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Samples from stochastic signals having sufficient complexity need reveal only a little
unexpected shared structure, in order to reject the hypothesis that they are indepen-
dent. The mere failure of a test of statistical independence can thereby serve as a basis
for recognizing stochastic patterns, provided they possess enough degrees-of-freedom,
because all unrelated ones would pass such a test. This paper discusses exploitation of
this statistical principle, combined with wavelet image coding methods to extract phase
descriptions of incoherent patterns. Demodulation and coarse quantization of the phase
information creates decision environments characterized by well-separated clusters, and
this lends itself to rapid and reliable pattern recognition.
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1. Introduction

The central issue in pattern recognition is the relationship between within-class

variability and between-class variability. These are determined by the dimensions

of variation (degrees-of-freedom) spanned by the pattern classes. Ideally the within-

class variability should be small and the between-class variability large, since this

creates optimal separation among the pattern classes. The reliability of pattern

recognition decisions depends upon the separation, or amount of overlap, among the

different pattern classes; we desire that the spacings between the clusters be larger

than the diameters of the clusters. This statistical separation in turn depends partly

upon the representation chosen for defining the classes. It is desirable to find image

representations which lend themselves optimally to these statistical requirements

of pattern recognition. This paper discusses the coupling of wavelet image coding

with a test of statistical independence on extracted phase information, in order

to obtain a demonstrably robust and reliable algorithm for recognizing stochastic

patterns of high dimensionality.
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2. Complex-Valued 2D Wavelets for Image Analysis

The use of multi-resolution two-dimensional wavelets in image analysis and com-

puter vision has attracted much interest in recent years. The particular family of

2D wavelets that will be discussed here are closed under dilation, translation, and

rotation, and they also form a complete image basis, or frame. They are also self-

Fourier (equivalent in form to their own Fourier transforms), and they compose a

set that is also closed under convolution (the convolution of any two members of

the set is also a member of the set).

If we take Ψ(x, y) to be any chosen generic 2D wavelet, which may be called a

mother wavelet, then we can generate from this function a complete self-similar

family of parametrized daughter wavelets Ψmpqθ(x, y) through the generating

relation

Ψmpqθ(x, y) = 2−2mΨ(x′, y′) , (2.1)

where the substituted variables (x′, y′) incorporate dilations of the wavelet in size

by 2m, translations in position (p, q), and rotations through angle θ:

x′ = 2−m[x cos(θ) + y sin(θ)]− p , (2.2)

y′ = 2−m[−x sin(θ) + y cos(θ)]− q . (2.3)

A particular choice for Ψ(x, y) which possesses several interesting and useful

properties is the complex-valued 2D “Gabor” wavelet, so named because it is a

generalization2 of the 1D elementary functions originally discussed by Gabor.8 The

2D wavelet form is defined as follows:

Ψ(x, y) = e−π[(x−x0)2/α2+(y−y0)2/β2]e−2πi[u0(x−x0)+v0(y−y0)] , (2.4)

where (x0, y0) specify wavelet position, (α, β) specify effective width and length,

and (u0, v0) specify a modulation wave-vector which can be interpreted in polar

coordinates as spatial frequency ω0 =
√
u2

0 + v2
0 and orientation (or direction)

θ0 = arctan(v0/u0). Plots of the real and imaginary parts of such wavelets are

shown in Fig. 1.

The 2D Fourier transform F (u, v) of the 2D Gabor wavelet Ψ(x, y) has exactly

the same functional form (i.e. this family of wavelets is self-Fourier), with parame-

ters just interchanged or inverted:

F (u, v) = e−π[(u−u0)2α2+(v−v0)2β2]e2πi[x0(u−u0)+y0(v−v0)] . (2.5)

Thus the 2D Fourier power spectrum of the Ψ(x, y) wavelet, F (u, v)F ∗(u, v), is a

bivariate Gaussian centered on (u0, v0). Its spectral energy peak is at orientation

θ0 and spatial frequency ω0 as defined above, and so it serves to extract image

structure in a particular band of the 2D Fourier spectrum. The effective support

of this 2D spectral band-area is an ellipse centered at (u0, v0) and whose principle

axes are (1/α, 1/β).
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Fig. 1. Pattern encoding by phase demodulation. Image structure is extracted as phase sequences
by projection onto multi-resolution complex-valued 2D wavelets.

It is noteworthy that as consequences of the similarity, shift, and modulation

theorems of 2D Fourier analysis, together with the rotation isomorphism of the

2D Fourier transform, all the effects of the generating relation (2.1) applied to a

2D Gabor mother wavelet Ψ(x, y) to produce a new daughter wavelet Ψmpqθ(x, y)

will have corresponding or reciprocal effects on its 2D Fourier transform F (u, v)

without any change in functional form.3 This set of 2D wavelets and their 2D Fourier

transforms is closed under the transformations of dilation, translation, rotation,

and convolution with any member of the set. Two further interesting properties

of these wavelets are the fact that they achieve the lower bound of the Weyl–

Heisenburg “uncertainty relation” for conjoint resolution in the 2D space and 2D

Fourier domains,3 and the fact that they form an excellent model for the receptive

field profiles of individual neurones (the so-called “simple cells”) in the visual cortex

of mammalian brains.2,3 Any image can be represented completely in terms of

such wavelets used as expansion functions. A complication arises from the fact

that these wavelets are non-orthogonal (the inner product of any two of them is

in general nonzero), and so the expansion coefficients required do not correspond

simply to the inner product projections of the image onto the wavelets. A relaxation

network solution to this problem of obtaining the correct expansion coefficients was

presented in Ref. 4.

Because these wavelets are complex valued, it is possible to use the real and

imaginary parts of their convolution (∗) with an image I(x, y) to extract a de-

scription of image structure in terms of local modulus and phase. These corre-

spond, respectively, to an “amplitude modulation” function A(x, y) and a “phase
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modulation” function φ(x, y) of the spatial image coordinates:

A(x, y) =
√

(Re{Ψ(x, y) ∗ I(x, y)})2 + (Im{Ψ(x, y) ∗ I(x, y)})2 , (2.6)

φ(x, y) = tan−1 (Im{Ψ(x, y) ∗ I(x, y)})
(Re{Ψ(x, y) ∗ I(x, y)}) . (2.7)

These polar descriptors are shown in the phasor diagram of Fig. 1. The modulus

of the phasor in the complex plane represents a given patch of an image in terms

of its local contrast amplitude A(x, y), and the angle of this phasor represents

the patch in terms of its local phase φ(x, y). This phase angle can be quantized

very coarsely, as shown in Fig. 1 using only two bits, for building descriptions of

a pattern that lend themselves to efficient and reliable pattern recognition by the

simple failure of a test of statistical independence.

We turn now to illustrating this principle in a particular application in image

analysis and computer vision, namely the recognition of iris patterns in a person’s

eye as a reliable method of automatic personal identification.

3. Biometric Recognition of Persons by Iris Patterns

The highest density of biometric degrees-of-freedom (forms of variability among

individuals) which are both stable over time and easily measured, is to be found in

the complex texture of the iris pattern of the eye. This protected internal organ,

whose pattern can be encoded from distances of up to almost a meter, reveals about

250 independent degrees-of-freedom of textural variation across individuals. One

way to calibrate the “information density” of the iris is by its human-population

entropy per unit area. As we will see, this works out to about 3.2 bits per square

millimeter on the iris, based upon 9.1 million paired IrisCode comparisons that

have been performed using these algorithms.

Fig. 2. Example of a human iris pattern, imaged in near infrared light at a distance of 30 cm.
Such patterns have high statistical dimensionality and can serve as unique, reliable identifiers.
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3.1. Properties of the iris

The iris is composed of elastic connective tissue, the trabecular meshwork, whose

prenatal morphogenesis is completed during the 8th month of gestation. It consists

of pectinate ligaments adhering into a tangled mesh revealing striations, ciliary

processes, crypts, rings, furrows, a corona, sometimes freckles, vasculature, and

other features. During the first year of life a blanket of chromatophore cells often

changes the color of the iris, but the available clinical evidence indicates that the

trabecular pattern itself is stable throughout the lifespan. Because the iris is a

protected internal organ of the eye, behind the cornea and the aqueous humor, it

is immune to the environment except for its pupillary reflex to light. (The elastic

deformations that occur with pupillary dilation and constriction are readily reversed

mathematically by the algorithms for localizing the inner and outer boundaries of

the iris.) Pupillary motion, even in the absence of illumination changes (termed

hippus), and the associated elastic deformations in the iris texture, provide one test

against photographic or other simulacra of a living iris in high security applications.

There are few systematic variations in the amount of detectable iris detail as a

function of ethnic identity or eye color; even dark-eyed persons reveal plenty of iris

detail when imaged with infrared light. Further discussion of anatomy, physiology,

and clinical aspects of the iris may be found in Ref. 1.

3.2. Localizing irises and analyzing their patterns

The two-dimensional modulations which create iris patterns are extracted by

demodulation7 with complex-valued 2D wavelets, as discussed above and illustrated

in Fig. 1, albeit in polar rather than cartesian coordinates.

First it is necessary to localize precisely the inner and outer boundaries of the

iris, and to detect and exclude eyelids if they intrude. These detection operations

are accomplished by integro-differential operators of the form

max
(r,x0,y0)

∣∣∣∣Gσ(r) ∗ ∂

∂r

∮
r,x0,y0

I(x, y)

2πr
ds

∣∣∣∣ , (3.1)

where contour integration parametrized for size and location coordinates r, x0, y0

at a scale of analysis σ set by some blurring function Gσ(r) (e.g. a Gaussian of scale

σ) is performed over the image data array I(x, y). The result of this optimization

search is the determination of the circle parameters r, x0, y0 which best fit the inner

and outer boundaries of the iris.

Then a doubly-dimensionless coordinate system is defined which maps the tis-

sue in a manner that is invariant to changes in pupillary constriction and overall

iris image size, and hence also invariant to camera optical zoom factor and distance

to the eye. This coordinate system is pseudo-polar, although it does not assume

concentricity of the inner and outer boundaries of the iris since the pupil is nor-

mally somewhat nasal, and inferior, in the iris. The coordinate system compensates

automatically for the stretching of the iris tissue as the pupil dilates. The inner
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Fig. 3. Isolation of an iris for encoding, and its resulting “IrisCode.”

and outer boundaries of this dimensionless and non-concentric coordinate system

are illustrated graphically in Fig. 3, together with a phase-demodulation IrisCode

indicated in the top left as a bit stream.

The detailed iris pattern is encoded into a 256-byte “IrisCode” by demodulating

it with 2D Gabor wavelets. Each resulting phasor angle in the complex plane is

quantized to the quadrant in which it lies for each local element of the iris pattern,

and this operation is repeated all across the iris, at many different scales of analysis.

Such local phase quantization is described by the following conditional integral

equations, in which each code bit h is represented as having both a “real part” hRe

and an “imaginary part” hIm, with h = hRe + ihIm, and the raw iris image pixel

data is given in the dimensionless pseudo-polar coordinate system I(ρ, φ):

hRe =


1 if Re

∫
ρ

∫
φ

e−iω(θ0−φ)e−(r0−ρ)2/α2

e−(θ0−φ)2/β2

I(ρ, φ)ρdρdφ ≥ 0 , (3.2)

0 if Re

∫
ρ

∫
φ

e−iω(θ0−φ)e−(r0−ρ)2/α2

e−(θ0−φ)2/β2

I(ρ, φ)ρdρdφ < 0 . (3.3)

hIm =


1 if Im

∫
ρ

∫
φ

e−iω(θ0−φ)e−(r0−ρ)2/α2

e−(θ0−φ)2/β2

I(ρ, φ)ρdρdφ ≥ 0 , (3.4)

0 if Im

∫
ρ

∫
φ

e−iω(θ0−φ)e−(r0−ρ)2/α2

e−(θ0−φ)2/β2

I(ρ, φ)ρdρdφ < 0 . (3.5)

3.3. Independence and the degrees-of-freedom in IrisCodes

It is important to establish that there exists independent variation in iris patterns,

across populations and across positions in the IrisCode. This is confirmed by track-

ing the probability of a bit being set, as shown in Fig. 4. If there were any systematic
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Fig. 4. Equiprobability of set bits across IrisCode bit positions.

correlations among irises, this plot would not be flat. The fact that it is flat at a

value of 0.5 means that any given bit in an IrisCode is equally likely to be set or

clear, and so IrisCodes are bit-wise maximum entropy codes.

The histogram in Fig. 5 compares different eyes’ IrisCodes by Exclusive OR-

ing them to detect the fraction of their bits that disagree. Since any given bit is

equally likely to be set or clear, an average Hamming Distance fraction of 0.5 would

be expected. The observed mean was 0.499 in comparisons between 9.1 million

different pairings of IrisCodes captured in field tests of these algorithms in Britain,

the USA, Japan and Korea. Altogether there were 4,258 different iris images in the

combined database, including 10 each of one subset of 70 eyes. Excluding those

duplicates of (700× 9) same-eye comparisons, and not double-counting pairs, and

not comparing any image with itself, the total number of unique pairings between

different eye images whose HDs could be computed was ((4, 258 × 4, 257− 700 ×
9)/2) = 9, 060, 003. The standard deviation of this distribution, 0.0317, indicates

that the underlying number of degrees-of-freedom in such comparisons is N =

pq/σ2 = 249. This indicates that within any given IrisCode, only a small subset of

the 2,048 bits computed are independent of each other, due to the large correlations

(mainly radial) that exist within any given iris pattern. (If every bit in an IrisCode

were independent, then the distribution in Fig. 5 would be very much sharper,

with an expected standard deviation of only
√
pq/N = 0.011; thus the Hamming

Distance interval between 0.49 and 0.51 would contain most of its area.) The solid

curve fitted to the data is a binomial distribution with 249 degrees-of-freedom; this

is the expected distribution from tossing a fair coin 249 times in a row, and tallying

up the fraction of heads in each such run. The factorials which dominate the tails of
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Binomial Distribution of IrisCode Hamming Distances

9,060,003 different iris comparisons

Solid curve:  binomial PDF,

N=249 degrees-of-freedom, p=0.5

mean = 0.499,  stnd.dev. = 0.0317

min = 0.334,  max = 0.664

Fig. 5. Histogram of raw Hamming Distances between 9.1 million pairs of unrelated IrisCodes.
The solid curve is a binomial distribution with 249 degrees-of-freedom.

such a distribution make it astronomically improbable that two different IrisCodes

having these many degrees-of-freedom could accidentally disagree in much fewer

than half their bits. For example, the chances of disagreeing in only 25% or fewer of

their bits (achieving a Hamming Distance below 0.25, or equivalently the chances

of getting fewer than 25% heads in 249 coin tosses) are less than one in 1015. Thus

the observation of a match even of such poor quality (25% of the bits disagree) is

extraordinarily compelling evidence of identity.

3.4. Genetically identical irises

Whereas the striking visual similarity of identical twins reveals the genetic pen-

etrance of overall facial appearance, a comparison of genetically identical irises

reveals that iris texture is a phenotypic feature, not a genotypic feature. A conve-

nient source of genetically identical irises are the right and left pair from any given

person. Such pairs have the same genetic relationship as the four irises of two iden-

tical twins, or indeed in the probable future, the 2N irises of N human clones. Eye

color of course has high genetic penetrance, as does the overall statistical quality

of the iris texture, but the textural details are uncorrelated and independent even

in genetically identical pairs. This is shown in Fig. 6, comparing 648 right/left iris

pairs from 324 persons.
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Fig. 6. Histogram of raw Hamming Distances between IrisCodes computed from 324 pairs of
genetically identical irises (648 eyes in right/left pairs). This distribution is statistically indistin-
guishable from Fig. 5, which compared unrelated irises.

The mean Hamming Distance is 0.497 with standard deviation 0.031, indicat-

ing 259 degrees-of-freedom between genetically identical irises. These results are

statistically indistinguishable from those shown in Fig. 5 for genetically unrelated

irises. This shows that the detailed phase structure extracted from irises by phasor

demodulation is entirely phenotypic, so performance is not limited (as it is for face

recognition or DNA) by the birth rate of identical twins.

4. Statistical Recognition Principle

The principle of operation underlying this approach to pattern recognition is the

failure of a test of statistical independence. Samples from stochastic sequences

with sufficient complexity need reveal only a little unexpected agreement, in or-

der to reject the hypothesis that they are independent. For example, in two runs

of 1,000 coin tosses, agreement rates between their paired outcomes higher than

56% or lower than 44% are extremely improbable: the odds against a higher or

lower rate of agreement are roughly 10,000 to 1. The failure of a test of statistical

independence can thereby serve as a basis for recognizing patterns very reliably,

provided they possess enough degrees-of-freedom. Since the bitwise comparisons

of unrelated IrisCodes are Bernoulli trials, their combinatorics generate Hamming
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Distance distributions which are binomials, even though the underlying Bernoulli

trials are correlated (see Ref. 9) due to internal correlations within each iris. With

so many degrees-of-freedom, the binomial distributions have attenuation rates that

are dominated by large factorials. For this key reason, iris patterns allow recognition

decisions about personal identity to be made with astronomic confidence levels. The

practical importance of such high odds against a chance False Match is that it per-

mits huge databases (even of “planetary” size) to be searched exhaustively, without

accumulating significant probability of a False Match despite the large number of

opportunities.

4.1. Extreme-value distribution for rotated IrisCodes

Because the computation of an IrisCode is preceded by localization of the inner and

outer boundaries of the iris and the creation of a doubly-dimensionless coordinate

system, an IrisCode is invariant under translations and dilations (changes in object

position or size within the image), and also invariant under changes in the pupil

diameter relative to the iris diameter. However, the phasor information scrolls in

phase as the iris is rotated, due to tilt of the head or camera or due to torsional

rotation of the eye in its socket. Therefore all iris comparisons need to be repeated

over a range of relative rotations, keeping only the best match. This amounts to

sampling the distribution of Fig. 5 many times and keeping only the smallest value,

which leads to the extreme-value distribution given in Fig. 7.

The raw binomial distribution shown earlier in Fig. 5 had the form:

f(x) =
N !

m!(N −m)!
pmq(N−m) , (4.1)

where N = 249, p = q = 0.5 and x = m/N is the Hamming Distance. Let F0(x) be

its cumulative from the left, up to x: F0(x) =
∫ x

0
f(x)dx. When only the smallest of

n samples from such a distribution is kept, the resulting extreme-value distribution

(derived in Ref. 5) has density fn(x):

fn(x) = nf(x)[1− F0(x)]
n−1 (4.2)

which is the solid surve superimposed upon the empirical histogram in Fig. 7.

Figure 8 shows this extreme value probability density function and marks off the

cumulatives under its left tail up to various points, illustrating that, for example,

finding accidental agreement of two unrelated IrisCodes in even 65% or more of

their bits (a Hamming Distance of 0.35 or lower) has very small probability (1 in

133,000). This illustrates that we can tolerate a huge amount of corruption in iris

images due to poor resolution, poor focus, occluding eyelashes and eyelids, contact

lenses, specular reflections from the cornea or from eyeglasses, camera noise, etc.

We can accept matches of very poor quality, say up to 30% of the bits being wrong,

and still make decisions about personal identity with very high confidence.
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Fig. 7. Histogram of Hamming Distances between unrelated IrisCodes computed after compar-
isons in multiple (n = 7) relative rotations, keeping only each best match.
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Fig. 9. Decision environment for automatic personal identification based on iris patterns, using
these algorithms in typical operational conditions.

4.2. Decidability of iris-based personal identification

The overall decidability of the task of recognizing persons by their iris patterns

is revealed by comparing the Hamming Distance distributions for “same” versus

“different” irises. To the degree that one can confidently decide whether an observed

sample belongs to the left (same) or the right (different) distribution in Fig. 9, this

recognition task can be reliably performed.

For such a decision task, the Decidability Index d′ measures how well separated

the two distributions are, since recognition errors are caused by their overlap. If

their two means are µ1 and µ2, and their two standard deviations are σ1 and σ2,

then d′ is defined as

d′ =
|µ1 − µ2|√
(σ2

1 + σ2
2)/2

. (4.3)

This measure of decidability (or detectability) is independent of how liberal or

conservative is the acceptance threshold used. Instead it reflects the degree to which

any improvement in (say) the False Match error rate must be paid for by a worsening

of the Failure-to-Match error rate. The measured decidability is d′ = 7.3 for this

particular Decision Environment, which was created by non-ideal image capture

conditions. Different cameras were often used for enrollment and for recognition

tests, and so the left-side distribution for “same” iris comparisons has a higher mean
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Table 1. False Match probability

as a function of decision criterion.

HD criterion Odds of false match

0.26 1 in 1013

0.27 1 in 1012

0.28 1 in 1011

0.29 1 in 13 billion
0.30 1 in 1.5 billion
0.31 1 in 185 million
0.32 1 in 26 million
0.33 1 in 4 million
0.34 1 in 690,000
0.35 1 in 133,000
0.36 1 in 28,000
0.37 1 in 6,750
0.38 1 in 1,780
0.39 1 in 520
0.40 1 in 170

and a higher right tail than it does when image capture conditions are sufficiently

ideal that a given iris always produces very similar IrisCodes.

The left-side distribution of Hamming Distances seen in Fig. 9 is not stable,

since it depends on the imaging conditions; therefore the Failure-to-Match rate is

not a fixed property of these algorithms. But the right-side distribution is extremely

stable, almost independent of the imager, and is essentially a property of these

algorithms. Therefore, only cumulatives of the right-side distribution (from 0) will

be computed here. By calculating the area under the curve fitted to the observed

distribution of Hamming Distances for different eyes (Fig. 7), we can compute the

theoretical False Match rate as a function of the decision criterion employed. This

is tabulated in Table 1, for various Hamming Distance acceptance thresholds.

4.3. Identification versus verification

Because the probabilities of False Matches are so low even at rather high Hamming

Distances, as shown in Table 1, the standard use of these algorithms is to perform

exhaustive searches through very large databases for identification of a presenting

iris pattern, rather than merely a one-to-one comparison for verification. Clearly,

exhaustive search identifications are far more demanding than mere verifications,

since the probabilities of a False Match in any single comparison are increased

monotonically with the size of the exhaustive search database. More precisely, if P1

is the probability of a False Accept in a single (one-to-one) verification trial with

an imposter, then PN , the probability of getting any False Matches in identification

trials after searching exhaustively through a database of N different IrisCodes, is:

PN = 1− (1− P1)
N . (4.4)



January 14, 2003 17:35 WSPC/181-IJWMIP 00002

14 J. Daugman

This is an extremely demanding relationship. For example, even if P1 were 0.001

(which is much better than published test results for face recognition or most other

biometrics), then even after searching through a database of merely N = 200 per-

sons, the probability of getting one or more False Matches among those persons

would be PN = 0.181. But for iris recognition, the cumulatives (see Table 1) under

the distribution in Fig. 7 indicates that if we use an acceptance Hamming Distance

criterion of 0.27 (i.e. allowing up to 27% of the bits in two IrisCodes to disagree

while still accepting them as a match), the False Accept probability in single trials

is 10−12. Even after diluting down these odds by performing an exhaustive search

over the total number of human irises on the planet, roughly 1010, the chances of

any False Match among them all would still be only about 1%. This is an extraor-

dinary statistical situation for a recognition system, and it reveals the power of

reducing a pattern recognition problem to a test of statistical independence.

4.4. Countermeasures against subterfuge

There are several ways to confirm that a living iris is being imaged, and not (for

example) a photograph, a videotape, or a fake iris printed onto a contact lens, glass

eye, or other artifice. One obvious method is to track the ratio of pupil diameter

to iris diameter, either when light levels are changing, or even under steady illumi-

nation. The pupil can be driven larger or smaller by programmed random changes

in light level, with a response time constant of about 250 msec for constriction and

about 400 msec for dilation. But even without programmed illumination changes,

the disequilibrium between excitatory and inhibitory signals from the brainstem

to the enervation of the pupillary sphyncter muscle1 produces a steady-state small

oscillation at about 0.5 Hz termed hippus. Since the algorithms described here must

constantly track both the pupil boundary and the iris boundary anyway,5 it is rou-

tine to monitor the amount of hippus. Its coefficient of variation is normally at least

3%.

Other tests to exclude a photograph of somebody else’s iris involve tracking

eyelid movements, or examining corneal reflections of infrared LEDs illuminated

in random sequences. Still further measures could test for the characteristic spec-

tral signature of living tissue in infrared illumination. Hemoglobin in oxygenated

blood has an absorption band in near infrared wavelengths, whereas printers’ dyes

and emulsions and the reflectance properties of photographic papers are often com-

pletely ineffective for infrared light.

Finally, certain vanity contact lenses are available in the USA with fake iris

patterns printed onto them (for the purpose of changing one’s apparent eye color).

The fact that such a fake “iris” is floating on the spherical, external surface of the

cornea, rather than lying in an internal plane within the eye, lends itself to optical

detection; likewise the fact that the printed iris pattern does not undergo any

distortions when the pupil changes in size, as does a living iris pattern. Moreover,

the printing process itself creates a characteristic signature that can be detected,
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Natural iris

2D Fourier spectrum of natural iris

Fake iris printed on a contact lens

2D Fourier spectrum of fake iris

Fig. 10. Illustration of one countermeasure against subterfuge: detecting a printed iris pattern
on a contact lens by the 2D Fourier domain artifacts of printing.

as illustrated in Fig. 10. The panels show a natural iris, and a fake one printed onto

a contact lens, together with their 2D Fourier power spectra. (The central square

of each Fourier spectrum has been blanked out to prevent its domination.) The

dot matrix printing process generates four points of spurious energy in the Fourier

plane, corresponding to the directions and periodicities of coherence in the printing

dot matrix, whereas a natural iris does not have these spurious coherences.

5. Execution Speeds

On a 300 MHz RISC processor, the execution times for the critical steps in iris

recognition are as shown in Table 2, with optimized integer code.

Once an IrisCode has been computed, it is compared exhaustively against all

enrolled IrisCodes in the database, in search of a match. The search process is

facilitated and accelerated by vectorizing the Exclusive-OR comparisons to the

word-length of the machine, since two integers of such length (say 32 bits) can

have all of their bits XOR’d at once in a single machine instruction. Thus the

elementary integer XOR instruction is an extremely efficient way to detect and

tally up the total number of bits that disagree (i.e. the Hamming Distance) between
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Table 2. Execution speeds for the critical steps in iris recognition.

Operation Execution Time

Assessing image focus 15 msec
Scrubbing specular reflections 56 msec

Localizing the eye and iris 90 msec
Fitting the pupillary boundary 12 msec

Detecting and fitting both the eyelids 93 msec
Removing eyelashes and contact lens artifacts 78 msec

Demodulation and IrisCode creation 102 msec
XOR comparison of any two IrisCodes 10 µs

two IrisCodes. Ergodicity (representativeness of subsamples) and commensurability

(universal format of IrisCodes) facilitate extremely rapid comparisons in searches

through large databases. On a 300 MHz processor the rate of raw comparisons

is about 100,000 IrisCodes per second, and this rate could be further accelerated

using dedicated PLA hardware to many millions of persons per second if such large

databases of IrisCodes were ever enrolled.

6. Current Usage of this Technique

All current publicly deployed systems for iris recognition use the algorithms de-

scribed here, by software license of the executable binary code. These include

products or test systems deployed by: Panasonic, LG, Oki, Iridian, IriScan,

Sensar-Sarnoff, EyeTicket, British Telecom, US Sandia Labs, UK National Phys-

ical Laboratory, Unisys, Siemens, IBM, and Schiphol-Group. Current major

applications are airport security (including installations at London-Heathrow,

Amsterdam-Schiphol, New York JFK, Charlotte, and Toronto); automatic passen-

ger processing and immigration control in lieu of passports; bank cash machine

access; database and network access; building entry control; nuclear power station

security; computer login validation; prison controls; electronic commerce; and var-

ious government applications.

References

1. F. H. Adler, Physiology of the Eye: Clinical Application (The C.V. Mosby Company,
1965), 4th edition.

2. J. G. Daugman, Two-dimensional spectral analysis of cortical receptive field profiles,
Vision Res. 20 (1980) 847–856.

3. J. G. Daugman, Uncertainty relation for resolution in space, spatial frequency, and
orientation optimized by two-dimensional visual cortical filters, J. Opt. Soc. Am. A2
(1985) 1160–1169.

4. J. G. Daugman, Complete discrete 2D Gabor transforms by neural networks for image
analysis and compression, IEEE Trans. Acoustics, Speech Signal Processing 36 (1988)
1169–1179.

5. J. G. Daugman, High confidence visual recognition of persons by a test of statistical
independence, IEEE Trans. Pattern Anal. Machine Intel. 15 (1993) 1148–1161.



January 14, 2003 17:35 WSPC/181-IJWMIP 00002

Demodulation by Complex-valued Wavelets 17

6. J. G. Daugman, United States Patent No. 5, 291, 560 (issued March 1994); Biomet-
ric Personal Identification System Based on Iris Analysis, U.S. Government Printing
Office, Washington DC, 1994.

7. J. G. Daugman and C. J. Downing, Demodulation, predictive coding, and spatial vision,
J. Opt. Soc. Am. A12 (1995) 641–660.

8. D. Gabor, Theory of communication, J. Inst. Electr. Eng. 93 (1946) 429–457.
9. R. Viveros, K. Balasubramanian and N. Balakrishnan, Binomial and negative binomial

analogues under correlated Bernoulli trials, The Am. Statist. 48 (1984) 243–247.


