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Abstract. It has long been recognized that formulating a problem in a
many-sorted logic can make automated reasoning more efficient, essen-
tially by dealing implicitly via typing with what would otherwise need ex-
plicit inference. We point out here that the advantages of a many-sorted
formulation for automated reasoning can go further. Certain problems
that appear to fall outside one of the known decidable subsets may not
do so when considered with the additional refinement that a many-sorted
formulation offers. We motivate this observation by considering theories
such as metric spaces, and give some practical applications in verification.

1 Introduction

It’s often natural in logical formalization to use more than one type or sort, to
reflect intuitive distinctions between classes of objects. (We’ll use ‘type’ and ‘sort’
more or less interchangeably in what follows.) For example, when formalizing
geometry in traditional fashion [15] it’s common to consider points (say P ) and
lines (L) as two quite different categories, and we can reflect this by formalization
in a logic with more than one sort of object, many-sorted logic [19]. The property
that any two distinct points determine a unique line might be stated as follows,
where the binary predicate On (asserting that a point lies on a line) requires its
first argument to be of type P and its second to be of type L.

∀x : P, y : P. ¬(x = y) =⇒ ∃!l : L. On(x, l) ∧On(y, l)

In most of the logic and automated reasoning literature, many-sorted first-
order logic is mentioned at best in passing. This is understandable, since rigorous
definitions of model, validity etc. become more technically involved with multiple
sorts. And as the books often note, the apparatus of sorts is in principle not
necessary because they can be replaced by relativization of quantifiers using
unary predicates, e.g.

∀x, y. P (x) ∧ P (y) ∧ ¬(x = y) =⇒ ∃!l. L(l) ∧On(x, l) ∧On(y, l)



It has long been recognized, though, that a many-sorted formulation often
allows more efficient proof automation; both [9] and [31] illustrate this point
for Schubert’s classic steamroller problem. Various steps that would need to be
justified by an explicit inference rule (say, a resolution step) in a one-sorted
formulation with relativized quantifiers can just happen implicitly as part of the
type distinction.

However, once a many-sorted formulation is arrived at, what is the contri-
bution of the types to the subsequent process of proof search? Most traditional
first-order proof algorithms such as resolution are based on unification. Proper-
ties of unification in many-sorted logic are highly dependent on the nature of the
sorts; for example whether there are polymorphic types or whether the types are
arranged in a hierarchy [32]. But for the simple and common case where there
is a fixed finite set of sorts, all distinct, little seems to be lost for most proof
procedures by ignoring or erasing the sorts. Conventional first-order unification
applied to well-typed terms will always result in well-typed instantiations, so the
algorithm will never waste time exploring ill-typed intermediate formulas, even
if the typing is implicit.

The main thesis of this paper is that for proof search algorithms based on
explicit expansion, rather than on unification, there is often much to be gained
from considering the sorts during proof search. But why should we be interested
in expansion-based proof procedures, when the most successful proof procedures
are based on unification anyway? Well, the pre-eminence of unification-based
methods has recently been challenged by the development of some other meth-
ods such as ordered semantic hyper-linking [23]. And on general grounds, it is
worth trying to exploit the enormous strides made recently in the efficiency of
checkers for SAT (propositional satisfiability) and SMT (satisfiability modulo
theories). It’s very attractive to organize a prover based on an initial expansion
step followed by one of these ‘big guns’. A successful example of this philosophy
is the aggressively “eager” expansion of problems into SAT performed by UCLID
[8].

The combination of quantifier reasoning and reasoning in theories like arith-
metic is often important in applications, yet the existing approaches tend to be
heuristic and often incomplete [5]. We observe that for expansion-based proof
procedures, the finer distinctions offered by many-sorted logic can make a signif-
icant difference. Indeed, by giving us a more refined notion of quantifier prefix,
we can see at once the decidability of some problems that might naively seem
to be outside the known decidable fragments.

2 The AE fragment

We start by reminding the reader about the decidability of validity for the ‘AE
fragment’ of first-order logic. A formula is in the AE fragment when it contains
no constants or function symbols, and is in (or can obviously be put into) prenex
normal form with the following quantifier structure:



∀x1, . . . , xn. ∃y1, . . . , ym. P [x1, . . . , xn, y1, . . . , ym]

with P [x1, . . . , xn, y1, . . . , ym] quantifier-free, for some m ≥ 0 and n ≥ 0. We can
allow individual constants if we regard them as additional universally quantified
variables in the list x1, . . . , xn, but we need to account for them in the number n.
The decidability result holds for pure first-order logic [4] and for first-order logic
with equality [25]; in fact it is easy to deduce the latter from the former because
we can adjoin equivalence and congruence axioms for equality without disturbing
the AE form. There are two natural ways of showing the decidability of the AE
fragment. In each case we actually consider the dual problem of satisfiability of
the following formula φ, where Q is ¬P .

∃x1, . . . , xn. ∀y1, . . . , ym. Q[x1, . . . , xn, y1, . . . , ym]

The first approach is based on the following observation: φ has a model iff it
has a model with domain size n.1 The right-to-left direction is trivial. For the
other direction, suppose we have any model M of φ with domain D. Then since
φ holds there are elements a1, . . . , an ∈ D such that for any b1, . . . , bm ∈ D we
have QM [a1, . . . , an, b1, . . . , bm], where QM represents the interpretation of the
formula Q in the model. We claim that M ′, the restriction of M to the domain
D′ = {a1, . . . , an}, is also a model of φ. Indeed, we still have the elements
a1, . . . , an ∈ D′ as required, and since QM [a1, . . . , an, b1, . . . , bm] then holds for
all b1, . . . , bm ∈ D, it holds a fortiori for all b1, . . . , bm ∈ D′. Note that this
reasoning relies on the quantifier prefix, and fails with function symbols, since
we have no reason to assume D′ is closed under their interpretations fM .

The other approach, more in the spirit of automated theorem proving meth-
ods, is to use Skolemization. By the basic theorem that Skolemization preserves
satisfiability, φ is satisfiable iff the formula ∀y1, . . . , ym. Q[c1, . . . , cn, y1, . . . , ym]
is satisfiable, where c1, . . . , cn are new constants. But by the Skolem-Gödel-
Herbrand theorem, this is equivalent to the (propositional) satisfiability of the
nm-fold conjunction ∧

t1,...,tn

Q[c1, . . . , cn, t1, . . . , tm]

where each ti ranges over the Herbrand base {c1, . . . , cn}. Again this fails if we
have function symbols, because the Herbrand base is infinite, containing all terms
built up using the functions, say 0, 0 + 0, 0 + (0 + 0) etc. for a binary function
symbol ‘+’. And the wrong kind of quantifier alternation at the beginning would
give rise to new functions after Skolemization.

The decidability of the AE fragment can also be used to decide monadic first-
order logic by prenexing in the right way, and some not entirely trivial problems
can be stated in it, such as the following ‘nonobvious’ puzzle due to  Loś:
1 Unless we want to allow empty models, we should assume n ≥ 1; we can always

add a vacuous quantifier if we wish; similarly we customarily add one constant if the
Herbrand base is empty.



(∀x y z. P (x, y) ∧ P (y, z) =⇒ P (x, z))∧
(∀x y z. Q(x, y) ∧Q(y, z) =⇒ Q(x, z))∧
(∀x y. P (x, y) =⇒ P (y, x))∧
(∀x y. P (x, y) ∨Q(x, y))
=⇒ (∀x y. P (x, y)) ∨ (∀x y. Q(x, y))

which is in fact valid. However, the AE fragment is not generally thought to
be very useful in practice, for example in direct verification applications or in
translating other logical problems of interest.

3 The benefits of many-sortedness

The decidability of the AE fragment generalizes straightforwardly to the many-
sorted case. We will not give the technical details, but in terms of Skolemization,
the core result is exactly the same: we can test the conjunction of all substitution
instances of the formula over the Herbrand base. The only difference is that the
Herbrand base is generated with type distinctions and so we can exclude certain
ill-typed terms from consideration and give a smaller instantiation. In particular
(in terms of the earlier pattern) when considering instantiations of the body
Q, we only need to consider instantiating each yi to the subset of elements of
{c1, . . . , cn} of the same type as yi.

This observation has already been exploited by Jereslow [16] to give more
efficient decision procedures for the AE subset. Our interest here will be in cases
where the type distinctions allow us to go outside the obvious AE subset, for ex-
ample in adding function symbols, while still maintaining a finite Herbrand base
because of type distinctions. This possibility is implicit in work on parametrized
system verification by Pnueli et al [24], and our goal here is to present the ap-
proach in its logical generality. We will in fact consider parametrized system
verification as one of the examples. But we also show how it can be used as a
general way of performing complete quantifier instantiation in problems with a
certain logical structure.

There are many suites of decision procedures for validity in quantifier-free
combinations of theories, based either on combination methods due to Nelson
and Oppen [21], or those due to Shostak [27], which suitably corrected [26] can
be regarded as special-case optimizations of the Nelson-Oppen method [2]. How-
ever, it is easy to see that in a one-sorted formulation, any serious extension to
a richer quantifier structure leads to undecidability. (For example, in Presburger
arithmetic with one uninterpreted function symbol, we can define multiplica-
tion.) Thus, while some decision procedure suites are able to perform quantifier
instantiation, the methods remain heuristic and with somewhat ill-defined ranges
of applicability; cf. for example section 5 of [11] or section 2.2 of [18]. Bjørner and
Stickel [5] approach the problem from the other end, and look at incorporating
arithmetical reasoning into traditional first-order proof methods, but again the
methods are heuristic and incomplete.



Therefore it seems there is considerable value in identifying cases, as we do
here, where on a more refined (type-aware) view, we can extend these decision
procedures to handle richer quantifier structure. This could not only lead to new
approaches to quantifier instantiation in combined decision procedure suites [3,
11, 18], but even explain the success or failure of existing heuristics, and allow
us to deduce invalidity from their failure.

A final observation is that even if we are faced with a problem in untyped first-
order logic, say in the TPTP library [29] we can easily invent types for ourselves,
which may prove to be beneficial in the sense we have described. Essentially, we
can just use the Hindley-Milner ‘most general type’ algorithm [20] often used for
type assignment in functional languages. We have not experimented with how
much is to be gained by this method, but it would be interesting to try some
examples. When naturally many-sorted problems are formulated in one-sorted
logic, one sometimes adds “ill-typed” axioms such as ‘every x is either a point
or a line’. One would need to carefully delete or modify such axioms to recover
the many-sorted formulation.

4 Metric spaces

As a motivating example, consider a theory of metric spaces. A metric is a binary
function d : S × S → R from some set S into the reals satisfying the following
properties (one can find slightly simpler equivalents) whose conjunction we write
M :

∀x y : S. d(x, y) ≥ 0
∀x y : S. d(x, y) = 0 ⇔ x = y
∀x y : S. d(x, y) = d(y, x)
∀x y z : S. d(x, z) ≤ d(x, y) + d(y, z)

Intuitively, we think of d(x, y) as a notion of distance between x and y, and
the classic example is the usual Euclidean metric d(x, y) = ‖x− y‖ on S = RN .
But there are many other possible metrics, including the near-degenerate case
of the discrete metric

d(x, y) =
{

0 if x = y
1 if x 6= y

So consider a 2-sorted first-order theory with types S and R and a metric
function d : S × S → R as well as the usual constants (0, 1, . . . ), functions (‘+’,
‘×’, . . . ) and relations (‘≤’, ‘=’) on R. We assume all the real operations are
interpreted in the standard way, but that S and the function d are allowed an
arbitrary interpretation. Now, a formula holds in all metric spaces iff it follows
from the metric axiom M above with the usual interpretation of the real-number
operations, or equivalently, follows logically from R ∪ {M} where R is the set
of all first-order properties that hold in R. (We could equally well use a more
economical axiomatization of the same theory for R).



So let us consider whether certain formulas hold in all metric spaces. One way
of generating interesting questions is to define in metrical terms the two primitive
notions of ‘betweenness’ and ‘congruence’ from Tarski’s system of geometry [30]:

B(x, y, z) =def d(x, y) + d(y, z) = d(x, z)
(u, v) ≡ (x, y) =def d(u, v) = d(x, y)

and see which properties of them follow from the metric axioms alone. For exam-
ple, B(a, b, a) =⇒ a = b (Axiom 6, the identity axiom for betweenness) becomes:

∀a b. d(a, b) + d(b, a) = d(a, a) =⇒ a = b

It is pretty easy to prove that this does follow: we have d(a, a) = 0, and
d(a, b) + d(b, a) = 0 implies, since d(a, b) ≥ 0 and d(b, a) ≥ 0, that d(a, b) =
d(b, a) = 0. (Alternatively we could use symmetry to argue 2 · d(a, b) = 0 and
so d(a, b) = 0.) And that means that a = b as required. But now let us consider
how an automated algorithm could approach this problem and a whole class of
problems with the same logical structure in a uniform way.

R ∪ {M} ` ∀a b. d(a, b) + d(b, a) = d(a, a) =⇒ a = b

or in other words

R ` M =⇒ ∀a b. d(a, b) + d(b, a) = d(a, a) =⇒ a = b

which we can write

R ` (∀x y : S. d(x, y) ≥ 0)∧
(∀x y : S. d(x, y) = 0 ⇔ x = y)∧
(∀x y : S. d(x, y) = d(y, x))∧
(∀x y z : S. d(x, z) ≤ d(x, y) + d(y, z))
=⇒ ∀a b. d(a, b) + d(b, a) = d(a, a) =⇒ a = b

It is not hard to see that we can if we wish put the conclusion into prenex
AE form; the ranges of the quantifier blocks are disjoint so we can pull them
out in the order ∀a b. ∃x y z. · · · (since the antecedent is effectively negative,
those become existential quantifiers). We won’t bother with that, but consider
directly how to obtain a contradiction from the Skolemized clauses, where a and
b are Skolem constants, and the real-number axioms are also Skolemized to give
R∗:

R∗ ∪ { (∀x y. d(x, y) ≥ 0),
(∀x y. d(x, y) = 0 ⇔ x = y),
(∀x y. d(x, y) = d(y, x)),
(∀x y z. d(x, z) ≤ d(x, y) + d(y, z)),
d(a, b) + d(b, a) = d(a, a),
¬(a = b)

}



By compactness and the usual Herbrand-type argument, this is contradictory
iff some conjunction of ground instances of these formulas is contradictory. And
now sorts come to our rescue. The only terms in the Herbrand base of type S
are the constants a and b; by contrast, on a naive unsorted view, we would have
to consider d(a, d(a, a)) and infinitely many other terms. On the other hand, R∗

trivially implies all its instances, so it’s equivalent to obtaining a contradiction
from R∗ together with all ways of instantiating universally quantified variables
of type S to the two constants a and b:

R∗ ∪ {d(a, a) ≥ 0,
d(a, a) = 0 ⇔ a = a,
d(a, a) = d(a, a),
d(a, a) ≤ d(a, a) + d(a, a),
d(a, b) ≤ d(a, a) + d(a, b),
d(a, b) ≥ 0,
d(a, b) = 0 ⇔ a = b,
d(a, b) = d(b, a),
d(a, a) ≤ d(a, b) + d(b, a),
d(a, b) ≤ d(a, b) + d(b, b),
d(b, a) ≥ 0,
d(b, a) = 0 ⇔ b = a,
d(b, a) = d(a, b),
d(b, a) ≤ d(b, a) + d(a, a),
d(b, b) ≤ d(b, a) + d(a, b),
d(b, b) ≥ 0,
d(b, b) = 0 ⇔ b = b,
d(b, b) = d(b, b),
d(b, a) ≤ d(b, b) + d(b, a),
d(b, b) ≤ d(b, b) + d(b, b),
d(a, b) + d(b, a) = d(a, a),
¬(a = b)

}

this is equivalent to deriving a contradiction from the enumerated set of formulas
over R. While it looks a bit unwieldy on the printed page, this is tiny compared
with the expansions routinely performed in UCLID [8], and it should be an easy
problem for this or any of the major combined decision procedure suites. While
this was a straightforward example, the crucial points are:

– The method is complete, so we can actually deduce that something does not
hold in all metric spaces from its failure.

– The method is applicable to decide any formula with an AE quantifier struc-
ture over the type S and to other axioms with analogous logical form.

For an example of the first, we can confirm using the same method that
B(a, b, d) ∧ B(b, c, d) =⇒ B(a, b, c) (Tarski’s Axiom 15, inner transitivity of be-
tweenness) does not hold in all metric spaces. For an example of the second, we



can call on a presumably apocryphal story2 about a student whose thesis topic
was the theory of ‘antimetric’ spaces, which arise from reversing the inequality
in the triangle law, and considering the following set of axioms (we don’t need
symmetry for the story to work):

(∀x y. d(x, y) = 0 ⇔ x = y)∧
(∀x y. 0 ≤ d(x, y))∧
(∀x y z. d(x, y) + d(y, z) ≤ d(x, z))

Our student developed an impressive theory of these structures, including
many beautiful theorems. However, just before his PhD examination, his thesis
was criticized on the grounds that it contained too much abstract development
and not enough motivation in terms of practical examples. Accordingly, the
student worked hard to find some concrete examples of antimetric spaces, only
to discover to his horror that all antimetric spaces have at most one element and
hence that his entire thesis was mathematically trivial. He could have shown this
automatically using our decision method, which gives the following contradictory
expansion:

(d(a, a) = 0 ⇔ a = a) ∧ (0 ≤ d(a, a))∧
(d(a, a) + d(a, a) ≤ d(a, a)) ∧ (d(a, a) + d(a, b) ≤ d(a, b))∧
(d(a, b) = 0 ⇔ a = b) ∧ (0 ≤ d(a, b))∧
(d(a, b) + d(b, a) ≤ d(a, a)) ∧ (d(a, b) + d(b, b) ≤ d(a, b))∧
(d(b, a) = 0 ⇔ b = a) ∧ (0 ≤ d(b, a))∧
(d(b, a) + d(a, a) ≤ d(b, a)) ∧ (d(b, a) + d(a, b) ≤ d(b, b))∧
(d(b, b) = 0 ⇔ b = b) ∧ (0 ≤ d(b, b))∧
(d(b, b) + d(b, a) ≤ d(b, a)) ∧ (d(b, b) + d(b, b) ≤ d(b, b))∧
¬(a = b)

Again, any good combined decision procedure suite should find it easy to prove
that this is contradictory. Indeed, replacing a = a and b = b by > and a = b
and b = a by ⊥ and considering terms d(x, y) as new variables, it is directly
contradictory over R.

5 Parametrized system verification

We now turn to the application where earlier work [24] anticipates our present
observations, parametrized system verification. The typical problem in this area
is that we have a system with a number N of equivalent replicated components,
so the state space involves some Cartesian product

Σ = Σ0 ×
N times︷ ︸︸ ︷

Σ1 × · · · ×Σ1

2 I heard it from Per Bjesse, who got it from John Hughes, who heard it when an
undergraduate in Cambridge.



and the transition relation is symmetric between the replicated components, so
if π is any3 permutation of {1, . . . , N} we have

(σ0, σ1, . . . , σn) −→ (σ′
0, σ

′
1, . . . , σ

′
n)

if and only if

(σ0, σπ(1), . . . , σπ(n)) −→ (σ′
0, σ

′
π(1), . . . , σ

′
π(n))

In fact, we will usually consider the case where the transition relation is
simply a disjunction of the component transition relations, which automatically
obeys strong symmetry. As usual with verification of transition systems, our
main interest is in proving ‘safety’ properties of the form ‘starting in a state
satisfying p, we cannot reach a state satisfying q’. If we assume that Σ0 and Σ1

are finite, then in principle such questions are decidable for any particular value
of N , say N = 3, and can be decided by ordinary model checking. However, this
might in practice not be feasible when N is large enough. Besides, the system
may be such that the particular value N doesn’t (or shouldn’t) matter and we
would like to have a general proof for all N .

A classic example of such a parametrized system is a cache coherence protocol
for a multiprocessor system, where each of the N processors (or ‘cacheing agents’)
has its own private cache; we will use a simple MESI protocol [14] as an example.
For simplicity, we assume that all cache lines are handled independently, so we
can consider just the state connected with a given cache line (≈memory address).
We model the state space for each cacheing agent w.r.t. that line by a 4-element
enumerated type State with these members (hence the name ‘MESI’)

– Modified — Only this agent has a valid copy; contents have been written
more than once by it.

– Exclusive — Only this agent has a valid copy; contents have been written
exactly once by it.

– Shared — This agent shares a copy with at least one other agent, and all
agree.

– Invalid — This agent’s copy is not up to date with the latest write.

At this level of abstraction, the state space of the entire system can be mod-
elled as StateN , i.e. as an N -element array Cache of states, taking the indices to
come from an indexing type Node. And we can model the protocol’s permissible
transitions by logical formulas relating the initial and final arrays Cache and
Cache’. The overall transition relation is the disjunction of various possibilities:

– A read hit on some cache i has no effect; it can only happen if the contents
are valid:

∃i:Node. ¬(Cache(i) = Invalid) ∧ Cache’ = Cache

3 We sometimes want to consider restrictions to subgroups of permutations, e.g. circu-
lar symmetry when we consider components on a ring network, but here we’ll only
consider the case of full symmetry.



– A read miss on cache i: we get a shared copy and any other copies are
changed to ‘shared’:

∃i:Node. Cache(i) = Invalid ∧
Cache’(i) = Shared ∧
∀j:Node. ¬(j = i)

=⇒ Cache’(j) = if Cache(j) IN {Modified,Exclusive}
then Shared
else Cache(j)

– A write miss on cache i: cache i gets an exclusive copy and all other copies
are invalidated.

∃i:Node. Cache(i) = Invalid ∧
Cache’(i) = Exclusive ∧
∀j:Node. ¬(j = i) =⇒ Cache’(j) = Invalid

– A write hit on cache i. If the original line was exclusive, change it to modified.
Otherwise change it to exclusive an invalidate all other caches.

∃i:Node.
¬(Cache(i) = Invalid) ∧
(if Cache(i) = Exclusive
then Cache’(i) = Modified ∧

∀j. ¬(j = i) =⇒ Cache’(j) = Cache(j)
else if Cache(i) = Modified then Cache’ = Cache
else Cache’(i) = Exclusive ∧

∀j. ¬(j = i) =⇒ Cache’(j) = Invalid)

Let’s assume that initially all caches are in the invalid state. We would like
to show that in all states reachable in arbitrarily many steps of the transition
relation, coherence holds, meaning that if any cache has an exclusive or modified
copy, all other caches are in the invalid state:

∀i:Node. Cache(i) IN {Modified, Exclusive}
=⇒ ∀j. ¬(j = i) =⇒ Cache(j) = Invalid

One approach is to exploit symmetry to show that the system is simulated
by an abstracted one that just counts how many caches are in each state, the
so-called ‘counter abstraction’:

trans (m,e,s,i) (m’,e’,s’,i’) ⇔
m + e + s >= 1 ∧ m’ = m ∧ e’ = e ∧ s’ = s ∧ i’ = i ∨
i >= 1 ∧ i’ = i - 1 ∧ e’ = 0 ∧ m’ = 0 ∧ s’ = s + e + m + 1 ∨
m >= 1 ∧ m’ = m ∧ e’ = e ∧ s’ = s ∧ i’ = i ∨
e >= 1 ∧ e’ = e - 1 ∧ m’ = m + 1 ∧ s’ = s ∧ i’ = i ∨
s >= 1 ∧ s’ = 0 ∧ e’ = 1 ∧ m’ = 0 ∧ i’ = (i + m + e + s) - 1 ∨
i >= 1 ∧ e’ = 1 ∧ s’ = 0 ∧ m’ = 0 ∧ i’ = (i + e + m + s) - 1



Now the coherence property of the original system follows from an analogous
property for the abstracted one: m + e ≥ 1 =⇒ m + e + s = 1. The latter can
be established using tools for reachability over subsets of Euclidean space [10].
Actually, in this case the situation is simpler: coherence is already an inductive
invariant, so we can just reason by induction using the arithmetical fact:

|- (m + e >= 1 =⇒ m + e + s = 1) ∧
trans (m,e,s,i) (m’,e’,s’,i’)
=⇒ m’ + e’ >= 1 =⇒ m’ + e’ + s’ = 1

We will now show that using our approach one can establish exactly the
same inductive invariance property for the original system without making the
counter abstraction. We can split the problem into four distinct cases for the
four disjuncts of the transition relation; for example the ‘write miss on cache i’
case needs us to establish:

(∀i. Cache(i) IN {Modified, Exclusive}
=⇒ ∀j. ¬(j = i) =⇒ Cache(j) = Invalid) ∧

(∃i. Cache(i) = Invalid ∧
Cache’(i) = Exclusive ∧
∀j:Node. ¬(j = i) =⇒ Cache’(j) = Invalid)

=⇒ (∀i. Cache’(i) IN {Modified, Exclusive}
=⇒ ∀j. ¬(j = i) =⇒ Cache’(j) = Invalid)

This is, in fact, pretty trivial. However, note how we can solve it system-
atically. We want to obtain a contradiction from the negated Skolemized form,
where n, p and q are Skolem constants:

(∀i j. (Cache(i) = Modified ∨ Cache(i) = Exclusive) ∧ ¬(j = i)
=⇒ Cache(j) = Invalid) ∧

(Cache(n) = Invalid ∧ Cache’(n) = Exclusive ∧
(∀j. ¬(j = n) =⇒ Cache’(j) = Invalid)) ∧
(Cache(p) = Modified ∨ Cache(p) = Exclusive) ∧ ¬(q = p) ∧
¬(Cache(q) = Invalid)

As usual, it’s equivalent to getting a contradiction from the set of all ground
instances. And here, once again, the sorts come to our rescue. In a naive unsorted
first-order formulation, we would consider all potential instantiations of these
variables with terms of the form:

n, Cache(n), Cache(Cache(n)), Cache(Cache(Cache(n))), ...

But Cache has type Node→ State, so in the sorted version, only two of these
terms make sense and only one has type Node. So the only possible instantiations
for the universal quantifiers are the three Skolem constants. Thus we just need
to get a contradiction from



((Cache(n) = Modified ∨ Cache(n) = Exclusive) ∧ ¬(n = n)
=⇒ Cache(n) = Invalid) ∧
((Cache(n) = Modified ∨ Cache(n) = Exclusive) ∧ ¬(p = n)
=⇒ Cache(p) = Invalid) ∧
((Cache(n) = Modified ∨ Cache(n) = Exclusive) ∧ ¬(q = n)
=⇒ Cache(q) = Invalid) ∧
((Cache(p) = Modified ∨ Cache(p) = Exclusive) ∧ ¬(n = p)
=⇒ Cache(n) = Invalid) ∧
((Cache(p) = Modified ∨ Cache(p) = Exclusive) ∧ ¬(p = p)
=⇒ Cache(p) = Invalid) ∧
((Cache(p) = Modified ∨ Cache(p) = Exclusive) ∧ ¬(q = p)
=⇒ Cache(q) = Invalid) ∧
((Cache(q) = Modified ∨ Cache(q) = Exclusive) ∧ ¬(n = q)
=⇒ Cache(n) = Invalid) ∧
((Cache(q) = Modified ∨ Cache(q) = Exclusive) ∧ ¬(p = q)
=⇒ Cache(p) = Invalid) ∧
((Cache(q) = Modified ∨ Cache(q) = Exclusive) ∧ ¬(q = q)
=⇒ Cache(q) = Invalid) ∧
(Cache(n) = Invalid ∧ Cache’(n) = Exclusive ∧
(¬(n = n) =⇒ Cache’(n) = Invalid)) ∧
(¬(p = n) =⇒ Cache’(p) = Invalid)) ∧
(¬(q = n) =⇒ Cache’(q) = Invalid)) ∧
(Cache(p) = Modified ∨ Cache(p) = Exclusive) ∧ ¬(q = p) ∧
¬(Cache(q) = Invalid)

This is within the capabilities of standard free-variable decision procedure.
We could even use pure logical reasoning if we’re prepared to add axioms assert-
ing that each object of type State is one of the four indicated values, and that
all these are distinct. However, an appealing point is that we can include some
arithmetic or other theory reasoning as well, and our expansion technique still
works well. Observe that all we required of the logical form is:

– The transition relation and invariant only involve quantifiers over nodes.
– The invariant has no quantifier alternations (purely universal or purely ex-

istential).
– The transition relation has the form ∃ · · · ∃∀ · · · ∀.

Such invariants, like cache coherence, are common in practice. And the tran-
sition relation arising from a system with many duplicated components very
naturally has the form indicated. An outer existential quantifier arises because
the overall transition relation is a nondeterministic choice between all the repli-
cated components. The universal quantifiers arise because we need to specify
array updates by quantification over indices; in the case of an unchanged array
we might write ∀i. a[i] = b[i] for the higher-order statement a = b.

The MESI protocol verification here is trivial, just for illustration. In more
interesting protocol verification examples, the various “transactions” are decom-
posed into multiple communication primitives and so can end up interleaving



in complicated ways. Possibly the simplest standard example that is realistic
in this sense is German’s protocol. Here, coherence itself is not an inductive
property, and one needs to find a stronger inductive invariant. In [24] an invari-
ant is constructed automatically by generalizing the reachable states of a finite
configuration, and then proven automatically techniques close to those we are
describing here. More ‘human-oriented’ ways of synthesizing inductive invariants
are discussed in [22], and we emphasize that any inductive invariants for Ger-
man that have no quantifier alternations can be proven automatically by our
techniques, however they are generated.

However, the method fails if the system involves arrays that contain other
node indices. For at that point, we once again find ourselves in a situation with
an infinite Herbrand universe. This essentially explains why the method in [24]
is not immediately applicable to some other protocols that do have that feature,
e.g. the Stanford FLASH protocol.

6 Conclusions

It has long been observed that certain metatheorems are stronger in their many-
sorted formulations, in particular the interpolation property [12, 13, 17]. This
paper notes a similar improvement for automated reasoning. We have pointed
out how the use of sorts, generally neglected in automated theorem proving, can
be quite important, rendering certain problems — including some practically
interesting ones — decidable. Although the idea is implicit in [24], we think it is
beneficial to separate it out from the particular application and present it in full
logical generality. It would be interesting to see if there are any significant ways
the result can be extended, e.g. finding analogs of these results for typed versions
of other decidable classes [6]. And it would be interesting to consider subtler ar-
guments than those based on sorts about why in certain cases instantiation with
finite subsets of the Herbrand base are sufficient for completeness. Quantifier
instantiation heuristics (of the kind already used in UCLID and Simplify) could
be enhanced with this deeper understanding.

Another interesting question is the relationship with the theory of arrays.
The earliest and best-known decision procedure for the extensional theory of
arrays [28] explicitly formulates the theory in 2-sorted terms with a type I for
indices and another type V of values, but these need not be distinct. As usual,
the decision procedure is restricted to quantifier-free formulas, and as the authors
point out ‘single-sorted first-order theories with function symbols and equality
may be translated into this theory . . . even quite restricted quantified fragments
. . . are undecidable’. It would be interesting to see to what extent enforcing a
strict separation of the types I and V allows one to introduce some limited form
of quantification over indices into the theory. We would also like to see if we
can understand some of the decidability and undecidability results given in [7]
in terms of type distinctions.
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NOTES TO MYSELF

*** John Matthews pointed out to me that all this may have been anticipated
by Pascal Fontaine, who has very similar (and maybe better) stuff in his thesis.
He’s one of the “Harvey” people.

**** Actually, I presented his TACAS paper at the Protocol Study Group,
and indeed it does largely seem to subsume all I have here. So I can forget about
publication now.
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