

Binomial distribution (solid curve in histogram for 0 rotations):

$$
\begin{equation*}
f(x)=\frac{N!}{m!(N-m)!} p^{m}(1-p)^{(N-m)} \tag{1}
\end{equation*}
$$

where $x=m / N$ (e.g. the fraction of 'heads' outcomes in N coin tosses).

Logic for computing raw Hamming Distance scores, incorporating masks:

$$
\begin{equation*}
H D_{\mathrm{raw}}=\frac{\|(\operatorname{code} A \otimes \operatorname{code} B) \cap \operatorname{mask} A \cap \operatorname{mask} B\|}{\|\operatorname{mask} A \cap \operatorname{mask} B\|} \tag{2}
\end{equation*}
$$

where \otimes is Exclusive-OR, \cap is AND, and $\|\quad\|$ is the count of 'set' bits.

Score re-normalisation to compensate for number of bits compared:

$$
\begin{equation*}
H D_{\text {norm }}=0.5-\left(0.5-H D_{\text {raw }}\right) \sqrt{\frac{n}{911}} \tag{3}
\end{equation*}
$$

Raw Binomial ($\mathrm{p}=0.5, \mathrm{~N}=249 \mathrm{DoF}$) and its Extreme-value Distribution

200 Billion Iris Cross-Comparisons, 7 Rotations, UAE Database

The new distribution after k rotations of IrisCodes in the search process still has a simple analytic form that can be derived theoretically. Let $f_{0}(x)$ be the raw density distribution obtained for the $H D_{\text {norm }}$ scores between different irises after comparing them only in a single relative orientation; for example, $f_{0}(x)$ might be the binomial defined in Eqn (1). Then $F_{0}(x)$, the cumulative of $f_{0}(x)$ from 0 to x, becomes the probability of getting a False Match in such a test when using $H D_{\text {norm }}$ acceptance criterion x :

$$
\begin{equation*}
F_{0}(x)=\int_{0}^{x} f_{0}(x) d x \tag{4}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
f_{0}(x)=\frac{d}{d x} F_{0}(x) \tag{5}
\end{equation*}
$$

Clearly, then, the probability of not making a False Match when using decision criterion x is $1-F_{0}(x)$ after a single test, and it is $\left[1-F_{0}(x)\right]^{k}$ after carrying out k such tests independently at k different relative orientations. It follows that the probability of a False Match after a "best of k " test of agreement, when using $H D_{\text {norm }}$ criterion x, regardless of the actual form of the raw unrotated distribution $f_{0}(x)$, is:

$$
\begin{equation*}
F_{k}(x)=1-\left[1-F_{0}(x)\right]^{k} \tag{6}
\end{equation*}
$$

and the expected density $f_{k}(x)$ associated with this cumulative is:

$$
\begin{align*}
f_{k}(x) & =\frac{d}{d x} F_{k}(x) \\
& =k f_{0}(x)\left[1-F_{0}(x)\right]^{k-1} \tag{7}
\end{align*}
$$

Observed False Match Rates in 200 billion comparisons

HD Criterion Policy	Observed False Match Rate
0.220	$0 \quad$ (theor: 1 in 5×10^{15})
0.225	$0 \quad$ (theor: 1 in $\left.1 \times 10^{15}\right)$
0.230	0
0.235	0
(theor: 1 (theor: 1 in $3 \times 10^{14} 9 \times 10^{13}$)	
0.240	0
(theor: 1 in 3×10^{13})	
0.245	0
(theor: 1 in $\left.8 \times 10^{12}\right)$	
0.250	0
(theor: 1 in 2×10^{12})	
0.255	0
(theor: 1 in $\left.7 \times 10^{11}\right)$	
0.262	1 in 200 billion
0.267	1 in 50 billion
0.272	1 in 13 billion
0.277	1 in 2.7 billion
0.282	1 in 284 million
0.287	1 in 96 million
0.292	1 in 40 million
0.297	1 in 18 million
0.302	1 in 8 million
0.307	1 in 4 million
0.312	1 in 2 million
0.317	1 in 1 million

UNIVERSITY OF CAMBRIDGE

References

Daugman, J.G. (1993) High confidence visual recognition of persons by a test of statistical independence. IEEE Transactions: Pattern Analysis and Machine Intelligence, vol. 15 (11): 1148-1161.

Daugman J.G. (2001) Statistical richness of visual phase information: Update on recognising persons by their iris patterns. International Journal of Computer Vision, vol. 45 (1): 25-38.

Daugman J.G. and Downing C.J. (2001) Epigenetic randomness, complexity, and singularity of human iris patterns. Proceedings of the Royal Society (London): B. Biological Sciences, vol. 268: 1737-1740.

Daugman J.G. (2003) The importance of being random: Statistical principles of iris recognition. Pattern Recognition, vol. 36: 279-291.

Daugman J.G. (2004) How iris recognition works. IEEE Transactions on Circuits and Systems for Video Technology, vol. 14 (1): 21-30.

