Systems (th)at Scale

!'_ for L* Uni Seminars

Jon Crowcroft,
http://www.cl.cam.ac.uk/~jac2?2

i Cloud, Data Center, Networks

1. New Cloud OS to meet new workloads

= Includes programming language

= Collabs incl REMS (w/ P.Gardner/Imperial)
2. New Data Center structure

= Includes heterogeneous h/w

= Collabs incl NaaS(Peter Pietzuch Imperial)
= Trilogy (Mark Handley et al UCL)

3. New Networks (for data centers&)
= To deal with above®

i What not talking about

= Security
= (we do that - had another workshop)

= Data

= Hope Ed folks willl
= Scaling Apps

= Oxford

= Languages for Apps
O Ed++

* 1. Cloud OS

» Unikernels (Mirage, SEL4, ClickOS)

Docker Container

Configuration Files
Application Binary
Language Runtime

User Processes

Configuration Files

Application Binary

Language Runtime

User Processes

))

S £ § € Kernel Threads

S 9 S O

D 4 —————— O 0w

& && Filesystem
wn 2]

9 S Y

Network Stack

Network Stack
Ly

Configuration Files

Application Binary

Language Runtime

7 OS

Windows

User Processes

Hypervisor

Hardware

(a) Containers, e.g., Docker.

Drawbridge

Picoprocess

Configuration Files

Configuration Files o€

Application Binary
Library OS

Platform Adaptation
Layer

Kernel Threads Security Monitor
- _IS ga&_ - " Kernel Threads
" Device Drivers % OSuk
ntoskrnl T _E;vze_D;v;s_
Hardware ntoskrnl
Hardware

ing

Operat

Application Binary

Language Runtime

User Processes

Network Stack age R

Xen Xen

ARM Hardware

ARM Hardware

(b) Picoprocesses, e.g., Drawbridge.

(c) Unikernels, e.g., MirageOS.

Figure 2: Contrasting approaches to application containment.

i Unikernels in OCaml

= But also Go, Scala, Rust etc
= Type safety->security, reliability
= Apps can be legacy or in same languages

domain 0
E' "_::Z:'LZZZZZ',,,W' iy ;J.;,'e;,,'o;; ‘Emfs-im- . — —— S ::" “:
I et T T ikt T
V*V ***

Jitsu w
Toolstack \Xen
nux Kern

]]]
Lo P
T b
]

Li el : $
¢ \ Unikernels Legacy VMs ¥ + Y

Store

o Xen

o C

S 63

%‘3 <} ARM Hardware
w

Figure 1: Jitsu architecture: external network connec-
tivity is handled solely by memory-safe unikernels con-
nected to general purpose VMs via shared memory.

i Data Centers don't just go fast

= They need to serve applications
1. Latency, not just throughput

2. Face users
1. Web, video, ultrafast trade/gamers
2. Face Analytics...

3. Availability & Failure Detectors
4. Application code within network
5. NIC on host or switch - viz

i Industry (see pm©)

Azure

http://conferences.sigcomm.org/
sigcomm/2015/pdf/papers/keynote.pdf

Facebook:

http://conferences.sigcomm.org/
sigcomm/2015/pdf/papers/pl123.pdf

Google:

http://conferences.sigcomm.org/
sigcomm/2015/pdf/papers/pl183.pdf

i 2. Deterministic latency bounding

s Learned what I was teaching wrong!

= I used to say:

= Integrated Service too complex
= Admission&scheduling hard

= Priority Queue can't do it
= PGPS computation for latency?
= I present Qjump scheme, which
= Uses intserv (PGPS) style admission ctl
= Uses priority queues for service levels
= http://www.cl.cam.ac.uk/research/srg/

i Data Center Latency Problem

= Tail of the distribution,
= due to long/bursty flows interfering

= Need to separate classes of flow

= Low latency are usually short flows (or
RPCs)

= Bulk transfers aren't so latency/jitter
sensitiv

i Data Center Qjump Solution

= In Data Center, not general Internet!
= can exploit topology &
= traffic matrix &
= source behaviour knowledge

= Regular, and simpler topology key
= But also largely "cooperative” world...

* Hadoop perturbs time synch

~

o

o
|

Clock offset [1s]
N
o
o O
P

-200 | — ptpd only .
400 — ptpd with Hadoop |
I I I

0 100 200 300 400 500
Time since start [sec]

* Hadoop perturbs memcached

1.0
0.8 -
0.6 -

0.4 |

L memcached only

0.2 //— - mem’d with Hadoop)
OO = | | I I
0 500 1000 1500 2000

Request latency [uS]

0.0
0

—— Naiad only

— = Naiad with Hadoop)
I I I I

500 1000 1500 2000
Barrier sync. latency [uS]

i QJump - two pieces

1. At network config time
= Compute a set of (8*) rates based on
= Traffic matric & hops => fan in (f)
2. At run time
= Flow assigns itself a priority/rate class
= sSubject it to (per hypervisor) rate limit

* 8 arbitrary - but often h/w supported®©

* Memcached latency redux w/ QJ

1.0 T |
0.8 []
0.6 -]
0.4 - — alone -
02k // — = +Hadoop |
' / -+++ + Had. w/ QJ
Sr | | | |

0.0
0 500 1000 1500 2000
Latency in us

QJ naiad barrier synch latency

* redux

1.0

=T T
0.8 | g -
0.6 —
0.4 - — alone B
0.2 — = +Hadoop |
- + Had. w/ QJ
OO | | | |
0 500 1000 1500 2000

Latency in us

AN MNNT £ 0 NT 2003 1o 2t oAl et

* Web search FCT100Kb ave

20 '_e—'eTCP ' x—xpi:abric |
+—+ DCTCP
= O—OQJump

Normalized FCT [log,,]

Big Picture Comparison - Related
work...

Commodity Unmodified Coord. Flow Bounded Imple-

System hardware protocols | OS kernel | apps. free deadlines latency mented
| Pause frames v v v 4 v X X i
S| ECN v/*, ECN v v v v X X v
2| DCTCP[1] v/*, ECN Ve X v v X X Ve
Ef Fastpass [29] v v v/, module v X X X Ve
EyeQ [22] v*,ECN v X v X X X v
QJump v Ve v/, module Ve v Ve v e
D”TCP [33] v/*, ECN v X X X* v X v
2| HULL [2] X v X v v X X v

| D*[35] X X X X v/ v X X*, softw
% PDQ [17] X X X X X 4 X X
2| pFabric [3] X X X v v e X X

2| DeTail [37] X v v X X* X X X*, softw
4| Silo [21] v v X Vi x* | /*, SLAs X v
TDMA Eth. [34] v 4 X 4 X X v v

)

i Failure Detectors

s 2PC & CAP theorem

= Recall CAP (Brewer's Hypothesis)
= Consistency, Availability, Partitions
= Strongd weak versions!

= If have net&node deterministic failure
detector, isn't necessarily so!

= What can we use CAP-able system for?

2b 2PC throughput with and
without QJump

14000 I I I I I —I} I [I"]-LII [[I'_

Throughput [req/s]

4000 - ¥=k Broadcast UDP + QJump
| ¥—¥ UDP + retries

6 TCP

o\O o\O o\O o\O o\O o\O o\O
N ™ © Vv N Q N
- O N 07T o
v W

Burst size / switch buffer size [log,]

i Consistent, partition tolerant app?

= Software Defined Net updatel

s Distributed controllers have distributed
rules

= Rules change from time to time
= Need to update, consistently

= Need update to work in presence of
partitions
= By definition!

= So Qjump may let us do this too!

i 3. Application code -> Network

= Last piece of data center working for
application

= Switch and Host NICs have a lot of
smarts
= Network processors,
= like GPUs or (net)FPGAs
= Can they help applications?

= In particular, avoid pathological traffic
patterns (e.g. TCP incast)

i Application code

= E.g. shuffle phase in map/reduce
= Does a bunch of aggregation
= (min, max, ave) on a row of results
= And is cause of traffic "implosion”

= S0 do work in stages in the switches in the
net (like merge sort!)

= Code very simple
= Cross-compile into switch NIC cpus

i Other application examples

= Are many ..

= Arose in Active Network research
= Transcoding
= Encryption
= Compression
= Index/Search

s Etc etc

i Need language to express these

= Finite iteration
= (not Turing-complete language)
= So design python- with strong types!

= Work in progress in Naa$S project at
Imperial and Cambridge...

Cloud Computing Isn’t For Everything!

Latency effect on facial recognition Source: Glimpse project, MIT, 2014

Remote Processing Local Processing
e “being fast really matters...half a second delay caused a 20% drop in traffic and it

killed user satisfaction” - Marissa Mayer @ Web 2.0 (2008)

e “Amillisecond decrease in a trade delay may boost a high-speed firm's earnings by
about 100 million per year” — SAP, 2012

e “It's simply not appropriate to just drag and drop our databases into a cloud
platform” — Thomas Kadlec, Tesco, 2015

7% UNIVERSITY OF

"8 CAMBRIDGE

Tiny Terabit Datacentre

An End-Host Networked-Server Architecture

— 900
F: : Socket Socket :::) 800
§\ /E 700 L
_ 800 |
w
§ 500 |
! S 400 |
Fabri = a0 |
IC
Socket (CAN D) Socket 200 |
-7 D 100 |
/// JMH]" \\\\ H ’ L1 Local IB L2 1-Hop L2+ 2-Hop L3 1-Hop 2-Hop 3-Hop 4-Hop
H s Stgg;&”{‘\f’ctwork) Switch DRAM Switch SwitchQPI\HT Switch QPI\HT Switch NUMA NUMA NUMA NUMA
v" High Performance v' Predictable Latency
v Resource Isolation v Low Latency Interconnect
4 FIexibIe Implementation v Affordable

-

\& | ,/ |
”CAN ﬁ@ &S Mz:).th

Centrallzed network fabric Distributed network fabric Multi- controIIer memory Centralized memory

#@= UNIVERSITY OF

CAMBRIDGE

Software

Hardware

Hardware Accelerated
Distributed Locking _

Cambridge I/O Framework (Caml|O)

S Lt

Reliable Real Time Data Distributer (R2D2)

[Operational [] FirstPrototype [l

Networks, Interfaces and Transports
for Rack-Scale Operating Systems

Applications Layer

Virtualisation Layer

Distributed Services Layer

Protocol Layer

Transport Layer

Network Layer

Design stage

i Conclusions/Discussion

» Data Center is a special casel

= Its important enough to tackle
= We can hard bound latency easily

s We can detect failures and therefore solve
some hice distributed consensus problems

= We can optimise applications pathological
traffic patterns

= Integrate programming of neté&hosts
= Weird new h/w...

= Plenty more to do...

