
Systems (th)at Scale

Jon Crowcroft,
http://www.cl.cam.ac.uk/~jac22

Cloud, Data Center, Networks

1.  New Cloud OS to meet new workloads
  Includes programming language
  Collabs incl REMS (w/ P.Gardner/Imperial)

2.  New Data Center structure
  Includes heterogeneous h/w
  Collabs incl NaaS(Peter Pietzuch Imperial)
  Trilogy (Mark Handley et al UCL)

3.  New Networks (for data centers&)
  To deal with above

What not talking about

  Security
  (we do that – had another workshop)

  Data
  Hope Ed folks will!

  Scaling Apps
  Oxford

  Languages for Apps
  Ed++

1. Cloud OS

  Unikernels (Mirage, SEL4, ClickOS)

Docker

User Processes

Filesystem

Network Stack

Kernel Threads

Language Runtime

Application Binary

Configuration Files

O
p
er

a
ti
n
g

Sy
st

em

User Processes

Filesystem

Network Stack

Kernel Threads

Language Runtime

Application Binary

Configuration Files

O
p
er

a
ti
n
g

Sy
st

em

Hypervisor

Hardware

Docker Container

(a) Containers, e.g., Docker.

Drawbridge

ntoskrnl Device Drivers

User Processes

IO Stack

Device Drivers

Kernel Threads

Language Runtime

Application Binary

Configuration Files

W
in

d
ow

s
7
 O

S
Platform Adaptation

Layer

Kernel Threads

IO Stack

Security Monitor

Library OS

Application Binary

Configuration Files

ntoskrnl

Hardware

H
os

t
O

S

Hardware

Picoprocess

(b) Picoprocesses, e.g., Drawbridge.

Mirage

User Processes

Filesystem

Xen

Network Stack

Kernel Threads

Language Runtime

Mirage Runtime

Xen

Application Code

Application Binary

Configuration Files

ARM Hardware ARM Hardware

O
p
er

a
ti
n
g

Sy
st

em Mirage Unikernel

(c) Unikernels, e.g., MirageOS.

Figure 2: Contrasting approaches to application containment.

The Xen 4.4 release added support for recent ARM
architectures, specifically ARM v7-A and ARM v8-A.
These include extensions that let a hypervisor manage
hardware virtualized guests without the complexity of
full paravirtualization. The Xen/ARM port is markedly
simpler than x86 as it can avoid a range of legacy re-
quirements: e.g., x86 VMs require qemu device emu-
lation, which adds considerably to the trusted comput-
ing base [7]. Simultaneously, Xen/ARM is able to share
a great deal of the mature Xen toolstack with Xen/x86,
including the mechanics for specifying security policies
and VM configurations.

Jitsu can thus target both Xen/ARM and Xen/x86, re-
sulting in a consistent interface that spans a range of de-
ployment environments, from conventional x86 server
hosting environments to the more resource-constrained
embedded environments with which we are particularly
concerned, where ARM CPUs are commonplace.

2.3 Xen/ARM Unikernels
Bringing up MirageOS unikernels on ARM required de-
tailed work mapping the libOS model onto the ARM ar-
chitecture. We now describe booting MirageOS uniker-
nels on ARM, their memory management requirements,
and device virtualization support.

Xen Boot Library. The first generation of uniker-
nels such as MirageOS [26, 25] (OCaml), HaLVM [11]
(Haskell) and the GuestVM [32] (Java) were constructed
by forking Mini-OS, a tiny Xen library kernel that ini-
tialises the CPU, displays console messages and allocates
memory pages [39]. Over the years, Mini-OS has been
directly incorporated into many other custom Xen oper-
ating systems, has had semi-POSIX compatibility bolted
on, and has become part of the trusted computing base
for some distributions [7]. This copying of code becomes
a maintenance burden when integrating new features that
get added to Mini-OS. Before porting to ARM, we there-
fore rearranged Mini-OS to be installed as a system li-

brary, suitable for static linking by any unikernel.4 Func-
tionality not required for booting was extracted into sep-
arate libraries, e.g., libm functionality is now provided
by OpenLibM (which originates from FreeBSD’s libm).

An important consequence of this is that a libc is
no longer required for the core of MirageOS: all libc
functionality is subsumed by pure OCaml libraries in-
cluding networking, storage and unicode handling, with
the exception of the rarely used floating point formatting
code used by printf, for which we extracted code from
the musl libc. Removing this functionality does not
just benefit codesize: these embedded libraries are both
security-critical (they run in the same address space as
the type-safe unikernel code) and difficult to audit (they
target a wide range of esoteric hardware platforms and
thus require careful configuration of many compile-time
options). Our refactoring thus significantly reduced the
size of a unikernel’s trusted computing base as well as
improving portability.

Fast Booting on ARM. We then ported Mini-OS to
boot against the new Xen ARM ABI. This domain build-
ing process is critical to reducing system latency, so
we describe it here briefly. Xen/ARM kernels use the
Linux zImage format to boot into a contiguous mem-
ory area. The Xen domain builder allocates a fresh vir-
tual machine descriptor, assigns RAM to it and loads
the kernel at the offset 0x8000 (32KB). Execution be-
gins with the r2 register pointing to a Flattened Device
Tree (FDT). This is a similar key/value store to the one
supplied by native ARM bootloaders and provides a uni-
fied tree for all further aspects of VM configuration. The
FDT approach is much simpler than x86 booting, where
the demands of supporting multiple modes (paravirtual,
hardware-assisted and hybrids) result in configuration in-
formation being spread across virtualized BIOS, memory
and Xen-specific interfaces.

4Our Mini-OS changes have been released back to Xen and are be-
ing integrated in the upstream distribution that will become Xen 4.6.

3

Unikernels in OCaml

  But also Go, Scala, Rust etc
  Type safety->security, reliability
  Apps can be legacy or in same languages

Linux Kernel

UnikernelsUnikernels

Xen

ARM Hardware

Linux Kernel

Jitsu
Toolstack

XenStore

Unikernels Legacy VMs

in
co

m
in

g
tr

af
fic

domain 0

outgoing
traffic

shared memory transport

Figure 1: Jitsu architecture: external network connec-
tivity is handled solely by memory-safe unikernels con-
nected to general purpose VMs via shared memory.

2 Embedded Unikernels
Building software for embedded systems is typically
more complex than for standard platforms. Embedded
systems are often power-constrained, impose soft real-
time constraints, and are designed around a monolithic
firmware model that forces whole system upgrades rather
than upgrade of constituent packages. To date, general-
purpose hypervisors have not been able to meet these re-
quirements, though microkernels have made inroads [9].

Several approaches to providing application isolation
have received attention recently. As each provides dif-
ferent trade-offs between security and resource usage,
we discuss them in turn (§2.1), motivating our choice of
unikernels as our unit of deployment. We then outline the
new Xen/ARM port that uses the latest ARM v7-A vir-
tualization instructions (§2.2) and provide details of our
implementation of a single-address space ARM uniker-
nel using this new ABI (§2.3).

2.1 Application Containment
Strong isolation of multi-tenant applications is a require-
ment to support the distribution of application and sys-
tem code. This requires both isolation at runtime as well
as compact, lightweight distribution of code and associ-
ated state for booting. We next describe the spectrum of
approaches meeting these goals, depicted in Figure 2.

OS Containers (Figure 2a). FreeBSD Jails [19] and
Linux containers [38] both provide a lightweight mecha-
nism to separate applications and their associated kernel
policies. This is enforced via kernel support for isolated
namespaces for files, processes, user accounts and other
global configuration. Containers put the entire mono-
lithic kernel in the trusted computing base, while still
preventing applications from using certain functionality.
Even the popular Docker container manager does not yet
support isolation of root processes from each other.1

1https://docs.docker.com/articles/security/

Both the total number and ongoing high rate of dis-
covery of vulnerabilities indicate that stronger isolation
is highly desirable (see Table 2). An effective way to
achieve this is to build applications using a library op-
erating system (libOS) [10, 24] to run over the smaller
trusted computing base of a simple hypervisor. This has
been explored in two modern strands of work.

Picoprocesses (Figure 2b). Drawbridge [34] demon-
strated that the libOS approach can scale to running
Windows applications with relatively low overhead (just
16MB of working set memory). Each application runs
in its own picoprocess on top of a hypervisor, and this
technique has since been extended to running POSIX ap-
plications as well [15]. Embassies [22] refactors the web
client around this model such that untrusted applications
can run on the user’s computer in low-level native code
containers that communicate externally via the network.

Unikernels (Figure 2c). Even more specialised appli-
cations can be built by leveraging modern programming
languages to build unikernels [25]. Single-pass compi-
lation of application logic, configuration files and device
drivers results in output of a single-address-space VM
where the standard compiler toolchain has eliminated un-
necessary features. This approach is most beneficial for
single-purpose appliances as opposed to more complex
multi-tenant services (§5).

Unikernel frameworks are gaining traction for many
domain-specific tasks including virtualizing network
functions [29], eliminating I/O overheads [20], build-
ing distributed systems [6] and providing a minimal trust
base to secure existing systems [11, 7]. In Jitsu we use
the open-source MirageOS2 written in OCaml, a stati-
cally type-safe language that has a low resource footprint
and good native code compilers for both x86 and ARM.
A particular advantage of using MirageOS when work-
ing with Xen is that all the toolstack libraries involved
are written entirely in OCaml [36], making it easier to
safely manage the flow of data through the system and to
eliminate code that would otherwise add overhead [18].

2.2 ARM Hardware Virtualization
Xen is a widely deployed type-1 hypervisor that isolates
multiple VMs that share hardware resources. It was orig-
inally developed for x86 processors [2], on which it now
provides three execution modes for VMs: paravirtualiza-
tion (PV), where the guest operating system source is di-
rectly modified; hardware emulation (HVM), where spe-
cialised virtualization instructions and paging features
available in modern x86 CPUs obviate the need to mod-
ify guest OS source code; and a hybrid model (PVH) that
enables paravirtualized guests to use these newer hard-
ware features for performance.3

2http://www.openmirage.org
3See Belay et al [4] for an introduction to the newer VT-x features.

2

Data Centers don’t just go fast

  They need to serve applications
1.  Latency, not just throughput
2.  Face users

1.  Web, video, ultrafast trade/gamers
2.  Face Analytics…

3.  Availability & Failure Detectors
4.  Application code within network
5.  NIC on host or switch – viz

Industry (see pm)

Azure
http://conferences.sigcomm.org/
sigcomm/2015/pdf/papers/keynote.pdf
Facebook:
http://conferences.sigcomm.org/
sigcomm/2015/pdf/papers/p123.pdf
Google:
http://conferences.sigcomm.org/
sigcomm/2015/pdf/papers/p183.pdf

2. Deterministic latency bounding

  Learned what I was teaching wrong!
  I used to say:

  Integrated Service too complex
  Admission&scheduling hard

  Priority Queue can’t do it
  PGPS computation for latency?

  I present Qjump scheme, which
  Uses intserv (PGPS) style admission ctl
  Uses priority queues for service levels
  http://www.cl.cam.ac.uk/research/srg/

netos/qjump/

Data Center Latency Problem

  Tail of the distribution,
  due to long/bursty flows interfering

  Need to separate classes of flow
  Low latency are usually short flows (or

RPCs)
  Bulk transfers aren’t so latency/jitter

sensitiv

Data Center Qjump Solution

  In Data Center, not general Internet!
  can exploit topology &
  traffic matrix &
  source behaviour knowledge

  Regular, and simpler topology key
  But also largely “cooperative” world…

Hadoop perturbs time synch

2 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

0 100 200 300 400 500
Time since start [sec]

-400
-200

0
200
400
600

C
lo

ck
of

fs
et

[µ
s]

ptpd only
ptpd with Hadoop

(a) Timeline of PTP synchronization offset.

0 500 1000 1500 2000
Request latency [µs]

0.0

0.2

0.4

0.6

0.8

1.0

memcached only
mem’d with Hadoop

(b) CDF of memcached request latencies.

0 500 1000 1500 2000
Barrier sync. latency [µs]

0.0

0.2

0.4

0.6

0.8

1.0

Naiad only
Naiad with Hadoop

(c) CDF of Naiad barrier sync. latencies.

Figure 1: Motivating experiments: Hadoop traffic interferes with (a) PTPd, (b) memcached and (c) Naiad traffic.

Setup 50th% 99th%
one host, idle network 85 126µs

two hosts, shared switch 110 130µs
shared source host, shared egress port 228 268µs
shared dest. host, shared ingress port 125 278µs

shared host, shared ingress and egress 221 229µs
two hosts, shared switch queue 1,920 2,100µs

Table 1: Median and 99th percentile latencies observed
as ping and iperf share various parts of the network.

2 Motivation
We begin by showing that shared switch queues are the
primary source of network interference. We then quan-
tify the extent to which network interference impacts
application-observable metrics of performance.

2.1 Where does the latency come from?
Network interference may occur at various places on the
network path. Applications may share ingress or egress
paths in the host, share the same network switch, or share
the same queue in the same network switch. To assess the
impact of interference in each of these situations, we em-
ulate a latency-sensitive RPC application using ping and
a throughput-intensive bulk transfer application by run-
ning two instances of iperf. Table 1 shows the results of
arranging ping and iperf with various degrees of net-
work sharing. Although any sharing situation results in
interference, the effect is worst when applications share a
congested switch queue.. In this case, the 99th percentile
ping latency is degraded by over 16× compared to the
unshared case.

2.2 How bad is it really?
Different applications use the network in different ways.
To demonstrate the degree to which network interfer-
ence affects different applications, we run three represen-
tative latency-sensitive applications (PTPd, memcached
and Naiad) on a network shared with Hadoop (details

in §6) and measure the effects.

1. Clock Synchronization Precise clock synchroniza-
tion is important to distributed systems such as Google’s
Spanner [11]. PTPd offers microsecond-granularity time
synchronization from a time server to machines on a
local network. In Figure 1a, we show a timeline of
PTPd synchronizing a host clock on both an idle net-
work and when sharing the network with Hadoop. In
the shared case, Hadoop’s shuffle phases causes queue-
ing, which delays PTPd’s synchronization packets. This
causes PTPd to temporarily fall 200–500µs out of syn-
chronization; 50× worse than on an idle network.

2. Key-value Stores Memcached is a popular in-
memory key-value store used by Facebook and others to
store small objects for quick retrieval [25]. We bench-
mark memcached using the memaslap load generator2

and measure the request latency. Figure 1b shows the
distribution of request latencies on an idle network and a
network shared with Hadoop. With Hadoop running, the
99th percentile request latency degrades by 1.5× from
779µs to 1196µs. Even worse, approximately 1 in 6,000
requests take over 200ms to complete3, over 85× worse
than the maximum latency seen on an idle network.

3. Iterative Data-Flow Naiad is a framework for dis-
tributed data-flow computation [24]. In iterative com-
putations, Naiad’s performance depends on low-latency
state synchronization between worker nodes. To test Na-
iad’s sensitivity to network interference, we execute a
barrier synchronization benchmark (provided by the Na-
iad authors) with and without Hadoop running. Figure 1c
shows the distribution of Naiad synchronization laten-
cies in both situations. On an idle network, Naiad takes
around 500µs at the 99th percentile to perform a four-way
barrier synchronization. With interference, this grows to
1.1–1.5ms, a 2–3× performance degradation.

2http://libmemcached.org
3Likely because packet loss triggers the TCP minRTO timeout.

Hadoop perturbs memcached

2 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

0 100 200 300 400 500
Time since start [sec]

-400
-200

0
200
400
600

C
lo

ck
of

fs
et

[µ
s]

ptpd only
ptpd with Hadoop

(a) Timeline of PTP synchronization offset.

0 500 1000 1500 2000
Request latency [µs]

0.0

0.2

0.4

0.6

0.8

1.0

memcached only
mem’d with Hadoop

(b) CDF of memcached request latencies.

0 500 1000 1500 2000
Barrier sync. latency [µs]

0.0

0.2

0.4

0.6

0.8

1.0

Naiad only
Naiad with Hadoop

(c) CDF of Naiad barrier sync. latencies.

Figure 1: Motivating experiments: Hadoop traffic interferes with (a) PTPd, (b) memcached and (c) Naiad traffic.

Setup 50th% 99th%
one host, idle network 85 126µs

two hosts, shared switch 110 130µs
shared source host, shared egress port 228 268µs
shared dest. host, shared ingress port 125 278µs

shared host, shared ingress and egress 221 229µs
two hosts, shared switch queue 1,920 2,100µs

Table 1: Median and 99th percentile latencies observed
as ping and iperf share various parts of the network.

2 Motivation
We begin by showing that shared switch queues are the
primary source of network interference. We then quan-
tify the extent to which network interference impacts
application-observable metrics of performance.

2.1 Where does the latency come from?
Network interference may occur at various places on the
network path. Applications may share ingress or egress
paths in the host, share the same network switch, or share
the same queue in the same network switch. To assess the
impact of interference in each of these situations, we em-
ulate a latency-sensitive RPC application using ping and
a throughput-intensive bulk transfer application by run-
ning two instances of iperf. Table 1 shows the results of
arranging ping and iperf with various degrees of net-
work sharing. Although any sharing situation results in
interference, the effect is worst when applications share a
congested switch queue.. In this case, the 99th percentile
ping latency is degraded by over 16× compared to the
unshared case.

2.2 How bad is it really?
Different applications use the network in different ways.
To demonstrate the degree to which network interfer-
ence affects different applications, we run three represen-
tative latency-sensitive applications (PTPd, memcached
and Naiad) on a network shared with Hadoop (details

in §6) and measure the effects.

1. Clock Synchronization Precise clock synchroniza-
tion is important to distributed systems such as Google’s
Spanner [11]. PTPd offers microsecond-granularity time
synchronization from a time server to machines on a
local network. In Figure 1a, we show a timeline of
PTPd synchronizing a host clock on both an idle net-
work and when sharing the network with Hadoop. In
the shared case, Hadoop’s shuffle phases causes queue-
ing, which delays PTPd’s synchronization packets. This
causes PTPd to temporarily fall 200–500µs out of syn-
chronization; 50× worse than on an idle network.

2. Key-value Stores Memcached is a popular in-
memory key-value store used by Facebook and others to
store small objects for quick retrieval [25]. We bench-
mark memcached using the memaslap load generator2

and measure the request latency. Figure 1b shows the
distribution of request latencies on an idle network and a
network shared with Hadoop. With Hadoop running, the
99th percentile request latency degrades by 1.5× from
779µs to 1196µs. Even worse, approximately 1 in 6,000
requests take over 200ms to complete3, over 85× worse
than the maximum latency seen on an idle network.

3. Iterative Data-Flow Naiad is a framework for dis-
tributed data-flow computation [24]. In iterative com-
putations, Naiad’s performance depends on low-latency
state synchronization between worker nodes. To test Na-
iad’s sensitivity to network interference, we execute a
barrier synchronization benchmark (provided by the Na-
iad authors) with and without Hadoop running. Figure 1c
shows the distribution of Naiad synchronization laten-
cies in both situations. On an idle network, Naiad takes
around 500µs at the 99th percentile to perform a four-way
barrier synchronization. With interference, this grows to
1.1–1.5ms, a 2–3× performance degradation.

2http://libmemcached.org
3Likely because packet loss triggers the TCP minRTO timeout.

Hadoop perturbs Naiad

2 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

0 100 200 300 400 500
Time since start [sec]

-400
-200

0
200
400
600

C
lo

ck
of

fs
et

[µ
s]

ptpd only
ptpd with Hadoop

(a) Timeline of PTP synchronization offset.

0 500 1000 1500 2000
Request latency [µs]

0.0

0.2

0.4

0.6

0.8

1.0

memcached only
mem’d with Hadoop

(b) CDF of memcached request latencies.

0 500 1000 1500 2000
Barrier sync. latency [µs]

0.0

0.2

0.4

0.6

0.8

1.0

Naiad only
Naiad with Hadoop

(c) CDF of Naiad barrier sync. latencies.

Figure 1: Motivating experiments: Hadoop traffic interferes with (a) PTPd, (b) memcached and (c) Naiad traffic.

Setup 50th% 99th%
one host, idle network 85 126µs

two hosts, shared switch 110 130µs
shared source host, shared egress port 228 268µs
shared dest. host, shared ingress port 125 278µs

shared host, shared ingress and egress 221 229µs
two hosts, shared switch queue 1,920 2,100µs

Table 1: Median and 99th percentile latencies observed
as ping and iperf share various parts of the network.

2 Motivation
We begin by showing that shared switch queues are the
primary source of network interference. We then quan-
tify the extent to which network interference impacts
application-observable metrics of performance.

2.1 Where does the latency come from?
Network interference may occur at various places on the
network path. Applications may share ingress or egress
paths in the host, share the same network switch, or share
the same queue in the same network switch. To assess the
impact of interference in each of these situations, we em-
ulate a latency-sensitive RPC application using ping and
a throughput-intensive bulk transfer application by run-
ning two instances of iperf. Table 1 shows the results of
arranging ping and iperf with various degrees of net-
work sharing. Although any sharing situation results in
interference, the effect is worst when applications share a
congested switch queue.. In this case, the 99th percentile
ping latency is degraded by over 16× compared to the
unshared case.

2.2 How bad is it really?
Different applications use the network in different ways.
To demonstrate the degree to which network interfer-
ence affects different applications, we run three represen-
tative latency-sensitive applications (PTPd, memcached
and Naiad) on a network shared with Hadoop (details

in §6) and measure the effects.

1. Clock Synchronization Precise clock synchroniza-
tion is important to distributed systems such as Google’s
Spanner [11]. PTPd offers microsecond-granularity time
synchronization from a time server to machines on a
local network. In Figure 1a, we show a timeline of
PTPd synchronizing a host clock on both an idle net-
work and when sharing the network with Hadoop. In
the shared case, Hadoop’s shuffle phases causes queue-
ing, which delays PTPd’s synchronization packets. This
causes PTPd to temporarily fall 200–500µs out of syn-
chronization; 50× worse than on an idle network.

2. Key-value Stores Memcached is a popular in-
memory key-value store used by Facebook and others to
store small objects for quick retrieval [25]. We bench-
mark memcached using the memaslap load generator2

and measure the request latency. Figure 1b shows the
distribution of request latencies on an idle network and a
network shared with Hadoop. With Hadoop running, the
99th percentile request latency degrades by 1.5× from
779µs to 1196µs. Even worse, approximately 1 in 6,000
requests take over 200ms to complete3, over 85× worse
than the maximum latency seen on an idle network.

3. Iterative Data-Flow Naiad is a framework for dis-
tributed data-flow computation [24]. In iterative com-
putations, Naiad’s performance depends on low-latency
state synchronization between worker nodes. To test Na-
iad’s sensitivity to network interference, we execute a
barrier synchronization benchmark (provided by the Na-
iad authors) with and without Hadoop running. Figure 1c
shows the distribution of Naiad synchronization laten-
cies in both situations. On an idle network, Naiad takes
around 500µs at the 99th percentile to perform a four-way
barrier synchronization. With interference, this grows to
1.1–1.5ms, a 2–3× performance degradation.

2http://libmemcached.org
3Likely because packet loss triggers the TCP minRTO timeout.

Qjump – two pieces

1.  At network config time
  Compute a set of (8*) rates based on
  Traffic matric & hops => fan in (f)

2.  At run time
  Flow assigns itself a priority/rate class
  subject it to (per hypervisor) rate limit

* 8 arbitrary – but often h/w supported

Memcached latency redux w/ QJ

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 7

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

5 300 600 9001200
Latency in µs

alone
+ iperf
+ iperf w/ QJ

(a) CDF of ping packet latency across a
switch. Note the change in x-axis scale.

0 500 1000 1500 2000
Latency in µs

0.0

0.2

0.4

0.6

0.8

1.0

alone
+ Hadoop
+ Had. w/ QJ

(b) QJUMP reduces memcached request la-
tency: CDF of 9 million samples.

0 500 1000 1500 2000
Latency in µs

0.0

0.2

0.4

0.6

0.8

1.0

alone
+ Hadoop
+ Had. w/ QJ

(c) QJ fixes Naiad barrier synchronization
latency: CDF over 10k samples.

Figure 3: Application-level latency experiments: QJUMP (green, dotted line) mitigates the latency tails from Figure 1.

Figure 4: Network topology of our test-bed.

performance. We also show that in a realistic multi-
application setting, QJUMP both resolves network inter-
ference and outperforms other readily available systems.
We execute these experiments on the topology shown in
Figure 4.

Low Latency RPC vs. Bulk Transfer Remote Proce-
dure Calls (RPCs) and bulk data transfers represent ex-
treme ends of the latency-bandwidth spectrum. QJUMP
resolves network interference at these extremes. As in
§2.1, we emulate RPCs and bulk data transfers using
ping and iperf respectively. We measure in-network
latency for the ping traffic directly using a high resolu-
tion Endace DAG capture card and two optical taps on
either side of a switch. This verifies that queueing la-
tency at switches is reduced by QJUMP. By setting ping
to the highest QJUMP level (f7 = 1), we reduce its pack-
ets’ latency at the switch by over 300× (Figure 3a). The
small difference between idle switch latency (1.6µs) and
QJUMP latency (2–4µs) arises due a small on-chip FIFO
through which the switch must process packets in-order.
The switch processing delay, represented as ε in Equa-
tion 2, is thus no more than 4µs for each of our switches.

Memcached QJUMP resolves network interference
experienced by memcached sharing a network with
Hadoop. We show this by repeating the memcached ex-
periments in §2.2. In this experiment, memcached is
configured at an intermediate QJUMP level, rate-limited
to 5Gb/s (above memcached’s maximum throughput; see

§6.5). Figure 3b shows the distribution (CDF) of mem-
cached request latencies when running on an idle net-
work, a shared network, and a shared network with
QJUMP enabled. With QJUMP enabled, the request laten-
cies are close to the ideal. The median latency improves
from 824µs in the shared case to 476µs, a nearly 2× im-
provement.6

Naiad Barrier Synchronization QJUMP also resolves
network interference experienced by Naiad [24], a dis-
tributed system for executing data parallel dataflow pro-
grams. Figure 3c shows the latency distribution of
a four-way barrier synchronization in Naiad. On an
idle network network, 90% of synchronizations take no
more than 600µs. With interfering traffic from Hadoop,
this value doubles to 1.2ms. When QJUMP is enabled,
however, the distribution closely tracks the uncontended
baseline distribution, despite sharing the network with
Hadoop. QJUMP here offers a 2–5× improvement in
application-level latency.

Multi-application Environment In real-world data-
centers, a range of applications with different latency
and bandwidth requirements share same infrastructure.
QJUMP effectively resolves network interference in these
shared, multi-application environments. We consider a
datacenter setup with three different applications: ptpd
for time synchronization, memcached for serving small
objects and Hadoop for batch data analysis. Since resolv-
ing on-host interference is outside the scope of our work,
we avoid sharing hosts between applications in these ex-
periments and share only the network infrastructure.

Figure 5 (top) shows a timeline of average request la-
tencies (over a 1ms window) for memcached and syn-
chronization offsets for ptpd, each running alone on an
otherwise idle network. Figure 5 (middle), shows the two
applications sharing the network with Hadoop. In this

6The distributions for the idle network and the QJUMP case do not
completely agree due of randomness in the load generated.

QJ naiad barrier synch latency
redux

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 7

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

5 300 600 9001200
Latency in µs

alone
+ iperf
+ iperf w/ QJ

(a) CDF of ping packet latency across a
switch. Note the change in x-axis scale.

0 500 1000 1500 2000
Latency in µs

0.0

0.2

0.4

0.6

0.8

1.0

alone
+ Hadoop
+ Had. w/ QJ

(b) QJUMP reduces memcached request la-
tency: CDF of 9 million samples.

0 500 1000 1500 2000
Latency in µs

0.0

0.2

0.4

0.6

0.8

1.0

alone
+ Hadoop
+ Had. w/ QJ

(c) QJ fixes Naiad barrier synchronization
latency: CDF over 10k samples.

Figure 3: Application-level latency experiments: QJUMP (green, dotted line) mitigates the latency tails from Figure 1.

Figure 4: Network topology of our test-bed.

performance. We also show that in a realistic multi-
application setting, QJUMP both resolves network inter-
ference and outperforms other readily available systems.
We execute these experiments on the topology shown in
Figure 4.

Low Latency RPC vs. Bulk Transfer Remote Proce-
dure Calls (RPCs) and bulk data transfers represent ex-
treme ends of the latency-bandwidth spectrum. QJUMP
resolves network interference at these extremes. As in
§2.1, we emulate RPCs and bulk data transfers using
ping and iperf respectively. We measure in-network
latency for the ping traffic directly using a high resolu-
tion Endace DAG capture card and two optical taps on
either side of a switch. This verifies that queueing la-
tency at switches is reduced by QJUMP. By setting ping
to the highest QJUMP level (f7 = 1), we reduce its pack-
ets’ latency at the switch by over 300× (Figure 3a). The
small difference between idle switch latency (1.6µs) and
QJUMP latency (2–4µs) arises due a small on-chip FIFO
through which the switch must process packets in-order.
The switch processing delay, represented as ε in Equa-
tion 2, is thus no more than 4µs for each of our switches.

Memcached QJUMP resolves network interference
experienced by memcached sharing a network with
Hadoop. We show this by repeating the memcached ex-
periments in §2.2. In this experiment, memcached is
configured at an intermediate QJUMP level, rate-limited
to 5Gb/s (above memcached’s maximum throughput; see

§6.5). Figure 3b shows the distribution (CDF) of mem-
cached request latencies when running on an idle net-
work, a shared network, and a shared network with
QJUMP enabled. With QJUMP enabled, the request laten-
cies are close to the ideal. The median latency improves
from 824µs in the shared case to 476µs, a nearly 2× im-
provement.6

Naiad Barrier Synchronization QJUMP also resolves
network interference experienced by Naiad [24], a dis-
tributed system for executing data parallel dataflow pro-
grams. Figure 3c shows the latency distribution of
a four-way barrier synchronization in Naiad. On an
idle network network, 90% of synchronizations take no
more than 600µs. With interfering traffic from Hadoop,
this value doubles to 1.2ms. When QJUMP is enabled,
however, the distribution closely tracks the uncontended
baseline distribution, despite sharing the network with
Hadoop. QJUMP here offers a 2–5× improvement in
application-level latency.

Multi-application Environment In real-world data-
centers, a range of applications with different latency
and bandwidth requirements share same infrastructure.
QJUMP effectively resolves network interference in these
shared, multi-application environments. We consider a
datacenter setup with three different applications: ptpd
for time synchronization, memcached for serving small
objects and Hadoop for batch data analysis. Since resolv-
ing on-host interference is outside the scope of our work,
we avoid sharing hosts between applications in these ex-
periments and share only the network infrastructure.

Figure 5 (top) shows a timeline of average request la-
tencies (over a 1ms window) for memcached and syn-
chronization offsets for ptpd, each running alone on an
otherwise idle network. Figure 5 (middle), shows the two
applications sharing the network with Hadoop. In this

6The distributions for the idle network and the QJUMP case do not
completely agree due of randomness in the load generated.

Web search FCT100Kb ave

10 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

W
eb

-s
ea

rc
h

w
or

kl
oa

d

0.2 0.4 0.6 0.8
Load

1
2

5
10
20

N
or

m
al

iz
ed

FC
T

[
]

TCP
DCTCP

pFabric

QJump

(a) (0, 100kB]: average.

0.2 0.4 0.6 0.8
Load

1
2

5
10
20

N
or

m
al

iz
ed

FC
T

[lo
g 1

0
]

(b) (0, 100kB]: 99th percentile.

0.2 0.4 0.6 0.8
Load

1
2

5
10
20

N
or

m
al

iz
ed

FC
T

[lo
g 1

0
]

(c) (10MB, ∞): average.

D
at

a-
m

in
in

g
w

or
kl

oa
d

0.2 0.4 0.6 0.8
Load

1
2

5
10
20

N
or

m
al

iz
ed

FC
T

[lo
g 1

0
]

TCP
DCTCP

pFabric
QJump

(d) (0, 100kB]: average.

0.2 0.4 0.6 0.8
Load

1
2

5
10
20

N
or

m
al

iz
ed

FC
T

[lo
g 1

0
]

(e) (0, 100kB]: 99th percentile.

0.2 0.4 0.6 0.8
Load

1
2

5
10
20

N
or

m
al

iz
ed

FC
T

[lo
g 1

0
]

(f) (10MB, ∞): average.

Figure 9: Normalized flow completion times in a 144-host simulation (1 is ideal): QJUMP outperforms TCP, DCTCP
and pFabric for small flows. N.B.: log-scale y-axis; QJUMP and pFabric overlap in (a), (d) and (e).

outperforms pFabric by up to 20% at high load, but loses
to pFabric by 15% at low load (Fig. 9c). On the data min-
ing workload, QJUMP’s average FCTs are between 30%
and 63% worse than pFabric’s (Fig. 9f).

In the data-mining workload, 85% of all flows transfer
fewer than 100kB, but over 80% of the bytes are trans-
ferred in flows of greater than 100MB (less than 15%
of the total flows). QJUMP’s short epoch intervals can-
not sense the difference between large flows, so it does
not apply any rate-limiting (scheduling) to them. This
results in sub-optimal behavior. A combined approach
where QJUMP regulates interactions between large flows
and small flows, while DCTCP regulates the interactions
between different large flows might improve this.

6.5 QJUMP Configuration
As described in §5, QJUMP levels can be determined
in several ways. One approach is to tune the levels to
a specific mix of applications. For some applications,
it is clear that they perform best at guaranteed latency
(e.g. ptpd at f7 = 1) or high rate (e.g. Hadoop at f0 = n).
For others, their performance at different throughput fac-
tors is less straightforward. Memcached is an example
of such an application. It needs low request latency vari-
ance as well as reasonable request throughput. Figure 10
shows memcached’s request throughput and latency as
a function of rate-limiting. Peak throughput is reached
at a rate allocation of around 5Gb/s. At the same point,

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10
Rate limit [Gb/s]

10µs
100µs

1ms
10ms

100ms
1s

La
te

nc
y

[lo
g 1

0
]

Max. latency
99%ile latency

0
50

100
150
200

Th
ro

ug
hp

ut
[k

re
q/

s]

best tradeoff

Throughput

Figure 10: memcached throughput (top) and latency
(bottom, log10) as a function of the QJUMP rate limit.

the request latency also stabilizes. Hence, a rate-limit of
5Gb/s gives the best tradeoff for memcached. This point
has the strongest interference control possible without
throughput restrictions. To convert this to a throughput
factor, we get fi =

nTi
R by rearranging Equation 2 for fi.

On our test-bed (n = 12 at R =10Gb/s), Ti =5Gb/s yields
a throughput factor of f = 6. We can therefore choose
a QJUMP level for memcached (e.g. f4) and set it to a
throughput factor ≥6.

QJUMP offers a bounded latency level at throughput
factor f7. At this level, all packets admitted into the net-

Big Picture Comparison – Related
work…

12 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

Commodity Unmodified Coord. Flow Bounded Imple-
System hardware protocols OS kernel apps. free deadlines latency mented

D
ep

lo
ya

bl
e Pause frames ! ! ! ! ! " " !‡

ECN !∗, ECN ! ! ! ! " " !‡

DCTCP [1] !∗, ECN !∗ " ! ! " " !‡

Fastpass [29] ! ! !, module ! " " " !‡

EyeQ [22] !∗, ECN ! " ! " " " !‡

QJUMP ! ! !, module ! ! !∗ ! !‡

N
ot

de
pl

oy
ab

le

D2TCP [33] !∗, ECN !∗ " " "∗ ! " !
HULL [2] " !∗ " ! ! " " !∗

D3 [35] " " " " ! ! " "∗, softw.
PDQ [17] " " " " " ! " "
pFabric [3] " " " ! ! !∗ " "
DeTail [37] " ! ! " "∗ " " "∗, softw.
Silo [21] ! ! " !∗ "∗ !∗, SLAs " !
TDMA Eth. [34] !∗ !∗ " !∗ " " ! !

Table 2: Comparison of related systems. ∗with caveats, see text; ‡implementation publicly available.

8 Discussion and Future Work
It would be ideal if applications were automatically clas-
sified into QJUMP levels. This requires overcoming a few
challenges. First, the rate-limiter needs to be extended
to calculate an estimate of instantaneous throughput for
each application. Second, applications that exceed their
throughput allocation must be moved to a lower QJUMP
level, while applications that underutilize their allocation
must be lifted to a higher QJUMP level. Third, some
applications (e.g. Naiad) have latency-sensitive control
traffic as well as throughput-intensive traffic that must be
treated separately [19]. We leave this to future work.

9 Conclusion
QJUMP applies QoS-inspired concepts to datacenter ap-
plications to mitigate network interference. It offers mul-
tiple QJUMP levels with different latency variance vs.
throughput tradeoffs, including bounded latency (at low
rate) and full utilization (at high latency variance). In an
extensive evaluation, we have demonstrated that QJUMP
attains near-ideal performance for real applications and
good flow completion times in simulations. Source code
and data sets are available from http://goo.gl/q1lpFC.

Acknowledgements
We would like to thank Alex Ho and John Peach from
Arista for arranging 10G switches for us. We would
also like to thank Simon Peter, Srinivasan Keshav, Mar-
wan Fayed, Rolf Neugebauer, Tim Harris, Antony Row-
stron, Matthew Huxtable, Jeff Mogul and our anonymous
reviewers for their valuable feedback. Thanks also go
to our shepherd Jeff Dean. This work was supported
by a Google Fellowship, EPSRC INTERNET Project
EP/H040536/1, Defense Advanced Research Projects
Agency (DARPA) and Air Force Research Laboratory
(AFRL), under contract FA8750-11-C-0249. The views,
opinions, and/or findings contained in this article are

those of the authors and should not be interpreted as rep-
resenting the official views or policies, either expressed
or implied, of DARPA or the Department of Defense.

Appendix
The Parekh-Gallager theorem [27, 28] shows that
Weighted Fair Queueing (WFQ) achieves a worst case
delay bound given by the equation

end to end delay ≤ σ
g
+

K−1

∑
i=1

P
gi

+
K

∑
i=1

P
ri
, (5)

where all sources are governed by a leaky bucket ab-
straction with rate ρ and burst size σ , packets have a
maximum size P and pass through K switches. For each
switch i, there is a total rate ri of which each connection
(host) receives a rate gi. g is the minimum of all gi. It is
assumed that ρ ≤ g, i.e. the network is underutilized.

The final term in the equation adjusts for the difference
between PGPS and GPS (Generalized Processor Shar-
ing) for a non-idle network. Since we assume an idle
network in our model (3.1), Equation 5 simplifies to

end to end delay ≤ σ
g
+

K−1

∑
i=1

P
gi

(6)

If we assume that all hosts are given a fair share of the
network—i.e. Fair Queueing rather than WFQ—then,

gi =
ri

n
(7)

where n is the number of hosts. Therefore the g (the min-
imum gi) dominates. Since we assume an idle network,
the remaining terms sum to zero. For a maximum burst
size ρ = P, the equation therefore simplifies to

end to end delay ≤ P
g
= n× P

R
(8)

which is equivalent to the equation derived in Equation 1
(§3.1). The Parekh-Gallager theorem does not take into
account the switch processing delay ε , since it is negligi-
ble compared to the end-to-end delay on the Internet.

Failure Detectors

  2PC & CAP theorem
  Recall CAP (Brewer’s Hypothesis)

  Consistency, Availability, Partitions
  Strong& weak versions!
  If have net&node deterministic failure

detector, isn’t necessarily so!
  What can we use CAP-able system for?

2b 2PC throughput with and
without QJump

8 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

0

400

800

1200 idle network memcached avg. latency
PTPd offset

0

400

800

1200 + Hadoop

150 200 250 300 350
Time since start [sec]

0

400

800

1200 + Hadoop, with QJump

Ti
m

e
[µ

s]

Figure 5: PTPd and memcached in isolation (top), with
interfering traffic from Hadoop (middle) and with the in-
terference mitigated by QJUMP (bottom).

case, average latencies increase for both applications and
visible latency spikes (corresponding to Hadoop’s shuf-
fle phases) emerge. With QJUMP deployed, we assign
ptpd to f7 = 1, Hadoop to f0 = n = 12 and memcached
to T5 = 5Gb/s =⇒ f5 = 6 (see §6.5). The three appli-
cations now co-exist without interference (Figure 5 (bot-
tom)). Hadoop’s performance is not noticeably affected
by QJUMP, as we will further show in §6.3.

Distributed Atomic Commit One of QJUMP’s unique
features is its guaranteed latency level (described in
§3.1). Bounded latency enables interesting new designs
for datacenter coordination software such as SDN con-
trol planes, fast failure detection and distributed consen-
sus systems. To demonstrate the usefulness of QJUMP’s
bounded latency level, we built a simple distributed two-
phase atomic-commit (2PC) application.

The application communicates over TCP or over UDP
with explicit acknowledgements and retransmissions.
Since QJUMP offers reliable delivery, the coordinator can
send its messages by UDP broadcast when QJUMP is en-
abled. This optimization yields a ≈30% throughput im-
provement over both TCP and UDP.

In Figure 6, we show the request rate for one coordi-
nator and seven servers as a function of network interfer-
ence. Interference is created with two traffic generators:
on that generates a constant 10Gb/s of UDP traffic and
another that sends fixed-size bursts followed by a 25ms
pause. We report interference as the ratio of the burst
size to the internal switch buffer size. Beyond a ratio of
200%, permanent queues build up in the switch. At this
point the impact of retransmissions degrades throughput
of the UDP and TCP implementations to 20% of the

0.1
%

0.4
%

1.6
%

6.2
%

25
.0%

10
0.0

%

40
0.0

%

Burst size / switch buffer size [log2]

0

2000

4000

6000

8000

10000

12000

14000
Th

ro
ug

hp
ut

[re
q/

s]

Broadcast UDP + QJump
UDP + retries
TCP

Figure 6: QJUMP offers constant two-phase commit
throughput even at high levels of network interference.

10,000 requests/sec observed on an idle network. By
contrast, the UDP-over-QJUMP implementation does not
degrade as its messages “jump the queue”. At high inter-
ference ratios (>200%), two-phase commit over QJUMP
achieves 6.5× the throughput of standard TCP or UDP.
Furthermore, QJUMP’s reliable delivery and low latency
enable very aggressive timeouts to be used for failure
detection. Our 2PC system detects component failure
within two network epochs (≈40µs on our network), far
faster than typical failure detection timeouts (e.g. 150 ms
in RAMCloud [26, §4.6]).

6.3 QJUMP Outperforms Alternatives
Several readily deployable congestion control schemes
exist, including Ethernet Flow Control (802.1x), Explicit
Congestion Notifications (ECN) and Data Center TCP
(DCTCP). We repeat the multi-application experiment
described in §6.2 and show that QJUMP exhibits better
interference control than other schemes.

Since interference is transient in these experiments,
we measure the degree to which it affects applications
using the root mean square (RMS) of each application-
specific metric.7 For Hadoop, PTPd and memcached, the
metrics are job runtime, synchronization offset and re-
quest latency, respectively. Figure 7 shows six cases: an
ideal case, a contended case and one for each of the four
schemes used to mitigate network interference. All cases
are normalized to the ideal case, which has each applica-
tion running alone on an idle network. We discuss each
result in turn.

Ethernet Flow Control Like QJUMP, Ethernet Flow
Control is a data link layer congestion control mecha-
nism. Hosts and switches issue special pause messages

7RMS is a statistical measure of the magnitude of a varying quan-
tity [6, p. 64]. This is not the same as the root mean square error
(RMSE), which measures prediction accuracy.

Consistent, partition tolerant app?

  Software Defined Net update!
  Distributed controllers have distributed

rules
  Rules change from time to time
  Need to update, consistently
  Need update to work in presence of

partitions
  By definition!

  So Qjump may let us do this too!

3. Application code -> Network

  Last piece of data center working for
application

  Switch and Host NICs have a lot of
smarts
  Network processors,
  like GPUs or (net)FPGAs
  Can they help applications?
  In particular, avoid pathological traffic

patterns (e.g. TCP incast)

Application code

  E.g. shuffle phase in map/reduce
  Does a bunch of aggregation
  (min, max, ave) on a row of results
  And is cause of traffic “implosion”
  So do work in stages in the switches in the

net (like merge sort!)
  Code very simple
  Cross-compile into switch NIC cpus

Other application examples

  Are many …
  Arose in Active Network research

  Transcoding
  Encryption
  Compression
  Index/Search

  Etc etc

Need language to express these

  Finite iteration
  (not Turing-complete language)
  So design python– with strong types!
  Work in progress in NaaS project at

Imperial and Cambridge…

Cloud Computing Isn’t For Everything!

•  “being	 fast	 really	 ma1ers…half	 a	 second	 delay	 caused	 a	 20%	 drop	 in	 traffic	 and	 it	
killed	 user	 sa>sfac>on”	 -‐	 Marissa	 Mayer	 @	 Web	 2.0	 (2008)	

•  	 “A	 millisecond	 decrease	 in	 a	 trade	 delay	 may	 boost	 a	 high-‐speed	 firm's	 earnings	 by	
about	 100	 million	 per	 year”	 –	 SAP,	 2012	

•  “It’s	 simply	 not	 appropriate	 to	 just	 drag	 and	 drop	 our	 databases	 into	 a	 cloud	
plaSorm”	 –	 Thomas	 Kadlec,	 Tesco,	 2015	

Latency	 effect	 on	 facial	 recogni0on	 Source: Glimpse project, MIT, 2014

Remote	 Processing	 Local	 Processing	

Tiny Terabit Datacentre
An End-Host Networked-Server Architecture

  High Performance
  Resource Isolation
  Flexible Implementation

  Predictable Latency
  Low Latency Interconnect
  Affordable

NITRO"  28

Networks, Interfaces and Transports!
for Rack-Scale Operating Systems!

Conclusions/Discussion

  Data Center is a special case!
  Its important enough to tackle

  We can hard bound latency easily
  We can detect failures and therefore solve

some nice distributed consensus problems
  We can optimise applications pathological

traffic patterns
  Integrate programming of net&hosts
  Weird new h/w…

  Plenty more to do…

