

Binomial distribution (solid curve in histogram for 0 rotations):

$$f(x) = \frac{N!}{m!(N-m)!} p^m (1-p)^{(N-m)}$$
(1)

where x = m/N (e.g. the fraction of 'heads' outcomes in N coin tosses).

Logic for computing raw Hamming Distance scores, incorporating masks:

$$HD_{\rm raw} = \frac{\|(codeA \otimes codeB) \cap maskA \cap maskB\|}{\|maskA \cap maskB\|}$$
(2)

where \otimes is Exclusive-OR, \cap is AND, and $\parallel \parallel$ is the count of 'set' bits.

Score re-normalisation to compensate for number of bits compared:

$$HD_{\rm norm} = 0.5 - (0.5 - HD_{\rm raw})\sqrt{\frac{n}{911}}$$
 (3)

Raw Binomial (p=0.5, N=249 DoF) and its Extreme-value Distribution

200 Billion Iris Cross-Comparisons, 7 Rotations, UAE Database

The new distribution after k rotations of IrisCodes in the search process still has a simple analytic form that can be derived theoretically. Let $f_0(x)$ be the raw density distribution obtained for the HD_{norm} scores between different irises after comparing them only in a single relative orientation; for example, $f_0(x)$ might be the binomial defined in Eqn (1). Then $F_0(x)$, the cumulative of $f_0(x)$ from 0 to x, becomes the probability of getting a False Match in such a test when using HD_{norm} acceptance criterion x:

$$F_0(x) = \int_0^x f_0(x) dx$$
 (4)

or, equivalently,

$$f_0(x) = \frac{d}{dx} F_0(x) \tag{5}$$

Clearly, then, the probability of *not* making a False Match when using decision criterion x is $1 - F_0(x)$ after a single test, and it is $[1 - F_0(x)]^k$ after carrying out k such tests independently at k different relative orientations. It follows that the probability of a False Match after a "best of k" test of agreement, when using HD_{norm} criterion x, regardless of the actual form of the raw unrotated distribution $f_0(x)$, is:

$$F_k(x) = 1 - [1 - F_0(x)]^k$$
(6)

and the expected density $f_k(x)$ associated with this cumulative is:

$$f_k(x) = \frac{d}{dx} F_k(x) = k f_0(x) [1 - F_0(x)]^{k-1}$$
(7)

Observed False Match Rates in 200 billion comparisons

HD Criterion Policy	Observed False Match Rate
0.220	0 (theor: 1 in 5×10^{15})
0.225	0 (theor: 1 in 1×10^{15})
0.230	0 (theor: 1 in 3×10^{14})
0.235	0 (theor: 1 in 9×10^{13})
0.240	0 (theor: 1 in 3×10^{13})
0.245	0 (theor: 1 in 8×10^{12})
0.250	0 (theor: 1 in 2×10^{12})
0.255	0 (theor: 1 in 7×10^{11})
0.262	1 in 200 billion
0.267	1 in 50 billion
0.272	1 in 13 billion
0.277	1 in 2.7 billion
0.282	1 in 284 million
0.287	1 in 96 million
0.292	1 in 40 million
0.297	1 in 18 million
0.302	1 in 8 million
0.307	1 in 4 million
0.312	1 in 2 million
0.317	1 in 1 million

References

- Daugman, J.G. (1993) High confidence visual recognition of persons by a test of statistical independence. *IEEE Transactions: Pattern Analysis and Machine Intelligence*, vol. 15 (11): 1148–1161.
- Daugman J.G. (2001) Statistical richness of visual phase information: Update on recognising persons by their iris patterns. *International Journal of Computer Vision*, vol. 45 (1): 25–38.
- Daugman J.G. and Downing C.J. (2001) Epigenetic randomness, complexity, and singularity of human iris patterns. *Proceedings of the Royal Society (London):* B. Biological Sciences, vol. 268: 1737–1740.
- Daugman J.G. (2003) The importance of being random: Statistical principles of iris recognition. *Pattern Recognition*, vol. **36**: 279–291.
- Daugman J.G. (2004) How iris recognition works. *IEEE Transactions on Circuits* and Systems for Video Technology, vol. 14 (1): 21–30.