
The Inevitability of Xen

Jon Crowcroft, Keir Fraser, Steven Hand, Ian Pratt, Andrew Warfield
University of Cambridge

Computer Laboratory�
firstname.lastname � @cl.cam.ac.uk

May 27, 2005

Abstract

Xen is a virtual machine monitor (VMM) that we have developed at the
University of Cambridge over the past 5 years. As a VMM, Xen allows
a single physical computer to be partitioned into a set of isolated virtual
computers, each running their own operating system and applications. Xen
has received a fair bit of attention recently and we have even spun out a
company to support the commercial use of the software.

This article isn’t just about our VMM though. Xen is the core part of a
much larger vision for public computing that has been behind a lot of our
research in the 21st century. In this article, we articulate this vision, and
the motivation behind Xen, and cover the details of the current VMM, the
context in which it was conceived, and the future uses that we anticipate.

1 Xen: Master and Servant
Xen is the crucial component of the Xenoserver world of public computing. The
Internet provides connectivity between all the networks in the world, and the Web
provides glue between all of the information resources connected to these net-
works. In both of those contexts, there is mutual benefit to participants: Some-
times referred to as Metcalfe’s Law, the value of N nodes joining in a network
is ��� , which usually offsets the risks, added security costs, denial of service and
so forth, associated with being connected to a global and largely unregulated net-
work.



There are already a great deal of resources attached to these networks, and an
interest in building services (online games, file sharing, Internet telephony, and
even the search for extra-terrestrial life) that are built by combining distributed
resources together. However, if we want equipment owners to share their com-
putational resources, the benefit is often less obvious and the risks are certainly
greater — it’s a big bad world out there full of worms, viruses, and ill-willed
teenagers. To offset the risks, we must provide one service on each host: isola-
tion. If a user is to, for instance, offer CPU resources she must be assured there
is no negative impact on her normal applications. In SETI@Home this is rela-
tively easy – the service is included as a screen-saver, the managing organization
is generally believed to be capable, trustworthy, and benign, and there is only one
application. For a general service which permits arbitrary applications to run, this
is a more difficult problem.

This is exactly the problem that the Xenoservers project is attempting to solve.
Using the strong isolation provided by a virtual machine manager as a base, we
intend to build a service platform that allows computers, from common desktops
to high-end servers in commercial hosting facilities, to safely host arbitrary appli-
cations managed completely by an external party.

The key word in that last sentence is arbitrary. Users have applications that
run on all types of hardware, are written in all types of languages, using many
different libraries and operating systems. For a service platform to be truly generic
for public computing services, it must be agnostic to each and every one of these
factors.

The idea of a global service platform is not new. The rich history of such
efforts, both academic and commercial, is littered with solutions that address only
a subset of the problems of isolation, and generality:

New Programming Language Approaches Users are told that if they only change
programming language, then they can run their programs on any machine
that has a VM for the byte code for that programming language, be it Java or
C# or some other flavor of the decade. This is fine, provided they rewrite all
their applications, and someone has ported the JVM to the OS, and the OS ac-
tually supports isolation. For small, new web service type applications, this
may be the approach of choice, but there are many large software systems
out there that cannot practically be rewritten. Such difficulties in rewriting
applications, retraining developers to a new language, and the benefits of
software diversity all point to the limited applicability of this technique.

New Operating System Approaches Users have been told that if they only change



which OS they use, then they will find their applications running in an en-
vironment that is ported to all known hardware platforms some day, though
of course, they have to change all the applications to call the API to make
known the resource needs so that the OS isolation mechanisms know what
to do. History has shown that while isolation has worked quite well in some
of the newer OSs, the time taken for them to reach the market is longer by
far than the time for system performance to outstrip the multiple demands a
user has.

New Hardware Approaches Users have been offered the possibility that if they
only change all their hardware to use a new processor such as the Transmeta
Crusoe, then it can emulate all known processors (up to a couple of years
ago), and may one day have the resources to provide isolation between the
virtual CPUs it implements. This last approach is really very attractive, but
unless one has the resources of a major semi-conductor outfit, and a decade
to wait, the functionality in the VLIW CPU microcode falls short of the
generality needed.

VMMs Users have been offered Virtual Machines at the level of the CPU. Virtual
Machine Monitors have been around for decades offering multiplexing of
the processor and other system resources among multiple copies of the same
Operating System, and between different concurrent operating systems on
the same host. Most VMs, however, only provide the functional isolation
necessary to multiplex resources safely; they do not typically consider per-
formance isolation required to manage access to CPU and devices.

Xen is a VMM that offers paravirtualization: The operating system must be
modified slightly to run on top of Xen, which does not present an exact replica
of the underlying hardware as so-called pure virtualization packages (such as
VMware) do. By changing the OS-to-hardware interface Xen is able to make
considerable performance improvements, accounting for the fact that the x86 ar-
chitecture was not built with virtualization in mind. Xen currently allows Linux,
FreeBSD, and NetBSD OS instances to share a common physical host in isolation
from one another. We’ll look at this in more detail in the next section.

Meanwhile, if we really want owners to share their computational resources,
we need to offer more than isolation. We need to provide incentives. To this end,
the Xenoserver system was conceived.

The Xenoserver model consists of a number of control plane components that
compose together to provide resource trading, resource registration and discov-



ery, deployment of guest OS and applications, OS migration, and virtualization-
supporting storage. These components rely on the local mechanisms on each node
running Xen. Mediated through local policies, they allow the owner of resources
to manage what is visible and usable in public and what is isolated and private.

2 Xen: the Master Platform
Xen is a VMM that paravirtualizes the x86 architecture. Figure 1shows the struc-
ture of a machine running the Xen hypervisor, hosting a number of different guest
operating systems, including Domain0 running control software in a XenoLinux
environment.

As a hardware architecture to virtualize, the x86 is probably best described
as “uncooperative”. Virtualizing the platform efficiently has presented interest-
ing technical challenges with almost every aspect of the hardware: instruction
execution, memory management, and device access have all required careful con-
sideration and design to virtualize effectively – detailed war stories are available
in our research papers. The end result of Xen though, is a system that provides ef-
ficient virtualization using slightly modified OSes. Xen currently supports Linux,
NetBSD, FreeBSD, and Plan9. The application binary interface ABI remains un-
changed, and so applications may be run unmodified. In fact, many of the leading
Linux vendors are including Xen in their distributions.

X
E
N

H/W (SMP x86, phy mem, enet, SCSI/IDE)

virtual 
network

virtual 
blockdev

virtual 
x86 CPU

virtual 
phy mem

Control
Plane

Software

GuestOS
(XenoLinux)

GuestOS
(XenoBSD)

GuestOS
(XenoXP)

User
Software

User
Software

User
Software

GuestOS
(XenoLinux)

Xeno-Aware
Device Drivers

Xeno-Aware
Device Drivers

Xeno-Aware
Device Drivers

Xeno-Aware
Device Drivers

Domain0
control

interface

Figure 1: The Xen hypervisor

Other virtualization projects such as VMware and Denali make different cuts
in the software stack. VMware chooses to avoid the requirement of re-building



the OS by presenting an exact virtualization of the underlying hardware. The
benefit of this technique is the ability to support unmodified, closed-source OSes
such as Windows. The cost, as mentioned above, is the inability to make many
performance-enhancing improvements at the virtualization layer. Denali’s ap-
proach is in the opposite direction: the ABI is not maintained, and so applications
must also be recompiled to run on the virtual architecture.

As mentioned above, the key property that Xen provides to guest OSes is iso-
lation. Xen rigidly divides CPU resources between VMs to ensure that they each
receive an alloted amount of processing time. Moreover, as each guest is running
on its own set of virtual hardware, applications in separate OSes are protected from
one another to the almost same degree that they would be were they installed on
separate physical hosts. This property has attracted considerable attention in light
of the inability of current OSes to protect applications against spyware, worms,
and viruses: Untrusted applications such as web browsers may be seconded to
their own virtual machines and completely separated from other, more trusted ap-
plications.

This strong isolation has also proved very useful in solving two major prob-
lems with device drivers: driver availability and reliability. Xen is capable of
allowing individual virtual machines to have direct access to specific pieces of
hardware. We have taken the approach of using a single virtual machine to run the
physical driver for a device (such as a disk or network interface) and then export
a virtualized version of the device to all of the other guest OSes that are running
on the host. This approach means that a device need only be supported on a sin-
gle platform (Linux, for instance), and may be available to all the OSes that Xen
runs. Each guest implements an idealized disk and network device, which are ca-
pable of connecting to the hardware specific driver in an isolated device domain.
This approach has the added benefit of making drivers, which are a major source
of bugs in operating systems, more reliable. By running a driver in its own VM,
driver crashes are limited to the driver itself – other applications may continue to
run. Device domains can even be rebooted to recover failed drivers, and result
in down-times on the order of hundreds of milliseconds in cases where the entire
machine would previously have crashed completely.

This approach will no doubt sound familiar to anyone who has worked with
microkernels in the past – Xen’s isolation achieves a similar fragmentation of OS
subsystems. One major difference between Xen and historical work on microker-
nels is that we have forgone the architecturally pure fixation on IPC mechanisms
in favor of a generalized, shared-memory ring-based communication primitive
that is able to achieve very high throughputs by batching requests.



In addition to the benefits of virtualization as a base for service platforms, it
is worth noting that virtualization has attracted considerable attention as a devel-
opment, debug and management environment. The pervasive debugger project
(PDB) in our lab is building debug support for entire distributed systems. PDB al-
lows both vertical debugging, tracing execution through the entire software stack
including OS and application code, and horizontal debugging, allowing execution
across a complete set of virtual hosts to be examined concurrently. The decoupling
of virtual machines from physical hardware has the additional benefit of allowing
the entire state of a system to be saved at arbitrary points in time. This allows
debuggers to be built that examine old versions of an an executing VM to identify
the point at which a bug was introduced, and even to step execution backwards
after a crash to quickly establish the root cause.

3 Xenoservers: The Service Platform
The larger view of the Xenoservers project is to use Xen-based hosts to manage
and deploy distributed applications across large numbers of physical hosts. The
two key targets for such deployments are large clusters, and the Internet at large.
Perhaps surprisingly, both of these environments are very similar in that they share
the property of desiring an accountable decoupling of application management
from the maintenance of physical hardware. Several of the organizations that we
have interacted with maintain clusters containing tens of thousands of nodes and
which are used by a wide variety of users. The aim of Xenoservers is to provide
the necessary higher-level functionality to locate and account resources and to
otherwise facilitate the management of such large distributed environments.

Whether a federation of IT data centers within a corporation, or a disjoint
set of internet-connected hosts, the integration of a large set of Xen-based hosts
into a viable service platform needs to allow diverse sets of hardware facili-
ties (the providers) and application managers (the customers) to work together.
Xenoservers take a market-based approach to managing a large distributed sys-
tem with virtually no central management, and very limited trust between parties.

The remainder of this section discusses the key components of the project.

Resource Registration and Discovery The first key problem in managing such a
potentially fragmented service platform is in keeping track of the resources
on offer, and in finding the required resources for a particular application.
Xenosearch provides service location, and permits complex queries to find a



number of servers meeting some desired constraint, including how far apart
they are (e.g. for disaster recovery) as well as the more normal requirement
for how near they are to a set of users (e.g. for game serving).

Migration While many server applications may be very long-lived, the hardware
that it runs on will invariably need service from time to time. A major ben-
efit of virtualization is the ability to migrate a running operating system
instance from one physical host to another. Migration allows a physical
host to be unloaded so that hardware may be serviced, it allows coarse-
grained load-balancing in a cluster environment, and it allows servers to
move closer to the users that they serve. We have demonstrated that migra-
tion may be made very fast – experiments migrating a running Quake server
have achieved repeatable migration times with outages of less than 100ms.

Virtualization-supporting Storage Large virtual machine-based systems present
many interesting new challenges for the management of storage. Storage
must potentially scale to support an order of magnitude more hosts from the
same number of physical machines. In addition it must provide location-
transparent access to allow migration, and in many cases must maintain
historical versions of disk images to allow old versions of VMs to be re-
sumed. The Parallax storage system aims to address these problems by
unifying storage resources across a set of hosts, and allowing virtual disks
to be provided for individual VMs.

4 Conclusion
In this article we have attempted to describe our work to date on the Xen virtual
machine monitor, and our plans for using Xen as a service platform for large
distributed systems in the future. Xen has been publicly available as an open
source VMM for over two years, and is now very stable and used in production
environments. We enjoy a very active developer community and are always eager
to hear about new applications and deployments of Xen in the real world.

5 References
The following resources are useful for finding out more about Xen:



� The Xenoservers Project Page, http://www.cl.cam.ac.uk/xeno/,
contains links to publications by the group in the University of Cambridge,
especially:

� Symposium on Operating System Principles (SOSP) 2003 Paper on Xen
http://www.cl.cam.ac.uk/netos/papers/2003-xensosp.pdf

� The team at Clarkson, who patiently reconstructed the results from the
SOSP paper and Usenix had the good judgment to publish it: Xen and
the Art of Repeated Research www.clarkson.edu/class/cs644/
xen/files/repeatedxen-usenix04.pdf

� Xen on Sourceforge: http://sourceforge.net/projects/xen/

� Xensource, the Company, http://xensource.com


