Plutarch: An Argument for Network Pluralism

Jon Crowcroft* Steven Hand*, Richard Mortier| Timothy Roscoef Andrew Warfield*

March 24, 2003

Abstract

It is widely accepted that the current Internet archi-
tecture is insufficient for the future: problems such
as address space scarcity, mobility and non-universal
connectivity are already with us, and stand to be ex-
acerbated by the explosion of wireless, ad-hoc and
sensor networks. Furthermore, it is far from clear
that the ubiquitous use of standard transport and
name resolution protocols will remain practicable or
even desirable.

In this paper we propose Plutarch, a new inter-
networking architecture. It subsumes existing archi-
tectures such as that defined by the Internet Proto-
col suite, but makes explicit the heterogeneity that
contemporary inter-networking schemes attempt to
mask. To handle this heterogeneity, we introduce the
notions of context and interstitial function, and de-
scribe a supporting architecture. We discuss the ben-
efits, present some potential scenarios, and consider
the research challenges posed.

1 Introduction

The remarkable success of the global Internet is fre-
quently attributed to a set of design decisions that pri-
oritize simplicity and robustness through a strongly
specified suite of protocols, and the incorporation of
only essential mechanisms within the network itself.
The astounding growth of this network over the past
thirty years serves as a clear testament to the wisdom
of these principles.

However, in recent years, the Internet’s architectural

*University of Cambridge Computer Lab, UK.
fMicrosoft Research Cambridge, UK
¥Intel Research, Berkeley, CA, USA

assumptions have been fundamentally challenged. In
particular, the introduction of specialized networks
such as sensor networks, along with various middle-
boxes have all begun to strain the existing frame-
work. As aresult, we propose Plutarch, a new frame-
work for next generation networks. It differs from
the existing Internet architecture primarily in that it
embraces heterogeneity in the hope of allowing rad-
ical innovation. The homogeneous Internet archi-
tecture and its advantages are not abandoned but re-
tained as one architecture among many.

In Plutarch we divide the world into contexts, each
comprising some set of hosts, routers, switches, net-
work links and so forth. Within a context we expect
homogeneity regarding such things as addresses,
packet formats, transport protocols and naming ser-
vices. Distinct contexts differ in at least one of these
areas.

Communication across a set of contexts is enabled
by interstitial functions, which map between the sets
of functionalities encapsulated by contexts. We can
divide such functionalities into four main areas:

Addressing: Mapping between different address
contexts is a well-understood function (one that ex-
ists today in NAT boxes, for example). We sug-
gest that programmatic interfaces to such functional-
ity should be exposed, allowing mappings to be au-
tomatically set up, maintained and managed by net-
work users.

Naming: Today, DNS provides a single global
namespace, with management handled by hierar-
chical delegation. We predict that emerging ser-
vices such as VoIP and personal area networking will
favour an alternative approach of mapping between a
plurality of naming systems, for reasons of scalabil-
ity and administrative overhead.



Routing: Different styles of routing protocol are ap-
propriate in different networks. For example, con-
necting an ad-hoc wireless network with on-demand
routing to an Internet AS running OSPF and BGP
requires a more complex mapping than simply ex-
posing the routes of each network via BGP. Using
an explicit interstitial function to map routing infor-
mation between these networks hides the churn of
Internet routes from the on-demand protocol, deals
with the wireless network protocol’s broadcast, and
hides the instability and mutability of routes within
the wireless network.

Transport: A single transport protocol struggles to
deal with all network technologies; symptomatic of
this problem is the example of wireless-specific TCP
implementations that use techniques such as splitting
and proxying [9]. Optimizing transport protocols for
specific network types has many advantages (for ex-
ample, the use of large fat pipes in Grid infrastruc-
tures) but these come at the cost of working out when
such optimizations are appropriate. Explicit intersti-
tial functions provide well-defined points at which
such decisions can be taken.

By not limiting the set of interstitial functions that
may be defined and built we hope to support extensi-
bility within existing networks, and encourage inno-
vation within new ones.

2 Motivation

We present the Plutarch framework for a number
of reasons. The principal one is the concrete prob-
lem of connecting networks where a common over-
lay protocol such as IPv4 or IPv6 is infeasible or
undesirable, for example sensor networks, or spe-
cialized networks which offer valuable intra-domain
functionality which IP must ignore. We discuss this
issue, and how our solution addresses it, in the rest
of this paper.

The second reason is that the abstract model underly-
ing Plutarch captures the state of the Internet we see
today better than models based on the Internet’s orig-
inal architectural principles [11]. This is not to say
these principles are wrong or inappropriate; rather,
we claim that a conceptual framework based upon

them does not facilitate clear thinking about the fu-
ture of the network. They may be the right principles,
but they are not an adequate frame.

Finally, a model of networking based on explicit con-
texts provides a clearer framework within which to
debate future architectural changes to the Internet
than the current tradition allows. We hope it will al-
low the debate to move forward.

We accept that we might appear to be moving the de-
bate back, to the days where the Internet was a con-
catenation of disparate networks (ARPANET, MIL-
NET, SATNET, etc), or catenet, rather than the uni-
versal lowest-common-denominator overlay network
it latterly became. However, we feel that there is
merit in revisiting this approach to networking and
extending it to take account of much more recent
computer science and distributed systems research.
One could view the approach of Plutarch as applica-
tion of concepts such as late binding and context rel-
ative naming from the last two decades of distributed
systems research [23].

Consequently, this paper concentrates on naming
and addressing issues for establishing connectivity
between radically heterogeneous networks, a prob-
lem that the Internet Protocol only partially solved.
In this paper, we are literally concerned only with
‘inter-networking,” and not with any of the many
other networking issues such as the units, timeliness
or guarantee of resource allocation, security or audit-
ing. A concrete realization of our framework must
address these issues, but within the contexts of the
particular networks being connected: we do not be-
lieve it is sensible to address them through a single
unifying overlay network protocol.

3 The Internet Protocol Model

The IP suite imposes a single networking model and
addressing scheme over the many different underly-
ing network types it supports. This model [6, 11]
is characterized by independent datagrams, a single,
global address space for all endpoints, and unreliable
best-effort delivery. The resulting homogeneity has
allowed both overlying applications and underlying



network implementations to be deployed indepen-
dently, and has seen the network as a whole develop
at a rapid rate. The homogeneity of the Internet at
the IP level together with ease of implementation are
usually cited as the principal reasons for the success
of the Internet.

Although this homogeneity has provided the scaf-
folding to develop today’s global network, it is now
an inhibitor of further innovation. The IP suite forms
a strict ‘semantic bottleneck’ to which it is increas-
ingly difficult to cleanly incorporate anything but in-
cremental modification. A prime example of an un-
clean modification that has nonetheless taken hold
is Network Address Translation (NAT) [20]. NAT
boxes serve a very useful purpose in the real Internet,
while breaking one of the model’s fundamental as-
sumptions: all machines on the Internet are equal in
terms of connectivity (if not capacity or bandwidth).

In fact, it can be argued that this assumption has been
invalid for some time, regardless of the presence or
absence of NAT. Due to the nature of Internet routing
and the complexity of running a network (or any dis-
tributed system) of such scale, it is common to dis-
cover that two seemingly connected Internet nodes
cannot communicate directly. This recently lead to
the development of the Resilient Overlay Network
(RON) [2].

However, we believe that this bottleneck is an in-
evitable consequence of the homogenization of the
network layer, rather than a weakness inherent in IP.
Although helpful for a number of years, while the
network was undergoing its initial ‘big bang’ phase,
the approximations in the model are now becoming
too out-of-step with reality. Consequently, merely
replacing the existing protocol suite will not be suffi-
cient to avoid future similar shortcomings; the model
itself must be addressed.

4 Architecture

In contrast to proposals for new protocols or mod-
ifications to existing ones, we suggest that future
network architectures focus on mechanisms allow-
ing inter-operation of many heterogeneous networks
without mandating a one-size-fits-all protocol suite.

The extensive heterogeneity of contemporary net-
works should be embraced.

More concretely, functions such as naming, address-
ing, routing and transport must be supported end-to-
end across radically heterogeneous networks through
the addition of suitable explicit interaction at bound-
aries. By making these regime transitions explicit,
we believe that (i) the network model will more ac-
curately reflect the network’s reality, and (ii) the net-
work model will be more extensible, allowing new
services to more easily be incorporated at all archi-
tectural layers.

4.1 End-to-End naming and addressing

In our view, the twin functions of naming and ad-
dressing should be implemented in accordance with
the end-to-end argument. Paradoxically, the current
Internet imposes single mechanisms for addressing
(IPv4, by design) and naming (DNS, by an accident
of evolution) from the middle of the network. This
leads to a requirement for globally-bound names and
addresses. As we have seen, the model is already in-
sufficient to capture the architecture of the current
Internet (NATSs, IPv4/v6 gateways, dynamic DNS
servers, etc.), and does not address the connection
of other, radically different networks (sensor nets,
planetary-scale overlays, etc.).

Rather than attempting put the genie back in the
bottle by imposing a single global IPv6 addressing
scheme everywhere (already unrealistic in the face
of simple devices such as sensors), we propose here
a more heterogeneous naming scheme.

In this scheme there are no global names or ad-
dresses. Instead, each network end system exists in
an explicit context! in which all names and addresses
usable by the end system must be bound. This allows
flexibility in end systems by removing the require-
ment for homogeneity imposed by the ‘middle’ of
the IP network, and moving naming and addressing
policy decisions towards the end systems. Passing
a name or address from one such context to another

"IPv4 hosts today are observed to exist in a ‘context of no
context’: the context certainly exists, but is not made explicit.



entails rebinding the referent of the name in the des-
tination context. This operation is carried out by an
interstitial function, described below, and is the key
challenge in heterogeneous networking.

This model has two compelling features. First, it
neatly captures the reality of IP networking today,
and in particular the use of NATS, proxies, and sim-
ilar. Second, it extends to future networking tech-
nologies while still encompassing the current Inter-
net, and without sacrificing the factors which have
made it successful as a technology.

For example, a large cluster of very small networked
sensors (such as Berkeley motes) can send data to an
Internet host even though they cannot implement an
IP stack (due to computational, memory, and power
limitations, and intermittent connectivity) by binding
an address in their own local network context which
corresponds to a gateway to the host. Conversely,
every sensor can be addressed from an IPv6 network
by projecting the sensor network address space onto
a subset of the IPv6 address space.

The model is clearly not limited to this two-context
case. Two sensor clouds (or two mobile phone net-
works) can use the Internet for transit by appropri-
ate binding of names in contexts. Similarly, we can
accomodate the present-day example of two IP net-
works routing data between them over a third net-
work technology: the address bindings and transla-
tions in this case are realised in the NAT facilities at
network boundaries.

The change in this case is one of emphasis as much
as anything: rather than viewing non-IP (or non-
IPv4, or non-globally-routable-IP) networks as ex-
ceptions peripheral to a central IP network, we ad-
vocate recognizing them as peer networks and ad-
dressing the end-to-end problems in communicating
between such heterogeneous peers, of which the cur-
rent Internet is but one.

The central problems in this scheme are communi-
cating and resolving names and addresses across net-
work boundaries. The goal of our architecture is to
provide a set of compositional building blocks that
may be used to allow the composition of heteroge-
neous networks in order to provide an end-to-end ser-
vice. The two abstractions we propose are the con-

text and the interstitial function (IF).

4.2 Contexts

Contexts serve two purposes: first, they describe
communication mechanisms embodied by different
networks, within which an endpoint might bind
a particular communication session; second, they
serve as descriptors allowing end-to-end services to
be composed via the application of network closures.

Within the Plutarch system, communication takes
place between endpoints within contexts. Following
Saltzer’s notion of ‘context’ [19] or the ANSA no-
tion of ‘naming context’ [23], a context is abstractly
a set of bindings with reference to which names may
be resolved. In Plutarch, a context describes a region
of the network that is homogeneous in some regard.
All names, be they DNS names, IP addresses, Eth-
ernet MAC addresses, users, network links, etc, are
resolved within some context.

For instance, a context describing a local LAN en-
vironment may specify that the available link-layer
protocol is Ethernet, and that the network supports
link speeds up to 100 Mb/s. Alternatively, a context
might describe the local administrative space corre-
sponding roughly to the Autonomous System (AS)
within which a machine with a given IP address re-
sides.

An endpoint is likely to exist within multiple con-
texts simultaneously. An obvious example of this is
a machine supporting both a 100 Mb/s Ethernet inter-
face and an ATM interface: such a machine exists in
two distinct contexts each representing the properties
of communication across the different interfaces.

Context membership may be dynamic, and such dy-
namic contexts should provide suitable mechanisms
for members joining and leaving. A context may bor-
der other contexts, and multiple nested sets of con-
texts may exist (i.e. there is no notion of a universal
‘root context’).

An example of nested contexts might be a machine
with just a single 100 Mb/s interface but supporting
an IP protocol stack. It exists simultaneously within
the local Ethernet segment, but also the local IP LAN



and potentially the wider Internet. The context rep-
resenting the local Ethernet can be viewed as a spe-
cialization of the enclosing IP LAN context, itself a
specialization of the enclosing Internet context.

4.3 Interstitial Functions

In order to accommodate the differences between
contexts, while still providing an end-to-end service,
data may have to be manipulated at context borders.
To achieve this goal, we introduce the Interstitial
Function (IF), whose purpose is to allow data to pass
between two adjoining contexts. Contemporary ex-
amples of IFs include NAT boxes, signaling gate-
ways, and BGP routers. However, we also envisage
situations where IFs may explicitly be used to bridge
dissimilar transport networks (e.g. IPv4 onto ATM)
or to provide high-level service modification, such as
transcoding video streams or inserting forward error
correction on unreliable links.

IFs logically bridge two contexts, and so are com-
posed of two interfaces representing the two con-
texts, coupled with some internal mechanism for
translating data arriving at one context into the other
context. IFs can be used to form chains of contexts
connecting endpoints; such a chain can itself be re-
ferred to as a context.

In situations where they make no decisions based on
such knowledge, endpoints might not wish to know
the details of all the contexts in the chain. For such
endpoints, the properties of the context representing
the chain might be restricted to the properties of the
endpoint’s own context (which might themselves be
hidden from a suitably disinterested endpoint) plus
the fact that the endpoint’s communication partners
can be reached. More interested endpoints might be
made aware of multiple possible context chains to
their communication partners, and make their own
choice as to which context chain to use. This allows
for application specific optimization where appropri-
ate.

In general we expect IFs to require a certain amount
of state; this will generally be soft-state, and may
be acquired epidemically or as a side-effect of some
user action. Note that even though some state may

be considered to apply per-flow (e.g. an entry in a
contemporary NAT forwarding table), this does not
mean that it must be established per flow, or that any
per-flow signalling is required.

S Examples

In this section, we discuss concrete examples of how
a context-based networking architecture works or
would work in practice. Some of these examples are
scenarios which are outside the scope of the Internet
protocols, and consequently either currently infeasi-
ble, or handled by ad-hoc application-specific meth-
ods. Others are current networking practices which
fit into our model unmodified. We start with the ex-
isting Internet itself.

5.1 The IPv4 Internet

In considering the pragmatic issues of deploying a
new Internet architecture, our proposed approach has
two strengths: first, the existing Internet may remain
completely unchanged, and second, contexts may be
deployed incrementally.

The contemporary, globally routeable Internet exists
as a context in itself. Within this context, mecha-
nisms remain unchanged and the network may con-
tinue to evolve as it always has: we do not advo-
cate the deliberate replacement of the Internet, but
the peaceful coexistence of the Internet as one con-
text among many.

We already see examples of alternative contexts
alongside the Internet, for instance NAT-connected
LANSs. In this case the interstitial function is per-
formed by NAT boxes, and is simplified by the use
of IP on both sides and the interstitial address map-
ping being (at present) relatively static.

With the context-supporting services deployed
within the existing Internet, other contexts may be
connected at its borders (sensor networks, NAT-
connected LANSs, etc.), above it as overlays, along-
side it (emerging network protocols, of which IPv6
is the strongest candidate), or even beneath it (pri-
vate link layer networks). These other networks may



innovate and evolve relatively independently, using
IFs to interact with one another where necessary.

Note also that an initial deployment of small num-
bers of contexts will not require a large degree of
support service layer within the Internet. Our current
efforts are to provide a peer-to-peer overlay allow-
ing border nodes hosting IFs to communicate with
one another permitting adjoining contexts to interact.
If successful we imagine that the load on this peer-
to-peer network may require supporting by a more
structured overlay.

5.2 Transiting Multiple Contexts

O Interstitial Function
<> Chained Context

Figure 1: Connecting Across Contexts

Figure 1 shows a situation which might arise in to-
day’s network. A wayward graduate student, bound
for a networking conference in Germany desires to
query the state of his research sensor network, at-
tached to the Internet through a host in Vancouver.
His connectivity in Europe is through a GPRS phone,
attached to his laptop. As the IP service provided
by his GPRS provider is mapped through an opaque
gateway, and the network sensors, in an effort to re-
duce power, do not even implement an IP stack, nei-
ther end of this connection is directly addressable
from points within the Internet.

An end-to-end connection between the laptop and
sensor network can be set up using our proposed ar-
chitecture as follows:

Stage 1: Name resolution. As there are no global
names, the first stage in connecting the hosts is
to query for the desired context (or host, or ser-
vice). Such queries take the form of a collection of

name=value pairs and our present approach to a nam-
ing service is to employ epidemic-style gossip [3] ad-
vertisements and queries across contexts. The route
query describes the target name, and the properties
of the communication channel to be provided. For
instance:

route(name=myExperimentalSensorNetwork,
props=(protocol=QueryProtocolvl.2,

transit(connection=reliableByteStream)))

Note that the target name need not have any meaning
outside of the target context: it is simply an identi-
fier used for searching. The transit parameters de-
scribe properties of any midpoint contexts involved
in the link. These may be taken as hints to constrain
the distributed search, and validated by the querier
on considering the result set. Note also that in this
simple example, we are connecting a set of specific
end-to-end hosts. The query model is intended to
support other approaches to location, such as Inten-
tional Naming [1].

Queries percolate through the lookup fabric and re-
sult in a set of candidate replies being returned to the
requesting host. Replies are in the form of chained-
context descriptors. These list a vector of context
descriptions and the associated IFs that lie between
them.

In our example, the service and protocol being re-
quested are very specific. Only two replies are re-
ceived on the student’s laptop, describing a context
chain crossing the Internet, but requiring interstitial
functions as shown in Figure 1. The variation in the
set of replies indicate that the local GPRS context
provides both plain IP, and a modified IP, incorporat-
ing forward error correction to help survive packet
loss.

Stage 2: Chained context instantiation. Some
logic in the host selects one of these context chains
to form the connection. The appropriate query re-
sult is turned into an instantiation request and for-
warded to the appropriate border node in the GPRS
context where an IF is configured. The request is
then forwarded along to the border of the sensor net-
work, where a second IF is configured. As joining
some contexts (configuring suitable IFs) may require
some form of authentication, challenges may be is-



sued back along the partially open context chain. Al-
ternatively, this process may be short circuited by
embedding authentication in the initial request mes-
sage.

Once the chained context has been instantiated, it is
added to the laptop’s list of known contexts. A set of
bindings is installed between the new context name
and the related communications mechanisms on the
laptop. In addition, the context is cached with the
name service to facilitate future connections.

Stage 3: Communications. Once the context has
been bound to the local host, applications may in-
teract with it through the associated mechanisms.
In many cases these bindings are likely to involve
patching a new context below the socket layer, but
other approaches are also worth considering.

5.3 Other Examples

O Interstitial Function
<> Chained Context

Figure 2: A Variety of Contexts

Figure 2 shows a set of contexts from which addi-
tional examples may be drawn. The figure shows
contexts with a variety of relationships to one an-
other, and two examples of chained contexts.

The IPv4 and IPv6 networks are shown alongside
one another, as they they provide parallel but incom-
patible network service. Note that this diagram is not
meant to imply that participation in these two con-
texts is mutually exclusive. On the contrary, there
may be a great deal of overlap in the memberships.
The separate contexts simply show the boundaries of
homogeneous protocols.

The vertical set of contexts associated with the IPv4
context is to show the relationship between context
membership. The resilient overlay context has been
constructed above the IPv4 context. It provides an
additional service, but is constructed using IPv4 as
an underlying communications mechanism.

The chained context between the sensor network and
the NATed LAN is very similar to the example pre-
sented above. In this case, there is the addition of the
IPv6 context in the chain, resulting in an additional
interstitial function.

In the second chained context, two Ethernet LANSs
are connected across an ATM network. Here the
ATM network contains a set of nodes also partici-
pating in the IPv4 network?. In this case, the context
chain is meant to indicate that a link-layer bridge has
been implemented across the two interstitial func-
tions [15].

6 Some Strawmen

To add more solid fuel to the discussion, this section
briefly describes strawman interfaces to three com-
ponents of this system: the context, the IF and the
Plutarch management service.

Context Interface
inspect ()
list () —

— value
[name] *
insert (name, value)
lookup (name) — value

remove (name)

The context interface is to be used at endsystems

2 Although this is by no means a constraint—additional nodes
could be involved.



to interact with particular instances of contexts. A
contemporary analogy might be the Dynamic DNS
API [24].

inspect() returns information pertinent to com-
munication bound within this context;

list() returns the list of names in this context;

insert() adds a value to this context keyed by
a name, replacing any value that already exists
under name in this context; values may them-
selves be lists, but the semantics of merging
multiple values under a given name is context
dependent and to be handled by some entity
subject to suitable access permissions;

lookup() translates a name to a value within this
context;

remove() removes the entry keyed by name
from this context;

Interstitial Function Interface

inspect () — (ctxtl, ctxt2, value)

configure (value, caps)

The interstitial function interface is to be used to al-
low endsystems to interact with IFs. Most existing
IFs do not have programmatic interfaces, but an ap-
proximation might be provided by the various fire-
wall and NAT coordination protocols [].

inspect() discovers the two contexts that a par-
ticular IF connects, along with any other rele-
vant information;

configure() configures an existing interstitial
function in some way appropriate to the partic-
ular IF subject to the capabilities presented.

Plutarch Management Service Interface

register (props) — ctxt
deregister (ctxt)
link (ctxtl, ctxt2) — [ifun]~*

lookup (props, ttl, caps) — [ctxt]*
route (name,

ttl,

props,
caps) — [ctxt-chain]*
The Plutarch management service interface® gives
access to a distributed service formed of multiple co-

3Referred to hereafter as the Plutarchy for brevity.

operating instances that may be controlled by dis-
tinct administrations. In keeping with the spirit of
Plutarch, there may be many implementations and
instances of Plutarchies interacting via suitable in-
terstitial functions; we believe that implementations
will have to support functionality similar to that
shown here. Management of capabilities to support
a particular Plutarchy is not specified within the ar-
chitecture.

register() register a context with the specified
communication properties;

deregister() deregisters a context from this
Plutarchy;

link() returns a list of potentially unconfigured
IFs existing between two contexts;

lookup() recovers the contexts supporting par-
ticular properties, subject to a hop limit on the
propagation of the query and capabilities pre-
sented in the request;

route() discover a context chain or chains lim-
ited in length by ttl, containing contexts ac-
cessible according to the capabilities presented,
and supporting particular properties terminat-
ing with a context in which the given name is
known.

link(), lookup(), and route() should all support del-
egation both between components of this Plutarchy
and between instances of Plutarchies. As such,
their implementations should probably return results
asynchronously, or at least support timeouts of some
form. Names may be registered in multiple contexts
and are opaque in contexts in which they are not reg-
istered, so endsystems must implement some appli-
cation or platform specific policy to select appropri-
ately from the results of a lookup() or route().

As already noted, a context chain is a sequence of
contexts interleaved with IFs. Endsystems may wish
to know and specify the details of a context chain, in
which case should an element of the chain fail, the
endsystem must be notified that it should deal with
this, perhaps by invoking another route() operation.
However, as part of the properties pass to the route()
operation, an endsystem may specify the detail it re-
quires in responses and whether repair of a broken
chain should be automatic. In this way, the Plutarchy



can ensure that route repair occurs in much the same
way as occurs with current Internet routing.

7 Related Work

We are by no means the only researchers advocating
the necessity of a new architecture: indeed, the zeit-
geist appears to firmly embrace the notion, as wit-
nessed by this very workshop. Much of this work
has been inspired by the perceived failure of the IETF
IPng working group.

One of the best known efforts is the ambitious
NewArch project being carried out between ISI, MIT
and ICSI [4]. This hopes to present a detailed
blueprint for next generation networking, addressing
topics such as mobility, quality of service and inter-
planetary communication while ideally retaining the
best of the original architectural principles. One con-
crete proposal from this team is the notion of a role-
based architecture in which layering is eschewed in
order to gain maximum flexibility [5].

The uniformity of the approach is elegant although
perhaps unnecessary, and the suggestion that IPv4
be retained as a base layer does not readily support
sensor networks or scalable multicast, for example.
Nonetheless the basic scheme of explicitly commu-
nicating certain networking semantics could be use-
fully applied to our interstitial functions.

Another recent next-generation architecture proposal
is Triad [10, 14]. Much like Plutarch, Triad replaces
traditional name lookup with something more akin to
searching. However their focus is on content-based
naming and routing rather than semi-structured data
queries; while novel, it is not clear that content is
king in all contexts. Their deployment model sup-
poses the existing global IPv4 network augmented
with “‘WRAP’ gateways to allow communication be-
tween addressing realms.

The general notion of providing translation between
IPv4 realms to avoid perceived problems with NAT
boxes was proposed independently as IP Next Layer
(IPNL) [13]. IPNL separates the communication
path into three: an originating private realm, a global
middle realm and a second terminating private realm.

These realms are similar to our notion of contexts,
but are more limited in type and function.

A technique similar to although simpler than IPNL
is proposed in 4+4 [22]. Once again, address transla-
tion occurs between private and more widely known
realms, although in this case the authors envisage
more than one middle realm. The 4+4 scheme is sim-
ple, elegant and incrementally deployable, but it lim-
its itself to network-layer issues and does not propose
new naming or transport-layer functionality.

Another recent scheme, AVES [17], specifically tar-
gets the problem of non-IP hosts, including hosts
within an addressing realm which reuses IP ad-
dresses. Their key notion is to virtualize these non-IP
hosts by using waypoints: globally addressable mid-
dle boxes [7] which act as relays for IP traffic. Once
more the focus is on IP connectivity and not on a new
architecture per se.

Our proposal of multiple contexts which explicitly
interwork is perhaps most reminiscent of the idea of
the Metanet [25]. In this architecture, the network is
divided into regions, each of which models a partic-
ular real-world set of requirements and limitations; a
set of waypoints exist at boundaries between regions
and perform translation as needed. Our work is based
on the same general notion, but attempts to explore
further how such a scheme could be made to work.

8 Conclusion and Future Directions

We have presented Plutarch, an inter-networking ar-
chitecture that makes heterogeneity explicit so that it
may be exploited. We believe that this better repre-
sents the status quo in the Internet and more impor-
tantly, is extensible enough to capture future network
evolution. Note that, as with most architectures, this
paper is really just a starting point: considerable fu-
ture work is required in order to produce an complete
design and implementation reflecting this architec-
ture.

However, there is an existing body of work on which
we can draw. For example, the Nimrod routing archi-
tecture [8] with its ‘pull’ mode of operation seems
well suited to our asynchronous scheme for learn-



ing of context chains, although clearly modification
would be required to handle query-based route find-
ing. In in terms of communication models, the In-
ternet Indirection Infrastructure [21] provides good
evidence for the power of making packet forwarding
a sometimes application-level task. We also hope to
learn from existing work on active networks and pro-
tocol composition [12, 16, 18], although we do not
particularly espouse a ‘pure’ active networking ap-
proach.

Notwithstanding this body of work, substantial re-
search is introduced by this architecture. Issues
untouched in this paper include scalable mecha-
nisms for inter-context routing, IF discovery and
failure notification; policy issues in choice of con-
text and context-chain; and mechanisms to expose
these things to the programmer, either through an
existing network API such as the sockets API, or
through some extended or new API. Transport pro-
tocols that can optimize for the context or contexts
over which they operate is also worth investigation:
related work here includes techniques such as TCP
splicing, where a TCP connection is severed at a
proxy between, for example, a GPRS network and
the wired Internet, for performance reasons (essen-
tially to overcome the performance mismatch be-
tween the two networks).

Mechanisms to alleviate some of the current strain on
management of the Internet and Internet address allo-
cation might also become feasible through the appli-
cation of contexts and explicit boundaries: there are
many anecdotes* suggesting that the current struc-
tures for allocation of global IP address blocks, and
notification of new allocations are inadequate, for ex-
ample. We believe that avoiding the need for a single
global management entity (or hierarchy of entities)
may allow techniques from peer-to-peer networking,
and other highly scalable systems to be usefully ap-
plied.

References

[1] ADJIE-WINOTO, W., SCHWARTZ, E., BAL-

4See the archives of the NANOG mailing list, http://
www.nanog.org/, for examples.

10

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

AKRISHNAN, H., AND LILLEY, J. The
Design and Implementation of an Intentional
Naming System. In Proceedings of the 17th
ACM SIGOPS Symposium on Operating Sys-
tems Principles (December 1999), pp. 186—
201.

ANDERSEN, D. G., BALAKRISHNAN, H.,
KAASHOEK, M. F., AND MORRIS, R. Re-
silient Overlay Networks. In Proceedings of
the 18th ACM Symposium on Operating System
Principles (SOSP’01), Banff, Canada (October
2001).

BIRMAN, K. The Surprising Power of Epi-
demic Communication. In Proceedings, Work-
shop on Future Directions in Distributed Com-
puting (FuDiCo 2002). Bertinoro, Italy (June
2002), Spinger-Verlag.

BRADEN, R., CLARK, D., SHENKER,
S., AND WROCLAWSKI, . Develop-
ing a Next-Generation Internet Architec-
ture, July 2002. Whitepaper, available
at http://www.isi.edu/newarch/
DOCUMENTS/WhitePaper.ps.

BRADEN, R., FABER, T., AND HANDLEY, M.
From Protocol Stack to Protocol Heap — Role-
Based Architecture. In Proceedings of the First
Workshop on Hot Topics in Networks (HotNets-
1) (October 2002).

BUSH, R., AND MEYER, D. Some Internet
Architectural Guidelines and Philosophy. RFC
3439, IETF, Dec. 2002.

CARPENTER, B., AND BRIM, S. Middle-
boxes: Taxonomy and Issues. RFC 3234, IETF,
Feb. 2002.

CASTINEYRA, 1., CHIAPPA, N., AND STEEN-
STRUP, M. The Nimrod Routing Architecture.
RFC 1992, IETF, Aug. 1996.

CHAKRAVORTY, R., CARTWRIGHT, J., AND
PRATT, I. Practical experience with TCP over
GPRS. In Proceedings of IEEE GLOBECOM
2002 (2002).

CHERITON, D., AND GRITTER, M.
TRIAD: A new next generation Internet



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

architecture, March 2000. Available from
http://www—dsg.stanford.edu/
triad/triad.ps.gz.

CLARK, D. The design philosophy of the
DARPA internet protocols. Computer Commu-
nication Review 18, 4 (Aug. 1988), 106-114.
Proceedings of ACM SIGCOMM 1988.

FELDMEIER, D., MCAULEY, A., SMITH, J.,
BAKIN, D., MARCUS, W., AND RALEIGH, T.
Protocol Boosters. IEEE Journal on Selected
Areas in Communication (JSAC) 16, 3 (Apr.
1998), 437-444. Special Issue on Protocol Ar-
chitectures for 21st Century.

FRANCIS, P., AND GUMMADI, R. IPNL: A
NAT-Extended Internet Architecture. In Pro-
ceedings of ACM SIGCOMM, San Diego, CA
(August 2001).

GRITTER, M., AND CHERITON, D. R. An Ar-
chitecture for Content Routing Support in the
Internet. In Proceedings of 3rd USENIX Sym-
posium on Internet Techologies and Systems
(USITS’01) (March 2001), pp. 37-48.

MORTIER, R., ISAACS, R., AND FRASER,
K. Switchlets and resource-assured MPLS net-
works. Tech. Rep. UCAM-CL-TR-510, Uni-
versity of Cambridge, Computer Laboratory,
May 2000.

NAKAO, A., PETERSON, L., AND BAVIER, A.
Constructing End-to-End Paths for Playing Me-
dia Objects. In 2001 IEEE Open Architectures
and Network Programming Proceedings (An-
corage, AK USA, Apr. 2001), pp. 117-128.

NG, T. S. E., StoICcA, 1., AND ZHANG,
H. A Waypoint Service Approach to Connect
Heterogeneous Internet Address Spaces. In
USENIX Annual Technical Conference, Boston,
MA (June 2001).

RENESSE, R. V., AND BIRMAN, K. P. Pro-
tocol composition in horus. Tech. Rep. TR95-
1505, 29, 1995.

SALTZER, J. H. Naming and Binding of Ob-
jects. In Lecture Notes in Computer Science,
60: Operating Systems — An Advanced Course,

11

[20]

[21]

[22]

[23]

[24]

[25]

R. Bayer, R. M. Graham, and G. Seegmueller,
Eds. Springer-Verlag, 1978, pp. 99-208.

SRISURESH, P., AND EGEVANG, K. Tradi-
tional IP Network Address Translator (Tradi-
tional NAT). RFC 3022, IETF, Jan. 2001.

StoicA, 1., ADKINS, D., ZHUANG, S.,
SHENKER, S., AND SURANA, S. Internet
indirection infrastructure. In Proceedings of
ACM SIGCOMM 2002, Pittsburgh, PA (August
2002).

TURANYI, Z., VALKO, A., AND CAMPBELL,
A. 4+44: An Architecture for Evolving the
Internet Address Space Back Toward Trans-
parency, 2003. submitted to ACM Computer
Communicatinons Review (CCR).

VAN DER LINDEN, R. The ANSA Nam-
ing Model. Tech. Rep. APM.1003.01, Archi-
tecture Projects Management (APM) Limited,
May 1993.

VIXIE, P., ED., THOMSON, S., REKHTER,
Y., AND BOUND, J. Dynamic Updates in the
Domain Name System (DNS UPDATE). RFC
2136, IETF, Apr. 1997.

WROCLAWSKI, J. T. The Metanet. In
Proceedings of the Workshop on Research
Directions for the Next Generation In-
ternet (1997). Whitepaper, available at
http://www.cra.org/Policy/NGI/
papers/wroklawWP.



