I

e Clouds Burst Horlzon

Al | f; y

J.Crowcroft/S.Hand, University of Cambridge

Cloud Computing?

Q: What is Cloud Computing, exactly?

A: It depends... but a rough definition might
be on-demand internet-based computing

— i.e. a bunch of computers which people can use
when they want, accessed via a network

May sound a little familiar...

— distributed [operating] systems (early 80s), cluster
computing (late 80s), grid computing (90s), ...

“Cloud computing” is the Next Big Thing

Gartner !
Billion in
North Amer

Cloud Compu
Market (Merr
Merrill Lynch ar
believes the add
computingis $1
twice Microsoft’
broken down be
Billion), platforr
Microsoft is one
important? "Az
customer exper
Microsoft can g:
At this early sta;

"AHar manu

Cloud Computing!

Canada
Cloud Computing

Cloud Computing and the Canadian Environment

The Canadian Government's CTO of Public Works Government Services, Jirka Danek, recently
presented a paper on Cloud Computing and the Canadian Environment. Essentially, the paper outlines
the Canadian Government's intention to persue cloud computing. It discusses the advantages of their
vastlandscape and cold climate(among other things) as prime reasons for the construction of large
energy efficient Cloud Computing data centers.

The following are excerpts from the report:

* The move towards Cloud Computing is inevitable and itis happening across the globe and
Canada has a definite advantage on other countries around the world.

Due to it's geographical characteristics, cooler temperatures and low-density population
(particularly as one moves farther north in Canada), IT expertise, quality construction standards,
legislative framework (including the Privacy Act and the Personal Information Protection and
Electronic Document Act) and low-cost green energy, Canada is considered a prime location for
Cloud Computing.

Canadians Can benefit through prompt, coordinated and sustained action within Canada, across

'om,

‘hise.

So what’s new?

Two key differences from previous

— Scale: targeting global customer base

— Money: charging (explicitly or implicitly) built in
Three variant technologies in play:

— Infrastructure as a Service (laaS)

— Platform as a Service (PaaS)

— Software as a Service (SaaS)

laaS & PaaS explicitly charge for resources
SaaS either bundled rental, or “free”

Not just hype

* Some real customer benefits:
— Reduced CapEx (don’t buy kit)
— Reduced OpEx (electricity, cooling, admins)
— Higher availability
— Higher access bandwidth (anti-DDOS)
— Increased flexibility (“scale out”)
* Ease of use a key benefit for SaaS

* Incentives for providers due to stat mux
— And co-locating data centers with cheap energy

What could be the problem?

1. Trustin the Cloud

— Do components/guests trust each other

2. Trust on the Cloud
— Why do we trust provider with our data/comp?

3. Trust by the Cloud

— How does the cloud know who we are

4. Trust of the Cloud
— The Cloud is a Very Big Botnet/Gun

1&2 Security, Privacy & Trust

* Cloud computing fundamentally involves using
someone else’s computer to run your
Program

* This is a massive barrier to many use cases
— What if cloud platform is hacked?

— Or can leak info to co-hosted foreign software?
— Even worse, what if cloud provider is malicious?

* Essentially two distinct problems here:
1.Can | trust remote system to DTRT?
2.1f not, can | still use cloud computing?

Trusting the Cloud Platform

Basically assume cloud provider is non malicious:

— And uses best of breed technology to provide secure
isolation between multiple clients (e.g. Xen ;-)

Threat model: cloud platform gets hacked

So generally want to check:

— Are we talking to the right guy? (SSL cert, TPM attest)

— Is he running in an ‘ok’ configuration? —e.g. IBM’s
IMA

Even with best solutions, vulnerabilities remain

— Lack of spatial + temporal coverage

— Data which “escapes” the running system

— (sealed keys & encrypted disks some help for last)

What if we're even more
paranoid?

* Assume cloud provider is (potentially) malicious
— i.e. wants to steal our data or algorithms!!

* One possibility is homomorphic encryption

— upload encrypted data, operate on encrypted data,
download results, and then decrypt the answers

— Needs D(f(E, (<data>))) = f(<data>)...,where f(.) is anything
— Recent (Gentry 2009) secure solution for unbounded comp

— Unfortunately not really practical
* encryption/decryption costs likely add a factor of a trillion ;-)

— And doesn’t hide algorithm (if that’s the sensitive thing)

* Right now seems obfuscation is the best we can do
— Remove data labels; scale via constant; split across nodes

Programming Frameworks

A key aspect of cloud computing is scale out

— i.e. canincrease [or decrease] #compute nodes on demand

— “elastic” response to demand can lead to lower running costs
Support for scale out depends on underlying abstraction
For PaaS systems, can add transparent scaling to
framework

— e.g. Azure includes “Web Roles” and “Worker Roles”

— Instances of these run within a light weight windows environ
— Former useful for web scaling, latter more general purpose

For l1aaS schemes (EC2, Rackspace), the default unit is a VM
— Great for legacy/ease of use, but no built-in scale out support
— Client-parallel systems (such as web servers/services) easy...

— But generally need auto parallelization + distribution + FT :?)

Traditional Scale Qut

Traditional cluster solution is message passing (e.g. MPI)

Allows single application (source code, or maybe even
binary) to execute on SMP, NUMA, or across a cluster
However rather intricate and low-level

— Partitioning of computation into parallel strands is done
manually by the programmer.

— Inserting locks or barriers or signals in the correct location is
done manually by the programmer

— Failure handling is done manually by the programmer
— Or, more likely, not!
In general not particularly suited for situations where
#compute nodes changes dynamically during execution
— Need something both more flexible and easier to use...

Task Parallelism

e At the basic level, consider a computation (or “job”) to
comprise a set of independent tasks

— Job coordinator farms tasks out to workers

— Dynamic scaling easy providing #tasks > #workers
* If new worker arrives, give him a task
» If a worker leaves (or fails), just re-execute the task
* (Assumes tasks are — or can be made to be — idempotent)

— Examples include BOINC (nee SETI@Home), Condor

 More useful if add dependencies...
— i.e. allow task X to depend on tasks{Y, Z }

e ...and communication
— j.e. allow task A to send data to task B

Distributed Dataflow Languages

 Combining dependencies+communication leads to DDL
— Dependencies are defined by output <-> input mappings

A well known example is Google’s MapReduce

— A simple way to program data-intensive applications which
(a) scale out; and (b) are fault tolerant.
— Programmer provides just two functions
* map() applied in parallel to all elements in input, produces output
» reduce() applied in parallel to all elements in intermediate data
— Inspired by functional programming, although:
* Targeting data intensive computing
* No implication that reduce is a traditional ‘reduction’

— In practice, use some m mappers and r reducers

MapReduce Dataflow Graph

Input

\

N\
NS
N7
e

. X 3) 7

\ »m% X w»\x

W ¥

Z\ N S ‘
NNOWY WYX~
A r,‘/.:,k\
,Mqiﬁ;@¢&&

¢

\» @
XY WA
‘, ." ’~

\"U«A.‘ N \///
Zavbalitios
NA »..w‘,ﬁ,”.uoha»,\«

o’x VAKX
LXORRUER
\\gw PN
Zit A s
N YO
0, 8% »eéo,/

\ M&\V 4» w% \
Vit 5N
\\\\V N

]
O

Map
Shuffle
Reduce
Output

Problems with MapReduce

* MapReduce is limited in what it can express
— precisely one dataflow pattern with params (m, r)
— (use of combiners allows one more pattern)

* Microsoft’s Dryad extends this by allowing the
dataflow to be an arbitrary finite DAG
— However still statically determined a priori
— So no iteration, recursion or non-determinism

 Some recent work attempts to fix this

— E.g. SkyWriting (HotCloud’10) is a Turing complete
coordination language for generating dataflow graphs

— WIP, but some promising results — talk to me later ;-)

Cloud Run-time Environments

* |f we move to new programming paradigms,
great potential for scalability and fault tolerance

* But MapReduce/Dryad are user-space
frameworks in a traditional OS (in a VM!)
— Do we really need all these layers?
* One possibility is to build a “custom” OS for the
cloud (or at least for data intensive computing)
— E.g. Xen powers most cloud computing platforms
— |t forms a stable virtual hardware interface
— Therefore, can compile apps directly to Xen “kernels”

MirageOS: Specialized Kernels

Application Code
Threads

Language Runtime

User Processes Application Code

OS Kernel Mirage Kernel

Hardware Hardware

64-bit virtual address space

MirageOS: Current Design

OS text
and data

network
buffers

reserved
by Xen

OCaml
minor heap

OCaml
major heap

IP header

A

TCP header

transmit
packet
data

IP header

TCP header

receive
packet
data

4KB

Memory Layout

64-bit para-virtual memory layout
No context switching

Zero-copy I/0O to Xen

Super page mappings for heap

Concurrency

Cooperative threading and events
Fast inter-domain communication
Works across cores and hosts

Future Directions

* MirageOQS is just one attempt
— (are VMMs uKerns done right? ©

 More generally, need to consider multi-scale
— Computing across cloud, mobiles & desktops

— Can easily extend to multi core / many core too

* Challenges remain with programmability,
interactivity, and debugging ...

Data Management & Movement

How to transfer large amounts of data from client to cloud?
State of the art quite basic

— reference images + scp/REST... or FedEx!

One possibility is global-scale de-duplication

— Divide data into chunks, hash to get code point

— Cloud providers store chunks indexed by hash value
— (Basically just rsync / LBFS... but at a much larger scale)

Has many advantages:
— Can vastly reduce client->cloud transfer time (and vice versa)
— Easily extended to allow wide-area “storage migration”

However some challenges in building efficient index lookup
And some tensions when interacting with encryption...

Personal Cloud Storage

May store personal stuff in the cloud too
— e.g. email, docs, photos, blogs, ...

Many services today (Google, FB, Flickr, ...)
— But unclear who actually “owns” the data

— Raises issues about privacy (data mining), durability
(backup), provenance (invention), legal liability, and so on

Can technically build private cloud storage via
encryption/steganography & multiple cloud services

— User can now handle durability, provenance + liability

— But makes search and, generally, organization problematic
— Plus also breaks the current business model :#)

Open question how to attain best of both worlds

3. Trust by Cloud

* |IPisanonymous —
* No accountability

— How do you know who a client is
— Where a client is (GeoMapping)

* |s done as part f targetted advertising
 Usually works for DSL access (not on BT®)
* Does work for cellular data access

* Sybil attacks, DDoS, Botnet etc etc etc

3++ Money Money Money

The cloud today is a mish-mash of explicit and implicit
payment, quotas and penalties

Unclear [to me at last] what will emerge here

— Perfect market moving toward marginal costs?

One interesting data point are EC2 spot prices:

— Typically 20%-50% cheaper than “on demand”...

— But same — or higher —than “reserved”

— So already scope for a secondary market!

If you’re a capitalist, this might be good news...

— But as a programmer or systems designer, this is a mess
— (can hardly manage resources + QoS traditional clusters)

But this does help with 3 (accountability©)

4. Trust of Cloud

The cloud is a Very Big Gun
Currently not pointed at anyone
Fb, Google, Amazon all have

— >500k machines per data center

— Multiple 10Gbps access to multiple ISPs

A zero day Own on them would provide the
worlds biggest botnet

— Easily enough to take down national
infrastructures for a while

4++ What to do?

* Cloud providers interested in not being Owned
* But may be hard for them to tell

— While slice/resource management/SLA help limit
scope of a guest/customer...

— A sybil could have a lot of slices
— Elastic Computing model makes this easier

— (lull provider into false sense of security, then
wham!)

* Need backup network to get in to fix things

And so to wrap up...

* Cloud computing is here
— Whether we want it or not!

* Considerable hype, but also many challenges:
— How can trust third party cloud providers?
— How can use them when we don’t trust them?

— How can efficiently and effectively program
applications to run across multiple scales, multiple
platforms, and multiple failure modes?

— How can we manage data on a global scale?
— And how do we make the economics work!

And are we there yet?

 No —things are getting worse.
— 4G is all IP, so is part of the target and cellular is
no longer separate

— Internet of Things hype is leading organisations to
connect many SCADA systems unprotected

— We have lots of accountable internet
architectures as well as some controlled sane
anonymity tech, but no-ones really deploying it.

* | guess it will take a Very Bad Day to make

people wake up and fix this all

