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1. Trust Issues: Provider Perspective

•  Cloud provider does not trust users

•  Use virtual machines to isolate 
users from each other and the host

•  VMs only provide one way protection
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Trust Issues: User Perspective

•  Users trust their applications

•  Users must implicitly trust  
cloud provider

•  Existing applications implicitly 
assume trusted operating system
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Trusted Execution Support with Intel SGX

•  Users create HW-enforced trusted 
environment (enclave)

•  Supports unprivileged 
user code

•  Protects against strong attacker 
model

•  Remote attestation
•  Available on 

commodity CPUs 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Trusted Execution Environments

•  Trusted execution environment (TEE) 
in process

– Own code & data
– Controlled entry points
–  Provides confidentiality & integrity
–  Supports multiple threads
–  Full access to application memory
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Intel Software Guard Extensions (SGX)

•  Extension of Instruction Set Architecture (ISA) in recent Intel CPUs
–  Skylake (2015), Kaby lake (2016)

•  Protects confidentiality and integrity of code & data in untrusted 
environments

–  Platform owner considered malicious
– Only CPU chip and isolated region trusted
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SGX Enclaves

•  SGX introduces notion of enclave
–  Isolated memory region for code & data
– New CPU instructions to manipulate enclaves 

and new enclave execution mode
•  Enclave memory encrypted and integrity- 

protected by hardware
– Memory encryption engine (MEE)
– No plaintext secrets in main memory

•  Enclave memory can be accessed only by enclave code
–  Protection from privileged code (OS, hypervisor)

•  Application has ability to defend secrets
–  Attack surface reduced to just enclaves and CPU
– Compromised software cannot steal application secrets
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SGX SDK Code Sample
SGX application: untrusted code

char request_buf[BUFFER_SIZE];
char response_buf[BUFFER_SIZE];

int main()
{  
  ...
  while(1)
  {  
    receive(request_buf);  
    ret = EENTER(request_buf, response_buf);  
    if (ret < 0) 
      fprintf(stderr, "Corrupted message\n");
    else
      send(response_buf);  
  }  
  ...  
}

Enclave: trusted code

char input_buf[BUFFER_SIZE];
char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)
{
  copy_msg(in, input_buf);  
  if(verify_MAC(input_buf))
  {
    decrypt_msg(input_buf);  
    process_msg(input_buf, output_buf);
    encrypt_msg(output_buf);
    copy_msg(output_buf, out);  
    EEXIT(0);  
  } else  
    EEXIT(-1);  
}

Server:
• Receives encrypted requests
• Processes them in enclave
• Sends encrypted responses
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SGX Enclave Construction

Enclave populated using special instruction (EADD)
•  Contents initially in untrusted memory
•  Copied into EPC in 4KB pages
Both data & code copied before execution commences in enclave

char input_buf[BUFFER_SIZE];
char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)
{
  copy_msg(in, input_buf);  
  if(verify_MAC(input_buf))
  {
    decrypt_msg(input_buf);  
    process_msg(input_buf, output_buf);
    encrypt_msg(output_buf);
    copy_msg(output_buf, out);  
    EEXIT(0);  
  } else  
    EEXIT(-1);  
}
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SGX Support for Spark

•  SGX-Spark
–  Protect data processing from infrastructure provider
–  Protect confidentiality & integrity of existing jobs
– No modifications for end users
–  Acceptable performance overhead

•  Idea: 
Execute only sensitive parts of Spark inside enclave

– Code that accesses/processes sensitive data

•  Code outside of enclave only accesses encrypted data
–  Partition Spark
– Run two collaborating JVMs, inside enclave and outside of enclave

10
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Partitioning Spark
•  Goal: Move minimal amount of Spark code to enclave 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Outside Enclave

HadoopRDD
Provide iterator over input data partition (encrypted)

MapPartitionsRDD
Execute user-provided function (f)
(eg flatMap(line => {line.split(" ")})
(i) Serialise user-provided function f 
(ii) Send f and it to enclave JVM
(iv) Receive result iterator it_result 


 

(iii) Decrypt input data  
(iv) Compute f(it) = it_result  
(v) Encrypt result

ExternalSorter
Execute user-provided reduce function g
(eg reduceByKey{case (x, y) => x + y})

(iii) Decrypt input data  
(iv) Compute g(it2) = it2_result  
(v) Encrypt result

ResultTask 
Output results

it 

f,it 

it2 = it_result 
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Partitioning Spark
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Communication 

Partitioning Spark
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2. Owl Platform – distributed&parallel ML 

●  An experimental and above all scientific computing system. 

●  Designed in functional programming paradigm. 

●  Goal: as concise as Python yet as fast as C, and safe. 

●  A comprehensive set of classic numerical functions. 

●  A fundamental tooling for modern data analytics (ML & DNN). 

●  Native support for algorithmic differentiation, distributed & parallel 

computing, and GPGPU computing. 
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Research & Owl Architecture 
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1. Jiaxin Zhao - Composable Analytical 
Services using Session Types for Distributed 
Personal Data 
 
2. Ben Catterall - Probabilistic Synchronous 
Parallel - A New Barrier Control Method for 
Distributed Machine Learning 
 
3. D.S.R Royson - Optimising Adaptive 
Learning in Distributed Machine Learning 
 
4. Dhruv Makwana - Memory Management 
using Linear Types for High-Performance 
GPGPU Numerical Computing 
 
5. Tudor Tiplea - Deploying Browser-based 
Data Analytics at Network Edge 
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6. Liang Wang - Owl: A General-Purpose Numerical Library in OCaml 
Presented in ICFP’17 OCaml meeting, tutorial in CUFP’17. 
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Parallel and Distributed Computing 

Parallel and distributed computing is 
achieved by composing the different 
data structures in Owl’s core library 
with specific engines in Actor system. 
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Owl + Actor : Ndarray Example 
A map function on local ndarray x in Owl looks like this   

Dense.Ndarray.S.map sin x 

How to implement a distributed map on distributed ndarray? 
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Owl + Actor : Ndarray Example 
Like playing LEGO, we plug Ndarray into Distribution Engine to make a distributed Ndarray. 

Composed by a functor in Owl_parallel module, which connects two systems and hides details. 

module M = Owl.Parallel.Make (Dense.Ndarray.S) (Actor.Mapre) 

M.map sin x 
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Owl + Actor : Neural Network Example 

Owl.Neural.S.Graph.train network 

let network = 
  input [|28;28;1|] 
  |> lambda (fun x -> Maths.(x / F 256.)) 
  |> conv2d [|5;5;1;32|] [|1;1|] ~act_typ:Activation.Relu 
  |> max_pool2d [|2;2|] [|2;2|] 
  |> dropout 0.1 
  |> fully_connected 1024 ~act_typ:Activation.Relu 
  |> linear 10 ~act_typ:Activation.Softmax 
  |> get_network 

Similarly, this also applies to more advanced and complicated data structures such as neural 
network. This is how we define a NN in Owl: 

Then we can perform training locally as below 
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Owl + Actor : Neural Network Example 

module M = Owl.Parallel.Make (Owl.Neural.S.Graph) (Actor.Param) 

M.train network 
 

To enable the parallel training on a computer cluster, we can combine Graph with Param engine.  

We only write code once, Owl’s functor stack generates both sequential and parallel version for us! 
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Key to Scalability 
Actor implements three engines, maybe more in future.  
 
All reply on a module called Synchronous Parallel which handles synchronisation. 

Corner stone of large scale 
distributed learning :) 
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Synchronous Parallel Machine 

●  An abstract computer for designing parallel algorithms. 

●  Three components: 

○  A local processor equipped with fast memory; 

○  A network that routes messages between computers; 

○  A (hw/sw) component to synchronise all computers; 

●  Powerful model for designing and programming parallel systems, 

building block of Apache Hadoop, Spark, Hama, etc. 
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Barrier Synchronisation 
The third component barrier synchronisation, is the core of SPM. It’s all about how to 
coordinate computation on different computers to achieve certain consistency. 
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Comm may happen here, to ensure the 
consistency through the global state. 

That’s where we need a central server, in 
order to maintain the global state. 

Progress is measured by supersteps (iterations). 

Processes 



Consistency Is Not Free Lunch 

●  Real world iterative learning algorithm aims fast convergence. 

●  Convergence rate decreases if iteration rate is slow or updates are noisy. 

●  Synchronisation can reduce the noise in updates (improved consistency). 

●  Tight synchronisation is sensitive to stragglers and has poor scalability. 

●  Tight synchronisation renders high communication cost in large systems. 
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Existing Models in Use 
●  Bulk synchronous parallel (BSP) 

●  Stale Synchronous parallel (SSP) 

●  Asynchronous parallel (ASP) 
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Hadoop, Spark, Parameter Server, 
Pregel, Owl+Actor ... 

Parameter Server, Hogwild!, Cyclic 
Delay, Yahoo! LDA, Owl+Actor ... 

Parameter Server, Hogwild!, Yahoo! 
LDA, Owl+Actor ... 
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A 10,000 Foot View 
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Most strict lockstep synchronisation; 
all the nodes are coordinated by a 
central server.  
 
BSP is sensitive to stragglers so is 
very slow. But it is simple due to its 
deterministic nature, easy to write 
application on top of it. 

SSP relaxes consistency by allowing 
difference in iteration rate. The 
difference is controlled by the 
bounded staleness.  
 
SSP is supposed to mitigate the 
negative effects of stragglers. But the 
server still requires global state. 

Least strict synchronisation, no 
communication among workers for 
barrier synchronisation all all.  
 
Every computer can progress as fast as 
it can. It is fast and scalable, but often 
produces noisy updates. No theoretical 
guarantees on consistency and 
algorithm’s convergence. 
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Consistency vs. Iteration Rate 
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We must balance consistency vs. iteration rate , we can 
think in the following way to understand the trade-off: 
 
Convergence      Consistency Degree x Iteration 
Rate 
 
 
SSP aims to cover this spectrum between BSP and ASP 
by parameterising the staleness. 

Question: Is SSP really a generalisation of of BSP and ASP? 
BSP and SSP are both centralised whereas ASP are fully distributed. It feels like 
SSP has missed something in this spectrum. What is it? 

Strong consistency 
Slow iteration rate 

Weak consistency 
Fast iteration rate 

C
onvergence rate 

BSP ASP 

SSP parameterises the 
consistency by staleness. 



Analytical Model 
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The model is simple: a sequence of 
updates applying to an initial global 
state x0. The updates can be “noisy” 
hence are divided into two sets. 
 
Although simple, it can model most 
iterative learning algorithms. 

u(p,t)is update(node id, timestamp), sum over all the nodes 
and clock ticks ... 



Decompose Synchronous Parallel Machine 
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Then we use the analytical model to 
express each synchronous parallel 
machine on the left. 
 
The formulation reveals some very 
interesting structures from a system 
design perspective. 
 
Let’s decompose these machines. 



Decompose Synchronous Parallel Machine 
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Left part deals with the Consistency. += 
operator is the server logic about how to 
incorporate updates submitted to the 
central server into the global state. 
 
Right part deals with synchronisation, 
computers either communicate to each 
other or contact the central server to 
coordinate their progress. 



Decompose Synchronous Parallel Machine 
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Inside the synchronisation part, the 
synchronous parallel machine 
processes two types of updates. 
 
The deterministic one is those we 
always expect if everything goes well as 
in BSP.  
 
The probabilistic one is those out of 
order updates due to packet loss, 
network delay, node failure, and etc. 



Decompose Synchronous Parallel Machine 
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The global state is maintained by a logic 
central server. In a distributed system, 
this is often the bottleneck and single 
point of failure. 
 
Moreover, note that the server couples 
the consistency with the synchronisation 
two parts, for BSP and SSP. 
 
ASP avoids such coupling by giving up 
synchronisation, consistency 
completely. 



Missing Dimension in Design Space 
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Strong consistency 
Slow iteration rate 
Fully centralised 

Weak consistency 
Fast iteration rate 
Fully distributed 
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Key Insights from Decomposition 

●  Is it necessary to couple the consistency with synchronisation? No 

●  Is it necessary to give up synchronisation completely in order to 

decouple consistency and synchronisation? No 

●  Is it necessary to divide the updates into deterministic and 

probabilistic two parts? No 

●  Is SSP really a generalisation of BSP and ASP, then what is the 

missing dimension in the design space? Completeness 
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Probabilistic Synchronous Parallel 
●  Core idea: combine both deterministic and probabilistic components, 

replace it with a sample distribution. 
●  Each computer synchronises with a small group of others and the 

consistency is only enforced within the group. 
●  The server decides how to incorporate the submitted updates. 
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No central server to coordinate them, instead 
each node synchronises within their groups. 
The consistency “propagates” by the possible 
overlapping of different groups. 



Sampling Primitive 
●  How to implement PSP atop of current data analytics frameworks? 

○  Quite straightforward, add a new primitive - sample 
●  How to guarantee the random sampling? 

○  Organise the nodes into a structural overlay, e.g. DHT 
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The random sampling is based on the fact that node identifiers 
are uniformly distributed in a name space. 
 
Node can estimate the population size based on the allocated 
ID density in the name space. 



Owl’s Performance 
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Who Am I? & lets not speculate further ☺ 
Thanks	to	EPSRC/databox	
•  &Liang	Wang,	et	al,	Cambridge	 Thanks	to	Turing/Maru	

• &Peter	Pietzuch,	Imperial		


