token := Ident "--";;
val it : unit = ()

and we can test that it works:

# ‘let wordsize = 32 -- may change to 64 later

and radix = 2 -- only care about binary
in radix EXP wordsize‘;;
val it : term = ‘let wordsize = 32 and radix = 2 in radix EXP wordsizef
Comments

Comments are handled at the level of the lexical analyzer, so can also be used in types
and the strings used for the specification of inductive types.

See also
define_type, lex, parse_inductive_type_specification, parse_term, parse_type.

compose_insts

compose_insts : instantiation -> instantiation -> instantiation

Synopsis

Compose two instantiations.

Description

Given two instantiations i1 and i2 (with type instantiation, as returned by term_match

for example), the call compose_insts i1 i2 will give a new instantiation that results from

composing them, with i1 applied first and then i2. For example, instantiate (compose_insts il i2) t
should be the same as instantiate i2 (instantiate il t).

Failure
Never fails.

Comments
Mostly of specialized interest; used in sequencing tactics like THEN to compose metavariable
instantiations.

See also
instantiate, INSTANTIATE, INSTANTIATE_ALL, inst_goal, PART_MATCH, term_match.
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concl

concl : thm -> term

Synopsis

Returns the conclusion of a theorem.

Description

When applied to a theorem A |- t, the function concl returns t.
Failure

Never fails.

Example

# ADD_SYM;;
val it : thm = |- !mn. m + n =n +m
# concl ADD_SYM;;

val it : term = ‘‘mn. m + n =n + m

# concl (ASSUME ‘1 = 09);;
val it : term = ‘1 = 0°¢

See also
dest_thm, hyp.

CONDS_CELIM_CONV

CONDS_CELIM_CONV : conv

Synopsis

Remove all conditional expressions from a Boolean formula.

Description

When applied to a Boolean term, CONDS_CELIM_CONV identifies subterms that are condi-

tional expressions of the form ‘if p then x else y’, and eliminates them. First they are

“pulled out” as far as possible, e.g. from ‘f (if p then x else y) to‘if p then f(x) else f(y)’
and so on. When a quantifier that binds one of the variables in the expression is reached,
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the subterm is of Boolean type, say ‘if p then q else r’, and it is replaced by a propo-
sitional equivalent of the form ‘(p \/ q) /\ (p \/ ).

Failure
Never fails, but will just return a reflexive theorem if the term is not Boolean.

Example

# CONDS_CELIM_CONV ‘y <= z ==> Ix. (if x <= y then y else x) <= z‘;;
val it : thm =
|-y <=z ==> (Ix. (if x <= y then y else x) <= z) <=>
y<=z=>(x. Cx<=y) \/y<=2)/\ (x<=y\/ x<=2))

Uses

Mostly for initial normalization in automated rules, but may be helpful for other uses.

Comments

The function CONDS_ELIM_CONV is functionally similar, but will do the final propositional
splitting in a “disjunctive” rather than “conjunctive” way. The disjunctive way is usually
better when the term will subsequently be passed to a refutation procedure, whereas
the conjunctive form is better for non-refutation procedures. In each case, the policy is
changed in an appropriate way after passing through quantifiers.

See also
COND_CASES_TAC, COND_ELIM_CONV, CONDS_ELIM_CONV.

CONDS_ELIM_CONV

CONDS_ELIM_CONV : conv

Synopsis

Remove all conditional expressions from a Boolean formula.

Description

When applied to a Boolean term, CONDS_ELIM_CONV identifies subterms that are conditional
expressions of the form ‘if p then x else y’, and eliminates them. First they are “pulled
out” as far as possible, e.g. from ‘f (if p then x else y) to‘if p then f(x) else f(y)’
and so on. When a quantifier that binds one of the variables in the expression is reached,
the subterm is of Boolean type, say ‘if p then q else r’, and it is replaced by a propo-
sitional equivalent of the form ‘p /\ q \/ “p /\ .
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Failure
Never fails, but will just return a reflexive theorem if the term is not Boolean.

Example
Note that in contrast to COND_ELIM_CONV, there are no freeness restrictions, and the
Boolean split will be done inside quantifiers if necessary:

# CONDS_ELIM_CONV ‘!x y. (if x <= y then y else x) <= z ==> x <= z‘;;
val it : thm =
|- (!x y. (if x <= y then y else x) <= z ==> x <= z) <=>
(Ixy. "(x<=y) \/ (y <=2z ==>x <= 2))

Uses
Mostly for initial normalization in automated rules, but may be helpful for other uses.

Comments

The function CONDS_CELIM_CONV is functionally similar, but will do the final propositional
splitting in a “conjunctive” rather than “disjunctive” way. The disjunctive way is usually
better when the term will subsequently be passed to a refutation procedure, whereas
the conjunctive form is better for non-refutation procedures. In each case, the policy is
changed in an appropriate way after passing through quantifiers.

See also
COND_CASES_TAC, COND_ELIM_CONV, CONDS_CELIM_CONV.

COND_CASES_TAC

COND_CASES_TAC : tactic

Synopsis

Induces a case split on a conditional expression in the goal.

Description
COND_CASES_TAC searches for a free conditional subterm in the term of a goal, i.e. a subterm
of the form if p then u else v, choosing some topmost one if there are several. It then
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induces a case split over p as follows:

A7-t

COND_CASES_TAC
A u {p} ?- t[T/p; u/(if p then u else v)]
Au {"p} ?- t[F/p; v/(if p then u else v)]

where p is not a constant, and the term p then u else v is free in t. Note that it both
enriches the assumptions and inserts the assumed value into the conditional.

Failure
COND_CASES_TAC fails if there is no conditional sub-term as described above.

Example
We can prove the following just by REAL_ARITH ‘!x y:real. x <= max x y‘, but it is
instructive to consider a manual proof.

# g ‘!'x yireal. x <= max x y;;
val it : goalstack = 1 subgoal (1 total)

‘l1x y. x <= max X y°¢

# e(REPEAT GEN_TAC THEN REWRITE_TAC[real_max]);;’
val it : goalstack = 1 subgoal (1 total)

‘x <= (if x <= y then y else x)°

# e COND_CASES_TAC;;
val it : goalstack = 1 subgoal (1 total)

0 [“"(x <=y

Uses
Useful for case analysis and replacement in one step, when there is a conditional sub-term
in the term part of the goal. When there is more than one such sub-term and one in
particular is to be analyzed, COND_CASES_TAC cannot always be depended on to choose the
‘desired’ one. It can, however, be used repeatedly to analyze all conditional sub-terms of
a goal.

Comments
Note that logically it should only be necessary for p to be free in the whole term, not the
two branches x and y. However, as an artifact of the current implementation, we need
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them to be free too. The more sophisticated conversion CONDS_ELIM_CONV handles this
better.

See also
ASM_CASES_TAC, COND_ELIM_CONV, CONDS_ELIM_CONV, DISJ_CASES_TAC,
STRUCT_CASES_TAC.

COND_ELIM_CONV

COND_ELIM_CONV : term -> thm

Synopsis

Conversion to eliminate one free conditional subterm.

Description

When applied to a term “....(if p then x else y)...‘ containing a free conditional

subterm, COND_ELIM_CONV returns a theorem asserting its equivalence to a term with the
conditional eliminated:

|- ....(if p then x else y).... <=>
p=>....x....0 /N Cp==>....y....)

If the term contains many free conditional subterms, a topmost one will be used.

Failure
Fails if there are no free conditional subterms.

Example
We can prove the little equivalence noted by Dijkstra in EWD1176 automatically:

# REAL_ARITH ‘'a b:real. a + b > > max a b <=> a >= &0 /\ b >= &0¢;;
val it : thm = |- !'la b. a + b > max a b <=> a >= &0 /\ b >= &0

However, if our automated tools were unfamiliar with max, we might expand its defini-
tion (theorem real_max) and then eliminate the resulting conditional by COND_ELIM_CONV:

# COND_ELIM_CONV ‘a + b >= (if a <= b then b else a) <=> a >= &0 /\ b >= &0°¢;;
val it : thm =
|- (a+ b > (if a <= b then b else a) <=> a >= &0 /\ b >= &0) <=>
(a<=b==>(a+Db>Db<=>a> & /\ b >= &0)) /\
("(a<=Db) ==> (a+b > a<=>a> & /\ b >= &0))

Uses
Eliminating conditionals as a prelude to other automated proof steps that are not equipped
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to handle them.

Comments

Note that logically it should only be necessary for p to be free in the whole term, not the
two branches x and y. However, as an artifact of the current implementation, we need
them to be free too. The more sophisticated CONDS_ELIM_CONV handles this better.

See also
COND_CASES_TAC, CONDS_ELIM_CONV.

CONJ

CONJ : thm -> thm -> thm

Synopsis
Introduces a conjunction.
Description

Al |- t1 A2 |- t2

Al u A2 |- t1 /\ t2

Failure
Never fails.

Example
# CONJ (NUM_REDUCE_CONV ‘2 + 2¢) (ASSUME ‘p:boolf);;
val it : thm=p |- 2+ 2 =4 /\ p

See also
CONJUNCT1, CONJUNCT2, CONJUNCTS, CONJ_PAIR.

CONJUNCT1

CONJUNCT1 : thm -> thm



CONJUNCT2

Synopsis
Extracts left conjunct of theorem.
Description
A |- t1 /\ t2
——————————————— CONJUNCT1
A |- t1
Failure

Fails unless the input theorem is a conjunction.
Example
# CONJUNCT1(ASSUME ‘p /\ q9);;

val it : thm =p /\ q |- p

See also
CONJ_PAIR, CONJUNCT2, CONJ, CONJUNCTS.

CONJUNCTZ2

CONJUNCT2 : thm -> thm

Synopsis

Extracts right conjunct of theorem.
Description

A |- t1 /\ t2
——————————————— CONJUNCT2

Failure
Fails unless the input theorem is a conjunction.

Example
# CONJUNCT2(ASSUME ‘p /\ q9);;

val it : thm =p /\ q |- g

See also
CONJ_PATR, CONJUNCT1, CONJ, CONJUNCTS.
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conjuncts

conjuncts : term -> term list

Synopsis

[teratively breaks apart a conjunction.

Description

If a term t is a conjunction p /\ g, then conjuncts t will recursively break down p and
q into conjuncts and append the resulting lists. Otherwise it will return the singleton list
[t]. Soif t is of the form t1 /\ ... /\ tn with any reassociation, no ti itself being a
conjunction, the list returned will be [t1; ...; tn]. But

conjuncts(list_mk_conj([tl;...;tn]))
will not return [t1;...;tn] if any of t1,...,tn is a conjunction.

Failure
Never fails, even if the term is not boolean.

Example

# conjuncts ‘((p /\ @ /N 1) /\ ((p/\ s /\t) /\Nw;;

4 4 [Ny 4 4 4

val it : term list = [‘p‘; ‘q‘; ‘r‘; ‘p¢; ‘s‘; ‘t¢; ‘u‘]

# conjuncts(list_mk_conj [‘a /\ b‘; ‘c:bool®; ‘d /\ e /\ £1);;
val it : term list = [‘a‘; ‘b‘; ‘c‘; ‘d‘; ‘e‘; ‘£°]

Comments

Because conjuncts splits both the left and right sides of a conjunction, this operation
is not the inverse of 1ist_mk_conj. You can also use splitlist dest_conj to split in a
right-associated way only.

See also
dest_conj, disjuncts, is_conj.

CONJUNCTS_THEN

CONJUNCTS_THEN : thm_tactical
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Synopsis

Applies a theorem-tactic to each conjunct of a theorem.

Description

CONJUNCTS_THEN takes a theorem-tactic ttac, and a theorem t whose conclusion must

be a conjunction. CONJUNCTS_THEN breaks t into two new theorems, t1 and t2 which are
CONJUNCT1 and CONJUNCT?2 of t respectively, and then returns a new tactic: ttac t1 THEN ttac t2.
That is,

CONJUNCTS_THEN ttac (A |- 1 /\ r) = ttac (A |- 1) THEN ttac (A |- 1)

so if
Al 7- t1 A2 7- t2
A2 7- t2 A3 7- t3
then
Al 7- t1
========== CONJUNCTS_THEN ttac (A |- 1 /\ r)
A3 7- t3
Failure
CONJUNCTS_THEN ttac will fail if applied to a theorem whose conclusion is not a conjunc-
tion.
Comments
CONJUNCTS_THEN ttac (A |- ul /\ ... /\ un) results in the tactic:
ttac (A |- ul) THEN ttac (A |- u2 /\ ... /\ un)

The iterated effect:

ttac (A |- ul) THEN ... THEN ttac(A |- un)

can be achieved by

REPEAT_TCL CONJUNCTS_THEN ttac (A |- ul /\ ... /\ un)

See also
CONJUNCT1, CONJUNCT2, CONJUNCTS, CONJUNCTS_TAC, CONJUNCTS_THEN2,
STRIP_THM_THEN.
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CONJUNCTS_THEN2

CONJUNCTS_THEN2 : thm_tactic -> thm_tactic -> thm_tactic

Synopsis

Applies two theorem-tactics to the corresponding conjuncts of a theorem.

Description

CONJUNCTS_THEN2 takes two theorem-tactics, £1 and £2, and a theorem t whose conclu-
sion must be a conjunction. CONJUNCTS_THEN2 breaks t into two new theorems, t1 and
t2 which are CONJUNCT1 and CONJUNCT2 of t respectively, and then returns the tactic
f1 t1 THEN f2 t2. Thus

CONJUNCTS_THEN2 f1 f2 (A |- 1 /\r) = f1 (A |- 1) THEN f2 (A |- 1)

so if
Al 7- t1 A2 7- t2
A2 7- t2 A3 7- t3
then
Al 7- t1
========== CONJUNCTS_THEN2 f1 f2 (A |- 1 /\ r)
A3 7- t3
Failure
CONJUNCTS_THEN £ will fail if applied to a theorem whose conclusion is not a conjunction.
Uses

The construction of complex tacticals like CONJUNCTS_THEN.

See also
CONJUNCT1, CONJUNCT2, CONJUNCTS, CONJUNCTS_TAC, CONJUNCTS_THEN2,
STRIP_THM_THEN.

CONJUNCTS

CONJUNCTS : thm -> thm list
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Synopsis

Recursively splits conjunctions into a list of conjuncts.

Description
Flattens out all conjuncts, regardless of grouping. Returns a singleton list if the input
theorem is not a conjunction.

——————————————————————————————————— CONJUNCTS

Failure
Never fails.

Example

# CONJUNCTS(ASSUME ‘(x /\ y) /\ z /\ w);;

val it : thm list =
[x/\Ny /Nz/N\Nwl-x G/Ny) /Nz/\Nwvl-y; /\Ny)/\Nz/\w
|- z; (x/\y) /\Nz/\wl|-wl

See also
CONJ, CONJUNCT1, CONJUNCT2, CONJ_PAIR.

CONJ_ACI_RULE

CONJ_ACI_RULE : term -> thm

Synopsis

Proves equivalence of two conjunctions containing same set of conjuncts.

Description

The call CONJ_ACI_RULE ‘t1 /\ ... /\ tn <=> ul /\ ... /\ um‘, where both sides of

the equation are conjunctions of exactly the same set of conjuncts, (with arbitrary order-

ing, association, and repetitions), will return the corresponding theorem |- t1 /\ ... /\ tn <=> ul
Failure

Fails if applied to a term that is not a Boolean equation or the two sets of conjuncts are
different.
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Example

# CONJ_ACI_RULE ‘(a /\ b) /\ (a /\ c) <=> (a /\ (c /\ a)) /\ b‘;;
val it : thm = |- (a /\' b) /Na /\Nc<=> (@ /\c/\a)/\b

Comments

The same effect can be had with the more general AC construct. However, for the special
case of conjunction, CONJ_ACI_RULE is substantially more efficient when there are many
conjuncts involved.

See also
AC, CONJ_CANON_CONV, DISJ_ACI_RULE.

CONJ_CANON_CONV

CONJ_CANON_CONV : term —-> thm

Synopsis

Puts an iterated conjunction in canonical form.

Description

When applied to a term, CONJ_CANON_CONV splits it into the set of conjuncts and produces
a theorem asserting the equivalence of the term and the new term with the disjuncts
right-associated without repetitions and in a canonical order.

Failure
Fails if applied to a non-Boolean term. If applied to a term that is not a conjunction, it
will trivially work in the sense of regarding it as a single conjunct and returning a reflexive
theorem.

Example
# CONJ_CANON_CONV “(a /\ b) /\ ((b /\ d) /\ a) /\ c‘;;
val it : thm = |- (@ /A b) /\ ((b /N d) /\Na) /Nc<=>a/\b/\c/\d

See also
AC, CONJ_ACI_CONV, DISJ_CANON_CONV.
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CONJ_PAIR

CONJ_PAIR : thm -> thm * thm

Synopsis

Extracts both conjuncts of a conjunction.
Description

A |- t1 /\ t2
—————————————————————— CONJ_PAIR

The two resultant theorems are returned as a pair.

Failure

Fails if the input theorem is not a conjunction.
Example
# CONJ_PAIR(ASSUME ‘p /\ q);;

val it : thm * thm = (p /N q |- p, p /\ q |- @

See also
CONJUNCT1, CONJUNCT2, CONJ, CONJUNCTS.

CONJ_TAC

CONJ_TAC : tactic

Synopsis

Reduces a conjunctive goal to two separate subgoals.
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Description
When applied to a goal A 7- t1 /\ t2, the tactic CONJ_TAC reduces it to the two subgoals
corresponding to each conjunct separately.

A 7- t1 /\ t2

CONJ_TAC

A 7-t1 A 7- t2
Failure
Fails unless the conclusion of the goal is a conjunction.

See also
STRIP_TAC.

constants

constants : unit -> (string * hol_type) list

Synopsis

Returns a list of the constants currently defined.

Description
The call

constants();;
returns a list of all the constants that have been defined so far.

Failure
Never fails.

See also
axioms, binders, infixes.

CONTR

CONTR : term -> thm -> thm
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Synopsis
Implements the intuitionistic contradiction rule.
Description
When applied to a term t and a theorem A |- F, the inference rule CONTR returns the
theorem A |- t.
A|-F
———————— CONTR ‘t°
Al-t
Failure

Fails unless the term has type bool and the theorem has F as its conclusion.

Example

# let th = REWRITE_RULE[ARITH] (ASSUME ‘1 = 0¢);;
val th : thm=1=0 |- F

# CONTR ‘Russell:Person = Pope‘ th;;

val it : thm = 1 = 0 |- Russell = Pope

See also
CCONTR, CONTR_TAC, NOT_ELIM.

CONTRAPOS_CONV

CONTRAPOS_CONV : term -> thm

Synopsis

Proves the equivalence of an implication and its contrapositive.

Description
When applied to an implication ‘p ==> q°, the conversion CONTRAPOS_CONV returns the
theorem:

|- (p ==> q) <=> ("q ==> “p)

Failure
Fails if applied to a term that is not an implication.
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Comments
The same effect can be had by GEN_REWRITE_CONV I [GSYM CONTRAPOS_THM]

See also
CCONTR, CONTR_TAC.

CONTR_TAC

CONTR_TAC : thm_tactic

Synopsis

Solves any goal from contradictory theorem.

Description
When applied to a contradictory theorem A’ |- F, and a goal A ?- t, the tactic CONTR_TAC
completely solves the goal. This is an invalid tactic unless A’ is a subset of A.

Uses

One quite common pattern is to use a contradictory hypothesis via FIRST_ASSUM CONTR_TAC.

Failure
Fails unless the theorem is contradictory, i.e. has F as its conclusion.

See also
CCONTR, CONTR, NOT_ELIM.

CONV_RULE

CONV_RULE : conv -> thm -> thm

Synopsis

Makes an inference rule from a conversion.
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Description

If ¢ is a conversion, then CONV_RULE c is an inference rule that applies ¢ to the conclu-
sion of a theorem. That is, if ¢ maps a term ‘t¢ to the theorem |- t = t’, then the
rule CONV_RULE c infers |- t’ from the theorem |- t. More precisely, if ¢ ‘t¢ returns
A’ |-t = t’, then:

—————————————— CONV_RULE c

Note that if the conversion c returns a theorem with assumptions, then the resulting
inference rule adds these to the assumptions of the theorem it returns.

Failure

CONV_RULE c th fails if c fails when applied to the conclusion of th. The function returned
by CONV_RULE c will also fail if the ML function c is not, in fact, a conversion (i.e. a
function that maps a term t to a theorem |- t = t?).

Example
# CONV_RULE BETA_CONV (ASSUME ‘(\x. x < 2) 19);;

val it : thm = (\x. x < 2) 1 |-1< 2

See also
CONV_TAC.

CONV_TAC

CONV_TAC : conv -> tactic

Synopsis

Makes a tactic from a conversion.

Description

If ¢ is a conversion, then CONV_TAC c is a tactic that applies ¢ to the goal. That is, if c
maps a term ‘g¢ to the theorem |- g = g’, then the tactic CONV_TAC c reduces a goal g
to the subgoal g’. More precisely, if ¢ ‘g¢ returns A> |- g = g’, then:

A7r-g

== CONV_TAC c
A7-g’

In the special case where ‘g¢ is ‘T‘, the call immediately solves the goal rather than
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generating a subgoal A ?- T. And in a slightly liberal interpretation of “conversion”, the
conversion may also just prove the goal and return A’ |- g, in which case again the goal
will be completely solved.

Note that in all cases the conversion c should return a theorem whose assumptions are
also among the assumptions of the goal (normally, the conversion will returns a theorem
with no assumptions). CONV_TAC does not fail if this is not the case, but the resulting
tactic will be invalid, so the theorem ultimately proved using this tactic will have more
assumptions than those of the original goal.

Failure

CONV_TAC c applied to a goal A ?- g fails if ¢ fails when applied to the term g. The
function returned by CONV_TAC c will also fail if the function c is not, in fact, a conversion
(i.e. a function that maps a term t to a theorem |- t = t’).

Uses
CONV_TAC can be used to apply simplifications that can’t be expressed as equations (rewrite
rules). For example, a goal:

# g ‘abs(pi - &22 / &7) <= abs(&355 / &113 - &22 / &7);;
can be simplified by rational number arithmetic:

# e(CONV_TAC REAL_RAT_REDUCE_CONV);;
val it : goalstack = 1 subgoal (1 total)

‘abs (pi - &22 / &7) <= &1 / &791°¢

It is also handy for invoking decision procedures that only have a “rule” form, and no
special “tactic” form. (Indeed, the tactic form can be defined in terms of the rule form
by using CONV_TAC.) For example, the goal:

# g ‘!xireal. &0 < x ==> &1 / x - &1 / (x + &1) = &1 / (x * (x + &1))¢;;
can be solved by:

# e(CONV_TAC REAL_FIELD);;

val it : goalstack = No subgoals

See also
CONV_RULE.
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metisverb

metisverb : bool ref

Synopsis
Make METIS’s output more verbose and detailed.

Description
When this reference variable is set to true, it makes any applications of METIS, METIS_TAC
and related rules and tactics provide more verbose output about their working.

Failure
Not applicable.

See also
copverb, meson_chatty, METIS, METIS_TAC.

current_goalstack

current_goalstack : goalstack ref

Synopsis

Reference variable holding current goalstack.

Description
The reference variable current_goalstack contains the current goalstack. A goalstack is
a type containing a list of goalstates.

Failure
Not applicable.

Comments
Users will probably not often want to examine this variable explicitly, since various proof
commands modify it in various ways.

See also
b, g, e, r.
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curry

curry : (’a * ’b -> ’c) -> ’a -> ’b -> ’c

Synopsis

Converts a function on a pair to a corresponding curried function.

Description
The application curry f returns \x y. f(x,y), so that

curry f x y = £(x,y)
Failure
Never fails.

Example

# curry mk_var;;
val it : string -> hol_type —> term = <fun>

# it "x";;
val it : hol_type -> term = <fun>
# it ‘:bool¢;;
val it : term = ‘x¢
See also
uncurry.
decreasing

decreasing : (’a -> ’b) -> ’a -> ’a -> bool

Synopsis

When applied to a “measure” function £, the call increasing f returns a binary function
ordering elements in a call increasing f x y by f£(y) <? f(x), where the ordering <7 is
the OCaml polymorphic ordering.
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Failure
Never fails unless the measure function does.

Example

# let nums = -5 —- 5;;

val nums : int list = [-5; -4; -3; -2; -1

# sort (decreasing abs) nums;;

3

0; 1; 2; 3; 4; 5]

val it : int list = [5; -5; 4; -4; 3; -3; 2; -2; 1; -1; 0]

See also
<?, increasing, sort.

DEDUCT_ANTISYM_RULE

DEDUCT_ANTISYM_RULE : thm -> thm -> thm

Synopsis

Deduces logical equivalence from deduction in both directions.

Description

When applied to two theorems, this rule deduces logical equivalence between their con-

clusions with a modified assumption list:

(A-{q}) u (B -{p} I-p <=>q

The special case when A = {q} and B = {p} is perhaps the easiest to understand:

Failure
Never fails.
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Example
# let thl = SYM(ASSUME ‘x:num = y*)
and th2 = SYM(ASSUME ‘y:num = x‘);;

val thl : thm = x =y |-y = x
val th2 : thm =y =x |- x =y
# DEDUCT_ANTISYM_RULE thl th2;;
val it : thm = |-y =x <=>x =y

Comments
This is one of HOL Light’s 10 primitive inference rules.

See also
IMP_ANTISYM_RULE, PROVE_HYP.

deep_alpha

deep_alpha : (string * string) list -> term -> term

Synopsis

Modify bound variable according to renaming scheme.

Description
When applied to a list of string-string pairs

deep_alpha ["x1’","x1"; ...; "xn’","xn"]

a conversion results that will attempt to traverse a term and systematically replace any
bound variable called xi with one called xi’. It will quietly do nothing in cases where
that is impossible because of variable capture.

Example

# deep_alpha ["X“',"X"; uy;n,nyu] ‘?x. x <=> Iy y = y‘;;
Warning: inventing type variables

val it : term = ‘7x’. x’ <=> (ly’. y’> = y’)

4

Comments
This is used inside PART_MATCH to try to achieve a reasonable correspondence in bound
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variable names, e.g. so that the bound variable is still called ‘n’ rather than ‘x’ here:
# REWR_CONV NOT_FORALL_THM ‘“(!m. n < m)‘;;

val it : thm = |- “"(ln. n < m) <=> (?n. “(n < m))

See also
alpha, PART_MATCH.

define

define : term -> thm

Synopsis

Defines a general recursive function.

Description

The function define should be applied to a conjunction of ‘definitional’ clauses ‘def_1[f] /\ ...

for some variable £, where each clause def_i is a universally quantified equation with an
application of £ to arguments on the left-hand side. The idea is that these clauses define
the action of £ on arguments of various kinds, for example on an empty list and nonempty
list:

(f [ =a) /\ (‘h t. CONS h t = k[f,h,t])
or on even numbers and odd numbers:
(In. £(2 * n) = alf,n]) /\ (!n. f(2 *x n + 1) = b[f,n])

The define function attempts to prove that there is indeed a function satisfying all
these properties, and if it succeeds it defines a new function f and returns the input term
with the variable £ replaced by the newly defined constant.

Failure

Fails if the definition is malformed or if some of the necessary conditions for the definition
to be admissible cannot be proved automatically, or if there is already a constant of the
given name.

/\
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Example
This is a ‘multifactorial’ function:

# define
‘multifactorial m n =
if m = 0 then 1
else if n <= m then n else n * multifactorial m (n - m)‘;;
val it : thm =
|- multifactorial m n =
(if m = O then 1 else if n <= m then n else n * multifactorial m (n - m))

Note that it fails without the m = 0 guard because then there’s no reason to suppose
that n - m decreases and hence the recursion is apparently illfounded. Perhaps a more
surprising example is the Collatz function:

# define
‘In. collatz(n) = if n <= 1 then n
else if EVEN(n) then collatz(n DIV 2)
else collatz(3 * n + 1)°‘;;

Note that the definition was made successfully because there provably is a function
satisfying these recursion equations, notwithstanding the fact that it is unknown whether
the recursion is wellfounded. (Tail-recursive functions are always logically consistent,
though they may not have any useful provable properties.)

Comments

Assuming the definition is well-formed and the constant name is unused, failure indicates
that define was unable to prove one or both of the following two properties: (i) the clauses
are not mutually inconsistent (more than one clause could apply to some arguments, and
the results are not obviously the same), or (ii) the definition is recursive and no order-
ing justifying the recursion could be arrived at by the automated heuristic. In order to
make progress in such cases, try applying prove_general _recursive_function_exists or
pure_prove_recursive_function_exists to the same definition with existential quantifi-
cation over £, to see the unproven side-conditions. An example is in the documentation for
prove_general_recursive_function_exists. On the other hand, for suitably simple and
regular primitive recursive definitions, the explicit alternative prove_recursive_functions_exist
is often much faster than any of these.

See also

new_definition, new_recursive_definition, new_specification,
prove_general _recursive_function_exists, prove_recursive_functions_exist,
pure_prove_recursive_function_exists.
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defined

defined : (’a, ’b) func -> ’a -> bool

Synopsis

Tests if a finite partial function is defined on a certain domain value.

Description

This is one of a suite of operations on finite partial functions, type (’a,’b)func. These
may sometimes be preferable to ordinary functions since they permit more operations
such as equality comparison, extraction of domain etc. The call defined f x returns true
if the finite partial function £ is defined on domain value x, and false otherwise.

Failure
Never fails.

Example

# defined (1 |=> 2) 1;;
val it : bool = true

# defined (1 |=> 2) 2;;
val it : bool = false

# defined undefined 1;;
val it : bool = false

See also
|->, |=>, apply, applyd, choose, combine, defined, dom, foldl, foldr, graph,
is_undefined, mapf, ran, tryapplyd, undefined.

define_quotient_type

define_quotient_type : string -> string * string -> term -> thm * thm

Synopsis

Defines a quotient type based on given equivalence relation.
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Description
The call define_quotient_type "qty" ("abs","rep") ‘R‘, where R:A->A->bool is a bi-
nary relation, defines a new “quotient type” :qty and two new functions abs: (A->bool)->qty

and rep:qty->(A->bool), and returns the pair of theorems |- abs(rep a) = aand |- (?x. r = R x) <=> re

Normally, R will be an equivalence relation (reflexive, symmetric and transitive), in which
case the quotient type will be in bijection with the set of R-equivalence classes.

Failure
Fails if there is already a type qty or if either abs or rep is already in use as a constant.

Example

For some purposes we may want to use “multisets” or “bags”. These are like sets in that
order is irrelevant, but like lists in that multiplicity is counted. We can define a type of
finite multisets as a quotient of lists by the relation:

# let multisame = new_definition
‘multisame 11 12 <=> la:A. FILTER (\x. x = a) 11 = FILTER (\x. x = a) 12¢;;

as follows:

# let multiset_abs,multiset_rep =
define_quotient_type "multiset" ("multiset_of_list","list_of_multiset")
‘multisame:A list -> A list -> bool‘;;
val multiset_abs : thm = |- multiset_of_list (list_of_multiset a) = a
val multiset_rep : thm =
|- (?x. r = multisame x) <=> list_of_multiset (multiset_of_list r) = r

For development of this example, see the documentation entries for 1ift_function and
lift_theorenm (in that order). Similarly we could define a type of finite sets by:

define_quotient_type "finiteset" ("finiteset_of_list","list_of_finiteset")
‘\11 12. 'a:A. MEM a 11 <=> MEM a 12¢;;
val it : thm * thm =
(|- finiteset_of_list (list_of_finiteset a) = a,
|- (?x. r = (\11 12. 'a. MEM a 11 <=> MEM a 12) x) <=>
list_of_finiteset (finiteset_of_list r) = r)

Uses

Convenient creation of quotient structures. Using related functions 1ift_function and
lift_theorem, functions, relations and theorems can be lifted from the representing type
to the type of equivalence classes. As well as those shown above, characteristic appli-
cations are the definition of rationals as equivalence classes of pairs of integers under
cross-multiplication, or of ‘directions’ as equivalence classes of vectors under parallelism.
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Comments

If R is not an equivalence relation, the basic operation of define_quotient_type will
work equally well, but the usefulness of the new type will be limited. In particular,
1lift_function and lift_theorem may not be usable.

See also
lift_function, lift_theorem.

define_type

define_type : string -> thm * thm

Synopsis

Automatically define user-specified inductive data types.

Description

The function define_type automatically defines an inductive data type or a mutually
inductive family of them. These may optionally contain nested instances of other inductive
data types. The function returns two theorems that together identify the type up to
isomorphism. The input is just a string indicating the desired pattern of recursion. The
simplest case where we define a single type is:

"op=Clty ...ty | C2¢ty ... ty | ... | Cn ty ... ty"

where op is the name of the type constant or type operator to be defined, C1, ..., Cn are
identifiers, and each ty is either a (logical) type expression valid in the current theory (in
which case ty must not contain op) or just the identifier "op’ itself.

A string of this form describes an n-ary type operator op, where n is the number of
distinct type variables in the types ty on the right hand side of the equation. If n is zero
then op is a type constant; otherwise op is an n-ary type operator. The type described by
the specification has n distinct constructors C1, ..., Cn. Each constructor Ci is a function
that takes arguments whose types are given by the associated type expressions ty in the
specification. If one or more of the type expressions ty is the type op itself, then the
equation specifies a recursive data type. In any specification, at least one constructor
must be non-recursive, i.e. all its arguments must have types which already exist in the
current theory.

Each of the types ty above may be built from the type being defined using other
inductive type operators already defined, e.g. list. Moreover, one can actually have a
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mutually recursive family of types, where the format is a sequence of specifications in the
above form separated by semicolons:

"opl = Ci_1ty ... ty | C1_2ty ... ty | ... | Cl_nl ty ... ty;
op2 = C2_1 ty ... ty | ... | C2_n2 ty ... ty;
opk = Ck_1 ty ... ty | ... | ... | Ck_nk ty ... ty"

Given a type specification of the form described above, define_type makes an appro-
priate type definition for the type operator or type operators. It then makes appropriate
definitions for the constants Ci_j and automatically proves and returns two theorems that
characterize the type up to isomorphism. Roughly, the first theorem allows one to prove
properties over the new (family of) types by (mutual) induction, while the latter allows
one to defined functions by recursion. Rather than presenting these in full generality, it
is probably easier to consider some simple examples.

Failure

The evaluation fails if one of the types or constructor constants is already defined, or if
there are certain improper kinds of recursion, e.g. involving function spaces of one of the
types being defined.

Example
The following call to define_type defines tri to be a simple enumerated type with exactly
three distinct values:

# define_type "tri = ONE | TWO | THREE";;
val it : thm * thm =
(|- 'P. P ONE /\ P TWO /\ P THREE ==> (!x. P x),

[- 'f0 f1 f2. ?fn. fn ONE = f0 /\ fn TWO = f1 /\ fn THREE = £2)

The theorem returned is a degenerate ‘primitive recursion’ theorem for the concrete type
tri. An example of a recursive type that can be defined using define_type is a type of
binary trees:

# define_type "btree = LEAF A | NODE btree btree";;
val it : thm * thm =
(I- 'P. ('a. P (LEAF a)) /\ ('a0 al. P a0 /\ P a1l ==> P (NODE a0 al))
==> (!x. P x),
|- 'f0 f1.
?fn. ('a. fn (LEAF a) = f0 a) /\
('a0 al. fn (NODE a0 al) = f1 a0 al (fn a0) (fn al)))

The theorem returned by define_type in this case asserts the unique existence of func-
tions defined by primitive recursion over labelled binary trees. For an example of nested
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recursion, here we use the type of lists in a nested fashion to define a type of first-order

terms:

# define_type "term = Var num | Fn num (term list)";;
val it : thm * thm =
(|- 'PO P1.
(ta. PO (Var a)) /\
('a0 al. P1 al ==> PO (Fn a0 al)) /\
P1 [1 /\
('a0 al. PO a0 /\ P1 al ==> P1 (CONS a0 al))
==> (1x0. PO x0) /\ (!'x1. P1 x1),
|- 'f0 f1 f2 £3.
?fn0 fnl.
(ta. fnl (Var a) = f0 a) /\
('a0 al1. fnl (Fn a0 al) = f1 a0 al (fn0 al)) /\
fn0 [1 = £2 /\
('a0 al. fn0O (CONS a0 al) = £f3 a0 al (fn1 a0) (fn0 al)))

and here we have an example of mutual recursion, defining syntax trees for commands
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and expressions for a hypothetical programming language:

# define_type "command = Assign num expression
Ite expression command command;
Variable num

| Constant num
|
|

expression

Plus expression expression
Valof command";;
val it : thm * thm =
(l- 'PO P1.

(a0 al. P1 al ==> PO (Assign a0 al)) /\

(a0 al a2. P1 a0 /\ PO al /\ PO a2 ==> PO (Ite a0 al a2)) /\

(ta. P1 (Variable a)) /\

('a. P1 (Constant a)) /\

('a0 al. P1 a0 /\ P1 al ==> P1 (Plus a0 al)) /\

(ta. PO a ==> P1 (Valof a))

==> (1x0. PO x0) /\ (!xl1. P1 x1),

|- 'f0 f1 f2 £3 f4 f5.

?7fn0 fnl.
(a0 al. fnO (Assign a0 al) = f0 a0 al (fnl al)) /\
(1a0 al a2.

fn0 (Ite a0 al a2) =
f1 a0 al a2 (fn1 a0) (fn0 al) (fn0 a2)) /\
(ta. fnl (Variable a) = f2 a) /\
('a. fnl (Constant a) = £3 a) /\
(a0 al. fnl (Plus a0 al) = f4 a0 al (fnl a0) (fnl al)) /\
(ta. fn1 (Valof a) = f5 a (fn0 a)))

See also

INDUCT_THEN, new_recursive_definition, new_type_abbrev, prove_cases_thm,
prove_constructors_distinct, prove_constructors_one_one, prove_induction_thm,
prove_rec_fn_exists.

define_type_raw

define_type_raw : (hol_type * (string * hol_type list) list) list -> thm * thm

Synopsis

Like define_type but from a more structured representation than a string.



definitions 113

Description

The core functionality of define_type_raw is the same as define_type, but the input
is a more structured format for the type specification. In fact, define_type is just the
composition of define_type_raw and parse_inductive_type_specification.

Failure
May fail for the usual reasons define_type may.

Uses

Not intended for general use, but sometimes useful in proof tools that want to generate
inductive types.

See also
define_type, parse_inductive_type_specification.

definitions

definitions : unit -> thm list

Synopsis

Returns the current set of primitive definitions.

Description
A call definitions() returns the current list of basic definitions made in the HOL Light
kernel.

Failure
Never fails.

Comments

This is a more logically primitive list than the one maintained in the list !the_definitions,
and is intended mainly for auditing a proof development that uses axioms to ensure that
no axioms and definitions clash. Under normal circumstances axioms are not used and
so this information is not needed. Definitions returned by definitions() are in their
primitive equational form, and include everything defined in the kernel. By contrast,
those in the list !'the_definitions are often quantified and eta-expanded, and the list
may be incomplete since it is only maintained outside the logical kernel as a convenience.

See also
define, new_axiom, new_definition, the_definitions.
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delete_parser

delete_parser : string -> unit

Synopsis

Uninstall a user parser.

Description

HOL Light allows user parsing functions to be installed, and will try them on all terms
during parsing before the usual parsers. The call delete_parser "s" removes any parsers
associated with string "s".

Failure

Never fails, regardless of whether there are any parsers associated with the string.

See also
install_parser, installed_parsers, try_user_parser.

delete_user_printer

delete_user_printer : string -> unit

Synopsis
Remove user-defined printer from the HOL Light term printing.

Description

HOL Light allows arbitrary user printers to be inserted into the toplevel printer so
that they are invoked on all applicable subterms (see install_user_printer). The call
delete_user_printer s removes any such printer associated with the tag s.

Failure

Never fails, even if there is no printer with the given tag.
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Example

If a user printer has been installed as in the example given for install_user_printer, it

can be removed again by:
# delete_user_printer "print_typed_var";;

val it : unit = ()

See also
install_user_printer, try_user_printer.

denominator

denominator : num -> num

Synopsis

Returns denominator of rational number in canonical form.

Description

Given a rational number as supported by the Num library, denominator returns the denom-

inator ¢ from the rational number cancelled to its reduced form, p/q where ¢ > 0 and p

and ¢ have no common factor.

Failure
Never fails.

Example

# denominator(Int 22 // Int 7);;
val it : num = 7

# denominator(Int 0);;

val it : num = 1

# denominator(Int 100);;

val it : num = 1

# denominator(Int 4 // Int(-2));;
val it : num = 1

See also
numdom, numerator.
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DENUMERAL

DENUMERAL : thm -> thm

Synopsis

Remove instances of the NUMERAL constant from a theorem.

Description
The call DENUMERAL th removes from the conclusion of th any instances of the constant
NUMERAL, used in the internal representation of numerals.

Failure
Never fails.

Uses
Only intended for users manipulating the internal structure of numerals.

See also
NUM_REDUCE_CONV.

DEPTH_BINOP_CONV

DEPTH_BINOP_CONV : term -> (term -> thm) -> term -> thm

Synopsis

Applied a conversion to the leaves of a tree of binary operator expressions.
Description

If a term t is built up from terms t1,...,tn using a binary operator op (for example

op (op t1 t2) (op (op t3 t4) t5)), the call DEPTH_BINOP_CONV ‘op‘ cnv t will apply
the conversion cnv to each ti to give a theorem |- ti = ti’, and return the equational
theorem |- t = t’ where t’ results from replacing each ti in t with the corresponding

ti’.

Failure
Fails only if the core conversion cav fails on one of the chosen subterms.
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Example
One can always completely evaluate arithmetic expressions with NUM_REDUCE_CONV, e.g.

# NUM_REDUCE_CONV ‘(1 + 2) + (3 * (4 + 5) + 6) + (7 DIV 8)°;;
val it : thm = |- (1 + 2) + (3 * (4 + 5) + 6) + 7 DIV 8 = 36

However, if one wants for some reason not to reduce the top-level combination of addi-
tions, one can do instead:

# DEPTH_BINOP_CONV ¢ (+):num->num->num‘ NUM_REDUCE_CONV
‘(1 + 2) + (3% (4 +5) +6) + (7 DIV 8)‘;;
val it : thm =
- (1 +2) + (3% (4+5) +6) +7DIV8=(1+2)+ (27 +6) +0
# NUM_REDUCE_CONV ‘(1 + 2) + (3 * (4 + 5) + 6) + (7 DIV 8)°¢;;

Note that the subterm ‘3 * (4 + 5) ¢ did get completely evaluated, because the addi-
tion was not part of the toplevel tree, but was nested inside a multiplication.

See also
BINOP_CONV, ONCE_DEPTH_CONV, PROP_ATOM_CONV, TOP_DEPTH_CONV.

DEPTH_CONV

DEPTH_CONV : conv —-> conv

Synopsis

Applies a conversion repeatedly to all the sub-terms of a term, in bottom-up order.

Description

DEPTH_CONV c tm repeatedly applies the conversion c to all the subterms of the term tm,
including the term tm itself. The supplied conversion is applied repeatedly (zero or more
times, as is done by REPEATC) to each subterm until it fails. The conversion is applied to
subterms in bottom-up order.

Failure
DEPTH_CONV c tm never fails but can diverge if the conversion c can be applied repeatedly
to some subterm of tm without failing.
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Example

The following example shows how DEPTH_CONV applies a conversion to all subterms to
which it applies:

# DEPTH_CONV BETA_CONV ‘(\x. (\y. y + x) 1) 2¢;;
val it : thm = |- (\x. (\y. y +x) 1) 2 =1+ 2

Here, there are two beta-redexes in the input term, one of which occurs within the other.
DEPTH_CONV BETA_CONV applies beta-conversion to innermost beta-redex (\y. y + x) 1
first. The outermost beta-redex is then (\x. 1 + x) 2, and beta-conversion of this redex
gives 1 + 2.

Because DEPTH_CONV applies a conversion bottom-up, the final result may still contain
subterms to which the supplied conversion applies. For example, in:

# DEPTH_CONV BETA_CONV ‘(\f x. (f x) + 1) (\y.y) 2°;;
val it : thm = |- (\f x. £ x+ 1) (\y. ¥ 2= Qy. y) 2 + 1

the right-hand side of the result still contains a beta-redex, because the redex ‘ (\y.y)2°
is introduced by virtue an application of BETA_CONV higher-up in the structure of the input
term. By contrast, in the example:

# DEPTH_CONV BETA_CONV ‘(\f x. (f x)) (\y.y) 2¢;;
val it : thm = |- (\f x. £ x) (\y. y) 2 =2

all beta-redexes are eliminated, because DEPTH_CONV repeats the supplied conversion (in
this case, BETA_CONV) at each subterm (in this case, at the top-level term).

Uses

If the conversion c implements the evaluation of a function in logic, then DEPTH_CONV ¢
will do bottom-up evaluation of nested applications of it. For example, the conversion
ADD_CONV implements addition of natural number constants within the logic. Thus, the
effect of:

# DEPTH_CONV NUM_ADD_CONV ‘(1 + 2) + (3 + 4 + 5)¢;;
val it : thm = |- (1 + 2) + 3 + 4 + 5 = 15

is to compute the sum represented by the input term.

See also
ONCE_DEPTH_CONV, REDEPTH_CONV, TOP_DEPTH_CONV, TOP_SWEEP_CONV.
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DEPTH_SQCONV

DEPTH_SQCONV : strategy

Synopsis

Applies simplification repeatedly to all the sub-terms of a term, in bottom-up order.

Description

HOL Light’s simplification functions (e.g. SIMP_TAC) have their traversal algorithm con-
trolled by a “strategy”. DEPTH_SQCONV is a strategy corresponding to DEPTH_CONV for
ordinary conversions: simplification is applied repeatedly to all the sub-terms of a term,
in bottom-up order.

Failure
Not applicable.

See also
DEPTH_CONV, ONCE_DEPTH_SQCONV, REDEPTH_SQCONV, TOP_DEPTH_SQCONV,
TOP_SWEEP_SQCONV.

derive_nonschematic_inductive_relations

derive_nonschematic_inductive_relations : term -> thm

Synopsis

Deduce inductive definitions properties from an explicit assignment.

Description

Given a set of clauses as given to new_inductive_definitions, the call derive_nonschematic_inducti
will introduce explicit equational constraints (“definitions”, though only assumptions of

the theorem, not actually constant definitions) that allow it to deduce those clauses. It

will in general have additional ‘monotonicity’ hypotheses, but these may be removable by
prove_monotonicity_hyps. None of the arguments are treated as schematic.

Failure
Fails if the format of the clauses is wrong.
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Example

Here we try one of the classic examples of a mutually inductive definition, defining odd-
ness and even-ness of natural numbers:

# (prove_monotonicity_hyps o derive_nonschematic_inductive_relations)
‘even(0) /\ odd(1) /\
(In. even(n) ==> odd(n + 1)) /\ (!n. odd(n) ==> even(n + 1)) °;;
val it : thm =

odd =

(\a0. 'odd’ even’.
(la0. a0 =1 \/ (?n. a0 = n + 1 /\ even’ n) ==> odd’ a0) /\
(lal1. a1 =0 \/ (?n. al = n + 1 /\ odd’ n) ==> even’ al)
==> odd’ a0),

even =

(\al. 'odd’ even’.
('a0. a0 =1 \/ (?n. a0
(tal. a1 = 0 \/ (7n. al
==> even’ al)
|- (even 0 /\
odd 1 /\
('n. even n ==> odd (n + 1)) /\
(!n. odd n ==> even (n + 1))) /\
(todd’ even’.
even’ 0 /\
odd’ 1 /\
(In. even’ n ==> odd’ (n + 1)) /\
('n. odd’ n ==> even’ (n + 1))
==> (la0. odd a0 ==> odd’ a0) /\ ('al. even al ==> even’ al)) /\
('a0. odd a0 <=> a0 =1 \/ (?n. a0 =n + 1 /\ even n)) /\
(lal. even al <=> al = 0 \/ (?n. al = n + 1 /\ odd n))

1]
[=]
+
e
~
=

even’ n) ==> odd’ a0) /\
odd’ n) ==> even’ al)

[}
=]
+
-
~N
-~

Note that the final theorem has two assumptions that one can think of as the appropriate
explicit definitions of these relations, and the conclusion gives the rule, induction and
cases theorems.

Comments

Normally, use prove_inductive_relations_exist or new_inductive_definition. This
function is only needed for a very fine level of control.

See also

new_inductive_definition, prove_inductive_relations_exist,
prove_monotonicity_hyps.
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derive_strong_induction

derive_strong_induction : thm * thm -> thm

Synopsis

Derive stronger induction theorem from inductive definition.

Description

The function derive_strong_induction is applied to a pair of theorems as returned by
new_inductive_definition. The first theorem is the ‘rule’ theorem, the second the ‘induc-
tion’ theorem; the ‘case’ theorem returned by new_inductive_definition is not needed.
It returns a stronger induction theorem where instances of each inductive predicate oc-
curring in hypotheses is conjoined with the corresponding inductive relation too.

Failure
Fails if the two input theorems are not of the correct form for rule and induction theorems
returned by new_inductive_definition.

Example
A simple example of a mutually inductive definition is:

# let eo_RULES,eo_INDUCT, eo_CASES = new_inductive_definition
‘even(0) /\ odd(1) /\
('n. even(n) ==> odd(n + 1)) /\
('n. odd(n) ==> even(n + 1)) ‘;;
val eo_RULES : thm =
|- even 0 /\
odd 1 /\
('n. even n ==> odd (n + 1)) /\
('n. odd n ==> even (n + 1))
val eo_INDUCT : thm =
|- 'odd’ even’.
even’ 0 /\
odd’ 1 /\
(!n. even’ n ==> odd’ (n + 1)) /\
('n. odd’ n ==> even’ (n + 1))
==> (la0. odd a0 ==> odd’ a0) /\ ('al. even al ==> even’ al)
val eo_CASES : thm =
|- ('a0. odd a0 <=> a0 =1 \/ (?n. a0 = n + 1 /\ even n)) /\
(lal. even al <=> a1 =0 \/ ("n. a1l =n + 1 /\ odd n))

The stronger induction theorem can be derived as follows. Note that it is similar in
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form to eo_INDUCT but has stronger hypotheses for two of the conjuncts in the antecedent.

# derive_strong_induction(eo_RULES,eo_INDUCT);;
val it : thm =
|- 'odd’ even’.

even’ 0 /\
odd’ 1 /\
(In. even n /\ even’ n ==> odd’ (n + 1)) /\
('n. odd n /\ 0dd’ n ==> even’ (n + 1))
==> (la0. odd a0 ==> odd’ a0) /\ ('al. even al ==> even’ al)

Comments

This function needs to discharge monotonicity theorems as part of its internal working,
just as new_inductive_definition does when the inductive definition is made. Usually
this is automatic and the user doesn’t see it, but in difficult cases, the theorem returned
may have additional monotonicity hypotheses that are unproven. In such cases, you can
either try to prove them manually or extend monotonicity_theorems to make the built-in
monotonicity prover more powerful.

See also
new_inductive_definition, prove_inductive_relations_exist,
prove_monotonicity_hyps.

DESTRUCT_TAC

DESTRUCT_TAC : string -> thm_tactic

Synopsis

Performs elimination on a theorem within a tactic proof.

Description
Given a string s and a theorem th, DESTRUCT_TAC s th performs the elimination of th
according with the pattern given in s. The syntax of the pattern s is the following:

e An identifier 1 other than ‘_¢ and ‘+¢ assumes a hypothesis with label 1
e The identifier ‘_’ does nothing (discard the hypothesis)

o The identifier ¢+’ adds the theorem as antecedent as with MP_TAC

e A sequence of patterns (separated by spaces) destructs a conjunction
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e A sequence of pattern separated by | destructs a disjunction

e A prefix @x. introduces an existential

Failure
Fails if the pattern is ill-formed or does not match the form of the theorem.

Example
Here we use the cases theorem for numerals, performing a disjunctive split and introducing
names for the resulting hypotheses:

# let th = SPEC ‘n:num‘ (cases "num");;
#g‘n=0\ (1<=n/\Mm n=m+1);
# e (DESTRUCT_TAC "neq0 | @m. negsuc" th);;
val it : goalstack = 2 subgoals (2 total)

0 [‘n = SUC m‘] (negsuc)

‘n=0\/1<=n/\(Pm. n=m+ 1)°¢
0 [‘n = 0‘] (neq0)
‘n=0\/1<=n/\(m. n=m+ 1)°¢

Here we use the theorem

# let th = SPEC ‘n+2‘ EVEN_EXISTS_LEMMA;;
val th : thm =
|- (EVEN (n + 2) ==> (m. n + 2 = 2 *x m)) /\
("EVEN (n + 2) ==> (m. n + 2 = SUC (2 * m)))

adding as antecedent the right-hand side of the disjunction

# g ‘!In. "EVENn ==> 7a. n+2 =2 % a + 1‘;;
# e (REPEAT STRIP_TAC THEN DESTRUCT_TAC "_ +" th);;

val it : goalstack = 1 subgoal (1 total)
0 [“"EVEN n‘]
‘("EVEN (n + 2) ==> (Pfm. n + 2 = SUC (2 *m))) ==> (Pa. n+2 =2 % a + 1)°¢
See also

ASSUME_TAC, CLAIM_TAC, FIX_TAC, GEN_TAC, INTRO_TAC, LABEL_TAC, MP_TAC,
REMOVE_THEN, STRIP_TAC, USE_THEN.
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dest_abs

dest_abs : term -> term * term

Synopsis

Breaks apart an abstraction into abstracted variable and body.

Description
dest_abs is a term destructor for abstractions: dest_abs ‘\var. t°‘ returns (‘var, ‘t¢).

Failure
Fails with dest_abs if term is not an abstraction.

Example
# dest_abs ‘\x. x + 1°;;

val it : term * term = (‘x‘, ‘x + 1°¢)

See also
dest_comb, dest_const, dest_var, is_abs, mk_abs, strip_abs.

dest_binary

dest_binary : string -> term -> term * term

Synopsis

Breaks apart an instance of a binary operator with given name.

Description

The call dest_binary s tm will, if tm is a binary operator application (op 1) r where op
is a constant with name s, return the two arguments to which it is applied as a pair 1,r.
Otherwise, it fails. Note that op is required to be a constant.

Failure
Never fails.
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Example
This one succeeds:

# dest_binary "+" ‘1 + 2¢;;

val it : term * term = (‘1°¢, ‘2°9)

See also
dest_binop, is_binary, is_comb, mk_binary.

dest_binder

dest_binder : string -> term -> term * term

Synopsis

Breaks apart a “binder”.

Description

Applied to a term tm of the form ‘c (\x. t)‘ where c is a constant whose name is "s",
the call dest_binder "c" tmreturns (‘x¢, ‘t¢). Note that this is actually independent of
whether the name parses as a binder, but the usual application is where it does.

Failure
Fails if the term is not of the appropriate form with a constant of the same name.

Example
The call dest_binder "!" is the same as dest_forall, and is in fact how that function is
implemented.

See also
dest_abs, dest_comb, dest_const, dest_var.

dest_binop

dest_binop : term -> term -> term * term

Synopsis

Breaks apart an application of a given binary operator to two arguments.
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Description

The call dest_binop op t, where t is of the form (op 1) r, will return the pair 1,r. If t
is not of that form, it fails. Note that op can be any term; it need not be a constant nor
parsed infix.

Failure
Fails if the term is not a binary application of operator op.

Example
# dest_binop ‘(+):num->num->num‘ ‘1 + 2 + 3¢;;

val it : term * term = (‘1¢, ‘2 + 3¢)

See also
dest_binary, is_binary, is_binop, mk_binary, mk_binop.

dest_char

dest_char : term -> char

Synopsis

Produces OCaml character corresponding to object-level character.

Description
dest_char t where t is a term of HOL type char, produces the corresponding OCaml
character.

Failure
Fails if the term is not of type char

Example

# lhand ‘"hello"‘;;
val it : term = ‘ASCII FTTF TFFF¢

# dest_char it;;
val it : char = ’h’

Comments

There is no particularly convenient parser/printer support for the HOL char type, but
when combined into lists they are considered as strings and provided with more intuitive
parser /printer support.
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See also
dest_string, mk_char, mk_string.

dest_comb

dest_comb : term -> term * term

Synopsis

Breaks apart a combination (function application) into rator and rand.

Description
dest_comb is a term destructor for combinations:

dest_comb ‘t1 t2°¢
returns (‘t1°¢, ‘t2°¢).

Failure
Fails with dest_comb if term is not a combination.

Example

# dest_comb ‘SUC 0¢;;
val it : term * term = (‘SUC¢, ‘0°¢)

We can use dest_comb to reveal more about the internal representation of numerals:
# dest_comb ‘12¢;;

val it : term * term = (‘NUMERAL‘, ‘BITO (BITO (BIT1 (BIT1 _0)))°)

See also
dest_abs, dest_const, dest_var, is_comb, list_mk_comb, mk_comb, strip_comb.

dest_cond

dest_cond : term —-> term * (term * term)
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Synopsis

Breaks apart a conditional into the three terms involved.

Description
dest_cond is a term destructor for conditionals:

dest_cond ‘if t then t1 else t2°¢
returns (‘t¢, ‘t1¢, ‘t29).

Failure
Fails with dest_cond if term is not a conditional.

See also
mk_cond, is_cond.

dest_conj

dest_conj : term -> term * term

Synopsis

Term destructor for conjunctions.

Description
dest_conj(‘tl /\ t2¢) returns (‘t1¢,‘t2¢).

Failure
Fails with dest_conj if term is not a conjunction.

See also
is_conj, mk_conj.

dest_cons

dest_cons : term -> term * term

Synopsis
Breaks apart a ‘CONS pair’ into head and tail.
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Description

dest_cons is a term destructor for ‘CONS pairs’. When applied to a term representing a
nonempty list ‘[t;tl;...;tn]‘ (which is equivalent to ‘CONS t [t1;...;tn] ‘), it returns
the pair of terms (‘t*,“[t1;...;tn] ).

Failure

Fails with dest_cons if the term is not a non-empty list.

See also
dest_list, is_cons, is_list, mk_cons, mk_list.

dest_const

dest_const : term -> string * hol_type

Synopsis

Breaks apart a constant into name and type.

Description
dest_const is a term destructor for constants:

dest_const ‘const:ty°
returns ("const", ‘:ty‘).

Failure
Fails with dest_const if term is not a constant.

Example
# dest_const ‘T‘;;

val it : string * hol_type = ("T", ‘:bool‘)

See also
dest_abs, dest_comb, dest_var, is_const, mk_const, mk_mconst, name_of.

dest_dis]

dest_disj : term -> term * term
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Synopsis

Breaks apart a disjunction into the two disjuncts.

Description
dest_disj is a term destructor for disjunctions:

dest_disj ‘tl1 \/ t2°
returns (‘t1°¢, ‘t2°¢).

Failure
Fails with dest_disj if term is not a disjunction.

See also
is_disj, mk_disj.

dest_eq

dest_eq : term -> term * term

Synopsis

Term destructor for equality.

Description
dest_eq(‘tl = t2°¢) returns (‘t1¢,t2°).

Failure
Fails with dest_eq if term is not an equality.

Example
# dest_eq ‘2 + 2 = 4°;;

val it : term * term = (‘2 + 2¢’ ¢4¢)

See also
is_eq, mk_eq.

dest_exists

dest_exists : term -> term * term
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Synopsis

Breaks apart an existentially quantified term into quantified variable and body.

Description
dest_exists is a term destructor for existential quantification: dest_exists ‘?var. t°
returns (‘var‘,‘t¢).

Failure
Fails with dest_exists if term is not an existential quantification.

See also
is_exists, mk_exists, strip_exists.

dest_finty

dest_finty : hol_type -> num

Synopsis

Converts a standard finite type to corresponding integer.

Description
Finite types parsed and printed as numerals are provided, and this operation when applied
to such a type gives the corresponding number.

Failure
Fails if the type is not a standard finite type.

Example
Here we use a 32-element type, perhaps useful for indexing the bits of a word:

# dest_finty ‘:32¢;;

val it : num = 32

See also
dest_type, DIMINDEX_CONV, DIMINDEX_TAC, HAS_SIZE_DIMINDEX_RULE, mk_finty.

dest_forall

dest_forall : term -> term * term
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Synopsis

Breaks apart a universally quantified term into quantified variable and body.

Description
dest_forall is a term destructor for universal quantification: dest_forall ‘!var. t°
returns (‘var‘, ‘t¢).

Failure
Fails with dest_forall if term is not a universal quantification.

See also
is_forall, mk_forall, strip_forall.

dest_fun_ty

dest_fun_ty : hol_type —-> hol_type * hol_type

Synopsis

Break apart a function type into domain and range.

Description
The call dest_fun_ty ‘:s->t¢ breaks apart the function type s->t and returns the pair

Cisf, it

Failure
Fails if the type given as argument is not a function type (constructor "fun").

Example

# dest_fun_ty ‘:A->B¢;;
val it : hol_type * hol_type = (‘:A¢, ‘:B°)

# dest_fun_ty ‘:num->num->bool‘;;
val it : hol_type * hol_type = (‘:num‘, ‘:num->bool‘)

# dest_fun_ty ‘:A#B‘;;

Exception: Failure "dest_fun_ty".

See also
dest_type, mk_fun_ty.
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dest_gabs

dest_gabs : term -> term * term

Synopsis

Breaks apart a generalized abstraction into abstracted varstruct and body.

Description

dest_pabs is a term destructor for generalized abstractions: for example with a paired
varstruct the effect on dest_pabs ‘\(v1i..(..)..vn). t‘istoreturn the pair (‘(vi..(..)..vn)‘,‘t"
It will also act as for dest_abs on basic abstractions.

Failure
Fails unless the term is a basic or generalized abstraction.

Example
These are fairly typical applications:

# dest_gabs ‘\(x,y). x + y;;
val it : term * term = (‘x,y¢, ‘x + y“)

# dest_gabs ‘\(CONS h t). h + 1¢;;
val it : term * term = (‘CONS h t¢, ‘h + 19)

while the following shows that it also works on basic abstractions:

# dest_gabs ‘\x. x‘;;
Warning: inventing type variables
val it : term * term = (‘x¢, ‘x°)

See also
GEN_BETA_CONV, is_gabs, mk_gabs, strip_gabs.

dest_iff

dest_iff : term -> term * term
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Synopsis

Term destructor for logical equivalence.

Description
dest_iff(‘t1 <=> t2¢) returns (‘t1¢, ‘t29).

Failure
Fails with if term is not a logical equivalence, i.e. an equation between terms of Boolean

type.
Example
# dest_iff ‘x =y <=>y =1‘;;

val it : term * term = (‘x = y‘, ‘y =1

Comments
The function dest_eq has the same effect, but the present function checks that the types
of the two sides are indeed Boolean, whereas dest_eq will break apart any equation.

See also
dest_eq, is_iff, mk_iff.

dest_imp

dest_imp : term -> term * term

Synopsis

Breaks apart an implication into antecedent and consequent.

Description
dest_imp is a term destructor for implications. Thus

dest_imp ‘tl1 ==> t2°
returns

((tlt,ttz()

Failure
Fails with dest_imp if term is not an implication.
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See also
is_imp, mk_imp, strip_imp.

dest_intconst

dest_intconst : term -> num

Synopsis

Converts an integer literal of type :int to an OCaml number.

Description

The call dest_intconst t where t is a canonical integer literal of type :int, returns the
corresponding OCaml number (type num). The permissible forms of integer literals are
‘4n’ for a numeral n or ‘-- &n’ for a nonzero numeral n.

Failure
Fails if applied to a term that is not a canonical integer literal of type :int.

Example
# dest_intconst ‘-- &11 :int‘;;

val it : num = -11

See also
dest_realintconst, is_intconst, mk_intconst.

dest_let

dest_let : term -> (term * term) list * term

Synopsis

Breaks apart a let-expression.

Description
dest_let is a term destructor for general let-expressions: dest_let ‘let x1 = el and ... and xn
returns a pair of the list [‘x1¢,‘e1‘; ... ; ‘xn‘,‘en‘] and ‘E°.
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Failure
Fails with dest_let if term is not a let-expression.

Example

# dest_let ‘let m = 256 and n = 65536 in (x MOD m + y MOD m) MOD n‘;;
val it : (term * term) list * term =
([(‘m*, “256°); (‘n‘, ‘65536‘)], ‘(x MOD m + y MOD m) MOD n*)

See also
mk_let, is_let.

dest_list

dest_list : term -> term list

Synopsis

Iteratively breaks apart a list term.

Description
dest_list is a term destructor for lists: dest_list(‘[tl;...;tn]l:(ty)list‘) returns
[ft1¢;...;tn‘].

Failure
Fails with dest_1list if the term is not a list.

See also
dest_cons, dest_setenum, is_cons, is_list, mk_cons, mk_list.

dest_neg

dest_neg : term -> term

Synopsis

Breaks apart a negation, returning its body.
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Description
dest_neg is a term destructor for negations: dest_neg ‘~t‘ returns ‘t‘.

Failure
Fails with dest_neg if term is not a negation.

See also
is_neg, mk_neg.

dest_numeral

dest_numeral : term -> num

Synopsis

Converts a HOL numeral term to unlimited-precision integer.

Description
The call dest_numeral t where t is the HOL numeral representation of n, returns n as an
unlimited-precision intger (type num). It fails if the term is not a numeral.

Failure
Fails if the term is not a numeral.

Example

# dest_numeral ‘0¢;;
val it : num = O

# dest_numeral ‘18446744073709551616°;;
val it : num = 18446744073709551616

Comments
The similar function dest_small_numeral maps to a machine integer, which means it may
overflow. So the use of dest_numeral is better unless you are very sure of the range.

# dest_small_numeral ¢18446744073709551616°¢;;
Exception: Failure "int_of_big_int".

See also
dest_small_numeral, is_numeral, mk_numeral, mk_small_numeral, rat_of_term.
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dest_pailr

dest_pair : term -> term * term

Synopsis

Breaks apart a pair into two separate terms.

Description
dest_pair is a term destructor for pairs: dest_pair ‘(t1,t2)°‘ returns (‘t1°¢, ‘t2°).

Failure
Fails with dest_pair if term is not a pair.

Example
# dest_pair ‘(1,2),(3,4),(5,6)¢;;

val it : term * term = (‘1,2¢, “(3,4),5,6¢)

See also
dest_cons, is_pair, mk_pair.

dest_realintconst

dest_realintconst : term -> num

Synopsis

Converts an integer literal of type :real to an OCaml number.

Description

The call dest_realintconst t where t is a canonical integer literal of type :real, returns
the corresponding OCaml number (type num). The permissible forms of integer literals
are ‘&n’ for a numeral n or ‘-- &n’ for a nonzero numeral n.

Failure
Fails if applied to a term that is not a canonical integer literal of type :real.
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Example
# dest_realintconst ‘-- &27 :real‘;;
val it : num = -27

See also

dest_intconst, is_realintconst, mk_realintconst, rat_of_term.

dest_select

dest_select : term -> term * term

Synopsis

Breaks apart a choice term into selected variable and body.

Description

dest_select is a term destructor for choice terms:
dest_select ‘@var. t°
returns (‘var‘,‘t¢).

Failure

Fails with dest_select if term is not an epsilon-term.

See also
mk_select, is_select.

dest_setenum

dest_setenum : term -> term list

Synopsis

Breaks apart a set enumeration.
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Description
dest_setenum is a term destructor for set enumerations: dest_setenum ‘{t1,...,tn}¢
returns [‘t1¢;...;‘tn‘]. Note that the list follows the syntactic pattern of the set enu-

meration, even if it contains duplicates. (The underlying set is still a set logically, of
course, but can be represented redundantly.)

Failure

Fails if the term is not a set enumeration.
Example

# dest_setenum ‘{1,2,3,4}¢;;
val it : term list = [€1¢; 2¢; €3¢; “4¢]

# dest_setenum ‘{1,2,1,2}¢;;
val it : term list = [“1¢; ‘2¢; “1¢; ‘2]

See also

dest_list, is_setenum, mk_fset, mk_setenum.

dest_small numeral

dest_small_numeral : term -> int

Synopsis

Converts a HOL numeral term to machine integer.

Description

The call dest_small_numeral t where t is the HOL numeral representation of n, returns
n as an OCaml machine integer. It fails if the term is not a numeral or the result doesn’t
fit in a machine integer.

Failure

Fails if the term is not a numeral or if the result doesn’t fit in a machine integer.
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Example

# dest_small_numeral ‘12°¢;;
val it : int = 12

# dest_small_numeral 18446744073709551616°¢;;
Exception: Failure "int_of_big_int".

Comments

If overflow is a danger, you may be better off using OCaml type num and the analogous
function dest_numeral. However, none of HOL’s inference rules depend on the behaviour
of machine integers, so logical soundness is not an issue.

See also
dest_numeral, is_numeral, mk_numeral, mk_small_numeral, rat_of_term.

dest_string

dest_string : term -> string

Synopsis

Produces OCaml string corresponding to object-level string.

Description
dest_string t where t is a literal string in the HOL object logic of type string (which
is an abbreviation for char 1ist), produces the corresponding OCaml string.

Failure
Fails if the term is not a literal term of type string

Example
# dest_string ‘"HOL"‘;;

val it : string = "HOL"

See also
dest_char, dest_list, mk_char, mk_list, mk_string.
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dest_thm

dest_thm : thm -> term list * term

Synopsis

Breaks a theorem into assumption list and conclusion.
Description

dest_thm (t1,...,tn |- t) returns ([‘t1¢;...;‘tn‘],‘t*).
Failure

Never fails.

Example
# dest_thm (ASSUME ‘1 = 09);;

val it : term list * term = ([‘1 = 0‘], ‘1 = 0°)

See also
concl, hyp.

dest_type

dest_type : hol_type -> string * hol_type list

Synopsis

Breaks apart a type (other than a variable type).

Description
dest_type(‘:(tyl,...,tyn)op¢) returns ("op",[“:tyl‘;...; :tyn‘]).
Failure

Fails with dest_type if the type is a type variable.
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Example

# dest_type ‘:bool‘;;
val it : string * hol_type list

("bool", [1)

# dest_type ‘:(bool)list‘;;
val it : string * hol_type list = ("list", [‘:bool‘])

# dest_type ‘:num -> bool‘;;
val it : string * hol_type list = ("fun", [‘:num‘; ‘:bool‘])
See also

mk_type, dest_vartype.

dest_uexists

dest_uexists : term -> term * term

Synopsis

Breaks apart a unique existence term.

Description
If t has the form ?!x. p[x] (there exists a unique [xthen dest_uexists t returns the pair
x,p[x]; otherwise it fails.

Failure
Fails if the term is not a ‘unique existence’ term.

See also
dest_exists, dest_forall, is_uexists.

dest_var

dest_var : term -> string * hol_type

Synopsis

Breaks apart a variable into name and type.
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Description

dest_var ‘var:ty‘ returns ("var",‘:ty‘).

Failure

Fails with dest_var if term is not a variable.

Example
# dest_var ‘x:num‘;;

val it : string * hol_type = ("x", ‘:num‘)

See also
mk_var, is_var, dest_const, dest_comb, dest_abs, name_of.

dest_vartype

dest_vartype : hol_type -> string

Synopsis

Breaks a type variable down to its name.

Description
dest_vartype ":A" returns "A" when A is a type variable.

Failure
Fails with dest_vartype if the type is not a type variable.

Example

# dest_vartype ‘:A‘;;
val it : string = "A"

# dest_vartype ‘:A->B‘;;

Exception: Failure "dest_vartype: type constructor not a variable".

See also
mk_vartype, is_vartype, dest_type.
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DIMINDEX_CONV

DIMINDEX_CONV : conv

Synopsis
Computes the dimindex for a standard finite type.

Description

Finite types parsed and printed as numerals are provided, and this conversion when
applied to a term of the form ‘dimindex (:n) ¢ returns the theorem |- dimindex(:n) = n
where the n on the right is a numeral term.

Failure
Fails if the term is not of the form ‘dimindex (:n)°‘ for a standard finite type.

Example
Here we use a 32-element type, perhaps useful for indexing the bits of a word:

# DIMINDEX_CONV ‘dimindex(:32)°;;
val it : thm = |- dimindex (:32) = 32

Uses
In conjunction with Cartesian powers such as real~3, where only the size of the indexing
type is relevant and the simple name n is intuitive.

See also
dest_finty, DIMINDEX_TAC, HAS_SIZE_DIMINDEX_RULE, mk_finty.

DIMINDEX_TAC

DIMINDEX_TAC : tactic

Synopsis

Solves subterms of a goal by computing the dimindex for standard finite types.

Description
Finite types parsed and printed as numerals are provided, and this tactic simplfies sub-
terms of a goal of the form ‘dimindex (:n)°‘ to a simple numeral ‘n°¢.
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Failure
Never fails

Example
We set up the following goal:

# g ‘dimindex(:64) = 2 * dimindex(:32)°‘;;
and simplify it by

# e DIMINDEX_TAC;;
val it : goalstack = 1 subgoal (1 total)

‘64 = 2 * 32°¢
after which simply ARITH_TAC would finish the goal.

See also
dest_finty, DIMINDEX_CONV, HAS_SIZE_DIMINDEX_RULE, mk_finty.

DISCH

DISCH : term -> thm -> thm

Synopsis

Discharges an assumption.

Description

____________________ DISCH ‘uf
A-{u} [-u==>1t

Failure
DISCH will fail if ‘u‘ is not boolean.

Comments
The term ‘u‘ need not be a hypothesis. Discharging ‘u‘ will remove any identical and
alpha-equivalent hypotheses.
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Example
# DISCH ‘p /\ q° (CONJUNCT1(ASSUME ‘p /\ q“));;
val it : thm = |- p /\ q ==>p

See also
DISCH_ALL, DISCH_TAC, DISCH_THEN, STRIP_TAC, UNDISCH, UNDISCH_ALL, UNDISCH_TAC.

DISCH_ALL

DISCH_ALL : thm -> thm

Synopsis
Discharges all hypotheses of a theorem.
Description
A1, , An |-t
———————————————————————————— DISCH_ALL
|— Al ==> ==> An ==> t
Failure

DISCH_ALL will not fail if there are no hypotheses to discharge, it will simply return the
theorem unchanged.

Example

# end_itlist CONJ (map ASSUME [‘p:bool‘; ‘q:bool‘; ‘r:bool‘l);;
val it : thm=p, q, r |- p /N q /\ r

# DISCH_ALL it;;
val it : thm = |- r ==> q==>p ==>p /\ q /\ r

Comments

Users should not rely on the hypotheses being discharged in any particular order. Two or
more alpha-convertible hypotheses will be discharged by a single implication; users should
not rely on which hypothesis appears in the implication.

See also
DISCH, DISCH_TAC, DISCH_THEN, STRIP_TAC, UNDISCH, UNDISCH_ALL, UNDISCH_TAC.
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DISCH_TAC

DISCH_TAC : tactic

Synopsis

Moves the antecedent of an implicative goal into the assumptions.

Description

A ?-u==>v

DISCH_TAC
Au {u} 7- v

Note that DISCH_TAC treats ‘~u‘ as ‘u ==> F‘, so will also work when applied to a goal
with a negated conclusion.

Failure

DISCH_TAC will fail for goals which are not implications or negations.

Uses
Solving goals of the form ‘u ==> v by rewriting ‘v¢ with ‘u‘, although the use of
DISCH_THEN is usually more elegant in such cases.

Comments
If the antecedent already appears in the assumptions, it will be duplicated.

See also
DISCH, DISCH_ALL, DISCH_THEN, STRIP_TAC, UNDISCH, UNDISCH_ALL, UNDISCH_TAC.

DISCH_THEN

DISCH_THEN : thm_tactic -> tactic

Synopsis

Undischarges an antecedent of an implication and passes it to a theorem-tactic.
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Description

DISCH_THEN removes the antecedent and then creates a theorem by ASSUMEing it. This new
theorem is passed to the theorem-tactic given as DISCH_THEN’s argument. The consequent
tactic is then applied. Thus:

DISCH_THEN ttac (asl 7- tl1 ==> t2) = ttac (ASSUME ‘t1¢) (asl 7- t2)

For example, if

A 7-u==>1t

DISCH_THEN ttac
B 7-v

Note that DISCH_THEN treats ‘~u‘ as ‘u ==> F°.

Failure
DISCH_THEN will fail for goals that are not implications or negations.

Example
Given the goal:

#g ‘Ix. x=0==>1f(x) *xx=x+2*%x°;
we can discharge the antecedent and substitute with it immediately by:

# e(GEN_TAC THEN DISCH_THEN SUBST1_TAC);;
val it : goalstack = 1 subgoal (1 total)

‘fO*x0=0+2%*0°¢
and now REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES] will finish the job.

Comments
The tactical REFUTE_THEN provides a more general classical ‘assume otherwise’ function.

See also
DISCH, DISCH_ALL, DISCH_TAC, REFUTE_THEN, STRIP_TAC, UNDISCH, UNDISCH_ALL,
UNDISCH_TAC.
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DISJ1

DISJ1 : thm -> term -> thm

Synopsis

Introduces a right disjunct into the conclusion of a theorem.
Description

——————————————— DISJ1 (A |- t1) ‘t2¢
A |- t1 \/ t2

Failure
Fails unless the term argument is boolean.

Example
# DISJ1 TRUTH ‘F¢;;
val it : thm = |- T \/ F

See also
DISJ1_TAC, DISJ2, DISJ2_TAC, DISJ_CASES.

DISJ1_TAC

DISJ1_TAC : tactic

Synopsis

Selects the left disjunct of a disjunctive goal.
Description

A ?- t1 \/ t2

DISJ1_TAC
A 7-t1

Failure
Fails if the goal is not a disjunction.
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See also
DISJ1, DISJ2, DISJ2_TAC.

DISJ2

DISJ2 : term -> thm -> thm

Synopsis

Introduces a left disjunct into the conclusion of a theorem.

Description

——————————————— DISJ2 ‘t1°¢
A |- t1\/ t2

Failure
Fails if the term argument is not boolean.

Example
# DISJ2 ‘F‘ TRUTH;;

val it : thm = |- F \/ T

See also
DISJ1, DISJ1_TAC, DISJ2_TAC, DISJ_CASES.

DISJ2_TAC

DISJ2_TAC : tactic

Synopsis

Selects the right disjunct of a disjunctive goal.
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Description

A ?-t1 \/ t2
==== = DISJ2_TAC
A 7- t2

Failure

Fails if the goal is not a disjunction.

See also
DISJ1, DISJ1_TAC, DISJ2.

disjuncts

disjuncts : term —-> term list

Synopsis

[teratively breaks apart a disjunction.

Description

If a term t is a disjunction p \/ q, then disjuncts t will recursively break down p and
q into disjuncts and append the resulting lists. Otherwise it will return the singleton list
[t]. So if t is of the form t1 \/ ... \/ tn with any reassociation, no ti itself being a
disjunction, the list returned will be [t1; ...; tn]. But

disjuncts(list_mk_disj([t1l;...;tn]))
will not return [t1;...;tn] if any of t1,...;tn is a disjunction.

Failure

Never fails, even if the term is not boolean.



DISJ_ACI_RULE 153

Example

# list_mk_disj [‘a \/ b‘;‘c \/ d“;‘e \/ £1;;
val it : term = ‘(a \/ b) \/ (¢ \/ d) \/ e \/ £¢

# disjuncts it;;

val it : term list = [‘a‘; ‘b‘; ‘c‘; ‘d; ‘e; ‘f¢]
# disjuncts ‘1°;;
val it : term list = [‘1¢]

Comments

Because disjuncts splits both the left and right sides of a disjunction, this operation
is not the inverse of list_mk_disj. You can also use splitlist dest_disj to split in a
right-associated way only.

See also
conjuncts, dest_disj, list_mk_disj.

DISJ_ACI_RULE

DISJ_ACI_RULE : term -> thm

Synopsis

Proves equivalence of two disjunctions containing same set of disjuncts.

Description

The call DISJ_ACI_RULE ‘t1 \/ ... \/ tn <=> ul \/ ... \/ um‘, where both sides of

the equation are disjunctions of exactly the same set of disjuncts, (with arbitrary ordering,
association, and repetitions), will return the corresponding theorem |- t1 \/ ... \/ tn <=> ul \/
Failure

Fails if applied to a term that is not a Boolean equation or the two sets of disjuncts are
different.

Example
# DISJ_ACI_RULE ‘(p \/ @) \/ (@ \/ r) <=>1r \/ q \/ p‘;;
val it : thm = |- (p \/ @) \/ q\/ r<=>r \/ q\/p

Comments
The same effect can be had with the more general AC construct. However, for the special
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case of disjunction, DISJ_ACI_RULE is substantially more efficient when there are many
disjuncts involved.

See also
AC, CONJ_ACI_RULE, DISJ_CANON_CONV.

DISJ_CANON_CONV

DISJ_CANON_CONV : term -> thm

Synopsis

Puts an iterated disjunction in canonical form.

Description

When applied to a term, DISJ_CANON_CONV splits it into the set of disjuncts and produces
a theorem asserting the equivalence of the term and the new term with the disjuncts
right-associated without repetitions and in a canonical order.

Failure
Fails if applied to a non-Boolean term. If applied to a term that is not a disjunction, it
will trivially work in the sense of regarding it as a single disjunct and returning a reflexive
theorem.

Example
# DISJ_CANON_CONV ‘(c \/ a \/ b) \/ (b \/ a \/ d)‘;;
val it : thm = |- (c \/ a \/ b) \/ b\/ a\/d<<=a\/b\/c\/d

See also
AC, CONJ_CANON_CONV, DISJ_ACI_CONV.

DISJ_CASES

DISJ_CASES : thm -> thm -> thm -> thm

Synopsis

Eliminates disjunction by cases.
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Description

The rule DISJ_CASES takes a disjunctive theorem, and two ‘case’ theorems, each with
one of the disjuncts as a hypothesis while sharing alpha-equivalent conclusions. A new
theorem is returned with the same conclusion as the ‘case’ theorems, and the union of all
assumptions excepting the disjuncts.

A |- t1\/ t2 Al |-t A2 |-t
—————————————————————————————————————————————————— DISJ_CASES
Au (A1 - {t1}) u (A2 - {t2}) |-t

Failure
Fails if the first argument is not a disjunctive theorem, or if the conclusions of the other
two theorems are not alpha-convertible.

Example
Let us create several theorems. Note that thl and th2 draw the same conclusion from
different hypotheses, while th proves the disjunction of the two hypotheses:

# let [th; thil; th2] map (UNDISCH_ALL o REAL_FIELD)
[“"(x = &0) \/ x = &0°;
““(x = &0) ==> x * (inv(x) * x - &1) = &0°¢;
‘x = &0 ==> x * (inv(x) * x - &1) = &0°];;

val th : thm = |- “(x = &0) \/ x = &0
val thl : thm “(x =&0) |- x * (inv x * x - &1) = &0
val th2 : thm x=8&0 |- x * (inv x * x - &1) = &0

so we can apply DISJ_CASES:

# DISJ_CASES th thl th2;;
val it : thm = |- x * (inv x * x - &1) = &0

Comments
Neither of the ‘case’ theorems is required to have either disjunct as a hypothesis, but
otherwise DISJ_CASES is pointless.

See also
DISJ_CASES_TAC, DISJ_CASES_THEN, DISJ_CASES_THEN2, DISJ1, DISJ2,
SIMPLE_DISJ_CASES.

DISJ_CASES_TAC

DISJ_CASES_TAC : thm_tactic
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Synopsis

Produces a case split based on a disjunctive theorem.

Description
Given a theorem th of the form A |- u \/ v, DISJ_CASES_TAC th applied to a goal pro-
duces two subgoals, one with u as an assumption and one with v:

A7t
DISJ_CASES_TAC (A |- u \/ W)

Aufur -t AudAdvits-t

Failure
Fails if the given theorem does not have a disjunctive conclusion.

Example
Given the simple fact about arithmetic th, |- m = 0 \/ (?n. m = SUC n), the tactic
DISJ_CASES_TAC th can be used to produce a case split:

# let th = SPEC ‘m:num‘ num_CASES;;
val th : thm = |- m =0 \/ (?n. m = SUC n)

# g ‘(P:num -> bool) m‘;;
Warning: Free variables in goal: P, m
val it : goalstack = 1 subgoal (1 total)

tP m(

# e(DISJ_CASES_TAC th);;
val it : goalstack = 2 subgoals (2 total)

0 [“?n. m = SUC n‘]

(P mt

Uses
Performing a case analysis according to a disjunctive theorem.

See also
ASSUME_TAC, ASM_CASES_TAC, COND_CASES_TAC, DISJ_CASES_THEN, STRUCT_CASES_TAC.
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DISJ_CASES_THEN

DISJ_CASES_THEN : thm_tactical

Synopsis

Applies a theorem-tactic to each disjunct of a disjunctive theorem.

Description

If the theorem-tactic f:thm->tactic applied to either ASSUMEd disjunct produces results
as follows when applied to a goal (A ?- t):

s======== £ (u |- u) and ========= f (v |- V)

then applying DISJ_CASES_THEN f (|- u \/ v) to the goal (A ?- t) produces two sub-
goals.

A7-t

DISJ_CASES_THEN f (|- u \/ v)
A 7-t1 A 7- t2

Failure

Fails if the theorem is not a disjunction. An invalid tactic is produced if the theorem has
any hypothesis which is not alpha-convertible to an assumption of the goal.
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Example
Given the theorem

th = |- (m=0)\/ (?n. m = SUC n)
and a goal of the form ?- (PRE m = m) = (m = 0), applying the tactic
DISJ_CASES_THEN MP_TAC th

produces two subgoals, each with one disjunct as an added antecedent

# let th = SPEC ‘m:num‘ num_CASES;;

val th : thm = |- m =0 \/ (?n. m = SUC n)
# g ‘PREm=m <=>m = 0;;

Warning: Free variables in goal: m

val it : goalstack = 1 subgoal (1 total)

‘PREm =m <=>m = 0

# e(DISJ_CASES_THEN MP_TAC th);;
val it : goalstack = 2 subgoals (2 total)

‘(7n. m=8SUCn) ==> (PREm =m <=>m = 0)°

‘m=0==> (PREm=m<=>m=0)¢

Uses
Building cases tactics. For example, DISJ_CASES_TAC could be defined by:

let DISJ_CASES_TAC = DISJ_CASES_THEN ASSUME_TAC

Comments
Use DISJ_CASES_THEN2 to apply different tactic generating functions to each case.

See also
STRIP_THM_THEN, CHOOSE_THEN, CONJUNCTS_THEN, CONJUNCTS_THEN2, DISJ_CASES_TAC,
DISJ_CASES_THEN2.

DISJ_CASES_THEN2

DISJ_CASES_THEN2 : thm_tactic -> thm_tactic -> thm_tactic
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Synopsis

Applies separate theorem-tactics to the two disjuncts of a theorem.

Description

If the theorem-tactics ttacl and ttac2, applied to the ASSUMEd left and right disjunct
of a theorem |- u \/ v respectively, produce results as follows when applied to a goal
(A 7- t):

========= ttacil (u |— u) and ========= ttac?2 (V I— v)

then applying DISJ_CASES_THEN2 ttacl ttac2 (|- u \/ v) tothe goal (A ?- t) produces
two subgoals.

A7-t

DISJ_CASES_THEN2 ttacl ttac2 (|- u \/ v)

A 7-t1 A 7- t2

Failure
Fails if the theorem is not a disjunction. An invalid tactic is produced if the theorem has
any hypothesis which is not alpha-convertible to an assumption of the goal.

Example
Given the theorem

# let th = SPEC ‘m:num‘ num_CASES;;
val th : thm = |- m =0 \/ (?n. m = SUC n)

and a goal:
# g ‘PREm=m<=>m=0;
the following produces two subgoals:

# e(DISJ_CASES_THEN2 SUBST1_TAC MP_TAC th);;
val it : goalstack = 2 subgoals (2 total)

‘(?7n. m=8SUCn) ==> (PREm =m <=>m = 0)°
‘PRE 0 = 0 <=> 0 = 0Of

The first subgoal has had the disjunct m = 0 used for a substitution, and the second has
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added the disjunct as an antecedent. Alternatively, we can make the second theorem-
tactic also choose a witness for the existential quantifier and follow by also substituting:

# e(DISJ_CASES_THEN2 SUBST1_TAC (CHOOSE_THEN SUBST1_TAC) th);;
val it : goalstack = 2 subgoals (2 total)

‘PRE (SUC n) = SUC n <=> SUC n = O¢

‘PRE 0 = 0 <=> 0 = 0°
Either subgoal can be finished with ARITH_TAC, but the way, but so could the initial goal.

Uses
Building cases tacticals. For example, DISJ_CASES_THEN could be defined by:

let DISJ_CASES_THEN f = DISJ_CASES_THEN2 f f

See also
STRIP_THM_THEN, CHOOSE_THEN, CONJUNCTS_THEN, CONJUNCTS_THEN2, DISJ_CASES_THEN.

distinctness

distinctness : string -> thm

Synopsis

Produce distinctness theorem for an inductive type.

Description

A call distinctness "ty" where "ty" is the name of a recursive type defined with define_type,
returns a “distinctness” theorem asserting that elements constructed by different type con-
structors are always different. The effect is exactly the same as if prove_constructors_distinct
were applied to the recursion theorem produced by define_type, and the documentation

for prove_constructors_distinct gives a lengthier discussion.

Failure

Fails if ty is not the name of a recursive type, or if the type has only one constructor.
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Example

# distinctness "num";;
val it : thm = |- 'n’. “(0 = SUC n’)

# distinctness "list";;

val it : thm = |- 'a0’ al’. ~([] = CONS a0’ al’)

See also
cases, define_type, injectivity, prove_constructors_distinct.

distinctness_store

distinctness_store : (string * thm) list ref

Synopsis

Internal theorem list of distinctness theorems.

Description
This list contains all the distinctness theorems (see distinct) for the recursive types
defined so far. It is automatically extended by define_type and used as a cache by

distinct.

Failure
Not applicable.

See also
define_type, distinctness, extend_rectype_net, injectivity_store.

DNF_CONV

DNF_CONV : conv

Synopsis

Converts a term already in negation normal form into disjunctive normal form.
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Description

When applied to a term already in negation normal form (see NNF_CONV), meaning that all
other propositional connectives have been eliminated in favour of disjunction, disjunction
and negation, and negation is only applied to atomic formulas, DNF_CONV puts the term
into an equivalent disjunctive normal form, which is a right-associated disjunction of
conjunctions without repetitions. No reduction by subsumption is performed, however,
e.g. froma \/ a /\ b to just a).

Failure

Never fails; non-Boolean terms will just yield a reflexive theorem.
Example
# DNF_CONV “‘(a \/ b) /\ (@ \/ c /\ e‘;;

val it : thm =
- a\N/ b)) /\ (a\/ c/\Ne)<=>a\Na/Nb\/a/\Nc/\Ne\N/b/\c/\e

See also
CNF_CONV, NNF_CONV, WEAK_CNF_CONV, WEAK_DNF_CONV.

dom

dom : (’a, ’b) func -> ’a list

Synopsis

Returns domain of a finite partial function.

Description

This is one of a suite of operations on finite partial functions, type (’a,’b)func. These
may sometimes be preferable to ordinary functions since they permit more operations
such as equality comparison, extraction of domain etc. The dom operation returns the
domain of such a function, i.e. the set of points on which it is defined.

Failure
Attempts to sort the resulting list, so may fail if the domain type does not admit com-
parisons.
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Example

# dom (1 |=> "1");;

val it : int list = [1]

# dom(itlist I [2]|->4; 3|->6] undefined);;
val it : int list = [2; 3]

See also
[->, |=>, apply, applyd, choose, combine, defined, foldl, foldr, graph,
is_undefined, mapf, ran, tryapplyd, undefine, undefined.

do_list

do_list : (’a -> ’b) -> ’a list -> unit

Synopsis

Apply imperative function to each element of a list.

Description

The call do_list £ [x1; ... ; xn] evaluates in sequence the expressions f x1, ..., f xnin

that order, discarding the results. Presumably the applications will have some side-effect,
such as printing something to the terminal.

Example

# do_list (fun x -> print_string x; print_newline()) (explode "john");;
J

o

h

n

val it : unit = ()

# do_list (fun x -> print_string x) (rev(explode "nikolas"));;
salokinval it : unit = (O

Uses
Running imperative code parametrized by list members.

See also
map.
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dpty

dpty : pretype

Synopsis
Dummy pretype.

Description
This is a dummy pretype, intended as a placeholder until the correct one is discovered.

Failure
Not applicable.

See also
pretype_of_type, type_of_pretype.

e : tactic -> goalstack

Synopsis

Applies a tactic to the current goal, stacking the resulting subgoals.

Description

The function e is part of the subgoal package. It applies a tactic to the current goal to
give a new proof state. The previous state is stored on the backup list. If the tactic
produces subgoals, the new proof state is formed from the old one by adding a new level
consisting of its subgoals.

The tactic applied is a validating version of the tactic given. It ensures that the justi-
fication of the tactic does provide a proof of the goal from the subgoals generated by the
tactic. It will cause failure if this is not so. The tactical VALID performs this validation.

For a description of the subgoal package, see set_goal.

Failure
e tac fails if the tactic tac fails for the top goal. It will diverge if the tactic diverges for
the goal. It will fail if there are no unproven goals. This could be because no goal has
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been set using set_goal or because the last goal set has been completely proved. It will
also fail in cases when the tactic is invalid.

Example

# g ‘(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])°¢;;
val it : goalstack = 1 subgoal (1 total)

‘HD [1; 2; 3] =1 /\TL [1; 2; 3] = [2; 3]¢

# e CONJ_TAC;;
val it : goalstack = 2 subgoals (2 total)

‘TL [1; 2; 3] [2; 3]°¢

‘HD [1; 2; 3] 1¢

# e (REWRITE_TAC[HDI);;
val it : goalstack = 1 subgoal (1 total)

‘TL [1; 2; 3] = [2; 3]¢
# e (REWRITE_TAC[TL]);;

val it : goalstack = No subgoals

Uses
Doing a step in an interactive goal-directed proof.

See also
b, g, p, r, set_goal, top_goal, top_thm.

el

el : int -> ’a list -> ’a

Synopsis

Extracts a specified element from a list.

Description
el i [x0;x1;...;xn] returns xi. Note that the elements are numbered starting from 0,
not 1.
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Failure
Fails with el if the integer argument is negative or greater than the length of the list.

Example
# el 3 [1;2;7;1];;

val it : int =1

See also
hd, tl.

elistof

elistof : (’a => ’b * ’a) -> (Pa -> ’c * ’a) -> string -> ’a -> ’b list * ’a

Synopsis

Parses a possibly empty separated list of items.

Description

If p is a parser for “items” of some kind, s is a parser for a “separator”, and e is an error
message, then elistof p s e parses a possibly empty list of successive items using p,
where adjacent items are separated by something parseable by s. If a separator is parsed
successfully but there is no following item that can be parsed by s, an exception Failure
e is raised. (So note that the separator must not terminate the final element.)

Failure
The call elistof p s e itself never fails, though the resulting parser may.

Comments

This is one of a suite of combinators for manipulating “parsers”. A parser is simply
a function whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The
function should take a list of objects of type :’a (e.g. characters or tokens), parse as
much of it as possible from left to right, and return a pair consisting of the object derived
from parsing (e.g. a term or a special syntax tree) and the list of elements that were not
processed.

See also
++, |ll, >, a, atleast, finished, fix, leftbin, listof, many, nothing,
possibly, rightbin, some.
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empty_net
empty_net : ’a net
Synopsis

Empty term net.

Description

Term nets (type ’a net) are a lookup structure associating objects of type ’a, e.g. con-
versions, with a corresponding ‘pattern’ term. For a given term, one can then relatively
quickly look up all objects whose pattern terms might possibly match to it. This is used,
for example, in rewriting to quickly filter out obviously inapplicable rewrites rather than
attempting each one in turn. The (polymorphic) object empty_net is the term net with
no objects defined; it can then be augmented by enter or merge_nets and used in lookup.

Failure
Not applicable.

See also
enter, lookup, merge_nets.

empty_ss

empty_ss : simpset

Synopsis

Simpset consisting of only the default rewrites and conversions.

Description
In their maximal generality, simplification operations in HOL Light (as invoked by SIMP_TAC)
are controlled by a ‘simpset’. The simpset empty_ss has just the basic rewrites and con-

versions (see basic_rewrites and basic_convs), and no other provers.

Failure
Not applicable.

See also
basic_convs, basic_rewrites, basic_ss, SIMP_CONV, SIMP_RULE, SIMP_TAC.
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end 1tlist

end_itlist : (Pa -> ’a -> ’a) -> ’a list -> ’a

Synopsis

List iteration function. Applies a binary function between adjacent elements of a list.
Description

end_itlist f [x1;...;xn] returns £ x1 ( ... (f x(n-1) xn)...). Returns x for a one-

element list [x].

Failure
Fails with end_itlist if list is empty.

Example
# end_itlist (+) [1;2;3;4];;

val it : int = 10

See also
itlist, rev_itlist.

enter

enter : term list -> term * ’a -> ’a net -> ’a net

Synopsis

Enter an object and its pattern term into a term net.

Description

Term nets (type ’a net) are a lookup structure associating objects of type ’a, e.g. con-
versions, with a corresponding ‘pattern’ term. For a given term, one can then relatively
quickly look up all objects whose pattern terms might possibly match to it. This is used,
for example, in rewriting to quickly filter out obviously inapplicable rewrites rather than
attempting each one in turn. The call enter lconsts (pat,obj) net enters the item obj
into a net obj with indexing pattern term pat. The list 1consts lists variables that should
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be considered ‘local constants’ when matching, so will only match terms with exactly the
same variable in corresponding places.

Failure
Never fails.

Example
Here we construct a net with the conversions for various arithmetic operations on numer-
als, each with a pattern term to identify the class of terms to which it might apply:

let arithnet = itlist (enter [])
[‘SUC n‘,NUM_SUC_CONV;
‘m + n:num‘,NUM_ADD_CONV;

- n:num‘,NUM_SUB_CONV;

* n:num‘,NUM_MULT_CONV;

EXP n‘,NUM_EXP_CONV;

DIV n¢,NUM_DIV_CONV;

‘m MOD n‘,NUM_MOD_CONV]
empty_net;;

‘m
‘m
‘m
‘m

Now we can define a conversion that uses lookup in this net as a first-stage filter and
tries to apply the results.

let NUM_ARITH_CONV tm = FIRST_CONV (lookup tm arithnet) tm;;

Note that this is functionally not really different from just
let NUM_ARITH_CONV’ =

FIRST_CONV [NUM_SUC_CONV; NUM_ADD_CONV; NUM_SUB_CONV; NUM_MULT_CONV;
NUM_EXP_CONV; NUM_DIV_CONV; NUM_MOD_CONV];;

but it may be significantly more efficient because instead of successive attempts to apply
the conversions, each one is only invoked when the term has the right pattern.

# let tm = funpow 5 (fun x -> mk_binop °(*):num->num->num‘ x x) ‘12¢;;

time (DEPTH_CONV NUM_ARITH_CONV) term;;
CPU time (user): 0.12

time (DEPTH_CONV NUM_ARITH_CONV’) term;;

CPU time (user): 0.22

In situations with very many conversions, each one quite fast, the difference can be
much more striking.
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See also
empty_net, lookup, merge_nets.

EQF_ELIM

EQF_ELIM : thm -> thm

Synopsis
Replaces equality with F by negation.

Description

A |- tm <=> F

——————————————— EQF_ELIM
A |- "tm
Failure
Fails if the argument theorem is not of the form A |- tm <=> F.
Example

# EQF_ELIM(REFL ‘F9);;
val it : thm = |- “F

See also
EQF_INTRO, EQT_ELIM, EQT_INTRO, NOT_ELIM, NOT_INTRO.

EQF_INTRO

EQF_INTRO : thm -> thm

Synopsis

Converts negation to equality with F.
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Description

_______________ EQF_INTRO
A |- tm <=> F

Failure
Fails if the argument theorem is not a negation.

Example

# let th = ASSUME ‘“p‘;;
val th : thm = "p |- "p

# EQF_INTRO th;;
val it : thm = “p |- p <=> F

See also
EQF_ELIM, EQT_ELIM, EQT_INTRO, NOT_ELIM, NOT_INTRO.

EQT_ELIM

EQT_ELIM : thm -> thm

Synopsis
Eliminates equality with T.

Description

A |- tm<=>T
_______________ EQT_ELIM

Failure
Fails if the argument theorem is not of the form A |- tm <=> T.
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Example

# REFL ‘T¢;;
val it : thm = |- T <=> T

# EQT_ELIM it;;
val it : thm = |- T

See also
EQF_ELIM, EQF_INTRO, EQT_INTRO.

EQT_INTRO

EQT_INTRO : thm -> thm

Synopsis
Introduces equality with T.

Description

_______________ EQF_INTRO
A |- tm<=>T

Failure
Never fails.

Example
# EQT_INTRO (REFL ‘2°);;

val it : thm = |- 2 = 2 <=> T

See also
EQF_ELIM, EQF_INTRO, EQT_ELIM.

equals_goal

equals_goal : goal -> goal -> bool
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Synopsis
Equality test on goals.

Description

The relation equals_goal tests if two goals have exactly the same structure, with the
same assumptions, conclusions and even labels, with the assumptions in the same order.
The only respect in which this differs from a pure equality tests is that the various term
components are tested modulo alpha-conversion.

Failure
Never fails.

Comments
Probably not generally useful. Used inside CHANGED_TAC.

See also
CHANGED_TAC, equals_thm.

equals_thm

equals_thm : thm -> thm -> bool

Synopsis

Equality test on theorems.

Description

The call equals_thm th1l th2 returns true if and only if both the conclusions and assump-
tions of the two theorems th1 and th2 are exactly the same. The same can be achieved
by a simple equality test, but it is better practice to use this function because it will also
work in the proof recording version of HOL Light (see the Proofrecording subdirectory).

Failure
Never fails.

See also
=7,

EQ_IMP_RULE

EQ_IMP_RULE : thm -> thm * thm
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Synopsis

Derives forward and backward implication from equality of boolean terms.

Description
When applied to a theorem A |- t1 <=> t2, where t1 and t2 both have type bool, the
inference rule EQ_IMP_RULE returns the theorems A |- t1 ==> t2 and A |- t2 ==> t1.

A |- t1 <=> t2
——————————————————————————————————— EQ_IMP_RULE
A |- t1 ==> t2 A |- t2 ==> t1

Failure
Fails unless the conclusion of the given theorem is an equation between boolean terms.

Example

# SPEC_ALL CONJ_SYM;;
val it : thm = |- t1 /\ t2 <=> t2 /\ ti

# EQ_IMP_RULE it;;
val it : thm * thm = (|- t1 /\ t2 ==> t2 /\ t1, |- t2 /\ t1 ==> t1 /\ t2)

See also
EQ_MP, EQ_TAC, IMP_ANTISYM_RULE.

EQ_MP

EQ_MP : thm -> thm -> thm

Synopsis

Equality version of the Modus Ponens rule.

Description
When applied to theorems A1 |- t1 <=> t2 and A2 |- t1’ where t1 and t1’ are alpha-
equivalent (for example, identical), the inference rule EQ_MP returns the theorem A1 u A2 |- t2.

Al |- t1 <=> t2 A2 |- t1’

Al u A2 |- t2

Failure
Fails unless the first theorem is equational and its left side is the same as the conclusion
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of the second theorem (and is therefore of type bool), up to alpha-conversion.

Example
# let thl = SPECL [‘p:bool‘; ‘q:bool‘] CONJ_SYM
and th2 = ASSUME ‘p /\ q°;;

val thl : thm = |- p /\ g <=>q /\ p
val th2 : thm =p /\ q |- p /\ q

# EQ_MP thl th2;;

val it : thm=p /\ q |- q /\ p

Comments
This is one of HOL Light’s 10 primitive inference rules.

See also
EQ_IMP_RULE, IMP_ANTISYM RULE, MP, PROVE_HYP.

EQ_TAC

EQ_TAC : tactic

Synopsis

Reduces goal of equality of boolean terms to forward and backward implication.

Description
When applied to a goal A ?7- t1 <=> t2, where t1 and t2 have type bool, the tactic EQ_TAC
returns the subgoals A 7- t1 ==> t2 and A 7- t2 ==> t1.

A 7- tl1 <=> t2

= EQ_TAC
A 7-t1 ==> t2 A 7- t2 ==> t1

Failure
Fails unless the conclusion of the goal is an equation between boolean terms.

See also
EQ_IMP_RULE, IMP_ANTISYM_RULE.
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ETA_CONV

ETA_CONV : term -> thm

Synopsis

Performs a toplevel eta-conversion.

Description
ETA_CONV maps an eta-redex ‘\x. t x°, where x does not occur free in t, to the theorem
- (\x. t x) = t.

Failure
Fails if the input term is not an eta-redex.

Example

# ETA_CONV ‘\n. SUC n‘;;

val it : thm = |- (\n. SUC n) = SUC
# ETA_CONV ‘\n. 1 + n‘;;
val it : thm = |- (\n. 1 + n) = (+) 1

# ETA_CONV ‘\n. n + 1°;;
Exception: Failure "ETA_CONV".

Comments
The same basic effect can be achieved by rewriting with ETA_AX. The theorem ETA_AX is
one of HOL Light’s three mathematical axioms.

EVERY

EVERY : tactic list -> tactic

Synopsis

Sequentially applies all the tactics in a given list of tactics.
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Description

When applied to a list of tactics [t1; ... ;tn], and a goal g, the tactical EVERY applies
each tactic in sequence to every subgoal generated by the previous one. This can be
represented as:

EVERY [t1;...;tn] = t1 THEN ... THEN tn
If the tactic list is empty, the resulting tactic has no effect.

Failure
The application of EVERY to a tactic list never fails. The resulting tactic fails iff any of
the component tactics do.

Comments
It is possible to use EVERY instead of THEN, but probably stylistically inferior. EVERY is
more useful when applied to a list of tactics generated by a function.

See also
FIRST, MAP_EVERY, THEN.

EVERY_ASSUM

EVERY_ASSUM : thm_tactic -> tactic

Synopsis
Sequentially applies all tactics given by mapping a function over the assumptions of a
goal.
Description
When applied to a theorem-tactic £ and a goal ({A1;...;An} ?- C), the EVERY_ASSUM
tactical maps £ over the list of assumptions then applies the resulting tactics, in sequence,
to the goal:

EVERY_ASSUM f ({A1;...;An} 7- C)

= (£(.. |- A1) THEN ... THEN f(.. |- An)) ({A1;...;An} 7- C)

If the goal has no assumptions, then EVERY_ASSUM has no effect.

Failure

The application of EVERY_ASSUM to a theorem-tactic and a goal fails if the theorem-tactic
fails when applied to any of the assumptions of the goal, or if any of the resulting tactics
fail when applied sequentially.
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See also
ASSUM_LIST, MAP_EVERY, MAP_FIRST, THEN.

EVERY_CONV

EVERY_CONV : conv list -> conv

Synopsis

Applies in sequence all the conversions in a given list of conversions.

Description

EVERY_CONV [cl;...;cn] ‘t¢ returns the result of applying the conversions ci1, ..., cn in
sequence to the term ‘t¢. The conversions are applied in the order in which they are
given in the list. In particular, if ci ‘ti‘ returns |- ti=ti+1 for i from 1 to n, then
EVERY_CONV [c1;...;cn] ‘t1¢ returns |- ti=t(n+1). If the supplied list of conversions

is empty, then EVERY_CONV returns the identity conversion. That is, EVERY_CONV []1 ‘t°
returns |- t=t.

Failure
EVERY_CONV [c1;...;cn] ‘t‘ failsif any one of the conversions ci, ..., cn fails when applied
in sequence as specified above.

Example

# EVERY_CONV [BETA_CONV; NUM_ADD_CONV] ‘(\x. x + 2) 5¢;;
val it : thm = |- (\x. x + 2) 5 =7

See also
THENC.

EVERY_TCL

EVERY_TCL : thm_tactical list -> thm_tactical

Synopsis

Composes a list of theorem-tacticals.
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Description
When given a list of theorem-tacticals and a theorem, EVERY_TCL simply composes their
effects on the theorem. The effect is:

EVERY_TCL [ttll;...;ttln] = ttll THEN_TCL ... THEN_TCL ttln

In other words, if:

ttll ttac thl = ttac th2 ... ttln ttac thn = ttac thn’
then:
EVERY_TCL [ttll;...;ttln] ttac thl = ttac thn’

If the theorem-tactical list is empty, the resulting theorem-tactical behaves in the same
way as ALL_THEN, the identity theorem-tactical.

Failure
The application to a list of theorem-tacticals never fails.

See also
FIRST_TCL, ORELSE_TCL, REPEAT_TCL, THEN_TCL.

exactly

exactly : term -> term

Synopsis

Query to search for a term alpha-equivalent to pattern.

Description

The function exactly is intended for use solely with the search function.

Failure

Never fails.

See also
search.
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EXISTENCE

EXISTENCE : thm -> thm

Synopsis

Deduces existence from unique existence.

Description
When applied to a theorem with a unique-existentially quantified conclusion, EXISTENCE
returns the same theorem with normal existential quantification over the same variable.

Al-7x.p
------------- EXISTENCE
Al-7x.p

Failure

Fails unless the conclusion of the theorem is unique-existentially quantified.
Example

# let th = MESON[] ‘?!n. n =m‘;;

&éi th : thm = |- ?!'n. n =m

# EXISTENCE th;;

val it : thm = |- ?n. n =m

See also
EXISTS, SIMPLE_EXISTS.

exists

exists : (’a -> bool) -> ’a list -> bool

Synopsis

Tests a list to see if some element satisfy a predicate.
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Description

exists p [x1;...;xn] returns true if (p xi) is true for some xi in the list. Otherwise,
for example if the list is empty, it returns false.

Failure

Never fails.

Example
# exists (fun n -> nmod 2 = 0) [2;3;5;7;11;13;17];;
val it : bool = true
# exists (fun n -> nmod 2 = 0) [3;5;7;9;11;13;15];;
val it : bool = false

See also

find, forall, tryfind, mem, assoc, rev_assoc.

EXISTS_EQUATION

EXISTS_EQUATION : term —> thm -> thm

Synopsis

Derives existence from explicit equational constraint.

Description

Given a term ‘x = t‘ where x does not occur free in t, and a theorem A |- p[x], the rule
EXISTS_EQUATION returns A - {x = t} |- ?x. p[x]. Normally, the equation x = t is one
of the hypotheses of the theorem, so this rule allows one to derive an existence assertion
ignoring the actual “definition”.

Failure

Fails if the term is not an equation, if the LHS is not a variable, or if the variable occurs
free in the RHS.
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Example

# let th = (UNDISCH o EQT_ELIM o SIMP_CONV[ARITH])
‘x = 3 ==> 0DD(x) /\ x > 2¢;;
val th : thm =x =3 |- 0DD x /\ x > 2

# EXISTS_EQUATION ‘x = 3¢ th;;
val it : thm = |- ?x. 0ODD x /\ x > 2

Note that it is not obligatory for the term to be an assumption:
# EXISTS_EQUATION ‘x = 1¢ (REFL ‘xX:num);;

val it : thm = |- ?x. x = X

See also
EXISTS, SIMPLE_EXISTS.

EXISTS_TAC

EXISTS_TAC : term -> tactic

Synopsis

Reduces existentially quantified goal to one involving a specific witness.

Description

When applied to a term u and a goal A ?- ?x. t, the tactic EXISTS_TAC reduces the goal
to A ?7- t[u/x] (substituting u for all free instances of x in t, with variable renaming if

necessary to avoid free variable capture).

A 7-7x. ¢t

EXISTS_TAC ‘uf
A ?7- t[u/x]

Failure

Fails unless the goal’s conclusion is existentially quantified and the term supplied has the

same type as the quantified variable in the goal.
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Example
The goal:

#g ‘7x. 1 <x/\x<3%;
can be solved by:
# e(EXISTS_TAC ‘2¢ THEN ARITH_TAC);;

val it : goalstack = No subgoals

See also
EXISTS, HINT_EXISTS_TAC.

EXISTS

EXISTS : term * term -> thm -> thm

Synopsis

Introduces existential quantification given a particular witness.

Description

When applied to a pair of terms and a theorem, the first term an existentially quantified
pattern indicating the desired form of the result, and the second a witness whose substi-
tution for the quantified variable gives a term which is the same as the conclusion of the
theorem, EXISTS gives the desired theorem.

A |- plu/x]
————————————— EXISTS (‘7x. p‘,‘u)
Al-7x.p
Failure

Fails unless the substituted pattern is the same as the conclusion of the theorem.

Example
The following examples illustrate how it is possible to deduce different things from the
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same theorem:

# EXISTS (‘?x. x <=> T“,‘T‘) (REFL ‘T9);;
val it : thm = |- ?x. x <=> T

# EXISTS (‘?x:bool. x = x‘,‘T*) (REFL ‘T‘);;
val it : thm = |- ?x. x <=> x

See also
CHOOSE, EXISTS_TAC, SIMPLE_EXISTS.

EXPAND_CASES_CONV

EXPAND_CASES_CONV : conv

Synopsis

Expand a numerical range ‘!'i. i < n ==> P[i]°.

Description
When applied to a term of the form “'i. i < n ==> P[i]* for some P[i] and a numeral
n, the conversion EXPAND_CASES_CONV returns

|- ('i. i < n ==> P[i]) <=> P[0] /\ ... /\ P[n-1]

Failure
Fails if applied to a term that is not of the right form.

Example

# EXPAND_CASES_CONV ‘(!n. n < 5 ==> “(n =0) ==> 12 MOD n = 0)¢;;
val it : thm =
|- ('n. n <5 ==>"(n=0) ==> 12 MOD n = 0) <=>

("(1 =0) ==> 12 MOD 1 = 0) /\
("(2 =0) ==> 12 MOD 2 = 0) /\
("(3 =0) ==> 12 MOD 3 = 0) /\
(*(4 = 0) ==> 12 MOD 4 = 0)
# (EXPAND_CASES_CONV THENC NUM_REDUCE_CONV)
‘('ln. n <5==>"(n=0) ==> 12 M0D n = 0)°¢;;
val it : thm = |- (!n. n < 5 ==> "(n=0) ==> 12 M0OD n = 0) <=> T
See also

EXPAND_SUM_CONV, EXPAND_NSUM_CONV, NUMSEG_CONV, NUM_REDUCE_CONV.
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EXPAND_NSUM_CONV

EXPAND_NSUM_CONV : conv

Synopsis

Expands a natural number sum over an explicit interval of numerals

Description

The conversion EXPAND_NSUM_CONV applied to a term of the form ‘nsum (m..n) f¢ where
m and n are explicit numerals (the double-dot being an infix set construction for a range),
returns an expansion theorem |- nsum (m..n) £ = £f(m) + ... + f(n). In the common
case where f is a lambda-term, each application £ (i) will be beta-reduced at the top level.

Failure
EXPAND_NSUM_CONV tm fails if tm is not a sum of the specified form.

Example
The following is a typical use of the conversion:

# EXPAND_NSUM_CONV ‘nsum (1..5) (\n. n * n)‘;;
val it : thm =
|- nsum (1..5) (\n. n *n) =1 %1+ 2%2+3%x3+4%x4+5=x%5

Comments
As well as the real-number version EXPAND_SUM_CONV in the core HOL Light, the library
file Library/isum.ml contains a corresponding form for integer sums EXPAND_ISUM_CONV.

See also
EXPAND_CASES_CONV, EXPAND_SUM_CONV, NUMSEG_CONV.

EXPAND_SUM_CONV

EXPAND_SUM_CONV : conv

Synopsis

Expands a real number sum over an explicit interval of numerals
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Description
The conversion EXPAND_SUM_CONV applied to a term of the form ‘sum (m..n) £ where m
and n are explicit numerals (the double-dot being an infix set construction for a range),

returns an expansion theorem |- sum (m..n) £ = £f(m) + ... + £(n). In the common
case where f is a lambda-term, each application £(i) will be beta-reduced at the top
level.

Failure

EXPAND_SUM_CONV tm fails if tm is not a sum of the specified form.

Example
The following is a typical use of the conversion:

# EXPAND_SUM_CONV ‘sum(1..8) f¢;;
val it : thm =
|- sum (1..8) f=f1+f2+f3+f4+fb5+f6+f7+1f8

Comments
As well as the natural-number version EXPAND_NSUM_CONV in the core HOL Light, the li-
brary file Library/isum.ml contains a corresponding form for integer sums EXPAND_ISUM_CONV.

See also
EXPAND_CASES_CONV, EXPAND_NSUM_CONV, NUMSEG_CONV.

EXPAND_TAC

EXPAND_TAC : string -> tactic

Synopsis

Expand an abbreviation in the hypotheses.

Description

The tactic EXPAND_TAC "x", applied to a goal, looks for a hypothesis of the form ‘t = x*
where x is a variable with the given name. It then replaces x by t throughout the
conclusion of the goal.

Failure
Fails if there is no suitable assumption in the goal.
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Example
Consider the final goal in the example given for ABBREV_TAC:

val it : goalstack = 1 subgoal (1 total)

0 [“12345 + 12345

n‘]
‘n +fn=1fn
If we expand it, we get:

# e(EXPAND_TAC "n");;
val it : goalstack = 1 subgoal (1 total)

0 [“12345 + 12345 = n‘]

€(12345 + 12345) + f (12345 + 12345) = f (12345 + 12345)°¢

See also
ABBREV_TAC.

explode

explode : string -> string list

Synopsis

Converts a string into a list of single-character strings.

Description
explode s returns the list of single-character strings that make up s, in the order in which
they appear in s. If s is the empty string, then an empty list is returned.

Failure
Never fails.

Example

# explode "example";;

val it . String list = [Ilell ; IIXII ; llall ; Ilmll ; Ilpll ; lllll ; Ilell]
See also

implode.
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extend_basic_congs

extend_basic_congs : thm list -> unit

Synopsis

Extends the set of congruence rules used by the simplifier.

Description

The HOL Light simplifier (as invoked by SIMP_TAC etc.) uses congruence rules to determine
how it uses context when descending through a term. These are essentially theorems
showing how to decompose one equality to a series of other inequalities in context. A call
to extend_basic_congs thl adds the congruence rules in thl to the defaults.

Failure
Never fails.

Example

By default, the simplifier uses context p when simplifying q within an implication p ==> q.
Some users would like the simplifier to do likewise for a conjunction p /\ q, which is not
done by default:

# SIMP_CONV[] ‘x =1 /\ x < 2¢;;
val it : thm = |- x =1 /\x<2<=>x=1/\x< 2

You can make it do so with
# extend_basic_congs
[TAUT ‘(p <=> p’) ==> (p’ ==> (q <=> q’)) ==> (p /\ q <=>p’ /\ q’)‘];;
val it : unit = ()

as you can see:

# SIMP_CONV[] ‘x =1 /\ x < 2%;;

val it : thm=|-x=1/\x<2<=>x=1/\1<2
# SIMP_CONV[ARITH] ‘x =1 /\ x < 2¢;;
val it : thm = |- x =1 /\ x <2 <=>x =1

See also
basic_congs, set_basic_congs, SIMP_CONV, SIMP_RULE, SIMP_TAC.
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extend basic_convs

extend_basic_convs : string * (term * conv) -> unit

Synopsis

Extend the set of default conversions used by rewriting and simplification.

Description

The HOL Light rewriter (REWRITE_TAC etc.) and simplifier (SIMP_TAC etc.) have default
sets of (conditional) equations and other conversions that are applied by default, except in
the PURE_ variants. The latter are normally term transformations that cannot be expressed
as single (conditional or unconditional) rewrite rules. A call to

extend_basic_convs("name", (‘pat‘,conv))

will add the conversion conv into the default set, using the name name to refer to it and
restricting it to subterms encountered that match pat.

Failure
Never fails.

Example
By default, no arithmetic is done in rewriting, though rewriting with the theorem ARITH
gives that effect.

# REWRITE_CONV[] ‘x 1 +2+ 3+ 4°¢;;
val it : thm=|-x=1+2+ 3 +4<=>x=1+2+3+ 4

You can add NUM_ADD_CONV to the set of default conversions by

# extend_basic_convs("addition on nat",(‘m + n:num‘,NUM_ADD_CONV));;
val it : unit = ()

and now it happens by default:

# REWRITE_CONV[] ‘x
val it : thm = |- x

1+2+3+4¢;;
1+2+3+4<=>x=10

See also
basic_convs, extend_basic_rewrites, set_basic_convs.
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extend basic _rewrites

extend_basic_rewrites : thm list -> unit

Synopsis

Extend the set of default rewrites used by rewriting and simplification.

Description

The HOL Light rewriter (REWRITE_TAC etc.) and simplifier (SIMP_TAC etc.) have default
sets of (conditional) equations and other conversions that are applied by default, except
in the PURE_ variants. A call to extend_basic_rewrites thl extends the former with the
list of theorems thl, so they will thereafter happen by default.

Failure
Never fails.

See also
basic_rewrites, extend_basic_convs, set_basic_rewrites.

extend_rectype_net

extend_rectype_net : string * (’a * ’b * thm) -> unit

Synopsis

Extends internal store of distinctness and injectivity theorems for a new inductive type.

Description

HOL Light maintains several data structures based on the current set of distinctness and

injectivity theorems for the inductive data type so far defined. A call extend_rectype_net ("tyname",(_,_,r
where rth is the recursion theorem for the type as returned as the second item from

define_type, extend these structures for a new type. Two arguments are ignored just for

regularity with some other internal data structures.

Failure
Never fails, even if the theorem is malformed.
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Comments
This function is called automatically by define_type, and normally users will not need
to invoke it explicitly.

See also

basic_rectype_net, define_type, distinctness_store, injectivity_store.

fail

fail : unit -> ’a

Synopsis
Fail with empty string.

Description

In HOL Light, the class of exceptions Failure "string" is used consistently. This makes
it easy to catch all HOL-related exceptions by a Failure _ pattern without accidentally
catching others. In general, the failure can be generated by failwith "string", but the
special case of an empty string is bound to the function fail.

Failure
Always fails.

Uses

Useful when there is no intention to propagate helpful information about the cause of
the exception, for example because you know it will be caught and handled without
discrimination.

See also

FAIL_TAC

FAIL_TAC : string -> tactic

Synopsis
Tactic that always fails, with the supplied string.
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Description
Whatever goal it is applied to, FAIL_TAC "s" always fails with Failure "s".

Failure
The application of FAIL_TAC to a string never fails; the resulting tactic always fails.

Example

The following example uses the fact that if a tactic t1 solves a goal, then the tactic
t1 THEN t2 never results in the application of t2 to anything, because t1 produces no
subgoals. In attempting to solve the following goal:

# g ‘if x then T else T¢;;

the tactic

# e(REWRITE_TAC[] THEN FAIL_TAC "Simple rewriting failed to solve goal");;
Exception: Failure "Simple rewriting failed to solve goal".

fails with the message provided, whereas the following quietly solves the goal:

# e(REWRITE_TAC[COND_ID] THEN FAIL_TAC "Using that failed to solve goal");;
val it : goalstack = No subgoals

See also
ALL_TAC, NO_TAC.

file_of_string

file_of_string : string -> string -> unit

Synopsis

Write out a string to a named file.

Description

Given a filename fn and a string s, the call file_of_string fn s attempts to open the
file £n for writing and writes the string s to it before closing. If the file exists, it will be
overwritten, and otherwise a new file will be created.

Failure
Fails if the file cannot be opened for writing.
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Example
The call

# file_of_string "/tmp/hello" "Hello world\nGoodbye world";;
val it : unit = ()

will result in a file /tmp/hello containing the text:

Hello world
Goodbye world

\SEEALSO
string_of_file, strings_of_file.

\ENDDOC
\DOC{file{\_}Yon{\_}path}

\TYPE {\small\verb)file_on_path : string list -> string -> string)}\egroup

\SYNOPSIS
Expands relative filename to first available one in path.

\DESCRIBE

When given an absolute filename, (e.g. on Linux/Unix one starting with a slash

or tilde), this function returns it unchanged. Otherwise it tries to find the

file in one of the directories in the path argument. An initial dollar sign {\smalllverb
in each path is interpreted as a reference to the current setting of {\smalll\verbjhol_di
To get an actual {\small\verb%$’} at the start of the filename, actually use two dollar
signs {\small\verb’$$%}.

\FAILURE
Fails if no file is found on the path.

\EXAMPLE

{\par\samepage\setseps\small

\begin{verbatim}
# file_on_path (!load_path) "Library/analysis.ml";;
val it : string = "/home/johnh/holl/Library/analysis.ml"
# file_on_path (!load_path) "Library/wibble.ml";;
Exception: Not_found.

See also
help_path, hol_dir, load_on_path, load_path, loads, loadt, needs.
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filter

filter : (’a -> bool) -> ’a list -> ’a list

Synopsis

Filters a list to the sublist of elements satisfying a predicate.

Description
filter p 1 applies p to every element of 1, returning a list of those that satisfy p, in the
order they appeared in the original list.

Failure
Fails if the predicate fails on any element.

See also
mapfilter, partition, remove.

find

find : (’a -> bool) -> ’a list -> ’a

Synopsis

Returns the first element of a list which satisfies a predicate.

Description
find p [x1;...;xn] returns the first xi in the list such that (p xi) is true.

Failure
Fails with find if no element satisfies the predicate. This will always be the case if the
list is empty.

See also
tryfind, mem, exists, forall, assoc, rev_assoc.

FIND_ASSUM

FIND_ASSUM : thm_tactic -> term -> tactic
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Synopsis

Apply a theorem-tactic to the the first assumption equal to given term.

Description
The tactic FIND_ASSUM ttac ‘t¢ finds the first assumption whose conclusion is t, and
applies ttac to it. If there is no such assumption, the call fails.

Failure
Fails if there is no assumption the same as the given term, or if the theorem-tactic itself
fails on the assumption.

Example
Suppose we set up this goal:

#g 0=x/\y=0==>1fx+ 1) =£fEE *x *xy));;
and move the hypotheses into the assumption list:

# e STRIP_TAC;;
val it : goalstack = 1 subgoal (1 total)

0 [0 = x¢]
1 [y = 0]

‘f (x+fy)=f ( (fxx*xxx*xy)

We can’t just use ASM_REWRITE_TAC[] to solve the goal, but we can more directly use
the assumptions:

# e(FIND_ASSUM SUBST1_TAC ‘y = 0¢ THEN
FIND_ASSUM (SUBST1_TAC o SYM) ‘0 = x‘);;
val it : goalstack = 1 subgoal (1 total)

0 [0 = x¢]
1 [y = 0]

‘£ (0+f£0)=£fEEO0*x0x*x0))°

after which simple rewriting solves the goal:

# e(REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES]);;
val it : goalstack = No subgoals

Uses
Identifying an assumption to use by explicitly quoting it.



196 Chapter 1. Pre-defined ML Identifiers

Comments

A similar effect can be achieved by ttac(ASSUME ‘t¢). The use of FIND_ASSUM may be
considered preferable because it immediately fails if there is no assumption t, whereas the
ASSUME construct only generates a validity failure. Still, the the above example, it would
have been a little briefer to write:

# e(REWRITE_TAC[ASSUME ‘y = 0‘; SYM(ASSUME ‘0 = x°);
ADD_CLAUSES; MULT_CLAUSES]);;

See also
ASSUME, VALID.

find_path

find_path : (term -> bool) -> term -> string

Synopsis

Returns a path to some subterm satisfying a predicate.

Description

The call find_path p t traverses the term t top-down until it finds a subterm satisfying
the predicate p. It then returns a path indicating how to reach it; this is just a string
with each character interpreted as:

e "b": take the body of an abstraction
e "1": take the left (rator) path in an application
e "r": take the right (rand) path in an application
Failure
Fails if there is no subterm satisfying p.

Example

# find_path is_list ‘!x. “(x = []) ==> CONS (HD x) (TL x) = x‘;;
Warning: inventing type variables
val it : string = "rblrrr"

See also
follow_path, PATH_CONV.
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find term

find_term : (term -> bool) -> term -> term

Synopsis

Searches a term for a subterm that satisfies a given predicate.

Description
The largest subterm, in a depth-first, left-to-right search of the given term, that satisfies
the predicate is returned.

Failure
Fails if no subterm of the given term satisfies the predicate.

Example

# find_term is_var ‘x + y + z;;

val it : term = ‘x°¢

See also
find_terms.

find terms

find_terms : (term -> bool) -> term -> term list

Synopsis

Searches a term for all subterms that satisfy a predicate.

Description

A list of subterms of a given term that satisfy the predicate is returned.

Failure
Never fails.
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Example
This is a simple example:

# find_terms is_var ‘x + y + z¢;;
val it : term list = [‘z¢; ‘y; ‘x]

while the following shows that the terms returned may overlap or contain each other:
# find_terms is_comb ‘x +y + z‘;;

val it : term list = [‘(+) y¢; ‘g + 2z “(+) x¢; ‘x+y + z‘]

See also
find_term.

finished

finished : ’a 1list -> int * ’a list

Synopsis

Parser that checks emptiness of the input.

Description
The function finished tests if its input is the empty list, and if so returns a pair of zero
and that input. Otherwise it fails.

Failure
Fails on nonempty input.

Uses
This function is intended to check that some parsing operation has absorbed all the input.

Comments

This is one of a suite of combinators for manipulating “parsers”. A parser is simply
a function whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The
function should take a list of objects of type :’a (e.g. characters or tokens), parse as
much of it as possible from left to right, and return a pair consisting of the object derived
from parsing (e.g. a term or a special syntax tree) and the list of elements that were not
processed.
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See also
++, |||, >, a, atleast, elistof, fix, leftbin, listof, many, nothing,
possibly, rightbin, some.

FIRST

FIRST : tactic list -> tactic

Synopsis

Applies the first tactic in a tactic list that succeeds.

Description

When applied to a list of tactics [t1;...;tn], and a goal g, the tactical FIRST tries

applying the tactics to the goal until one succeeds. If the first tactic which succeeds is tm,
then the effect is the same as just tm. Thus FIRST effectively behaves as follows:

FIRST [tl1;...;tn] = t1 ORELSE ... ORELSE tn

Failure
The application of FIRST to a tactic list never fails. The resulting tactic fails iff all the
component tactics do when applied to the goal, or if the tactic list is empty.

See also
EVERY, ORELSE.

FIRST_ASSUM

FIRST_ASSUM : thm_tactic -> tactic

Synopsis
Applied theorem-tactic to first assumption possible.
Description
The tactic
FIRST_ASSUM ttac ([Al; ...; An], g)

has the effect of applying the first tactic which can be produced by ttac from the assump-
tions (.. |- A1), ..., (.. |- An) and which succeeds when applied to the goal. Failures
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of ttac to produce a tactic are ignored. The similar function FIRST_X_ASSUM is the same
except that the assumption used is then removed from the goal.

Failure
Fails if ttac (.. |- Ai) fails for every assumption Ai, or if the assumption list is empty,
or if all the tactics produced by ttac fail when applied to the goal.

Example
The tactic

FIRST_ASSUM (fun asm -> CONTR_TAC asm ORELSE ACCEPT_TAC asm)
searches the assumptions for either a contradiction or the desired conclusion. The tactic
FIRST_ASSUM MATCH_MP_TAC

searches the assumption list for an implication whose conclusion matches the goal, reduc-
ing the goal to the antecedent of the corresponding instance of this implication.

See also
ASSUM_LIST, EVERY, EVERY_ASSUM, FIRST, FIRST_X_ASSUM, MAP_EVERY, MAP_FIRST.

FIRST_CONV

FIRST_CONV : conv list -> conv

Synopsis

Apply the first of the conversions in a given list that succeeds.

Description

FIRST_CONV [c1;...;cn] ‘t¢ returns the result of applying to the term ‘t¢ the first con-

version ci that succeeds when applied to ‘t¢. The conversions are tried in the order in
which they are given in the list.

Failure
FIRST_CONV [c1;...;cn] ‘t* fails if all the conversions ci, ..., cn fail when applied to the
term ‘t‘. FIRST_CONV cs ‘t* also fails if cs is the empty list.
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Example
# FIRST_CONV [NUM_ADD_CONV; NUM_MULT_CONV; NUM_EXP_CONV] €12 * 12¢;;
val it : thm = |- 12 % 12 = 144

See also
ORELSEC.

FIRST_TCL

FIRST_TCL : thm_tactical list -> thm_tactical

Synopsis

Applies the first theorem-tactical in a list that succeeds.

Description

When applied to a list of theorem-tacticals, a theorem-tactic and a theorem, FIRST_TCL re-
turns the tactic resulting from the application of the first theorem-tactical to the theorem-
tactic and theorem that succeeds. The effect is the same as:

FIRST_TCL [ttl1l;...;ttln] = ttll ORELSE_TCL ... ORELSE_TCL ttln

Failure
FIRST_TCL fails iff each tactic in the list fails when applied to the theorem-tactic and
theorem. This is trivially the case if the list is empty.

See also
EVERY_TCL, ORELSE_TCL, REPEAT_TCL, THEN_TCL.

FIRST_X_ASSUM

FIRST_X_ASSUM : thm_tactic -> tactic

Synopsis

Applies theorem-tactic to first assumption possible, extracting assumption.
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Description
The tactic

FIRST_X_ASSUM ttac ([Al; ...; An]l, g)

has the effect of applying the first tactic which can be produced by ttac from the as-
sumptions (.. |- A1), ..., (.. |- An) and which succeeds when applied to the goal with
that assumption removed. Failures of ttac to produce a tactic are ignored. The similar
function FIRST_ASSUM is the same except that the assumption used is not removed from
the goal.

Failure
Fails if ttac (.. |- Ai) fails for every assumption Ai, or if the assumption list is empty,
or if all the tactics produced by ttac fail when applied to the goal.

Example
The tactic

FIRST_X_ASSUM MATCH_MP_TAC

searches the assumption list for an implication whose conclusion matches the goal, re-
moving that assumption and reducing the goal to the antecedent of the corresponding
instance of this implication.

See also
ASSUM_LIST, EVERY, EVERY_ASSUM, FIRST, FIRST_ASSUM, MAP_EVERY, MAP_FIRST.

fix

fix : string -> (’a -> ’b) -> ’a -> ’b

Synopsis

Applies parser and fails if it raises Noparse.

Description

Parsers raise Noparse to indicate that they were not able to make any progress at all. If p
is such a parser, fix s p gives a new parser where a Noparse exception from p will result
in a Failure s exception, but is otherwise the same as p.

Failure
The immediate call fix s p never fails, but the resulting parser may.
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Comments

This is one of a suite of combinators for manipulating “parsers”. A parser is simply
a function whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The
function should take a list of objects of type :’a (e.g. characters or tokens), parse as
much of it as possible from left to right, and return a pair consisting of the object derived
from parsing (e.g. a term or a special syntax tree) and the list of elements that were not
processed.

See also
++, |||, >, a, atleast, elistof, finished, leftbin, listof, many, nothing,
possibly, rightbin, some.

FIX_TAC

FIX_TAC : string -> tactic

Synopsis

Fixes universally quantified variables in goal.

Description

Given a string s indicating a sequence of variable names, FIX_TAC s performs the in-
troduction of the indicated universally quantified variables. It is not required to specify
the variables in any particular order. The syntax for the string argument s allows the
following patterns:

e a variable name varname (meaning introduce the variable varname)
e a pattern [newname/varname] (meaning introduce varname and call it newname)
e a pattern [newname] (meaning introduce the outermost variable and call it newname)

e afinal * (meaning introduce the remaining outermost universal quantified variables)

Failure
Fails if the string specifying the variables is ill-formed or if some of the indicated variables
are not present as outer universal quantifiers in the goal.
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Example
Here we fix just the variable a:

#g ‘'xa. a+x=x+a‘;;

# e (FIX_TAC "a");;
val it : goalstack = 1 subgoal (1 total)

‘Ix. a+x=x+ af

while here we rename one of the variables and fix all the others:
#g ‘labx.a+b+x=(a+Db)+xG;

# e (FIX_TAC "[d/x] *");;
val it : goalstack = 1 subgoal (1 total)

‘a+b+d=(a+b)+de

Here we fix an automatically generated variable and choose a meaningful name for it
#g ‘(@x. x=0) +0=0°;

# e SELECT_ELIM_TAC;;

val it : goalstack = 1 subgoal (1 total)

“1_75605. (!'x. x = 0 ==> _75605 = 0) ==> _75605 + 0 = O°

# e (FIX_TAC "[yl");;
val it : goalstack = 1 subgoal (1 total)

‘(1x. x =0==>y=0) ==>y+0=0°

See also
GEN, GEN_TAC, INTRO_TAC, STRIP_TAC, X_GEN_TAC.

flat
flat : ’a list list -> ’a list
Synopsis
Flattens a list of lists into one long list.
Description
flat [11;...;1n] returns (11 @ ... @ 1n) where each li is a list and @ is list concatena-

tion.
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Failure
Never fails.

Example

# flat [[1;2];[3;4;5]1;([61];;
val it : int list = [1; 2; 3; 4; 5; 6]

flush_goalstack

flush_goalstack : unit -> unit

Synopsis

Eliminate all but the current goalstate from the current goalstack.

Description

Normally, the current goalstack has the current goalstate at the head and all previous
intermediate states further back in the list. This function flush_goalstack() keeps just
the current goalstate and eliminates all previous states.

Failure
Fails if there is no current goalstate, i.e. if the goalstack is empty.

See also
b, g, r.

foldl

foldl : (’a -> ’b -> ’¢c -> ’a) -> ’a -> (’b, ’c) func -> ’a

Synopsis

Folds an operation iteratively over the graph of a finite partial function.

Description
This is one of a suite of operations on finite partial functions, type (’a,’b)func. These
may sometimes be preferable to ordinary functions since they permit more operations
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such as equality comparison, extraction of domain etc. If a finite partial function p has
graph [x1,y1; ...; xn,yn] then the application foldl f a p returns

fE ... (f (faxlyl)x2y2) ...) xnyn

Note that the order in which the pairs are operated on depends on the internal structure
of the finite partial function, and is often not the most obvious.

Failure

Fails if one of the embedded function applications does.

Example
The graph function is implemented based on the following invocation of foldl, with an
additional sorting phase afterwards:

#let £ = (1 |->2) (2 |=> 3);;
val £ : (int, int) func = <func>

# graph f;;
val it : (int * int) list = [(1, 2); (2, 3)]

# foldl (fun a x y -> (x,y)::a) [1 f;;
val it : (int * int) list = [(1, 2); (2, 3)]

Note that in this case the order happened to be the same, but this is an accident.
See also

|->, |=>, apply, applyd, choose, combine, defined, dom, foldr, graph,
is_undefined, mapf, ran, tryapplyd, undefine, undefined.

foldr

foldr : (Pa -> ’b -> ’c -> ’c) -> (’a, ’b) func -> ’c -> ’c

Synopsis

Folds an operation iteratively over the graph of a finite partial function.

Description
This is one of a suite of operations on finite partial functions, type (’a,’b)func. These
may sometimes be preferable to ordinary functions since they permit more operations
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such as equality comparison, extraction of domain etc. If a finite partial function p has
graph [x1,y1; ...; xn,yn] then the application foldl f p a returns

fxlyl (fx2y2 (£ x3y3(f ... (fxnyna) ...)))

Note that the order in which the pairs are operated on depends on the internal structure
of the finite partial function, and is often not the most obvious.

Failure
Fails if one of the embedded function applications does.

Example

# let £ = (1 |->2) (2 |=>3);;
val £ : (int, int) func = <func>

# graph f;;
val it : (int * int) list = [(1, 2); (2, 3)]

# foldr (fun x y a -> (x,y)::a) £ [1;;
val it : (int * int) list = [(2, 3); (1, 2)]

Note how the pairs are actually processed in the opposite order to the order in which
they are presented by graph. The order will in general not be obvious, and generally this
is applied to operations with appropriate commutativity properties.

See also
|->, |=>, apply, applyd, choose, combine, defined, dom, foldl, graph,
is_undefined, mapf, ran, tryapplyd, undefine, undefined.

follow_path

follow_path : string -> term -> term

Synopsis
Find the subterm of a given term indicated by a path.

Description
A call follow_path p t follows path p inside t and returns the subterm encountered. The
path is a string with the successive characters interpreted as follows:

e "b": take the body of an abstraction
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e "1": take the left (rator) path in an application

e "r": take the right (rand) path in an application

Failure

Fails if the path is not meaningful for the term, e.g. if a "b" is encountered for a subterm

that is not an abstraction.

Example

# follow_path "rrlr" ‘1 + 2 + 3 + 4 + 5%;;
val it : term = ‘3¢

See also
find_path, PATH_CONV.

forall

forall : (’a -> bool) -> ’a list -> bool

Synopsis

Tests a list to see if all its elements satisfy a predicate.

Description

forall p [x1;...;xn] returns true if (p xi) is true for all xi in the list.

returns false. If the list is empty, this function always returns true.

Failure
Never fails.

Example
# forall (fun x -> x <= 2) [0;1;2];;
val it : bool = true
# forall (fun x -> x <= 2) [1;2;3];;
val it : bool = false

See also
exists, find, tryfind, mem, assoc, rev_assoc.

Otherwise it
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forall?

forall2 : (’a -> ’b -> bool) -> ’a list -> ’b list -> bool

Synopsis

Tests if corresponding elements of two lists all satisfy a relation.

Description

forall p [x1;...;xn] [yl;...;yn] returns trueif (p xi yi) is true for all corresponding

xi and yi in the list. Otherwise, or if the lengths of the lists are different, it returns false.

Failure
Never fails.

Example
Here we check whether all elements of the first list are less than the corresponding element
of the second:

# forall2 (<) [1;2;3] [2;3;4];;
val it : bool = true

# forall2 (<) [1;2;3;4] [5;4;3;2];;
val it : bool = false

# forall2 (<) [1] [2;3];;
val it : bool = false

See also
exists, forall.

FORALL_UNWIND_CONV

FORALL_UNWIND_CONV : term -> thm

Synopsis

Eliminates universally quantified variables that are equated to something.
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Description

The conversion FORALL_UNWIND_CONV, applied to a formula with one or more universal
quantifiers around an implication, eliminates any quantifiers where the antecedent of
the implication contains a conjunct equating its variable to some other term (with that
variable not free in it).

Failure
FORALL_UNWIND_CONV tm fails if tm is not reducible according to that description.

Example

# FORALL_UNWIND_CONV
‘labcd.a+1=b/\b+1=c+1/\d=e==>a+b+c+d+e=2;
val it : thm =
|- ('a b c d.
a+1=b/\b+1=c+1/\Nd=e=>a+b+c+d+e=2) <=>
(lac. (@a+1)+1=c+1l==>a+(a+1)+c+e+e=2)
# FORALL_UNWIND_CONV ‘!'labc. a=b /\b=c==>a+b=>b+c‘;;
val it : thm =
|- labc.a=b/\b=c=>a+b=Db+c) <= (lc. c+c=c+c)

See also
UNWIND_CONV.

frees

frees : term -> term list

Synopsis

Returns a list of the variables free in a term.

Description

When applied to a term, frees returns a list of the free variables in that term. There
are no repetitions in the list produced even if there are multiple free instances of some
variables.

Failure
Never fails.
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Example

Clearly in the following term, x and y are free, whereas z is bound:

# frees ‘x =1 /\y=2/\'z. z > 0¢;
val it : term list = [‘x‘; ‘y‘]

See also
freesl, free_in, thm_frees, variables.

freesin

freesin : term list -> term -> bool

Synopsis

Tests if all free variables of a term appear in a list.

Description

The call freesin 1 t tests whether all free variables of t occur in the list 1. The special

case where 1 = [] will therefore test whether t is closed (i.e. contains no free variables).

Failure
Never fails.

Example

# freesin [] ‘!x y. x +y >= 0;;

val it : bool = true

# freesin [] ‘x +y >= 0°;;

val it : bool = false

# freesin [‘x:num‘; ‘y:num‘; ‘z:num‘] ‘x + y >= 0¢;;
val it : bool = true

Uses

Can be attractive to fold together some free-variable tests without explicitly constructing

the set of free variables in a term.

See also
frees, freesl, vfree_in.
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freesl

freesl : term list -> term list

Synopsis

Returns a list of the free variables in a list of terms.

Description

When applied to a list of terms, freesl returns a list of the variables which are free in
any of those terms. There are no repetitions in the list produced even if several terms
contain the same free variable.

Failure
Never fails.

Example
In the following example there are free instances of each of w, x and y, whereas the only
instances of z are bound:

# freesl [‘x +y =29 “lz. z > x - w'l;;

val it : term list = [‘y‘; ‘x‘; ‘w‘]

See also
frees, free_in, thm_frees.

FREEZE_THEN

FREEZE_THEN : thm_tactical

Synopsis

‘Freezes’ a theorem to prevent instantiation of its free variables.

Description
FREEZE_THEN expects a tactic-generating function f:thm->tactic and a theorem (A1 |- w)
as arguments. The tactic-generating function £ is applied to the theorem (w |- w). If
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this tactic generates the subgoal:

then applying FREEZE_THEN f (A1 |- w) to the goal (A ?- t) produces the subgoal:

A7t
== == FREEZE_THEN f (A1l |- w)
A7-t1

Since the term w is a hypothesis of the argument to the function £, none of the free
variables present in w may be instantiated or generalized. The hypothesis is discharged
by PROVE_HYP upon the completion of the proof of the subgoal.

Failure
Failures may arise from the tactic-generating function. An invalid tactic arises if the
hypotheses of the theorem are not alpha-convertible to assumptions of the goal.

Uses

Used in serious proof hacking to limit the matches achievable by rewriting etc.

See also
ASSUME, IMP_RES_TAC, PROVE_HYP, RES_TAC, REWR_CONV.

free in

free_in : term -> term -> bool

Synopsis

Tests if one term is free in another.

Description
When applied to two terms t1 and t2, the function free_in returns true if t1 is free in
t2, and false otherwise. It is not necessary that t1 be simply a variable.

Failure
Never fails.
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Example

In the following example free_in returns false because the x in SUC x in the second term
is bound:

# free_in ‘SUC x¢ ‘Ix. SUC x = x + 1¢;;
val it : bool = false

whereas the following call returns true because the first instance of x in the second term
is free, even though there is also a bound instance:

# free_in ‘x:bool‘ ‘x /\ (?x. x=T)°‘;;

val it : bool = true

Comments

If the term t1 is a variable, the rule vfree_in is more basic and probably more efficient.

See also

frees, freesin, freesl, thm_frees, vfree_in.

funpow

funpow : int -> (’a -> ’a) -> ’a -> ’a

Synopsis

Tterates a function a fixed number of times.

Description

funpow n f x applies £ to x, n times, giving the result £ (£ ... (f x)...) where the
number of £’s is n. funpow 0 f x returns x. If n is negative, it is treated as zero.

Failure

funpow n f x fails if any of the n applications of f fail.
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Example
Apply t1 three times to a list:

# funpow 3 tl [1;2;3;4;5];;
val it : int list = [4; 5]

Apply t1 zero times:

# funpow O tl [1;2;3;4;5];;
val it : int list = [1; 2; 3; 4; 5]

Apply t1 six times to a list of only five elements:

# funpow 6 tl [1;2;3;4;5];;
Exception: Failure "tl1".

F_F

(F_F) @ (Ca => ’b) -> (P’c => ’d) -> ’a *x ’c -=> ’b * ’d

Synopsis

Infix operator. Applies two functions to a pair: (f F_F g) (x,y) = (f x, g y).

Description

Failure
Never fails.

Example
Uses
Comments

See also
f_f_

f_f

ff_: (Ca->’b) -> (’c =>’d) -> ’a *x ’c > ’b * ’d
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Synopsis

Non-infix version of F_F.

See also
F_F.

g

g @ term -> goalstack

Synopsis

Initializes the subgoal package with a new goal which has no assumptions.

Description
The call

g (4 tIIl [4
is equivalent to
set_goal([], ‘“tm*)

and clearly more convenient if a goal has no assumptions. For a description of the subgoal
package, see set_goal.

Failure
Fails unless the argument term has type bool.

Example

# g ‘HD[1;2;3] = 1 /\ TL[1;2;3] = [2;3]‘;;
val it : goalstack = 1 subgoal (1 total)

‘HD [1; 2; 3] =1 /\ TL [1; 2; 3] = [2; 3]¢

See also
b, e, p, r, set_goal, top_goal, top_thm.

GABS_CONV

GABS_CONV : conv -> term -> thm
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Synopsis

Applies a conversion to the body of a generalized abstraction.

Description
If ¢ is a conversion that maps a term ‘t‘ to the theorem |- t = t’, then the conversion
ABS_CONV c maps generalized abstractions of the form ‘\vs. t‘ to theorems of the form:

[- (\vs. t) = (\vs. t?)

That is, ABS_CONV ¢ ‘\vs. t¢ applies c to the body of the generalized abstraction ‘\vs. t¢.
It is permissible to use it on a basic abstraction, in which case the effect is the same as
ABS_CONV.

Failure

Fails if applied to a term that is not a generalized abstraction (or a basic one), or if the
conversion c fails when applied to the term t, or if the theorem returned has assumptions
in which one of the variables in the abstraction varstruct is free.

Example
# GABS_CONV SYM_CONV ‘\(x,y,z). x +y + 2z =7;;
val it : thm = |- (\(x,y,2). x +y +z=7) = \(x,y,2). 7T=x +y + 2)

See also
ABS_CONV, RAND_CONV, RATOR_CONV, SUB_CONV.

gcd

gcd @ int -> int -> int

Synopsis

Computes greatest common divisor of two integers.

Description
The call gcd m n for two integers m and n returns the (nonnegative) greatest common
divisor of m and n. If m and n are both zero, it returns zero.

Failure
Never fails.
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Example
# gcd 10 12;;
val it : int = 2
# gcd 11 27;;
val it : int =1

# gcd (-33) 76;;
val it : int =1

# gcd 0 99;;
val it : int = 99
# gcd 0 O;;
val it : int = 0

See also

gcd_num, lcm_num.

gcd_num

gcd_num : num -> num -> num

Synopsis

Computes greatest common divisor of two unlimited-precision integers.

Description

The call gcd_num m n for two unlimited-precision (type num) integers m and n returns the
(positive) greatest common divisor of m and n. If both m and n are zero, it returns zero.

Failure

Fails if either number is not an integer (the type num supports arbitrary rationals).
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Example

# gcd_num (Int 35) (Int(-77));;
val it : num = 7

# gcd_num (Int 11) (Int 0);;
val it : num = 11

# gcd_num (Int 22 // Int 7) (Int 2);;

Exception: Failure "big_int_of_ratio".

See also
gcd, lcm_num.

GEN

GEN : term -> thm -> thm

Synopsis

Generalizes the conclusion of a theorem.

Description

When applied to a term x and a theorem A |- t, the inference rule GEN returns the
theorem A |- 'x. t, provided x is a variable not free in any of the assumptions. There

is no compulsion that x should be free in t.

____________ GEN ‘x° [where x is not free in A]

Failure
Fails if x is not a variable, or if it is free in any of the assumptions.

Example
This is a basic example:

# GEN ‘x:num‘ (REFL ‘x:num‘);;
val it : thm = |- !'x. x = x

while the following example shows how the above side-condition prevents the derivation
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of the theorem x <=> T |- !x. x <=> T, which is invalid.

# let t = ASSUME ‘x <=> T¢;;
val t : thm = x <=> T |- x <=> T

# GEN ‘x:bool‘ t;;

Exception: Failure "GEN".

See also
GENL, GEN_ALL, GEN_TAC, SPEC, SPECL, SPEC_ALL, SPEC_TAC.

GENERAL_REWRITE_CONV

GENERAL_REWRITE_CONV : bool -> (conv -> conv) -> gconv net -> thm list -> conv

Synopsis

Rewrite with theorems as well as an existing net.

Description

The call GENERAL_REWRITE_CONV b cnvl net thl will regard thl as rewrite rules, and if
b = true, also potentially as conditional rewrite rules. These extra rules will be incor-
porated into the existing net, and rewriting applied with a search strategy cnvl (e.g.
DEPTH_CONV).

Comments
This is mostly for internal use, but it can sometimes be more efficient when rewriting with

large sets of theorems repeatedly if they are first composed into a net and then augmented
like this.

See also
GEN_REWRITE_CONV, REWRITES_CONV.

GENL

GENL : term list -> thm -> thm
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Synopsis

Generalizes zero or more variables in the conclusion of a theorem.

Description

When applied to a term list [x1;...;xn] and a theorem A |- t, the inference rule GENL
returns the theorem A |- 'x1...xn. t, provided none of the variables xi are free in any

of the assumptions. It is not necessary that any or all of the xi should be free in t.

—————————————————— GENL ‘[x1;...;xn]° [where no xi is free in A]

Failure
Fails unless all the terms in the list are variables, none of which are free in the assumption
list.

Example

# SPEC ‘m + p:num‘ ADD_SYM;;
val it : thm = |- !n. (m + p) + n

n+m+p
# GENL [‘m:num‘; ‘p:num‘] it;;

val it : thm = |- Impn. (m+ p) +n=n+m+ p

See also
GEN, GEN_ALL, GEN_TAC, SPEC, SPECL, SPEC_ALL, SPEC_TAC.

genvar

genvar : hol_type —-> term

Synopsis
Returns a ‘fresh’ variable with specified type.

Description
When given a type, genvar returns a variable of that type whose name has not previously
been produced by genvar.

Failure
Never fails.
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Example
The following indicates the typical stylized form of the names (this should not be relied
on, of course):

# genvar ‘:bool‘;;
val it : term = ‘_B6799¢

There is no guard against users’ own variables clashing, but if the user avoids names in
the same lexical style, that can be guaranteed.

Uses

The unique variables are useful in writing derived rules, for specializing terms without
having to worry about such things as free variable capture. If the names are to be visible
to a typical user, the function variant can provide rather more meaningful names.

See also
variant.

GEN_ALL

GEN_ALL : thm -> thm

Synopsis

Generalizes the conclusion of a theorem over its own free variables.

Description

When applied to a theorem A |- t, the inference rule GEN_ALL returns the theorem
A |- 'x1...xn. t, where the xi are all the variables, if any, which are free in t but
not in the assumptions.

—————————————————— GEN_ALL

Failure
Never fails.
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Example

# let th = ARITH.RULE ‘x <y ==> 2 *x x +y + 1< 3 % y‘;;
val th : thm = |- x <y ==> 2 * x +y + 1< 3 *y

# GEN_ALL th;;
val it : thm = |- !x y. x <y ==> 2 *x x +y +1<3 %y

See also
GEN, GENL, GEN_ALL, SPEC, SPECL, SPEC_ALL, SPEC_TAC.

GEN_ALPHA_CONV

GEN_ALPHA_CONV : term -> term -> thm

Synopsis

Renames the bound variable of an abstraction or binder.

Description

The conversion GEN_ALPHA_CONV provides alpha conversion for lambda abstractions of the
form ‘\x. t¢, as well as other terms of the form ‘b (\x. t) ¢ such as quantifiers and other
binders. (Note that whether b is a constant or parses as a binder is irrelevant, though
this is usually the case in applications.) The call GEN_ALPHA_CONV ‘y‘ ‘\x. t‘ returns

[- (\x. t) = Q(\y. tly/x])
while GEN_ALPHA_CONV ‘y*¢ ‘b (\x. t) ¢ returns

- b (\x. t) =b (\y. tly/x]1)

Failure

GEN_ALPHA_CONV ‘y¢ tm fails if y is not a variable, or if tm does not have one of the forms
“Ax. tfor ‘b (\x. t)°¢, orif the types of x and y differ, or if y is already free in the body
t.

See also
alpha, ALPHA, ALPHA_CONV.
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GEN_BETA_CONV

GEN_BETA_CONV : term -> thm

Synopsis

Beta-reduces general beta-redexes (e.g. paired ones).
Description

The conversion GEN_BETA_CONV will perform beta-reduction of simple beta-redexes in the
manner of BETA_CONV, or of generalized beta-redexes such as paired redexes.

Failure
GEN_BETA_CONV tm fails if tm is neither a simple nor a tupled beta-redex.

Example
The following examples show the action of GEN_BETA_CONV on tupled redexes and others:

# GEN_BETA_CONV ‘(\x. x + 1) 2¢;;
val it : thm = |- (\x. x + 1) 2 =2 + 1

# GEN_BETA_CONV ‘(\(x,y,2). x +y + z) (1,2,3)¢;
val it : thm = |- (\(x,y,2z). x + y + z) (1,2,3)

[y

1+2+3

# GEN_BETA_CONV ‘(\[a;b;c]. b) [1;2;3]¢;;
val it : thm = |- (\[a; b; c]. b) [1; 2; 3] =2

However, it will fail if there is a mismatch between the varstruct and the argument, or
if it is unable to make sense of the generalized abstraction:

# GEN_BETA_CONV ‘(\(SUC n). n) 3°;;
Exception: Failure "term_pmatch".

# GEN_BETA_CONV ‘(\(x,y,z). x +y + z) (1,x)‘;;
Exception: Failure "dest_comb: not a combination".

See also
BETA_CONV, MATCH_CONV.

GEN_MESON_TAC

GEN_MESON_TAC : int -> int -> int -> thm list -> tactic



GEN_NNF_CONV 225

Synopsis

First-order proof search with specified search limits and increment.

Description

This is a slight generalization of the usual tactics for first-order proof search. Normally
MESON, MESON_TAC and ASM_MESON_TAC explore the search space by successively increasing a
size limit from 0, increasing it by 1 per step and giving up when a depth of 50 is reached.
The more general tactic GEN_MESON_TAC allows the user to specify the starting, finishing
and stepping value, but is otherwise identical to ASM_MESON_TAC. In fact, that is defined
as:

# let ASM_MESON_TAC = GEN_MESON_TAC O 50 1;;

Failure
If the goal is unprovable, GEN_MESON_TAC will fail, though not necessarily in a feasible
amount of time.

Uses

Normally, the defaults built into MESON_TAC and ASM_MESON_TAC are reasonably effective.
However, very occasionally a goal exhibits a small search space yet still requires a deep
proof, so you may find GEN_MESON_TAC with a larger “maximum” value than 50 useful.
Another potential use is to start the search at a depth that you know will succeed, to
reduce the search time when a proof is re-run. However, the inconvenience of doing this is
seldom repaid by a dramatic improvement in performance, since exploration is normally
at least exponential with the size bound.

See also
ASM_MESON_TAC, MESON, MESON_TAC, METIS_TAC.

GEN_NNF_CONV

GEN_NNF_CONV : bool -> conv * (term —-> thm * thm) -> conv

Synopsis

General NNF (negation normal form) conversion.

Description
The function GEN_NNF_CONV is a highly general conversion for putting a term in ‘negation
normal form’ (NNF). This means that other propositional connectives are eliminated
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in favour of conjunction (‘/\’), disjunction (‘\/’) and negation (‘’), and the negations
are pushed down to the level of atomic formulas, also through universal and existential
quantifiers, with double negations eliminated.

This function is very general. The first, boolean, argument determines how logical
equivalences ‘p <=> q’ are split. If the flag is true, toplevel equivalences are split “con-
junctively” into ‘(p \/ ~q@) /\ ("p \/ q)’, while if it is false they are split “disjunctively”
into ‘(p /\ @ \/ Cp /\ “q)’. At subformulas, the effect is modified appropriately in
order to make the resulting formula simpler in conjunctive normal form (if the flag is true)
or disjunctive normal form (if the flag is false).

The second argument has two components. The first is a conversion to apply to literals,
that is atomic formulas or their negations. The second is a slightly more elaborate variant
of the same thing, taking an atomic formula p and returning desired equivalences for both
p and “p in a pair. This interface avoids multiple recomputations in terms involving many
nested logical equivalences, where otherwise the core conversion would be called several
times.

Failure
Never fails but may have no effect.

Comments
The simple functions like NNF_CONV should be adequate most of the time, with this some-
what intricate interface being reserved for special situations.

See also
NNF_CONV, NNFC_CONV.

GEN_PART_MATCH

GEN_PART_MATCH : (term -> term) -> thm -> term -> thm

Synopsis

Instantiates a theorem by matching part of it to a term.

Description
When applied to a ‘selector’ function of type term -> term, a theorem and a term:

GEN_PART_MATCH fn (A |- !'x1...xn. t) tm

the function GEN_PART_MATCH applies fn to t’ (the result of specializing universally quan-
tified variables in the conclusion of the theorem), and attempts to match the resulting
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term to the argument term tm. If it succeeds, the appropriately instantiated version of
the theorem is returned. Limited higher-order matching is supported, and some attempt
is made to maintain bound variable names in higher-order matching. Unlike PART_MATCH,
free variables in the initial theorem that are unconstrained by the instantiation will be
renamed if necessary to avoid clashes with determined free variables.

Failure
Fails if the selector function fn fails when applied to the instantiated theorem, or if the
match fails with the term it has provided.

Example
See MATCH_MP_TAC for more basic examples. The following illustrates the difference with
that function

# let th = ARITHRULE ‘m =n ==>m + p =n + p‘;;
val th : thm = [-m=n==>m+p=n+p

# PART_MATCH lhand th ‘n:num = p‘;;
val it : thm = [-n=p==>n+p=p +p

# GEN_PART_MATCH lhand th ‘n:num = p‘;;

val it : thm = |- n =p ==>n + p’ =p + p’

See also
INST_TYPE, MATCH_MP, PART_MATCH, REWR_CONV, term_match.

GEN_REAL_ARITH

GEN_REAL_ARITH : ((thm list * thm list * thm list -> positivstellensatz -> thm) -> thm 1

Synopsis

Initial normalization and proof reconstruction wrapper for real decision procedure.

Description

The function GEN_REAL_ARITH takes two arguments, the first of which is an underlying
‘prover’, and the second a term to prove. This function is mainly intended for internal
use: the function REAL_ARITH is essentially implemented as

GEN_REAL_ARITH REAL_LINEAR_PROVER

The wrapper GEN_REAL_ARITH performs various initial normalizations, such as elimi-
nating max, min and abs, and passes to the prover a proof reconstruction function, say
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reconstr, and a triple of theorem lists to refute. The theorem lists are respectively a
list of equations of the form A_i |- p_i = &0, a list of non-strict inequalities of the form
B_j |- gq_i >= &0, and a list of strict inequalities of the form C_k |- r_k > &0, with both
sides being real in each case. The underlying prover merely needs to find a “Positivstellen-
satz” refutation, and pass the triple of theorems actually used and the Positivstellensatz
refutation back to the reconstruction function reconstr. A Positivstellensatz refutation
is essentially a representation of how to add and multiply equalities or inequalities chosen
from the list to reach a trivially false equation or inequality such as &0 > &0. Note that
the underlying prover may choose to augment the list of inequalities before proceeding
with the proof, e.g. REAL_LINEAR_PROVER adds theorems |- &0 <= &n for relevant numeral
terms &n. This is why the interface passes in a reconstruction function rather than simply
expecting a Positivstellensatz refutation back.

Failure
Never fails at this stage, though it may fail when subsequently applied to a term.

Example

As noted, the built-in decision procedure REAL_ARITH is a simple application. See also
the file Examples/sos.ml, where a more sophisticated nonlinear prover is plugged into
GEN_REAL_ARITHiD,pkME of REAL_LINEAR_PROVER.

Comments
Mainly intended for experts.

See also
REAL_ARITH, REAL_LINEAR_PROVER, REAL_POLY_CONV.

GEN_REWRITE_CONV

GEN_REWRITE_CONV : (conv -> conv) -> thm list -> conv

Synopsis

Rewrites a term, selecting terms according to a user-specified strategy.

Description

Rewriting in HOL is based on the use of equational theorems as left-to-right replacements
on the subterms of an object theorem. This replacement is mediated by the use of
REWR_CONV, which finds matches between left-hand sides of given equations in a term and
applies the substitution.
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Equations used in rewriting are obtained from the theorem lists given as arguments to
the function. These are at first transformed into a form suitable for rewriting. Conjunc-
tions are separated into individual rewrites. Theorems with conclusions of the form “~t°
are transformed into the corresponding equations ‘t = F¢. Theorems ‘t‘ which are not
equations are cast as equations of form ‘t = T¢.

If a theorem is used to rewrite a term, its assumptions are added to the assumptions of
the returned theorem. The matching involved uses variable instantiation. Thus, all free
variables are generalized, and terms are instantiated before substitution. Theorems may
have universally quantified variables.

The theorems with which rewriting is done are divided into two groups, to facilitate
implementing other rewriting tools. However, they are considered in an order-independent
fashion. (That is, the ordering is an implementation detail which is not specified.)

The search strategy for finding matching subterms is the first argument to the rule.
Matching and substitution may occur at any level of the term, according to the specified
search strategy: the whole term, or starting from any subterm. The search strategy also
specifies the depth of the search: recursively up to an arbitrary depth until no matches
occur, once over the selected subterm, or any more complex scheme.

Failure
GEN_REWRITE_CONV fails if the search strategy fails. It may also cause a non-terminating
sequence of rewrites, depending on the search strategy used.

Uses

This conversion is used in the system to implement all other rewritings conversions, and
may provide a user with a method to fine-tune rewriting of terms.

Example

Suppose we have a term of the form:
‘(1 +2) +3=(3+1) +2°

and we would like to rewrite the left-hand side with the theorem ADD_SYM without changing
the right hand side. This can be done by using:

GEN_REWRITE_CONV (RATOR_CONV o ONCE_DEPTH_CONV) [ADD_SYM] mythm

Other rules, such as ONCE_REWRITE_CONV, would match and substitute on both sides, which
would not be the desirable result.

See also
ONCE_REWRITE_CONV, PURE_REWRITE_CONV, REWR_CONV, REWRITE_CONV.
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GEN_REWRITE_RULE

GEN_REWRITE_RULE : (conv -> conv) -> thm list -> thm -> thm

Synopsis

Rewrites a theorem, selecting terms according to a user-specified strategy.

Description

Rewriting in HOL is based on the use of equational theorems as left-to-right replacements
on the subterms of an object theorem. This replacement is mediated by the use of
REWR_CONV, which finds matches between left-hand sides of given equations in a term and
applies the substitution.

Equations used in rewriting are obtained from the theorem lists given as arguments to
the function. These are at first transformed into a form suitable for rewriting. Conjunc-
tions are separated into individual rewrites. Theorems with conclusions of the form ¢~t°
are transformed into the corresponding equations ‘t = F¢. Theorems ‘t‘ which are not
equations are cast as equations of form ‘t = T¢.

If a theorem is used to rewrite the object theorem, its assumptions are added to the
assumptions of the returned theorem, unless they are alpha-convertible to existing as-
sumptions. The matching involved uses variable instantiation. Thus, all free variables are
generalized, and terms are instantiated before substitution. Theorems may have univer-
sally quantified variables.

The theorems with which rewriting is done are divided into two groups, to facilitate
implementing other rewriting tools. However, they are considered in an order-independent
fashion. (That is, the ordering is an implementation detail which is not specified.)

The search strategy for finding matching subterms is the first argument to the rule.
Matching and substitution may occur at any level of the term, according to the specified
search strategy: the whole term, or starting from any subterm. The search strategy also
specifies the depth of the search: recursively up to an arbitrary depth until no matches
occur, once over the selected subterm, or any more complex scheme.

Failure
GEN_REWRITE_RULE fails if the search strategy fails. It may also cause a non-terminating
sequence of rewrites, depending on the search strategy used.

Uses
This rule is used in the system to implement all other rewriting rules, and may provide a
user with a method to fine-tune rewriting of theorems.
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Example
Suppose we have a theorem of the form:

mythm = |- (1 + 2) + 3 = (3 + 1) + 2

and we would like to rewrite the left-hand side with the theorem ADD_SYM without changing
the right hand side. This can be done by using:

GEN_REWRITE_RULE (RATOR_CONV o ONCE_DEPTH_CONV) [] [ADD_SYM] mythm

Other rules, such as ONCE_REWRITE_RULE, would match and substitute on both sides, which
would not be the desirable result.

See also
ASM_REWRITE_RULE, ONCE_REWRITE_RULE, PURE_REWRITE_RULE, REWR_CONV,
REWRITE_RULE.

GEN_REWRITE_TAC

GEN_REWRITE_TAC : (conv -> conv) —-> thm list -> tactic

Synopsis

Rewrites a goal, selecting terms according to a user-specified strategy.

Description

Distinct rewriting tactics differ in the search strategies used in finding subterms on
which to apply substitutions, and the built-in theorems used in rewriting. In the case
of REWRITE_TAC, this is a recursive traversal starting from the body of the goal’s conclu-
sion part, while in the case of ONCE_REWRITE_TAC, for example, the search stops as soon
as a term on which a substitution is possible is found. GEN_REWRITE_TAC allows a user to
specify a more complex strategy for rewriting.

The basis of pattern-matching for rewriting is the notion of conversions, through the
application of REWR_CONV. Conversions are rules for mapping terms with theorems equating
the given terms to other semantically equivalent ones.

When attempting to rewrite subterms recursively, the use of conversions (and there-
fore rewrites) can be automated further by using functions which take a conversion
and search for instances at which they are applicable. Examples of these functions are
ONCE_DEPTH_CONV and RAND_CONV. The first argument to GEN_REWRITE_TAC is such a func-
tion, which specifies a search strategy; i.e. it specifies how subterms (on which substitu-
tions are allowed) should be searched for.
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The second argument is a list of theorems used for rewriting. The order in which these
are used is not specified. The theorems need not be in equational form: negated terms,
say "~ t", are transformed into the equivalent equational form "t = F", while other non-
equational theorems with conclusion of form "t" are cast as the corresponding equations
"t = T". Conjunctions are separated into the individual components, which are used as
distinct rewrites.

Failure

GEN_REWRITE_TAC fails if the search strategy fails. It may also cause a non-terminating
sequence of rewrites, depending on the search strategy used. The resulting tactic is invalid
when a theorem which matches the goal (and which is thus used for rewriting it with) has a
hypothesis which is not alpha-convertible to any of the assumptions of the goal. Applying
such an invalid tactic may result in a proof of a theorem which does not correspond to
the original goal.

Uses
Detailed control of rewriting strategy, allowing a user to specify a search strategy.

Example
Given a goal such as:

?7-a-(b+c)=a-(c+Db)

we may want to rewrite only one side of it with a theorem, say ADD_SYM. Rewriting tactics
which operate recursively result in divergence; the tactic ONCE_REWRITE_TAC [ADD_SYM]
rewrites on both sides to produce the following goal:

?7-a-(c+b)=a-(b+c)

as ADD_SYM matches at two positions. To rewrite on only one side of the equation, the
following tactic can be used:

GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [ADD_SYM]
which produces the desired goal:

?7-a-(c+b)=a- (c+b)
See also

ASM_REWRITE_TAC, GEN_REWRITE_RULE, ONCE_REWRITE_TAC, PURE_REWRITE_TAC,
REWR_CONV, REWRITE_TAC,
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GEN_SIMPLIFY_CONV

GEN_SIMPLIFY_CONV : strategy -> simpset -> int -> thm list -> conv

Synopsis

General simplification with given strategy and simpset and theorems.

Description

The call GEN_SIMPLIFY_CONV strat ss n thl incorporates the rewrites and conditional
rewrites derived from thl into the simpset ss, then simplifies using that simpset, control-
ling the traversal of the term by strat, and starting at level n.

Failure
Never fails unless some component is malformed.

See also
GEN_REWRITE_CONV, ONCE_SIMPLIFY_CONV, SIMPLIFY_CONV, SIMP_CONV, SIMP_RULE,
SIMP_TAC.

GEN_TAC

GEN_TAC : tactic

Synopsis

Strips the outermost universal quantifier from the conclusion of a goal.

Description

When applied to a goal A 7- 'x. t, the tactic GEN_TAC reduces it to A ?- t[x’/x] where
x’ is a variant of x chosen to avoid clashing with any variables free in the goal’s assumption
list. Normally x’ is just x.

A7- !'x. t

GEN_TAC
A 7- t[x’/x]

Failure
Fails unless the goal’s conclusion is universally quantified.
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Uses

The tactic REPEAT GEN_TAC strips away any universal quantifiers, and is commonly used
before tactics relying on the underlying term structure.

See also
FIX_TAC, GEN, GENL, GEN_ALL, INTRO_TAC, SPEC, SPECL, SPEC_ALL, SPEC_TAC,
STRIP_TAC, X_GEN_TAC.

get_const_type

get_const_type : string -> hol_type

Synopsis

Gets the generic type of a constant from the name of the constant.

Description
get_const_type "c" returns the generic type of ‘c¢, if ‘c¢ is a constant.

Failure
get_const_type st fails if st is not the name of a constant.

Example
# get_const_type "COND";;

val it : hol_type = ‘:bool->A->A->A

See also
dest_const, is_const.

get_infix_status

get_infix_status : string -> int * string

Synopsis

Get the precedence and associativity of an infix operator.
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Description

Certain identifiers are treated as infix operators with a given precedence and associativity
(left or right). The call get_infix_status "op" looks up op in this list and returns a pair
consisting of its precedence and its associativity; the latter is one of the strings "left" or
"right".

Failure

Fails if the given string does not have infix status.
Example

# get_infix_status "/";;

val it : int * string = (22, "left")
# get_infix_status "UNION";;

val it : int * string = (16, "right")

See also

infixes, parse_as_infix, unparse_as_infix.

get_type_arity

get_type_arity : string -> int

Synopsis

Returns the arity of a type constructor.

Description

When applied to the name of a type constructor, arity returns its arity, i.e. how many
types it is supposed to be applied to. Base types like :bool are regarded as constructors
with zero arity.

Failure

Fails if there is no type constructor of that name.
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Example

# get_type_arity "bool";;
val it : int = 0

# get_type_arity "fun";;
val it : int = 2

# get_type_arity "nocon'";;
Exception: Failure "find".

See also
new_type, new_type_definition, types.

graph

graph : (’a, ’b) func -> (a * ’b) list

Synopsis

Returns the graph of a finite partial function.

Description

This is one of a suite of operations on finite partial functions, type (’a,’b)func. These
may sometimes be preferable to ordinary functions since they permit more operations
such as equality comparison, extraction of domain etc. The graph function takes a finite

partial function that maps x1 to y1, ..., xn to yn and returns its graph as a set/list:
[x1,y1; ...; xn,yn].

Failure

Attempts to sort the resulting list, so may fail if the type of the pairs does not permit
comparison.

Example

# graph undefined;;

val it : (Pa * ’b) list = []

# graph (1 [=> 2);;

val it : (int * int) list = [(1, 2)]

See also
|->, |=>, apply, applyd, choose, combine, defined, dom, foldl, foldr,
is_undefined, mapf, ran, tryapplyd, undefine, undefined.
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GSYM

GSYM : thm -> thm

Synopsis

Reverses the first equation(s) encountered in a top-down search.

Description

The inference rule GSYM reverses the first equation(s) encountered in a top-down search
of the conclusion of the argument theorem. An equation will be reversed iff it is not
a proper subterm of another equation. If a theorem contains no equations, it will be
returned unchanged.

A |- (s1 = 82)...(t1 = t2)

———————————————————————————————— GSYM

A |- ..(s2 =s1)...(t2 = t1)
Failure

Never fails, and never loops infinitely.

Example
# ADD; ;
val it : thm = |- ('n. 0O + n=1n) /\ (mn. SUCm + n = SUC (m + n))
# GSYM ADD;;
val it : thm = |- (!n. n =0+ 1n) /\ (!mn. SUC (m + n) = SUC m + n)

See also
REFL, SYM.

HAS_SIZE_CONV

HAS_SIZE_CONV : term -> thm

Synopsis

Converts statement about set’s size into existential enumeration.
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Description
Given a term of the form ‘s HAS_SIZE n‘ for a numeral n, the conversion HAS_SIZE_CONV
returns an equivalent form postulating the existence of n pairwise distinct elements that
make up the set.

Failure

Fails if applied to a term of the wrong form.
Example

# HAS_SIZE_CONV ‘s HAS_SIZE 1°;;

val it : thm = |- s HAS_SIZE 1 <=> (7a. s = {a})
# HAS_SIZE_CONV ‘t HAS_SIZE 3°¢;;

val it : thm =

|- t HAS_SIZE 3 <=>
(7a a’ a’’. "(a’ =a’’) /\ "(a@a=2a) /\ "(a=2a’) /\t =A{a, a’, a’’})

HAS_SIZE_DIMINDEX_RULE

HAS_SIZE_DIMINDEX_RULE : hol_type —> thm

Synopsis
Computes the dimindex for a standard finite type.

Description

Finite types parsed and printed as numerals are provided, and this conversion when
applied to such a type of the form ‘:n¢ returns the theorem |- (:n) HAS_SIZE n where
the (:n) is the customary HOL Light printing of the universe set UNIV:n->bool, the second
n is a numeral term and HAS_SIZE is the usual cardinality relation.

Failure
Fails if the type provided is not a standard finite type.
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Example
Here we use a 64-element type, perhaps useful for indexing the bits of a word:

# HAS_SIZE_DIMINDEX_RULE ‘:64°¢;;
val it : thm = |- (:64) HAS_SIZE 64

See also
dest_finty, DIMINDEX_CONV, DIMINDEX_TAC, mk_finty.

hd

hd : ’a list -> ’a

Synopsis
Computes the first element (the head) of a list.

Description
hd [x1;...;xn] returns x1.

Failure
Fails with hd if the list is empty.

See also
tl, el.

help

help : string -> unit

Synopsis

Displays help on a given identifier in the system.

Description

A call help "s" will attempt to display the help file associated with a particular identifier
s in the system. If there is no entry for identifier s, the call responds instead with some
possibly helpful suggestions as to what you might have meant, based on a simple ‘edit
distance’ criterion.
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The built-in help files are stored in the Help subdirectory of HOL Light. Users can
add additional locations by modifying help_path. Normally the help file for an identifier
name would be called name.hlp, but there are a few exceptions, because some identifiers
have characters that cannot be put in filenames and some platforms like Cygwin have
inadequate case sensitivity.

Failure

Never fails.
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Example
Here is a successful call:

# help "lhs";;

lhs : term -> term

SYNOPSIS

Returns the left-hand side of an equation.
DESCRIPTION

lhs ‘tl1 = t2¢ returns ‘t1°.

FAILURE CONDITIONS

Fails with lhs if the term is not an equation.
EXAMPLES

# lhs ‘2 + 2 = 4°¢;;
val it : term = ‘2 + 2°¢

SEE ALSO
dest_eq, lhand, rand, rhs.

]
~
~

val it : unit
and here is one for a non-existent identifier:

# help "IMP_TAC";;

No help found for "IMP_TAC"; did you mean:
help "SIMP_TAC";;

help "MP_TAC";;
help "IMP_TRANS";;

See also
help_path, hol_version.
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help_path

help_path : string list ref

Synopsis
Path where HOL Light tries to find help files.

Description

The reference variable help_path gives a list of directories. When using the online help
function, HOL Light will search in these places for help files. An initial dollar sign $ in
each path is interpreted as a reference to the current setting of hol_dir. To get an actual
$ at the start of the filename, actually use two dollar signs $$.

Failure
Not applicable.

See also
file_on_path, help, hol_dir, hol_expand_directory, load_on_path, load_path,
loads, loadt.

hide_constant

hide_constant : string -> unit

Synopsis

Stops the quotation parser from recognizing a constant.

Description

A call hide_constant "c" where c is the name of a constant, will prevent the quotation
parser from parsing it as such; it will just be parsed as a variable. The effect can be
reversed by unhide_constant "c".

Failure
Fails if the given name is not a constant of the current theory, or if the named constant
is already hidden.
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Comments

The hiding of a constant only affects the quotation parser; the constant is still there in a
theory, and may not be redefined.

See also

unhide_constant.

HIGHER_REWRITE_CONV

HIGHER_REWRITE_CONV : thm list -> bool -> term -> thm

Synopsis

Rewrite once using more general higher order matching.

Description

The call HIGHER_REWRITE_CONV [thi1;...;thn] flag t will find a higher-order match for
the whole term t against one of the left-hand sides of the equational theorems in the list
[thi;...;thn]. Each such theorem should be of the form |- P pat <=> t where £ is a
variable. A free subterm pat’ of t will be found that matches (in the usual restricted
higher-order sense) the pattern pat. If the flag argument is true, this will be some topmost
matchable term, while if it is false, some innermost matchable term will be selected. The
rewrite is then applied by instantiating P to a lambda-term reflecting how t is built up
from pat’, and beta-reducing as in normal higher-order matching. However, this process
is more general than HOL Light’s normal higher-order matching (as in REWRITE_CONV
etc., with core behaviour inherited from PART_MATCH), because pat’ need not be uniquely
determined by bound variable correspondences.

Failure

Fails if no match is found.
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Example
The theorem COND_ELIM_THM can be applied to eliminate conditionals:

# COND_ELIM_THM; ;
val it : thm = |- P (if c then x else y) <=> (¢ ==> P x) /\ ("c ==> P y)

in a term like this:

# let t = ‘z = if x = 0 then if y = O then O else x + y else x + y;;
val t : term = ‘z = (if x = O then if y = 0 then O else x + y else x + y)°

either outermost first:

# HIGHER_REWRITE_CONV[COND_ELIM_THM] true t;;
val it : thm =
|-z = (if x = 0 then if y = 0 then 0 else x + y else x + y) <=>
(x =0==>2z=(if y = 0 then 0 else x + y)) /\ (C(x =0) ==> 2z =x + y)

or innermost first:

# HIGHER_REWRITE_CONV[COND_ELIM_THM] false t;;
val it : thm =
|-z = (if x = 0 then if y = O then 0 else x + y else x + y) <=>
(y =0==>2z= (if x = 0 then 0 else x + y)) /\
("(y = 0) ==> z = (if x = 0 then x + y else x + y))

Uses
Applying general simplification patterns without manual instantiation.

See also
PART_MATCH, REWRITE_CONV.

HINT_EXISTS_TAC

HINT_EXISTS_TAC : tactic

Synopsis

Attemps to instantiate existential goals from context.

Description
Given a goal which contains some subformula of the form ?x_1... x_k. P_.1 y"1_1 ... y"1_m1 /\ ... /\' P
in a context where P_i t_1 ... t_mi holds for some t_1,...,t_mi, then instantiates
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x_il,...,x_i_mi with t_1,...,t_mi. The “context” consists in the assumptions or in the
premisses of the implications where the existential subformula occurs.

Note: it is enough that just P t holds, not the complete existentially quantified formula.
As the name suggests, we just use the context as a “hint” but it is (in most general uses)
not sufficient to solve the existential completely: if this is doable automatically, then other
techniques can do the job in a better way (typically MESON).

Failure
Fails if no instantiation is found from the context.

Example

#g ‘'PQRS.P1/\Q2/\R3==>7%xy.Px/\Ry/\Sxy‘;;
val it : goalstack = 1 subgoal (1 total)

‘P QRS.P1/NQ2/\N\R3==>(7xy.Px/\Ry/\Sxy)f

# e HINT_EXISTS_TAC;;
val it : goalstack = 1 subgoal (1 total)

‘P QRS.P1/ANQ2/\R3==>351 3°

Uses

When facing an existential goal, it happens often that the context “suggests” a candidate
to be a witness. In many cases, this is because the existential goal is partly satisfied by a
proposition in the context. However, often, the context does not allow to automatically
prove completely the existential using this witness. Therefore, usual automation tactics
are useless. Usually, in such circumstances, one has to provide the witness explicitly. This
is tedious and time-consuming whereas this witness can be found automatically from the
context, this is what this tactic allows to do.

See also
EXISTS_TAC, IMP_REWRITE_TAC, SIMP_TAC.

hol_dir

hol_dir : string ref

Synopsis
Base directory in which HOL Light is installed.
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Description

This reference variable holds the directory (folder) for the base of the HOL Light distri-
bution. This information is used, for example, when loading files with loads. Normally
set to the current directory when HOL Light is loaded or built, but picked up from the
system variable HOLLIGHT_DIR if it is defined.

Failure
Not applicable.

Example
On my laptop, the value is:

# 'hol_dir;;
val it : string = "/home/johnh/holl"

Uses

Ensuring that HOL Light can find any libraries or other system files needed to support
proofs.

See also
load_path, loads.

hol_expand_directory

hol_expand_directory : string —> string

Synopsis
Modifies directory name starting with $ to include HOL directory

Description

The function hol_expand_directory takes a string indicating a directory. If it does not
begin with a dollar sign $, the string is returned unchanged. Otherwise, the initial dollar
sign is replaced with the current HOL Light directory hol_dir. To get an actual $ at the
start of the returned directory, actually use two dollar signs $$.

Failure
Never fails.
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Example

# hol_dir;;

val it : string ref = {\smalll\verbjcontents = "/home/johnh/holl"%}
# hol_expand_directory "$/Help";;

val it : string = "/home/johnh/holl/Help"

See also
file_on_path, help_path, load_on_path, load_path.

hol version

hol_version : string

Synopsis
A string indicating the version of HOL Light.

Description
This string is a numeric version number for HOL Light.

Failure
Not applicable.

Example
On my laptop, the value is:

# hol_version;;

val it : string = "2.10"

See also
startup_banner.

hyp

hyp : thm -> term list
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Synopsis
Returns the hypotheses of a theorem.

Description
When applied to a theorem A |- t, the function hyp returns A, the list of hypotheses of
the theorem.

Failure
Never fails.

Example

# let th = ADD_ASSUM ‘x
val th : thm =y = 2, x

1¢ (ASSUME ‘y = 29);;
1 1-y=2

# hyp th;;
val it : term list = [‘y = 2¢; ‘x = 1]

See also
dest_thm, concl.

HYP_TAC

HYP_TAC : string -> (thm -> thm) -> tactic

Synopsis
Applies a rule to a named hypothesis.

Description
Given a string s and a rule r, HYP_TAC s r applies r to the hypothesis labeled 1 as
specified by the pattern s which can be of one of the following form:

e "1: patt”, meaning apply r to hypothesis 1 and destruct it with patt, like REMOVE_THEN 1 (DESTRUCT_T.
e alabel "1", meaning apply r to the hypothesis 1, a shorthand for HYP_TAC "1 : 1" r

e "1 : patt”, meaning apply r to hypothesis 1 and destruct it with patt but keep
hypothesis 1, like USE_THEN 1 (DESTRUCT_TAC patt o r)
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Failure

Applied to its arguments fails if the pattern is ill-formed. When executed as a tactic, fails
if it refers to non-existent hypothesis or the rule fails or do not produce a theorem of a
suitable form.

Example
Here we use the theorem MEMBER_NOT_EMPTY to obtain an element a from a non empty set
S

# g ‘!'s. “(s = {\small\verb’%}) ==> (minimal n. n IN s) IN s‘;;

# e (INTRO_TAC "!s; s");;

# e (HYP_TAC "s : @a. +" (REWRITE_RULE[GSYM MEMBER_NOT_EMPTY]));;
val it : goalstack = 1 subgoal (1 total)

‘a IN s ==> (minimal n. n IN s) IN s°

next we can finish with this goal with

# e (MESON_TAC[MINIMALI);;

Here we derive that a strictly positive number is a non negative number
# g ‘'x. &0 < x ==> &0 <= inv x°;;
# e (INTRO_TAC "!x; xgt");;

# e (HYP_TAC "xgt -> xge" (MATCH_MP REAL_LT_IMP_LE));;
val it : goalstack = 1 subgoal (1 total)

0 [‘&0 < x‘] (xgt)
1 [‘&0 <= x‘] (xge)

‘%0 <= inv x°
then we can solve the goal with

# e (HYP SIMP_TAC "xge" [REAL_LE_INV]);;

See also
DESTRUCT_TAC, HYP, LABEL_TAC, REMOVE_THEN, USE_THEN

HYP

HYP : (thm list -> tactic) -> string -> thm list -> tactic
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Synopsis

Augments a tactic’s theorem list with named assumptions.

Description

If tac is a tactic that expects a list of theorems as its arguments, e.g. MESON_TAC,
REWRITE_TAC or SET_TAC, then HYP tac s converts it to a tactic where that list is aug-
mented by the goal’s assumptions specified in the string argument s, which is a list of
alphanumeric identifiers separated by whitespace, e.g. "labl lab2".

Failure

When fully applied to a goal, it will fail if the string specifying the labels is ill-formed, if
any of the specified assumption labels are not found in the goal, or if the tactic itself fails
on the combined list of theorems.

Example
With the following trivial goal

#g‘p/\Nqgq/\r==>r/\q;

We may start by assuming and labelling the hypotheses, which may conveniently be
done using INTRO_TAC:

# e(INTRO_TAC "asm_p asm_qg asm_r");;
val it : goalstack = 1 subgoal (1 total)

4

0 [‘p‘] (asm_p)
1 [‘q‘] (asm_q)
2 [‘r‘] (asm_r)

‘ro/\ q(

The resulting goal can trivially be solved in any number of ways, but if we want to
ensure that MESON_TAC uses exactly the assumptions relating to q and r and no extraneous
ones, we could do:

# e(HYP MESON_TAC "asm_r asm_q" [1);;
val it : goalstack = No subgoals

See also
ASM, ASSUM_LIST, FREEZE_THEN, LABEL_TAC, MESON_TAC, REMOVE_THEN, REWRITE_TAC,
SET_TAC, USE_THEN.
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I : ’a->"a

Synopsis

Performs identity operation: I x = x.

Failure
Never fails.

See also
C, K, F_F, o, W.

ideal cofactors

ideal_cofactors : (term -> num) * (num -> term) * conv * term * term * term * term * ter

Synopsis

Generic procedure to compute cofactors for ideal membership.

Description

The ideal_cofactors function takes first the same set of arguments as RING, defining a
suitable ring for it to operate over. (See the entry for RING for details.) It then yields a
function that given a list of terms [p1; ...; pn] and another term p, all of which have the
right type to be considered as polynomials over the ring, attempts to find a corresponding
set of ‘cofactors’ [ql; ...; qn] such that the following is an algebraic ring identity:

p=pl*xql+ ... +pn*aqgn

That is, it provides a concrete certificate for the fact that p is in the ideal generated by
the p1,...,pn. If p is not in this ideal, the function will fail.

Failure
Fails if the ‘polynomials’ are of the wrong type, or if ideal membership does not hold.

Example
For an example of the real-number instantiation in action, see real_ideal_cofactors.
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See also
real_ideal_cofactors, RING, RING_AND_IDEAL_CONV.

ignore_constant_varstruct

ignore_constant_varstruct : bool ref

Synopsis

Interpret a simple varstruct as a variable, even if there is a constant of that name.

Description

As well as conventional abstractions ‘\x. t*¢ where x is a variable, HOL Light permits gen-
eralized abstractions where the varstruct is a more complex term, e.g. ‘\(x,y). x + y°.
This includes the degenerate case of just a constant. However, one may want a regular
abstraction whose bound variable happens to be in use as a constant. When parsing a
quotation "\c. t" where c is the name of a constant, HOL Light interprets it as a simple
abstraction with a variable ¢ when the flag ignore_constant_varstruct is true, as it is
by default. It will interpret it as a degenerate generalized abstraction, only useful when
applied to the constant c, if the flag is false.

Failure
Not applicable.

See also
GEN_BETA_CONV, is_abs, is_gabs.

implode

implode : string list -> string

Synopsis

Concatenates a list of strings into one string.

Description

implode [s1;...;sn] returns the string formed by concatenating the strings s1 ... sn.

If n is zero (the list is empty), then the empty string is returned.
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Failure
Never fails; accepts empty or multi-character component strings.

Example

# implode [ueu ; an ; uan ; nmu ; upn ; ||1|| ; uen] s

val it : string = "example"
# lmplode [lleXll . Ila|| . llmplll Snn, "ell] ..
val it : string = "example"

See also

explode.

IMP_ANTISYM_RULE

IMP_ANTISYM_RULE : thm -> thm -> thm

Synopsis

Deduces equality of boolean terms from forward and backward implications.

Description
When applied to the theorems A1 |- t1 ==> t2 and A2 |- t2 ==> t1, the inference rule
IMP_ANTISYM_RULE returns the theorem A1 u A2 |- t1 <=> t2.

AL |- t1 ==> t2 A2 |- t2 ==> t1
————————————————————————————————————— IMP_ANTISYM_RULE

Al u A2 |- t1 <=> 2

Failure
Fails unless the theorems supplied are a complementary implicative pair as indicated

above.
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Example
# let thl = TAUT ‘p /\ q ==> q /\ p¢
and th2 = TAUT ‘q /\ p ==> p /\ q‘;;

val thl : thm = |- p /\ g ==>q /\ p
val th2 : thm I-q/\p==>p/\q

# IMP_ANTISYM_RULE thl th2;;
val it : thm = |- p /\ g <=>q /\ p

See also
EQ_IMP_RULE, EQ_MP, EQ_TAC.

IMP_RES_THEN

IMP_RES_THEN : thm_tactical

Synopsis

Resolves an implication with the assumptions of a goal.

Description
The function IMP_RES_THEN is the basic building block for resolution in HOL. This is not
full higher-order, or even first-order, resolution with unification, but simply one way simul-
taneous pattern-matching (resulting in term and type instantiation) of the antecedent of
an implicative theorem to the conclusion of another theorem (the candidate antecedent).

Given a theorem-tactic ttac and a theorem th, the theorem-tactical IMP_RES_THEN pro-
duces a tactic that, when applied to a goal A 7- g attempts to match each antecedent
ui to each assumption aj |- aj in the assumptions A. If the antecedent ui of any im-
plication matches the conclusion aj of any assumption, then an instance of the theorem
Ai u {aj} |- vi, called a ‘resolvent’, is obtained by specialization of the variables x1, ...,
xn and type instantiation, followed by an application of modus ponens. There may be
more than one canonical implication and each implication is tried against every assump-
tion of the goal, so there may be several resolvents (or, indeed, none).

Tactics are produced using the theorem-tactic ttac from all these resolvents (failures
of ttac at this stage are filtered out) and these tactics are then applied in an unspecified
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sequence to the goal. That is,

IMP_RES_THEN ttac th (A 7- g)

has the effect of:
MAP_EVERY (mapfilter ttac [... ; (Ai u {aj} |- vi) ; ...1) (A ?- g)

where the theorems Ai u {aj} |- vi are all the consequences that can be drawn by a
(single) matching modus-ponens inference from the assumptions of the goal A 7- g and the
implications derived from the supplied theorem th. The sequence in which the theorems
Ai u {aj} |- vi are generated and the corresponding tactics applied is unspecified.

Failure

Evaluating IMP_RES_THEN ttac th fails if the supplied theorem th is not an implication,
or if no implications can be derived from th by the transformation process involved.
Evaluating IMP_RES_THEN ttac th (A ?- g) fails if no assumption of the goal A 7- g can
be resolved with the implication or implications derived from th. Evaluation also fails if
there are resolvents, but for every resolvent Ai u {aj} |- vi evaluating the application
ttac (A1 u {aj} |- vi) fails—that is, if for every resolvent ttac fails to produce a tactic.
Finally, failure is propagated if any of the tactics that are produced from the resolvents
by ttac fails when applied in sequence to the goal.

Example

The following example shows a straightforward use of IMP_RES_THEN to infer an equational
consequence of the assumptions of a goal, use it once as a substitution in the conclusion
of goal, and then ‘throw it away’. Suppose the goal is:

#g ‘lan.a+n=a==>1!k. k-n=k‘;;
and we start out with:

# e(REPEAT GEN_TAC THEN DISCH_TAC);;
val it : goalstack = 1 subgoal (1 total)

0 [‘a +n=a‘]

‘1k. k¥ - n = k¢

By using the theorem:
# let ADD_INV_O = ARITH RULE ‘'mn. m + n =m ==>n = 0°;;

the assumption of this goal implies that n equals 0. A single-step resolution with this



256 Chapter 1. Pre-defined ML Identifiers

theorem followed by substitution:

# e(IMP_RES_THEN SUBST1_TAC ADD_INV_0);;
val it : goalstack = 1 subgoal (1 total)

a‘]

0 [‘a +n

‘1. k - 0 k¢

Here, a single resolvent a + n = a |- n = 0 is obtained by matching the antecedent of
ADD_INV_O to the assumption of the goal. This is then used to substitute 0 for n in the
conclusion of the goal. The goal is now solvable by ARITH_TAC (as indeed was the original

goal).

See also
IMP_RES_THEN, MATCH_MP, MATCH_MP_TAC.

IMP_REWRITE_TAC

IMP_REWRITE_TAC : thm list -> tactic

Synopsis

Performs implicational rewriting, adding new assumptions if necessary.

Description

Given a list of theorems [th_1;...;th_k] of theform !'x_1... x.n. P ==> ly_1... ym. 1 =1
the tactic IMP_REWRITE_TAC [th_1;...;th_k] applies implicational rewriting using all the-

orems, i.e. replaces any occurrence of 1 by r in the goal, even if P does not hold. This may
involve adding some propositional atoms (typically instantations of P) or existentials, but
in the end, you are (almost) sure that 1 is replaced by r. Note that P can be “empty”, in
which case implicational rewriting is just rewriting.

Additional remarks:

e A theorem of the form 'x_1... x_n. 1 = risturnedinto'x_1... x.n. T ==>1 =r
(so that IMP_REWRITE_TAC can be used as a replacement for REWNRITE_TAC and SIMP_TAC).

e A theorem of the form !'x_1... x_n. P ==> !y_1... y_m. Qisturnedinto !'x_1... x_n.

(so that IMP_REWRITE_TAC can be used as a “deep” replacement for MATCH_MP_TAC).

e A theorem of the form !'x_1... x_n. P ==> !y_1... y_m. “Qisturnedinto !'x_1... x_n.

P

P

==> ly_1.

==> ly_1.
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e A theorem of the form 'x_1... x_n. P ==> ly_1... y_k. Q ... ==> 1 = risturned
into 'x_1... x_n,y_1... y_k,... P \wedge Q \wedge ... ==>1 =7r
e A theorem of the form 'x_1... x_n. P ==> (ly~1_1... y"1 k. Q_1 ... ==>1_1 =1r_1 /\ !
is turned into the list of theorems 'x_1... x_n, y"1_1... y"1_k,... P /\ Q_1 /\ ... ==> 1_
'x_ 1... xn,y"2_1... y°2_k,... P /N Q2 /\ ... ==>1_2 = r_2 etc.
Failure

Fails if no rewrite can be achieved. If the usual behavior of leaving the goal unchanged is
desired, one can wrap the coal in TRY_TAC.
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Example
This is a simple example:

# REAL_DIV_REFL;;

val it : thm = |- !x. "(x = &0) ==> x / x = &1

#g ‘labc.a<b==>(a-b)/ (@a-b) xc=c;;
val it : goalstack = 1 subgoal (1 total)

‘labc.a<b==>(a-b)/(a-Db) xc=c*

# e(IMP_REWRITE_TAC[REAL_DIV_REFL]);;
val it : goalstack = 1 subgoal (1 total)

‘labc. a<b==>&l xc=c/ “(a-Db=~&0)°

We can actually do more in one step:

#g ‘labc.a<b==>(a-b)/ (a-b)*c=c;
val it : goalstack = 1 subgoal (1 total)

‘labc.a<b==>(a-b)/ (a-Db) xc=c

# e(IMP_REWRITE_TAC[REAL_DIV_REFL;REAL_MUL_LID;REAL_SUB_0]);;
val it : goalstack = 1 subgoal (1 total)

‘lab. a<b==>"(a=b°
And one can easily conclude with:

# e(IMP_REWRITE_TAC[REAL_LT_IMP_NE]);;
val it : goalstack = No subgoals

This illustrates the use of this tactic as a replacement for MATCH_MP_TAC:

#g ‘lab. 80 < a - b ==> "(b = a)‘;;
val it : goalstack = 1 subgoal (1 total)

‘lab. &0 < a - b ==> (b =a)°

# e(IMP_REWRITE_TAC[REAL_LT_IMP_NE]);;
val it : goalstack = 1 subgoal (1 total)

‘la b. &0 < a - b ==> b < a‘

Actually the goal can be completely proved just by:

# e(IMP_REWRITE_TAC[REAL_LT_IMP_NE;REAL_SUB_LT]);;
val it : goalstack = No subgoals

Of course on this simple example, it would actually be enough to use SIMP_TAC.
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Uses

Allows to make some progress when REWRITE_TAC or SIMP_TAC cannot. Namely, if the pre-
condition P cannot be proved automatically, then these classic tactics cannot be used, and
one must generally add the precondition explicitly using SUBGOAL_THEN or SUBGOAL_TAC.
IMP_REWRITE_TAC allows one to do this automatically. Additionally, it can add this pre-
condition deep in a term, actually to the deepest where it is meaningful. Thus there
is no need to first use REPEAT STRIP_TAC (which often forces to decompose the goal into
subgoals whereas the user would not want to do so). IMP_REWRITE_TAC can also be used
like MATCH_MP_TAC, but, again, deep in a term. Therefore you can avoid the common
preliminary REPEAT STRIP_TAC. The only disadvantages w.r.t. REWNRITE_TAC, SIMP_TAC and
MATCH_MP_TAC are that IMP_REWRITE_TAC uses only first-order matching and is generally a
little bit slower.

Comments
Contrarily to REWRITE_TAC or SIMP_TAC, the goal obtained by using implicational rewriting
is generally not equivalent to the initial goal. This is actually what makes this tactic so
useful: applying only “reversible” reasoning steps is quite a big restriction compared to
all the reasoning steps that could be achieved (and often wanted).

We use only first-order matching because higher-order matching happens to match “too
much”.

In situations where they can be used, REWRITE_TAC and SIMP_TAC are generally more
efficient.

See also
CASE_REWRITE_TAC, REWRITE_TAC, SEQ_IMP_REWRITE_TAC, SIMP_TAC,
TARGET_REWRITE_TAC.

IMP_REWR_CONV

IMP_REWR_CONV : thm -> term -> thm

Synopsis

Basic conditional rewriting conversion.

Description

Given an equational theorem A |- !x1...xn. p ==> s = t that expresses a conditional

rewrite rule, the conversion IMP_REWR_CONV gives a conversion that applied to any term
s’ will attempt to match the left-hand side of the equation s = t to s’, and return the
corresponding theorem A |- p’ ==> s’ = t’.



260 Chapter 1. Pre-defined ML Identifiers

Failure
Fails if the theorem is not of the right form or the two terms cannot be matched, for
example because the variables that need to be instantiated are free in the hypotheses A.

Example
We use the following theorem:

# DIV_MULT;;
val it : thm = |- 'mn. "(m =0) ==> (m * n) DIVm =n

to make a conditional rewrite:

# IMP_REWR_CONV DIV_MULT ‘(2 * x) DIV 2¢;;
val it : thm = |- "(2 = 0) ==> (2 * x) DIV 2 = x

Uses
One of the building-blocks for conditional rewriting as implemented by SIMP_CONV, SIMP_RULE,
SIMP_TAC etc.

See also
ORDERED_IMP_REWR_CONV, REWR_CONV, SIMP_CONV.

IMP_TRANS

IMP_TRANS : thm -> thm -> thm

Synopsis

Implements the transitivity of implication.

Description
When applied to theorems A1 |- t1 ==> t2 and A2 |- t2 ==> t3, the inference rule
IMP_TRANS returns the theorem A1 u A2 |- t1 ==> t3.

Al |- t1 ==> t2 A2 |- t2 ==> t3
——————————————————————————————————— IMP_TRANS
Al u A2 |- t1 ==> t3

Failure
Fails unless the theorems are both implicative, with the consequent of the first being the
same as the antecedent of the second (up to alpha-conversion).
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Example
# let thl = TAUT ‘p /\q /\ r ==>p /\ q°
and th2 = TAUT ‘p /\ q ==> p;;
val thl : thm = |- p /\ q /N r ==>p /\ q
val th2 : thm = |- p /\ q ==>p

# IMP_TRANS thl th2;;
val it : thm = |- p /N q /\ r ==> p

See also
IMP_ANTISYM_RULE, SYM, TRANS.

increasing

increasing : (’a -> ’b) -> ’a -> ’a -> bool

Synopsis

Returns a total ordering based on a measure function

Description

When applied to a “measure” function £, the call increasing f returns a binary function
ordering elements in a call increasing f x y by f(x) <? f(y), where the ordering <7 is
the OCaml polymorphic ordering.

Failure

Never fails unless the measure function does.

Example

# let nums = -5 —- 5;;

val nums : int list = [-5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5]
# sort (increasing abs) nums;;

val it : int list = [0; 1; -1; 2; -2; 3; -3; 4; -4; 5; -5]

See also
<7, decreasing, sort.
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index

index : ’a -> ’a list -> int

Synopsis

Returns position of given element in list.

Description
The call index x 1 where | is a list returns the position number of the first instance of x
in the list, failing if there is none. The indices start at zero, corresponding to el.

Example

# index "j" (explode "abcdefghijklmnopqrstuvwxyz");;
val it : int = 9

This is a sort of inverse to the indexing into a string by el:

# el 9 (explode "abcdefghijklmnopqrstuvwxyz");;

an

val it : string = "j

See also
el, find.

inductive_type_store

inductive_type_store : (string * (int * thm * thm)) list ref

Synopsis

List of inductive types defined with corresponding theorems.

Description

The reference variable inductive_type_store holds an association list that associates with
the name of each inductive type defined so far (e.g. "1ist" or "1") a triple: the number of
constructors, the induction theorem and the recursion theorem for it. The two theorems
are exactly of the form returned by define_type.
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Failure
Not applicable.

Example
This example is characteristic:

# assoc "list" (!inductive_type_store);;
val it : int * thm * thm =
(2, |- 'p. P[] /\ (1a0 al. P al ==> P (CONS a0 al)) ==> (!x. P x),
|- 'NIL’> CONS’.
?fn. fn [] = NIL> /\
('a0 al. fn (CONS a0 al) = CONS’ a0 al (fn al)))

while the following shows that there is an entry for the Boolean type, for the sake of
regularity, even though it is not normally considered an inductive type:

# assoc "bool" (!inductive_type_store);;
val it : int * thm * thm =
@, [I-'"P. PF/\NPT==> (1. Px), |-lab. ?f. £ F=a/\fT=D»)

Uses

This list is mainly for internal use. For example it is employed by define to automati-
cally prove the existence of recursive functions over inductive types. Users may find the
information helpful to implement their own proof tools. However, while the list may be
inspected, it should not be modified explicitly or there may be unwanted side-effects on

define.

See also
define, define_type, new_recursive_definition, prove_recursive_functions_exist.

INDUCT_TAC

INDUCT_TAC : tactic

Synopsis

Performs tactical proof by mathematical induction on the natural numbers.

Description
INDUCT_TAC reduces a goal A ?- !'n. P[n], where n has type num, to two subgoals corre-
sponding to the base and step cases in a proof by mathematical induction on n. The
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induction hypothesis appears among the assumptions of the subgoal for the step case.
The specification of INDUCT_TAC is:

A?-In. P

INDUCT_TAC

A ?- P[0/n] A u {P} ?- P[SUC n’/n]

where n’ is a primed variant of n that does not appear free in the assumptions A (usually,
n’ is just n).

Failure
INDUCT_TAC g fails unless the conclusion of the goal g has the form ‘!n. t¢, where the
variable n has type num.

Example

Suppose we want to prove the classic ‘sum of the first n integers’ theorem:
# g ‘'n. nsum(1..n) (\i. i) = (n * (n + 1)) DIV 2¢;;
This is a classic example of an inductive proof. If we apply induction, we get two subgoals:

# e INDUCT_TAC;;
val it : goalstack = 2 subgoals (2 total)

O [‘msum (1 .. n) (\i. i) = (n * (n + 1)) DIV 2¢]

‘nsum (1 .. SUC n) (\i. i)

(SUC n * (SUC n + 1)) DIV 2¢

‘nsum (1 .. 0) (\i. i) = (0 * (0O + 1)) DIV 2¢

each of which can be solved by just:

# e(ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN ARITH_TAC);;

Comments

Essentially the same effect can be had by MATCH_MP_TAC num_INDUCTION. This does not
subsequently break down the goal in such a convenient way, but gives more control over
choice of variable. You can also equally well use it for other kinds of induction, e.g. use
MATCH_MP_TAC num_WF for wellfounded (complete, noetherian) induction.

See also
LIST_INDUCT_TAC, MATCH_MP_TAC, WF_INDUCT_TAC.
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infixes

infixes : unit -> (string * (int * string)) list

Synopsis

Lists the infixes currently recognized by the parser.

Description

The function infixes should be applied to the unit () and will then return a list of all the
infixes currently recognized by the parser together with their precedence and associativity
(left or right).

Failure
Never fails.

See also
get_infix_status, parse_as_infix, unparse_as_infix.

injectivity

injectivity : string -> thm

Synopsis

Produce injectivity theorem for an inductive type.

Description

A call injectivity "ty" where "ty" is the name of a recursive type defined with define_type,

returns a “injectivity” theorem asserting that elements constructed by different type con-

structors are always different. The effect is exactly the same as if prove_constructors_injective

were applied to the recursion theorem produced by define_type, and the documentation

for prove_constructors_injective gives a lengthier discussion.

Failure
Fails if ty is not the name of a recursive type, or if all its constructors are nullary.
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Example

# injectivity "num";;
val it : thm = |- 'n n’. SUC n = SUC n’ <=>n = n’

# injectivity "list";;
val it : thm =
|- 'a0 al a0’ al’. CONS a0 al = CONS a0’ al’ <=> a0 = a0’ /\ al = al’

See also
cases, define_type, distinctness, prove_constructors_injective.

injectivity_store

injectivity_store : (string * thm) list ref

Synopsis

Internal theorem list of injectivity theorems.

Description
This list contains all the injectivity theorems (see injectivity) for the recursive types
defined so far. It is automatically extended by define_type and used as a cache by

injectivity.

Failure
Not applicable.

See also
define_type, distinctness_store, extend_rectype_net, injectivity.

insert

insert : ’a -> ’a list -> ’a list

Synopsis
Adds element to the head of a list if not already present.
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Description
The call insert x 1 returns just 1 if x is already in the list, and otherwise returns x::1.

Example

# insert 5 (1--10);;

val it : int list = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]

# insert 15 (1--10);;

val it : int list = [15; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10]

Uses
An analog to the basic list constructor :: but treating the list more like a set.

See also
union, intersect, subtract.

insert’

insert’ : (’a -> ’a -> bool) -> ’a -> ’a list -> ’a list

Synopsis

Insert element into list unless it contains an equivalent one already.

Description

If r is a binary relation, x an element and 1 a list, the call insert’ r x 1 will add x to the
head of the list, unless the list already contains an element x> with r x x’; if it does, the
list is returned unchanged. The function insert is the special case where r is equality.

Failure
Fails only if the relation fails.

Example

# insert’ (fun x y -> abs(x) = abs(y)) (-1) [1;2;3];;
val it : int list = [1; 2; 3]

# insert’ (fun x y -> abs(x) = abs(y)) (-1) [2;3;4];;

val it : int list = [-1; 2; 3; 4]

See also
insert, mem’, subtract’, union’, unions’.
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inst

inst : (hol_type * hol_type) list -> term -> term

Synopsis

Instantiate type variables in a term.

Description

The call inst [tyl,tvl; ...; tyn,tvn] t will systematically replace each type variable

tvi by the corresponding type tyi inside the term t. Bound variables will be renamed if
necessary to avoid capture.

Failure
Never fails. Repeated type variables in the instantiation list are not detected, and the
first such element will be used.

Example
Here is a simple example:

# inst [‘:num®, ‘:A‘] ‘x:A = x‘;;

val it : term = ‘x = x°¢

# type_of (rand it);;
val it : hol_type = ‘:num‘

To construct an example where variable renaming is necessary we need to construct
terms with identically-named variables of different types, which cannot be done directly
in the term parser:

# let tm = mk_abs(‘x:A¢,‘x + 19);;
val tm : term = ‘\x. x + 1¢

Note that the two variables x are different; this is a constant boolean function returning
x + 1. Now if we instantiate type variable :A to :num, we still get a constant function,
thanks to variable renaming:

# inst [‘:num‘, ‘:A‘] tm;;
val it : term = ‘\x’. x + 1°¢

It would have been incorrect to just keep the same name, for that would have been the
successor function, something different.
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See also
subst, type_subst, vsubst.

installed_parsers

installed_parsers : unit -> (string * (lexcode list -> preterm * lexcode list)) list

Synopsis

List the user parsers currently installed.

Description

HOL Light allows user parsing functions to be installed, and will try them on all terms
during parsing before the usual parsers. The call installed_parsers() lists the parsing
functions that have been so installed.

Failure
Never fails.

See also
delete_parser, install_parser, try_user_parser.

install_parser

install_parser : string * (lexcode list -> preterm * lexcode list) -> unit

Synopsis

Install a user parser.

Description

HOL Light allows user parsing functions to be installed, and will try them on all terms
during parsing before the usual parsers. The call install_parser(s,p) installs the parser
p among the user parsers to try in this way. The string s is there so that the parser can
conveniently be deleted again.

Failure
Never fails.
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See also
delete_parser, installed_parsers, try_user_parser.

install_user_printer

install_user_printer : string * (formater -> term -> unit) -> unit

Synopsis
Install a user-defined printing function into the HOL Light term printer.

Description

The call install_user_printer(s,pr) sets up pr inside the HOL Light toplevel printer.
On each subterm encountered, pr will be tried first, and only if it fails with Failure ...
will the normal HOL Light printing be invoked. The additional string argument s is
just to provide a convenient handle for later removal through delete_user_printer.
However, any previous user printer with the same string tag will be removed when
install_user_printer is called. The printing function takes two arguments, the sec-
ond being the term to print and the first being the formatter to be used; this ensures that
the printer will automatically have its output sent to the current formatter by the overall
printer.

Failure
Never fails.

Example
The user might wish to print every variable with its type:

# let print_typed_var fmt tm =
let s,ty = dest_var tm in
pp_print_string fmt ("(""s™":""string_of_type ty~")") in
install_user_printer("print_typed_var",print_typed_var);;

val it : unit = ()
# ADD_ASSOC; ;
val it : thm =
|- !'(m:num) (n:num) (p:num).
(m:num) + (n:num) + (p:num) = ((m:num) + (n:num)) + (p:num)

Uses
Modification of printing in this way is particularly useful when the HOL logic is used

to embed some other formalism such as a programming language, hardware description
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language or other logic. This can then be printed in a “native” fashion without any
artifacts of its HOL formalization.

Comments

Since user printing functions are tried on every subterm encountered in the regular printing
function, it is important that they fail quickly when inapplicable, or the printing process
can be slowed. They should also not generate exceptions other than Failure ... or the
toplevel printer will start to fail.

See also
delete_user_printer, try_user_printer.

instantiate

instantiate : instantiation -> term -> term

Synopsis

Apply a higher-order instantiation to a term.

Description

The call instantiate i t, where i is an instantiation as returned by term_match, will
perform the instantiation indicated by i in the term t: types and terms will be instantiated
and the beta-reductions that are part of higher-order matching will be applied.

Failure
Should never fail on a valid instantiation.

Example
We first compute an instantiation:

# let t = ‘(!x. P x) <=> "(?x. P x)°;;
Warning: inventing type variables
val t : term = ‘(!x. P x) <=> "(?x. P x)¢

# let i = term_match [] (lhs t) ‘!p. prime(p) ==> p = 2 \/ ODD(p) ‘;;
val i : instantiation =
([(1, ‘P9I, [(“‘\p. prime p ==> p = 2 \/ ODD p‘, ‘P9I,
[(“:num‘, ¢:?761195¢)])

and now apply it. Notice that the type variable name is not corrected, as is done inside
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PART_MATCH:

M-

# instantiate
val it : term
‘('x. prime x ==> x = 2 \/ 0DD x) <=> "(7x. prime x ==> x = 2 \/ 0DD x)°*

t;;

Comments
This is probably not useful for most users.

See also
compose_insts, INSTANTIATE, INSTANTIATE_ALL, inst_goal, PART_MATCH, term_match.

INSTANTIATE_ALL

INSTANTIATE_ALL : instantiation -> thm -> thm

Synopsis

Apply a higher-order instantiation to assumptions and conclusion of a theorem.

Description
The call INSTANTIATE_ALL i t, where i is an instantiation as returned by term_match, will
perform the instantiation indicated by i in the conclusion of the theorem th: types and
terms will be instantiated and the beta-reductions that are part of higher-order matching
will be applied.

Failure
Never fails on a valid instantiation.

Comments

This is not intended for general use. PART_MATCH is generally a more convenient packaging.
The function INSTANTIATE is almost the same but does not instantiate hypotheses and
may fail if type variables or term variables free in the hypotheses make the instantiation
impossible.

See also
INSTANTIATE, INSTANTIATE_ALL, PART_MATCH, term_match.

instantiate_casewlise _recursion

instantiate_casewise_recursion : term -> thm
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Synopsis

Instantiate the general scheme for a recursive function existence assertion.

Description

The function instantiate_casewise_recursion should be applied to an existentially quan-
tified term ‘?f. def_1[f] /\ ... /\ def_n[f]‘, where each clause def_i is a universally
quantified equation with an application of £ to arguments on the left-hand side. The idea
is that these clauses define the action of £ on arguments of various kinds, for example on
an empty list and nonempty list:

?f. (f [ =a) /\ ('"ht. CONS h t = k[f,h,t])
or on even numbers and odd numbers:
?f. ()n. £(2 * n) = a[f,n]) /\ (!n. £(2 *x n + 1) = b[f,n])

The returned value is a theorem whose conclusion matches the input term, with an
assumption sufficient for the existence assertion. This is not normally in a very convenient
form for the user.

Failure
Fails only if the definition is malformed. However it is possible that for an inadmissible
definition the assumption of the theorem may not hold.

Uses

This is seldom a convenient function for users. Normally, use prove_general_recursive_function_ex
to prove something like this while attempting to discharge the side-conditions automati-

cally, or define to actually make a definition. In situations where the automatic discharge

of the side-conditions fails, one may prefer instead pure_prove_recursive_function_exists

The even more minimal instantiate_casewise_recursion is for the rare cases where one

wants to force no processing at all of the side-conditions to be undertaken.

See also
define, prove_general_recursive_function_exists,
pure_prove_recursive_function_exists.

INSTANTIATE

INSTANTIATE : instantiation -> thm -> thm
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Synopsis

Apply a higher-order instantiation to conclusion of a theorem.

Description
The call INSTANTIATE i t, where i is an instantiation as returned by term_match, will
perform the instantiation indicated by i in the conclusion of the theorem th: types and
terms will be instantiated and the beta-reductions that are part of higher-order matching
will be applied.

Failure
Fails if the instantiation is impossible because of free term or type variables in the hy-
potheses.

Example

# let t = lhs(concl(SPEC_ALL NOT_FORALL_THM));;
val t : term = ‘" (!x. P x)°
# let i = term_match [] t ‘“(In. prime(n) ==> 0DD(n))‘;;
val i : instantiation =
([, ‘P91, [(‘\n. prime n ==> ODD n‘, ‘P)], [(‘:num‘, ‘:A)])

# INSTANTIATE i (SPEC_ALL NOT_FORALL_THM);;
val it : thm = |- ~“(!x. prime x ==> 0DD x) <=> (?x. ~(prime x ==> 0ODD x))
Comments

This is not intended for general use. PART_MATCH is generally a more convenient packaging.

See also
instantiate, INSTANTIATE_ALL, PART_MATCH, term_match.

inst_goal

inst_goal : instantiation -> goal -> goal

Synopsis
Apply higher-order instantiation to a goal.

Description

The call inst_goal i g where i is an instantiation (as returned by term_match for exam-
ple), will perform the instantiation indicated by i in both assumptions and conclusion of
the goal g.
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Failure
Should never fail on a valid instantiation.

Comments
Probably only of specialist interest to those writing tactics from scratch.

See also
compose_insts, instantiate, INSTANTIATE, INSTANTIATE_ALL, PART_MATCH,
term_match.

INST_TYPE

INST_TYPE : (hol_type * hol_type) list -> thm -> thm

Synopsis
Instantiates types in a theorem.
Description
INST_TYPE [tyl,tvl;...;tyn,tvn] will systematically replaces all instances of each type
variable tvi by the corresponding type tyi in both assumptions and conclusions of a
theorem:
Al-t
——————————————————————————————————— INST_TYPE [tyl,tvl;...;tyn,tvn]
Altyl,...,tyn/tvl,...,tvn]
|- tltyl,...,tyn/tvl,...,tvnl]

Variables will be renamed if necessary to prevent variable capture.

Failure
Never fails.

Uses
INST_TYPE is employed to make use of polymorphic theorems.

Example
Suppose one wanted to specialize the theorem EQ_SYM_EQ for particular values, the first
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attempt could be to use SPECL as follows:

# SPECL [‘a:num‘; ‘b:num‘] EQ_SYM_EQ ;;
Exception: Failure "SPECL".

The failure occurred because EQ_SYM_EQ contains polymorphic types. The desired special-
ization can be obtained by using INST_TYPE:

# SPECL [‘a:num‘; ‘b:num‘] (INST_TYPE [‘:num‘,‘:A‘] EQ_SYM_EQ) ;;

val it : thm = |- a =b <=> b = a

Comments
This is one of HOL Light’s 10 primitive inference rules.

See also
INST, ISPEC, ISPECL.

INST

INST : (term * term) list -> thm -> thm

Synopsis

Instantiates free variables in a theorem.

Description

When INST [t1,x1; ...; tn,xn] is applied to a theorem, it gives a new theorem that

systematically replaces free instances of each variable xi with the corresponding term ti
in both assumptions and conclusion.

——————————————————————————————————— INST [t1,x1;...;tn,xn]
Aftl,...,tn/x1,...,xn]
[- t[tl,...,tn/x1,...,xn]

Bound variables will be renamed if necessary to avoid capture. All variables are substi-
tuted in parallel, so there is no problem if there is an overlap between the terms ti and

xXi.

Failure

Fails if any of the pairs ti,xi in the instantiation list has xi and ti with different types,
or xi a non-variable. Multiple instances of the same xi in the list are not trapped, but
only the first one will be used consistently.
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Example
Here is a simple example

# let th = SPEC_ALL ADD_SYM;;

val th : thm = |-m+n=n+m
# INST [‘1°,‘m:num‘; ‘x:num‘, ‘n:num‘] th;;
val it : thm = |- 1 + x = x + 1

and here is one where bound variable renaming is needed.

# let th = SPEC_ALL LE_EXISTS;;

val th : thm = |-m<=n <=> (?d. n =m + d)

# INST [‘d:num‘, ‘m:num‘] th;;

val it : thm = |- d <=n <=> (?d’. n=d + 4d’)
Uses

This is the most efficient way to obtain instances of a theorem; though sometimes more
convenient, SPEC and SPECL are significantly slower.

Comments
This is one of HOL Light’s 10 primitive inference rules.

See also
INST_TYPE, ISPEC, ISPECL, SPEC, SPECL.

INTEGER_RULE

INTEGER_RULE : term -> thm

Synopsis

Automatically prove elementary divisibility property over the integers.

Description

INTEGER_RULE is a partly heuristic rule that can often automatically prove elementary
“divisibility” properties of the integers. The precise subset that is dealt with is difficult
to describe rigorously, but many universally quantified combinations of divides, coprime,
gcd and congruences (x == y) (mod n) can be proved automatically, as well as some
existentially quantified goals. The examples below may give a feel for what can be done.

Failure
Fails if the goal is not accessible to the methods used.
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Example
All sorts of elementary Boolean combinations of divisibility and congruence properties
can be solved, e.g.

# INTEGER_RULE
‘Ix y n:int. (x == y) (mod n) ==> (n divides x <=> n divides y)‘;;

val it : thm = |- !x y n. (x == y) (mod n) ==> (n divides x <=> n divides y)

# INTEGER_RULE
‘la b d:int. d divides gcd(a,b) <=> d divides a /\ d divides b‘;;

val it : thm =
|- 'a bd. d divides gecd (a,b) <=> d divides a /\ d divides b

including some less obvious ones:

# INTEGER_RULE
‘1x y. coprime(x * y,x pow 2 + y pow 2) <=> coprime(x,y)‘;;

val it : thm = |- !x y. coprime (x * y,x pow 2 + y pow 2) <=> coprime (x,y)

A limited class of existential goals is solvable too, e.g. a classic sufficient condition for a
linear congruence to have a solution:

# INTEGER_RULE ‘!'a b n:int. coprime(a,n) ==> ?x. (a * x == b) (mod n)‘;;
val it : thm = |- 'a b n. coprime (a,n) ==> (7x. (a * x == b) (mod n))
or the two-number Chinese Remainder Theorem:

# INTEGER_RULE
‘la b u v:int. coprime(a,b) ==> ?x. (x == u) (mod a) /\ (x == v) (mod b)°‘;;

val it : thm =

|- 'a buv. coprime (a,b) ==> (?x. (x == u) (mod a) /\ (x == v) (mod b))

See also
ARITH_RULE, INTEGER_TAC, INT_ARITH, INT_RING, NUMBER_RULE.

INTEGER_TAC

INTEGER_TAC : tactic
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Synopsis

Automated tactic for elementary divisibility properties over the integers.

Description

The tactic INTEGER_TAC is a partly heuristic tactic that can often automatically prove
elementary “divisibility” properties of the integers. The precise subset that is dealt with
is difficult to describe rigorously, but many universally quantified combinations of divides,
coprime, gcd and congruences (x == y) (mod n) can be proved automatically, as well as
some existentially quantified goals. See the documentation for INTEGER_RULE for a larger
set of representative examples.

Failure
Fails if the goal is not accessible to the methods used.

Example

A typical elementary divisibility property is that if two linear congruences have a common
solution modulo n, then n divides the resultant of the two equations. If we set this as our
goal

# g ‘'c2 ¢l cO n x:int.
(cO * x == c1) (mod n) /\ (cl * x == c2) (mod n)
==> n divides (cl * c1 - cO * c2)°‘;;
It can be solved automatically using INTEGER_TAC:
# e INTEGER_TAC;;
val it : goalstack = No subgoals

See also
INTEGER_RULE, INT_ARITH_TAC, INT_RING, NUMBER_RULE.

intersect
intersect : ’a list -> ’a list -> ’a list
Synopsis

Computes the intersection of two ‘sets’.
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Description

intersect 11 12 returns a list consisting of those elements of 11 that also appear in 12.
If both sets are free of repetitions, this can be considered a set-theoretic intersection
operation.

Failure
Never fails.

Comments
Duplicate elements in the first list will still be present in the result.

Example

# intersect [1;2;3] [3;5;4;1];;
val it : int list = [1; 3]

# intersect [1;2;4;1] [1;2;3;2];;
val it : int list = [1; 2; 1]

See also
setify, set_equal, union, subtract.

INTRO_TAC

INTRO_TAC : string -> tactic

Synopsis

Breaks down outer quantifiers in goal, introducing variables and named hypotheses.

Description

Given a string s, INTRO_TAC s breaks down outer universal quantifiers and implications
in the goal, fixing variables and introducing assumptions with names. It combines several
forms of introduction of logical connectives. The introduction pattern uses the following
syntax:

e | fix_pattern introduces universally quantified variables as with FIX_TAC
e a destruct pattern introduces and destructs an implication as with DESTRUCT_TAC

e #n selects disjunct n in the goal



INTRO_TAC 281

Several fix patterns and destruct patterns can be combined sequentially, separed by
semicolons ‘;’.

Failure

Fails if the pattern is ill-formed or does not match the form of the goal.

Example

Here we introduce the universally quantified outer variables, assume the antecedent, split-
ting apart conjunctions and disjunctions:

#g ‘'pqr.p\/ (@/\r)=>p/\Nqg\/ p/\r;;
# e (INTRO_TAC "!p qr; p | g ");;
val it : goalstack = 2 subgoals (2 total)

4

[‘q9‘] (@
[‘r‘] (©

0
1

‘p/Ng\/ p/\
0 [‘pl (P

‘p/Na\/ p/\

Now a further step will select the first disjunct to prove in the top goal:

# e (INTRO_TAC "#1");;
val it : goalstack = 1 subgoal (2 total)

o [‘pl (P

¢p /\ q¢

In the next example we introduce an alternation of universally quantified variables and
antecedents. Along the way we split a disjunction and rename variables x1, x2 into n, n’.
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All is done in a single tactic invocation.

# g ‘'a. “(a=0) ==> 0NE_ONE (\n. a * n)‘;;
# e (REWRITE_TAC[ONE_ONE; EQ_MULT_LCANCEL]);;
val it : goalstack = 1 subgoal (1 total)

|

la. "(a=0) ==> (I1x1 x2. a =0 \/ x1 = x2 ==>x1 = x2)°¢

# e (INTRO_TAC "'a; anz; ![n] [n’]; az | eq");;
val it : goalstack = 2 subgoals (2 total)

0 [“"(a =0)‘] (anz)
1 [‘n =n’‘] (eq)

n=n’
0 [“"(a=0)] (anz)
1 [‘a =0‘] (az)
‘n =n’f¢
See also

DESTRUCT_TAC, DISCH_TAC, FIX_TAC, GEN_TAC, LABEL_TAC, REMOVE_THEN, STRIP_TAC,
USE_THEN.

INT_ABS_CONV

INT_ABS_CONV : conv

Synopsis

Conversion to produce absolute value of an integer literal of type :int.

Description

The call INT_ABS_CONV ‘abs c‘, where c is an integer literal of type :int, returns the
theorem |- abs ¢ = d where d is the canonical integer literal that is equal to c¢’s absolute
value. The literal ¢ may be of the form &n or -- &n (with nonzero n in the latter case)
and the result will be of the same form.

Failure
Fails if applied to a term that is not the negation of one of the permitted forms of integer
literal of type :int.
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Example
# INT_ABS_CONV ‘abs(-- &42)°;;
val it : thm = |- abs (-- &42) = &42

See also
INT_REDUCE_CONV, REAL_RAT_ABS_CONV.

INT_ADD_CONV

INT_ADD_CONV : conv

Synopsis

Conversion to perform addition on two integer literals of type :int.

Description

The call INT_ADD_CONV ‘c1 + c2¢ where c1 and c2 are integer literals of type :int, returns
|- c1 + c2 = d where d is the canonical integer literal that is equal to c1 + c2. The
literals c1 and c2 may be of the form &n or -- &n (with nonzero n in the latter case) and
the result will be of the same form.

Failure
Fails if applied to a term that is not the sum of two permitted integer literals of type

:int.
Example
# INT_ADD_CONV ‘-- &17 + &25°;;

val it : thm = [- -- &17 + &25 = &8

See also
INT_REDUCE_CONV, REAL_RAT_ADD_CONV.

INT_ARITH

INT_ARITH : term -> thm
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Synopsis

Proves integer theorems needing basic rearrangement and linear inequality reasoning only.

Description
INT_ARITH is a rule for automatically proving natural number theorems using basic alge-
braic normalization and inequality reasoning.

Failure
Fails if the term is not boolean or if it cannot be proved using the basic methods employed,
e.g. requiring nonlinear inequality reasoning.

Example

# INT_ARITH ‘!x y:int. x <=y + &1 ==> x + &2 < y + &4°;;
val it : thm = |- !x y. x <=y + &1 ==> x + &2 < y + &4

# INT_ARITH ‘(x + y:int) pow 2 = x pow 2 + &2 * x * y + y pow 2°;;
val it : thm = |- (x + y) pow 2 = x pow 2 + &2 * x * y + y pow 2

Uses
Disposing of elementary arithmetic goals.

See also
ARITH_RULE, INT_ARITH_TAC, NUM_RING, REAL_ARITH, REAL_FIELD, REAL_RING.

INT_ARITH_TAC

INT_ARITH_TAC : tactic

Synopsis

Attempt to prove goal using basic algebra and linear arithmetic over the integers.

Description

The tactic INT_ARITH_TAC is the tactic form of INT_ARITH. Roughly speaking, it will au-
tomatically prove any formulas over the reals that are effectively universally quantified
and can be proved valid by algebraic normalization and linear equational and inequality
reasoning. See REAL_ARITH for more information about the algorithm used and its scope.

Failure
Fails if the goal is not in the subset solvable by these means, or is not valid.
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Example

Here is a goal that holds by virtue of pure algebraic normalization:

# prioritize_int();;
val it : unit = ()

# g ‘(x1 pow 2 + x2 pow 2 + x3 pow 2 +
(y1 pow 2 + y2 pow 2 + y3 pow 2 +
(x1 * y1 - x2 * y2 - x3 * y3 - x4
(x1 *x y2 + x2 x y1l + x3 * y4 - x4
(x1 * y3 - x2 * y4 + x3 * yl + x4
(x1 * y4 + x2 * y3 - x3 * y2 + x4

and here is one that holds by linear inequality reasoning:

# g ‘!x y:int. abs(x + y) < abs(x) + abs(y) + &1°;;

so either goal is solved simply by:

# e INT_ARITH_TAC;;
val it : goalstack = No subgoals

See also

ARITH_TAC, ASM_INT_ARITH_TAC, INT_ARITH, REAL_ARITH_TAC.

x4 pow 2)
y4 pow 2)
* y4) pow
* y3) pow
* y2) pow
* y1) pow

*

NN NN I

INT_EQ_CONV

INT_EQ_CONV : conv

Synopsis

Conversion to prove whether one integer literal of type :int is equal to another.

Description

The call INT_EQ_CONV ‘c1 < c2¢ where c1 and c2 are integer literals of type :int, returns

whichever of |- ¢1 = ¢c2 <=> T or |- ¢l = c2 <=> F is true.

mean either &n or -- &n where n is a numeral.

Failure

By an integer literal we

Fails if applied to a term that is not an equality comparison on two permitted integer

literals of type :int.
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Example

# INT_EQ_CONV ‘&1 = &2°¢;;

val it : thm = |- &1 = &2 <=> F

# INT_EQ_CONV ‘-- &1 = -- &1°;;

val it : thm = |- —— &1 = —— &1 <=> T
Comments

The related function REAL_RAT_EQ_CONV subsumes this functionality, also applying to ra-
tional literals. Unless the restriction to integers is desired or a tiny efficiency difference
matters, it should be used in preference.

See also
INT_REDUCE_CONV, REAL_RAT_EQ_CONV.

INT_GE_CONV

INT_GE_CONV : conv

Synopsis

Conversion to prove whether one integer literal of type :int is >= another.

Description

The call INT_GE_CONV ‘cl >= c2¢ where c1 and c2 are integer literals of type :int, returns
whichever of |- c1 >= c2 <=> T or |- c1 >= c2 <=> F is true. By an integer literal we
mean either &n or -- &n where n is a numeral.

Failure
Fails if applied to a term that is not the appropriate inequality comparison on two per-
mitted integer literals of type :int.

Example
# INT_GE_CONV ‘&7 >= &6°;;

val it : thm = |- &7 >= &6 <=> T

See also
INT_REDUCE_CONV, REAL_RAT_GE_CONV.
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INT_GT_CONV

INT_GT_CONV : conv

Synopsis

Conversion to prove whether one integer literal of type :int is < another.

Description

The call INT_GT_CONV ‘c1 > c2¢ where c1 and c2 are integer literals of type :int, returns
whichever of |- c1 > ¢2 <=> T or |- c1 > ¢2 <=> F is true. By an integer literal we
mean either &n or -- &n where n is a numeral.

Failure
Fails if applied to a term that is not the appropriate inequality comparison on two per-
mitted integer literals of type :int.

Example
# INT_GT_CONV ‘&1 > &2°¢;;

val it : thm = |- &1 > &2 <=> F

See also
INT_REDUCE_CONV, REAL_RAT_GT_CONV.

int_ideal cofactors

int_ideal_cofactors : term list -> term —-> term list

Synopsis

Produces cofactors proving that one integer polynomial is in the ideal generated by others.
Description

The call int_ideal_cofactors [‘pl‘; ...; ‘pn‘] ‘p‘, where all the terms have type

:int and can be considered as polynomials, will test whether p is in the ideal generated
by the p1,...,pn. If so, it will return a corresponding list [‘q1¢; ...; ‘qn‘] of ‘cofactors’
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such that the following is an algebraic identity provable by INT_RING or a slight elaboration
of INT_POLY_CONV, for example)

p=pl*xql+ ... +pnx*qgn

hence providing an explicit certificate for the ideal membership. If ideal membership
does not hold, int_ideal_cofactors fails. The test is performed using a Grobner basis
procedure.

Failure

Fails if the terms are ill-typed, or if ideal membership fails. At present this is a generic
version for fields, and in rare cases it may fail because cofactors are found involving non-
trivial rational numbers even where there are integer cofactors. This imperfection should
be fixed eventually, and is not usually a problem in practice.

Example
In the case of a singleton list, ideal membership just amounts to polynomial divisibility,

e.g.

# prioritize_int();;
val it : unit = ()

# int_ideal_cofactors
[‘r * x * (&1 - x) - x°]
‘r+, (rxx*x (81 -x)) * (&1 - *xx *x (&1 - x)) - x;;
[‘41 * r pow 2 * x pow 2 +
-—— &1 * r pow 2 * x +
-— &1 *x r *x x +
&1 *x r +
&1°¢]

Comments

When we say that terms can be ‘considered as polynomials’, we mean that initial nor-
malization, essentially in the style of INT_POLY_CONV, will be applied, but some complex
constructs such as conditional expressions will be treated as atomic.

See also
ideal_cofactors, INT_IDEAL_CONV, INT_RING, real_ideal_cofactors, RING,
RING_AND_IDEAL_CONV.

INT_LE_CONV

INT_LE_CONV : conv



INT_LT_CONV 289

Synopsis

Conversion to prove whether one integer literal of type :int is <= another.

Description

The call INT_LE_CONV ‘cl <= c2¢ where c1 and c2 are integer literals of type :int, returns
whichever of |- c1 <= ¢c2 <=> T or |- cl1 <= c2 <=> F is true. By an integer literal we
mean either &n or -- &n where n is a numeral.

Failure
Fails if applied to a term that is not the appropriate inequality comparison on two per-
mitted integer literals of type :int.

Example
# INT_LE_CONV ‘&11 <= &77°¢;;

val it : thm = |- &11 <= &77 <=> T

See also
INT_REDUCE_CONV, REAL_RAT_LE_CONV.

INT_LT_CONV

INT_LT_CONV : conv

Synopsis

Conversion to prove whether one integer literal of type :int is < another.

Description

The call INT_LT_CONV ‘c1 < c2¢ where c1 and c2 are integer literals of type :int, returns
whichever of |- c1 < c2 <=> T or |- cl < ¢2 <=> F is true. By an integer literal we
mean either &n or -- &n where n is a numeral.

Failure
Fails if applied to a term that is not the appropriate inequality comparison on two per-
mitted integer literals of type :int.
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Example

# INT_LT_CONV ‘-- &18 < &64°;;

val it : thm = |- —— &18 < &B64 <=> T
Comments

The related function REAL_RAT_LT_CONV subsumes this functionality, also applying to ra-
tional literals. Unless the restriction to integers is desired or a tiny efficiency difference
matters, it should be used in preference.

See also
INT_REDUCE_CONV, REAL_RAT_LT_CONV.

INT_MAX_CONV

INT_MAX_CONV : conv

Synopsis

Conversion to perform addition on two integer literals of type :int.

Description

The call INT_MAX_CONV ‘max cl c2¢ where c1 and c2 are integer literals of type :int, re-
turns |- max c1 c2 = d where d is the canonical integer literal that is equal to max c1 c2.
The literals c1 and c2 may be of the form &n or -- &n (with nonzero n in the latter case)
and the result will be of the same form.

Failure
Fails if applied to a term that is not the maximum operator applied to two permitted
integer literals of type :int.

Example
# INT_MAX_CONV ‘max (-- &1) (&2)°¢;;

val it : thm = |- max (-- &1) (&2) = &2

See also
INT_REDUCE_CONV, REAL_RAT_REDUCE_CONV.
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INT_MIN_CONV

INT_MIN_CONV : conv

Synopsis

Conversion to perform addition on two integer literals of type :int.

Description

The call INT_MIN_CONV ‘min c1 c2¢ where c1 and c2 are integer literals of type :int, re-
turns |- min c1 c2 = d where d is the canonical integer literal that is equal to min c1 c2.
The literals c1 and c2 may be of the form &n or -- &n (with nonzero n in the latter case)
and the result will be of the same form.

Failure
Fails if applied to a term that is not the minimum operator applied to two permitted
integer literals of type :int.

Example
# INT_MIN_CONV ‘min (-- &1) (&2)°;;
val it : thm = |- min (—— &1) (&2) = &2

See also
INT_REDUCE_CONV, REAL_RAT_REDUCE_CONV.

INT_MUL_CONV

INT_MUL_CONV : conv

Synopsis

Conversion to perform multiplication on two integer literals of type :int.

Description

The call INT_MUL_CONV ‘c1 * c2¢ where c1 and c2 are integer literals of type :int, returns
|- c1 * c2 = d where d is the canonical integer literal that is equal to c1 * c2. The
literals c1 and c2 may be of the form &n or —- &n (with nonzero n in the latter case) and
the result will be of the same form.
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Failure
Fails if applied to a term that is not the product of two permitted integer literals of type

:int.
Example
# INT_MUL_CONV ‘&6 * -- &9°;;

val it : thm = |- &6 * -- &9 = -- &54

See also
INT_REDUCE_CONV, REAL_RAT_MUL_CONV.

INT_NEG_CONV

INT_NEG_CONV : conv

Synopsis

Conversion to negate an integer literal of type :int.

Description

The call INT_NEG_CONV ‘--c*, where c is an integer literal of type :int, returns the theo-
rem |- --c = d where d is the canonical integer literal that is equal to c¢’s negation. The
literal ¢ may be of the form &n or -- &n (with nonzero n in the latter case) and the result
will be of the same form.

Failure
Fails if applied to a term that is not the negation of one of the permitted forms of integer
literal of type :int.

Example

# INT_NEG_CONV ‘—- (—- &3 / &2)°¢;;

val it : thm = |- ——(-—- &3 / &2) = &3 / &2
Comments

The related function REAL_RAT_NEG_CONV subsumes this functionality, also applying to
rational literals. Unless the restriction to integers is desired or a tiny efficiency difference
matters, it should be used in preference.
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See also
INT_REDUCE_CONV, REAL_RAT_NEG_CONV.

INT_OF_REAL_THM

INT_OF_REAL_THM : thm -> thm

Synopsis

Map a universally quantified theorem from reals to integers.

Description

We often regard integers as a subset of the reals, so any universally quantified theorem
over the reals also holds for the integers, and indeed any other subset. In HOL, integers
and reals are completely separate types (int and real respectively). However, there is
a natural injection (actually called dest_int) from integers to reals that maps integer
operations to their real counterparts, and using this we can similarly show that any
universally quantified formula over the reals also holds over the integers with operations
mapped to the right type. The rule INT_OF_REAL_THM embodies this procedure; given a
universally quantified theorem over the reals, it maps it to a corresponding theorem over
the integers.

Failure
Never fails.

Example

# REAL_ABS_TRIANGLE;;
val it : thm = |- !x y. abs (x + y) <= abs x + abs y
# map dest_var (variables(concl it));;

val it : (string * hol_type) list = [("y", ‘:real¢); ("x", ‘:real‘)]

# INT_OF_REAL_THM REAL_ABS_TRIANGLE;;

val it : thm = |- !x y. abs (x + y) <= abs x + abs y

# map dest_var (variables(concl it));;

val it : (string * hol_type) list = [("y", ‘:int‘); ("x", ‘:int‘)]
See also

ARITH_RULE, INT_ARITH, INT_ARITH_TAC, NUM_TO_INT_CONV, REAL_ARITH.
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INT_POLY_CONV

INT_POLY_CONV : term -> thm

Synopsis

Converts a integer polynomial into canonical form.

Description

Given a term of type :int that is built up using addition, subtraction, negation and
multiplication, INT_POLY_CONV converts it into a canonical polynomial form and returns a
theorem asserting the equivalence of the original and canonical terms. The basic elements
need not simply be variables or constants; anything not built up using the operators
given above will be considered ‘atomic’ for the purposes of this conversion. The canonical
polynomial form is a ‘multiplied out’ sum of products, with the monomials (product
terms) ordered according to the canonical OCaml order on terms. In particular, it is just
&0 if the polynomial is identically zero.

Failure

Never fails, even if the term has the wrong type; in this case it merely returns a reflexive
theorem.
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Example
This illustrates how terms are ‘multiplied out’:

# INT_POLY_CONV ‘(x + y) pow 3°;;
val it : thm =
|- (x +y) pow 3 =x pow 3 + &3 * x pow 2 * y + &3 * x x y pow 2 + y pow 3

while the following verifies a remarkable ‘sum of cubes’ identity due to Yasutoshi Kohmoto:

# INT_POLY_CONV

‘(41679616 * a pow 16 - &66096 * a pow 10 * b pow 6 +
&153 * a pow 4 * b pow 12) pow 3 +

(-- &1679616 * a pow 16 - &559872 * a pow 13 * b pow 3 -
&27216 * a pow 10 * b pow 6 + &3888 * a pow 7 * b pow 9 +
463 * a pow 4 * b pow 12 - &3 * a * b pow 15) pow 3 +

(41679616 * a pow 15 * b + &279936 * a pow 12 * b pow 4 -
411664 * a pow 9 * b pow 7 -
4648 * a pow 6 * b pow 10 + &9 * a pow 3 * b pow 13 + b pow 16) pow 3°;;

val it : thm

o

b pow 48

Uses

Keeping terms in normal form. For simply proving equalities, INT_RING is more powerful
and usually more convenient.

See also
INT_ARITH, INT_RING, REAL_POLY_CONV, SEMIRING_NORMALIZERS_CONV.

INT_POW_CONV

INT_POW_CONV : conv

Synopsis

Conversion to perform exponentiation on a integer literal of type :int.

Description

The call INT_POW_CONV ‘c pow n‘ where c is an integer literal of type :int and n is a
numeral of type :num, returns |- ¢ pow n = d where d is the canonical integer literal that
is equal to c raised to the nth power. The literal ¢ may be of the form &n or -- &n (with
nonzero n in the latter case) and the result will be of the same form.
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Failure
Fails if applied to a term that is not a permitted integer literal of type :int raised to a
numeral power.

Example

# INT_POW_CONV ‘(-- &2) pow 77°;;

val it : thm = |- -- &2 pow 77 = —- &151115727451828646838272
See also

INT_POW_CONV, INT_REDUCE_CONV.

INT_REDUCE_CONV

INT_REDUCE_CONV : conv

Synopsis

Evaluate subexpressions built up from integer literals of type :int, by proof.

Description

When applied to a term, INT_REDUCE_CONV performs a recursive bottom-up evaluation
by proof of subterms built from integer literals of type :int using the unary operators
‘~=7 ‘inv’ and ‘abs’, and the binary arithmetic (‘+’, =’ ‘*’, */’, ‘pow’) and relational (‘<’,
‘<=7 7 >=" ‘=") operators, as well as propagating literals through logical operations,
e.g. T /\ x <=> x, returning a theorem that the original and reduced terms are equal.
The permissible integer literals are of the form &n or -- &n for numeral n, nonzero in the

negative case.

Failure
Never fails, but may have no effect.

Example

# INT_REDUCE_CONV
“if &5 pow 4 < &4 pow 5 then (&2 pow 3 - &1) pow 2 + &1 else &99°;;
val it : thm =
|- (if &5 pow 4 < &4 pow 5 then (&2 pow 3 - &1) pow 2 + &1 else &99) = &50

Comments

The corresponding INT_REDUCE_CONV works for the type of integers. The more general
function REAL_RAT_REDUCE_CONV works similarly over :int but for arbitrary rational liter-
als.
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See also
INT_RED_CONV, REAL_RAT_REDUCE_CONV.

INT_RED_CONV

INT_RED_CONV : term -> thm

Synopsis

Performs one arithmetic or relational operation on integer literals of type :int.

Description

When applied to any of the terms ‘--c¢, ‘abs c*, ‘cl + c2¢, ‘cl - c2°, ‘cl * c2°¢,
‘c pow n¢, ‘cl <= c2¢, ‘cl < c2¢, ‘cl >= c2¢, ‘cl > c2¢, ‘cl = c2°, where ¢, c1 and
c2 are integer literals of type :int and n is a numeral of type :num, INT_RED_CONV returns
a theorem asserting the equivalence of the term to a canonical integer (for the arithmetic
operators) or a truth-value (for the relational operators). The integer literals are terms
of the form &n or -- &n (with nonzero n in the latter case).

Failure
Fails if applied to an inappropriate term.

Uses

More convenient for most purposes is INT_REDUCE_CONV, which applies these evaluation
conversions recursively at depth, or still more generally REAL_RAT_REDUCE_CONV which ap-
plies to any rational numbers, not just integers. Still, access to this ‘one-step’ reduction
can be handy if you want to add a conversion conv for some other operator on int number
literals, which you can conveniently incorporate it into INT_REDUCE_CONV with

# let INT_REDUCE_CONV’ =
DEPTH_CONV (INT_RED_CONV ORELSEC conv);;

See also
INT_REDUCE_CONV, REAL_RAT_RED_CONV.

INT_REM_DOWN_CONV

INT_REM_DOWN_CONV : conv
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Synopsis

Combines nested rem terms into a single toplevel one.

Description

When applied to a term containing integer arithmetic operations of negation, addition,
subtraction, multiplication and exponentiation, interspersed with applying rem with a
fixed modulus n, and a toplevel ... rem n too, the conversion INT_REM_DOWN_CONV proves
that this is equal to a simplified term with only the toplevel rem.

Failure
Never fails but may have no effect

Example
# let tm = ‘((x rem n) + (y rem n * &3) pow 2) rem n‘;;
val tm : term = ‘(x rem n + (y rem n * &3) pow 2) rem n¢

# INT_REM_DOWN_CONV tm;;
val it : thm =
|- (x remn + (y rem n * &3) pow 2) remn = (x + (y * &3) pow 2) rem n

See also
MOD_DOWN_CONV.

INT_RING

INT_RING : term -> thm

Synopsis

Ring decision procedure instantiated to integers.

Description

The rule INT_RING should be applied to a formula that, after suitable normalization, can
be considered a universally quantified Boolean combination of equations and inequations
between terms of type :int. If that formula holds in all integral domains, INT_RING will
prove it. Any “alien” atomic formulas that are not integer equations will not contribute
to the proof but will not in themselves cause an error. The function is a particular
instantiation of RING, which is a more generic procedure for ring and semiring structures.
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Failure

Fails if the formula is unprovable by the methods employed. This does not necessarily

mean that it is not valid for :int, but rather that it is not valid on all integral domains

(see below).

Example

Here is a nice identity taken from one of Ramanujan’s notebooks:

# INT_RING
‘la b c:int.
a+b+c=1%&0
==> &2 * (a * Db
a pow 4 +
&2 * (a * b
(a x (b -

val it : thm =
|- 'a b c.
a+b+c=
==> &2 * (a
&2 * (a
(a * (b

+a*xc+b
b pow 4 + c
+ax*xc+b

+

c)) pow 4

&0

* b+ a *xc
* b+ a xc
- c)) pow 4

* c) pow 2 =
pow 4 /\
* c) pow 4 =

(b x (a-2c)) pow 4 + (c * (a - b)) pow 4¢;;

+ b * c) pow 2
+ b *x c) pow 4

a pow 4 + b pow 4 + ¢ pow 4 /\

+ (b *x (a-c)) pow 4 + (c * (a - b)) pow 4

The reasoning INT_RING is capable of includes, of course, the degenerate case of simple
algebraic identity, e.g. Brahmagupta’s identity:

# INT_RING ‘(a pow 2 + b pow 2) * (c pow 2 + d pow 2) =
(a*xc-Dbx*xd) pow2+ (a*xd+Dbx*c) pow 2°;;

or the more complicated 4-squares variant:

# INT_RING
“(x1 pow 2 + x2 pow
(y1 pow 2 + y2 pow

(x1 * y1 - x2 * y2
(x1 * y2 + x2 * y1
(x1 * y3 - x2 * y4
(x1 * y4 + x2 * y3

N N

+ x3 pow
+ y3 pow
x3 * y3 -
x3 * y4 -
x3 * yl +
x3 * y2 +

2 + x4 pow 2)
2 + y4 pow 2)
x4 * y4) pow
x4 * y3) pow
x4 * y2) pow
x4 * y1) pow

*

NN NN

+ + +

Note that formulas depending on specific features of the integers are not always provable
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by this generic ring procedure. For example we cannot prove:

# INT_RING ‘x pow 2 = &2 ==> F*;;
1 basis elements and O critical pairs
Exception: Failure "find".

Although it is possible to deal with special cases like this, there can be no general algo-
rithm for testing such properties over the integers: the set of true universally quantified
equations over the integers with addition and multiplication is not recursively enumerable.
(This follows from Matiyasevich’s results on diophantine sets leading to the undecidability
of Hilbert’s 10th problem.)

See also
INT_ARITH, INT_ARITH_TAC, int_ideal_cofactors, NUM_RING, REAL_RING, REAL_FIELD.

INT_SGN_CONV

INT_SGN_CONV : conv

Synopsis

Conversion to produce sign of an integer literal of type :int.

Description

The call INT_SGN_CONV ‘int_sgn c‘, where c is an integer literal of type :int, returns
the theorem |- int_sgn ¢ = d where d is the canonical integer literal that is equal to ¢’s
sign. The literal ¢ may be of the form &n or -- &n and the result will be of the same form.

Failure
Fails if applied to a term that is not the negation of one of the permitted forms of integer
literal of type :int.

Example
# INT_SGN_CONV ‘int_sgn(-- &42:int)‘;;

val it : thm = |- int_sgn (-- &42) = -- &1

See also
INT_REDUCE_CONV, REAL_RAT_SGN_CONV.
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INT_SUB_CONV

INT_SUB_CONV : conv

Synopsis

Conversion to perform subtraction on two integer literals of type :int.

Description

The call INT_SUB_CONV ‘c1 - c2¢ where c1 and c2 are integer literals of type :int, returns
|- ¢1 - c2 = d where d is the canonical integer literal that is equal to c1 - c2. The
literals c1 and c2 may be of the form &n or -- &n (with nonzero n in the latter case) and
the result will be of the same form.

Failure
Fails if applied to a term that is not the difference of two permitted integer literals of type

:int.
Example
# INT_SUB_CONV ‘&33 - &77°;;

val it : thm = |- &33 - &77 = —- &44

See also
INT_REDUCE_CONV, REAL_RAT_SUB_CONV.

isalnum

isalnum : string -> bool

Synopsis

Tests if a one-character string is alphanumeric.

Description

The call isalnum s tests whether the first character of string s (normally it is the only
character) is alphanumeric, i.e. an uppercase or lowercase letter, a digit, an underscore
or a prime character.
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Failure
Fails if the string is empty.

See also
isalpha, isbra, isnum, issep, isspace, issymb.

isalpha

isalpha : string -> bool

Synopsis

Tests if a one-character string is alphabetic.

Description

The call isalpha s tests whether the first character of string s (normally it is the only
character) is alphabetic, i.e. an uppercase or lowercase letter, an underscore or a prime
character.

Failure
Fails if the string is empty.

See also
isalnum, isbra, isnum, issep, isspace, issymb.

isbra

isbra : string -> bool

Synopsis

Tests if a one-character string is some kind of bracket.

Description

The call isbra s tests whether the first character of string s (normally it is the only
character) is a bracket, meaning an opening or closing parenthesis, square bracket or
curly brace.
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Failure
Fails if the string is empty.

See also
isalnum, isalpha, isnum, issep, isspace, issymb.

isnum

isnum : string -> bool

Synopsis

Tests if a one-character string is a decimal digit.

Description
The call isnum s tests whether the first character of string s (normally it is the only
character) is a decimal digit.

Failure
Fails if the string is empty.

See also
isalnum, isalpha, isbra, issep, isspace, issymb.

ISPEC

ISPEC : term -> thm -> thm

Synopsis

Specializes a theorem, with type instantiation if necessary.

Description
This rule specializes a quantified variable as does SPEC; it differs from it in also instanti-
ating the type if needed, both in the conclusion and hypotheses:

A |- Ix:ty.tm
----------------------- ISPEC ‘t:ty’
Alty’/tyl |- tm[t/x]

(where t is free for x in tm, and ty’ is an instance of ty).
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Failure
ISPEC fails if the input theorem is not universally quantified, or if the type of the given
term is not an instance of the type of the quantified variable.

Example

# ISPEC ‘O¢ EQ_REFL;;
val it : thm = |- 0 =0

Note that the corresponding call to SPEC would fail because of the type mismatch:
# SPEC ‘0¢ EQ_REFL;;

Exception: Failure "SPEC".

See also
INST, INST_TYPE, ISPECL, SPEC, type_match.

ISPECL

ISPECL : term list -> thm -> thm

Synopsis

Specializes a theorem zero or more times, with type instantiation if necessary.

Description
ISPECL is an iterative version of ISPEC

————————————————————————————— ISPECL [‘t1¢,...,“tn‘]

(where ti is free for xi in tm) in which A’ results from applying all the corresponding type
instantiations to the assumption list A.

Failure
ISPECL fails if the list of terms is longer than the number of quantified variables in the
term, or if the type instantiation fails.
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Example

# ISPECL [‘x:num‘; ‘2¢] EQ_SYM_EQ;;
val it : thm = |- x = 2 <=> 2 = x

Note that the corresponding call to SPECL would fail because of the type mismatch:

# SPECL [‘x:num‘; ‘2°‘] EQ_SYM_EQ;;
Exception: Failure "SPECL".

See also
INST_TYPE, INST, ISPEC, SPEC, SPECL, type_match.

issep

issep : string -> bool

Synopsis

Tests if a one-character string is a separator.

Description
The call issep s tests whether the first character of string s (normally it is the only

)

character) is one of the separators ‘,” or ‘;’.

Failure
Fails if the string is empty.

See also
isalnum, isalpha, isbra, isnum, isspace, issymb.

isspace

isspace : string -> bool

Synopsis

Tests if a one-character string is some kind of space.
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Description
The call isspace s tests whether the first character of string s (normally it is the only
character) is a ‘space’ of some kind, including tab and newline.

Failure
Fails if the string is empty.

See also
isalnum, isalpha, isbra, isnum, issep, issymb.

issymb

issymb : string -> bool

Synopsis

Tests if a one-character string is a symbol other than bracket or separator.

Description

The call issymb s tests whether the first character of string s (normally it is the only
character) is “symbolic”. This means that it is one of the usual ASCII characters but is
not alphanumeric, not an underscore or prime character, and is also not one of the two
separators ,” or ;’ nor any bracket, parenthesis or curly brace. More explicitly, the set
of symbolic characters is:

\Nte#$%) " &x-+ | \N\<=>/7".
Failure
Fails if the string is empty.

See also
isalnum, isalpha, isbra, isnum, issep, isspace.

1s_abs

is_abs : term -> bool
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Synopsis

Tests a term to see if it is an abstraction.

Description
is_abs ‘\var. t°¢ returns true. If the term is not an abstraction the result is false.

Failure

Never fails.
Example

# is_abs ‘\x. x + 1%;;
val it : bool true

# is_abs ‘!x. x >= 0¢;;
val it : bool false

See also
mk_abs, dest_abs, is_var, is_const, is_comb.

is_bilnary

is_binary : string -> term -> bool

Synopsis

Tests if a term is an application of a named binary operator.

Description

The call is_binary s tm tests if term tm is an instance of a binary operator (op 1) r
where op is a constant with name s. If so, it returns true; otherwise it returns false. Note
that op is required to be a constant.

Failure

Never fails.
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Example
This one succeeds:

# is_binary "+" ‘1 + 2¢;;
val it : bool = true

but this one fails unless f has been declared a constant:

# is_binary "f" ‘f x y¢;;
Warning: inventing type variables
val it : bool = false

See also
dest_binary, is_binop, is_comb, mk_binary.

1s_binder

is_binder : string -> term -> bool

Synopsis

Tests if a term is a binder construct with named constant.

Description

The call is_binder "c" t tests whether the term t has the form of an application of a
constant c to an abstraction. Note that this has nothing to do with the parsing status of
the name c as a binder, but only the form of the term.

Failure
Never fails.

Example

# is_binder "!" ‘Ix. x >= 0¢;;
val it : bool = true

Note how only the basic logical form is tested, even taking in things that we wouldn’t
really think of as binders:

# is_binder "=" ‘(=) (\x. x + 1)°¢;;

val it : bool = true

See also
dest_binder, mk_binder.
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1s_binop

is_binop : term -> term -> bool

Synopsis

Tests if a term is an application of the given binary operator.

Description
The call is_binop op t returns true if the term t is of the form (op 1) r for any two
terms 1 and r, and false otherwise.

Failure
Never fails.

Example
This is a fairly typical example:

# is_binop ‘(/\)¢ ‘p /\ q‘;;
val it : bool = true

but note that the operator needn’t be a constant:
# is_binop ‘f:num->num->num‘ ‘(f:num->num->num) x y°;;

val it : bool = true

See also
dest_binary, dest_binop, is_binary, mk_binary, mk_binop.

1s_comb

is_comb : term -> bool

Synopsis

Tests a term to see if it is a combination (function application).

Description
is_comb "t1 t2" returns true. If the term is not a combination the result is false.
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Failure
Never fails

Example

# is_comb ‘x + 1°¢;;

val it : bool = true
# is_comb ‘T‘;;
val it : bool = false

See also
dest_comb, is_var, is_const, is_abs, mk_comb.

1s_cond

is_cond : term -> bool

Synopsis

Tests a term to see if it is a conditional.

Description
is_cond ‘if t then tl1 else t2° returns true. If the term is not a conditional the result
1s false.

Failure
Never fails.

See also
mk_cond, dest_cond.

is_conj

is_conj : term -> bool

Synopsis

Tests a term to see if it is a conjunction.
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Description
is_conj ‘t1 /\ t2°¢ returns true. If the term is not a conjunction the result is false.

Failure
Never fails.

See also
dest_conj, mk_conj.

1s_cons

is_cons : term -> bool

Synopsis

Tests a term to see if it is an application of CONS.

Description
is_cons returns true of a term representing a non-empty list. Otherwise it returns false.

Failure
Never fails.

See also
dest_cons, dest_list, is_list, mk_cons, mk_list.

1s_const

is_const : term -> bool

Synopsis

Tests a term to see if it is a constant.

Description
is_const ‘comst:ty‘ returns true. If the term is not a constant the result is false.

Failure
Never fails.
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Example

# is_const ‘T‘;;

val it : bool = true
# is_const ‘x:bool‘;;
val it : bool = false

Note that numerals are not constants; they are composite constructs hidden by pret-
typrinting:

# is_const ‘0°¢;;

val it : bool = false
# is_numeral ¢12345°¢;;
val it : bool = true

See also
dest_const, is_abs, is_comb, is_numeral, is_var, mk_const.

is_dis]

is_disj : term -> bool

Synopsis

Tests a term to see if it is a disjunction.

Description
is_disj ‘t1 \/ t2¢ returns true. If the term is not a disjunction the result is false.

Failure
Never fails.

See also
dest_disj, mk_disj.

is_eq

is_eq : term -> bool
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Synopsis

Tests a term to see if it is an equation.

Description
is_eq ‘t1 = t2°¢ returns true. If the term is not an equation the result is false. Note
that logical equivalence is just equality on type :bool, even though it is printed as <=>.

Failure
Never fails.

Example

# is_eq ‘2 + 2 = 4¢;;
val it : bool = true

# is_eq ‘p /\ q <=> q /\ p;;
val it : bool = true

# is_eq ‘p ==> p‘;;

val it : bool = false

See also
dest_eq, is_beq, mk_eq.

1s_exists

is_exists : term -> bool

Synopsis

Tests a term to see if it as an existential quantification.

Description
is_exists ‘?var. t¢ returns true. If the term is not an existential quantification the

result is false.

Failure
Never fails.

See also
dest_exists, mk_exists.
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is_forall

is_forall : term -> bool

Synopsis

Tests a term to see if it is a universal quantification.

Description

is_forall ‘!var. t‘ returns true. If the term is not a universal quantification the result
is false.

Failure

Never fails.

See also
dest_forall, mk_forall.

is_gabs

is_gabs : term -> bool

Synopsis

Tests if a term is a basic or generalized abstraction.

Description

The call is_gabs t tests if t is either a basic logical abstraction (as identified by is_abs)
or a generalized one (a standard composite logical structure to support a non-variable
vastruct). If so, it returns true, and otherwise it returns false.

Failure

Never fails.
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Example
This shows that ordinary abstractions are allowed:

# is_gabs ‘\x. x + 1°;;
val it : bool = true

while the following shows a more typical case:
# is_gabs ‘\(x,y,z). x +y + 2z + 1¢;;

val it : bool = true

See also
GEN_BETA_CONV, dest_gabs, mk_gabs.

1s_hidden

is_hidden : string -> bool

Synopsis

Determines whether a constant is hidden.

Description

This predicate returns true if the named ML constant has been hidden by the function
hide_constant; it returns false if the constant is not hidden. Hiding a constant forces
the quotation parser to treat the constant as a variable (lexical rules permitting).

Failure
Never fails.

Example

# is_hidden "SUC";;
val it : bool = false

# hide_constant "SUC";;
val it : unit = ()

# is_hidden "SUC";;

val it : bool = true

See also
hide_constant, unhide_constant
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is _iff

is_iff : term -> bool

Synopsis

Tests if a term is an equation between Boolean terms (iff / logical equivalence).

Description

Recall that in HOL, the Boolean operation variously called logical equivalence, bi-implication
or ‘if and only if’ (iff) is simply the equality relation on Boolean type. The call is_iff t
returns true if t is an equality between terms of Boolean type, and false otherwise.

Failure
Never fails.

Example

# is_iff ‘p = T¢;;
val it : bool = true

# is_iff ‘p <=> q°;;
val it : bool = true

# is_iff ‘0 = 1°¢;;

val it : bool = false

See also
dest_iff, is_eq, mk_iff.

is_1mp

is_imp : term -> bool

Synopsis

Tests if a term is an application of implication.

Description
The call is_imp t returns true if t is of the form p ==> q for some p and g, and returns
false otherwise.
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Failure
Never fails.

See also
dest_imp.

1s_1intconst

is_intconst : term -> bool

Synopsis

Tests if a term is an integer literal of type :int.

Description

The call is_intconst t tests whether the term t is a canonical integer literal of type :int,

i.e. either ‘4n’ for a numeral n or ‘-- &n’ for a nonzero numeral n. If so it returns true,

otherwise false.

Failure
Never fails.

Example
# is_intconst ‘-- &3 :int‘;;
val it : bool = true
# is_intconst ‘-- &0 :int‘;;

val it : bool = false

See also

dest_intconst, is_realintconst, mk_intconst.

is_let

is_let : term -> bool

Synopsis

Tests a term to see if it is a let-expression.
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Description
is_let ‘let x1 = el and ... and xn = en in E° returns true. If the term is not a let-
expression of any kind, the result is false.

Failure
Never fails.

Example

# is_let ‘let x = 1 in x + x‘;;
val it : bool = true

# is_let ‘let x =2 and y = 3 iny + x‘;;
val it : bool = true

See also
mk_let, dest_let.

1s_list

is_list : term -> bool

Synopsis

Tests a term to see if it is a list.

Description
is_list returns true of a term representing a list. Otherwise it returns false.

Failure
Never fails.

See also
dest_cons, dest_list, is_cons, mk_cons, mk_list.

is_neg

is_neg : term -> bool
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Synopsis

Tests a term to see if it is a logical negation.

Description
is_neg ‘"t‘ returns true. If the term is not a logical negation the result is false.

Failure
Never fails.

See also
dest_neg, mk_neg.

1s_numeral

is_numeral : term -> bool

Synopsis

Tests if a term is a natural number numeral.

Description
When applied to a term, is_numeral returns true if and only if the term is a canonical
natural number numeral (0, 1, 2 etc.)

Failure
Never fails.

See also
dest_numeral, is_numeral.

1s_pailr

is_pair : term -> bool

Synopsis

Tests a term to see if it is a pair.

Description
is_pair ‘(t1,t2)¢ returns true. If the term is not a pair the result is false.
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Failure
Never fails.

Example

# is_pair ‘1,2,3¢;;
val it : bool = true

# is_pair ‘[1;2;3]1°¢;;

val it : bool = false

See also
dest_pair, is_cons, mk_pair.

is_prefix

is_prefix : string -> bool

Synopsis

Tests if an identifier has prefix status.

Description

Certain identifiers ¢ have prefix status, meaning that combinations of the form ¢ £ x will
be parsed as ¢ (f x) rather than the usual (¢ £) x. The call is_prefix "c" tests if c is
one of those identifiers.

Failure
Never fails.

See also
parse_as_prefix, prefixes, unparse_as_prefix.

1s_ratconst

is_ratconst : term —-> bool
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Synopsis

Tests if a term is a canonical rational literal of type :real.

Description

The call is_ratconst t tests whether the term t is a canonical rational literal of type
:real. This means an integer literal &n for numeral n, -- &n for a nonzero numeral n, or
a ratio &p / &q or -— &p / &q where p is nonzero, q > 1 and p and q share no common
factor. If so, is_ratconst returns true, and otherwise false.

Failure
Never fails.

Example

# is_ratconst ‘&22 / &7°;;
val it : bool = true
# is_ratconst ‘&4 / &2°¢;;
val it : bool = false

See also
is_realintconst, rat_of_term, REAL_RAT_REDUCE_CONV, term_of_rat.

1s_realintconst

is_realintconst : term -> bool

Synopsis

Tests if a term is an integer literal of type :real.

Description

The call is_realintconst t tests whether the term t is a canonical integer literal of type
:real, i.e. either ‘4n’ for a numeral n or ‘-- &n’ for a nonzero numeral n. If so it returns
true, otherwise false.

Failure
Never fails.
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Example

# is_realintconst ‘—- &3 :real‘;;
val it : bool = true

# is_realintconst ‘&1 :int‘;;

val it : bool = false

See also
dest_realintconst, is_intconst, is_ratconst, mk_realintconst.

1s_reserved_word

is_reserved_word : string -> bool

Synopsis

Tests if a string is one of the reserved words.

Description

Certain identifiers in HOL are reserved, e.g. ‘if’, ‘let’ and ‘|’, meaning that they are spe-

cial to the parser and cannot be used as ordinary identifiers. The call is_reserved_word s
tests if the string s is one of them.

Failure
Never fails.

See also
reserved_words, reserve_words, unreserve_words.

1s_select

is_select : term -> bool

Synopsis

Tests a term to see if it is a choice binding.

Description
is_select ‘@var. t‘ returns true. If the term is not an epsilon-term the result is false.
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Failure
Never fails.

See also
mk_select, dest_select.

1s_setenum

is_setenum : term -> bool

Synopsis

Tests if a term is a set enumeration.

Description
When applied to a term that is an explicit set enumeration ‘{t1,...,tn}¢, the function
is_setenum returns true; otherwise it returns false.

Failure
Never fails.

Example

# is_setenum ‘1 INSERT 2 INSERT {}‘;;
val it : bool true

# is_setenum ‘{1,2,3,4,1,2,3,4}¢;;
val it : bool = true

# is_setenum ‘1 INSERT 2 INSERT s¢;;

val it : bool = false

See also
dest_setenum, mk_fset, mk_setenum.

is_type

is_type : hol_type -> bool
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Synopsis

Tests whether a type is an instance of a type constructor.

Description
is_type ty returns true if ty is a base type or constructed by an outer type constructor,
and false if it is a type variable.

Failure
Never fails.

Example

# is_type ‘:bool‘;;
val it : bool = true

# is_type ‘:bool->int‘;;
val it : bool = true

# is_type ‘:Tyvar‘;;

val it : bool = false

See also
get_type_arity, is_vartype.

1s_uexists

is_uexists : term -> bool

Synopsis

Tests if a term is of the form ‘there exists a unique ...’

Description
If £ has the form ?!'x. p[x] (there exists a unique x such that p[x] then is_uexists t
returns true, otherwise false.

Failure
Never fails.

See also
dest_uexists, is_exists, is_forall.
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1s_undefined

is_undefined : (’a, ’b) func -> bool

Synopsis

Tests if a finite partial function is defined nowhere.

Description

This is one of a suite of operations on finite partial functions, type (’a,’b)func. These

may sometimes be preferable to ordinary functions since they permit more operations

such as equality comparison, extraction of domain etc. The predicate is_undefined tests

if the argument is the completely undefined function.

Failure
Never fails.

Example
# let x = undefined and y = (1 [|=> 2);;
val x : (’a, ’b) func = <func>

val y : (int, int) func = <func>

# is_undefined x;;
val it : bool = true

# is_undefined y;;
val it : bool = false

See also

[->, |=>, apply, applyd, choose, combine, defined, dom, foldl, foldr, graph,

mapf, ran, tryapplyd, undefine, undefined.

1s_var

is_var : term -> bool

Synopsis

Tests a term to see if it is a variable.
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Description
is_var ‘var:ty‘ returns true. If the term is not a variable the result is false.

Failure
Never fails.

Example

# is_var ‘x:bool‘;;
val it : bool = true
# is_var ‘T¢;;

val it : bool = false

See also
mk_var, dest_var, is_const, is_comb, is_abs.

is_vartype

is_vartype : hol_type -> bool

Synopsis
Tests a type to see if it is a type variable.
Description

Returns true if applied to a type variable. For types that are not type variables it returns

false.

Failure
Never fails.

Example

# is_vartype ‘:A‘;;
val it : bool = true

# is_vartype ‘:bool‘;;
val it : bool = false

# is_vartype (mk_vartype "bool");;
val it : bool = true

See also
mk_vartype, dest_vartype.
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1t

it : ’a

Synopsis

Binds the value of the last expression evaluated at top level.

Description
The identifier it is bound to the value of the last expression evaluated at top level.
Declarations do not effect the value of it.

Example

#t 2+ 3;;

val it : int = 5
# let x = 2%3;;

val x : int = 6

# it;;

val it : int = 5
# it + 12;;

val it : int = 17

Uses
Used in evaluating expressions that require the value of the last evaluated expression.

ITAUT

ITAUT : term -> thm

Synopsis

Attempt to prove term using intuitionistic first-order logic.

Description

The call ITAUT ‘p‘ attempts to prove p using a basic tableau-type proof search for intu-
itionistic first-order logic. The restriction to intuitionistic logic means that no principles
such as the “law of the excluded middle” or “law of double negation” are used.



328 Chapter 1. Pre-defined ML Identifiers

Failure
Fails if the goal is non-Boolean. May also fail if it’s unprovable, though more usually this
results in indefinite looping.

Example
This is intuitionistically valid, so it works:

# ITAUT ‘(" ("p)) ==> "p‘;;

val it : thm = |- 7 7 “p ==> 7p
whereas this, one of the main non-intuitionistic principles, is not:

# ITAUT ‘~("p) ==> p‘;;
Searching with limit O
Searching with limit 1
Searching with limit 2
Searching with limit 3

so the procedure loops; you can as usual terminate such loops with control-C.

Comments

Normally, first-order reasoning should be performed by MESON[], which is much more
powerful, complete for all classical logic, and handles equality. The function ITAUT is
mainly for “bootstrapping” purposes. Nevertheless it may sometimes be intellectually
interesting to see that certain logical formulas are provable intuitionistically.

See also
BOOL_CASES_TAC, ITAUT_TAC, MESON, MESON_TAC.

ITAUT_TAC

ITAUT_TAC : tactic

Synopsis

Simple intuitionistic logic prover.

Description

The tactic ITAUT attempts to prove the goal using a basic tableau-type proof search
for intuitionistic first-order logic. The restriction to intuitionistic logic means that no
principles such as the “law of the excluded middle” or “law of double negation” are used.
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Failure

May fail if the goal is unprovable, e.g. for purely propositional problems. For unsolvable
problems with quantifiers it usually just loops.

Example

Suppose we try to prove the logical equivalence of “contraposition”, already embedded in
the pre-proved theorem CONTRAPOS_THM:

#g ‘'pqg. (p==>q) <=> ("q==> "p);;
by splitting it into two subgoals:

# e(REPEAT GEN_TAC THEN EQ_TAC);;
val it : goalstack = 2 subgoals (2 total)

‘(”q ==> ~p) ==> P ==> q‘
‘(p ==> q) ==> ~q ==> ~p‘

The first subgoal (printed at the bottom) can be solved by ITAUT_TAC, indicating that it’s
intuitionistically valid:

# e ITAUT_TAC;;
Qéi it : goalstack = 1 subgoal (1 total)
‘("q ==> "p) ==>p ==> q
but the other one isn’t, though it is solvable by full classical logic:

# e(MESON_TACI[]);;
val it : goalstack = No subgoals

Comments

Normally, first-order reasoning should be performed by MESON_TAC[], which is much more
powerful, complete for all classical logic, and handles equality. The function ITAUT_TAC
is mainly for “bootstrapping” purposes. Nevertheless it may sometimes be intellectually
interesting to see that certain logical formulas are provable intuitionistically.

See also
ITAUT, MESON_TAC.
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1tlist

itlist : (Pa -> ’b -> ’b) -> ’a list -> ’b -> ’b

Synopsis
List iteration function. Applies a binary function between adjacent elements of a list.
Description
itlist £ [x1;...;xn] y returns
fxt (fx2... (fxny)...)

It returns y if list is empty.

Failure
Never fails.

Example

# itlist (+) [1;2;3;4;5] 0;;
val it : int = 15
# itlist (+) [1;2;3;4;5] 6;;
val it : int = 21

See also
rev_itlist, end_itlist.

itlist?2

itlist2 : (Pa -> ’b -=> ’c -> ’c) -> ’a list -> ’b list -> ’c -> ’c

Synopsis

Applies a paired function between adjacent elements of 2 lists.

Description
itlist2 £ ([x1;...;xnl,[yl;...;yn]l) z returns

fx1yl (fx2y2 ... (£ xn yn 2)...)

It returns z if both lists are empty.
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Failure
Fails if the two lists are of different lengths.

Example
This takes a ‘dot product’ of two vectors of integers:

# let dot v w = itlist2 (funxy z > x *x y + 2) v w 0;;
val dot : int list -> int list -> int = <fun>

# dot [1;2;3] [4;5;6];;

val it : int = 32

See also
itlist, rev_itlist, end_itlist, uncurry.

K

K: ’a->"b -> ’a

Synopsis

Forms a constant function: (X x) y = x.

Failure
Never fails.

See also
Cc, F.F, I, o, W.

LABEL_TAC

LABEL_TAC : string -> thm_tactic

Synopsis

Add an assumption with a named label to a goal.

Description
Given a theorem th, the tactic LABEL_TAC "name" th will add th as a new hypothesis, just
as ASSUME_TAC does, but will also give it name as a label. The name will show up when
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the goal is printed, and can be used to refer to the theorem in tactics like USE_THEN and
REMOVE_THEN.

Failure

Never fails, though may be invalid if the theorem has assumptions that are not a subset
of those in the goal, up to alpha-equivalence.

Example
Suppose we want to prove that a binary relation <<= that is antisymmetric and has a
strong wellfoundedness property is also total and transitive, and hence a wellorder:

#g ‘(Ixy. x K=y /\y<=x==>x=y)/\
('s. "(s =4{}) ==> 7a:A. a IN s /\ !'x. x IN s ==> a <<= x)
=> (Ix y. x <<=y \/ y <<= x) /\
(Ix yz. x <K=y /\ y <=z ==> x <<= 2)‘;;

We might start by putting the two hypotheses on the assumption list with intuitive names:

# e(DISCH_THEN(CONJUNCTS_THEN2 (LABEL_TAC "antisym") (LABEL_TAC "wo")));;
val it : goalstack = 1 subgoal (1 total)

0 [‘'xy. x <<=y /\ y <<= x ==> x = y‘] (antisym)
1 [‘1s. “(s ={}) ==> (?a. a IN s /\ (Ix. x IN s ==> a <<= x)) ‘] (wo)

“(MIxy. x <=y \/ y<<=3%x) /\ (lxyz. x <K=y /\ y <=2z ==>x <<= 2)°
Now we break down the goal a bit

# e(REPEAT STRIP_TAC);;
val it : goalstack = 2 subgoals (2 total)

0 [‘'xy. x <<=y /\ y <<= x ==> x = y‘] (antisym)

1 [“ls. "(s =4{}) ==> (7a. a IN s /\ (!x. x IN s ==> a <<= x)) ‘] (wo)
2 [‘x <<= y‘]

3 [y <<= z¢]

‘x <<= z°

0 [‘!xy. x <<=y /\ y <<= x ==>x = y‘] (antisym)

1 [‘1s. "(s ={}) ==> (7a. a IN s /\ (Ix. x IN s ==> a <<= x))°‘] (wo)

‘x <<=y \/ y <<= x¢

We want to specialize the wellordering assumption to an appropriate set for each case, and
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we can identify it using the label wo; the problem is then simple set-theoretic reasoning:

# e(USE_THEN "wo" (MP_TAC o SPEC ‘{x:A,y:A}‘) THEN SET_TAC[1);;

val it : goalstack = 1 subgoal (1 total)

0 [‘'xy. x <=3 /\ y <<= x ==> x = y‘] (antisym)

1 [“'s. "(s =4} ==> (7a. a IN s /\ (!x. x IN s ==> a <<= x))‘] (wo)
2 [‘x <<= y‘]

3 [y <<= z¢]

‘x <<= z¢

Similarly for the other one:

# e(USE_THEN "wo" (MP_TAC o SPEC ‘{x:A,y:A,z:A}‘) THEN ASM SET_TACI[I);;

val it : goalstack = No subgoals

Uses
Convenient for referring to an assumption explicitly, just as in mathematics books one
sometimes marks a theorem with an asterisk or dagger, then refers to it using that symbol.

Comments

There are other ways of identifying assumptions than by label, but they are not always
convenient. For example, explicitly doing ASSUME ‘asm‘ is cumbersome if asm is large, and
using its number in the assumption list can make proofs very brittle under later changes.

See also
ASSUME_TAC, DESTRUCT_TAC, HYP, INTRO_TAC, REMOVE_THEN, USE_THEN.

LAMBDA_ELIM_CONV

LAMBDA_ELIM_CONV : conv

Synopsis

Eliminate lambda-terms that are not part of quantifiers from Boolean term.

Description
When applied to a Boolean term, LAMBDA_ELIM_CONV returns an equivalent version with
‘bare’ lambda-terms (those not part of quantifiers) removed. They are replaced with
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new ‘function’ variables and suitable hypotheses about them; for example a lambda-term
\x. t[x] is replaced by a function £ with an additional hypothesis !'x. £ x = t[x].

Failure
Never fails.

Example

# LAMBDA_ELIM_CONV ‘MAP (\x. x + 1) 1 = 1’¢;;
val it : thm =
[- MAP (\x. x + 1) 1 =1 <=>
(1_73141. ('x. _73141 x = x + 1) ==> MAP _73141 1 = 1)

Uses
This is mostly intended for normalization prior to automated proof procedures, and is
used by MESON, for example. However, it may sometimes be useful in itself.

See also
SELECT_ELIM_TAC, CONDS_ELIM_CONV.

LAND_CONV

LAND_CONV : conv -> conv

Synopsis

Apply a conversion to left-hand argument of binary operator.

Description
If c is a conversion where ¢ ‘1¢ gives |- 1 = 1’, then LAND_CONV ¢ ‘op 1 r‘gives |- op 1 r = op 1’ r.

Failure
Fails if the underlying conversion does or returns an inappropriate theorem (i.e. is not
really a conversion).

Example
# LAND_CONV NUM_ADD_CONV ‘(2 + 2) + (2 + 2)¢;;
val it : thm = |- (2 +2) +2 +2 =4+ 2 + 2

See also
ABS_CONV, COMB_CONV, COMB_CONV2, RAND_CONV, RATOR_CONV, SUB_CONV.



last 335

last

last : ’a list -> ’a

Synopsis

Computes the last element of a list.

Description
last [x1;...;xn] returns xn.

Failure
Fails with 1ast if the list is empty.

See also
butlast, hd, tl, el.

lcm_num

lcm_num : num -> num -> num

Synopsis

Computes lowest common multiple of two unlimited-precision integers.

Description

The call 1cm_num m n for two unlimited-precision (type num) integers m and n returns the
(positive) lowest common multiple of m and n. If either m or n (or both) are both zero, it
returns zero.

Failure
Fails if either number is not an integer (the type num supports arbitrary rationals).

Example
# lcm_num (Int 35) (Int(-77));;

val it : num = 385

See also
gcd, gcd_num.
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LEANCOP

LEANCOP : thm list -> term -> thm

Synopsis
Attempt to prove a term by first-order proof search using leanCop connection-based
prover.

Description

A call LEANCOP [theorems] ‘tm‘ will attempt to prove tm using pure first-order reasoning,
taking theorems as the starting-point. It will usually either prove it completely or run for
an infeasibly long time, but it may sometimes fail quickly.

Although LEANCOP is capable of some fairly non-obvious pieces of first-order reasoning,
and will handle equality adequately, it does purely logical reasoning. It will exploit no
special properties of the constants in the goal, other than equality and logical primi-
tives. Any properties that are needed must be supplied explicitly in the theorem list, e.g.
LE_REFL to tell it that <= on natural numbers is reflexive, or REAL_ADD_SYM to tell it that
addition on real numbers is symmetric.

Failure
Fails if the term is unprovable within the search bounds.

Example
A typical application is to prove some elementary logical lemma for use inside a tactic
proof:

# LEANCOP [EXTENSION; IN_INSERT]
‘x INSERT y INSERT s = y INSERT x INSERT s‘;;

Uses
Generating simple logical lemmas as part of a large proof.

See also
LEANCOP_TAC, MESON, METIS, NANOCOP.

LEANCOP_TAC

LEANCOP_TAC : thm list -> tactic
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Synopsis

Automated first-order proof search tactic using leanCoP algorithm.

Description

A call to LEANCOP_TAC[theorems] will attempt to establish the current goal using pure
first-order reasoning, taking theorems as the starting-point. It will usually either solve
the goal completely or run for an infeasibly long time, but it may sometimes fail quickly.
This tactic is analogous to MESON_TAC, and many of the same general comments apply.

Failure
Fails if the goal is unprovable within the search bounds.

Example
Here is a simple fact about natural number sums as a goal:

#g ‘1fuv.

FINITE u /\ (!x. x INv /\ "(x INu) ==> f x = 0)
==> nsum (u UNION v) f = nsum u £°;;

It is solved in a fraction of a second by LEANCOP_TAC with some relevant lemmas:

# e(LEANCOP_TAC[SUBSET; NSUM_SUPERSET; IN_UNION]);;
val it : goalstack = No subgoals

See also
LEANCOP, MESON_TAC, METIS_TAC, NANOCOP_TAC.

leftbin

leftbin : (a -> ’b * ’c) -> (Pc => ’d * ’a) -> (°d -> ’b => ’b -> ’b) -> string -> ’a -

Synopsis

Parses iterated left-associated binary operator.

Description

If p is a parser for “items” of some kind, s is a parser for some “separator”, c is a
‘constructor’ function taking an element as parsed by s and two other elements as parsed
by p and giving a new such element, and e is an error message, then leftbin p s c e
will parse an iterated sequence of items by p and separated by something parsed with s.
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It will repeatedly apply the constructor function ¢ to compose these elements into one,
associating to the left. For example, the input:

<pl> <sl1> <p2> <s2> <p3> <s3> <p4>

meaning successive segments pi that are parsed by p and sj that are parsed by s, will
result in

c (c s2 (c sl p1l p2) p3) p4

Failure
The call 1leftbin p s c¢ e never fails, though the resulting parser may.

Comments

This is one of a suite of combinators for manipulating “parsers”. A parser is simply
a function whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The
function should take a list of objects of type :’a (e.g. characters or tokens), parse as
much of it as possible from left to right, and return a pair consisting of the object derived
from parsing (e.g. a term or a special syntax tree) and the list of elements that were not
processed.

See also
++, |Il, >, a, atleast, elistof, finished, fix, listof, many, nothing,
possibly, rightbin, some.

length

length : ’a list -> int

Synopsis
Computes the length of a list: length [x1;...;xn] returns n.

Failure
Never fails.

let _CONV

let_CONV : term -> thm
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Synopsis

Evaluates let-terms in the HOL logic.

Description

The conversion let_CONV implements evaluation of object-language let-terms. When
applied to a let-term of the form:

let vl = t1l and ... and vn = tn in t
where v1, ..., vn are variables, 1let_CONV proves and returns the theorem:
|- (et v1 = t1 and ... and vn = tn in t) = t[tl,...,tn/vl,...,vn]
where t[t1,...,tn/vl,...,vn] denotes the result of substituting ti for v1 in parallel in

t, with automatic renaming of bound variables to prevent free variable capture.

let_CONV also works on let-terms that bind terms built up from applications of induc-
tive type constructors. For example, if <tup> is an arbitrarily-nested tuple of distinct
variables v1, ..., vn and <val> is a structurally similar tuple of values, that is <val> equals
<tup>[tl,...,tn/vl,...,vn] for some terms t1, ..., tn, then:

let_CONV ‘let <tup> = <val> in t°

returns

|- (let <tup> = <val> in t) = t[tl,...,tn/vl,...,vn]

That is, the term ti is substituted for the corresponding variable vi in t. This form of
let-reduction also works with simultaneous binding of tuples using and.

Failure

let_CONV tm fails if tm is not a reducible let-term of one of the forms specified above.



340 Chapter 1. Pre-defined ML Identifiers

Example
A simple example of the use of 1et_CONV to eliminate a single local variable is the following:

# let_CONV ‘let x = 1 in x+y°;;
val it : thm = |- (let x =1 inx +y) =1+y

and an example showing a tupled binding is:

# let_CONV ‘let (x,y) = (1,2) in x+y‘;;
val it : thm = |- (let x,y = 1,2 inx +y) =1 + 2

Simultaneous introduction of two bindings is illustrated by:
# let_CONV ‘let x =1 and y =2 inx +y + z°;;

val it : thm = |- (let x =l and y=2inx +y +2) =1+ 2 + z

See also
BETA_CONV, GEN_BETA_CONV, SUBLET_CONV.

LET_TAC

LET_TAC : tactic

Synopsis

Eliminates a let binding in a goal by introducing equational assumptions.

Description

Given a goal A 7- t where t contains a free let-expression let x1 = E1 and ... let xn = En in E,

the tactic LET_TAC replaces that subterm by simply E but adds new assumptions E1 = x1,
..., En = xn. That is, the local let bindings are replaced with new assumptions, put in
reverse order so that ASM_REWRITE_TAC will not immediately expand them. In cases where
the term contains several let-expression candidates, a topmost one will be selected. In
particular, if let-expressions are nested, the outermost one will be handled.

Failure
Fails if the goal contains no eligible let-term.
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Example

#g ‘letx=2andy=3inx+ 1<=y‘;;
val it : goalstack = 1 subgoal (1 total)

[4

‘let x =2and y=3inx +1<=y

# e LET_TAC;,;
val it : goalstack

1 subgoal (1 total)

= X‘]

vl

= O
w N

‘x + 1 <= y<

See also
ABBREV_TAC, EXPAND_TAC, let_CONV.

lex

lex : string list -> lexcode list

Synopsis

Lexically analyze an input string.

Description
The function lex expects a list of single-character strings representing input (as produced
by explode, for example) and analyzes it into a sequence of tokens according to HOL
Light lexical conventions. A token is either Ident "s" or Resword "s"; in each case this
encodes a string but in the latter case indicates that the string is a reserved word.
Lexical analysis essentially regards any number of alphanumeric characters (see isalnum)
or any number of symbolic characters (see issymb) as a single token, except that certain
brackets (see isbra) are only allowed to be single-character tokens and other separators
(see issep) can only be combined with multiple instances of themselves not other char-
acters. Whitespace including spaces, tabs and newlines (see isspace) is eliminated and
serves only to separate tokens that would otherwise be one. Comments introduced by the
comment token (see comment_token) are removed.

Failure
Fails if the input is highly malformed, e.g. contains illegal characters.
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Example

# lex(explode "if p+1=2 then x + 1 else y - 1");;
val it : lexcode list =

[Resword "if"; Ident "p"; Ident "+"; Ident "1"; Ident "="; Ident "2";
Resword "then"; Ident "x"; Ident "+"; Ident "1"; Resword "else";
Ident "y"; Ident "-"; Ident "1"]

See also

comment_token, explode, isalnum, isbra, issep, isspace, issymb,
is_reserved_word, parse_term, parse_type.

LE_IMP

LE_IMP : thm -> thm

Synopsis

Perform transitivity chaining for non-strict natural number inequality.

Description

When applied to a theorem A |- s <= t where s and t have type num, the rule LE_IMP re-
turns A |- !'xl...xn z. t <= z ==> s <= z, where z is some variable and the x1,...,xn
are free variables in s and t.

Failure
Fails if applied to a theorem whose conclusion is not of the form ‘s <= t¢ for some natural
number terms s and t.

Example
# LE_IMP (ARITH_RULE ‘n <= SUC(m + n));;

val it : thm = |- 'mn p. SUC (m + n) <= p ==>n <= p

Uses
Can make transitivity chaining in goals easier, e.g. by FIRST_ASSUM(MATCH_MP_TAC o LE_IMP).

See also
ARITH_RULE, REAL_LE_IMP, REAL_LET_IMP.
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lhand

lhand : term -> term

Synopsis

Take left-hand argument of a binary operator.

Description

When applied to a term t that is an application of a binary operator to two arguments, i.e.
is of the form (op 1) r, the call 1hand t will return the left-hand argument 1. The terms
op and r are arbitrary, though in many applications op is a constant such as addition or
equality.

Failure
Fails if the term is not of the indicated form.

Example

# lhand ‘1 + 2¢;;
val it : term = ‘1°¢

# lhand ‘2 + 2 = 4¢;;
val it : term = ‘2 + 2°¢

# lhand ‘f xy z°;;

Warning: inventing type variables
4 4

val it : term = ‘y
# lhand ‘if p then q else r‘;;

Warning: inventing type variables

val it : term = ‘q‘

Comments
On equations, lhand has the same effect as 1hs, but may be slightly quicker because it
does not check whether the operator op is indeed the equality constant.

See also
lhs, rand, rhs.
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1lhs

lhs : term -> term

Synopsis

Returns the left-hand side of an equation.

Description
lhs ‘t1 = t2°¢ returns ‘t1°.

Failure
Fails with 1hs if the term is not an equation.

Example
# 1hs ‘2 + 2 = 4°;;

val it : term = ‘2 + 2¢

See also
dest_eq, lhand, rand, rhs.

1lift function

lift_function : thm -> thm * thm -> string -> thm -> thm * thm

Synopsis

Lift a function on representing type to quotient type of equivalence classes.

Description

Suppose type gty is a quotient type of rty under an equivalence relation R: rty->rty->bool,

as defined by define_quotient_type, and f is a function f:ty1->...->tyn->ty, some tyi
being the representing type rty. The term lift_function should be applied to (i) a theo-

rem of the form |- (?x. r = R x) <=> rep(abs r) = rasreturned by define_quotient_type,
(ii) a pair of theorems asserting that R is reflexive and transitive, (iii) a desired name for
the counterpart of £ lifted to the type of equivalence classes, and (iv) a theorem asserting
that £ is “welldefined”, i.e. respects the equivalence class. This last theorem essentially
asserts that the value of £ is independent of the choice of representative: any R-equivalent
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inputs give an equal output, or an R-equivalent one. Syntactically, the welldefinedness
theorem should be of the form:

|- 'x1 x1> .. xn xn’. (x1 == x1°) /\ ... /\ (xn == xn’)
=> (f x1 .. xn == f x1’ .. f nx’)

where each == may be either equality or the relation R, the latter of course only if the
type of that argument is rty. The reflexivity and transitivity theorems should be

|- !'x. R x x
and
|- !'xyz. Rxy/\Ryz=>Rzxz

It returns two theorems, a definition and a consequential theorem that can be used by
1lift_theorem later.

Failure

Fails if the theorems are malformed or if there is already a constant of the given name.

Example

Suppose that we have defined a type of finite multisets as in the documentation for
define_quotient_type, based on the equivalence relation multisame on lists. First we
prove that the equivalence relation multisame is indeed reflexive and transitive:

# let MULTISAME_REFL,MULTISAME_TRANS = (CONJ_PAIR o prove)
(“('1:(A)1ist. multisame 1 1) /\
(111 12 13:(A)1list.
multisame 11 12 /\ multisame 12 13 ==> multisame 11 13)°¢,
REWRITE_TAC[multisame] THEN MESON_TAC[]);;

We would like to define the multiplicity of an element in a multiset. First we define
this notion on the representing type of lists:

# let listmult = new_definition
‘listmult a 1 = LENGTH (FILTER (\x:A. x = a) 1)¢;;

and prove that it is welldefined. Note that the second argument is the only one we want
to lift to the quotient type, so that’s the only one for which we use the relation multisame.
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For the first argument and the result we only use equality:

# let LISTMULT_WELLDEF = prove
(‘laa’:A11°.
a=a’ /\ multisame 1 1’ ==> listmult a 1 = listmult a’ 1’°¢,
SIMP_TAC[listmult; multisame]);;

Now we can lift it to a multiplicity function on the quotient type:

# let multiplicity,multiplicity_th =
lift_function multiset_rep (MULTISAME_REFL,MULTISAME_TRANS)
"multiplicity" LISTMULT_WELLDEF; ;
val multiplicity : thm =
|- multiplicity a 1 = (@u. ?1. listmult a 1 = u /\ list_of_multiset 1 1)
val multiplicity_th : thm =
|- listmult a 1 = multiplicity a (multiset_of_list (multisame 1))

Another example is the ‘union’ of multisets, which we can consider as the lifting of the
APPEND operation on lists, which we show is welldefined:

# let APPEND_WELLDEF = prove
(‘11 1> m m’> :A list.
multisame 1 1’ /\ multisame m m’
==> multisame (APPEND 1 m) (APPEND 1’ m’)°¢,
SIMP_TAC[multisame; FILTER_APPEND]);;

and lift as follows:

# let munion,munion_th =
lift_function multiset_rep (MULTISAME_REFL,MULTISAME_TRANS)
"munion" APPEND_WELLDEF; ;
val munion : thm =
|- munion 1 m =
multiset_of_list
(\u. 71 m.
multisame (APPEND 1 m) u /\
list_of_multiset 1 1 /\
list_of_multiset m m)
val munion_th : thm =
|- multiset_of_list (multisame (APPEND 1 m)) =
munion (multiset_of_list (multisame 1)) (multiset_of_list (multisame m))

For continuation of this example, showing how to lift theorems from the represent-
ing functions to the functions on the quotient type, see the documentation entry for
lift_theorem.
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Comments
If, as in these examples, the representing type is parametrized by type variables, make
sure that the same type variables are used consistently in the various theorems.

See also
define_quotient_type, lift_theorem.

lift_theorem

lift_theorem : thm * thm -> thm * thm * thm -> thm list -> thm -> thm

Synopsis

Lifts a theorem to quotient type from representing type.

Description

The function 1ift_theorem should be applied (i) a pair of type bijection theorems as
returned by define_quotient_type for equivalence classes over a binary relation R, (ii) a
triple of theorems asserting that the relation R is reflexive, symmetric and transitive in
exactly the following form:

|- 'x. R x x
|- !'xy. Rxy<=>Ryx
|- !'xyz. Rxy/\N\Ryz==>Rzxz

and (iii) the list of theorems returned as the second component of the pairs from 1ift_function
for all functions that should be mapped. Finally, it is then applied to a theorem about
the representing type. It automatically maps it over to the quotient type, appropriately
modifying quantification over the representing type into quantification over the new quo-
tient type, and replacing functions over the representing type with their corresponding
lifted counterparts. Note that all variables should be bound by quantifiers; these may be
existential or universal but if any types involve the representing type rty it must be just
rty and not a composite or higher-order type such as rty->rty or rty#num.

Failure

Fails if any of the input theorems are malformed (e.g. symmetry stated with implication
instead of equivalence) or fail to correspond (e.g. different polymorphic type variables in
the type bijections and the equivalence theorem). Otherwise it will not fail, but if used
improperly may not map the theorem across cleanly.
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Example

This is a continuation of the example in the documentation entries for define_quotient_type
and lift_function, where a type of finite multisets is defined as the quotient of the type
of lists by a suitable equivalence relation multisame. We can take the theorems asserting
that this is indeed reflexive, symmetric and transitive:

# let [MULTISAME_REFL;MULTISAME_SYM;MULTISAME_TRANS] = (CONJUNCTS o prove)
(¢('1:(A)1ist. multisame 1 1) /\
(11 17:(A)1list. multisame 1 1’ <=> multisame 1’ 1) /\
('11 12 13:(A)1list.
multisame 11 12 /\ multisame 12 13 ==> multisame 11 13)°¢,
REWRITE_TAC[multisame] THEN MESON_TAC[]);;

and can now lift theorems. For example, we know that APPEND is itself associative, and so

in particular:

# let MULTISAME_APPEND_ASSOC = prove
(‘'1 m n. multisame (APPEND 1 (APPEND m n)) (APPEND (APPEND 1 m) n)°‘,
REWRITE_TAC[APPEND_ASSOC; MULTISAME_REFL]);;

and we can easily show how list multiplicity interacts with APPEND:

# let LISTMULT_APPEND = prove
(‘'a 1 m. listmult a (APPEND 1 m) = listmult a 1 + listmult a m°‘,
REWRITE_TAC[listmult; LENGTH_APPEND; FILTER_APPEND]);;

These theorems and any others like them can now be lifted to equivalence classes:

# let [MULTIPLICITY_MUNION;MUNION_ASSOC] =
map (lift_theorem (multiset_abs,multiset_rep)
(MULTISAME_REFL,MULTISAME_SYM,MULTISAME_TRANS)
[multiplicity_th; munion_th])
[LISTMULT_APPEND; MULTISAME_APPEND_ASSOC];;
val ( MULTIPLICITY_MUNION ) : thm =
[- 'a 1 m.
multiplicity a (munion 1 m) = multiplicity a 1 + multiplicity a m
val ( MUNION_ASSOC ) : thm =
[- 'l m n. munion 1 (munion m n) = munion (munion 1 m) n

See also
define_quotient_type, lift_function.
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listof

listof : (Pa -> ’b * ’¢c) => (’c -> ’d * ’a) -> string -> ’a -> ’b list * ’c

Synopsis

Parses a separated list of items.

Description

If p is a parser for “items” of some kind, s is a parser for a “separator”, and e is an
error message, then listof p s e parses a nonempty list of successive items using p,
where adjacent items are separated by something parseable by s. If a separator is parsed
successfully but there is no following item that can be parsed by s, an exception Failure e
is raised. (So note that the separator must not terminate the final element.)

Failure
The call 1istof p s e itself never fails, though the resulting parser may.

Comments

This is one of a suite of combinators for manipulating “parsers”. A parser is simply
a function whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The
function should take a list of objects of type :’a (e.g. characters or tokens), parse as
much of it as possible from left to right, and return a pair consisting of the object derived
from parsing (e.g. a term or a special syntax tree) and the list of elements that were not
processed.

See also
++, |||, >, a, atleast, elistof, finished, fix, leftbin, many, nothing,
possibly, rightbin, some.

LIST_CONV

LIST_CONV : conv —-> conv

Synopsis

Apply a conversion to each element of a list.
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Description

Ifcnv “tifreturns |- ti = ti’ for i ranging from 1 ton, then LIST_CONV cnv ‘[t1; ...; tn]®
returns |- [t1; ...; tn] = [t1’; ...; tn’].

Failure

Fails if the conversion fails on any list element.

Example

# LIST_CONV num_CONV ‘[1;2;3;4;5]¢;;

)

val it : thm = |- [1; 2; 3; 4; 5] = [SUC 0; SUC 1; SUC 2; SUC 3; SUC 4]

Uses
Applying a conversion more delicately than simply by DEPTH_CONV etc.

See also
DEPTH_BINOP_CONV, DEPTH_CONV, ONCE_DEPTH_CONV, REDEPTH_CONV, TOP_DEPTH_CONV,
TOP_SWEEP_CONV.

LIST_INDUCT_TAC

LIST_INDUCT_TAC : tactic

Synopsis

Performs tactical proof by structural induction on lists.

Description

LIST_INDUCT_TAC reduces a goal A ?- '1. P[1], where 1 ranges over lists, to two subgoals
corresponding to the base and step cases in a proof by structural induction on 1. The
induction hypothesis appears among the assumptions of the subgoal for the step case.
The specification of LIST_INDUCT_TAC is:

A7-11.P

== LIST_INDUCT_TAC
A |- PL00/1] A u {P[t/1]} ?- P[CONS h t/1]

Failure
LIST_INDUCT_TAC g fails unless the conclusion of the goal g has the form “11. t¢, where
the variable 1 has type (ty)list for some type ty.
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Example

Many simple list theorems can be proved simply by list induction then just first-order
reasoning (or even rewriting) with definitions of the operations involved. For example
if we want to prove that mapping a composition of functions over a list is the same as
successive mapping of the two functions:

# g ‘'1 £:A->B g:B->C. MAP (g o £) 1 = MAP g (MAP £ 1)°;;

we can start by list induction:

# e LIST_INDUCT_TAC;;
val it : goalstack = 2 subgoals (2 total)

O [“!f g. MAP (g o f) t = MAP g (MAP £ t)‘]
“1f g. MAP (g o f) (CONS h t) = MAP g (MAP £ (CONS h t))°

‘“1f g. MAP (g o f) [1 = MAP g (MAP £ [1)°

and each resulting subgoal is just solved at once by:

# e(ASM_REWRITE_TAC[MAP; o_THM]);;

Comments

Essentially the same effect can be had by MATCH_MP_TAC 1list_INDUCT. This does not sub-
sequently break down the goal in such a convenient way, but gives more control over
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choice of variable. For example, starting with the same goal:
# g ‘!'1 £:A->B g:B->C. MAP (g o £) 1 = MAP g (MAP f 1)°¢;;
we get:

# e (MATCH_MP_TAC list_INDUCT);;
val it : goalstack = 1 subgoal (1 total)

“('f g. MAP (g o f) [1 = MAP g (MAP £ [])) /\
(a0 al.
('f g. MAP (g o f) al = MAP g (MAP f al))
==> (!f g. MAP (g o f) (CONS a0 al) = MAP g (MAP f (CONS a0 a1))))‘

and after getting rid of some trivia:

# e(REWRITE_TAC[MAP]);;
val it : goalstack = 1 subgoal (1 total)

‘1a0 al.
(1f g. MAP (g o £) al = MAP g (MAP £ al))
=> (!f g.
CoNS ((g o f) a0) (MAP (g o f) al) =
CONS (g (f a0)) (MAP g (MAP f al)))°

we can carefully choose the variable names:

# e(MAP_EVERY X_GEN_TAC [‘k:A¢; ‘1:A list‘]);;
val it : goalstack = 1 subgoal (1 total)

“(1f g. MAP (g o £) 1 = MAP g (MAP f 1))

==> (If g.
CONS ((g o f) k) (MAP (g o f) 1) =
CONS (g (f k)) (MAP g (MAP f 1)))¢

This kind of control can be useful when the sub-proof is more challenging. Here of course
the same simple pattern as before works:

# e(SIMP_TAC[o_THM]);;

val it : goalstack = No subgoals

See also
INDUCT_TAC, MATCH_MP_TAC, WF_INDUCT_TAC.
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list_mk_abs

list_mk_abs : term list * term -> term

Synopsis

Iteratively constructs abstractions.

Description

list_mk_abs([‘x1;...;‘xn‘],‘t‘) returns ‘\x1 ... xn. t°.
Failure

Fails with 1ist_mk_abs if the terms in the list are not variables.

Example
# list_mk_abs([‘m:num‘; ‘n:num‘],‘m + n + 19);;
val it : term = ‘\mn. m + n + 1€

See also

dest_abs, mk_abs, strip_abs.

list_mk_binop

list_mk_binop : term -> term list -> term

Synopsis

Makes an iterative application of a binary operator.

Description

The call 1ist_mk_binop op [t1; ...; tn] constructsthe termop t1 (op t2 (op ... (op tn-1 tn)
If we think of op as an infix operator we can write it t1 op t2 op t3 ... op tn, but the

call will work for any term op compatible with all the types.

Failure

Fails if the list of terms is empty or if the types would not work for the composite term.

In particular, if the list contains at least three items, all the types must be the same.
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Example
This example is typical:

# list_mk_binop ‘(+):num->num->num‘ (map mk_small_numeral (1--10));;
val it : term = ‘1 + 2 + 3 +4 +5+ 6+ 7 + 8+ 9 + 10°

while these show that for smaller lists, one can just regard it as mk_comb or mk_binop:

# list_mk_binop ‘SUC‘ [‘0°];;
val it : term = ‘0°

# list_mk_binop ‘f:A->B->C‘ [‘x:A¢; ‘y:B‘];;
val it : term = ‘f x y¢

See also

binops, mk_binop.

list_mk_comb

list_mk_comb : term * term list -> term

Synopsis

Iteratively constructs combinations (function applications).

Description
list_mk_comb(‘t¢,[‘t1¢;...;‘tn‘]) returns ‘t t1 ... tn‘.

Failure

Fails with 1ist_mk_comb if the types of t1,....tn are not equal to the argument types of t.
It is not necessary for all the arguments of t to be given. In particular the list of terms
t1,...,tn may be empty.
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Example

# list_mk_comb(‘1¢,[1);;

val it

: term =

(1{

# list_mk_comb(‘(/\)‘,[‘T‘]);;

val it

: term =

“(/\) T

# list_mk_comb(‘(/\)‘“,[“11);;

Exception: Failure "mk_comb: types do not agree".

See also

list_mk_icomb, mk_comb, strip_comb.

list_mk_conj

list_mk_conj

: term list -> term

Synopsis

Constructs the conjunction of a list of terms.
Description

list_mk_conj([‘t1‘;...;“tn‘]) returns ‘t1 /\ .
Failure

.. /\ tn‘.

Fails with 1ist_mk_conj if the list is empty or if the list has more than one element, one

or more of which are not of type ¢:bool*.

Example

# list_mk_conj [‘T‘;‘F‘;‘T‘];;

val it

: term =

‘T /\F /\T¢

# list_mk_conj [‘T;“1¢;‘F‘1;;
Exception: Failure "mk_binary".

# list_mk_conj [‘1¢];;

val it

See also

: term =

(1(

conjuncts, mk_conj.
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list_mk_dis]

list_mk_disj : term list -> term

Synopsis

Constructs the disjunction of a list of terms.
Description

list_mk_disj([‘t1;...;‘tn‘]) returns ‘t1 \/ ... \/ tn‘.
Failure

Fails with 1ist_mk_disj if the list is empty or if the list has more than one element, one
or more of which are not of type ¢:bool*.

Example

# list_mk_disj [‘T;‘F;‘T‘];;
val it : term = ‘T \/ F \/ T¢

# list_mk_disj [‘T‘;‘1¢;‘F1;;
Exception: Failure "mk_binary".

# list_mk_disj [‘1°];;

val it : term = ‘1°¢

See also
disjuncts, is_disj, mk_disj.

list _mk exists

list_mk_exists : term list * term -> term

Synopsis

Multiply existentially quantifies both sides of an equation using the given variables.
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Description

When applied to a list of terms [x1;...;xn], where the ti are all variables, and a theorem
A |- t1 = t2, the inference rule LIST_MK_EXISTS existentially quantifies both sides of the
equation using the variables given, none of which should be free in the assumption list.

A |- tl <=> t2
———————————————————————————————————————— LIST_MK_EXISTS [‘x1¢;...;‘xn‘]

Failure
Fails if any term in the list is not a variable or is free in the assumption list, or if the
theorem is not equational.

See also
EXISTS_EQ, MK_EXISTS.

list_mk_forall

list_mk_forall : term list * term -> term

Synopsis

Iteratively constructs a universal quantification.

Description

list_mk_forall([‘x1¢;...;‘xn‘],‘t*) returns ‘!x1 ... xn. t°.
Failure

Fails if any term in the list is not a variable or if t is not of type ‘:bool‘ and the list of
terms is non-empty. If the list of terms is empty the type of t can be anything.

Example
# list_mk_forall([‘x:num‘; ‘y:num‘],‘x + y + 1 = SUC z°);;

val it : term = ‘!x y. x + y + 1 = SUC z¢

See also
mk_forall, strip_forall.
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list_mk_gabs

list_mk_gabs : term list * term -> term

Synopsis

[teratively makes a generalized abstraction.

Description

The call 1ist_mk_gabs([vsl; ...; vsnl,t) constructs an interated generalized abstrac-
tion \vs1l. \vs2. ... \vsn. t. See mk_gabs for more details on constructing generalized
abstractions.

Failure
Never fails.

Example
# list_mk_gabs([‘(x:num,y:num) ‘; ‘(w:num,z:num)‘],‘x + w + 19);;

val it : term = ‘\(x,y). \(w,z). x + w + 1€

See also
dest_gabs, is_gabs, mk_gabs.

list_mk_icomb

list_mk_icomb : string -> term list -> term

Synopsis

Applies constant to list of arguments, instantiating constant type as needed.
Description

The call 1ist_mk_icomb "c" [al; ...; an] will make the term ¢ a1 ... an where cis a

constant, after first instantiating c’s generic type so that the types are compatible.

Failure
Fails if ¢ is not a constant or if the types cannot be instantiated to match up with the
argument list.
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Example
This would fail with the basic 1list_mk_comb function

# list_mk_icomb "=" [‘1¢; ‘2°7];;
val it : term = ‘1 = 2°¢

Comments

Note that in general the generic type of the constant is only instantiated sufficiently to
make its type match the arguments, which does not necessarily determine it completely.
Unless you are sure this will be sufficient, it is safer and probably more efficient to instan-
tiate the type manually using inst first.

See also
list_mk_comb, mk_mconst, mk_icomb.

loaded_files

loaded_files : (string * Digest.t) list ref

Synopsis
List of files loaded so far.

Description

This reference variable stores a list of previously loaded files together with MD5 digests.
It is updated by all the main loading functions load_on_path, loads, loadt and needs,
and is used by needs to avoid reloading the same file multiple times.

Failure
Not applicable.

Uses
Not really intended for average users to examine or modify.

See also
load_on_path, loads, loadt, needs.

loads

loads : string -> unit
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Synopsis
Load a file from the HOL Light system tree.

Description
Finds the named file, either by its absolute pathname or by starting in the base of the
HOL installation stored by hol_dir, and loads it.

Failure
Fails if the file is not found or generates an exception.

Example
To load a library with more number theory:

# loads "Library/prime.ml";;
- : unit = ()
val ( MULT_MONO_EQ ) : thm = |- 'min. SUCn *m=SUCn *1i<=>m-=1

val ( GCD_CONV ) : term -> thm = <fun>
val it : unit = ()

Uses
Loading HOL Light standard libraries without accidentally picking up other files of the
same name in the current directory or on load_path

See also
load_path, loadt, needs.

loadt

loadt : string -> unit

Synopsis
Finds a file on the load path and loads it.

Description

The function loadt takes a string indicating an OCaml file name as argument and loads
it. If the filename is relative, it is found on the load path load_path, and it is then loaded,
updating the list of loaded files.
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Failure

loadt will fail if the file named by the argument does not exist in the search path. It
will of course fail if the file is not a valid OCaml file. Failure in the OCaml file will also
terminate loading.

Example
If we have an ML file called foo.ml on the load path, e.g. in the current directory, which
contains the line

let x=2+2;;
this can be loaded as follows:

# loadt "foo.ml";;

and the system would respond with:

# loadt "foo.ml";;
val x : int = 4
val it : unit = ()

See also
load_path, loads, needs.

load_on_path

load_on_path : string list -> string -> unit

Synopsis
Finds a file on a path and loads it into HOL Light.

Description

When given a filename and a path, the file is found either directly by its filename or
on the given path, as explained in file_on_path. An initial dollar sign $ in each path
is interpreted as a reference to the current setting of hol_dir. (To get an actual $ at
the start of the filename, actually use two dollar signs $$.) It is then loaded into HOL,
updating the list of loaded files.

Failure
Fails if the file is not found or generates an exception when loaded (e.g. a syntax problem
or runtime exception).
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See also
file_on_path, hol_expand_directory, load_path, loads, loadt, needs.

load_path

load_path : string list ref

Synopsis
Path where HOL Light tries to find files to load.

Description

The reference variable load_path gives a list of directories. When HOL loads files with
loadt, it will try these places in order on all non-absolute filenames. An initial dollar sign
$ in each path is interpreted as a reference to the current setting of hol_dir. To get an
actual $ character at the start of the filename, use two dollar signs $$.

Failure
Not applicable.

See also
file_on_path, help_path, hol_dir, hol_expand_directory, load_on_path, loads,
loadt, needs.

lookup

lookup : term -> ’a net -> ’a list

Synopsis

Look up term in a term net.

Description

Term nets (type ’a net) are a lookup structure associating objects of type ’a, e.g. con-
versions, with a corresponding ‘pattern’ term. For a given term, one can then relatively
quickly look up all objects whose pattern terms might possibly match to it. This is used,
for example, in rewriting to quickly filter out obviously inapplicable rewrites rather than
attempting each one in turn. The call lookup t net for a term t returns the list of objects
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whose patterns might possibly be matchable to t. Note that this is conservative: if the
pattern could be matched (even higher-order matched) in the sense of term_match, it will
be in the list, but it is possible that some non-matchable objects will be returned. (For
example, a pattern term x + x will match any term of the form a + b, even if a and b are
the same.) It is intended that nets are a first-level filter for efficiency; finer discrimination
may be embodied in the subsequent action with the list of returned objects.

Failure

Never fails.

Example

If we want to create ourselves the kind of automated rewriting with the basic rewrites
that is done by REWRITE_CONV, we could simply try in succession all the rewrites:

# let BASIC_REWRITE_CONV’ = FIRST_CONV (map REWR_CONV (basic_rewrites()));;
val ( BASIC_REWRITE_CONV’ ) : conv = <fun>

However, it would be more efficient to use the left-hand sides as patterns in a term net
to organize the different rewriting conversions:

# let rewr_net =
let enter_thm th = enter (freesl(hyp th)) (lhs(concl th),REWR_CONV th) in
itlist enter_thm (basic_rewrites()) empty_net;;

Now given a term, we get only the items with matchable patterns, usually much less
than the full list:

# lookup ‘(\x. x + 1) 2¢ rewr_net;;
val it : (term -> thm) list = [<fun>]

# lookup ‘T /\ T‘ rewr_net;;

val it : (term -> thm) list = [<fun>; <fun>; <fun>]

The three items returned in the last call are rewrites based on the theorems |- T /\ t <=> t,
I-t /\ T <=>tand |- t /\ t <=> t, which are the only ones matchable. We can use
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this net for a more efficient version of the same conversion:

# let BASIC_REWRITE_CONV tm = FIRST_CONV (lookup tm rewr_net) tm;;
val ( BASIC_REWRITE_CONV ) : term -> conv = <fun>

To see that it is indeed more efficient, consider:
# let tm = funpow 8 (fun x -> mk_conj(x,x)) ‘T¢;;

time (DEPTH_CONV BASIC_REWRITE_CONV) tm;;
CPU time (user): 0.08

time (DEPTH_CONV BASIC_REWRITE_CONV’) tm;;
CPU time (user): 1.121

See also
empty_net, enter, merge_nets.

make_args

make_args : string -> term list -> hol_type list -> term list

Synopsis

Make a list of terms with stylized variable names

Description
The call make_args "s" avoids [tyO; ...; tyn] constructs a list of variables of types
ty0, ..., tyn, normally called s0, ..., sn but primed if necessary to avoid clashing with any

In avoids

Failure
Never fails.

Example
# make_args "arg" [‘arg2:num‘] [‘:num‘; ‘:num‘; ‘:num‘];;
val it : term list = [‘arg0‘; ‘argl‘; ‘arg2’‘]

Uses

Constructing arbitrary but relatively natural names for argument lists.
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See also
genvar, variant.

make_overloadable

make_overloadable : string -> hol_type —> unit

Synopsis
Makes a symbol overloadable within the specified type skeleton.

Description

HOL Light allows the same identifier to denote several different underlying constants, with
the choice being determined by types and /or an order of priority (see prioritize_overload).
However, any identifier ident to be overloaded must first be declared overloadable using
make_overloadable "ident" ‘:ty‘. The “type skeleton” argument ¢:ty°¢ is the most gen-
eral type that the various instances may have.

The type skeleton can simply be a type variable, in which case any type is acceptable,
but it is good practice to constrain it where possible to allow more information to be in-
ferred during typechecking. For example, the symbol ‘+” has the type skeleton ¢:A->A->A¢
(as you can find out by examining the list the_overload_skeletons) indicating that it is
always overloaded to a binary operator that returns and element of the same type as its
two arguments.

Failure
Fails if the symbol has previously been made overloadable but with a different type skele-
ton.
Example
# make_overloadable "<=" ‘:A->A->bool‘;;

val it : unit = ()

See also
overload_interface, override_interface, prioritize_overload, reduce_interface,
remove_interface, the_implicit_types, the_interface, the_overload_skeletons.

many

many : (’a => ’b * ’a) -> ’a -> ’b list * ’a
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Synopsis

Parses zero or more successive items using given parser.

Description
If p is a parser then many p gives a new parser that parses a series of successive items
using p and returns the result as a list, with the expected left-to-right order.

Failure
The immediate call many never fails. The resulting parser may fail when applied, though
any Noparse exception in the core parser will be trapped.

Comments

This is one of a suite of combinators for manipulating “parsers”. A parser is simply
a function whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The
function should take a list of objects of type :’a (e.g. characters or tokens), parse as
much of it as possible from left to right, and return a pair consisting of the object derived
from parsing (e.g. a term or a special syntax tree) and the list of elements that were not
processed.

See also
++, |||, >, a, atleast, elistof, finished, fix, leftbin, listof, nothing,
possibly, rightbin, some.

map

map : (’a -> ’b) -> ’a list -> ’b list

Synopsis

Applies a function to every element of a list.

Description
map f [x1;...;xn] returns [(f x1);...;(f xn)].
Failure

Never fails.
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Example
# map (fun x -> x * 2) [1;;
val it : int list = []
# map (fun x -> x * 2) [1;2;3];;
val it : int list = [2; 4; 6]

map2

map2 : (’a -> ’b => ’c) -> ’a list -> ’b list -> ’c list

Synopsis

Maps a binary function over two lists to create one new list.
Description

map2 f ([x1;...;xn]l,[yl;...;ynl) returns [£(x1,y1);...;f(xn,yn)].
Failure

Fails with map2 if the two lists are of different lengths.

Example
# map2 (+) [1;2;3] [30;20;10];;

val it : int list = [31; 22; 13]

See also
map, uncurry.

mapf

mapf : (’a -> ’b) -> (’c, ’a) func -> (’c, ’b) func

Synopsis

Maps a function over the range of a finite partial function
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Description

This is one of a suite of operations on finite partial functions, type (’a,’b)func. These
may sometimes be preferable to ordinary functions since they permit more operations
such as equality comparison, extraction of domain etc. The function mapf £ p applies the
(ordinary OCaml) function £ to all the range elements of a finite partial function, so if it
originally mapped xi to yi for it now maps xi to £(yi).

Failure

Fails if the function fails on one of the yi.
Example

#let £ = (1 |=> 2);;

val £ : (int, int) func = <func>

# mapf string_of_int f;;

val it : (int, string) func = <func>
# apply it 1;;

See also

|->, |=>, apply, applyd, choose, combine, defined, dom, foldl, foldr, graph,
is_undefined, ran, tryapplyd, undefine, undefined.

mapfilter

mapfilter : (’a -> ’b) -> ’a list -> ’b list

Synopsis
Applies a function to every element of a list, returning a list of results for those elements
for which application succeeds.

Failure

Fails if an exception not of the form Failure _ is generated by any application to the

elements.
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Example

# mapfilter hd [[1;2;3];[4;5];[1;[6;7;8]1;[11;;
val it : int list = [1; 4; 6]

# mapfilter (fun (h::t) -> h) [[1;2;3];[4;5];[];06;7;8];011;;
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:

(]
Exception: Match_failure ("", 24547, -35120).

See also
filter, map.

MAP_EVERY

MAP_EVERY : (’a —-> tactic) —-> ’a list -> tactic

Synopsis

Sequentially applies all tactics given by mapping a function over a list.

Description

When applied to a tactic-producing function £ and an operand list [x1;...;xn], the
elements of which have the same type as £’s domain type, MAP_EVERY maps the function
f over the list, producing a list of tactics, then applies these tactics in sequence as in the
case of EVERY. The effect is:

MAP_EVERY f [x1;...;xn] = (f x1) THEN ... THEN (f xn)

If the operand list is empty, then MAP_EVERY has no effect.

Failure

The application of MAP_EVERY to a function and operand list fails iff the function fails
when applied to any element in the list. The resulting tactic fails iff any of the resulting
tactics fails.

Example
A convenient way of doing case analysis over several boolean variables is:

MAP_EVERY BOOL_CASES_TAC [‘vi:bool‘;...;‘vn:bool‘]

See also
EVERY, FIRST, MAP_FIRST, THEN.
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MAP_FIRST

MAP_FIRST : (’a -> tactic) -> ’a list -> tactic

Synopsis

Applies first tactic that succeeds in a list given by mapping a function over a list.

Description

When applied to a tactic-producing function £ and an operand list [x1;...;xn], the
elements of which have the same type as £’s domain type, MAP_FIRST maps the function
f over the list, producing a list of tactics, then tries applying these tactics to the goal
till one succeeds. If £f(xm) is the first to succeed, then the overall effect is the same as
applying f (xm). Thus:

MAP_FIRST f [x1;...;xn] = (f x1) ORELSE ... ORELSE (f xn)

Failure

The application of MAP_FIRST to a function and tactic list fails iff the function does when
applied to any of the elements of the list. The resulting tactic fails iff all the resulting
tactics fail when applied to the goal.

Example

Using the definition of integer-valued real numbers:

# needs "Library/floor.ml";;

we have a set of ‘composition’ theorems asserting that the predicate is closed under various
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arithmetic operations:

# INTEGER_CLOSED; ;
val it : thm =
|- ('n. integer (&n)) /\

('x y. integer x /\ integer y ==> integer (x + y)) /\
('x y. integer x /\ integer y ==> integer (x - y)) /\
(!x y. integer x /\ integer y ==> integer (x * y)) /\
('x r. integer x ==> integer (x pow r)) /\
('x. integer x ==> integer (--x)) /\
('x. integer x ==> integer (abs x))

if we want to prove that some composite term has integer type:

# g ‘integer(x) /\ integer(y)
==> integer(&2 * (x - &1) pow 7 + &11 * (y + &1))°;;

# e(REPEAT STRIP_TAC);;
val it : goalstack = 1 subgoal (1 total)

0 [‘integer x‘]
1 [‘integer y‘]

‘integer (&2 * (x - &1) pow 7 + &11 * (y + &1))°

A direct proof using ASM_MESON_TAC[INTEGER_CLOSED] works fine. However if we want
to control the application of composition theorems more precisely we might do:

# let INT_CLOSURE_TAC =
MAP_FIRST MATCH_MP_TAC (CONJUNCTS(CONJUNCT2 INTEGER_CLOSED)) THEN
TRY CONJ_TAC; ;

and then could solve the goal by:

e (REPEAT INT_CLOSURE_TAC THEN ASM_REWRITE_TAC[CONJUNCT1 INTEGER_CLOSED]);;

See also
EVERY, FIRST, MAP_EVERY, ORELSE.

MATCH_ACCEPT_TAC

MATCH_ACCEPT_TAC : thm_tactic
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Synopsis

Solves a goal which is an instance of the supplied theorem.

Description

When given a theorem A’ |- t and a goal A ?- t’ where t can be matched to t’ by

instantiating variables which are either free or universally quantified at the outer level,
including appropriate type instantiation, MATCH_ACCEPT_TAC completely solves the goal.

========= MATCH_ACCEPT_TAC (A’ |- t)

Unless A’ is a subset of A, this is an invalid tactic.

Failure
Fails unless the theorem has a conclusion which is instantiable to match that of the goal.

Example
The following example shows variable and type instantiation at work. Suppose we have
the following simple goal:

# g ‘HD [1;2] = 1¢;;
we can do it via the polymorphic theorem HD = |- 'h t. HD(CONS h t) = h:
# e(MATCH_ACCEPT_TAC HD);;

See also
ACCEPT_TAC.

MATCH_CONV

MATCH_CONV : term -> thm

Synopsis

Expands application of pattern-matching construct to particular case.

Description
The conversion MATCH_CONV will reduce the application of a pattern to a specific argument,
either for a term match x with ... or (function ...) x. In the case of a sequential
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pattern, the first match will be reduced, resulting either in a conditional expression or
simply one of the cases if it can be deduced just from the pattern. In the case of a single
pattern, it will be reduced immediately.

Failure

MATCH_CONV tm fails if tm is neither of the two applications of a pattern to an argument.

Example

In cases where the structure of the argument determines the match, a complete reduction
is performed:

# MATCH_CONV ‘match [1;2;3;4;5] with CONS x (CONS y z) -> z‘;;
val it : thm =
|- (match [1; 2; 3; 4; 5] with CONS x (CONS y z) -> z) = [3; 4; 5]

However, only one reduction is performed for a sequential match:

# MATCH_CONV ‘(function [J -> 0 | CONS h t -> h + 1) [1;2;3;4]°;;
val it : thm =
|- (function [J] -> 0 | CONS h t -> h + 1) [1; 2; 3; 4] =
(function CONS h t -> h + 1) [1; 2; 3; 4]

so the conversion may need to be repeated:

# TOP_DEPTH_CONV MATCH_CONV
‘(function [] -> 0 | CONS h t -> h + 1) [1;2;3;4]°;;
val it : thm = |- (function [] -> 0 | CONS h t -=> h + 1) [1; 2; 3; 4] =1+ 1

In cases where the structure of the argument cannot be determined, a conditional expres-
sion or other more involved result may be returned:

# MATCH_CONV ‘(function [] -> 0 | CONS h t -> h + 1) 1¢;;
val it : thm =
|- (function [J] -=> 0 | CONS ht ->h + 1) 1 =
(if [1 = 1 then (function [] -> 0) 1 else (function CONS h t -> h + 1) 1)

Comments

The simple cases where the structure completely determines the result are built into the
default rewrites, though nothing will happen in more general cases, even if the conditions
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can be discharged straightforwardly, e.g:

# REWRITE_CONV[] ‘match [1;2;3] with CONS h t when h = 1 -> h + LENGTH t°¢;;
val it : thm =
|- (match [1; 2; 3] with CONS h t when h = 1 -> h + LENGTH t) =
1 + LENGTH [2; 3]
# REWRITE_CONV[] ‘match [1;2;3] with CONS h t when h < 7 -> h + LENGTH t°¢;;
val it : thm =
|- (match [1; 2; 3] with CONS h t when h < 7 -> h + LENGTH t) =
(match [1; 2; 3] with CONS h t when h < 7 -> h + LENGTH t)

See also
BETA_CONV, GEN_BETA_CONV.

MATCH_MP

MATCH_MP : thm -> thm -> thm

Synopsis

Modus Ponens inference rule with automatic matching.

Description

When applied to theorems A1 |- !'x1...xn. t1 ==> t2 and A2 |- t1’, the inference rule
MATCH_MP matches t1 to t1’ by instantiating free or universally quantified variables in
the first theorem (only), and returns a theorem A1 u A2 |- !'xa..xk. t2’, where t2’ is

a correspondingly instantiated version of t2. Polymorphic types are also instantiated if
necessary.

Variables free in the consequent but not the antecedent of the first argument theorem
will be replaced by variants if this is necessary to maintain the full generality of the
theorem, and any which were universally quantified over in the first argument theorem
will be universally quantified over in the result, and in the same order.

—————————————————————————————————————— MATCH_MP
Al u A2 |- 'xa..xk. t2°

Failure
Fails unless the first theorem is a (possibly repeatedly universally quantified) implication
whose antecedent can be instantiated to match the conclusion of the second theorem,



MATCH_MP_TAC 375

without instantiating any variables which are free in A1, the first theorem’s assumption
list.

Example

In this example, automatic renaming occurs to maintain the most general form of the
theorem, and the variant corresponding to z is universally quantified over, since it was
universally quantified over in the first argument theorem.

# let ith = ARITH_RULE ‘!x z:num. x =y ==> (w + z) + x = (w + 2) +y°;;
val ith : thm = |- !x z. x =y ==> (w+2) +x=(w+2)+y

# let th = ASSUME ‘w:num = z°;;
valth : thm=w =2 |- w =2z

# MATCH_MP ith th;;

val it : thm=w=2z |- 'z2’. (w+ 2’) +w=(w+2’) +z

See also
EQ_MP, MATCH_MP_TAC, MP, MP_TAC.

MATCH_MP_TAC

MATCH_MP_TAC : thm_tactic

Synopsis

Reduces the goal using a supplied implication, with matching.

Description
When applied to a theorem of the form

A’ |- !'xl...xn. s ==> t

MATCH_MP_TAC produces a tactic that reduces a goal whose conclusion t’ is a substitution
and /or type instance of t to the corresponding instance of s. Any variables free in s but
not in t will be existentially quantified in the resulting subgoal:

A7- 1t
MATCH_MP_TAC (A’ |- !x1...xn. s ==> t)
A 7-7z1...zp. s’
where z1, ..., zp are (type instances of) those variables among x1, ..., xn that do not occur

free in t. Note that this is not a valid tactic unless A’ is a subset of A.
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Example
The following goal might be solved by case analysis:

# g ‘!ninum. n <= n * n‘;;
We can “manually” perform induction by using the following theorem:

# num_INDUCTION; ;
val it : thm = |- 'P. P O /\ (!n. Pn ==> P (SUC n)) ==> (!n. P n)

which is useful with MATCH_MP_TAC because of higher-order matching:

# e(MATCH_MP_TAC num_INDUCTION);;
val it : goalstack = 1 subgoal (1 total)

‘0<=0*0/\ ('n. n<=nx*n ==>80Cn <=S80Cn * SUC n)*
The goal can be finished with ARITH_TAC.

Failure
Fails unless the theorem is an (optionally universally quantified) implication whose con-
sequent can be instantiated to match the goal.

See also
EQ_MP, MATCH_MP, MP, MP_TAC, PART_MATCH, TRANS_TAC.

mem

mem : ’a -> ’a list -> bool

Synopsis

Tests whether a list contains a certain member.

Description
mem x [x1;...;xn] returns true if some xi in the list is equal to x. Otherwise it returns

false.

Failure
Never fails.

See also
find, tryfind, exists, forall, assoc, rev_assoc.
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mem’

mem’ : (’a -> ’b -> bool) -> ’a -> ’b list -> bool

Synopsis

Tests if an element is equivalent to a member of a list w.r.t. some relation.

Description

If r is a binary relation, x an element and 1 a list, the call mem’ r x 1 tests if there is
an element in the list 1 that is equivalent to x according to r, that is, if r x x’ holds for
some x’ in 1. The function mem is the special case where the relation is equality.

Failure
Fails only if the relation r fails.

Example
# mem’ (fun x y -> abs(x) = abs(y)) (-1) [1;2;3];;
val it : bool = true
# mem’ (fun x y -> abs(x) = abs(y)) (-1) [2;3;4];;
val it : bool = false

Uses

Set operations modulo some equivalence such as alpha-equivalence.

See also
insert’, mem, subtract’, union’, unions’.

merge

merge : (’a -> ’a -> bool) -> ’a list -> ’a list -> ’a list

Synopsis

Merges together two sorted lists with respect to a given ordering.

Description

If two lists 11 and 12 are sorted with respect to the given ordering ord, then merge ord 11 12
will merge them into a sorted list of all the elements. The merge keeps any duplicates; it
is not a set operation.
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Failure
Never fails, but if the lists are not appropriately sorted the results will not in general be
correct.

Example
# merge (<) [1;2;3;4;5;6] [2;4;6;8];;

val it : int list = [1; 2; 2; 3; 4; 4; 5; 6; 6; 8]

See also
mergesort, sort, uniq.

mergesort

mergesort : (’a -> ’a -> bool) -> ’a list -> ’a list

Synopsis

Sorts the list with respect to given ordering using mergesort algorithm.

Description

If ord is a total order, a call mergesort ord 1 will sort the list 1 according to the order
ord. It works internally by a mergesort algorithm. From a user’s point of view, this just
means: (i) its worst-case performance is much better than sort, which uses quicksort, but
(ii) it will not reliably topologically sort for a non-total order, whereas sort will.

Failure
Never fails unless the ordering function fails.

Example
# mergesort (<) [6;2;5;9;2;5;3];;

val it : int list = [2; 2; 3; 5; 5; 6; 9]

See also
merge, sort.

merge_nets

merge_nets : ’a net * ’a net -> ’a net



MESON 379

Synopsis

Merge together two term nets.

Description

Term nets (type ’a net) are a lookup structure associating objects of type ’a, e.g. con-
versions, with a corresponding ‘pattern’ term. For a given term, one can then relatively
quickly look up all objects whose pattern terms might possibly match to it. This is used,
for example, in rewriting to quickly filter out obviously inapplicable rewrites rather than
attempting each one in turn. The call merge_nets(net1,net2) merges two nets together;
the list of objects is the union of those objects in the two nets net1 and net2, with the
term patterns adjusted appropriately.

Failure
Never fails.

Example
If we have one term net containing the addition conversion:

# let netl = enter [] (‘x + y‘,NUM_ADD_CONV) empty_net;;

and another with beta-conversion:

# let net2 = enter [] (‘(\x. t) y‘,BETA_CONV) empty_net;;

we can combine them into a single net:

# let net = merge_nets(netl,net2);;

See also
empty_net, enter, lookup.

MESON

MESON : thm list -> term -> thm

Synopsis

Attempt to prove a term by first-order proof search.
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Description
A call MESON[theorems] ‘tm‘ will attempt to prove tm using pure first-order reasoning,
taking theorems as the starting-point. It will usually either solve it completely or run for
an infeasible length of time before terminating, but it may sometimes fail quickly.
Although MESON is capable of some fairly non-obvious pieces of first-order reasoning, and
will handle equality adequately, it does purely logical reasoning. It will exploit no special
properties of the constants in the goal, other than equality and logical primitives. Any
properties that are needed must be supplied explicitly in the theorem list, e.g. LE_REFL
to tell it that <= on natural numbers is reflexive, or REAL_ADD_SYM to tell it that addition
on real numbers is symmetric.

For more challenging first-order problems the related METIS rule often performs better.

Failure
Wil fail if the term is not provable, but not necessarily in a feasible amount of time.

Example
A typical application is to prove some elementary logical lemma for use inside a tactic
proof:

# MESON[] “'P. PF /\P T ==> Ix. P x°;;
;éi it : thm = |- !'P. PF /NP T ==> (!x. P x)
To prove the following lemma, we need to provide the key property of real negation:
# MESON[REAL_NEG_NEG] ‘(!'x. P(--x)) ==> Ix:real. P x;;
val it : thm = |- (!x. P (--x)) ==> (!x. P x)
If the lemma is not supplied, MESON will fail:
# MESON[] ‘(!x. P(--x)) ==> !x:real. P x‘;;
ﬁ%éeption: Failure "solve_goal: Too deep".

MESON is also capable of proving less straightforward results; see the documentation for
MESON_TAC to find more examples.

Uses
Generating simple logical lemmas as part of a large proof.

See also
ASM_MESON_TAC, GEN_MESON_TAC, LEANCOP, MESON_TAC, METIS, NANOCOP.
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meson_brand

meson_brand : bool ref

Synopsis

Makes MESON handle equations using Brand’s transformation.

Description

This is one of several parameters determining the behavior of MESON, MESON_TAC and related
rules and tactics. When meson_brand is true, equations are handled inside MESON by
applying Brand’s transformation. When it is false, as it is by default, equations are
handled in a more “naive” way, which nevertheless appears generally better.

Failure
Not applicable.

Uses

For users requiring fine control over the algorithms used in MESON’s first-order proof search.

Comments

For more details of Brand’s modification, see his paper “Proving theorems with the mod-
ification method”, SIAM Journal on Computing volume 4, 1975. See also Moser and
Steinbach’s Munich technical report “STE-modification revisited” (AR-97-03, 1997) for
another look at the subject.

See also
meson_chatty, meson_dcutin, meson_depth, meson_prefine, meson_skew,
meson_split_limit,

meson_chatty

meson_chatty : bool ref

Synopsis
Make MESON’s output more verbose and detailed.
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Description

This is one of several parameters determining the behavior of MESON, MESON_TAC and related
rules and tactics. When meson_chatty is set to true, MESON provides more verbose output,
reporting at each level of iterative deepening search the current size limit and number
of inferences on a fresh line. When meson_chatty is false, as it is by default, the core
inference numbers are condensed into 1-line output.

Failure
Not applicable.

See also
copverb, meson_brand, meson_dcutin, meson_depth, meson_prefine, meson_skew,
meson_split_limit, MESON, MESON_TAC, metisverb.

meson_dcutin

meson_dcutin : int ref

Synopsis

Determines cut-in point for divide-and-conquer refinement in MESON.

Description

This is one of several parameters determining the behavior of MESON, MESON_TAC and related
rules and tactics. This number (by default 1) determines the number of current subgoals
at which point a special divide-and-conquer refinement will be invoked.

Failure
Not applicable.

Uses

For users requiring fine control over the algorithms used in MESON’s first-order proof search.

Comments

For more details of this optimization, see Harrison’s paper “Optimizing Proof Search in
Model Elimination”, CADE-13, 1996.

See also
meson_brand, meson_chatty, meson_depth, meson_prefine, meson_skew,
meson_split_limit,
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meson_depth

meson_depth : bool ref

Synopsis
Make MESON’s search algorithm work by proof depth rather than size.

Description

This is one of several parameters determining the behavior of MESON, MESON_TAC and related
rules and tactics. The basic search strategy is iterated deepening, searching for proofs
with higher and higher limits on the search space. The flag meson_depth, when set to
true, limits the search space based on proof depth, i.e. the longest branch. When set to
false, as it is by default, the proof is limited based on total size.

Failure
Not applicable.

Uses

For users requiring fine control over the algorithms used in MESON’s first-order proof search.

See also
meson_brand, meson_chatty, meson_dcutin, meson_prefine, meson_skew,
meson_split_limit,

meson_prefine

meson_prefine : bool ref

Synopsis
Makes MESON apply Plaisted’s positive refinement.

Description

This is one of several parameters determining the behavior of MESON, MESON_TAC and related
rules and tactics. When the flag meson_prefine is true, as it is by default, Plaisted’s
“positive refinement” is used in proof search; this limits the search space at the cost of
sometimes requiring longer proofs. When meson_prefine is false, this refinement is not
applied.
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Failure
Not applicable.

Uses
For users requiring fine control over the algorithms used in MESON’s first-order proof search.

Comments
For more details, see Plaisted’s article “A Sequent-Style Model Elimination Strategy and
a Positive Refinement”, Journal of Automated Reasoning volume 6, 1990.

See also
meson_brand, meson_chatty, meson_dcutin, meson_depth, meson_skew,
meson_split_limit,

meson_skew

meson_skew : int ref

Synopsis

Determines skew in MESON proof tree search limits.

Description

This is one of several parameters determining the behavior of MESON, MESON_TAC and related
rules and tactics. During search, MESON successively searches for proofs of larger and larger
‘size’. The “skew” value determines what proportion of the entire proof size is permitted
in the left-hand half of the list of subgoals. The symmetrical value is 2 (meaning one
half), the default setting of 3 (one third) seems generally better because it can cut down
on redundancy in proofs.

Failure
Not applicable.

Uses

For users requiring fine control over the algorithms used in MESON’s first-order proof search.

Comments

For more details of MESON’s search strategy, see Harrison’s paper “Optimizing Proof Search
in Model Elimination”, CADE-13, 1996.
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See also
meson_brand, meson_chatty, meson_dcutin, meson_depth, meson_prefine,
meson_split_limit,

meson_split_limit

meson_split_limit : int ref

Synopsis
Limit initial case splits before MESON proper is applied.

Description

This is one of several parameters determining the behavior of MESON, MESON_TAC and related
rules and tactics. Before these rules or tactics are applied, the formula to be proved is often
decomposed by splitting, for example an equivalence p <=> g to two separate implications
p ==> q and q ==> p. This often makes the eventual proof much easier for MESON. On the
other hand, if splitting is applied too many times, it can become inefficient. The value
meson_split_limit (default 8) is the maximum number of times that splitting can be
applied before MESON proper.

Failure
Not applicable.

Uses

For users requiring fine control over the algorithms used in MESON’s first-order proof search.

See also
meson_brand, meson_chatty, meson_dcutin, meson_depth, meson_prefine,
meson_skew.

MESON_TAC

MESON_TAC : thm list -> tactic

Synopsis

Automated first-order proof search tactic.
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Description

A call to MESON_TAC[theorems] will attempt to establish the current goal using pure first-
order reasoning, taking theorems as the starting-point. (It does not take the assumptions
of the goal into account, but the similar function ASM_MESON_TAC does.) It will usually
either solve the goal completely or run for an infeasible length of time before terminating,
but it may sometimes fail quickly.

Although MESON_TAC is capable of some fairly non-obvious pieces of first-order reason-
ing, and will handle equality adequately, it does purely logical reasoning. It will exploit
no special properties of the constants in the goal, other than equality and logical primi-
tives. Any properties that are needed must be supplied explicitly in the theorem list, e.g.
LE_REFL to tell it that <= on natural numbers is reflexive, or REAL_ADD_SYM to tell it that
addition on real numbers is symmetric.

For more challenging first-order problems, METIS_TAC may be recommended.

Failure

Fails if the goal is unprovable within the search bounds, though not necessarily in a
feasible amount of time.

Example

Here is a simple logical property taken from Dijstra’s EWD 1062-1, which we set as our
goal:

#g ‘(Ix. x <= x) /\
('xyz. x<=3 /\y<=z==>x<=12z) /\
(Ix y. £(x) <=y <=> x <= g(y))
=> (Ix y. x <=y ==> £(x) <= £(y));;

It is solved quickly by:

# e(MESON_TAC[]);;
0..0..1..3..8..17..s0lved at 25
CPU time (user): O.
val it : goalstack = No subgoals

Note however that the proof did not rely on any special features of ‘<="; any binary rela-
tion symbol would have worked. Even simple proofs that rely on special properties of the
constants need to have those properties supplied in the list. Note also that MESON is limited
to essentially first-order reasoning, meaning that it cannot invent higher-order quantifier
instantiations. Thus, it cannot prove the following, which involves a quantification over
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a function g:

# g ‘1f:A->B s.
('xy. xINs /\NyINs /\ (fx=1fy) == (x=y)) <=
(7g. !'x. x IN s ==> (g(£(x)) = x))*;;

However, we can manually reduce it to two subgoals:
# e(REPEAT GEN_TAC THEN MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC ‘?g:B->A. !y x. x INs /\y=1f x ==> gy = x° THEN
CONJ_TAC THENL

[REWRITE_TAC[GSYM SKOLEM_THM]; AP_TERM_TAC THEN ABS_TAC]);;
val it : goalstack = 2 subgoals (2 total)

‘(lyx. x INs /Ny=fx==>gy=x) <= (Ix. x INs==>g (f x) =x)°

‘(Mxy. xINs /\NyINs/\Nfx=Ffy==>x=y) <=
(ly. 7g. !x. x INs /Ny=fx==>¢g=x)°¢

and both of those are solvable directly by MESON_TAC[].

See also
ASM_MESON_TAC, GEN_MESON_TAC, LEANCOP_TAC, MESON, METIS_TAC, NANOCOP_TAC.

META_EXISTS_TAC

META_EXISTS_TAC : (string * thm) list * term -> goalstate

Synopsis

Changes existentially quantified variable to metavariable.

Description

Given a goal of the form A 7- 7x. t[x], the tactic X_META_EXISTS_TAC gives the new goal
A 7- t[x] where x is a new metavariable. In the resulting proof, it is as if the variable has
been assigned here to the later choice for this metavariable, which can be made through
for example UNIFY_ACCEPT_TAC.

Failure
Never fails.

Example
See UNIFY_ACCEPT_TAC for an example of using metavariables.



388 Chapter 1. Pre-defined ML Identifiers

Uses

Delaying instantiations until the correct term becomes clearer.

Comments

Users should probably steer clear of using metavariables if possible. Note that the
metavariable instantiations apply across the whole fringe of goals, not just the current
goal, and can lead to confusion.

See also
EXISTS_TAC, META_SPEC_TAC, UNIFY_ACCEPT_TAC, X_META_EXISTS_TAC.

META_SPEC_TAC

META_SPEC_TAC : term -> thm -> tactic

Synopsis

Replaces universally quantified variable in theorem with metavariable.

Description

Given a variable v and a theorem th of the form A |- !'x. p[x], the tactic META_SPEC_TAC ‘v‘ th
is a tactic that adds the theorem A |- p[v] to the assumptions of the goal, with v a new
metavariable. This can later be instantiated, e.g. by UNIFY_ACCEPT_TAC, and it is as if the
instantiation were done at this point.

Failure
Fails if v is not a variable.

Example
See UNIFY_ACCEPT_TAC for an example of using metavariables.

Uses

Delaying instantiations until the right choice becomes clearer.

Comments

Users should probably steer clear of using metavariables if possible. Note that the
metavariable instantiations apply across the whole fringe of goals, not just the current
goal, and can lead to confusion.

See also
EXISTS_TAC, EXISTS_TAC, UNIFY_ACCEPT_TAC, X_META_EXISTS_TAC.
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METIS

METIS : thm list -> term -> thm

Synopsis

Attempt to prove a term by first-order proof search using Metis algorithm.

Description

A call METIS[theorems] ‘tm‘ will attempt to prove tm using pure first-order reasoning,
taking theorems as the starting-point. It will usually either prove it completely or run for
an infeasibly long time, but it may sometimes fail quickly.

Although METIS is capable of some fairly non-obvious pieces of first-order reasoning, and
will handle equality adequately, it does purely logical reasoning. It will exploit no special
properties of the constants in the goal, other than equality and logical primitives. Any
properties that are needed must be supplied explicitly in the theorem list, e.g. LE_REFL
to tell it that <= on natural numbers is reflexive, or REAL_ADD_SYM to tell it that addition
on real numbers is symmetric.

Sometimes the similar MESON rule is faster, especially on simpler problems.

Failure
Fails if the term is unprovable within the search bounds.

Example
A typical application is to prove some elementary logical lemma for use inside a tactic
proof:

# METIS[num_CASES] ‘(!m. P n) <=> P 0 /\ (!n. P (SUC n))*;;
Uses
Generating simple logical lemmas as part of a large proof.

See also
ASM_METIS_TAC, LEANCOP, MESON, METIS_TAC, NANOCOP.

metisverb

metisverb : bool ref
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Synopsis
Make METIS’s output more verbose and detailed.

Description
When this reference variable is set to true, it makes any applications of METIS, METIS_TAC
and related rules and tactics provide more verbose output about their working.

Failure
Not applicable.

See also
meson_chatty.ml

METIS_TAC

METIS_TAC : thm list -> tactic

Synopsis

Automated first-order proof search tactic using Metis algorithm.

Description

A call to METIS_TAC[theorems] will attempt to establish the current goal using pure first-
order reasoning, taking theorems as the starting-point. (It does not take the assumptions
of the goal into account, but the similar function ASM_METIS_TAC does.) It will usually
either solve the goal completely or run for an infeasibly long time, but it may sometimes
fail quickly.

This tactic is closely related to MESON_TAC, and many of the same general comments
apply. Generally speaking, METIS_TAC is capable of solving more challenging problems
than MESON_TAC, though the latter is often faster where it succeeds. Like MESON_TAC, it will
exploit no special properties of the constants in the goal, other than equality and logical
primitives. Any properties that are needed must be supplied explicitly in the theorem
list, e.g. LE_REFL to tell it that <= on natural numbers is reflexive, or REAL_ADD_SYM to tell
it that addition on real numbers is symmetric.

Sometimes the similar MESON_TAC tactic is faster, especially on simpler goals.

Failure
Fails if the goal is unprovable within the search bounds.
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Example
Here is a simple ‘group theory’ type property about a binary function m:

#g ‘(Uxyz nkx, nly,z) =n@mx,y), z) /\ nx,y) = n(y,x))
==> m(a, m(b, m(c, m(d, m(e, £))))) = m(f, m(e, m(d, m(c, m(b, a)))))‘;;
It is solved in a fraction of a second by:

# e(METIS_TACI[1);;
val it : goalstack = No subgoals

This is an example where METIS_TAC substantially outperforms MESON_TAC, which does
not seem to be able to solve that problem in a reasonable time.

See also
ASM_METIS_TAC, LEANCOP_TAC, MESON_TAC, METIS, NANOCOP_TAC.

mk _abs

mk_abs : term * term -> term

Synopsis

Constructs an abstraction.

Description
If v is a variable and t any term, then mk_abs(v,t) produces the abstraction term \v. t.
It is not necessary that v should occur free in t.

Failure

Fails if v is not a variable. See mk_gabs for constructing generalized abstraction terms.

Example
# mk_abs(‘x:num‘, ‘x + 19);;

val it : term = ‘\x. x + 1°¢

See also
dest_abs, is_abs, mk_gabs.
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mk_binary

mk_binary : string -> term * term -> term

Synopsis

Constructs an instance of a named monomorphic binary operator.

Description
The call mk_binary s (1,r) constructs a binary application (op 1) r where op is the
monomorphic constant with name s. Note that it will in general not work if the constant
is polymorphic.

Failure
If there is no constant at all with name s, or if the constant is polymorphic and the terms
do not match its most general type.

Example
This case works fine:

# mk_binary "+" (‘1¢,929);;
val it : term = ‘1 + 2°¢

but here we hit the monomorphism restriction:

# mk_binary "=" (‘a:A¢,‘b:A®);;
val it : term = ‘a = b
# mk_binary "=" (‘1¢,°29);;

Exception: Failure "mk_binary".

See also
dest_binary, is_binary, mk_binop.

mk_binder

mk_binder : string -> term * term —-> term

Synopsis

Constructs a term with a named constant applied to an abstraction.
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Description

The call mk_binder "c" (x,t) returns the term ¢ (\x. t) where c is a constant with the
given name appropriately type-instantiated. Note that the binder parsing status of c is
irrelevant, though only if it is parsed as a binder will the resulting term be printed and
parseable as ¢ x. t.

Failure
Failus if x is not a variable, if there is no constant ¢ or if the type of that constant cannot
be instantiated to match the abstraction.

Example
# mk_binder "!" (‘x:num‘,‘x + 1 > 09);;
val it : term = ‘!x. x + 1 > 0O¢

See also

dest_binder, is_binder.

mk_binop

mk_binop : term -> term -> term -> term

Synopsis
The call mk_binop op 1 r returns the term (op 1) r.

Description

The call mk_binop op 1 r returns the term (op 1) r provided that is well-typed. Other-
wise it fails. The term op need not be a constant nor parsed as infix, but that is the usual
case. Note that type variables in op are not instantiated, so it needs to be the correct
instance for the terms 1 and r.

Failure
Fails if the types are incompatible.

Example
# mk_binop ¢ (+):num->num->num‘ ‘1°¢ ‘2¢;;

val it : term = ‘1 + 2°¢

See also
dest_binop, is_binop, mk_binary.
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MK_BINQOP

MK_BINOP : term -> thm * thm -> thm

Synopsis

Compose equational theorems with binary operator.

Description
Given a term op and the pair of theorems (|- 1 = 1?),(l- r = r’), the function MK_BINOP
returns the theorem |- op 1 r = op 1’ r’, provided the types are compatible.

Failure

Fails if the types are incompatible for the term op 1 r.
Example

# let thl = NUM_REDUCE_CONV ‘2 * 2°¢
and th2 = NUM_REDUCE_CONV ‘2 EXP 2¢;;

val thl : thm = |- 2 x 2 = 4

val th2 : thm = |- 2 EXP 2 = 4

# MK_BINOP ¢ (+):num->num->num‘ (thi,th2);;

val it : thm = |- 2 * 2 + 2 EXP 2 = 4 + 4
See also

BINOP_CONV, DEPTH_BINOP_CONV, MK_COMB.

mk_char

mk_char : char -> term

Synopsis

Constructs object-level character from OCaml character.

Description

mk_char ’c’ produces the HOL term of type char corresponding to the OCaml character
C.
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Failure
Never fails

Example

# mk_char ’c’;;
val it : term = ‘ASCIT FTTFFF T T¢

Comments

There is no particularly convenient parser/printer support for the HOL char type, but
when combined into lists they are considered as strings and provided with more intuitive
parser/printer support.

See also
dest_char, dest_string, mk_string.

mk_comb

mk_comb : term * term -> term

Synopsis

Counstructs a combination.

Description
Given two terms f and x, the call mk_comb(f,x) returns the combination or application
f x. It is necessary that f has a function type with domain type the same as x’s type.

Failure
Fails if the types of the terms are not compatible as specified above.

Example

# mk_comb(‘SUC, ‘0¢);;
val it : term = ‘SUC O°¢

# mk_comb(‘SUC*, ‘T);;

Exception: Failure "mk_comb: types do not agree".

See also
dest_comb, is_comb, list_mk_comb, list_mk_icomb, mk_icomb.
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MK_COMB_TAC

MK_COMB_TAC : tactic

Synopsis
Breaks down a goal between function applications into equality of functions and argu-
ments.

Description

Given a goal whose conclusion is an equation between function applicationsA 7- £ x = g y,
the tactic MK_COMB_TAC breaks it down to two subgoals expressing equality of the corre-
sponding rators and rands:

Ar7-fx=gy

—————— MK_COMB_TAC
Ar-f=g A7-x=y

Failure

Fails if the conclusion of the goal is not an equation between applications.

See also
ABS_TAC, AP_TERM_TAC, AP_THM_TAC, BINOP_TAC, MK_COMB.

MK_COMB

MK_COMB : thm * thm -> thm

Synopsis

Proves equality of combinations constructed from equal functions and operands.

Description
When applied to theorems A1 |- £ = g and A2 |- x = y, the inference rule MK_COMB re-
turns the theorem A1 u A2 |- f x = g y.

——————————————————————————— MK_COMB
MulA2|-fx=gy

Failure
Fails unless both theorems are equational and £ and g are functions whose domain types
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are the same as the types of x and y respectively.

Example
# let thl = ABS ‘n:num‘ (ARITH_RULE ‘SUC n =n + 1°¢)
and th2 = NUM_REDUCE_CONV ‘2 + 2°¢;;
val thl : thm = |- (\n. SUC n) = (\n. n + 1)
val th2 : thm = |- 2 + 2 = 4
# let th3 = MK_COMB(thil,th2);;
val th3 : thm = |- (\n. SUCn) (2 +2) = (\n. n+ 1) 4

# let thl = NOT_DEF and th2 = TAUT ‘p /\ p <=> p*;;

val thl : thm = |- (7) = (\p. p ==> F)

val th2 : thm = |- p /\ p <=>p

# MK_COMB(thl,th2);;

val it : thm = |- “(p /\ p) <=> (\p. p ==>F) p
Comments

This is one of HOL Light’s 10 primitive inference rules. It underlies, among other things,
the replacement of subterms in rewriting.

See also
AP_TERM, AP_THM, BETA_CONV, TRANS.

mk _cond

mk_cond : term * term * term -> term

Synopsis

Constructs a conditional term.

Description
mk_cond(‘t¢, ‘t1¢,‘t2¢) returns ‘if t then tl1 else t2°.

Failure
Fails with mk_cond if t is not of type ‘:bool or if t1 and t2 are of different types.

See also
dest_cond, is_cond.
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mk_conj

mk_conj : term * term -> term

Synopsis

Constructs a conjunction.

Description
mk_conj(‘t1¢,‘t2‘) returns ‘t1 /\ t2°.

Failure
Fails with mk_conj if either t1 or t2 are not of type ¢:bool®.

Example
# mk_conj(‘1 + 1 =22+ 2 =4;;

val it : term = ‘1 + 1 =2 /\ 2 + 2 = 4¢

See also
dest_conj, is_conj, list_mk_conj.

MK_CONJ

MK_CONJ : thm -> thm -> thm

Synopsis

Conjoin both sides of two equational theorems.

Description
Given two theorems, each with a Boolean equation as conclusion, MK_CONJ returns the
equation resulting from conjoining their respective sides:

——————————————————————————————————— MK_CONJ
AuBI|l-p/\Ng<=>p /\¢q

Failure
Fails unless both input theorems are Boolean equations (iff).
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Example
# let thl = ARITH_RULE ‘0 < n <=> “(n =0
and th2 = ARITH_RULE ‘1 <= n <=> “(n =
val thl : thm = |- 0 < n <=> “(n = 0)
val th2 : thm = |- 1 <= n <=> “(n = 0)
# MK_CONJ thl th2;;
val it : thm = |- 0 <n /\ 1 <=n <=> ~“(n

See also

AP_TERM, AP_THM, MK_BINOP, MK_COMB, MK_DISJ, MK_EXISTS, MK_FORALL.

) [

0);;

0) /\ “(n

0)

mk_cons

mk_cons : term -> term -> term

Synopsis
Constructs a CONS pair.

Description
mk_cons ‘h¢ ‘t¢ returns ‘CONS h t°.

Failure

Fails if second term is not of list type or if the first term is not of the same type as the

elements of the list.
Example

# mk_cons ‘1¢ ‘l:num list‘;;
val it : term = ‘CONS 1 1°

# mk_cons ‘1¢ “[2;3;4]°¢;;
val it : term = ‘[1; 2; 3; 4]°¢

See also

dest_cons, dest_list, is_cons, is_list, mk_flist, mk_list.
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mk const

mk_const : string * (hol_type * hol_type) list -> term

Synopsis

Produce constant term by applying an instantiation to its generic type.

Description

This is the basic way of constructing a constant term in HOL Light, applying a specific
instantiation (by type_subst) to its generic type. It may sometimes be more convenient
to use mk_mconst, which just takes the desired type for the constant and finds the instan-
tiation itself; that is also a natural inverse for dest_const. However, mk_const is likely to
be significantly faster.

Failure
Fails if there is no constant of the given type.

Example

# get_const_type "=";;
val it : hol_type = ‘:A->A->bool‘

# mk_const("=",[‘:num‘, ‘:A]);;

val it : term = ‘(=)¢

# type_of it;;

val it : hol_type = ‘:num->num->bool‘

# mk_const("=",[‘:num‘, ‘:A‘]) = mk_mconst("=", ¢ :num->num->bool*);;

val it : bool = true

See also
dest_const, is_const, mk_mconst, type_subst.

mk_dis]

mk_disj : term * term -> term
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Synopsis

Constructs a disjunction.

Description
mk_disj(‘t1¢,t2‘) returns ‘t1 \/ t2°.

Failure
Fails with mk_disj if either t1 or t2 are not of type ‘:bool.

Example

# mk_disj(‘x = 1,y <= 29);;

val it : term = ‘x = 1 \/ y <= 2¢
See also

dest_disj, is_disj, list_mk_disj.

MK_DISJ

MK_DISJ : thm -> thm -> thm

Synopsis

Disjoin both sides of two equational theorems.

Description

Given two theorems, each with a Boolean equation as conclusion, MK_DISJ returns the
equation resulting from disjoining their respective sides:

——————————————————————————————————— MK_DISJ
AuB I|l-p\/ q<=>p \/

Failure

Fails unless both input theorems are Boolean equations (iff).
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Example
# let thl = ARITH_RULE ‘1 < x <=> 1 <= x - 1°
and th2 = ARITH_ RULE ‘(1 < x) <=>x =0 \/x=1°%;;

val thl : thm = |- 1 < x <=>1<=x -1
val th2 : thm |- "(1 <x)<=>x=0\/x=1

# MK_DISJ thl th2;;
val it : thm = |- 1 <x \/ "(1 <x) <=>1<=x-1\/x=0\x=1

See also
AP_TERM, AP_THM, MK_BINOP, MK_COMB, MK_CONJ, MK_EXISTS, MK_FORALL.

mk_eq

mk_eq : term * term -> term

Synopsis

Constructs an equation.

Description
mk_eq(‘tl1‘,‘t2¢) returns ‘t1 = t2°.

Failure
Fails with mk_eq if t1 and t2 have different types.

Example
# mk_eq(‘1¢,29);;

val it : term = ‘1 = 2°¢

See also
dest_eq, is_eq.

mk_exists

mk_exists : term * term -> term
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Synopsis

Term constructor for existential quantification.

Description

mk_exists(‘v‘,‘t¢) returns ‘?v. t°.

Failure
Fails with if first term is not a variable or if t is not of type ¢:bool¢.

Example
# mk_exists(‘x:num‘,‘x + 1 =1 + x);;
val it : term = ‘?x. x + 1 =1 + x°¢
See also

dest_exists, is_exists, list_mk_exists.

MK_EXISTS

MK_EXISTS : term -> thm -> thm

Synopsis

Existentially quantifies both sides of equational theorem.

Description

Given a theorem th whose conclusion is a Boolean equation (iff), the rule MK_EXISTS ‘v‘ th
existentially quantifies both sides of th over the variable v, provided it is not free in the
hypotheses

———————————————————————————— MK_EXISTS ‘v‘ [where v not free in A]
A |- (?v. p) <=> (7v. q)

Failure
Fails if the term is not a variable or is free in the hypotheses of the theorem, or if the
theorem does not have a Boolean equation for its conclusion.
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Example
# let th = ARITH_RULE ‘f(x:A) >= 1 <=> ~(£f(x) = 0);;
val th : thm = |- f x >= 1 <=> “(f x = 0)
# MK_EXISTS ‘x:A‘ th;;
val it : thm = |- (?x. £ x >= 1) <=> (?x. “(f x = 0))

See also
AP_TERM, AP_THM, MK_BINOP, MK_COMB, MK_CONJ, MK_DISJ, MK_FORALL.

mk_finty

mk_finty :num -> hol_type

Synopsis

Converts an integer to a standard finite type.

Description
Finite types parsed and printed as numerals are provided, and this operation when applied
to a number gives a type of that size.

Failure
Fails if the number is not a strictly positive integer.

Example
Here we use a 6-element type:

# mk_finty (Int 6);;

4

val it : hol_type = ‘:6°¢

See also
dest_finty, DIMINDEX_CONV, DIMINDEX_TAC, HAS_SIZE_DIMINDEX_RULE, mk_type.

mk_flist

mk_flist : term list -> term
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Synopsis

Constructs object-level list from nonempty list of terms.

Description

mk_flist [‘t1¢;...;‘tn‘] returns ‘[t1;...;tn] ‘. The list must be nonempty, since the

type could not be inferred for that case. For cases where you may need to construct an
empty list, use mk_list.

Failure
Fails if the list is empty or if the types of any elements differ from each other.

Example
# mk_flist(map mk_small_numeral (1--10));;
val it : term = ‘[1; 2; 3; 4; 5; 6; 7; 8; 9; 10]¢

See also
dest_cons, dest_list, is_cons, is_list, mk_cons, mk_list.

mk forall

mk_forall : term * term -> term

Synopsis

Term constructor for universal quantification.

Description
mk_forall(‘v‘,‘t‘) returns ‘!v. t°.

Failure
Fails with if first term is not a variable or if t is not of type :bool¢.

Example
# mk_forall(‘x:num‘,‘x + 1 =1+ x);;
val it : term = ‘!x. x + 1 =1 + x°¢
See also

dest_forall, is_forall, list_mk_forall.
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MK_FORALL

MK_FORALL : term -> thm -> thm

Synopsis

Universally quantifies both sides of equational theorem.

Description

Given a theorem th whose conclusion is a Boolean equation (iff), the rule MK_FORALL ‘v th
universally quantifies both sides of th over the variable v, provided it is not free in the
hypotheses

———————————————————————————— MK_FORALL ‘v‘¢ [where v not free in A]
Al- (tv. p) <=> (lv. @

Failure
Fails if the term is not a variable or is free in the hypotheses of the theorem, or if the
theorem does not have a Boolean equation for its conclusion.

Example

# let th = ARITH_RULE ‘f(x:A) >=1 <=> “(f(x) = 0)*;;
val th : thm = |- f x >= 1 <=> “(f x = 0)

# MK_FORALL ‘x:A¢ th;;

val it : thm = |- (Ix. £ x >= 1) <=> (Ix. “(f x = 0))

See also
AP_TERM, AP_THM, MK_BINOP, MK_COMB, MK_CONJ, MK_DISJ, MK_EXISTS.

mk_fset

mk_fset : term list -> term

Synopsis

Constructs an explicit set enumeration from a nonempty list of elements.
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Description
When applied to a list of terms [“t1¢; ...; “tn‘] of the same type, the function mk_fset
constructs an explicit set enumeration term ‘{t1, ..., tn}‘. Note that duplicated ele-

ments are maintained in the resulting term, though this is logically the same as the set
without them. If you need to generate enumerations for empty sets, use mk_setenum; in
this case the type also needs to be specified.

Failure
Fails if there are terms of more than one type in the list, or if the list is empty.

Example
# mk_fset (map mk_small_numeral (0--7));;

val it : term = ‘{0, 1, 2, 3, 4, 5, 6, 7}

See also
dest_setenum, is_setenum, mk_flist, mk_setenum.

mk_fthm

mk_fthm : term list * term -> thm

Synopsis

Create arbitrary theorem by adding additional ‘false’ assumption.

Description

The call mk_fthm(asl,c) returns a theorem with conclusion ¢ and assumption list asl
together with the special assumption _FALSITY_, which is defined to be logically equivalent
to F (false). This is the closest approach to mk_thm that does not involve adding a new
axiom and so potentially compromising soundness.

Failure
Fails if any of the given terms does not have Boolean type.

Example
# mk_fthm([], 1 = 29);;

val it : thm = _FALSITY_ |- 1 =2

Uses

Used for validity-checking of justification functions as a sanity check in tactic applications:
see VALID.
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See also
CHEAT_TAC, mk_thm, new_axiom, VALID.

mk_fun_ty

mk_fun_ty : hol_type -> hol_type -> hol_type

Synopsis

Construct a function type.

Description
The call mk_fun_ty tyl ty2 gives the function type ty1->ty2. This is an exact synonym
of mk_type("fun", [tyl; ty2]), but a little more convenient.

Failure
Never fails.

Example
# mk_fun_ty ‘:num‘ ‘:num‘;;
val it : hol_type = ‘:num->num‘
# itlist mk_fun ty [‘:A‘; “:B¢; ‘:C‘] ‘:bool‘;;
val it : hol_type = ‘:A->B->C->bool‘
See also

dest_type, mk_type.

mk_gabs

mk_gabs : term * term -> term

Synopsis

Constr