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Chapter 1

Iris Image Quality Metrics with Veto Power and
Nonlinear Importance Tailoring

John Daugman, Cathryn Downing

Linear combinations of metrics for assessing biometric sample quality are weak,

because they lack veto power. For example, a good score for sharp focus of an ocular

image would ‘compensate’ in an additive combination for the fact that the eyelids

are fully closed; or fully open eyelids would compensate for the image being many

diopters out-of-focus. Normalised multiplicative quality factors are better because

they are punitive, and thereby confer veto powers. This chapter explains the basis

for the product of power functions which underlie the ISO/IEC 29794-6 Iris Image

Sample Quality Standard, in particular how the exponents of the power functions

allow importance tailoring of each element.

1.1 Introduction

US National Institute of Standards and Technology (NIST) papers by Grother and

Tabassi [1], and also by Phillips and Beveridge [2], defined quality measures as

measurable covariates that are both predictive of biometric recognition performance,

and actionable. Quality measures include subject covariates that are attributes of

a person and which may be transient, such as expression, eyelid occlusion, or the

wearing of eyeglasses. Quality measures also include image covariates that depend

on the sensor and acquisition conditions, such as focus, resolution, and illumination

effects. Some subject covariates may not be capable of change or improvement,

such as permanent injury or physical deformation; other subject covariates may be

improvable but not under voluntary control, such as the degree of pupil dilation.

In this chapter we do not explore those distinctions further, but rather our concern

is how best to combine multivariate quality measures into one actionable quantity:

e.g. to decide whether to enroll a given biometric sample into a database, or to

reject it and acquire a new one. In the context of having a plurality of measures, this

amounts to computing a single actionable scalar – a Quality Score QS – from a vector

consisting of several elements. We thus explore a new definition resembling a norm,

or rather a semi-norm, of a biometric quality vector. Because of the resemblance, we

call it a pseudonorm. Its attributes include the ability to treat the different elements

of the vector differently and to control their compensatory trade-offs. We construct
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and demonstrate an algorithmic procedure for determining the parameters of this

pseudonorm on quality vectors, using a public test database of iris images.

1.1.1 Related Work

The most comprehensive treatment of quality-based fusion – incorporating quality

measures together with comparison scores for multi-biometric classifier combina-

tion to achieve optimal fusion and decisions within a general Bayesian framework

– was by Poh and Kittler [3]. A related proposal for comparator fusion based on

quality in multibiometric systems was by Nandakumar et al. [4]. They showed that

overall performance of multibiometric systems could be improved by dynamically

assigning weights to the outputs of individual comparators, using sample quality, in

a likelihood-ratio fusion scheme for combining their comparison scores.

Schmid and her co-authors [5] proposed an adaptive iris authentication approach

based on quality measures that were selected for their utility in separating genuine

from impostor score distributions, in labelled data. A feedforward neural network

(two hidden layers, having 16 neurons and 2 neurons) was trained to learn a nonlinear

mapping of the measures onto an overall QS, with good results. But it is unknown

what actual nonlinear combinations developed in the hidden layers. In other work by

Schmid et al. [6], the Dempster-Shafer theory of evidence was deployed as a basis

for combining quality factors.

Another adaptive use of quality metrics was demonstrated by Li et al. [7] for

the dynamic selection of the actual recognition strategy. They fused several quality

factors into an overall score by products of likelihood ratios, using conditional prob-

abilities of score values given good, versus given poor, quality. The samples may

then be processed differently, based on their quality. Belcher and Du [8] used quality

measures to calculate a confidence level associated with a comparison score, an idea

also present in [5]. Galbally et al. [9] proposed that quality related features could be

used for liveness detection in an anti-spoofing strategy.

Hofbauer et al. [10] even proposed that quality metrics themselves could be

used directly for comparing iris images and estimating their similarities. Phillips

and Beveridge [2] argued that biometric comparison and quality assessment are ac-

tually equivalent, in a formal sense which they call ‘biometric completeness’. Their

argument is that a perfect method for quality assessment would predict whenever a

one-to-one verification algorithm would give the wrong result. The wrong decision

could then be reversed, producing error-free verification.

1.2 Normalisation of Individual Quality Measures

We assume that individual quality measures are non-negative numbers which might

have no inherent upper bound, with larger values implying higher quality. We are

agnostic here about what they actually measure, but we will illustrate using actual

examples. Some measures may already be inherently normalised, such as those that

are defined as a percentage. But the goal of our unity-based normalisation is not
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merely to re-scale, but also to embed a semantics of acceptability and flexibility. We

map any measure x onto the [0,1] unit interval using a sigmoidal function f (x) having

two parameters: n controlling the measure’s rigidity or flexibility, and c specifying a

‘set point’ at which the measure is deemed to correspond to 50% quality:

f (x) =
xn

xn + cn
(1.1)

Parameter c has the same units as x, whether those be dimensionless (such as

the percentage of the iris that is visible between the eyelids), or dimensional (such as

square-millimetres of visible iris area). The choice of parameter n should reflect how

‘non-negotiable’ are the demands on x, with larger n meaning greater sensitivity to

small differences in the value of x around c. For the measures actually used, we find

that a soft n = 2 is often a better choice than larger values which begin to effect a

rigid ‘brick wall’ threshold. It is easily shown that the slope of f (x), its sensitivity to

differences, at the 50% point (x = c) is n/4c. A family of curves representing such

functions for n ∈ {2,4,6,10,30} are shown in Figure 1.1. Once a quality measure

x is normalised onto the [0,1] unit interval and shaped in this way for appropriate

sensitivity to differences, we call it a quality factor because it will combine into

the overall QS product as a multiplicative factor. (Later we shall tailor the relative

importance of quality factors, using empirically tuned power functions of them.)
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Figure 1.1: Family of functions normalising quality measures into quality factors,

and shaping their sensitivity to differences. Larger n means greater rigidity, and the

value x = c is the quality factor halfway point.



“DaugDown”

2016/12/26

page 4

4 Iris Image Quality

1.3 Effectiveness of Multiplying Quality Factors

We illustrate the nonlinear product approach now by simply multiplying together

several quality factors that have predictive value for iris recognition performance.

Clearly they each acquire ‘veto power’ in this framework, because if any one of the

factors is zero the overall product becomes zero, no matter how good are the others.

Conversely, once a quality factor rises enough on its particular sigmoid (Figure 1.1)

to approach 1.0, it ceases to matter. Thus, our framework is essentially punitive.

Selected quality factors

1. Sharpness is computed by 2D Fourier methods as detailed in [11], [12].

This computation is extremely quick, executing much faster than the

video frame rate, because it precedes image segmentation. It takes less

than a millisecond because convolutions are implemented entirely by

pixel additions and subtractions, without kernel multiplications. Thus

image focus can be assessed for video frame selection in real-time.

2. Motion blur is also computed by Fourier methods on pre-segmented

images, within a millisecond. It examines local image structure across

the temporal interval between the two fields of a (non-progressive scan)

video frame, detecting any interlace shear between even and odd lines.

3. Texture energy is a measure of iris contrast, signal-to-noise ratio, and

salience, based on the distribution of 2D Gabor wavelet coefficients [11]

computed when encoding the iris pattern into an IrisCode. The lowest

quartile (in absolute value) of this distribution of coefficients are ignored

as being unreliable, when the IrisCodes are compared.

4. Gaze angle is estimated as per [13] using Fourier-based trigonometry.

Gaze on-axis with the camera’s optical axis is preferred, as the iris is not

strictly planar so simple affine transformation to compensate for off-axis

gaze is imperfect.

5. Shaped pupil contrast is a post-segmentation measure of image focus.

Once the actual shape of the pupil has been estimated by a Fourier series

expansion [13] of its boundary, a nonlinear Weber contrast is computed

using a series of contour integrals that follow various dilations of this

shape, ranging from inside to outside the pupil.

6. Limbus contrast also integrates various dilations of the outer boundary

of the iris once its shape has been estimated by a Fourier series expansion

[13]. But unlike the pupil contrast estimate, which is both edge-based

and region-based (because the inside of the pupil should be dark), this

outer boundary factor uses a linear Michelson contrast measure.
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7. IrisCode entropy is an estimate of how much useful information the

image contains. It takes into account the percentage of iris area that is

not occluded by the eyelids, the total number of bits that are unmasked

(deemed to be uncorrupted, for example by eyelashes or corneal specular

reflections), and it penalises excessive pupil dilation.

For the publically available images in the NIST Iris Challenge Evaluation (ICE)

database, we computed quality factors using five of these measures and multiplied

them together to obtain a provisional quality score for every image. We then studied

how these scores predicted Hamming distance for all possible ‘probe’ and ‘gallery’

pairings of images that came from a given eye and thus ought to match. Distances

are plotted as a surface function of the quality pairings (after quantisation into ten

bins for each) in Figure 1.2, showing a clear bivariate effect. Figure 1.3 shows the

effect of these scores on False non-Match Rates, plotted both as a surface and as a

contour map, when using a 0.32 Hamming distance match threshold.
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Figure 1.2: Effect of combined image quality factors on same-eye comparison scores.

Hamming distance is the fraction of bits that disagree when two IrisCodes are com-

pared [11]. Poor image quality elevates Hamming distances [14].
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Figure 1.3: Effect of combined image quality factors on False non-Match Rates,

plotted as surface and contour maps, at a 0.32 Hamming distance threshold [14].
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1.4 Importance Tailoring

We have seen in Figures 1.2 and 1.3 that multiplying quality factors together can

produce a strong predictor of match performance. This punitive approach gives veto

power to every factor, but intuitively, not every veto should necessarily be equally

insistent. Therefore we wish to tailor the relative importance of the quality factors

by raising them to different powers, using exponents determined by an empirical

multivariate regression procedure.

Using various quality factors X ,Y,Z, · · · , we define an overall Quality Score QS

as the product of power functions of them, with positive exponents α,β ,γ , · · · :

QS = XαY β Zγ · · · for {α,β ,γ , · · ·}> 0 (1.2)

Component quality factors X ,Y,Z, · · · are the normalised functions defined in (1.1).

Figure 1.4 shows that exponents larger than α = 1 make a quality factor stringent,

whereas small exponents make it complacent because it rises to 1.0 very quickly.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Importance Tailoring of Quality Factors

Value of Quality Factor before Tailoring   

T
a
ilo

re
d
 Q

u
a
lit

y
: 
 

X
α

α = 0.03

α = 0.1

α = 0.3

α = 1

α = 3

α = 10

Complacent

Stringent

Figure 1.4: Quality factors can be given complacent or stringent exponents, which

determine how quickly or how reluctantly they rise to 1.0 and cease to be punitive.



“DaugDown”

2016/12/26

page 8

8 Iris Image Quality

Pseudonorm

There exist many alternative definitions for the norm of a vector, using various

power functions of its elements, of which the most familiar is the Euclidean

norm: ‖(x,y,z, ...)‖=
√

x2 + y2 + z2 + · · · . A subset of norms are semi-norms,

which have the property of equaling 0 if any element is 0, thereby providing

veto power. Our QS has properties similar to these but it does not actually

satisfy the formal properties of norms or semi-norms, so we call it instead a

pseudonorm, defined on elements in the unit interval [0,1] and mapping also

to the unit interval [0,1], with parameters α,β ,γ , · · · .

In order to select which quality factors to include in the QS and determine the

exponents that optimally tailor their relative importance, we submitted Hamming

distances (HDs) for a fixed probe-gallery partition of the same-eye images in the ICE

2,953 image database to a series of regression analyses. The goal was to discover

which factors X ,Y,Z, · · · and corresponding exponents α,β ,γ , · · · in QS make it the

best predictor of HD and thus False non-Match Rates. By taking logarithms of both

sides of (1.2), the optimisation acquires the form of a linear multivariate regression

problem in which the calculated slopes are the exponents sought. In the analyses we

used this framework to predict HD, in order to construct empirically an optimal QS

product of factors.

Figure 1.5 illustrates the method we used. We first examined the correlations

between HD and the log of the smaller of each pair of probe and gallery values for

various quality factors (QF). These are shown in the top panel of Figure 1.5, with bar

height representing the absolute value of the correlation between the log(QF) and

HD. Many of these candidate factors were experimental variables developed for a

NIST trial [15] that launched the ISO/IEC iris quality standardisation project [16].

We have labelled only those that were selected for further analysis and those that

correspond either to required (Clause 6.2) or to recommended (Clause 6.3) factors in

the ISO/IEC 29794-6 Standard that eventually emerged [16].

The top panel of Figure 1.5 shows that several quality factors were reasonably

well correlated with HD. We chose IrisCode entropy, which accounted for 26% of

the variability in HD (R2 = .26), as the best single factor and used it in a simple

linear regression to predict HD. This quality factor is named and indicated in black

in the top panel. Subsequently selected factors for the product sequence are similarly

highlighted in the next panels.

The second panel shows the correlations between the log(QFs) and the residuals

from Regression 1 (the difference between observed and predicted HDs). Note that

because many of the quality factors were correlated with IrisCode entropy, they have

much smaller correlations with the residuals of Regression 1, shown in the second

panel, than with HD, shown in the first. Texture energy, however, stands out from

the rest in having a substantial correlation that is independent from IrisCode entropy.

Therefore, to construct the best two-factor QS, we used IrisCode entropy and Texture
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Figure 1.5: Illustration of the correlational method used to select quality factors and

their exponents for a multifactorial QS. Bar heights represent absolute correlation.

The factors incorporated sequentially into QS are highlighted in black.
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energy in a multiple regression to predict HD. This, Regression 2, accounted for 41%

of the variance in HD. We repeated this process of selecting quality factors to add

to the regression predicting HD, as shown in the subsequent panels of Figure 1.5,

until the increase in R2 (the proportion of variance accounted for) by adding another

variable to the regression equation became nugatory.

Using the five selected quality factors in the multiple regression analysis we can

account for almost 51% of the variance in HD, whereas, as shown in Figure 1.5, the

best formula with only one or two variables could account for only 26% or 41% of

the variance, respectively. Including any one of the remaining factors shown in the

fifth panel in a six-variable multiple regression increased R2 to at most 52%.
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Figure 1.6: Illustration of how several actual quality measures for the images in the

NIST Iris Challenge Evaluation database are mapped into tailored quality factors

using the exponents derived empirically from multivariate regression analysis.

The regression coefficients obtained for the quality factors in this five-variable

formula were then used as the exponents in (1.2) to tailor the factors in the QS.

Figure 1.6 lists these exponents in the order in which the factors were included in the

QS, and also plots the actual quality factor values for all images in the ICE database,

when raised to these powers. The five most predictive quality factors are: IrisCode

entropy; Texture energy; Shaped pupil contrast; Gaze angle; and Limbus contrast.



“DaugDown”

2016/12/26

page 11

Iris Image Quality 11

The regression coefficient for Motion blur (when used instead of Limbus contrast)

is also given to illustrate the range of empirical fits found. However, its contribution

was not sufficient to warrant inclusion in the final QS.

1.5 Error Reject Curves

Figure 1.7 presents the results of our analyses in the form of the Error Reject Curves

(ERC) developed by Grother and Tabassi [1]. These rank-order HDs according to

the worst of the two image quality measures corresponding to each HD and define

successively smaller subsets of HDs by rejecting those where quality falls below a

requisite quantile. The residual False non-Match Rate for these shrinking subsets

is then plotted as a function of the fraction of HD pairings that have been rejected

based on that measure of quality.

The upper panel of Figure 1.7 shows the ERCs for the five individual quality

factors selected for our QS. The Figure also shows the correlation of each factor

with HD and the exponent fitted for each one within the five-factor QS. The solid line

(descending rapidly to 0) is the ideal ERC that would be obtained for a perfect QS

(r =−1). Again, the factors are listed in the order of their selection for the multiple

regression analyses. Over the entire range, among the single factors, Limbus contrast

had the best ERC characteristic, followed by Shaped pupil contrast, IrisCode entropy,

Texture energy and Gaze angle. However, the ranking of these quality factors varied

considerably over different sections of the abscissa.

Generally, our approach recommends a more complacent treatment of those qual-

ity factors with rapidly falling ERCs, since we have assigned the smallest exponents

to those factors having the best-ranking ERCs: Limbus contrast, Shaped pupil con-

trast and IrisCode entropy. However, the fitted exponents are only meaningful within

the context of a multiple factor QS. The ERCs for tailored and untailored quality

factors are identical (except for degenerate cases) since the ordering of the factor is

preserved in the tailoring. We must therefore look at ERCs for multi-factor QSs to

gain insight into the effects of tailoring.

The lower panel of Figure 1.7 plots ERCs for the best QS from the previous re-

gressions with two, three, four and five factors. These are shown in dark gray. The

single factor ERC for IrisCode entropy from the upper panel (in black) is plotted

again for reference, as is the ideal ERC. The increase in R2 reported earlier in the

regression analyses is reflected in the notable improvements in the ERC performance

as successive factors are included in the QS, with the largest gap between curves cor-

responding to the largest increase in R2. The movement of each successive multiple

factor ERC, toward the ideal ERC curve, is clear.

We have also plotted ERCs in light gray for two alternative empirically tailored

two-factor QSs. These illustrate the point that the product of the two quality factors

with the most impressive single ERCs (Limbus contrast and Shaped pupil contrast)

or the two smallest values of α (IrisCode entropy and Limbus contrast) does not nec-

essarily produce the best ERC for a two-factor QS. The choice of IrisCode entropy

and Texture energy suggested by the regression analyses is superior to both of these,

especially in the initial range of the ERCs where fewer pairings are rejected.
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Figure 1.7: Error Reject Curves for single quality factors, upper panel, and multi-

factorial QS, lower panel, showing the decline in False non-Match Rate as the worst

image pairings are successively dismissed. Ideal performance is indicated by the

solid line. Combinations of factors are greatly superior to single factors alone.
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1.6 Discipline in Punishment

The rationale for our multiplicative approach to scoring quality was that it confers

punitive veto power, which is absent in the additive approach of piece-meal accretion

of reward for quality. But discipline must be exercised in the punitive approach, lest

the quality factors be either too stringent or too complacent. Empirical tailoring of

the exponents based on performance is a way to determine the optimal balance.

Figure 1.5 showed that empirical tailoring of quality factors made five of them

more complacent: they acquired exponents smaller than 1.0. In Figure 1.8 we see

how both five-factor QSs evolve as successive quality factors are incorporated into

the product sequence: Xα ; XαY β ; XαY β Zγ · · · . In each panel, we show in gray the

distribution for QS where all the exponents are 1.0 (the untailored approach), and

we show in black the distribution for the corresponding QS where the exponents are

tailored for each combination of factors.

By comparing the distributions in gray (untailored) and black (tailored), we can

see that the complacent tailoring is mapping all the QSs into significantly higher

ranges. This is especially important when the fifth factor, Limbus contrast, is incor-

porated (bottom panel). For the untailored case, this pushes all images toward very

poor quality scores, making this measure far too punitive. But the complacent treat-

ment of Limbus contrast in the tailored QS greatly elevates its values and restores its

usefulness. This illustrates the importance of knowing when not to be too punitive.

Clearly, incorporation of successive factors Xi ∈ [0,1) in a product sequence can

only make the product smaller. However, the use of complacent tailoring generally

counteracts this effect, and the judicious assignment of exponents allows the full

range of the QS to be used effectively, in addition to fine-tuning the relative contri-

bution of each quality factor.

In Figure 1.8, we have also indicated the positions within each distribution of

each of the datapoints linked to the 18 False non-Matches that arose in this database.

These are marked by small circles just below the distributions. The QS values below

which 2.5% and 5.0% of the scores fall are indicated by the dashed vertical gray

lines. We see that for the tailored case, in black, as more factors are incorporated,

progressively more False non-Matches are pushed into the long tail to the left of

these quantile lines. Whereas for the untailored case, the progression is much less

remarkable and the problems caused by the too stringent treatment of Limbus con-

trast are again highlighted, as the distribution is pushed toward zero and selectivity

is lost. This recapitulates the findings of the ERC analyses.

1.7 Predictive Value of the Quality Pseudonorm

In order to determine how much this empirically-derived tailoring improves the QS,

we conducted another two linear regressions: one for the product of the five quality

factors raised to the empirically-fitted exponents, and a second for the product of the

same five factors when all exponents were fixed at unity.

For these analyses, tailored and untailored QSs were computed for each image.

The smallest tailored five-factor QS for each probe-gallery image pair was entered
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Figure 1.8: Comparison between tailored (black) and untailored (gray) approaches

to quality scoring using product sequences with increasing numbers of factors. The

small circles indicate the QS value associated with each False non-Match, revealing

why such failures are better predicted by the multi-factorial tailored QS.
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into a simple linear regression to predict HD. Then the smallest untailored five-factor

QS for each pair was used in a second simple linear regression on HD.

In Figure 1.9, we plot predicted HD vs observed HD for both of these regressions.

The analyses show that by tailoring the QS exponents, we were able to account for

22% more of the variance: R2 increased from 0.27 for the untailored QS to 0.49

for the empirically tailored QS. The scatterplots reveal a substantial improvement in

predictions for the larger HDs, which matter the most for False non-Match Rates.
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Figure 1.9: Demonstration that importance tailoring of exponents on quality factors

improves substantially their ability to predict Hamming distances.
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Because the empirically tailored QS is better able to predict HD than untailored

QS, it can be used to flag images that are more likely to produce False non-Matches

when same-eye images are compared. On this basis, operational decisions may be

taken to repeat image acquisition, or else to proceed with an image. Figure 1.10

shows the consequences of doing so in the ICE database, for each of three QSs

considered above. In this database there were 18 same-eye HDs that exceeded 0.32,

a threshold that would yield a False non-Match, and the figure indicates (in black)

what proportion of these would be excluded as a function of the proportion of images

flagged on the basis of poor QS. This is similar to the ERC ‘exclusion’ methodology

for evaluating quality assessment algorithms that was originally proposed by Grother

and Tabassi [1] and used by NIST in [15], but it is perhaps more straightforward

because monotonicity is ensured. ERC curves according to their methodology are

also shown in this Figure (in gray) for comparison.
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Figure 1.10: Demonstration that importance tailoring of the exponents on quality

factors improves substantially their ability to predict recognition performance.
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The tailored QS would allow the exclusion of a significantly larger number of

False non-Matches than the untailored QS, over the entire quantile range. A t-test

confirms significance over the full range but especially up to 12.5% (pairwise t-test

(df=8) 3.78, p = 0.005), and particularly when considering the poorest 1% to 2%

of images. It is also noteworthy that both of the new QSs, tailored and untailored,

are substantially better at predicting and excluding False non-Matches than the QS

described in [14] and shown in Figures 1.2 and 1.3.

1.8 Testing and Adoption into an ISO/IEC Quality Standard

NIST invited submissions of iris image quality assessment algorithms both from aca-

demic and industry providers, and conducted tests of them during 2009 - 2011. The

methods described in this chapter were largely developed and refined in response to

the NIST initiative, which was called IQCE: Image Quality Calibration and Eval-

uation [15]. The final report on these methods concluded: ‘Implementations from

Cambridge University are the most effective in predicting recognition performance

of their own native iris recognition algorithm, as well as others’ (p. 6, [15]). It also

reported that these quality assessment algorithms ‘are the fastest implementations,

with an average 30 milliseconds per image across all four datasets’ (p. 7, [15]).

Consequently an international standardisation project for assessing iris image

quality, led by NIST’s Elham Tabassi, incorporated these methods into the ISO/IEC

29794-6 International Standard on iris sample quality [16] during the workprogram

of ISO/IEC Joint Technical Committee 1 (SC 37). The pseudonorm QS described

here (1.2) became the framework of nonlinear combination of vector elements for

generating an actionable scalar, specified now in Clause 6.5.2 of the Standard.

1.9 A Possible Criticism of the Method

It should be noted that the power function form (1.2) defining the QS is monotonic

in each individual quality element. Thus the better any one of them is, the better is

the overall QS. Our approach may be criticised for this property, because one can

imagine interactions of factors for which this ‘collective monotonicity’ may not be

optimal. For example, suppose that one quality element is a focus score and another

is signal-to-noise ratio, which is degraded by high frequency noise of external origin

(not arising in the sensor array itself but present pre-optically, say in a grainy photo-

graph being digitised). If the recognition algorithm is sensitive to such noise, then its

performance may actually be enhanced by a degree of defocus, removing the noise.

This violates the assumption of collective monotonicity among the elements.
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