
Privacy-Preserving Analy0cs in and
out of the Clouds

Jon	Crowcro),		
h,p://www.cl.cam.ac.uk/~jac22	

	
This	work	is	funded	in	part	by	the	EPSRC	Databox	(EP/N028260/1),		

NaaS	(EP/K031724/2)	and	Contrive	(EP/N028422/1)	and	Turing/Maru	(EP/N510129/1)	projects.	
	
	

1. Trust Issues: Provider Perspective

•  Cloud provider does not trust users

•  Use virtual machines to isolate 
users from each other and the host

•  VMs only provide one way protection

Redis

OS

VMM

Firmware

Cloud platform

Staff

…

tru
st

ed

Peter Pietzuch - Imperial College London 2

Trust Issues: User Perspective

•  Users trust their applications

•  Users must implicitly trust  
cloud provider

•  Existing applications implicitly 
assume trusted operating system

Redis

OS

VMM

Firmware

Cloud platform

Staff

…

un
tru

st
ed

Peter Pietzuch - Imperial College London 3

Trusted Execution Support with Intel SGX

•  Users create HW-enforced trusted
environment (enclave)

•  Supports unprivileged 
user code

•  Protects against strong attacker
model

•  Remote attestation
•  Available on 

commodity CPUs 

OS

VMM

Firmware

Cloud platform

Staff

…
un

tru
st

ed

Enclave

Peter Pietzuch - Imperial College London 4

Trusted Execution Environments

•  Trusted execution environment (TEE) 
in process

– Own code & data
– Controlled entry points
–  Provides confidentiality & integrity
–  Supports multiple threads
–  Full access to application memory

User process

Application
code

Application
data

Enclave

OS Enclave

Enclave
code

Enclave
data

Threads

…

Peter Pietzuch - Imperial College London 5

Intel Software Guard Extensions (SGX)

•  Extension of Instruction Set Architecture (ISA) in recent Intel CPUs
–  Skylake (2015), Kaby lake (2016)

•  Protects confidentiality and integrity of code & data in untrusted
environments

–  Platform owner considered malicious
– Only CPU chip and isolated region trusted

Peter Pietzuch - Imperial College London 6

SGX Enclaves

•  SGX introduces notion of enclave
–  Isolated memory region for code & data
– New CPU instructions to manipulate enclaves 

and new enclave execution mode
•  Enclave memory encrypted and integrity- 

protected by hardware
– Memory encryption engine (MEE)
– No plaintext secrets in main memory

•  Enclave memory can be accessed only by enclave code
–  Protection from privileged code (OS, hypervisor)

•  Application has ability to defend secrets
–  Attack surface reduced to just enclaves and CPU
– Compromised software cannot steal application secrets

Process

OS

Enclave

Hypervisor

✘✘
✘
✔

Peter Pietzuch - Imperial College London 7

SGX SDK Code Sample
SGX application: untrusted code

char request_buf[BUFFER_SIZE];
char response_buf[BUFFER_SIZE];

int main()
{  
 ...
 while(1)
 {  
 receive(request_buf);  
 ret = EENTER(request_buf, response_buf);  
 if (ret < 0)
 fprintf(stderr, "Corrupted message\n");
 else
 send(response_buf);  
 }  
 ...  
}

Enclave: trusted code

char input_buf[BUFFER_SIZE];
char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)
{
 copy_msg(in, input_buf);  
 if(verify_MAC(input_buf))
 {
 decrypt_msg(input_buf);  
 process_msg(input_buf, output_buf);
 encrypt_msg(output_buf);
 copy_msg(output_buf, out);  
 EEXIT(0);  
 } else  
 EEXIT(-1);  
}

Server:
• Receives encrypted requests
• Processes them in enclave
• Sends encrypted responses

Peter Pietzuch - Imperial College London 8

SGX Enclave Construction

Enclave populated using special instruction (EADD)
•  Contents initially in untrusted memory
•  Copied into EPC in 4KB pages
Both data & code copied before execution commences in enclave

char input_buf[BUFFER_SIZE];
char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)
{
 copy_msg(in, input_buf);  
 if(verify_MAC(input_buf))
 {
 decrypt_msg(input_buf);  
 process_msg(input_buf, output_buf);
 encrypt_msg(output_buf);
 copy_msg(output_buf, out);  
 EEXIT(0);  
 } else  
 EEXIT(-1);  
}

EPC

DRAM
1
2

3

Peter Pietzuch - Imperial College London 9

SGX Support for Spark

•  SGX-Spark
–  Protect data processing from infrastructure provider
–  Protect confidentiality & integrity of existing jobs
– No modifications for end users
–  Acceptable performance overhead

•  Idea: 
Execute only sensitive parts of Spark inside enclave

– Code that accesses/processes sensitive data

•  Code outside of enclave only accesses encrypted data
–  Partition Spark
– Run two collaborating JVMs, inside enclave and outside of enclave

10

Spark

OS TEE

Spark
Manage-

ment

Taskn

OS SGX

JVM

Spark

Task1

Taskn

JVM

Peter Pietzuch - Imperial College London

Partitioning Spark
•  Goal: Move minimal amount of Spark code to enclave 

11

Outside Enclave

HadoopRDD
Provide iterator over input data partition (encrypted)

MapPartitionsRDD
Execute user-provided function (f)
(eg flatMap(line => {line.split(" ")})
(i) Serialise user-provided function f
(ii) Send f and it to enclave JVM
(iv) Receive result iterator it_result

 

(iii) Decrypt input data  
(iv) Compute f(it) = it_result
(v) Encrypt result

ExternalSorter
Execute user-provided reduce function g
(eg reduceByKey{case (x, y) => x + y})

(iii) Decrypt input data  
(iv) Compute g(it2) = it2_result
(v) Encrypt result

ResultTask 
Output results

it

f,it

it2 = it_result

Peter Pietzuch - Imperial College London

g,it2

it2_result

Partitioning Spark

Peter Pietzuch - Imperial College London 12

HadoopRDD A

<outfile> <infile>

MapPartitions
RDD B

MapPartitions
RDD C

ResultTask

i’

j’

k’

i,j,k
A,B,C,D

Outside
Enclave

Tasks

Iterators

Iterate via shm

Communication

Partitioning Spark

Peter Pietzuch - Imperial College London 13

HadoopRDD A

 ItProvider i

<outfile> <infile>

MapPartitions
RDD B

MapPartitions
RDD C

ResultTask

I ItConsumer k

j=SgxTask(B,i) SgxTask B

 ItConsumer i

SgxTask C
k=SgxTask(C,j)

i’

j’ j

k’

k

i

i,j,k
A,B,C,D

Outside
Enclave

Tasks

Iterators

Iterate via shm

ItProvider k

k

2. Owl Platform – distributed¶llel ML

●  An experimental and above all scientific computing system.

●  Designed in functional programming paradigm.

●  Goal: as concise as Python yet as fast as C, and safe.

●  A comprehensive set of classic numerical functions.

●  A fundamental tooling for modern data analytics (ML & DNN).

●  Native support for algorithmic differentiation, distributed & parallel

computing, and GPGPU computing.

14

Research & Owl Architecture

15

1. Jiaxin Zhao - Composable Analytical
Services using Session Types for Distributed
Personal Data

2. Ben Catterall - Probabilistic Synchronous
Parallel - A New Barrier Control Method for
Distributed Machine Learning

3. D.S.R Royson - Optimising Adaptive
Learning in Distributed Machine Learning

4. Dhruv Makwana - Memory Management
using Linear Types for High-Performance
GPGPU Numerical Computing

5. Tudor Tiplea - Deploying Browser-based
Data Analytics at Network Edge

5

1

2
4

3

6. Liang Wang - Owl: A General-Purpose Numerical Library in OCaml
Presented in ICFP’17 OCaml meeting, tutorial in CUFP’17.

6

Parallel and Distributed Computing

Parallel and distributed computing is
achieved by composing the different
data structures in Owl’s core library
with specific engines in Actor system.

16

Owl + Actor : Ndarray Example
A map function on local ndarray x in Owl looks like this

Dense.Ndarray.S.map sin x

How to implement a distributed map on distributed ndarray?

17

Owl + Actor : Ndarray Example
Like playing LEGO, we plug Ndarray into Distribution Engine to make a distributed Ndarray.

Composed by a functor in Owl_parallel module, which connects two systems and hides details.

module M = Owl.Parallel.Make (Dense.Ndarray.S) (Actor.Mapre)

M.map sin x

18

Owl + Actor : Neural Network Example

Owl.Neural.S.Graph.train network

let network =
 input [|28;28;1|]
 |> lambda (fun x -> Maths.(x / F 256.))
 |> conv2d [|5;5;1;32|] [|1;1|] ~act_typ:Activation.Relu
 |> max_pool2d [|2;2|] [|2;2|]
 |> dropout 0.1
 |> fully_connected 1024 ~act_typ:Activation.Relu
 |> linear 10 ~act_typ:Activation.Softmax
 |> get_network

Similarly, this also applies to more advanced and complicated data structures such as neural
network. This is how we define a NN in Owl:

Then we can perform training locally as below

19

Owl + Actor : Neural Network Example

module M = Owl.Parallel.Make (Owl.Neural.S.Graph) (Actor.Param)

M.train network

To enable the parallel training on a computer cluster, we can combine Graph with Param engine.

We only write code once, Owl’s functor stack generates both sequential and parallel version for us!

20

Key to Scalability
Actor implements three engines, maybe more in future.

All reply on a module called Synchronous Parallel which handles synchronisation.

Corner stone of large scale
distributed learning :)

21

Synchronous Parallel Machine

●  An abstract computer for designing parallel algorithms.

●  Three components:

○  A local processor equipped with fast memory;

○  A network that routes messages between computers;

○  A (hw/sw) component to synchronise all computers;

●  Powerful model for designing and programming parallel systems,

building block of Apache Hadoop, Spark, Hama, etc.

22

Barrier Synchronisation
The third component barrier synchronisation, is the core of SPM. It’s all about how to
coordinate computation on different computers to achieve certain consistency.

23

0 # 1 # 2

Barrier
Synchronisation

Global
state

P#0

P#1

P#2

P#3

Progress

Comm may happen here, to ensure the
consistency through the global state.

That’s where we need a central server, in
order to maintain the global state.

Progress is measured by supersteps (iterations).

Processes

Consistency Is Not Free Lunch

●  Real world iterative learning algorithm aims fast convergence.

●  Convergence rate decreases if iteration rate is slow or updates are noisy.

●  Synchronisation can reduce the noise in updates (improved consistency).

●  Tight synchronisation is sensitive to stragglers and has poor scalability.

●  Tight synchronisation renders high communication cost in large systems.

24

Existing Models in Use
●  Bulk synchronous parallel (BSP)

●  Stale Synchronous parallel (SSP)

●  Asynchronous parallel (ASP)

25

Hadoop, Spark, Parameter Server,
Pregel, Owl+Actor ...

Parameter Server, Hogwild!, Cyclic
Delay, Yahoo! LDA, Owl+Actor ...

Parameter Server, Hogwild!, Yahoo!
LDA, Owl+Actor ...

P#0

P#1

P#2

P#3

BSP
P#0

P#1

P#2

P#3

SSP

P#0

P#1

P#2

P#3

ASP

A 10,000 Foot View

26

Most strict lockstep synchronisation;
all the nodes are coordinated by a
central server.

BSP is sensitive to stragglers so is
very slow. But it is simple due to its
deterministic nature, easy to write
application on top of it.

SSP relaxes consistency by allowing
difference in iteration rate. The
difference is controlled by the
bounded staleness.

SSP is supposed to mitigate the
negative effects of stragglers. But the
server still requires global state.

Least strict synchronisation, no
communication among workers for
barrier synchronisation all all.

Every computer can progress as fast as
it can. It is fast and scalable, but often
produces noisy updates. No theoretical
guarantees on consistency and
algorithm’s convergence.

P#0

P#1

P#2

P#3

BSP
P#0

P#1

P#2

P#3

SSP

P#0

P#1

P#2

P#3

ASP

Consistency vs. Iteration Rate

27

We must balance consistency vs. iteration rate , we can
think in the following way to understand the trade-off:

Convergence Consistency Degree x Iteration
Rate

SSP aims to cover this spectrum between BSP and ASP
by parameterising the staleness.

Question: Is SSP really a generalisation of of BSP and ASP?
BSP and SSP are both centralised whereas ASP are fully distributed. It feels like
SSP has missed something in this spectrum. What is it?

Strong consistency
Slow iteration rate

Weak consistency
Fast iteration rate

C
onvergence rate

BSP ASP

SSP parameterises the
consistency by staleness.

Analytical Model

28

The model is simple: a sequence of
updates applying to an initial global
state x0. The updates can be “noisy”
hence are divided into two sets.

Although simple, it can model most
iterative learning algorithms.

u(p,t)is update(node id, timestamp), sum over all the nodes
and clock ticks ...

Decompose Synchronous Parallel Machine

29

Then we use the analytical model to
express each synchronous parallel
machine on the left.

The formulation reveals some very
interesting structures from a system
design perspective.

Let’s decompose these machines.

Decompose Synchronous Parallel Machine

30

Left part deals with the Consistency. +=
operator is the server logic about how to
incorporate updates submitted to the
central server into the global state.

Right part deals with synchronisation,
computers either communicate to each
other or contact the central server to
coordinate their progress.

Decompose Synchronous Parallel Machine

31

Inside the synchronisation part, the
synchronous parallel machine
processes two types of updates.

The deterministic one is those we
always expect if everything goes well as
in BSP.

The probabilistic one is those out of
order updates due to packet loss,
network delay, node failure, and etc.

Decompose Synchronous Parallel Machine

32

The global state is maintained by a logic
central server. In a distributed system,
this is often the bottleneck and single
point of failure.

Moreover, note that the server couples
the consistency with the synchronisation
two parts, for BSP and SSP.

ASP avoids such coupling by giving up
synchronisation, consistency
completely.

Missing Dimension in Design Space

33

Strong consistency
Slow iteration rate
Fully centralised

Weak consistency
Fast iteration rate
Fully distributed

BSP SSP

ASP

Consistency

??? the missing
dimension in

synchronisation

Key Insights from Decomposition

●  Is it necessary to couple the consistency with synchronisation? No

●  Is it necessary to give up synchronisation completely in order to

decouple consistency and synchronisation? No

●  Is it necessary to divide the updates into deterministic and

probabilistic two parts? No

●  Is SSP really a generalisation of BSP and ASP, then what is the

missing dimension in the design space? Completeness

34

Probabilistic Synchronous Parallel
●  Core idea: combine both deterministic and probabilistic components,

replace it with a sample distribution.
●  Each computer synchronises with a small group of others and the

consistency is only enforced within the group.
●  The server decides how to incorporate the submitted updates.

35

No central server to coordinate them, instead
each node synchronises within their groups.
The consistency “propagates” by the possible
overlapping of different groups.

Sampling Primitive
●  How to implement PSP atop of current data analytics frameworks?

○  Quite straightforward, add a new primitive - sample
●  How to guarantee the random sampling?

○  Organise the nodes into a structural overlay, e.g. DHT

36

The random sampling is based on the fact that node identifiers
are uniformly distributed in a name space.

Node can estimate the population size based on the allocated
ID density in the name space.

Owl’s Performance

37

Who Am I? & lets not speculate further ☺
Thanks	to	EPSRC/databox	
•  &Liang	Wang,	et	al,	Cambridge	 Thanks	to	Turing/Maru	

• &Peter	Pietzuch,	Imperial		

