Internetworking Multimedia

(©Jon Crowcroft, Mark Handley, Tan Wakeman
UCL Press

December 3, 1998

Preface

This book is about multimedia communication using the Internet. We wrote this
book for (at least) three reasons. Firstly, we use the Internet to communicate and
have done so for many years. Increasingly, we find ourselves using it as a replacement
for the telephone, for conferencing and for delivering classes and seminars to remote
participants. We think that this is the way that communication will be achieved
in general for a wide variety of applications in the future, and feel that this view is
worth reading about. Secondly, we work in education and teach students about the
principles behind communication and multimedia, and wanted to share the ideas
and explanations with a broader readership than just the students who read our
notes. Finally, we are all involved in researching and developing Internet protocols
and mechanisms to improve multimedia communication applications and services,
and wanted to explain the state of the art and trends to a wider audience.

Intended Audience

This book is aimed at users, working Engineers and Students at the Masters level,
both studying and implementing multimedia in the Internet. We assume familiarity
with the standard Internet protocols and with communication and computer science
at the general level of recent high-school or first year university courses.

Roadmap, Outline and Organisation

The book is organised in ten chapters, which are broadly separated into three sec-
tions. The first section, comprises chapters one through four, and is about technol-
ogy: we cover media data types; network technology especially looking at so-called
real-time support; multicast routing support for interactive multimedia; coding and
compression. The second section consists of three chapters and is about middleware:
we discuss transport protocols and the important concept of application layer fram-
ing; we look at multimedia session creation, advertisement, invitation and so on; we
look at conference control architectures. The third section is in three chapters and
is about applications, and application support: we look at the applications them-
selves (audio, video, shared authoring/viewing of documents and so on); lastly, we
discuss media on demand; we describe the security requirements and mechanisms
for providing solutions to problems.

Each chapter in this book starts with an introduction, which explains what the
chapter covers, then has a roadmap which explains how the material in the chapter
fits together, and ends with a summary which captures what has been explained in
the chapter.

This is a very fast moving area. We have attempted to be as accurate as possible,
but this book is out of date even before we write it! The standards and the code
and applications themselves are, as always, the best source of information.

Acknowledgements

Thanks first to Paul White, Stuart Clayman and Saleem Bhatti for permission to
use their material in chapters two, four and nine. Thanks to the IETF’s Audio and
Video WG, the MMusic WG, the TAB’s End2end Research Group, the Integrated
and Differentiated Services and RSVP WGs, and to UCL and the (D)ARPA, and
the EC MICE projects. Thanks to Craig Partridge at BBN, Khalid Sayood of
the University of Nebraska-Lincoln, Deborah Estrin of USC, Tony Ballardie, Joc
Chappell, Rex P. Tseng, and especially Syngen Brown for copious feedback on the
last draft. Thanks to Petri Aukia for some LaTeX help.

Thanks to Rachel Blackman at UCL Press and Tony Moore for editorial work
and cover designs.

Thanks to Andrew Carrick for encouragement and editorial help on two previous
books!

We must acknowledge a broad debt to Van Jacobson, lately of the Lawrence
Berkeley Network Laboratory, for his pioneering work, upon which is based a large
part of what we describe in this book.

Thanks finally to Dave Clark at MIT for copious feedback, and to Jennifer Mann
of MK for editorial assistance.

Contents

1 Introduction - A Brief History of Real-Time

1.1 Roadmap
1.2 Content and Delivery
1.3 From Letters and Numbers to Sound and Vision
1.4 Analog and Digital
1.4.1 What is “Bandwidth”
1.5 Protocols
1.5.1 Names, Addresses and Routes
1.5.2 Internet Multimedia Protocols
1.6 Internet Service Models Lo
1.6.1 Non-best effort service 0.
1.6.2 Reservations
1.6.3 Admission Control
1.6.4 Accounting
1.7 Multicast in the Internet
1.7.1 The Multicast Model
1.7.2 A Brief History of Trees
1.8 Transport Protocols
1.8.1 The Realtime Transport Protocol, RTP
1.9 Multimedia Sessions
1.10 Conference Membership and Reception Feedback
111 Security oo
1.11.1 Authentication and Key Distribution
1.11.2 Encrypted Session Announcements
1.12 Applications other than Audio and Video
1013 Summaryo
Network Service Models
2.1 Roadmap
2.2 Sharing and Caring
2.2.1 User Expectation and Service Models
2.3 Service Schedules and Queues oL
2.4 Evolution of the Internet Service Model
2.4.1 Classification and Admission
2.4.2 Integrated Services Model oL
2.4.3 Differentiated Services
2.5 RSVP . .
2.6 Service Classes and Assurance
2.7 Detailed Analysis of the Integrated Services
2.8 Host Functions
2.8.1 Controlled-Load Service
2.8.2 Guaranteed Service

1l

—_
O WO o -1 D W

10
11
12
12
13
14
14
15
15
18
19
19
20
21
21
22
22
22
22

v

CONTENTS

2.8.3 Policing and Conformance 39
2.8.4 Integrated Services on Specific Link Technology 39
2.9 Resource ReSerVation Protocol (RSVP) 40
2.9.1 Reservation Styles and Merging 41
2.9.2 Path Messages 44
2.9.3 Processing and Propagation of Path Messages 44
2.94 Adspec 45
2.9.5 Making a Reservation using One Pass with Advertising (OPWA) 47
2.9.6 Slackterm 48
2.10 QoS Routing 49
2,11 Futures 50
212 TP and ATM 51
2.12.1 Mapping classes and QoS 52
2.12.2 Topology Control 53
2.12.3 QoS Control 53
2.12.4 Queue Insertion/Lookup Performance 53
2.12.5 Conclusions on IP/ATM 53
2.13 Recent Simplified Approached to Service Differentiation 54
2.14 Summary 54
Multicast 57
3.1 Introduction 57
3.2 Roadmap 59
3.3 Host Functions 59
3.4 Routing and Addressing Lo oL 61
3.5 Multicast Routing oo 62
3.5.1 Flood and Prune Protocols 62
3.5.2 MOSPF 63
3.5.3 Center-based Trees 63
354 Core-Based Trees 64
3.5.5 Sparse-Mode PIM 65
3.5.6 Border Gateway Multicast Protocol 67
3.6 Multicast Scoping 70
3.7 Reliable Multicast Transport 71
3.7.1 Fate Sharing 72
3.7.2 Performance 72
3.7.3 Semantics 72
3.8 Calling down trafficon asite, 73
3.9 Summary 73
Coding and Compression 75
4.1 TIntroduction L 75
42 Roadmap 76
4.3 System Components 76
4.4 Nature of the Signal o000 77
4.4.1 Analog to Digital Conversion: Sampling 77
4.4.2 Constructing a Signal out of Components 79
4.5 Lossless Data Compression 81
4.5.1 Run Length Compression 81
4.5.2 Huffman Compression 81
4.5.3 Dictionary Approaches to Compression 82
4.5.4 Continuous Data: Sample Rates and Quantisation 82
4.6 Audio 82

4.6.1 Audio Input and OQutput 83

CONTENTS

[

4.6.2 AudioOutput oo
4.6.3 AudioInput by People 0L
4.6.4 Summary of Audio and Video Input and Qutput
4.6.5 The ITU (was CCITT) Audio Family
4.7 Stilllmage.
4.7.1 How Big Is a Single Frame of Video?
4.8 MovingImage
4.8.1 Video Input and OQutput
4.8.2 H.261 . . .o
4.83 H.263
484 MPEG
485 Region Coding
4.8.6 Wavelet, Vector Quantisation, and Fractal Compression . . .
4.9 Multiplexing and Synchronising
4.9.1 The IETF Multiplex
4.9.2 ITU Multiplex
4.9.3 The ISO MPEG Multiplex - DMIF
4.94 The DAVIC Multiplex
4.9.5 Proprietary Multiplexes
4.10 Standards and Futures Lo
4.11 Performance
4.11.1 Typical Compression Achieved
4.11.2 Effect of Network Loss and Delay on Video
4.12 Processing Requirements for Video Compression
413 Summary ... e
Transport Protocols
5.1 Introduction
5.2 Roadmap e
5.3 TCP Adaption Algorithms.
5.4 Playout Algorithms o
5.5 MPEG Systems
5.6 Transport and Program Streams
5.6.1 Synchronization 0L
5.7 RTP . . .
5.7.1 RTP Packet Format
5.7.2 RTP Header Compression
5.7.3 RTP Multiplexing,
5.7.4 RTCP Packet Format
5.7.5 Payloads. Lo
5.7.6 RTCP Scaling Properties and Timer Considerations
5.8 Synchronisation Lo
5.8.1 Intra-stream Synch L
5.8.2 Inter-Stream Synch oL
5.8.3 Inter-media Synch oL
5.9 Reliable Multicast Transport
5.9.1 Fate Sharing oL
5.9.2 Performance oo
5.9.3 Semantics L
5.9.4 Congestion Avoidance for Reliable Multicast Applications . .
5.9.5 Reliable Multicast Framework

5.10 Summary

85
85
86
86
87
87
90
90
95
98
99
104
104
105
106
106
108
108
108
109
109
109
109
110
112

vi

6

CONTENTS

Session Directories, Advertisement and Invitation Protocols 133
6.1 Roadmap of the Protocols 133
6.2 IETF Protocols for Setting Up Sessions 134
6.3 Session Description Protocol (SDP) 134
6.3.1 SDPsyntax 136
6.3.2 SDP:Summary 137
6.4 Session Announcement Protocol (SAP) 137
6.5 Section Initiation Protocol (SIP) 138
6.5.1 SIP Protocol Details 141
6.5.2 SIP Reliability, 143
6.5.3 SIP:In Summary 143
6.6 Summary 144
Conference Control 145
7.1 Roadmap 145
7.2 ITU Model H.320/T.Gee o000 oo 146
7.2.1 Multisite Circuit Based Conferencing - MCUs 146
7.2.2 Distributed Multisite Circuit BasedConferencing 147
7.2.3 Services provided by the MCS layer 149
7.2.4 Distributed TTU Multisite Hybrid Packet and Circuit Confer-
ENCING .« v v v et e e 150
7.2.5 Multicast Internet Based MCS 152
7.3 MMCC - A Centralized Internet Model 152
7.4 CCCP - Distributed Internet Model 153
7.4.1 Requirements 155
7.4.2 Multicast Internet Conferencing 155
7.4.3 Computer Based Multimedia Conferencing Requirements . . 156
7.4.4 Where current systems fail 156
7.4.5 Specific requirementso 157
7.4.6 The Conference Control Channel (CCC) 159
747 CCCNames. v v i it i e 160
748 Reliability o o 162
7.4.9 Ordering 163
7410 Afewexamples L 165
7411 CCCP MeSSages . . . o v v v v v v i i i e 168
7.4.12 More complexneeds L 168
7.4.13 The Naming Service 169
T4.14 Security 170
7.4.15 Conference Membership Discovery 170
7.5 Using ISDN to do IP Access to the Mbone 170
7.5.1 TLookup and Control 171
7.5.2 Mixer Operation 171
753 Futures 172
7.6 Summary 173
Applications 179
8.1 Introduction 179
8.2 Roadmap 179
8.3 Shared Applications in the Mbone 180
8.3.1 Background to NTE 180
832 Design 182
8.3.3 Limitations of the Data Model 190
8.3.4 UsabilityIssues L 198

8.3.5 Asynchronous Events - informing the user 199

CONTENTS vii

10

8.3.6 Generalising the Models 200
8.4 Distributed Virtual Reality 201
8.4.1 General Idea and Problems 204
8.4.2 Virtual Reality Operations, User Views and Networ Consid-
erations L. 205
8.4.3 Application Model 206
8.4.4 The Distributed Virtual Reality Multicast Protocol, DVRMP 207
8.5 Summary 209
Media on demand 211
9.1 Roadmap 211
9.2 Recording and Playing Back Mbone Sessions 211
9.3 Recording 212
9.3.1 Using IP Multicast 212
9.3.2 Current Media Tools and Protocols 213
9.3.3 A Multimedia Recording Server 215
9.3.4 Server Interfaces L 215
9.3.5 Analysis and Post-Processing Tools 219
936 Clients. 220
9.3.7 Server Storage 220
9.3.8 Indexing Techniques 223
9.3.9 Strategies for Recording and Playing 230
9.3.10 The Recorder 230
9.3.11 The Player 231
9.3.12 Reliable Multicast 233
9.3.13 Address Allocation 235
9.3.14 Source Identification On Replay 235
9.4 Remote Control of Playback 236
9.4.1 Remote invocation of stream controls 237
9.4.2 An Aside - The Hypertext Transfer Protocol as a Universal
RPC Mechanism 238
9.4.3 'The Real Time Stream Protocol - RTSP 239
9.44 Movieson Demand L. 242
9.4.5 RTSP Criticisms 244
9.4.6 Conclusion 244
9.5 Summary ... 244
9.5.1 Synchronisation Support 245
9.5.2 An Index Architecture 245
9.5.3 Control of playback 245
Security and Policy in Multicast Multimedia 247
10.1 Introductiono 247
10.2 Roadmap 247
10.2.1 Formal Distributed Conference 247
10.2.2 Pay per View Distribution of Rolling Stones 248
10.2.3 Inter company Brainstorm 249
10.2.4 Global Traffic Disasters 249
10.2.5 Pulling the requirements together 249
10.3 A brief Introduction to Cryptographic Technology 250
10.3.1 What is Cryptography?, 250
10.3.2 Symmetric Cryptography 251
10.3.3 Public Key Cryptography 251
10.4 Network level solutions 253

10.4.1 Administrative Address Scoping 254

Vil

CONTENTS

10.4.2 Tunnels 254
10.4.3 Firewalls 254
10.4.4 Redistribution Centres 255
10.4.5 Policy Routing of Multicast 255

10.5 Media Encryption 255
10.5.1 TP Security Architecture 255
10.5.2 RTP Security 256

10.6 Key Distribution o 256
10.6.1 Email Invitations 257
10.6.2 Certification Hierarchies 257
10.6.3 Problems of Scalability 257
10.6.4 SKIP and Photuris 258
10.6.5 Core Based Trees v v v it i 258
10.6.6 Session Announcement Protocol 258

10.7 Conclusion 258

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18

5.1
5.2
5.3

6.1

The Internet Multimedia Protocol Stack 6
The Internet Multicast Model 15
Stages in Joining an Internet Conference 23
Roadmap of User and Network Service Interface 26
Locales in Space and Time 29
Direction of RSVP messages 41
Fixed Filter Reservation Example. 42
Wildcard Filter Reservation Example. 43
Shared Explicit Reservation Example. 43
R1=2.5Mb/s, S1=0. Reservation request denied. 49
R1=3Mb/s, S1;0, R2=2Mb/s, S2jS1. Reservation accepted. 50
Formation of a CBT bidirectional shared tree 64
Formation of a Sparse Mode PIM tree 66
Formation of a BGMP Shared Tree 68
Forming a BGMP Shortest-path branch 69
Overlapping scope zones possible with administrative scoping 71
Road Map of Chapter Four 76
Sampling a Continuous Signal 78
Quantisation of Sampleso oL 78
Square Wave 79
Spectrum of a Square Waev 79
Square from One Sine Wave 80
Square from Two Sine Waves 80
Square from Three Sine Waves 80
Square from Four Sine Waves 80
The Author Saying “smith” 83
Typical Voice Spectrum 84
The spatial size of digital video compared with a PAL TV image . . 88
Some Examples of DCT’d data 94
H261 Encoder 97
MPEG Frames 100
H261 versus MPEG datarates 104
H221 Framing e 107
H320 Structure 107
Typical Media Tool Data Flows 121
End to end requirement for playout adaption 121
MPEG Systems Stream L 122
Annotated SDP Session Description 135

1X

6.2
6.3
6.4
6.5
6.6

8.4
8.5
8.6

8.7
8.8
8.9
8.10

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18

10.1
10.2

LIST OF FIGURES

Session Announcement Packets L. 138
STP Request Being Relayed 139
STP Request Being Redirected 140
Complete STP Call 141
STP “negotiation” of media parameters 142
Multipoint Control Unit 147
ISDN B Channel Bonding 147
ITU Based Generic Conference Control 148
CCCP Conceptual Design, 159
Unifying Services with CCCP 166
Unifiying Floor Control with CCCP 167
An example of blocks of text used for annotation 183
An example of application based clock synchronisation 185
Clock synchronisation failure due to clock granularity being less than

transmission delay 187
Sliding Key Triggered Retransmission Requests 190
Two users attempting to simultaneously modify the same line 191
Undesirable behaviour due to simultaneously splitting a line and

modifying it. 192
Simultaneous Insertion is a Detectable Situation 195
Simultaneous Deletion and Insertion - no inconsistency 196
Simultaneous Deletion and Insertion resulting in inconsistency . . . 197
Virtual Reality Software Structure 205
The recorder is independent of the conference 213
The recorder attaches to the conference to record the data 214
Client informs server which collects multicast data 216
Having multiple text descriptions for a media 218
Selecting segments from a recording L. 219
The synchronisation of 3 segments of audio and video 219
Storage Devices for Multimedia on Demand Servers 221
The structure of an index element 225
The structure of an attribute element 225
The data for a source and itsindex 225
Multiple edits of amedia 226
An index of index references L. 228
A time-based index referencing three other indexes 228
The recorder de-multiplexes data from a single multicast address . . 231
The delay between record start time and source data arrival 232
The propagation of commands through the object hierarchy 234
Basic HI'TP Exchange 239
The Index Architecture 246
Encrypting to provide confidentiality 250

Authentication and Integrity with digital signatures 252

List of Tables

1.1

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
7.1
7.2
7.3
7.4

8.1
8.2

9.1

The Structured Internet Address 11
Service Contract Models oL 26
Parameters for Telephone Network TLoad 27
Congestion Manifestation 000 28
Integrated Services Internet function Component Status 34
Session for Reservation Lo 35
Tspec and Rspec for Guaranteed Service 37
Class D addresses are Multicast 59
Reliable Multicast Semantics 0L 73
International Phonetic Alphabet for British English 85
The amount of data for full-motion digital video 88
The amount of data for compressed video of size 640x480 89
The amount of data for compressed video of size 320x240 89
Liberal Estimate for Uncompressed Video Data Rate 92
Cautious Estimate for Uncompressed Video Data Rate 92
MPEG Source, Encoder and Decoder Frame Sequence 102
Status of Protocols with Adaption Algorithms. 120
RTP Packet Format 123
The Real Time Control Protocol 126
Conference Control Primitives 149
Multicast Communications Service 150
ITU Conferencing Standards 150
Mixer Operation 172
RTP Header 207
RTPand SRM 208
Multicast address use insession L. 212

LIST OF TABLES

Section I
Technology

LIST OF TABLES

Chapter 1

Introduction - A Brief
History of Real-Time

This book is about interactive multimedia in the Internet. We are used to conven-
tional multimedia in every day life through the telephone and television, through
Hi-Fi/CDs and through video cameras and VCRs. A great deal of effort in the
telecommunications research world has been aimed at trying to mimic these tech-
nologies in the digital telephony world. However, the work in Internet based multi-
media has gone a great deal further in flexibility and usability of services, due to its
emphasis on computer based solutions. Applications can be more intelligent, and
can be integrated with each other making them more useable, and more efficient.
A simple example of this is the use of shared whiteboards during voice conferences,
with visual indications of who is speaking and who is drawing. Another example is
the idea of customisable call handling in Internet Telephony (“if I am talking to the
boss, and the caller is my employee, forward their call to my assistant, otherwise
hand them to my answerphone avatar”). The only limit here is the imagination of
the application creator.

The Internet was originally developed to support data communications between
computers, but the definition of data has a habit of broadening, just as computers
have a habit of becoming more flexible. The processing and storage capacity of
computers have increased exponentially. So has the size and capacity of the Inter-
net. All three have now reached the point where we can capture, compress, store,
decompress, replay, send and receive digital audio and video almost as easily as files
of text.

From early research experiments in the late 70s and early 80s, through to the
deployment of the late 80s and early 90s, multimedia has grown as a presence in the
network. Interactive multimedia, whether for media-on-demand from World Wide
Web servers, or between users in multimedia conferencing systems is becoming quite
pervasive.

The Internet has undergone a number of enhancements to make this possible,
as have its protocols. There is also a huge investment in middleware, software
systems to enable more complex applications to be built quickly and effectively for
distributed computing. Then there is a surprising variety of applications, not just
conferencing or video-on-demand, but also image dissemination, games, multi-player
multimedia VR, and so on.

In this book, we describe the technologies and systems that make this possible.
Unlike previous books about multimedia and networking, which are descriptive, we
attempt to prescribe the approach that has emerged in the the Internet Engineer-
ing Task Force, or IETF. This is the group that carries out standards development

6 CHAPTER 1. INTRODUCTION - A BRIEF HISTORY OF REAL-TIME

for Internet protocols, services and applications. There are working groups on Au-
dio/Video Transport, Multimedia Conference Control, Integrated and Differentiated
Services and Resource Reservation (to name but a few).

We believe that the model that has evolved in this environment is more scalable
and flexible and caters for more heterogeneity than alternative models, and is thus
more suited to deployment for the public at large. It is also a very good model for
how to develop multimedia distributed systems in general for many purposes, and
it is also fun.

1.1 Roadmap

The roadmap for this chapter is best captured in diagram 1.1. The diagram shows
the Internet Protocols that are concerend with the format and delivery of multi-
media content. The chapter is mostly a microcosm of the book. which means that
it covers these protocols largely in a bottom-up approach, starting with delivery of
packets in the Internet, and ending with a description of some multimedia appli-
cation protocols. In between, we take a look at content description, at network
service models, and at middleware for creation, transport, control and retrieval of

multimedia.
]) Session Directory

Conference Audio | Video Shared

Control Tools SDP

RSVP RTP and RTCP SDAP | HTTP | SMTP

UDP TCP
IP
Integrated Services Forwarding

Figure 1.1: The Internet Multimedia Protocol Stack

1.2 Content and Delivery

There are two aspects to Internet Multimedia - the content, and the delivery. This
chapter is an introduction to these two topics, of which the rest of this book is a
detailed discussion. The oft-cited convergence of computing and communications
is particularly important because of the convergence of multimedia and computing
at the same time. There are three dominant multimedia applications in the world
today which appear to be separate, but are in many ways likely to merge as a
result of the Internet, namely telephony, television and the World Wide Web. In
fact, the main reason that the merge is likely is that it enables the development
and deployment of a far wider set of intelligent and easy to use services to the
paying public more quickly and cost effectively than any pre-existing technological
approach.

The open model of the Internet means that services can be delivered to the
right users, while the costs associated with delivering them unnecessarily to some

1.3. FROM LETTERS AND NUMBERS TO SOUND AND VISION 7

of the wrong users can also be avoided. The low entry cost means that services can
emerge that would normally not be considered viable (virtual community web TV
for example, where a community may be widely dispersed - e.g. a set of speakers
of a given language throughout the world).

1.3 From Letters and Numbers to Sound and Vi-
sion

Throughout the 1960s, 1970s 1980s and 1990s, Computers have been restricted
to dealing with two main types of data - words and numbers, text and arithmetic
processing, through Word Processing and Spreadsheets etc. etc. Codes for numbers
(binary, BCD, Fixed point etc., IEEE floating point), are fairly well standardized.
Codes for text (ASCII, EBCDIC, but also fonts, Kangi, ppt etc.) are also reasonably
well understood. Higher level “codes” - links, indexes, references, and so on are the
subject of such standards as the ubiquitous Hyper-Text Markup Language, HTML.

Now computers, disks and networks are fast enough to process, store and trans-
mit audio and video and computer generated visualization material as well as text
and graphics and data: hence the multimedia revolution

One thing about multimedia that cannot be overstated: It is big, like space in
the Hitchhiker’s Guide to the Universe, it is much bigger than you can imagine. Of
course, we are not talking about the hype here, we are talking about the storage
transmission and processing requirements!

To paraphrase Maurice Zapp, from David Lodge’s novel, A Small World: “Every
Encoding is a Decoding”. The idea behind this glib quote is that each time we
invent a new way of representing and transmitting information, we also have to
teach ourselves to receive and comprehend that new type of representation. In the
rest of this section, we take a look at some aspects of representation that need to
be understood in regard to multimedia.

Numbers and letters have standard encodings: ASCII and IEEE Floating Point
are the most widespread now (at least for common English language text processing,
and for numeric programming) - in the past there have been a plethora of other
encodings, even for simple Roman alphabet text. As multi-lingual support has
become common, we have seeing a brief increase in the number of encodings, and
then as the problems become better understood, a standard set of character sets
are emerging. Digital Multimedia Encodings in the form of audio and video are still
at a very early stage in terms of standards, and there are many, partly because of
the range of possible processing, storage and transmission performance capacities
available on computers and networks, where some systems are right at the limits of
their abilities to do any useful work at all!

Each new medium needs to be coded and we need to have common representa-
tions for objects in the medium; there are many choices. For example, speech can
be coded as a sequence of samples, a sequence of phonemes; a string of text with a
voice synthesizer setting, and so on, requiring more or less intelligence or processing
at the sender and receiver, and providing more or less structural information (and
as a result, typically allowing more compression). Similarly, video can be coded as
a sequence of bitmaps, or else can be broken down into some description of scenes,
objects within scenes, motion of objects and so on.

The codings now involve possible relationships with time and between different
media. When we read a block of text, it is usually up to the reader to choose how
quickly to read it. Hypertext to some extent breaks this rule, at least by relating
text non linearly with other text. When we listen to speech, or have a conversation
with another autonomous being, we do not control the rate of arrival of information

8 CHAPTER 1. INTRODUCTION - A BRIEF HISTORY OF REAL-TIME

so obviously. When we combine media, sound and vision, for example, we typically
expect the combined media on a recording (or seen remotely) to maintain the tem-
poral relationship that they had at source. This is what really defines data as being
multimedia. Hypermedia is multimedia that is arranged with non-linear relations
between sub-sequences.

Compression, and Hierarchical encoding are also needed. Multimedia data is
typically much more bulky than text or numeric data. A typical simple-minded
sampled audio sequence might take 8K bytes per second. This compares badly with
8K bytes of text: Assume we had 10 characters per word, then this would constitute
800 words, and might take a quick speaker something like a minute to read aloud.
In other words, the speech requires at least two orders of magnitude more bytes
than text. Video is far worse still, although clearly, comparisons are more difficult,
since the value of typical information content is quite different.

All of this means that we need to consider compression techniques, to save
storage and transmission capacity. Luckily, much audio and video is redundant
(contains effectively repeated or less useful data) and is often far more amenable to
compression than text.

Meta-languages (codes for codings) are required. Typically, while we are still
evolving a wide range of codings and compression techniques, we need protocols for
exchange of media between different systems. We also need protocols to relate the
different media (for synchronisation and for hypermedia).

Next, lets look at some audio and video input forms and digital encodings.

1.4 Analog and Digital

Audio and Video all start life in the “Analog Domain”. (Domain is used in this
context just to mean before or after some particular conversion). It is important
to understand the basic requirements of the media in time and space. The analog
domain is usually best understood in terms of the range of frequencies in use for a
particular quality. For sound, this means how low and high a note/sound is allowed.
For video, this translates into the number of distinguishable colours. For video, we
also have to consider the frame rate. Video is similar to film in that it consists of
a number of discrete frames. You may recall seeing old films which were shot at a
lower frame rate than is used nowadays, and flicker is visible. To refine this point
further, we should distinguish between the rate at which a scene is sampled, and
the rate at which a frame on a screen is displayed. For many moving image systems,
these may be different. For example, films may show the same frame more than
once to reduce flicker. Although Cathode Ray Tubes have significant persistence,
video systems may refresh different parts of the screen at different rates - interlacing
is used in many systems where alternate lines of the screen are refreshed in alternate
cycles. This is motivated by the possible reduction in bandwidth, both in the analog
and digital domain.

Both sound and image can be broken down at any instant into a set of basic
frequencies. This is the so-called “waveform”. We can record all of the frequencies
present at anyone time, or we can choose to record only the “important” ones. If
we choose to record less than all frequencies, we get less “fidelity” in our recording,
so that the playback is less like the original. However, the less we record, the less
tape/recording media we need.

Audio and Video start as waves, a sequence of compression and rare-faction of
air, or the fluctuation of an electric and magnetic field, with time.

Waves need to be captured, by some device, and then sampled digitally. Typ-
ically, a “sample-and-hold” technique is used: An electro-mechanical or light sen-
sitive device responds to the sound or light, and produces an analogue electrical

1.4. ANALOG AND DIGITAL 9

signal. This can be averaged over a sample period by providing some discrete clock
signal, and an averaging circuit. The value during this sample period can then be
converted to a digital value of a given accuracy (“quantized”).

We can do this sampling “perfectly” by sampling twice as often digitally as the
highest analog frequency, or we can take advantage of human frailty and reduce
the quality by decreasing the sample frequency (the clock rate above, and/or the
quantization (number of bits used per sample).

1.4.1 What is “Bandwidth”

The term “bandwidth” is used by electrical engineers to refer to the frequency range
of an analog signal. Often, especially in the Internet Community, the term is used
loosely to refer to channel capacity, or the bit rate of a link. Note that because of
sampling, quantization, and compression, the bit rate needed for a given bandwidth
analog signal is potentially many times (orders of magnitude even) less than the
perfect sample signal requirement would imply.

Analog Audio for humans is roughly in the range 50Hz to 20KHz. Human
speech is intelligible, typically even when restricted to the range 1-3KHz, and the
telephone networks have taken advantage of this since very early days by providing
only limited quality lines. This has meant that they can use low quality speakers
and microphones in the handset - the quality is similar to AM radio.

It is not entirely a coincidence, therefore that the copper wires used for trans-
mission in the telephone system were principally chosen for the ability to carry a
baseband signal that could convey speech (“toll”) quality audio.

In most systems luckily, phone wires are over-engineered. They are capable of
carrying a signal at up to 16 times the “bandwidth”, of that used by pure ana-
log phones from the home to the exchange over a kilometre, and 300 times this
bandwidth up to 100 meters. For the moment, though, the “last mile” or customer
subscriber-loop circuits have boxes at the ends that limit this to what is guaran-
teed for ordinary audio telephony, while the rest of the frequencies are used for
engineering work.

Video signals, on the other hand, occupy a much wider frequency range. Analog
TV, which defined for about 60 years the input, output and transmission standards,
has several different standards, but is typically amplitude modulated on a 3.58MHz
carrier. The signal that is conveyed on this is a sequence of “scanlines”, each making
up a screen. The scanline is essentially a sample of the brightness and colors across
a horizontal line as detected in the camera, and as used to control the electron gun
in the TV monitor.

In the CCIR 601 standard, a digital version of this is defined, which two sam-
ples of 8 bits each of colour (chrominance) and one of brightness (luminance) at
13/5MHz. The resulting data rate is around 166Mbps per second.

It is not entirely a co-incidence that old cable TV networks are capable of trans-
mitting these data rates; however modern hybrid fiber-coax networks are targeted
at carrying a much larger number of compressed digital channels.

The purpose of talking about the media encoding and channel capacity require-
ments is to show the relationship between particular media, and the transmission
technology associated with them. The two largest networks in the world in terms of
terminals are the phone network and the TV network. Each addresses a particular
capacity and pattern of communication. If a data network such as the Internet is to
carry these media, and if the “terminals” | or workstations and PCs of the Internet
are to be able to capture, store, transmit, receive, and display such media, then the
network and end systems have to deal with these types of data, one way or another.
If we compress the data, and decompress at a receiver, then the rate/capacity is
till required outside of the compressed domain, and the compression/decompression

10 CHAPTER 1. INTRODUCTION - A BRIEF HISTORY OF REAL-TIME

engines need to be able to cope with this, even though they may spare the network
(or storage device).

The word “encoding” is often used as a noun as well as a verb when talking
about multimedia. Nowadays, there is a vast range of encodings currently in use
or development. There are a variety of reasons for this: Codes for audio, video
depend on the quality of audio or video required. A very simple example of this is
the difference between digital audio for ISDN telephones (64Kbps PCM see later)
and for CD (1.4Mbps 16 bit etc.) !; another reason for the range of encodings is
that some encodings include linkages to other media for reasons of synchronization
(e.g. between voice and lips); yet another reason is to provide future proofing
against any new media (holograms?); finally, because of the range of performance
of different computers, it may be necessary to have a “meta-protocol” to negotiate
what is used between encoder and decoder. This permits programs to encode a
stream of media according to whatever is convenient to them, while a decoder can
then decode it according to their capabilities. For example, some HDTV (High
Definition Television Standards) are actually a superset of current standard TV
encoding so that a “rougher” picture can be extracted by existing TV receivers
from new HDTV transmissions (or from paying back new HDTV videotapes). This
principle 1s quite general.

1.5 Protocols

Protocols are the rules needed for communication. In human and computer commu-
nication, standard protocols eliminate confusion and wasted time misunderstanding
one and other.

In computer communication, protocols comprise three main components: in-
terfaces, which define the rules for using a protocol, and provide a service to the
software that uses the interface; packet formats, which define the it syntax for the
exchange of messages between local and remote systems; procedures, which define
the operational rules concerning which packets can be exchanged when.

Communication systems are built up out of multiple layered protocols. The
concept of layering is twofold: firstly, common services can be built in all devices
or subsystems, and specialised services built out of these for those devices or sub-
systems that need them; secondly, the details of operation of local, or technology
specific features of a protocol can be hidden by one layer from the layer it above.

In this book, we illustrate these different aspects protocols in several different
ways: when we want to show the layering of protocols, we make use of a stack
diagram, such as 1.1; when we want to show the operational rules of a protocol,
we sometimes use a time-sequence diagram such as 1.3, which portraits a particular
instance of exchange of packets; in some places, we document the layout of the pack-
ets themselves, to show what control functions are conveyed in each transmission,
reception or exchange.

In the rest of this chapter, we introduce these aspects of the Internet multimedia
protocols, as well as the more subtle question of performance. Later chapters in the
book cover these sections in more detail.

First of all, we look at names, addresses and routes.

1.5.1 Names, Addresses and Routes

The user is usually very aware of the names of objects in the Internet. We frequently
see reference to World Wide Web sites and pages (e.g. http://www.cs.ucl.ac.uk/staff/jon,

lthe IEC 958 standard specifies the digital interface as carrying up to 20 bits per channel, at
32KHz, 44.1KHz or 48KHz

1.5. PROTOCOLS 11

|| Host Part ; Network Part |

Table 1.1: The Structured Internet Address

which incorporate Domain Name System names for a system or service in the net-
work. A name effectively tells the user what something is.

Names are useful to human users for this very reason, but are unwieldy and
inefficient for computer systems. Typically, they are mapped into addresses, using
a directory or nameservice. Addresses then tell a piece of software (or the network
operator or manager) where something is. Each host in the network has a unique
address of (currently) 32 bits (128 bits in IPv6.) More accurately, each interface on
each host in the Internet has a unique address, which is made up of two components:

All TP packets carry both a source and a destination address. Typically, the
network part is indicated by applying a mask of some number of bits to the address,
leaving the bits for the host part. Common divisions are 24 bits for network, and 8
bits for host, and 16 bits for network part and 16 for the host part..

The network part of the destination address is used by routers effectively to
index routing tables to figure out where a packet must be delivered to. In fact, a
“longest match” lookup of the prefix or network part must be done which can be
difficult to optimise. Recent work[181] has achieved very good lookup times and
table sizes.

All packets in the Internet Protocol layer carry these addresses, so that they
can be delivered to the right destination, and so that we can determine where they
came from. As we look at other layers in the Internet Multimedia protocol stack, we
will see what other control information is carried in packets to carry out additional
functions.

1.5.2 Internet Multimedia Protocols

The overall protocol architecture that makes up the capability to deliver multimedia
over what was originally a pure data network, is surprisingly not so very different
from the original Internet Architecture.

The protocol stacks for Internet multimedia are show in figure 1.1 above. Most
of the protocols are not deeply layered unlike many other protocol stacks, but rather
are used alongside each other to produce a complete session. It is possible to use
multimedia applications over the Internet without some (or all) of the additional
protocols (e.g. omission of RSVP, or omission of SDP, and so on) depending on
the performance or functionality required. Later chapters will show how each new
protocol adds value to the basic IP packet delivery model.

In the next section, we discuss the underlying unicast and multicast delivery
model, which must be added within the IP layer to give maximum benefit to the
network.

Packet Switched Data networking adds value to circuit switched networks by
sharing the capacity amongst multiple users in time. The data stream from each user
is broken into chunks to form packets, which only require capacity when each packet
is being sent. The capacity required is thus the sum of the average bandwidth,
rather than the total peak bandwidth. This “statistical multiplexing gain” comes
at the expense of having sometimes to queue packets for access to the transmission
channel.

The statistical multiplexing gain is quite large for traditional bursty data appli-
cations such as WWW access. For multimedia traffic, this gain is harder to achieve
(depending on the compression algorithms used, as discussed in later chapters, it
can even become even harder) and yet we can get a spatial gain in use of the network

12 CHAPTER 1. INTRODUCTION - A BRIEF HISTORY OF REAL-TIME

by using group communication carefully. A simple way to send data to multiple
recipients is to send it multiple times from the source. Such “multiple unicasts”
make very poor use of the links near the sender, and potentially incur a lot of delay
before a single transmission is completed. The Internet offers a mechanism to avoid
these overheads called TP multicast.

Multicast is essential in the context of Internet technologies that may replace
television (streaming services, as discussed in chapter nine), but it is also highly
relevant in telephony services, especially in the business community: it is extremely
common for one phone call to spawn another - the ability to teleconference is not
widespread in the traditional plain old telephone system except at some commercial
cost, or in a restricted subset of telephones. The Internet ability to provide this
service 1s quite powerful.

We discuss some of the limitations of multicast as a service in chapter three.
Some of the problems that vendors have had in supporting large scale multicast
as well as service guarantees in Router products have prompted the design of a
new generation of routers coming on to the market as we write. Similarly, the
understanding of service guarantees and multicast has been slow to diffuse into the
commercial Internet Service Provider community until relatively recently, but this
is changing rapidly.

1.6 Internet Service Models

Traditionally the Internet has provided best-effort delivery of datagram traffic from
senders to receivers. No guarantees are made regarding when or if a datagram will
be delivered to a receiver. However datagrams are normally only dropped when
a router exceeds a queue size limit due to congestion. The best-effort Internet
service model does not assume first-in-first-out (FIFO, also known as first-come-
first-served) queueing, although many routers have implemented this. The effect is
to provide rather unfair distribution of resources.

With best-effort service, if a link is not congested, queues will not build at
routers, datagrams will not be discarded in routers, and delays will consist of se-
rialisation delays at each hop plus propagation delays. With sufficiently fast link
speeds, serialisation delays are insignificant compared to propagation delays. How-
ever, if a link is congested, with best-effort service queueing delays will start to
influence end-to-end delays, and packets will start to be lost as queue size limits are
exceeded.

1.6.1 Non-best effort service

Real-time internet traffic is defined as datagrams that are delay sensitive. “Real-
time” is an oft-misused term, and we are guilty here too. In process control systems,
telemetry monitoring and so on, real-time really refers to systems with drop dead
deadlines, after which information is irretrievably lost, or catastrophic consequences
ensue if deadlines are missed. In multimedia systems, while we might have data
with real time delivery requirements, we are at liberty to lose it without necessarily
losing much information. We are also at liberty to relax schedules for delivery, since
humans are tolerant creatures compared with machines. It could be argued that
all datagrams are delay sensitive to some extent, but for these purposes we refer
only to datagrams where exceeding an end-to-end delay bound of a few hundred
milliseconds renders the datagrams useless for the purpose they were intended. For
the purposes of this definition, TCP traffic is normally not considered to be real-time
traffic, although there may be exceptions to this rule.

1.6. INTERNET SERVICE MODELS 13

On congested links, best-effort service queueing delays will adversely affect real-
time traffic. This does not mean that best-effort service cannot support real-time
traffic - merely that congested best-effort links seriously degrade the service pro-
vided. For such congested links, a better-that-best-effort service is desirable.

To achieve this, the service model of the routers can be modified. At a minimum,
FIFO queueing can be replaced by packet forwarding strategies that discriminate
different “flows” of traffic. The idea of a flow 1s very general. A flow might consist of
“all marketing site web traffic”, or “all file server traffic to and from teller machines”
or “all traffic from the CEQ’s laptop wherever it is”. On the other hand, a flow
might consist of a particular sequence of packets from an application in a particular
machine to a peer application in another particular machine between specific times
of a specific day.

Flows are typically identifiable in the Internet by the tuple: source machine,
destination machine, source port, destination port, protocol any of which could be
“ANY” (wild-carded).

In the multicast case, the destination is the group, and can be used to provide
efficient aggregation.

Flow identification is called classification and a class (which can contain one or
more flows) has an associated service model applied. This can default to best effort.

Through network management, we can imagine establishing classes of long lived
flows - enterprise networks (“Intranets”) often enforce traffic policies that distin-
guish priorities which can be used to discriminate in favour of more important
traffic in the event of overload (though in an under-loaded network, the effect of
such policies will be invisible, and may incur no load/work in routers).

The router service model to provide such classes with different treatment can
be as simple as a priority queueing system, or it can be more elaborate.

Although best-effort services can support real-time traffic, classifying real-time
traffic separately from non-real-time traffic and giving real-time traffic priority treat-
ment ensures that real-time traffic sees minimum delays. Non-real-time TCP traffic
tends to be elastic in its bandwidth requirements, and will then tend to fill any
remaining bandwidth.

We could imagine a future Internet with sufficient capacity to carry all of the
world’s telephony traffic. Since this is a relatively modest capacity requirement, it
might be simpler to establish “POTS” (Plain Old Telephone System) as a static
class which is given some fraction of the capacity overall, and then no individual
call need be given an allocation (i.e. we would no longer need the call setup/tear
down that was needed in the legacy POTS which was only present due to under-
provisioning of trunks, and to allow the trunk exchanges the option of call blocking).
The vision 1s of a network that is engineered with capacity for all of the average
load sources to send all the time.

1.6.2 Reservations

For flows that may take a significant fraction of the network (i.e. are “special”) , we
need a more dynamic way of establishing these classifications. In the short term,
this applies to any multimedia calls since the Internet is largely under-provisioned
at time of writing.

The Resource Reservation Protocol, RSVP is being standardised for just this
purpose. It provides flow identification and classification. Hosts and applications
are modified to speak RSVP client language, and routers speak RSVP.

Since most traffic requiring reservations is delivered to groups (e.g. TV), it is
natural for the receiver to make the request for a reservation for a flow. This has
the added advantage that different receivers can make heterogeneous requests for
capacity from the same source. Again the routers conspire to deliver the right flows

14 CHAPTER 1. INTRODUCTION - A BRIEF HISTORY OF REAL-TIME

to the right locations. RSVP accommodates the wild-carding noted above. This is
discussed in more detail in chapter 2.

1.6.3 Admission Control

If a network is provisioned such that it has excess capacity for all the real-time flows
using it, a simple priority classification ensures that real-time traffic is minimally
delayed. However, if a network is insufficiently provisioned for the traffic in a real-
time traffic class, then real-time traffic will be queued, and delays and packet loss
will result. Thus in an under-provisioned network, either all real-time flows will
suffer, or some of them must be given priority.

RSVP provides a mechanism by which an admission control request can be made,
and if sufficient capacity remains in the requested traffic class, then a reservation
for that capacity can be put in place.

If insufficient capacity remains, the admission request will be refused, but the
traffic will still be forwarded with the default service for that traffic’s traffic class.
In many cases even an admission request that failed at one or more routers can still
supply acceptable quality as it may have succeeded in installing a reservation in all
the routers that were suffering congestion. This is because other reservations may
not be fully utilising their reserved capacity.

1.6.4 Accounting

If a reservation involves setting aside resources for a flow, this will tie up resources
so that other reservations may not succeed, and depending on whether the flow
fills the reservation, other traffic is prevented from using the network. Clearly some
negative feedback is required in order to prevent pointless reservations from denying
service to other users. This feedback is typically in the form of billing. For real-time
non-best effort traffic that is not reserved, this negative feedback is provided in the
form of loss due to congestion of a traffic class, and it is not clear that usage based
billing is required.

Billing requires that the user making the reservation is properly authenticated
so that the correct user can be charged. Billing for reservations introduces a level of
complexity to the Internet that has not typically been experienced with non-reserved
traffic, and requires network providers to have reciprocal usage-based billing ar-
rangements for traffic carried between them. It also requires mechanisms whereby
some fraction of the bill for a link reservation can be charged to each of the down-
stream multicast receivers.

Recent work on charging[150] has proposed quite simple models of billing asso-
ciated with multimedia traffic. A generalised model for pricing bursty connections
(or flows in our context) was proposed in [151]:

axV+bxT+H+ec

where V is the traffic volume at the minimum requested rate (can be zero) and
T is the time at the average (measured) rate. The parameters a, b and ¢ depend
on the tarrifing scheme; e.g. peak rate, or IP subscriber’s line rate, plus equipment
rental. A minimum rate (e.g. MCR or controlled load) gives a volume related
charge (constant also factors in providers’ dimensioning) and a mean rate (e.g. for
VBR, or guaranteed) gives a time related charge; mixes are allowed.

Delay bound can be simply a boolean in the QoS API, which is easily imple-
mented as the ToS delay preference bit in TP header; in most cases, this just selects
a priority queue, although sometimes it selects a terrestrial over satellite route.

For multimedia applications, which will probably initially use a service that
approximates to a lightly loaded network, we get a similar charge model as for

1.7. MULTICAST IN THE INTERNET 15

TCP, which may be surprising to people, but it has lots of nice practical properties:
for example, a typical network that permits “premium service” TCP and Internet
telephony, might implement the interface for the user as a single bit to select between
normal TCP service (MCR==0), and controlled load TCP as well as telephony.

The option for how to actually bill could be based on measured volume over
time (the interval of an RTT is probably reasonable for both telephony and TCP
based traffic), or might simply relate to the fact that most domestic users access the
net over a dial up link, so the time related charge could be folded in there trivially,
and the volume related charge based on measured mean rate - conveniently, the
access line polices the peak rate trivially, since it is typically a modem+phone line
or digital ISDN line; with a fixed line speed anyhow.

This is discussed further in chapter two.

1.7 Multicast in the Internet

IP unicast packets are transmitted with a source and destination address, which
enable routers to find a path from sender to receiver. TP multicast packets are
transmitted with a source and group address, which extend this functionality to
provide delivery to a set of receivers.

TP multicast enables efficient many-to-many datagram distribution. Tt is one
of the basic building blocks of the Internet multimedia architecture. For most
conferencing purposes, for example, unicast is viewed as being a special case of
multicast routing. It adds functionality to the Internet so that it can provide services
resembling those in television broadcast networks, as well as those in CB radio
networks and other, as yet unforeseen communication patterns.

1.7.1 The Multicast Model

Multicasting is the ability of the network to efficiently deliver information to mul-
tiple recipients. An analogy here is with TV and radio broadcasting. The electro-
magnetic spectrum (ether) is divided into frequencies which are allocated by some
authority to TV and radio stations. These frequencies are then advertised in TV
and Radio listings magazines and so forth. Users then tune in to these frequencies
by turning a dial on their set. If they have a smart set (or a TV and VCR with
separate tuners) they can receive multiple stations.

dst
ds; 2 MBit/s dst
2 MBit/s 2 MBit/s
2 MBit/s
dst
source 2 MBit/s
2 MBit/s
64 KBit/s
dst dst

Figure 1.2: The Internet Multicast Model

The multicast packet delivery model, illustrated in figure 1.2 is similar to broad-
cast, but superior. A multicast capable host computer (or host for short) on the

16 CHAPTER 1. INTRODUCTION - A BRIEF HISTORY OF REAL-TIME

Internet that runs an application which receives multicast simply joins a set of
receivers on the net, identified by a group address.

How does an application choose a multicast address to use?

In the absence of any other information, we can bootstrap a multicast application
by using well-known multicast addresses. Routing (unicast and multicast) and
group membership protocols igmp can do just that. However, this is not the best
way of manage applications of which there is more than one instance at any one
time.

For these, we need a mechanism for allocating group addresses dynamically,
and a directory service which can hold these allocations together with some key
(session information for example - see later), so that users can look up the address
associated with the application. The address allocation and directory functions
should be distributed to scale well.

Address allocation schemes should avoid clashes, hence some kind of hash func-
tion suggests itself.

Furthermore, both the address allocation system and the directory service can
take advantage of the baseline multicast mechanism by advertising sessions through
multicast messages on a well-known address, and using this to inform other directory
servers to remove clashes and inform applications of the allocation.

This is discussed in much more detail in chapter seven.

Group addresses are an extension of the Internet addressing scheme to provide
dynamically assigned addresses for a set of interfaces with a single identifier. Some
people argue that since 1t is not identifying a location, but is an key for looking
up routing entries, it is really a name, not an address, but since it is taken from a
new section of the same identifier space as normal Internet TP addresses, the word
address has stuck!.

As a side effect of a host computer joining an TP multicast group, two things
happen:

1. The host re-programs its network interface to receive packets to the additional
group address that is being used for this multicast.

2. The host informs all nearby routers of the fact that there is (at least) one
recipient for packets to that multicast address.

Groups are distinguished by having separate multicast addresses (just as unique
hosts are distinguished by having unique unicast addresses). Multicast address as-
signment is generally dynamic (although some addresses are set aside for well known
groups), and under the control of collections of the users. This is in contrast to fre-
quency assignment in the electro-magnetic spectrum, where the bandwidth (in the
sense of number of different possible frequencies) is a scarce resource compared with
the number of multicast Internet addresses. In the radio and TV world, frequencies
are assigned under global and national treaties and laws. In the Internet, there are
some tools for multicast address management, which we will look at later.

A host computer does not have to be in a multicast group to be able to send to
it. Anyone, anywhere, anytime (cue cocktail music) can send a packet to any group
(in the time-honoured Internet style!). Hosts can take part in multiple multicast
sessions. It is up to the receiving applications to take care of whether they can deal
with multiple receptions - for example, if you receive audio from multiple audio
sessions, do you want to mix them and then play them out (to the confusion of the
user) or let the applications allow the user to choose? Of course, if you are receiving
audio from multiple sources sending to the same session, the user probably does want
to hear them (though maybe not!). If you receive multiple video sessions, do you
want to display the video in multiple windows, or let the user choose one or more
sessions. Of course, there are two separate questions here, one of network capacity,

1.7. MULTICAST IN THE INTERNET 17

and the other of addressing. Since Internet addresses are used for each packet, there
is no virtual circuit or long term association, it is possible to flood a receiver with
traffic just by knowing their address, and having more capacity near a source than
at the sink. With multicast, a receiver can “pull down” more traffic than they may
be able to handle by joining multiple groups (or even single groups that are being
sent to by faster sources than the receiver has upstream capacity for).

The routers in the Internet (the sorting offices or switching matrix glue that link
everything together) that are capable of multicast use the location of groups or of
senders to determine the delivery tree that is used to get packets from the source
to the set of receivers. This tree is usually quite optimal in terms of the number of
links that packets traverse. Packets are also not transmitted multiple times on the
same link anywhere, they are only copied at appropriate points. Well look at styles
of delivery trees a bit more later. For now, imagine sending a memo to a group of
people, but only having to print one copy at source. Then as the memo arrives at
various sorting offices, if there are any local recipients, the sorting office puts the
memo in the copier and delivers it to those recipients, saving on shipping a huge
bag of copies from the original sender to all the sorting offices, but at some cost of
copying along the way instead.

This model of packet delivery has had a profound effect on the way that appli-
cation programmers have learned to construct multicasting programs. The tasks of
figuring out who is in a conference, whether they are ready to receive or not, whether
a user has the right to speak or not and so forth are all moved to a completely sepa-
rate level of the system because of this model. In other words, the multicast model
is policy free in terms of call setup, floor control, membership control, activity and
session information and so on. The separate functions of membership, activity and
conference control are discussed in detail in chapter six.

This is in direct contrast to existing models of conferencing. For example, in
audio telephony, the receiver(s) must have their phones on-hook. A particular caller
must call them, each at a time, and add recipients to a conference call. Even if a
phone bridge is used, the phone bridge needs to call each of the participants, and
all of their calls typically go via the phone bridge. There is more discussion of this
model of group communication at the lower levels in chapter three. The way people
have come to use Internet multicast conferences is in two styles:

1. The TV Broadcast model is where a seminar or meeting is simply disseminated
for anyone to see/hear.

2. The CB radio style is where users chat interactively and openly, coming in
and out of a virtual meeting place as and when they like.

The addition of security/privacy features has also led to closed, more formally
structured use which we will look at in chapter ten. The popularity of this technol-
ogy 1s indicated to some extent by the growth in the number of sites attached to
the Internet that provide global multicast access:

It is instructive to think about alternative ways that group communication might
be supported in a network. For example, we might put a list of addresses in a
packet of information we wish to send to a list of recipients. This would work
so long as the group was fixed and reasonably small, but would quickly become
unmanageable for groups in the 100s or 1000s, which we already find in use in the
Internet. An alternative might be to employ a central distribution server where we
send everything, and it fans it out to all the recipients. This would fly in the face
of the entire Internet design philosophy, since it would be a central site, subject to
failure and performance problems. Instead, Internet multicast distributes both the
group control and the data distribution tasks into the network.

18 CHAPTER 1. INTRODUCTION - A BRIEF HISTORY OF REAL-TIME

Finally, then routers forwarding packets with multicast destinations use the
group address, or the source address together with the information distributed
through the group management protocols (as we will see in chapter 3) to deter-
mine where to forward packets to.

1.7.2 A Brief History of Trees

In Chapter three, we discuss multicast routing topologies at great length. Here we
give a brief overview of the evolution of multicast to date. Originally, the multicast
routing was initially based on the thesis work of Steve Deering [Deering, 89] and
comprises two parts:

1. Tunnels - these are used to glue together Internet sites which have multicast
capable routers, but are separated by routers that do not support multicast,
thus forming a virtual topology on top of the underlying Internet unicast
routing. This has proved invaluable in this (and other) work in terms of
deploying new versions of the routing. This has given rise to the term Mbone,
short for Multicast Backbone, which is the name for the virtual glue of routers
that interconnect islands of native TP multicast together via tunnels through
non-multicast capable sections of the Internet.

2. Distance Vector Multicast Reverse Path (DVMRP) routing - this is the actual
routing protocol, which is a natural extension to the age-old Routing Informa-
tion Protocol, using the paths that are calculated to get from a set of sources
D to a particular destination, S for unicast, as a way to get multicast from S
to D.

DVMRP employs a scheme called pruning to eliminate branches from the net-
work that do not contain members of a group whenever a source starts sending.
As the Internet multicast capability has grown (in early 1998 it had several thou-
sand sites, where a site might be a research laboratory or university Campus, in 22
countries, internationally), there have been many groups that are small, and sparse.
This has meant that the amount of routing control overhead from pruning traffic
(and multicast traffic delivered unnecessarily to sites without members before they
are pruned) has caused people to re-think the routing scheme. Several alternates
have emerged:

MOSPF (Multicast extensions to the unicast routing scheme OSPF) allows ag-
gregation of traffic and groups and also permits paths to be chosen based on different
Types of Service

CBT (Core Based Trees) is based on a manager placing a Core or center router
appropriately in the network by calculating where the place is that all routing traffic
would go through if we formed a minimal spanning tree from the center to all groups.
This is a tricky calculation, and takes smart heuristics. Tt results in lower link usage
than DVMRP, and does not need pruning, but it can increase the delays in paths
between users, which may be critical for some kinds of multimedia interactions.

PIM (Protocol Independent Multicast) is based on a mix of the ideas from CBT
and DVMRP, and relies on the underlying unicast routing to calculate its paths. Tt is
also capable therefore of exploiting underlying policies concerning routes, including
potentially, Type of Service selection of paths.

The two extremes of multicast tree topology are explained at great length in
chapter three, and for a quick sneak preview, take a look at the figures ?? and 3.2
there. At the time of writing, there is a great deal of research and development in
the area of multicast routing, and it remains to be seen what the main scheme will
be. However, the power of the basic original IP multicast model is in no doubt.

1.8. TRANSPORT PROTOCOLS 19

1.8 Transport Protocols

So-called real-time delivery of traffic requires little in the way of transport protocol.
In particular, real-time traffic that is sent over more than trivial distances is not
re-transmittable. In fact, a number of facets of an end-to-end protocol need to be
re-designed or refined including:

Separate Flows for each Media Stream With packet multimedia data there is
no need for the different media comprising a session to be carried in the same
packets. In fact it simplifies receivers if different media streams are carried
in separate flows (i.e., separate transport ports and/or separate multicast
groups). This also allows the different media to be given different quality of
service. For example, under congestion, a router might preferentially drop
video packets over audio packets. In addition, some sites may not wish to
receive all the media flows. For example, a site with a slow access link may be
able to participate in a session using only audio and a white-board whereas
other sites in the same session may also send and receiver video.

Receiver Adaptation Best-effort traffic is delayed by queues in routers between
the sender and the receivers. Even reserved priority traffic may see small
transient queues in routers, and so packets comprising a flow will be delayed
for different times. Such delay variance is known as jitter.

Real-time applications such as audio and video need to be able to buffer real-
time data at the receiver for sufficient time to remove the jitter added by the
network and recover the original timing relationships between the media data.
In order to know how long to buffer for, each packet must carry a timestamp
which gives the time at the sender when the data was captured. Note that for
audio and video data timing recovery, it is not necessary to know the absolute
time that the data was captured at the sender, only the time relative to the
other data packets.

Synchronisation As audio and video flows will receive differing jitter and possibly
differing quality of service, audio and video that were grabbed at the same
time at the sender may not arrive at the receiver at the same time. At the
receiver, each flow will need a play-out buffer to remove network jitter. Inter-
flow synchronisation can be performed by adapting these play-out buffers so
that samples/frames that originated at the same time are play-out out at the
same time. This requires that the times that different flows from the same
sender were captured are available at the receivers.

1.8.1 The Realtime Transport Protocol, RTP

The Internet transport protocol for real-time flows is RTP [117]. This provides
a standard format packet header which gives media specific timestamp data, as
well as payload format information and sequence numbering amongst other things.
RTP is normally carried using UDP. It does not provide or require any connection
setup, nor does it provide any enhanced reliability over UDP. For RTP to provide
a useful media flow, there must be sufficient capacity in the relevant traffic class to
accommodate the traffic. How this capacity is ensured is independent of RTP.

RTP media timestamps units are flow specific - they are in units that are ap-
propriate to the media flow. For example, 8KHz sampled PCM encoded audio has
a timestamp clock rate of 8KHz. This means that inter-flow synchronisation is not
possible from the RTP timestamps alone.

Every original RTP source is identified by a source identifier, and this source id
is carried in every packet. RTP allows flows from several sources to be mixed in

20 CHAPTER 1. INTRODUCTION - A BRIEF HISTORY OF REAL-TIME

gateways to provide a single resulting flow. When this happens, each mixed packet
contains the source id’s of all the contributing sources.

Each RTP flow is supplemented by Real-Time Control Protocol (RTCP) packets.
There are a number of different RTCP packet types. RTCP packets provide the
relationship between the real time clock at a sender and the RTP media timestamps,
and provide textual information to identify a sender in a session from the source id.

This is described in more detail in chapter five.

1.9 Multimedia Sessions

The idea of a session is closely aligned with the idea of a human activity. A session
is a collection of communication exchanges, which together make up a single overall
identifiable task. For example, a conversation, or the viewing of a single “program”,
or a collaborative meeting.

Multimedia Sessions come in many shapes and sizes, but there are only really two
models for session control: light-weight sessions and tightly coupled conferencing.

Light-weight sessions are multicast based multimedia conferences that lack ex-
plicit session membership and explicit conference control mechanisms. Typically a
lightweight session consists of a number of many-to-many media streams supported
using RTP and RTCP using IP multicast.

The concept of lightweight sessions is explored in more detail in the first interlude
after chapter four.

The rendezvous mechanism for light-weight sessions is a multicast based session
directory. This distributes session descriptions[30] to all the potential session par-
ticipants. These session descriptions provide an advertisement that the session will
exist, and also provide sufficient information including multicast addresses, ports,
media formats and session times so that a receiver of the session description can join
the session. As dynamic multicast address allocation can be optimised by knowing
which addresses are in use at which times, the session directory is an appropriate
agent to perform multicast address allocation.

Tightly coupled conferences may also be multicast based and use RTP and
RTCP, but in addition they have an explicit conference membership mechanism
and may have an explicit conference control mechanism that provides facilities such
as floor control.

Such conferences may be initiated either by invitation (the “conference” calls a
user), or by user initiation (the user calls the “conference”). In the latter case the
rendezvous mechanism can be handled by the same session directory that handles
light-weight sessions, with the addition of a description of the contact mechanism to
be used to join the conference to the description of the session. In the former case,
a call up mechanism is required which can be combined with the explicit conference
membership mechanism.

No standard mechanism currently exists to perform either the conference mem-
bership mechanism or the “dial-up” mechanism in the Internet, and the many pro-
prietary conferencing systems available all implement this in different ways. At
the time of writing, it seems likely that a protocol based on the ITU’s T.124 t124
recommendation will be derived for Internet usage.

For both models, a rendezvous mechanism is needed. Note that the conference
control model is orthogonal to issues of quality of service and network resource
reservation.

1.10. CONFERENCE MEMBERSHIP AND RECEPTION FEEDBACK 21

1.10 Conference Membership and Reception Feed-
back

IP multicast allows sources to send to a multicast group without being a receiver
of that group. However, for many conferencing purposes it is useful to know who is
listening to the conference, and whether the media flows are reaching receivers prop-
erly. Accurately performing both these tasks restricts the scaling of the conference.
IP multicast means that no-one knows the precise membership of a conference at a
specific time, and this information cannot be discovered, as to try to do so would
cause an implosion of messages, many of which would be lost This is not to say
that we cannot know the bounds of a conference membership, a subset of whom
might be present at any time - this can be done using encryption and restricted
distribution of encryption keys, of which more later. Instead, RTCP provides ap-
proximate membership information through periodic multicast of session messages
which, in addition to information about the recipient, also give information about
the reception quality at that receiver. RTCP session messages are restricted in
rate, so that as a conference grows, the rate of session messages remains constant,
and each receiver reports less often. A member of the conference can never know
exactly who is present at a particular time from RTCP reports, but does have a
good approximation to the conference membership.

Reception quality information is primarily intended for debugging purposes, as
debugging of TP multicast problems is a difficult task. However, it is possible to
use reception quality information for rate adaptive senders, although it is not clear
whether this information is sufficiently timely to be able to adapt fast enough to
transient congestion. However, it is certainly sufficient for providing adaptation to
a “share” of the current capacity.

The principle reason that it is hard to use this approach for general conges-
tion avoidance is the fact that feedback messages are necessarily delayed and each
receiver only reports at a rate which is inversely proportional to the membership
of the conference (otherwise the network is flooded with these reports. While this
means that the larger and more densely the receiver population permeates the net-
work, the more places are sampled periodically, for modest size groups, this may
mean that network conditions as perceived by a source are quite out of date. Some
other aspects of RTCP reports are discussed in chapter eight.

1.11 Security

Security is more socially critical in multimedia communication than in traditional
data communication. Intrusion or disclosure of human-human communication is
more keenly felt than of “mere” data.

Unicast and multicast multimedia communication require some additional tech-
niques for protection against these and a variety of other security attacks. For
example, there 1s a temptation to believe that multicast is inherently less private
than unicast communication since the traffic visits so many more places in the net-
work. In fact, this is not the case except with broadcast and prune type multicast
routing protocols dvmrp . However, IP multicast does make it simple for a host
to anonymously join a multicast group and receive traffic destined to that group
without the other senders and receivers knowledge. If the application requirement is
to communicate between some set of users, then strict privacy can only be enforced
in any case through adequate end-to-end encryption.

RTP specifies a standard way to encrypt RTP and RTCP packets using private
key encryption schemes such as DES [9]. Tt also specifies a standard mechanism to
manipulate plain text keys using MD5[10] so that the resulting bit string can be used

22 CHAPTER 1. INTRODUCTION - A BRIEF HISTORY OF REAL-TIME

as a DES key. This allows simple out-of-band mechanisms such as privacy-enhanced
mail to be used for encryption key exchange.

1.11.1 Authentication and Key Distribution

Key distribution is closely tied to authentication. Conference or session directory
keys can be securely distributed using public-key cryptography on a one-to-one basis
(by email, a directory service, or by an explicit conference setup mechanism), but
this 1s only as good as the certification mechanism used to certify that a key given
by a user is the correct public key for that user. Such certification mechanisms
X.509 are not specific to conferencing, and no standard mechanisms are currently
in use for conferencing purposes other than PEM[12].

Even without privacy requirements, strong authentication of a user is required
if making a network reservation results in usage based billing.

1.11.2 Encrypted Session Announcements

Session Directories can make encrypted session announcements using private key
encryption, and carry the encryption keys to be used for each of the conference
media streams in the session. While this does not solve the key distribution problem,
it does allow a single conference to be announced more than once to more than one
key-group, where each group holds a different session directory key, so that the two
groups can be brought together into a single conference without having to know
each other’s keys.
This is discussed in detail in chapter ten.

1.12 Applications other than Audio and Video

A variety of other applications have been developed other than audio and video ones.
There are some public domain application examples that we will use to illustrate
the direction in which applications appear to be evolving to accompany multimedia
applications.

Imm is an image dissemination program from the University of Hawii. Wb is a
shared whiteboard from LBL. Nte is a shared text editor from UCL and ISI. These
are discussed in detail in chapter eight. The basic design principle used for them is
an idea from Van Jacobson at LBL, called Lightweight Sessions, and nte services in
chapter eight to illustrate this idea further. For now, we can see an example of the
creation of a lightweight session next.

Figure 1.3 shows the time sequence involved in setting up a light-weight session
between two sites. In this case, site A creates a session advertisement, and some
time later starts sending a media stream even though there may be no receiver at
that time. Some time later, site B joins the session, and starts to receive the traffic.
At the earliest opportunity site B also makes an RSVP reservation to ensure the
flow quality is satisfactory.

This is discussed throughout the book, and particularly in the interludes.

1.13 Summary

In this chapter, we have given an overview of the components that go towards
making multimedia on the Internet feasible and flexible. We have looked at media
capture and encoding, at network models for transmission, and at some of the basic
ideas in the area of service models for such transmission, as well as coordination of
these delivery services.

1.13. SUMMARY

User A
Creates
Conference

User A
Starts
Senidng

SDP/SDAP

RTP IGMP
IGMP

IGMP

RTP

User B
Receives
Session
Announcement

User B
Joins Conference

User’s App
Sends RTCP
Session Message

User’s Application
makes reservation

Quality of
Service
Improves

Figure 1.3: Stages in Joining an Internet Conference

24 CHAPTER 1. INTRODUCTION - A BRIEF HISTORY OF REAL-TIME

As well as sending and receiving multimedia traffic from end systems, the net-
work must provide some minimal performance guarantees somehow or other, to give
the quality required by the end user. Within this minimum, there may e variation
in network performance (throughput, delay, loss and so on) which is accommodated
by adaption in end systems.

As well as supporting communication, there must be mechanisms to prevent
unwanted communication, and also to prevent attacks on desired communication.

At a higher level| there have to be mechanisms for humans to create, advertise
and discover the existence of multimedia sessions, and to be able to find which are
the relevant applications for a given session.

Finally, there are data communication tools that allow users to coordinate ses-
sions consisting of multiple media tools running on multiple systems, to allow seem-
less communication which transcends traditional telephony, television and data com-
munications.

Chapter 2

Network Service Models

In this chapter we take a look at the network service models for supporting multi-
media traffic. We look at mechanisms to provide varying levels of assurance about
performance in terms of delay, throughput and loss, and standards and protocols
for implementing these mechanisms.

2.1 Roadmap

In figure 2.1, we illustrate the components of the user and network that must interact
to provide a network service. In this chapter, we cover the way that the Internet
provides some of these components, and how they can be fit together to make a
given service model that a user requires.

2.2 Sharing and Caring

The Internet was once intended to support multiple types of service [Cole, 81], but
this intent was lost in the mists of time as its most basic, best effort service model
became hugely successful throughout the last decade.

This service model is the contract, or perhaps in the Internet case, the lack of
contract that exists between the network provided and its users.

A good analogy for a service model is that of a transportation system: we do
not expect the roads to take us to a destination, we expect them to allow us to
drive there, but we do expect a train or a plane to take us to a destination. These
represent to different levels of service guarantees. We can take the analogy further
if we add that we have no expectation from the existence of roads about journey
times, but we have an expectation from the existence of timetables for our train
journey times (although the British reader could be forgiven for not taking this
seriously:-). Thus we can see that a service model refers both to the interface and
to the performance that a system gives us. In this sense, it is more subtle and rich
than most contracts.

In networks that are able to carry a range of different types of traffic from
different applications, this contract is usually expressed in terms of a set of perfor-
mance measures. In table 2.1 below, we illustrate a range of models used for service
specification.

The most detailed way of expressing performance is through Quality of Service
parameters (these might be more properly understood if they were called Quantity
of Service parameters!). Quality of Service typically defines which paameter(s) in a
set are relevant to a particulkar service contract and then defines valid ranges for
values for those. Going back to our transport analogy, a train ticket might allow

25

26

The User

Request Service (Parameters, Payment)

Send Data, Possibly Shaped

Respond to Policing or...

Respond to Congestion, by

adapting

Complete Session

etc etc

CHAPTER 2. NETWORK SERVICE MODELS

The Network

Dimensioning

Reservations

Policing, or...

congestion indications

Routing of Packets, respecting params.

Scheduling of Packet forwarding...

Monitoring, and possibly charging

etc etc

Figure 2.1: Roadmap of User and Network Service Interface

Model ; What it defines

Type of Service ; High or Low values of throughput, delay, loss

Class of Service ; Several externally specified service models, selected by class parameter
Quality of Service ; Exact service selected inline by specific signaling

Table 2.1: Service Contract Models

2.2. SHARING AND CARING 27

call frequency ; how often a given user places a call
call holding time ; how long a call lasts
call locality ; the probability that a call is local or long distance

Table 2.2: Parameters for Telephone Network Load

1 person to travel, or it might allow a car on the train with all its passengers, or
it might be a season ticket. Then the ticket may specify a particular seat on a
particular train with a particular journey time, at the most specific.

In its simplest form, one might express the applications in terms of whether
each end was a human or a computer, and whether the medium was data, audio or
video. For example, a file transfer is of data between two computers, whilst remote
terminal access requires moving data between a computer and a human, and an
audio conference requires you to move audio between two (or more) humans and
so forth. The difference between human and computer reception lies in two places:
the way human perception of sound and vision cannot be told to wait - there is
a minimum rate for delivering continuous media (hence its name); the way people
interact - there is a maximum delay between utterance and comprehension, above
which natural conversation becomes impossible. Of course, there are computer-
to-computer networked applications that require delay bounds (e.g. telemetry or
process control), but multimedia typically is delivered to or between humans, and
that is what this book is concentrating on.

The Internet has had no basic, widely implemented way of expressing these
rate and delay parameters, qualitatively or quantitatively. This is because the very
fundamental way that one accesses the Internet to convey anything from source
to destination(s) is without warning. Essentially, any computer connected to the
Internet may attempt to communicate with any other computer(s) at any moment.

This 1s in direct contrast to traditional telecommunications networks used for
example for telephony. The plain old telephone network requires users to do three
things:

1. The sender and recipient must have an account with one or more service
providers.

2. A receiver must have put their phone on hook first.

3. A sender places a call.

These requirements have the consequence that the telephone network gets warn-
ings that a customer is about to use it (and the network has the opportunity to say
no), and that once the network has said yes, neither the sender, nor the receiver
can use up any more network resources (unless they have another line; but that is
just like there being another user).

This means that the telephone network can be provisioned (dimensioned is an-
other term used for this) reasonably easily for the expected number of calls at any
time. Each call represents a fixed resource commitment. An unexpectedly high
number of attempted calls (say on a popular holiday) can simply result in some
calls being blocked (not getting through due to lack of internal resources). The
relevant parameters for desiging a telephone network are shown in the table 2.2
below.

These parameters allow one to design a network for a given call blocking prob-
ability. Essentially, for a given level of user expectation (or dissatisfaction), it is
possible to cost out a given infrastructure.

Call blocking is just another manifestation of congestion or overload, except that
the degradation of service is to the users who get none, ratehr than to users who

28 CHAPTER 2. NETWORK SERVICE MODELS

Elastic; congestion leads to lower rate or quality
Brittle; congestion leads to call blocking

Table 2.3: Congestion Manifestation

have already established access to the network. Some telephony systems actually
suffer from overload during high call rates (flash call overload, e.g. during television
dial-in programs), and use an adaptive “call gapping” procedure to reduce the rate
of progression of call control itself.

Another type of network beloved of telecommunications companies is what is
called the leased line. This makes an even stronger commitment in terms of resource
(and assumes an even stronger requirement for this guarantee) between the network
and the user in that this is a service that is in place from when it is installed as
opposed to when the call is placed. In other words, the opportunity to say no is
not there after the lease has been signed. A form of congestion exists for leased line
networks which is that the provider may not be able to deploy a line fast enough
for a given consumer; this is an extreme example of call blocking!

The Internet model is commonly referred to as a best effort service. Each request
to send 1s honoured by the network as best it can. This works for communication
of data between computers (usually) since the receiver can always wait for data
that is late, and the sender can usually resend any data that is lost or distorted
in transmission, however long it takes to discover this loss. This ability to cope
with variable delivery rates and delays is often termed elasticity. If you picture the
communications pipe between sender and recipient as a tube made of elastic carrying
some liquid, then the delay and decrease in delivery rate is just like what happens
if you stretch the tube - it gets longer and thinner. We illustrate the difference
between Circuit based and Internet based networks in the table 2.3 below. This is
extensively discussed in section 5.3 in chapter five.

The problems with using this type of technology to convey audio and video
are twofold: that if the sender and/or receiver are humans, they cannot tolerate
arbitrary delays; if the rate at which video and audio arrive is to low, the signal
becomes incomprehensible. Using the elastic pipe analogy - if a fire engine was
trying to put out a fire with such a water pipe, whenever it got stretched too
much, the water would arrive too little, too late. We illustrate the range of service
requirements for some example application usage in terms of the time or space
between accesses to successive units of data in figure 2.2 below.

2.2.1 User Expectation and Service Models

The service model that a network provides has a profound effect on users expec-
tations. For example, users of the modern phone network expect that their phone
call will very rarely be blocked (i.e. not get through), and furthermore that when
they get through t o the intended recipient, that the call will practically never be
dropped unexpectedly except by the receiver hanging up. In contrast, mobile phone
service levels are actually acceptable to users even though call drop out and block-
ing are both frequent occurences in todays service provisions. In other words, it
is very important to consider users’ expectations and also the added value of an
overall network (who can reach whom, when and where), when considering quality
of service requirements.

By contrast, today’s typical Internet user expects that they can always start
an application, but that the quality of communication has no guarantee, and can
vary between almost no throughput and very high delays, right through to perfect
communication, with no apparent correlation between the behaviour and their own

2.2. SHARING AND CARING 29

Temporal
Locality
Terminal Access World
Wide
Web
Video Virtual
Conferencing Reality and
Games

—

Spatial Locality

Figure 2.2: Locales in Space and Time

30 CHAPTER 2. NETWORK SERVICE MODELS

actions.

This lack of expectation of quality has led to user acceptance of quite low quality
audio and video communication, both in base level, but also in high variation of
media quality and delay. This acceptance would seem quite surprising when com-
pared with early experiments with video over phone type networks, but is not so
surprising given existing Internet users previous experience of the highly variable
performance of traditional Internet data (non multimedia) applications.

2.3 Service Schedules and Queues

There performance of a communications path through a number of links is made
up of contributions from many places. The raw throughput o each link in the path
(the capacity) comes from the technology used, as does the error rate due to noise.
The delay for a given path is made of two main contributions: propagation time,
and store and forward time in routers and switches, bridges, hubs and so on along
the way. For fixed wire terrestrial networks, the propagation time is unalterable,
so that the main thing that can be changed is the store and forward time at the
interconnect devices. This is just like the time spent in a car journey waiting at
traffic lights. In a road system without lights or toll roads, all cars are treated
typically the same - the model is “First Come First Serve” or “First In First Out”.
The best effort service in the Internet is the same.

To change this service for some users involves recognizing their traffic, and giving
it different treatment in the queue. In a lightly loaded network, just as on a lightly
loaded road, there is typically no queue! Having said that, it might not do for
someone to arrive early - this is captured in the notion of “work conservation” in
some systems - indeed, in digital telephone networks, it is enforced by a queue
discipline which separates all traffic from other traffic and gives each call its own
schedule, usually through Time Division Multiplexing.

In the Internet, none of the future Integrated Services that we are going to
describe in this chapter do this. Instead what they do is simply allow higher quality
traffic to work ahead of lower quality traffic. Thus the notion is that to permit
quality of service for some users, the others (at least at busy times) must get less
share.

There are quite a few different proposed queueing systems to do this - the base-
line for comparison is called Fair Queueing, which is essentially a round robin sched-
uler for each source-destination pair currently using a route through this particular
router. Fair Queueing can be extended to include a notion of weight (i.e. system-
atic unfairness, perhaps associated with importance or money). Other mechanisms
include approximations to fair queueing (e.g. stochastic fair queueing).

A given device can implement several different queueing mechanisms, and sort
packets into the appropriate queue based on some notion of packet classification, so
that we can retain best effort service while supporting better effort for some users
(albeit at the cost of lower share for best effort).

2.4 Evolution of the Internet Service Model

Traditionally, the Best Effort Internet has provided the worst possible service: pack-
ets are forwarded by routers solely on the basis that there is any known route, irre-
spective of traffic conditions along that route. Routers that are overloaded discard
packets, typically dropping packets at the tail of the queue of those awaiting to
depart along their way.

2.4. EVOLUTION OF THE INTERNET SERVICE MODEL 31

Other types of digital networks have been built, most notably, for wide public
access, the digital telephone network, with user access based on the narrow band
Integrated Services Digital Network architecture. This is in fact, the Fixed Effort
ISDN, which gives you a constant data rate from source to sink, irrespective of
whether you have something ready to send at any moment or not (or whether you
have something that needs to be sent at the offered rates!).

More recently, we have seen the evolution of both of these network architectures
towards more flexible support for multiple service categories. Multiservice TP and
Broadband ISDN, provided by ATM are both being redesigned from the ground up
to cater for actual perceived multimedia application requirements.

To this end, the notion of Traffic Classes, each of which have a range of pa-
rameters (usually known as Quality of Service parameters, even though they are
quantitative) have been designed. In the ITU and ATM Forum, these are called
bearer service classes, and in the TP Integrated Services Internet work, they are
Flow Classes.

2.4.1 Classification and Admission

A class is supported typically by some queuing discipline being applied especially
to a particular flow of traffic. This may be something that is setup by network
manager, maybe programmed into a router, or might be requested by a user (or a
site or between one network and another) via some so-called signaling protocol.

In the Internet, the signaling protocol has to provide not only the traffic flow
category, and the parameters, but also a way for a router to recognize the packets
belonging to the flow, since there 1s no “virtual circuit” or “flow identifier” in current
internet protocol packets. Of course, IP version 6 will change this, if and when it
sees deployment.

This “classification” is simply based on a set of packet fields that reman constant
for a flow - for example, UDP and TCP port numbers (or any other transport level
protocol demultiplexing field), IP level transport protocol identifier, together with
a source and destination IP host (interface) addresses, serve to uniquely identify a
flow for FTP, Web and most Mbone applications.

To dynamically create this classification, and to set up the right mapping from
it into the right queues in routers along a path, the Internet community has divised
RSVP, the Resource Reservation Protocol.

When a service request is made, the network has a chance to do something
it cannot do in the normal IP router case: It can decide whether it can support
the request or not in advance, and has the option to deny access (or at least deny
guarantees of service) to a flow. This is known as an “admission test”. It depends
on the user knowing their own traffic patterns, which is not always possible (though
for many applications, the programmer may have calibrated them, and wired in
these parameters). Where not possible, the network may simply monitor, and carry
out “measurement based admission”.

Parameters for quality of service typically include average and peak values for
throughput, delay, and errors; in practice, these may be expressed as burstiness,
end to end delay, jitter, and a worst case error (or residual packet loss) rate.

The debate has raged for many years over which parameter set is necessary and
sufficient for Internet (computer) based multimedia. When a sender can adapt a
send rate dynamically to perceived conditions, and a receiver can adapt to measured
conditions (as well as interpolate, extrapolate for loss, excessive delay and so on),
more flexibility is possible in these parameters than traditionally provided.

For example, delay adaptation at a receiver can be simple achieved, so that so
long as the average rate of traffic is accommodated across the network, and the peak
rate is buffered, and that delay variance caused by bursts at peak rate, or by other

32 CHAPTER 2. NETWORK SERVICE MODELS

traffic (depending on the queuing disciplines used in intermediate nodes), doesn’t
incur more than some peak delay bound, then a smooth playout of media is quite
simple.

In fact, a combination of an adaptive playout buffer, and interpolation can
tolerate a modest percentage of packets arriving too late. Furthermore, one can
divise coding schemes that permit high loss tolerance, which means that they can
co-exist with highly bursty traffic with either a more heavily loaded network (i.e.
more delay variance caused by more bursts), or less well policed or shaped queues
in the intermediate systems. This is discussed in greater detail in chapter five.

2.4.2 Integrated Services Model

The Internet is not a static set of services and protocols, and there has been a great
deal of effort since 1990 to add a broader range of services to the Internet model.
The Integrated Services Working Group [Braden, 94] of the IETF has now defined
5 classes of service which should math the vast majority of future applications
(although the scheme is extensible, so that future applications which need new
services are not excluded!).

The current five classes of service are:

1. Best Effort - this is the traditional service model of the Internet, as described
above, typically implemented through FIFO queuing in routers.

2. Fair - this 1s an enhancement of the traditional model, where there are no
extra requests from the users, but the routers attempt to partition up network
resources in some fair share sense. This is typically implemented using a
random drop approach to overload, possibly combined with some simple round
robin serving of different sources.

3. Controlled load - this is an attempt to provide a guarantee that a network
appears to the user as if there is little other traffic - it makes no other guar-
antees - it is really a way of limiting the traffic admitted to the network so
that the performance perceived is as if the network were over-engineered for
those that are admitted.

4. Predictive or controlled delay - this is where the delay distribution that a
particular flow perceives is controlled - this requires the source (or a group
where it is applied collectively to all sources sending to a group) to make some
pre-statement to the routers that a particular throughput is required. This
may be rejected.

5. Guaranteed - this is where the delay perceived by a particular source or to
a group is bounded within some absolute limit. This may entail both an
admission test as with 3, and a more expensive forwarding queuing system.

The separation of these service classes is important, since the billing model of
the network is related to the service model. For example, elastic services such as
those we have traditionally used in the Internet do not require a usage charge for
traffic which gets no guarantees. However, when an application needs, or asks for
guarantees, there is a requirement to present some feedback to prevent everyone
idly asking for the maximum guarantee (so that the network can make an informed
decision). This feedback can most easily be provided by billing, although some
researchers assert that it is only necessary to actually incur a charge when the
network would be unable to meet all the current requests, rather than whenever
people make a request. This is analogous with billing people for road use during

2.5. RSVP 33

congested periods, and not at other times, and billing people with larger cards more
so as to adjust the demand.

This aspect of the Internet is relevant to considerations of videoconferencing,
since it may well be that large parts of the Internet will not permit such applications
until either reservation, or billing or both are in place as new technology.

2.4.83 Differentiated Services

Differentiated Services have emerged in the Internet arena as a Class of Service
approach to providing better than best effort quality, in contrast to Integrated
Services which uses the more stringent, and complex Quality of Service approach.

Essentially, the observation is that through pricing, and understanding of user
requirements, 1t appears that we can control, and users can accept a limited reper-
toire of quality of service parameters which can be defined as profiles for particular
application usage types. These have detailed specifications, but since they are only
added at the rate at which new usage patterns and new applications are devised,
there is no need to signal the parameters explicitly. Instead the parameters are
programmed into routers, and a class of service is slected by subscription or by
marking using class of service bits in the Differentiated Services byte present in
every pacjet in the TPv4 and IPv6 packet headers. Other functions are still present
(later in this chapter we will describe them in detail) but are simplified and invoked
less frequently.

There 1s great enthusiasm for this approach at the current time.

2.5 RSVP

The protocol that has been devised to establish a reservation in the network for
particular flow classes is called the Resource ReserVation Protocol, or RSVP [Zhang,
94]. Tt might be more accurate to describe it as a dual function protocol, that serves
to install knowledge about classes of traffic in the network (a filter specification) as
well as what particular type or quality of service that these flows will need (a flow
specification). This separation is important, as the filter specification can be re-used
in a number of ways. The simplest way that the filter specification is reusable is
the fact that it can refer to a flow received by an application, rather than to one
that is sent. This means that a sender can send video at a rat convenient to them,
but that receivers can select the sub-band rates that are most convenient to each of
them. This receiver based reservation is quite different from the telephony model
of how to do things, and fits well with the multicast model described in some detail
in the next chapter - it is a bit like the way people can choose what size TV screen
they have independent of the TV transmitted signal (or choose whether the TV is
color, or black & white, or has mono or stereo audio), The second way that the
filter generalizes the idea of a reservation is that it can include a wild card, so that
it can refer to groups of sources. For example, in an audio conference, there is no
necessity to set aside resources for all the audio feeds at once, since humans are
typically capable of organizing themselves in a conversation so that there is only
one (or one and a bit!) person speaking at any one time. Hence, sources will ask
for reservations that are only marginally more than a unicast audio reservation for
a multi-way audio conference. Flow Specifications are cast in terms of the class of
service, combined with the quantitative parameters as needed. For example, a mean
rate combined with a burstiness (also known as Leaky Bucket parameters by analogy
with a water bucket with a given volume and size of leak) suffice to characterize
many applications. Future versions of the Internet Protocol will incorporate tags
(known as Flow Identifiers) which may make the classification of packets by newer

34 CHAPTER 2. NETWORK SERVICE MODELS

RSVP Status: TETF Proposed Standard RFC 2205
ISSLL Status: IETF Work in Progress.
IPv6 Status: TETF Last Call

Table 2.4: Integrated Services Internet function Component Status

routers a more efficient task. Again, the Flow identifier has been designed with
possible future bearer networks such as ATM in mind. Thus it 1s 24 bits in size,
just as the VCI/VPI field is in ATM used for roughly the same function.

2.6 Service Classes and Assurance

As explained in chapter one, there are a variety of proposed service classes in the
Integrated Services Internet, ranging from Best Effort, through Controlled Load, to
Guaranteed Service.

Associated with these are two functions:

1. Admission Control Decision - whether traffic can be supported with the cur-
rent network resources.

2. The Policing Action - monitoring of a flow may determine that it exceeds
either what has been asked for or what can be supported, or both.

Admission control can also be viewed as “refusal control” or call or reservation
blocking. Thus for Best Effort, there is no admission test, and policing consists
simply of packet dropping. There is much debate right now about exactly what
packet dropping policy is fair to a set of competing best effort flows; under overload
conditions. it is the case that FIFO (or “Drop Tail”) is not fair to flows which adapt
based on monitored successful rates of packets per RTT (e.g. TCP), with different
RTTs. Other schemes such as Random Early Detection routing[152], promise better
fairness, and even help discern deliberate attempts to gain an unfair share.

For services with guaranteed performance, in general, we would expect a network
to be designed to admit more calls than it denies, even when there are a borad range
of services available. Most users will use the average service, after all. However, the
average service may be something that changes over time. It may also be the case
that the user has no means to tell (at least easily) exactly what parameters should
be set to what values. In fact, measurements of actual parameters show that they
vary rather more, and in more long term correlated way than had previously been
expected.

A consequence of this has been that people have proposed “Measurement Based
Admission Control”. This is basically an extension of the Internet philosophy of
sending a packet, and “just seeing” if there is enough capacity.

However, we still need some way for the sender to indicate that some level of
guarantee is needed. It has been suggested that this indication could take a very
simple form: simply a price, plus a delay sensitivity. This is still a research topic.

2.7 Detailed Analysis of the Integrated Services

In response to the growing demand for an Integrated Services Internet, the Internet
Engineering Task Force (TETF)[167] set up an Integrated Services (intserv) Working
Group[38][168] which has since defined several service classes that if supported by
the routers traversed by a data flow can provide the data flow with certain QOS
commitments. By contrast best-effort traffic entering a router will receive no such

2.7. DETAILED ANALYSIS OF THE INTEGRATED SERVICES 35

|| Destination Address; Source Address; Destination Port; Source Port; TP Protocol (UDP or TCP) |

Table 2.5: Session for Reservation

service commitment and will have to make do with whatever resources are available.
The level of QOS provided by these enhanced QOS classes is programmable on a
per- flow basis according to requests from the end applications. These requests can
be passed to the routers by network management procedures or, more commonly,
using a reservation protocol such as RSVP which is described in section 2.5. The
requests dictate the level of resources(e.g. bandwidth, buffer space) that must be
reserved along with the transmission scheduling behaviour that must be installed
in the routers to provide the desired end-to-end QOS commitment for the data
flow. A data flow identifies the set of packets to receive special QOS. It is defined
by a “Session” identified by a generalized port specification, as in 2.5, comprising
the TP address, transport layer protocol type and port number of the destination
along with a list of specific senders to that Session that are entitled to receive the
special QOS. Each sender is identified by source address, and port number while
it’s protocol type must be the same as for the Session. We outlined the notion of
an IP address for unicast and multicast in chapter one.

In determining the resource allocations necessary to satisfy a request, the router
needs to take account of the QOS support provided by the link layer in the data
forwarding path. Furthermore, in the case of a QOS-active link layer such as ATM
or certain types of LAN the router is responsible for negotiations with the link
layer to ensure that the link layer installs appropriate QOS support should the
request be accepted. This mapping to link-layer QOS is medium-dependent and the
mechanisms for doing so are currently being defined by the Integrated Services over
Specific Lower Layers (issll) Working Group of the IETF[169] In the case of a QOS-
passive link-layer such as a leased-line the mapping to the link-layer QOS is trivial
since transmission capacity is handled entirely by the router’s packet scheduler.

Each router must apply admission control to requests to ensure that they are
only accepted if sufficient local resources are available. In making this check, admis-
sion control must consider information supplied by end applications regarding the
traffic envelope that their data flow will fall within. One of the parameters in the
traffic envelope that must be supplied is the maximum datagram size of the data
flow, and should this be greater than the MTU of the link then admission control
will reject the request since the Integrated Services models rely on the assumption
that datagrams receiving an enhanced QOS class are never fragmented. Think of
the packet arrival process as having a pattern like a waveform. The envelope is its
typical shape.

Once an appropriate reservation has been installed in each router along the path,
the data flow can expect to receive an end-to-end QOS commitment provided no
path changes or router failures occur during the lifetime of the flow, and provided
the data flow conforms to the traffic envelope supplied in the request. Due to refresh
timers used by RSVP, a flow may recover its QoS commitment with out taking any
special action. With the advent of QoS aware routing, it may be that there is not
even a gap in the perceived provision of the service contract.

Service-specific policing and traffic reshaping actions as described in sections
2.8.1 and 2.8.2 will be employed within the network to ensure that non-conforming
data flows do not affect the QOS commitments for behaving data flows. The IETF
has considered various QOS classes such as [156][161][163][165] although to date
only two of these, Guaranteed Service[163] and Controlled-Load Service[165], have
been formally specified for use with RSVP[166]. First, we will look at the simpler
of these services, namely Controlled Load.

36 CHAPTER 2. NETWORK SERVICE MODELS

2.8 Host Functions

Controlled Load IETF Proposed Standard
Guaranteed Service IETF Proposed Standard

2.8.1 Controlled-Load Service

Controlled-Load Service[165] provides approximately the same quality of service
under heavy loads as under light loads,. A description of the traffic characteris-
tics (the Tspec, described in 2.8.2) for the flow desiring Controlled-Load Service
must be submitted to the router as for the case of Guaranteed Service although
it 1s not necessary to include the peak rate parameter. If the flow is accepted for
Controlled-Load Service then the router makes a commitment to offer the flow a
service equivalent to that seen by a best-effort flow on a lightly loaded network.
The important difference from the traditional Internet best-effort service is that the
Controlled-Load flow does not noticeably deteriorate as the network load increases.
This will be true regardless of the level of load increase. By contrast, a best-effort
flow would experience progressively worse service (higher delay and, sooner or later,
loss) as the network load increased. The Controlled-Load Service is intended for
those classes of applications that can tolerate a certain amount of loss and delay
provided 1t 1s kept to a reasonable level. Examples of applications in this category
include adaptive real-time applications. Controlled Load has some fairly simple
implementations, in terms of the queuing systems in routers. Tt also functions ade-
quately for the existing Mbone applications, which can adapt to the modest (small)
scale end-to-end delay and variations and jitter that it may introduce, through the
use of adaptive playout buffering [130]. Tt is not suited to applications that require
very low latency (e.g. distributed VR systems and so forth).

One possible example of the use of the controlled load service 1s that of Mbone
applications, over a private so-called Intranet, where traffic conditions and global
policies can be managed such that a statistical throughput guarantee is enough, and
propagation delays will be low enough that for most users, interactive software based
multimedia conferencing tools will perform adequately. A more interesting example
might be the provision of SNA or DEC LAT tunnelling across a public Internet
Service Providers backbone network. SNA and DEC LAT are both somewhat delay
sensitive due to their detailed protocol operations, although not as much as some
real time systems are. However, using the same Internet path to carry them with
arbitrary interference from other application’s flows would not work well (or at all).

Next we discuss the service provided where the user requires some commitment
to a delay guarantee, namely the Guaranteed Service.

2.8.2 Guaranteed Service

Guaranteed Service[163] provides an assured level of bandwidth, with a firm end-
to-end delay bound and no queuing loss for conforming packets of a data flow.
It is intended for applications with stringent real-time delivery requirements such
as certain audio and video applications that have fixed play-out buffers and are
intolerant of any datagram arriving after their playback time. Guaranteed Service
really addresses the support of “legacy” applications that expect a delivery model
similar to traditional telecommunications circuits.

Each router characterises the Guaranteed Service for a specific flow by allocating
a bandwidth, R and buffer space, B that the flow may consume. This is done by
approximating the “fluid model” of service[182][183] so that the flow effectively sees
a dedicated wire of bandwidth, R between source and receiver.

2.8. HOST FUNCTIONS 37

(case p> R >=r) (1)
(case R>=p>=r) | (2)

Tspec parameters ;

p ; peak rate of flow (bytes/second)
b ; bucket depth (bytes)

r ; token bucket rate (byes/second)
m ; minimum policed unit (bytes)
M ; maximum datagram size (bytes)

Rspec parameters ;

R ; bandwidth, i.e. service rate (bytes/second)
S ; Slack Term (ms) (see section 2.9.6

Table 2.6: Tspec and Rspec for Guaranteed Service

In a perfect fluid model a flow conforming to a token bucket of rate, r and depth,
b will have it’s delay bounded by b/R provided R >= r. To allow for deviations
from this perfect fluid model in the router’s approximation , two error terms, C
and D are introduced. Among other things the router’s approximation must take
account of the medium-dependent behaviour of the link layer of the data forwarding
path. These errors arise from the finite packet sizes that are being dealt with. For
example, any packet may experience an excess delay as it is forwarded due to the
size of the packets in the same queue, and due to inaccuracies in scheduling from
packets (of a possibly different size) in other queues bound for the output link.
These terms are derived for Weighted Fair Queuing schedulers in Parekh’s seminal
work [182][183].

Consequently the delay bound now becomes b/R 4+ C/R + D. However with
Guaranteed Service a limit is imposed on the peak rate, p of the flow which results
in a reduction of the delay bound.

In addition, the packetisation effect of the flow needs to be taken into account
by considering the maximum packet size, M.

While the Internet Protocol permits, in principle, a wide range of packet size
s, in practice, the range supported makes stating this upper limit practical and
realistic. These additional factors result in a more precise bound on the end to end
queuing delay as follows:

The composed terms, Ctot and Dtot represent the summation of the C and D
error terms respectively for each router along the end-to-end data path. In (1),
there are three delay terms, made from the contributions of the burst of packets,
b, (the bucket depth) sent at the peak rate p, and serviced at the output link rate
R, plus the sum over all hops, of errors introduced at each hop due to a packet
size worth of fluid flow approximation, plus a third term, made up of cross traffic
scheduling approximation contributions. In (2), the first term is absent, since the
link rate is greater than the peak, so there are no packets queued from this flow
itself. In order for a router to invoke Guaranteed Service for a specific data flow it
needs to be informed of the traffic characteristics of the flow, Tspec, along with the
reservation characteristics, Rspec. These are detailed below in table 2.6.

Furthermore to enable the router to calculate sufficient local resources to guar-
antee a lossless service it requires the terms Csum and Dsum which represent the
summation of the C and D error terms respectively for each router along the path
since the last re-shaping point.

38 CHAPTER 2. NETWORK SERVICE MODELS

Guaranteed Service traffic must be policed at the network access points to ensure
conformance to the Tspec, so that traffic does not interfere with other flows and
cause them to miss their contract. We discuss this further below.

In addition to policing of data flows at the edge of the network, Guaranteed
Service also requires reshaping of traffic to the token bucket of the reserved Tspec at
certain points on the distribution tree. Any packets failing the reshaping are treated
as best- effort and marked accordingly if such a facility is available. Reshaping
must be applied at any points where it is possible for a data flow to exceed the
reserved Tspec even when all senders associated with the data flow conform to
their individual Tspecs.

Traffic conforming to a leaky bucket specification has still some degrees of free-
dom to take different shapes within the envelope. Shaping can improve the way such
traffic mixes and improve its buffering requirements. Such an occurrence is possible
in the following two multicast cases (readers may care to re-read this section after
reading chapter three).

1. At branch points in the distribution tree where the reserved Tspecs of the
outgoing branches are not the same: In this case the reserved Tspec of the
incoming branch is given by the “maximum” of the reserved Tspecs on each of
the outgoing branches. Consequently some of the outgoing branches will have
a reserved Tspec that is less than the reserved Tspec of the incoming branch
and so it 1s possible that in the absence of reshaping, traffic that conforms to
the Tspec of the incoming branch might not conform when routed through
to an outgoing branch with a smaller reserved Tspec. As a result, reshaping
must be performed at each such outgoing branch to ensure that the traffic is
within this smaller reserved Tspec.

2. At merge points in the distribution tree for sources sharing the same reser-
vation, since in these cases the sum of the Tspecs relating to the incoming
branches will be greater than the Tspec reserved on the outgoing branch:
Consequently when multiple incoming branches are each simultaneously ac-
tive with traffic conforming to their respective Tspecs it is possible that when
this traffic is merged onto the outgoing branch it will violate the reserved
Tspec of the outgoing branch. Hence reshaping to the reserved Tspec of the
outgoing branch is necessary.

This reshaping will necessarily incur an additional delay (essentially, to smooth
a collection of peaks over some troughs of traffic flow must entail slowing down early
packets, since one obviously cannot speed up later packets).

When merging heterogeneous reservation requests from receivers onto the tree
flowing from the same source, there is an additional problem known as the “Killer
Reservation” problem, which manifests itself in two ways: Firstly, a large reservation
made subsequent to an existing smaller reservation may fail. If this is the case, a
naive implementation will cause the entire reservation to fail. The solution to this is
to introduce extra states into the reservation protocol such that subsequent failures
to not break existing reservations. Secondly, a receiver may continually attempt to
make a large reservation, retrying quickly after every failure. This may continually
block a smaller reservation request that might otherwise succeed. Again, a merge
point might keep state concerning recent failed reservations and favour new ones
that are more likely to succeed over retries for ones that have recently failed.

There are a number of applications in the military and commercial worlds which
have hard delay bound requirements. For example, the Distributed Interactive
Simulation program has a scenario with 100,000 participants in an online war game
simulation, where the applications send messages to each other that represent events
between objects in the real world. Participants should see progress (missiles hitting

2.8. HOST FUNCTIONS 39

RSVP use with Integrated Services Status: TETF Proposed Standard RFC 2210
Controlled Load Status: TETF Proposed Standard RFC 2211
Guaranteed Service Status: IETF Proposed Standard RFC 2212

tanks) in an ordered, and timely fashion. A somewhat difference scenario, but
with remarkable similar network guarantee requirements, is that of share dealer
networks. Here, share price advertisements are multicast to the dealer terminals,
with hard delay bounds on delivery delays (and rates), and delay bounds on the
response times, since the price in the real world is varying, possibly very rapidly,
and the requirement is that a bid to buy at a price does not encounter an offer to

sell that is significantly out of date.

2.8.3 Policing and Conformance

Routers implementing the Controlled-Load and Guaranteed Services must check for
conformance of data flows to their appropriate reserved Tspecs. This is known as
policing. Any non-conforming data flows must not be allowed to affect the QOS
offered to conforming data flows or to affect unfairly the handling of best-effort
traffic.

Within these constraints the router should attempt to forward as many of the
packets of the non-conforming data flow as possible. This might be done by dividing
the packets into conforming and non-conforming groups and forwarding the non-
conforming group on a best effort basis. Alternatively, the router may choose to
degrade the QOS of all packets of a non-conforming data flow equally. The usual
enforcement policy is to forward non-conforming packets as best-effort datagrams.
There is some debate about actually making non-conforming packets lower effort
than best effort since otherwise there is an incentive for users to send deliberately
at higher rantes than their Tspec would allow.

Action with regard to non-conforming datagrams can be configurable to allow for
situations such as traffic-sharing where the preferred action might be to discard non-
conforming datagrams. This configuration requirement also applies to reshaping. If
and when a marking facil ity (e.g. a bit in the TP header to indicate that a packet has
exceeded its flow parameters) becomes available these non- conforming datagrams
should be marked to ensure that they are treated as best-effort datagrams at all
subsequent routers.

An additional requirement for policing over that of meeting the global traffic
contract, is that there are possible consequences for pricing if excess traffic is not
seen to receive a lesser service guarantee.

2.8.4 Integrated Services on Specific Link Technology

Assuming a backbone network is implemented as a set of routers connected together
by point-to-point circuits, integrated services must be implemented by putting in
place the appropriate queuing strategies in the routers. Typically, theory tells us
that Weighted Fair Queuing of IP packets (or hierarchical round robin service) will
provide at least a baseline for implementation. In fact, for controlled load, simple
priority queuing schemes may suffice. There are a number of other service disciplines
being researched.

Where routers are interconnected by other types of links, particularly shared
media (LANSs, Satellite channels etc.), or switches, then the interconnect technology
must be controlled as well. In the standards work, specifications are emerging for
mapping the Guaranteed Service and Controlled Load to run over Token Ring,

40 CHAPTER 2. NETWORK SERVICE MODELS

SMDS, Frame Relay, and a variety of Transfer Capabilities and QoS Classes on
switched ATM networks.

For non-deterministic (but popular) subnetworks such as Ethernet, the technol-
ogy must be enhanced somehow. This is a matter for current development.

When an IP network is operated across ATM switches (i.e. hosts and routers
are interconnected by ATM clouds), then there are interworking units that map
RSVP requests into Q.2931 requests. On other types of links (e.g. shared LANS),
other techniques are used to provide the service guarantees.

These classes of traffic are roughly in line with those developed in the Broadband
Integrated Services Digital Networks standards communities (the ITU and ATM
Forum), for ATM networks (ATM stands for Asynchronous Transfer Mode). They
define the equivalent services in terms of the bandwidth rather than delay model, but
the intent is similar. UBR, ABR, VBR and CBR stand for Unspeci fied, Available,
Variable and Constant bitrate services respectively. ATM is seen in some quarter s
to be the multiple service network of the future. It is clear that it is able to convey
roughly the same services as are being devised for TP, which should lead to the
possibility of layering one service on the other fairly easily.

2.9 Resource ReSerVation Protocol (RSVP)

The Resource ReSerVation Protocol RSVP[158] was designed to enable the senders,
receivers and routers of communication sessions(either multicast or unicast) to com-
municate with each other in order to set up the necessary router state to support
the services described in sections 2.8.1 and 2.8.2. It is worth noting that RSVP is
not the only TP reservation protocol that has been designed for this purpose. Oth-
ers include ST-T1[160] and ST-T1T4[162] which incidentally contain some interesting
architectural differences to RSVP such as the use of hard-state and sender-initiated
reservations rather than soft-state and receiver-initiated reservations as in RSVP.
With hard-state the network is responsible for reliably maintaining router state
whereas with soft- state the responsibility is passed to the end-systems which must
generate periodic refreshes to prevent state timeout.

An earlier Internet signaling protocol, ST-IT4 permits both sender and receiver-
initiated reservations, ST-IT permits sender-initiated reservations only. For further
discussion of alternatives we refer the interested reader to Mitzel[162] However in
this chapter and book the only reservation protocol we consider in detail is RSVP
since currently this has the most industry support.

RSVP is a novel signaling protocol in at least three ways:

1. Tt accommodates multicast, not just point-to-multipoint (one-to-many) reser-
vations. To this end, the receiver driven request model permits heterogeneity,
in principle, and the filter mechanism allows for calls that reserve resources
efficiently for the aggregate traffic flow (e.g. for audio conferencing).

2. It uses soft state, which means that it is tolerant of temporary loss of function
without entailing fate-sharing between the end systems and the network nodes.
This means that QoS routing can be deployed separately (in more than one
way!).

3. RSVP is quite straightforward in packet format and operations, and so is
relatively low cost in terms of implementation in end systems and routers.
One thing that RSVP is not is a routing protocol. RSVP does not support
QoS-dependent routing itself (in other words, such routing is independent of
RSVP, and could precede or follow reservations).

UPSTREAM DOWNSTREAM

-«
Resv —»
ResvTear
PathErr
S1 R1 R2 R3 S
—> —> —> >
Path
PathTear \
ResvConf \
Rn | router ResvErr R4
—>

Figure 2.3: Direction of RSVP messages

RSVP is not a routing protocol, it is a signaling protocol; it is merely used to
reserve resources along the existing route set up by whichever underlying routing
protocol is in place. Figure 2.3 shows an example of RSVP for a multicast Session
involving one sender, S1 and three receivers, RCV1 - RCV3.

The primary messages used by RSVP are the Path message which originates from
the traffic sender and the Resv message which originates from the traffic receivers.
The primary roles of the Path message are firstly, to install reverse routing state
in each router along the path and secondly, to provide receivers with information
about the characteristics of the sender traffic and end-to-end path so that they
can make appropriate reservation requests. The primary role of the Resv message
is to carry reservation requests to the routers along the distribution tree between
receivers and senders. Returning now to Figure 2.3, as soon as S1 has data to send
it begins periodically forwarding RSVP Path messages to the next hop, R1 down
the distribution tree. RSVP messages can be transported raw within IP datagrams
using protocol number 46 although hosts without this raw I/O capability may first
encapsulate the RSVP messages within a UDP header.

2.9.1 Reservation Styles and Merging

Associated with each reservation made at a router’s interface is a Filterspec describ-
ing the packets to which the reservation applies along with an effective Flowspec.
Both the Filterspec and effective Flowspec are obtained from a merging process
applied to selected Resv messages arriving on the routers interface. The rules for
merging are dependent upon the reservation “Style” of each Resv message as de-
scribed below. In addition the router calculates the Filterspec and Flowspec of Resv
messages to be sent to the previous hop(s) upstream by applying Style-dependent
merging of stored reservation state. Any changes to stored reservation state that
result in changes to the Resv messages to be sent upstream will cause an updated
Resv message to be sent upstream immediately. Otherwise Resv messages are cre-
ated based on stored reservation state and sent upstream periodically. As for path

RCV1

RCV2

RCV3

outgoing requests after merging 1Incoming reservation requests

p— FF(S1{2B}, S2{3B}, S4{5B})
FF(S1{4B}, S2{6B}) S1{4B) FF(S1{4B}, S2{2B})
towards S1, S2 «—— I gig%% I «——
reserve FF{S4{4B})
FF(S3{2B}, S4{5B}) gi{gg} FF(S2{6B}, S4{2B},S6{2B})
towards S3, S4 < I S6%2B% I < N
reserve
FF(S5{4B}, S6{2B}) g%gB% FF(S2{3B}, S3{2B}, S5{4B})
d I B} 1
towards SS, S6 47 SS{4B}

Figure 2.4: Fixed Filter Reservation Example.

Wildcard Filter (WF) (shared reservation and wildcard sender selection)

The Filterspec of each WF reservation installed at an interface is wildcard
and matches on any sender from upstream. The effective Flowspec installed
is the maximum from all WF reservation requests received on that particular
interface. The Flowspec of each WF Resv message unicast to a previous hop
upstream is given by the maximum Flowspec of all WF reservations installed
in the router. More strictly speaking, only WF reservations whose “Scope”
applies to the interface out of which the Resv message is sent are considered for
this second merging process. Scope details are required for WF reservations
on non-shared trees to prevent looping. Further details can be found in [158].

outgoing requests after merging incoming reservation request:

roserve SE((S2, S4){5B})
SE((S1, S2){5B}) SE((S1, S2){2B})
towards S1, S2 «— |1 (S1,S2,S4){5B}1 <
reserve SE(S4{3B})
SE((S3, S4){5B}) SE(S4, S6){2B})
towards 3,54 4 I (54,56){3B}1)
reserve
SE((S5, S6){4B}) SE(S2, S3,S5){4B})
towards S5, S6 44— |1 (S2,S3,S5){4B} 1 +—

Figure 2.6: Shared Explicit Reservation Example.

SE and WF styles are useful for conferencing applications where only one sender
is likely to be active at once in which case reservation requests for say twice the
sender bandwidth could be reserved in order to allow an amount of over-speaking.
Although RSVP is unaware of which service(Controlled-Load or Guaranteed) reser-
vations refer to, RSVP is able to identify those points in the distribution tree that
require reshaping in the event that the reservations are for Guaranteed Service as
described in section 2.8.2. Consequently at all such points RSVP informs the traffic
control mechanisms within the appropriate router accordingly although such action

44 CHAPTER 2. NETWORK SERVICE MODELS

will only result in reshaping if the reservation is actually for Guaranteed Service.

2.9.2 Path Messages

Each Path message includes the following information:

e Phop, the address of the last RSVP-capable node to forward this Path mes-
sage. This address is updated at every RSVP-capable router along the path.

e The Sender Template, a filter specification identifying the sender. It contains
the IP address of the sender and optionally the sender port(in the case of IPv6
a flow label may be used in place of the sender port).

o The Sender Tspec defining the sender traffic characteristics.

e An optional Adspec containing OPWA information(see sections 2.9.4 and
2.9.5) which is updated at every RSVP-capable router along the path to
attain end-to-end significance before being presented to receivers to enable
them to calculate the level of resources that must be reserved to obtain a

given end-to-end QOS.

2.9.3 Processing and Propagation of Path Messages

Each intermediate RSVP-capable router along the distribution tree intercepts Path
messages and checks them for validity. If an error is detected then the router will
drop the Path message and send a PathErr message upstream to inform the sender
who can then take appropriate action.

Assuming the Path message is valid the router does the following: Update the
path state entry for the sender identified by the Sender Template. If no path state
exists then create it. Path state includes the Sender Tspec, the address, Phop of the
previous hop upstream router and optionally an Adspec. The Phop address needs
to be stored in order to route Resv messages in the reverse direction up the tree.
The Sender Tspec provides a ceiling to clip any inadvertently over- specified Tspecs
subsequently received in Resv messages Set cleanup timer equal to cleanup timeout
interval and restart timer. Associated with each path state entry is a cleanup
timer, the expiration of which triggers deletion of the path state. Expiration of the
timer will be prevented if a Path message for the entry is received at least once
every cleanup timeout interval. This is the so-called RSVP soft state mechanism
and ensures that state automatically times out if routing changes while subsequent
Path messages install state along the new routing path. In this way the use of
soft-state rather than hard- state helps to maintain much of the robustness of the
initial Internet design concepts whereby all flow-related state was restricted to the
end systems[159]

The router 1is also responsible for generating Path messages based on the stored
path state and forwarding them down the routing tree making sure that for each
outgoing interface the Adspec(see section 2.9.4) and Phop objects are updated ac-
cordingly. Path messages will be generated and forwarded whenever RSVP detects
any changes to stored path state or is informed by the underlying routing protocol
of a change in the set of outgoing interfaces in the data forwarding path. Otherwise,
a Path message for each specific path state entry is created and forwarded every
refresh period timeout interval in order to refresh downstream path state. The
refresh period timeout interval is several times smaller than the cleanup timeout
interval so that occasional lost Path messages can be tolerated without triggering
unnecessary deletion of path state.

2.9. RESOURCE RESERVATION PROTOCOL (RSVP) 45

However it is still a good idea that a minimum network bandwidth and router
processing resources be configured for RSVP messages to protect them from con-
gestion losses.

Although all path state would eventually timeout in the absence of any refreshes
via Path messages, RSVP includes an additional message, PathTear to expedite the
process. PathTear messages travel across the same path as Path messages and are
used to explicitly tear down path state. PathTear messages are generated whenever
a path state entry is deleted and so a PathTear message generated by a sender will
result in deletion of all downstream path state for that sender. Typically, senders
do this as soon as they leave the communications session. Also, deletion of any path
state entry triggers deletion of any dependent reservation state(see section 2.9).

2.9.4 Adspec

The Adspec is an optional object descriptor that the sender may include in its
generated Path messages in order to advertise to receivers the characteristics of the
end to end communications path. This information can be used by receivers to
determine the level of reservation required in order to achieve their desired end to
end QOS. The

Adspec consists of a message header, a Default General Parameters part and at
least one of the following; Guaranteed Service part, Controlled-Load Service part.
Omission of either the Guaranteed or Controlled-Load Service part is an indication
to receivers that the omitted service is not available. This feature can be used
in a multicast Session to force all receivers to select the same service. At present
RSVP does not accommodate heterogeneity of services between receivers within a
given multicast Session, although, within the same service model, the parameters
may differ for receivers in the same session, so the core objective of supporting
heterogeneity is mainly met.

Default General Part The Default General Parameters part includes the follow-
ing fields which are updated at each RSVP-capable router along the path in
order to present end-to-end values to the receivers.

e Minimum Path Latency (summation of individual link latencies). This
parameter represents the end-to-end latency in the absence of any queu-
ing delay. In the case of Guaranteed Service, receivers can add this value
to the bounded end-to-end queuing delay to obtain the overall bounded
end-to-end delay.

e Path Bandwidth (minimum of individual link bandwidths along the path)

e Global Break bit - This bit is cleared when the Adspec is created by
the sender. Encountering any routers that do not support RSVP will
result in this bit being set to one in order to inform the receiver that the
Adspec may be invalid.

¢ Integrated Services(IS) Hop count - incremented by one at every RSVP /IS-
capable router along the path.

e PathMTU - Path Maximum Transmission Unit (minimum of MTUs of
individual links along the path).

Correct functioning of IETF Integrated Services requires that packets of a
data flow are never fragmented. It might be possible to devise a scheme
to support QoS for fragmented traffic, but the key problem of how loss of
fragment results in loss of overall datagram is hard to work around!

46

CHAPTER 2. NETWORK SERVICE MODELS

This also means that the value of M in the Tspec of a reservation request must
never exceed the MTU of any link to which the reservation request applies to.
MTU Discovery can be employed to avoid this.

A receiver can ensure that this requirement is met by setting the value of M in
the Tspec of it’s reservation request to the minimum of the PathMTU values
received in “relevant” Path messages. The value of M in each generated reser-
vation request may be further reduced on the way to each sender if merging
of Resv messages occurs(see section 2.9.2). The minimum value of M from
the Tspec of each Resv message received by the sender should then be used
by the sending application as the upper limit on the size of packets to receive
special QOS. In this way fragmentation of these packets will never occur. In
cases where the last hop to a sender is a shared medium LAN the sender
may receive Resv messages across the same interface from multiple next hop
routers.

The specification [166] recommends that the value of M in the Sender Tspec,
which has played no part in the above MTU negotiation process, should be
set equal to the maximum packet size that the sender is capable of generating
rather than what it is currently sending.

Guaranteed Service Part The Guaranteed Service part of the Adspec includes

the following fields which are updated at each RSVP-capable router along the
path in order to present end-to-end values to the receivers.

e Ctot - end to end composed (as explained above, from the sum of each
router/hop’s estimate of the error) value for C.

e Dtot - end to end composed value for D.
e CSum - composed value for C since last reshaping point.

e DSum - composed value for D since last reshaping point (CSum and
Dsum values are used by reshaping processes at certain points along the
distribution tree).

e Guaranteed Service Break Bit - This bit is cleared when the Adspec
is created by the sender. FEncountering any routers that do support
RSVP/IS but do not support Guaranteed Service will result in this bit
being set to one in order to inform the receiver that the Adspec may be
invalid and the service cannot be guaranteed.

¢ Guaranteed Service General Parameters Headers/Values - These are op-
tional but if any are included then each one overrides the corresponding
value given in the Default General Parameters fragment as far as a re-
ceiver wishing to make a Guaranteed Service reservation is concerned.
These override parameters could for example be added by routers along
the path that have certain service-specific requirements. For example a
router may have been configured by network management so that Guar-
anteed Service reservations can only take up a certain amount, Bgs of the
outgoing link bandwidth. Consequently if the Default Path bandwidth
value in the Adspec to be sent out of this interface is greater than Bgs
then a Guaranteed Service Specific Path bandwidth header and value
equal to Bgs may be included in the Adspec. As for Default General
Parameters, any Service- Specific General Parameters must be updated

at each RSVP hop.

Controlled Load part The Controlled-Load Service part of the Adspec includes

the following fields which are updated at each RSVP-capable router along the
path in order to present end-to-end values to the receivers.

2.9. RESOURCE RESERVATION PROTOCOL (RSVP) 47

e Controlled-Load Service Break Bit - This bit is cleared when the Adspec
is created by the sender. Encountering any routers that do support
RSVP/IS but do

em not

support Controlled-Load will result in this bit being set to one in order
to inform the receiver that the Adspec may be invalid and the service
cannot be guaranteed.

e Controlled-Load Service General Parameters Headers/Values - As for the
Guaranteed Service fragment, override Service-Specific General Parame-
ters may be added to the Controlled-Load Service fragment.

2.9.5 Making a Reservation using One Pass with Advertising
(OPWA)

One Path With Advertising(OPWA), refers to the reservation model for the case
where the sender includes an Adspec in its Path messages to enable the receiver to
determine the end-to-end service that will result from a given reservation request.
If the sender omits the Adspec from its Path messages then the reservation model is
referred to simply as One Pass in which case there is no easy way for the receiver to
determine the resulting end-to-end service. The objective of this aspect of the RSVP
reservation model, both for One Pass and One Pass with Advertising is to minimise
the latency (in terms of number of handshakes between senders and recipients)
before a reservation is in place. Here we consider the OPWA case. Let us assume
that the sender omits the Controlled-Load Service data fragment from the Adspec
thereby restricting each receiver to reservation of Guaranteed Service only. Upon
receiving Path messages the receiver extracts the following parameters from the
Sender Tspec: 7, b, p, m. In addition the following are extracted from the Adspec:
Minimum Path Latency, C'tot, Dtot, PathMTU, Path Bandwidth. In a way similar
to incremental route calculation, OPWA permits incremental accumulation of the
delay for a reservation. The required bound on end-to-end queuing delay, Qdelreq
is now calculated by subtracting the Minimum Path Latency from the value of end-
to-end delay required by the receivers application. Typically, the receiver would
then perform an initial check by evaluating equation (2) for R equal to the peak
rate, p. If the resultant delay was greater than or equal to Qdelreq then equation
(2) would be used for calculation of the minimum value of R necessary to satisfy
Qdelreq. Otherwise equation (1) would be used for this purpose. This minimum
value of R is then obtained by inserting Qdelreq into either equation (1) or (2) along
with M(given by PathMTU), Ctot, Dtot, r, b, p, as appropriate. If the obtained
value of R exceeds the Path Bandwidth value as obtained from the Adspec of the
received Path message then it must be reduced accordingly. The receiver can now
create a reservation specification, Rspec comprising firstly the calculated value, R
of bandwidth to be reserved in each router, and secondly a Slack Term that is
initialised to zero In some cases even with R set to the minimum permissible value
of r the resultant end-to-end queuing delay as given by eqs (1) and (2) will still
be less than Qdelreq in which case the difference can be represented in a non-zero
slack term. In addition there are other scenarios explained in section 2.9.6 in which
the slack term may not be initialised to zero. The Rspec can now be used in the
creation of a Resv message which also includes the following:

e An indication of the reservation style which can be FF, SE or WF (see section
2.9)

o A filter specification, Filterspec (omitted for the case of WF reservation style).
This is used to identify the sender(s) and the format is identical to that of the

48 CHAPTER 2. NETWORK SERVICE MODELS

Sender Template in a Path message.

o A flow specification, Flowspec comprising the Rspec and a traffic specification,
Tspec. Tspec is usually set equal to the Sender Tspec except M will be given
by PathMTU obtained from the received Adspec.

e Optionally a reservation confirm object, ResvConf containing the IP address
of the receiver. If present this object indicates that the node accepting this
reservation request at which propagation of the message up the distribution
tree finishes should return a ResvConf message to the receiver to indicate that
there is a high probability that the end-to-end reservation has been success-
fully installed.

In practice there are certain scenarios in which a ResvConf message might be
received by a receiver only for the request to be rejected shortly afterwards.

The Resv message 1s now sent to the previous hop upstream as obtained from
the stored path state. Upon reaching the next upstream router the Resv messages
can be merged with other Resv messages arriving on the same interface according
to certain rules as described later to obtain an effective Flowspec and Filterspec.
The following action is then taken.

The effective Flowspec is passed to the traffic control module within the router
which applies both admission control and policy control to determine whether the
reservation can be accepted. Admission control is concerned solely about whether
enough capacity exists to satisfy the request while policy control also takes into
account any additional factors that need to be considered (e.g. certain policies may
limit a users reserved bandwidth even if spare bandwidth exists). If the reservation
attempt is denied then any existing reservations are left unaltered and the router
must send a ResvErr message downstream. If the reservation request is accepted
then reservation state is set up in accordance with the effective Flowspec and Filter-
spec. In accepting the request it may be permissible to alter the Rspec associated
with the reservation from (Rin, Sin) to (Rout, Sout) in accordance with the rules
described earlier

The resultant reservation may then be merged with other reservations in accor-
dance with the rules in section 2.9 to obtain a new Resv message that is sent to the
next router upstream, the address of which is obtained from the stored path state.

2.9.6 Slack term

When a receiver generates an Rspec for a Resv message to be sent for a Guaranteed
Service reservation request it must include a Slack Term, S(ms) as well as the
amount of bandwidth, R to be installed in each router along the path. S represents
the amount by which the end-to-end delay bound will be below the end-to-end
delay required by the application assuming each router along the path reserves R
bandwidth according to the Guaranteed Service fluid approximation. Inclusion of a
non-zero Slack Term offers the individual routers greater flexibility in making their
local reservations. In certain circumstances this greater flexibility could increase the
chance of an end-to- end reservation being successful. Some routers have deadline
based schedulers that decouple rate and delay guarantees. Such a scheduler may
sometimes be unable to meet it’s deadline requirement for Guaranteed Service in
which case it might still be able to accept the reservation providing the Slack Term is
at least as large as the excess delay. The excess delay would then be subtracted from
the Slack Term before unicasting the Resv message to the previous hop upstream.
Similarly a rate based scheduler might be able to admit a reservation request by
reserving less than the requested bandwidth and unicasting the reduced reservation
request to a previous hop upstream provided it could extract enough slack. Any

available bandwidth

in router
SMb/s 4Mb/s 2Mb/s 4Mb/s 3.5Mb/s
Sender R1 R2 R3 R4 R5 Receiver
Resv(R1, S1) Resv(R1, S1) Resv(R1, S1)
—>
ResvErr

Figure 2.7: R1=2.5Mb/s, S1=0. Reservation request denied.

2.10 QoS Routing

We wrote earlier that the only way to alter performance for a multimedia flow was
by changing the schedule in a router or switch.

However, there 1s another way, which is to select a different path. There are two
problems with this: firstly, alternate path routing is a very complex problem, and
few protocols currently support this on the basis of requests and current network
conditions; secondly, alternate paths are there for some reason, and that reason is

Sender

available bandwidth

in router
SMb/s 4Mb/s 2Mb/s 4Mb/s 3.5Mb/s
(51l . [pal [oAl
R1 R2 R3 R4
« B B e e Blre—

Receiver

Resv(R2, S2) Resv(R2, S2) Resv(R2, S2) Resv(R1, S1) Resv(R1, S1) Resv(R1, S1)

Figure 2.8: R1=3Mb/s, S1,0, R2=2Mb/s, S2;S1. Reservation accepted.

usually that some other user is about to use them. Hence 1t may be a bad idea
economically to make use of alternate paths that deviate very far from the best
current obvious route. The jury is still out on this topic.

2.11 Futures

We have looked at the evolution of the Internet from Best Effort, FIFO, Destina-
tion Routed, Unicast network, to a multi-service, QoS Routed, multicast capable
system. We have seen that very detailed progress has been made in that if sup-
ported by the routers along an end-to-end data path, RSVP can permit end systems
to request Integrated Services that provide end applications with enhanced QOS
commitments over conventional best-effort delivery. RSVP can be used by end ap-
plications to select and invoke the appropriate class and QOS level. In addition if
the OPWA reservation model is used with RSVP then the requesting application
is able to determine the resultant end-to-end QOS in advance of making the reser-
vation. Without RSVP, a fall back service of best effort is still available from the
unused capacity. In the near future, some research needs to be carried out in a
number of areas:

1. Accounting and Billing needs to be integrated into the model in a scaleable
way.

2. Aggregation of non-specifically related reservations (or flows) would be useful
- in the same way that ATM provides Virtual Paths as well as Virtual Circuits,
we might like to build virtual private Internets using, for example, the address
aggregation mechanism CIDR, to be used within a reservation (the extension
has been proposed in the RSVP working group to allow the generalised port to
be accompanied by masks, in the same way that routing protocols distribute
updates with masks).

3. Authentication of users of RSVP is clearly essential if we are to incur bills
when we use it.

4. The usage accounting model must accommodate mirror servers in some way.

5. Some scheme to permit settlements or something akin to them will need
to be evolved to allow deployment of RSVP and Integrated services across
paths that entail more than a single Intranet or commercial Internet Service
Provider.

6. Lastly, simply experience of using a multiservice networks is needed to see
which pieces of this complex system are really used frequently, since it is not
at all clear that the entire edifice is all either necessary, or sufficient.

2.12. IP AND ATM 51

2.12 IP and ATM

The two basic tasks of an intermediate node in a packet switched network are[179]:
to forward packets, maintaining as far as economically possible, appropriate timing
relationship between packets provided that they meet the service contract; and to
deliver them along the appropriate route to the destination.

The Internet[178][177] has hitherto defined a simple service model that does not
offer any definition of the timing model, and it has sufficed to provide a single FIFO
queue in a router. In contrast, the path selection mechanisms in the Internet have
been rich, typically permitting rapid deployment of new routers, and rapid response
to changes in traffic patterns.

This has been achieved by making a hop-by-hop, packet-by-packet, routing
lookup. Some people confuse this with a routing decision - in fact, the routing
decision is made when a path computation is done, which 1s typically whenever new
routing information is available to each node, and is a management task, that often
operates somewhat slower than the route lookup/forwarding decision.

However, to give flexibility, IP packets all contain source and destination infor-
mation, which permits a choice of route.

Recently, to add further services, the Internet Standards have been enhanced|[184]
to provide a signalling protocol, and a family of service models based on the theory
in Parekh’s work[182][183]. This shows how a Weighted Fair Queueing system can
provide bounded delays for variable length packet flows, provided that the traffic
is constrained by a leaky bucket, and that an admission test (for the appropriate
leaky bucket specification) is carried out at the edge (or at each hop) of the path
- this is known as a “flow specification”, and subsequent packets are matched to
the admitted flow by classifying them based on the source, destination and trans-
port level ports (application level multiplexing I-D’s). [180] This is the Integrated
Services Internet.

There has been some doubt about whether it is possible to build routers fast
enough to classify packets according to their flow-spec, and to carry out a WFQ
insertion.

In contrast to this, two other hybrid approaches to building a fast Internet have
been proposed:

1. Frame Relay or ATM switch fabric.
2. Hybrid switch/router nodes.

The first approach envisages a network provided (presumably) by telecommuni-
cations carriers made up of traditional virtual circuit based packet switches based
around either Frame Relay (today) or ATM (tomorrow). Routers would operate
between site networks, and act as access devices. Here there is a clear division of
slow changing, backbone provisioning, and more rapid changing edge networks - this
is not terribly different from todays systems, although there could be more flexi-
ble access to differential services from the routers (e.g. interaction between RSVP
requests to routers, and router access via say Q.2931 to backbone QoS support).

The second approach i1s a more integrated approach, attempting to capitalise
on the benefits of virtual circuits at one level, and on the flexibility advantages of
dynamic IP routing at another. All nodes provide both functions in some manner.
There are four main proposals for how to achieve this latter architecture.

The principal performance gain that is expected from all the proponents of
these schemes is that the switch designers for ATM capitalises on the fixed size
header, with the short VCI/VPI field, that permits simple tables for the lookup
for forwarding, and the small fixed size cell, that permits low latency, and jitter, in
combining bursty flows for forwarding. Sometimes, there is a mistaken claim that

52 CHAPTER 2. NETWORK SERVICE MODELS

the queue insertion procedure could be faster than for Integrated Services IP - in
fact, recent work by Hui Zhang[185][186] shows that this is not at all the case.

1. CSR - Cell Switched Router - from Toshiba (and others)

This approach simply uses normal TP routing for forwarding packets, but
shreds them, so that the store-and-forwarding latency is much lower.

2. Flow Label - Implemented in Ipsilon devices

This is a smart technique for matching a flow of IP packets onto a virtual
circuit, dynamically, Essentially, flow characteristics are pre-programmed into
a recogniser, which only opens VCs for individual flows that are expected to
persist long enough. Short flows are bundled onto a default VC.

3. Tag Switching - Proposed by Cisco

All routes from the routing table are used to generate tags, which are then
used in the backbone to indicate a VC to follow.

4. ARIS - Aggregated Route-Based IP Switching

All backbone egress points are used to generate tags which are used to bundle
together like minded flows onto a VC.

There are a number of problems with all these hybrid approaches, including:
VC setup times; Exhausting VCI/VPI tables; management complexity; difficulty
supporting mobility; difficulty supporting multicast (many-to-many); possible lack
of fault tolerance.

2.12.1 Mapping classes and QoS

The Integrated Services model has an initial deployment scenario of routers con-
nected together by point to point links. In that situation, packet scheduling for
service classes needs only to be deployed within the routers, to provide the service
overall.

However, many parts of the Internet involve other interconnection technologies
between routers. Two common, but extremely different situations are:

e Routers interconnected via Local Area Networks, such as Ethernet, FDDI,

100Mbps Ethernet, 100VG, and so forth.

e Routers interconnected by so-called “Non Broadcast Multiple Access” (NBMA)
networks such as Frame Relay, SMDS and ATM - these are often referred to
as switched clouds, typically because of the way that they are drawn on inter-
network maps.

The Integrated Services over Specific Lower Layers, Working Group of the IETF
has defined the mapping of some of the TP level services onto services provided at
the lower layer.

In some cases, the Link Layer as currently deployed cannot support the upper
layer services with any reasonable guarantee, and so some enhancement is typi-
cally called for - one such case is Ethernet where the shared Media Access is so
non-deterministic, that an enhancement based on some form of distributed band-
width manager is required to provide anything beyond best effort TP service over
an Ethernet hop.

In the case of NBMA networks, particularly ATM, a much richer variety of
services is available at the lower layer for IP to utilise. In fact, there are multiple

possible mappings from the high level TP service, to the proposed “Bearer Service
Classes” of ATM - for example:

2.12. IP AND ATM 33

e Guaranteed Service could be provided over CBR or rtVBR.
e Controlled Load could be provided over CBR, rtVBR, nrtVBR or ABR
e Best Effort could be provided over CBR, rtVBR, nrtVBR, ABR or UBR

Again, this area is very active, and simplification will no doubt be sought and
found by the market. In the next 3 subsections, we briefly describe the “pure” TP
approach.

2.12.2 Topology Control

One of the principle reasons for the success of IP is the flexibility for addressing
and routing. At the same time, this has led to problems . Stability of routing is
reported to be getting worse, and there is some concern about the exhaustion of the
global TPv4 address space. This is being solved by the introduction of IPv6, but
the performance problems for route lookup might seem to be exacerbated by this.
In fact, the work of Degermark and others at SICS[181], shows that it is feasible
to construct a novel data structure that not only permits fast routing lookup, it
actually reduces the size of the routing table as well. In fact, the entire routing table
of todays Internet can be fitted into the on-chip data cache of a common desktop
processor (Pentium) and a lookup (“longest match prefix”) computed in 8 memory
accesses in the worst case. The scaling complexity of the data structure i1s with the
route depth, not with the size of the network, and so should not slow down much
as we move to a billion end systems.

This is useful since it permits us to consider using IP addresses (and possibly
fully generalised port specifications) as the key, the basis for deciding what to do
with a packet as well as where to send it. This gives high degrees of flexibility (one
can alter QoS mid flow, as well as route).

2.12.3 QoS Control

QoS control requires some number of alternate queues, as well as some form of
admission, policing and possibly shaping.

Assuming that admission and policing can be done on small numbers of flows at
the “edge” (ingress) of the network, then we can police (and shape) aggregate flows
as they approach the core of the network (recent results from Roch Guerin’s group
at TJ Watson show that this in fact gets higher utilisation). Then the problem is
that of the performance of queue insertion.

2.12.4 Queue Insertion/Lookup Performance

Queue insertion for WFQ is typically a sort algorithm (actually, it depends on
the interleave of the arrival processes - if they are loosely synchronised, then it is
possible that one may only rarely have to do more than a few swaps).

Hui Zhang’s work has shows that for CBR (Guaranteed Service in Integrated
Service Internet Terminology), a different queueing algorithm called Worst Case
Fair Weighted Fair Queueing achieves better delay jitter bounds, and yet can have
O(1) insertion time.

2.12.5 Conclusions on IP/ATM

It would appear that a purist IP architecture for all switching nodes in the Internet is
both feasible, and for management reasons (and therefore cost), attractive. Because
(and not despite) of the work done on QoS and scalable ATM switch design, it would

54 CHAPTER 2. NETWORK SERVICE MODELS

seem that the exposure of ATM at any interface is completely unnecessary, except
perhaps, at modest speed links (ADSL, DVB, or 25Mbps Domestic networks?),
where the reduced latency for voice/video on multiplexed at finer grain may need
the cut through cell size.

2.13 Recent Simplified Approached to Service Dif-
ferentiation

Recently, a simpler model of service differentiation has emerged from LBIL and
MIT. The ideas are fairly simple and capitalise on recent advances on measurement
based admission and network pricing theory . Surprisingly, this ends up being a
specification of service profiles, which are implemented at the ingress (or egress) to
any ”area”, where an area can be a backbone or an access net or whatever.

The service profile is “accessed” simply by the “user” (could be ingress/access
router, or source host) setting the IP precedence bit.. (if they want low delay
too, they set the TOS bit appropriately). The rate they send at determines the
service profile (and therefore tarrif, if appropriate). There was one big unsettled
difference between the model Van Jacobson proposes and the more complex model
that Wroclawski and Clark have devised:

Jacobson’s scheme drops all packets above the service profile rate (so if you pay,
but the net is not congested, you don’t get more than you paid) - for aggregated
TCPs down such a pipe, this is not a propboem,, but a single TCP may not get
good utilisation o nthis scheme (goal is to create a disincentive for people to use the
premium scheme during light load periods anyhow!).

Clark/Wroclawski’s scheme can do this, but can also specify a "TCP rate”,
which then implements a complex filter/policy at the ingress, that ”understands”
TCP dynamics and only drops packets for non-conforming TCPs (i.e. if TCP does
slow start and congestion avoidance, their scheme for that particular profile will
allow a saw tooth variation (not just a leaky bucket or burst tolerance, but a shaped
burst tolerance!) - the details are unclear on how to make this go fast, but there
are some nice simulations.

The main problem with not dropping packets that exceed the servcice profile
is what to do with them - in Clark’s scheme, the precedence bit is cleared. This
has the problem that they then compete on an equal footing with non premium
packets, and so can cuase congestion down stream - another problem is that they
can arrive out of order w.r.t the premium “in-profile” packets. Some QoS routing
researchers really like both schemes, since they can be implemted in 2 queues, (or
maybe 4) and scale nicely (the nearer the backbone erouter, the less things have to
be policed). RSVP might be used to ”install” profiles although its more likely to be
Just a subscribe-time service. For alternate path QoS routing, it is also neat, since
one only has to add mechanism for distributing 2 (or 4) sets of destination (or for
multicast, source) based routes, which means it scales well.

2.14 Summary

In this chapter we have looked at network service models and discovered that this
is a complex area where there is a lot of debate on how to provide what is perceived
as the need for guarantees for multimedia networked applications.

The very idea of guarantee is suspect to an engineer. In fact, what a net-
work offers are services which provide probabilities of meeting some performance
requirements. The performance bounds may involve more or less refined, individual
offerings (i.e. to pairs or groups of users) or overall performance metrics to the set

2.14. SUMMARY 35

of typical users, or something in between. The contract concerning performance
statistics may be made sometime in advance through subscription, or immediately
before (or even remade during) each session. The costs of the various technical
approaches to providing different performance bounds are not fully understood yet.
This area is extremely active in terms of research, standards development, and
technology deployment. However, a very important aspect of it is the effect of
pricing, which is outside the scope of this chapter or book. Tt is important to realize
though, that the best technical solutions are often swept away by marketing!

26

CHAPTER 2. NETWORK SERVICE MODELS

Chapter 3

Multicast

3.1 Introduction

When there is a requirement to send data to many receivers simultaneously, there
are two traditional methods that can be used: repeated transmission and broadcast.
Repeated transmission may be acceptable if the cost is low enough and delivery can
be spread out over time, as with junk mail or electronic mailing lists. Otherwise
a broadcast solution is required. With real-time multimedia, repeated delivery is
feasible, but only at great expense to the sender, who must invest in large amounts
of bandwidth. Similarly, traditional broadcast channels have been very expensive
if they cover significant numbers of recipients or large geographic areas. However,
on the internet, there is an alternative solution. IP Multicast effectively turns the
Internet into a broadcast channel, but one that anyone can send to without having to
spend huge amounts of money on transmitters and government licenses. It provides
efficient, timely and global many-to-many distribution of data, and as such may
become the broadcast medium of choice in the future.

The Internet is a datagram network. This means that anyone can send a packet
to a destination without having to pre-establish a path. Of course, the boxes along
the way must have either pre-computed a set of paths, or be pretty fast at calculating
one as needed, and typically, the former approach is used. However, the sending
host need not be aware of or participate in the complex route calculation; nor need
it take part in a complex signaling or call setup protocol. It simply addresses the
packet to the right place, and sends it. As discussed briefly in chapters one and
two, this may be a more complex procedure if the sending or receiving systems need
more than the default performance that a path or network might offer, but it is the
default model.

Adding multicast to the Internet does not alter the basic model. A sending
host can still simply send, but now there is a new form of address, the multicast or
host group address. Unlike unicast addresses, hosts can dynamically subscribe to
multicast addresses and by so doing cause multicast traffic to be delivered to them.
Thus the IP Multicast service model can be summarised:

e Senders send to a multicast address.
e Receivers express an interest in a multicast address.
e Routers conspire to deliver traffic from the senders to the receivers.

Sending multicast traffic is no different from sending unicast traffic except that
the destination address is slightly special. However, to receive multicast traffic, an

57

a8 CHAPTER 3. MULTICAST

interested host must tell its local router that it is interested in a particular multi-
cast group address, which it does using the Internet Group Management Protocol
(IGMP).

Point to multipoint communication is nothing new. We are all used to the idea of
broadcast TV and Radio, where a shared medium (the RF spectrum) is partitioned
up amongst users (basically, transmitter or TV and radio station owners). Tt is
a matter of regulation that there is typically only one particular unique sender of
particular content on a particular frequency, although there are other parts of the
RF spectrum given over to free use for multi-party communication (e.g. police
radio, citizen band radio, etc etc).

The Internet multicast model[7] is very similar. The idea is to convert the mesh
wide area network that is the Internet (whether the public Internet, or a private
Enterprise net, or Intranet makes no difference to the model), into a shared resource
for senders to send to multiple participants, or groups.

To make this group communication work for large scale systems (in the sense
of a large number of recipients for a particular group, or in the sense of a large
number of senders to a large number of recipients, or in the sense of a large number
of different groups), it is necessary, both for senders, and for the routing functions to
support delivery, to have a system that can be largely independent of the particular
recipients at any one time. In other words, just as a TV or Radio station do
not know who is listening when, an Internet multicast sender does not know who
might receive packets it sends. If this sends alarm bells ringing about security,
it shouldn’t. A unicast sender has no assurance about who receives their packets
either. Assurances about disclosure (privacy) and authenticity of sender/recipient
are largely separate matters from simple packet delivery models. We discuss these
security matters in some detail in chapter 10.

Basically, the model is an extension of the datagram model, and uses the fact
that the datagram is a self contained communications unit, that not only conveys
data from source to destination, but also conveys the source and destination, in
other words, in some senses, datagrams signal their own path, both with a source
and a destination address in every packet.

By adding a range of addresses for sending to a group, and providing indepen-
dence between the address allocation and the rights to send to a group, the analogy
between RF spectrum and the Internet multicast space is maintained. Some mech-
anism, as yet unspecified, is used to choose dynamically which address to send to.
In chapter 7, we will take a look at some protocols for carrying out this function,
but suffice it to say that for now, the idea is that somehow, elsewhere, the address
used for a multicast session or group communication activity is chosen so that it
does not clash with other uses or users, and is advertised. Imagine the equivalent
in the RF spectrum. A New TV or radio station’s manager (or multicast session
creator) looks in a TV listings magazine, or in a government or regulatory bodies
publications for a list of frequencies (say a bulletin board) in use, and finds one that
is free. We write to the TV listings magazine (the bulletin board) and have them
advertise this new address. We can now safely send, and receivers find out where
to “receive on”.

It is wery tmportant to note that unlike the RF spectrum, an TP packet to be
multicast carries a unique source identifier, in that such packets are sent with the
normal unicast IP address of the interface of the sending host they were sent from.

It is also worth noting that an address that is being used to signify a group of
entities must surely be a logical address (or in some senses a name) rather than
a topological or topographical identifier. We shall see that this means there must
be some service that maps such a logical identifier to a specific set of locations
in the same way that a local unicast address must be mapped (or bound) to a
specific location. In the multicast case, this mapping is distributed. Note also that

3.2. ROADMAP 99

Class A | 1.0.0.0 to 126.255.255.255

Class B | 128.0.0.0 to 191.255.255.255
Class C | 192.0.0.0 to 223.255.255.255
Class D | 224.0.0.0 to 239.255.255.255

Table 3.1: Class D addresses are Multicast

multicast internet addresses are in some sense “host group” addresses, in that they
indicate a set of hosts to deliver to. In the Internet model , there is a further level
of multiplexing, that of transport level ports, and there is room for some overlap of
functionality, since a host may receive packets sent to multiple multicast addresses
on the same port, or multiple ports on the same multicast address. We will look at
this further in chapter five.

There are a number of questions this model raises about address and group
management, such as how these addresses are allocated. The area requiring most
change, though, is in the domain of the routing. Somehow the routers must be able
to build a distribution tree from the senders to all the receivers for each multicast
group. The senders don’t know who the receivers are (they just send their data),
and the receivers don’t know who the senders are (they just ask for traffic destined
for the group address), so the routers have to do something without help from the
hosts. We will examine this is detail in section 3.4

3.2 Roadmap

The functions that provide the Standard Internet Multicast Service can be separated
into host and network components. The interface between these is provided by TP
multicast addressing and IGMP group membership functions, as well as standard TP
packet transmission and reception. The Network functions are principally concerned
with multicast routing, while host functions also include higher layer functions such
as the adition of reliability facilities in a transport layer protocol. We cover each of
these functions in that order, in the rest of this chapter.

3.3 Host Functions

IGMP v1 Status: IETF Standard (RFC 1112)
IGMP v2 Status: [ETF Proposed Standard (RFC 2236)
IGMP v3 Status: IETF Work in Progress

As we stated above, host functionality is extended through the use of the IGMP
protocol. Hosts, and routers which we will look at later, must be able to deal
with new forms of addresses. When IP version 4 addressing was first designed, it
was divided into classes as shown in table 3.1. Originally class A was intended for
large networks, B for middle size networks and C for small networks. Class D was
later allocated for multicast addresses. Since then, classless addressing has been
introduced to solve internet scaling problems,; and the rules for class A, B and C
no longer hold, but class D 1s still reserved for multicast, and so all IPv4 multicast
addresses start with the high order 4 bit nibble: 1110

In other words, from the 232 possible addresses, 228 are multicast. This means
that there can be up to around 270 Million different groups, each with as many
senders as can get unicast addresses! This is many orders of magnitude more than

the RF spectrum allows for typical analog frequency allocations. !

!In the next version of IP, IP version 6, the address space is 16 bytes (or octets) in size,

60 CHAPTER 3. MULTICAST

For a host to support multicast, the host service interface to IP must be extended
in 3 ways:

1. A host must be able to join a group. This means it must be able to re-program
its network level, and possibly, consequentially, the lower levels, to be able to
receive packets addressed to multicast group addresses.

2. An application that has joined a multicast group and then sends to that group
must be able to select whether it wants the host to loop-back the packets it
sent so that it receives its own packets.

3. A host should be able to limit the scope with which multicast messages are
sent. The Internet Protocol contains a time to live field, used originally to
limit the lifetime of packets on the network, both for safety of upper layers,
and for prevention of traffic overload during temporary routing loops. Tt is
used in multicast to limit how “far” a packet can go from the source. We will
see below how scoping can interact with routing.

When an application tells the host networking software to join a group, the host
software checks to see if the host is a member of the group. If not, it makes a note
of the fact, and sends out an IGMP join message. It also maps the TP address to a
lower level address and reprograms its network interface to accept packets sent to
that address. There is a refinement here: a host can join “on an interface”; that is,
hosts that have more than one network card can decide which one (or more than
one) they wish to receive multicast packets via. The implication of the multicast
model is that it is “pervasive” so that it is usually only necessary to join on one
interface?.

Taking a particular example to illustrate the TP level to link level mapping
process, if a host joins an TP multicast group using an Ethernet interface, there is
a mapping from the low 24 bits of the multicast address into the low 24 (out of 48)
bits of the ethernet address. Since this is a many-to-one mapping, there may be
multiple TP multicast groups occupying the same ethernet address on a given wire,
though it may be made unlikely by the address allocation scheme (as discussed in
chapter 7). An ethernet LAN is a shared medium network®, thus local addressing
of packets to an ethernet group means that they are received by ethernet hardware
and delivered to the host software, only of those hosts with members of the relevant
IP group. This means that host software is generally saved the burden of filtering
out irrelevant packets. Where there is an ethernet address clash, software can filter
the packets efficiently.

How IGMP works can be summarised as follows:

e When a host first joins a group, it programs its ethernet interface to accept
the relevant traffic, and it sends an IGMP join message on its local network.
This informs any local routers that there is a receiver for this group now on
this subnet.

e The local routers remember this information, and arrange for traffic destined
for this address to be delivered to the subnet.

and the address space for multicast has been allocated as starting with 8 “1” bits. Interworking
between IPv4 and IPv6 multicast address sessions is relatively straightforward compared with
unicast addresses, since they are already dynamic entities, so that there are already ways for hosts
and routers to interact to establish receiver membership locations.

2there may be some interaction with firewalls here, and this is discussed in chapter 10

3even when this is not really the case, such as with a hub-switched ethernet, it maintains the
illusion of such

3.4. ROUTING AND ADDRESSING 61

o After a while, the routers wonder if there is still any member on the subnet,
and send an IGMP query message to the multicast group. If the host is still
a member, it replies with a new Join message unless it hears someone else do
so first. Multicast traffic continues to be delivered.

e Eventually the application finishes, and the host no longer wants the traffic.
It reprograms its ethernet interface to reject the traffic, but the packets are
still sent until the router times the group out and sends a query to which
no-one responds. The router then stops delivering the traffic.

Thus joining a multicast group is quick, but leaving can be slow with IGMP version
1. IGMP version 2 reduces the leave latency by introducing a ”leave” message, and
an assorted set of rules to prevent one receiver leaving from disconnecting others.
IGMP version 3* introduces the idea of source-specific joining and leaving whereby
a host can subscribe (or reject) traffic from individual senders rather than the group
as a whole, at the expense of more complexity and extra state in routers.

3.4 Routing and Addressing

Routers conspire to deliver packets in the Internet. Everything in any part of the
Internet that wants to be reached must have an address. The address tells the
computers in the Internet (hosts and routers) where something is topologically.
Thus the address is also hierarchical. My computer’s address is 128.16.8.88. We
asked our Internet provider for a network number. We were given the number
128.16.2.y. We could fill in the and y how we liked, to number the computers on
our network. We divided our computers into groups on different LAN segments, and
numbered the segments 1-256 (z), and then the hosts 1-256 (y) on each segment.
When your organisation asks for a number for its net, it will be asked how many
computers it has, and assigned a network number big enough to accommodate that
number of computers. Nowadays, if you have a large network, you will be given a
number of numbers!

Everything in the Internet must be reachable. The route to a host will traverse
one or more networks. The easiest way to picture a route is by thinking of how a
letter to a friend in a foreign country gets there.

You post the letter in a postbox. It is picked up by a postman (LAN), and taken
to a sorting office (router). There, the sorter looks at the address, and sees that the
letter is for another country, and sends it to the sorting office for international mail.
This then carries out a similar procedure. And so on, until the letter gets to its
destination. If the letter was for the same 'network’ then it would get immediately
locally delivered. Notice the fact that all the routers (sorting offices) don’t have to
know all the details about everywhere, just about the next hop to go to. Notice the
fact that the routers (sorting offices) have to consult tables of where to go next (e.g.
international sorting office). Routers chatter to each other all the time figuring out
the best (or even just usable) routes to places.

Note sure this is the right place for this - mjh

The way to picture this is to imagine a road system with a person standing at
every intersection who is working for the Road QObservance Brigade. This person
(Rob)} reads the road names of the roads meeting at the intersection, and writes
them down on a card, with the number 0 after each name. Fvery few minutes, Rob
holds up the card to any neighbour standing down the road at the next intersection.
If they are doing the same, Rob writes down their list of names, but adds 1 to the
numbers read off the other card. After a while, Rob is now telling people about

4currently being discussed, but not yet implemented in late 1997.

62 CHAPTER 3. MULTICAST

the neighbours roads several roads away! Of course, Rob might get two ways to get
somewhere! Then, he crosses out the one with the larger number.

To support multicast, routers need to know where the recipients are (or possibly,
where they are not!). The first step in this is for routers to take part in the IGMP.

3.5 Multicast Routing

Given the multicast service model described above, and the restrictions that senders
and receivers don’t know each others’ location or anything about the topology, how
do routers conspire to deliver traffic from the senders to the receivers?

We shall assume that if a sender and a receiver did know about each other,
that they could each send unicast packets to the other. In other words, there is
a network with bidirectional paths and an underlying unicast routing mechanism
already running. Given this, there is a spectrum of possible solutions. At one
extreme, we can flood data from the sender to all possible receivers and have the
routers for networks where there are no receivers prune off their branches of the
distribution tree. At the other extreme, we can communicate information in a
multicast routing protocol conveying the location of all the receivers to the routers
on the paths to all possible senders. Neither of methods is terribly desirable on a
global scale, and so the most interesting solutions tend to be hybrid solutions that
lie between these extremes.

In the real world there are many different multicast routing protocols, each with
its own advantages and disadvantages. We shall explain each of the common ones
briefly, as a working knowledge of their pros and cons helps us understand the
practical limits to the uses of multicast.

3.5.1 Flood and Prune Protocols

DVMRP Status: [ETF Experimental Standard (RFC 1075)
DM-PIM Status: IETF Work in progress

These protocols are more correctly known as reverse-path multicast algorithms.
When a sender first starts sending, traffic is flooded out through the network. A
router may receive the traffic along multiple paths on different interfaces, in which
case it rejects any packet that arrives on any other interface other than the one it
would use to send a unicast packet back to the source. It then sends a copy of each
packet out of each interface other than the one back to the source. In this way
each link in the whole network is traversed at most once in each direction, and the
data is received by all routers in the network. So far, this describes reverse-path
broadcast. Many parts of the network will be receiving traffic although there are
no receivers there. These routers know they have no receivers (otherwise IGMP
would have told them) and they can then send prune messages back towards the
source to stop unnecessary traffic flowing. Thus the delivery tree is pruned back to
the minimal tree that reaches all the receivers. The final distribution tree is what
would be formed by the union of shortest paths from each receiver to the sender,
and so this type of distribution tree is known as a shortest-path tree 5.

Two commonly used multicast routing protocols fall in the class - DVMRP (the
Distance Vector Multicast Routing Protocol) and Dense-mode PIM (Protocol In-
dependent Multicast). The primary difference between these is that DVMRP com-
putes its own routing table to determine the best path back to the source, whereas
DM-PIM uses that of the underlying unicast routing hence the term ”Protocol
Independent”.

Sstrictly speaking it’s a reverse shortest path tree - typically the routers don’t have enough
information to build a true forward shortest path tree

3.5. MULTICAST ROUTING 63

It should be fairly obvious that sending traffic everywhere and getting people
to tell you what they don’t want is not a terribly scalable mechanism. Sites get
traffic they don’t want (albeit very briefly), and routers not on the delivery tree
need to store prune state. For example, if a group has one member in the UK
and two in France, routers in Australia still get some of the packets and need to
hold prune state to prevent more packets arriving! However, for groups where most
places actually do have receivers (receivers are “densely” distributed), this sort of
protocol works well; and so although these protocols are poor choices for a global
scheme, they might be appropriate within some organisations.

3.5.2 MOSPF
Status: IETF Proposed Standard (RFC 1584)‘

This isn’t really a category, but a specific instance of a protocol. MOSPF is
the multicast extension to OSPF (Open Shortest Path First) which is a unicast
link-state routing protocol.

Link-state routing protocols work by having each router send a routing mes-
sage periodically listing its neighbours and how far away they are. These routing
messages are flooded throughout the entire network, and so every router can build
up a map of the network which it can then use to build forwarding tables (using
a Dijkstra algorithm) to decide quickly which is the correct next hop for send a
particular packet.

Extending this to multicast is achieved simply by having each router also list in
a routing message the groups for which it has local receivers. Thus given the map
and the locations of the receivers, a router can also build a multicast forwarding
table for each group.

MOSPF also suffers from poor scaling. With flood-and-prune protocols, data
traffic is an implicit message about where there are senders, and so routers need to
store unwanted state where there are no receivers. With MOSPF there are explicit
messages about where all the receivers are, and so routers need to store unwanted
state where there are no senders. However, both types of protocol build very efficient
distribution trees.

3.5.3 Center-based Trees

Rather than flooding the data everywhere, or flooding the membership information
everywhere, algorithms in the center-based trees category map the multicast group
address to a particular unicast address of a router, and they build explicit distri-
bution trees centered around this particular router. There are three main problems
that need to be solved to get this approach to work:

1. How to perform the mapping from group address to center-address?

2. How to choose the location of the center so that the distribution trees are
efficient?

3. How to actually construct the tree given the center address.

Different protocols have come up with different solutions to these problems. There
are three center-based tree protocols worth us exploring in a little detail because
they illustrate different approaches: Core-Based Trees (CBT), Sparse-mode PIM
(SM-PIM) and the Border Gateway Multicast Protocol (BGMP).

64 CHAPTER 3. MULTICAST

3.5.4 Core-Based Trees
Status:IETF Experimental Standard (RFC 2201)‘

CBT was the earliest center-based tree protocol, and is the simplest.

When a receiver joins a multicast group, its local CBT router looks up the
multicast address and obtains the address of the Core router for the group. It then
sends a Join message for the group towards the Core. At each router on the way to
the core, forwarding state is instantiated for the group, and an acknowledgment is
sent back to the previous router. In this way, a multicast tree is built, as shown in

figure 3.1.

Receiver C

Receiver A Receiver B Ii]
1
Pa—

Core

Receiver C

Sender/ Ii]

Receiver A Receiver B

— = Data Packets
=—mmem Bidirectional Shared Tree

Figure 3.1: Formation of a CBT bidirectional shared tree

If a sender (that is a group member) sends data to the group, the packets
reach its local router, which forwards them to any of its neighbours that are on
the multicast tree. Each router that receives a packet forwards it out of all it its
interfaces that are on the tree except the one the packet came from. The style of
tree CBT builds is called a ”bidirectional shared tree”, because the routing state is
”bidirectional” - packets can flow both up the tree towards the core and down the
tree away from the core depending on the location of the source, and ”shared” by
all sources to the group. This is in contrast to ”unidirectional shared trees” built
be SM-PIM as we shall see later.

IP Multicast does not require senders to a group to be members of the group, so
it 1s possible that a sender’s local router is not on the tree. In this case, the packet
is forwarded to the next hop towards the Core. Eventually the packet will either
reach a router that is on the tree, or it will reach the core, and it is then distributed
along the multicast tree.

CBT also allows multiple Core routers to be specified which adds a little re-
dundancy in case the core becomes unreachable. CBT never properly solved the
problem of how to map a group address to the address of a core. In addition, good
core placement is a hard problem. Without good core placement, CBT trees can

3.5. MULTICAST ROUTING 65

be quite inefficient, and so CBT is unlikely to be used as a global multicast routing
protocol.

However, within a limited domain, CBT is very efficient in terms of the amount
of state that routers need to keep. Only routers on the distribution tree for a
group keep forwarding state for that group, and no router needs to keep information
about any source, and thus CBT scales much better than flood-and-prune protocols,
especially for sparse groups where only a small proportion of subnetworks have
members.

3.5.5 Sparse-Mode PIM
Status: IETF Experimental Standard (RFC 2117)‘

The work on CBT encouraged others to try to improve on its limitations while
keeping the good properties of shared trees, and Sparse-Mode PIM was one result.
The equivalent of a CBT Core is called a Rendezvous Point (RP) in PIM, but it
largely serves the same purpose.

When a sender starts sending, irrespective of whether it is a member or not, its
local router receives the packets and maps the group address to the address of the
RP. It then encapsulates each packet in another IP packet (imagine putting one
letter inside another differently addressed envelope) and sends it unicast directly to
the RP.

When a receiver joins the group, its local router initiates a Join message that
travels hop-by-hop to the RP instantiating forwarding state for the group. However,
this state is unidirectional state - it can only be used by packets flowing from the
RP towards the receiver, and not for packets to flow back up the tree towards the
RP. Data from senders is de-encapsulated at the RP and flows down the shared-tree
to all the receivers.

The important advance that SM-PIM made over CBT was to realize that dis-
covering who the senders are could be separated from building efficient trees from
those senders to receivers.

Thus SM-PIM unidirectional trees are not terribly good distribution trees, but
do start data flowing to the receivers. Once this data is flowing, a receiver’s local
router can then initiate a transfer from the shared tree to a shortest-path tree by
sending a source-specific join message towards the source, as shown in figure 3.2.
When data starts to arrive along the shortest-path tree, a prune message can be
sent back up the shared tree towards the source to avoid getting the traffic twice.

Unlike other shortest-path tree protocols such as DVMRP and DM-PIM where
prune state exists everywhere there are no receivers, with SM-PIM, source-specific
state only exists on the shortest-path tree. Also low bandwidth sources such as
those sending RTCP receiver reports do not trigger the transfer to a shortest path
tree, which further helps scaling by eliminating unnecessary source-specific state.

Because SM-PIM can optimise its distribution trees after formation, it is less
critically dependent on the RP location than CBT is on the Core location. Hence the
primary requirement for choosing an RP is load-balancing. To perform multicast-
group to RP mapping, SM-PIM pre-distributes a list of candidates to be RPs to
all routers. When a router needs to perform this mapping, it uses a special hash
function to hash the group address into the list of candidate RPs to decide the actual
RP to join. Except in exceptional failure circumstances, all the routers within the
domain will perform the same hash, and come up with the same choice of RP. The
RP may or may not be in an optimal location, but this is offset by the ability to
switch to a shortest path tree.

The dependence on this hash function and the requirement to achieve conver-
gence on a list of candidate RPs does however limit the scaling of SM-PIM. As a

66 CHAPTER 3. MULTICAST

Rendezvous
Point

Noin

Rendezvous
Point

Sender Receiver ~ Sender Receiver
== m— | ==
F——N F——N% F——N

Traffic flows on RP tree

Receiver Joins to RP

Rendezvous

Rendezvous
Point i

Point

\Prune

Receiver

Receiver ~ Sender

Sender

Receiver’s local router initiates transfer Traffic flows on shortest path tree
to shortest-path tree

Figure 3.2: Formation of a Sparse Mode PIM tree

3.5. MULTICAST ROUTING 67

result, it 1s also best deployed within a domain, although the size of such a domain
may be quite large.

3.5.6 Border Gateway Multicast Protocol
Status: IETF Work in Progress

The Border Gateway Multicast Protocol (BGMP) is an attempt to design a
true inter-domain multicast routing protocol; one that can scale to operate in the
global Internet. DVMRP and DM-PIM will not do this because their flood-and-
prune nature requires off-tree routers to keep per-source state. MOSPF will not do
this because OSPF does not scale well enough, and MOSPF (which also distributes
receivership information) scales worse. CBT and SM-PIM will not do this because
the scalability of the mechanisms they use to perform group-to-RP mapping limits
them.

BGMP was based on ideas from the intra-domain protocols above, but has
a slightly different goal - it does not build trees of routers, but rather it builds
bidirectional shared-trees of domains. Within a domain, any of the intra-domain
multicast routing protocols can be used, and BGMP then provides multicast routing
between the domains.

BGMP builds trees of domains that are similar to CBT trees of routers - they
are bidirectional shared-trees built by sending explicit join messages towards a root
domain. However BGMP can also build source-specific branches, which are similar
in concept to source-specific trees in SM-PIM, but do not always reach as far as
the source. The principle problem that prevents CBT and SM-PIM from scaling
is that of mapping a multicast address to the unicast address of a Rendezvous
Point or Core. BGMP solves this problem through a close tie-in with a hierarchical
multicast address allocation scheme called Multicast Address-Set Claim (MASC).
We will describe MASC in more detail in chapter 777. MASC allocates ranges of
multicast addresses to domains. These address-ranges are distributed to Border-
Routers world-wide as group-routes using BGP routing (which is used for unicast
inter-domain routing). Such a group-route indicates the path to the root-domain for
that range of multicast addresses. To make this scale, MASC allocates the address
ranges dynamically in a manner that is aggregatable, so the number of group routes
that need to be stored at each border-router is relatively small.

Figure 3.3 illustrates how BGMP builds a distribution tree given than group-
routes have already been distributed. In this case all the domains are running
DM-PIM because this simplifies the example, but in reality they would likely be
running a mixture of different protocols.

Receiver R joins the multicast group 224.1.128.254. Tts local router sends a
Domain-Wide Report (DWR) to all the border routers in domain A. Router Al
discovers that the best route to the root for 224.1.128.254 is 224.1/16 received from
its external peer router B, so it sends a BGMP Join message to B1. Router Bl
in turn looks up 224.1.128.254 and discovers its best route is 224.1.128/20 that it
received from its internal peer router B3, so it sends a BGMP join message to B3.
B3 repeats the process and sends a BGMP join to C1. Router C1 is a border router
for the domain which has been allocated 224.1.128.254 (along with other groups),
so the join message has now reached the root domain and need travel no further.

Now source S in domain D starts sending to 224.1.128.254. Its data floods
through domain D and reaches all the border routers. D2 is not on the best path to
the root domain, so it sends a DM-PIM prune message back towards S, but router
D1 is on the best path to the root domain. It has no state for group 224.1.128.254,
but forwards the data anyway to C2. C2 forwards the data into the DM-PIM
domain C, and it floods through the domain. Router C3 has no state for the group,

68 CHAPTER 3. MULTICAST

Domain B Domain C
allocated 224.2/16 allocated 224.1.128/20

B4 BGMP

Root domain
for group
224.1.128,254

Receiver R

BGMP Join Messages DomzainL
—+ Domain-Wide Reports allocated 224.1.130/24

Domain A
allocated 224.1.192/20

Domain C
Domain B

B4

Domain A Domain D

BGMP shared tree

— = Data packets
—p Encapsulated Data packets

— DM-PIM prune messages

Figure 3.3: Formation of a BGMP Shared Tree

3.5. MULTICAST ROUTING 69

and sends a prune in response, but router C1 is on the shared tree for the group,
and so forwards the data to B3. B3 wishes to forward the data into B, but it is not
on the best path back to S. If it merely multicast the data into B, routers within
B would drop the data as DM-PIM requires the distribution tree to be source-
based. Instead, it encapsulates the data and sends it to the correct entry router (as
determined by its unicast routing table), in this case B2. B2 then decapsulates the
data and multicasts it into domain B, where it floods through the domain. B1 in

turn forwards the data along the shared tree to domain A and hence to R.
Domain C

Domain B

B4

Domain D

Domain A

(S,G) BGMP
Join Message

Domain C
Domain B

B4

Domain A Domain D

BGMP messages
BGMP shared tree
— = Data packets
—— PIM messages

Figure 3.4: Forming a BGMP Shortest-path branch

At this stage, as shown in figure 3.4A, data is flowing from S to R along the
shared tree. It has flooded through the domains along the path, but has been
pruned back within the domains to just the minimal tree required to deliver the
data. However, B3 is having to encapsulate the data to B2, which is undesirable as
routers typically are not very good at encapsulation, and also as there is a better
path that the data could have taken. As B2 is not on the shared tree, it is permitted
to initiate a shortest-path branch by sending a source-specific join for source S to
D2. When D2 receives this join, it grafts itself onto the DM-PIM tree within domain
D, and traffic starts to flow to B2. B2 then sends a BGMP prune to B3 and starts
dropping the encapsulated packets to prevent it receiving two copies of the data.
The prune will propagate up to the root domain if it encounters no other branches
of the shared tree on the way.

The example above used Dense-Mode PIM within the domains, but any other
inter-domain multicast routing protocol could be used instead. Each has its own

70 CHAPTER 3. MULTICAST

set of rules for how to interoperate with BGMP, but at least each does not then
need an additional set of rules for how to interoperate with every other intra-domain
multicast routing protocol, which greatly simplifies things from an operational point
of view.

Deciding where to put the root for any shared tree is a hard problem. BGMP
places the root in the domain which has been allocated the multicast address. Hence
if the session initiator obtains the address from its local multicast address allocation
server, then the tree will be rooted in the session initiators domain. For many uses of
multicast such a TV-style broadcasts, this is optimal. For other uses of multicast,
with many senders, it may be less optimal, but it is still a reasonable default.
Without knowing the receivership in advance, it is difficult to do better than this.

3.6 Multicast Scoping

When applications operate in the global MBone, it is clear that not all groups
should have global scope. This is especially the case for performance reasons with
flood and prune multicast routing protocols, but it also the case with other routing
protocols for application security reasons and because multicast addresses are a
scarce resource. Being able to constrain the scope of a session allows the same
multicast address to be in use at more than one place so long as the scope of the
sessions does not overlap.

Multicast scoping can currently be performed in two ways which are known as
TTL scoping and administrative scoping. Currently TTL scoping is most widely
used, with only a very few sites making use of administrative scoping.

TTL Scoping

When an IP packet is sent, an IP header field called Time To Live (TTL) is set
to a value between zero and 255. Every time a router forwards the packet, it
decrements the TTL field in the packet header, and if the value reaches zero, the
packet is dropped. The IP specification also states that TTL should be decremented
if a packet is queued for more than a certain amount of time, but this is rarely
implemented these days. With unicast, TTL is normally set to a fixed value by the
sending host (64 and 255 are commonly used) and is intended to prevent packets
looping forever, and also forms a part of the formal proof that the TCP close
semantics are safe.

With IP multicast, T'TL can be used to constrain how far a multicast packet
can travel across the MBone by carefully choosing the value put into packets as
they are sent. However, as the relationship between hop-count and suitable scope
regions 1s poor at best, the basic TTL mechanism is supplemented by configured
thresholds on multicast tunnels and multicast-capable links. Where such a threshold
is configured, the router will decrement the TTL, as with unicast packets, but then
will drop the packet if the T'TL is less than the configured threshold. When these
thresholds are chosen consistently at all of the borders to a region, they allow a host
within that region to send traffic with a TTL less than the threshold, and to know
that the traffic will not escape that region.

An example of this is the multicast tunnels and links to and from Europe, which
are all configured with a TTL threshold of 64. Any site within Europe that wishes
to send traffic that does not escape Europe can send with a TTL of less than 64
and be sure that their traffic does not escape.

However, there are also likely to be thresholds configured within a particular
scope zone - for example most European countries use a threshold of 48 on in-
ternational links within Europe, and as TTL is still decremented each time the

3.7. RELIABLE MULTICAST TRANSPORT 71

packet is forwarded, it is good practice to send European traffic with a TTL of 63,
which allows the packet to travel 15 hops before it would fail to cross a European
international link.

Administrative Scoping

There are circumstances where it is difficult to consistently choose TTL thresholds to
perform the desired scoping. In particular it is impossible to configure overlapping
scope regions as shown in figure 3.5, and there are a number of other problems
with TTL scoping, and so more recently, administrative scoping has been added to
the multicast forwarding code in mrouted[?] and in most router implementations.
Administrative scoping allows the configuration of a boundary by specifying a range
of multicast addresses that will not be forwarded across that boundary in either
direction.

Scope Scope
Zong A 2 > Zone B

N

3

area in both A and B

Figure 3.5: Overlapping scope zones possible with administrative scoping

Scoping Deployment

Administrative scoping is much more flexible than TTL scoping, but suffers from a
number of disadvantages. In particular, it is not possible to tell from the address
of a packet where it will go unless all the scope zones that the sender is within
are known. Also, as administrative boundaries are bi-directional, one scope zone
nested within or overlapping another must have totally separate address ranges.
This makes their allocation difficult from an administrative point of view, as the
ranges ought to be allocated on a top-down basis (largest zone first) in a network
where there is no appropriate top-level allocation authority. Finally, it is easy to
misconfigure a boundary by omitting or incorrectly configuring one of the routers
- with TTL scoping it is likely that in many cases a more distant threshold will
perform a similar task lessening the consequences, but with administrative scoping
there is less likelihood that this is the case.

For these reasons administrative scoping has been viewed by many network
administrators as a specialty solution to difficult configuration problems, rather
than as a replacement for TTL scoping, and the MBone still very much relies on
TTL scoping.

3.7 Reliable Multicast Transport

Reliable multicast is sometimes regarded as something of an oxymoron.

When people talk about ” Reliable Multicast”, they usually mean a single proto-
col at a single 'layer’ of a protocol stack, typically the transport layer (although I've
seen people propose it in the network and even link (ATM!) layers too), that can
act as any layered protocol can - to provide common functionality for applications
(higher layers) that need it.

So what’s wrong with that?

Well, possibly 3 things (or more):

72 CHAPTER 3. MULTICAST

1. Fate sharing
2. Performance

3. Semantics

3.7.1 Fate Sharing

Fate sharing in unicast applications means that so long as there is a path that TP
can find between two applications, then TCP can hang on to the connection as long
as they like. However, if either party fails, the connection certainly fails.

Fate sharing between multicast end points is a more subtle idea. Should ’relia-
bility” extend to supporting the connection for k recipients failing? Clearly this will
be application specific (just as timing out on not getting liveliness out of a unicast
connection is for TCP - we must permit per recipient Timeouts/Failures).

3.7.2 Performance

When a talks to b, the performance is limited by 1 path. Whatever can be done
to improve the throughput (or delay bound) is done by IP (e.g. load sharing the
traffic over multiple paths). When a talks to b,c,d,e,f, should the throughput or
delay be that sustainable by the slowest or average?

3.7.3 Semantics

As well as performance and failure modes, N-way reliable protocols can have differ-
ent service models. We could support reliable 1-n, reliable n-1 and reliable n-m.

Applications such as software distribution are cited as classic 1-n requirements.
Telemetry is given as a n-1 reliable protocol. Shared whiteboards are cited as
examples of n-m.

Now the interesting thing is to look at the reliability functions needed in these.
1-n and n-1 are effectively simplex bulk transfer applications. In other words, the
service is one where reliability can be dealt with by “rounding up’ the missing bits
at the end of the transfer. Since this need not be especially timely, there is no need
for this to be other than end to end, and application based. ©

On the other hand n-m processes such as whiteboards need timely recovery from
outages. The implication is that the ”service’ is best done somewhat like the effect
of having n*n-1/2 TCP connections. If used in the WAN, the recovery may best be
distributed, since requests for recovery will implode down the very links that are
congested or error prone and caused the need for recovery.

Now there are different schemes for creating distributed recovery. If the applica-
tion semantics are that operations (ALF packetsworths...) are sequenced in a way
that the application can index them, then any member of a multicast session can
efficiently help any other member to recover (examples of this include mark Hand-
ley’s Network Text tool...). On the other hand, packet-based recovery can be done
from data within the queues between network/transport and application, if they
are kept at all members in much the same way as a sender in a unicast connection
keeps a copy of all un-acknowledged data. The problem with this is that because
its multicast, we don’t have a positive acknowledgment system. Because of that,
there is no way to inform all end points when they can safely discard the data in
the ’retransmit’ queue. Only the application really knows this!

5Yes, we know telemetry could be real timeish....but we are trying to illustrate major differences
clearly for now.

3.8. CALLING DOWN TRAFFIC ON A SITE 73

Recovery Sequency Dalliance
Network not in our internet | ditto int-serv
Transport one-many y adaptive
Application | many-many operation semantics | adaptive

Table 3.2: Reliable Multicast Semantics

Well, this is not to say that there isn’t an obvious toolkit for reliable multicast
support - it would certainly be good to have RTP style media timestamps (deter-
mined by the application, but filled in by the system). It would be good to have
easy access to a timestamped based receive queue so applications could use this to
do all the above. It might be neat to have virtual token ring, expanding ring search,
token tree and other toolkits to support retransmit ’helper’ selection....

So, drawing a table of where we might put functions to provide reliability (re-
transmit), sequencing and performance (adaptive playout say versus end to end,
versus hop by hop delay constraint), we can see the following picture:

We will look at this further in chapter 5.

3.8 Calling down traffic on a site

Multicast is a multiplier. it gives leverage to senders, but without their knowledge.
Multicast (and its application level cousin, the CU-SeeMe reflector)” can “attract”
more traffic to a site that it can cope with on its Internet access link. A user
can do this by inadvertently joining a group for which there is a high-bandwidth
sender, and then “going for a cup of tea”. This problem will be averted through
access control, or through mechanisms such as charging which may result from the
deployment of real time traffic support as described in chapter 2.

3.9 Summary

In this chapter we have looked at multi-destination packet delivery services, for
circuit, and packet, and packet over circuit based networks. We have looked at the
various routing systems that are used to devise delivery trees over which multimedia
data can be sent for the purposes of group communication.

The main lessons are that:

1. If you have group communication, network support through multicast will in
general reduce traffic significantly.

2. The TP multicast model is very powerful, and is much more convenient than
the point-multipoint VC services in other networks. Tt is however hard to
implement the former over the latter, efficiently.

3. Large scale use of multicast may require some form of aggregation of TP level
multicast tree indices (state in Mbone routers) - we do not know how to do
this at all.

4. Policy and QoS support in multicast routing are not yet available technologies.

In the next chapter, we will look at how to reduce the amount of data that is
sent so that it doesn’t swamp our network.

7CU-SeeMe is a popular MAC and PC based Internet video conferencing package that currently
does not directly use TP multicast.

74

CHAPTER 3. MULTICAST

Chapter 4

Coding and Compression

4.1 Introduction

In this chapter, we look at multimedia content from the informational point of
view. A key problem with multimedia is the sheer quantities of data that result
from naive digitisation of audio, image or video sources. Other problems involve
quality, representation of meta data such as timing and relationshgips between
different media and so on.

There are a variety of compression techniques commonly used in the Internet and
other systems to alleviate the storage, processing and transmission (and reception)
costs for such data.

We start by building a framework for understanding the systems requirements
and components in dealing with multimedia flows - to start with, we look at the
nature of the information and its use, leading to discussion of general principles of
loss free and lossy compression. We look at simple lossless schemes such as Run
Length Encoding and systems based on the statistics of frequency of occurrences of
codewords such as Huffman codes. We look at substitutional or dictionary based
schemes such as the Lemple-Ziv family of algorithms. Then we look at transform
based schemes, and the way in which controlled loss of quality can be achieved using
these.

We contrast data, audio, still image and moving image, covering the ideas of
redundancy in images, sound and motion, We look at the cycles within the data
that lead to the signal processing models used by engineers; including those in
computer generated and naturally occurring data, leading to model based coding
and compression, including future schemes such as wavelet, vector quantization,
fractal and hierarchical use of lossy schemes.

We look at Audio Compression. Audio-philes often use the term compression
in another way - to refer to the reduction in dynamic range of an audio signal - for
example, some noise reduction systems use compression and expansion devices so
that the noise w.r.t signal at low power levels (quiet bits) of a piece of music are less
noticeable - this is quite different from compression of the amount of data needed
to represent a signal at all. We look at the effect of the network on the design of
coding and compression schemes - loss of synchronisation, data, re-ordering, and
duplication all lead to the need for recovery ponts in the data stream, and place
limits on the time-frames that compression (and decompression) can operate over
at sender and receiver ends for interactive applications.

We then discuss the main different current approaches and standards for mul-
tiplexing of audio and video between sender and recipient. Finally we cover the
performance of some example systems.

75

-

-

76 CHAPTER 4. CODING AND COMPRESSION

4.2 Roadmap

Figure 4.1 illustrates the components of a system to capture, code, compress, trans-
mit, decompress, decode and display multimedia data. The rest of this chapter
describes each of the components in this diagram moving approximately from left
to right across the picture. We cover some example cases of coding and compression
schemes along the way.

Signal Sample Predict/Model Transform Huffman or
Runlength
| Display Restore Receive Re-order Delay

Send

Figure 4.1: Road Map of Chapter Four

4.3 System Components

We mentioned in chapter one that multimedia data originates in some analog form.
However, all data is eventually turned into some (typically repetitive) digital code,
and the statistics of the digital code are of great interest when we want to think
about compressing a set of such data. The statistics are important at several levels
of granularity.

Even text input from a given language has several levels of interest, such as
characters, words, and grammatical structure (sentences, paragraphs etc).

In a similar way, speech or music signals have repetitive structure which shows
correlation at several levels of detail. ITmages may have some structure although
natural images this tends to be very subtle (fractal). Moving images clearly have
at least two timescales of interest, partly due to the nature of the input and display
devices (and the human eye), the scanline and the frame.

Thus coding and compression go hand in hand. We choose some levels of gran-
ularities at which to code an input signal or message - this determines the initial
input buffer size over which we run our code. Thiswhich, for real time applica-
tions, determines the CODEC delays. This also determines the number of quanta
or different values for each ”letter of the alphabet” in the input buffer.

The selection of these two (or more) timescales may be determined long in
advance for some data types. For example, for text in a given language and alphabet
there are large sets of samples that are amenable to analysis , so we can find nearly
optimal digital representations of the data in terms of storage. However, there may
be other factors that affect our design of a code. For example a variable length code

Loss

4.4. NATURE OF THE SIGNAL 77

for the english alphabet could be devised that used less bits for the average block of
text than a fixed length codeword such as 7 bit ASCII. On the other hand, it may
be more efficient in computing terms to trade off a small overhead (even as much
as 50%) in storage for speed of processing and choose a fixed length code - which is
what has been done in practice for text.

For audio, while a speech input signal is composed of a streams of phonemes,
words and sentences, 1t is relatively hard to build an intermediate representation of
this, so typically we start with a set of fixed length samples of short time spans of
the signal and work from there.

Similarly with a still (or single image from a moving) image, we choose to sample
the input scene at typically fixed horizontal and vertical intervals giving a 21D image
of a given resolution. We make a design decision when we choose the number of
levels (quanitisation) of the samples (the familiar 8-bit versus 24-bit color display
is such a decision - 1 or 3 bytes of storage per pixel of the image).

4.4 Nature of the Signal

We must distinguish between raw data and information, but such a distinction is
quite a subtle business. “Information” refers to that part of a signal that constitutes
useful information for some user.

Thus depending on the user, some part of a signal may be regarded as less
useful. This means that there may be redundancy in the data. In some cases, the
redundancy is unambiguous - e.g. in the easy case of simple repetition - where data
is coded in some grossly inefficient manner.

Depending on the source, and on the form of the signal, we may know something
about the statistics of the contents in advance, or we may have to do some sort of
online analysis if we are to remove redundancy. The performance of online analysis
will depend on the range and accuracy over which the signal repeats itself - in other
words the blocksize.

How much data we can store in a compression algorithm that does onlien analysis
will be affected by how much delay we are allowed to incur (over and above the delay
“ budget” for transmission and reception), and the CPU load incurred processign
larger chunks of the signal.

Finally, redundancy is in the eye of the beholder - we are rarely obliged to keep
the original signal with 100% integrity since human frailty would mean that even
without an Internet path between light or sound source and a person, it is likely
that the receiver would miss some parts of a signal in any case. This latter point is
extremely task dependent.

4.4.1 Analog to Digital Conversion: Sampling

An input signal is converted from some continuosly varying physical value (e.g.
pressure in air, or frequency or wavelength of light), by some electro-mechanical
device into a continuously varying electrical signal. This signal has a range of
amplitude, and a range of frequencies that can present. This continuously varying
electrical signal can then be converted to a sequence of digital values, called samples,
by some analog to digital conversion circuit. Figure 4.2 illustrates this process.

There are two factors which determine the accuracy with which the digital se-
quence of values captures the original continuous signal: the maximum rate at which
we sample, and the number of bits used in each sample. This latter value is known
as the quanisation level, and 1s illustrated in figure 4.3.

The raw (un-compressed) digital data rate associated with a signal then is sim-
ply the sample rate times the number of bits per sample. To capture all possible

78

CHAPTER 4. CODING AND COMPRESSION

sampled signal

sa:mplihg sifgnali

error in sampling due to
low sampling frequency

Figure 4.2: Sampling a Continuous Signal

sampled signal

sampled, quantised signal

quantisation levels

Figure 4.3: Quantisation of Samples

4.4. NATURE OF THE SIGNAL 79

frequencies in the original signal, Nyquist’s theorem shows that the digital rate
must be twice the highest frequency component in the continuous signal. However,
it 1s often not necessary to capture all frequencies in the original signal - for exam-
ple, voice is comprehensible with a much smaller range of frequencies than we can
actually hear. When the sample rate is much lower than the highest frequency in
the continuosu signal, a band-pass filter which only allows frequencies in the range
actually needed, is usally put before the sampling circuit. This avoids possible
ambiguous samples (“aliases”).

4.4.2 Constructing a Signal out of Components

One view of the input signal illustrated above in figure 4.2, is that it is made up of a
number of contributing signals - mathematically, we can consider any reasonable set
of orthogonal signals as components, but the easiest ones to use are sine functions.

One extreme case often used to illustrate this is the square wave signal. In figure
4.4, we show a square wave. If this was made out of a number of sine waves with
different frequencies, the contribution of each frequency would be as illustrated in

figure 4.5.

Figure 4.4: Square Wave

s(f)

Figure 4.5: Spectrum of a Square Waev

The way then that we build up the square wave constructively out of a set of
sine waves of different frequenies can be seen in the progression of figures,

It may seem odd that a simple “on-off” signal takes a lot of contributions, but
then the point is that this method of representing the continuous signal is general,
and can represent any input signal.

Input data can be transformed in a number of ways to make it easier to apply cer-
tain compression techniques. The most common transform in current techniques is
the Discrete Cosine Transform. This is a variant of the Discrete Fourier Transform,
which is in turn, the digital (discrete) version of the Continuous Fourier Transform.

As described earlier, any signal (whether a video or audio signal) can be consid-
ered a periodic wave. If we think of a sequence of sounds, they are a modulation of
an audio wave; similarly, the scan over an image or scene carried out by a camera

80 CHAPTER 4. CODING AND COMPRESSION

Figure 4.6: Square from One Sine Wave

0 VA VA

Figure 4.7: Square from Two Sine Waves

1/WW\ /WV\
0 TAAAY TACAA

Figure 4.8: Square from Three Sine Waves

14
0 ﬁN\VA AV/W\VA Al

Figure 4.9: Square from Four Sine Waves

4.5. LOSSLESS DATA COMPRESSION 81

conveys a wave which has periodic features in time (in the time frame of the scene,
as well as over multiple video frames in the moving picture). It is possible to con-
vert from the original signal as a function of time, to the fourier series, which is the
sum of a set of terms, each being a particular frequency (or wavelength). You can
think of these terms or coefficients as being the contribution of a set of base pure
“sine-wave” frequencies (also known as the spectral density), that together make
up the actual si%nal.

g(w) = Ky f_oos f(t)exp(—jwt)dw where K3 =1

and

f(t) = K» sz g(w)exp(—jwt)dt where K1 = pi/2

You can imagine these sweeping through a typical audio signal as shown in
figure 4.10, and “pulling out” a spectrum (see figure 4.11, or set of coefficients that
represent the contribution of each frequency to that part of the signal strength.

4.5 Lossless Data Compression

There i1s a huge range of data compression techniques - these are of some inter-
est to the multimedia systems designer, but there are many good books on them
already. Suffice it to say that three common techniques used are runlength encod-
ing (removing repetitions of values and replacing them with a counter and single
value), Huffman coding, and dictionary techniques such as the Lempel-Ziv family
of substitutional compression algorithms.

4.5.1 Run Length Compression

Run length coding is fairly simple to implement, and with all lossless schemes, its
performance depends heavily on the input data statistics. Computer generated
binary files are often very amenable to this type of compression, for example with
a codeword size of 1 bit or a byte or a word often leading to elimination of many
all 1s or all Os successive fields. The nice feature of this scheme is that it incurs
very little delay at sender or receiver. Note that this and other schemes do incur a
variable output bit/symbol rate.

4.5.2 Huffman Compression

Huffman coding is the most widespread way of replacing a set of values of fixed size
code words with an optimal set of different sized code words based on the statistics
of the input data. The way a huffman code is constructed involves constructing a
frequecny distribution of the symbols. This is then used to decide the new com-
pressed representation for each symbol. The easiest way to do this is to consider
the case for compressing alphabetic text, with symbols drawn from characters in an
alphabet with 256 letters. If these are all equally likely to occur, then it is hard to
compress the data. However, if there is a severe skew in the frequeny distribution
in typical data (texts in this alphabet) then we can use more less bits to represent
the most frequently occurring characters/codeword values, and more bits for the
less commonly occurring ones, with some compression gain. So, how to build this
new coding scheme for the alphabet? The classic scheme is to construct a tree from
the frequency distribution, taking pairs of characters/codeword values at a time
from the least frequently occurring values in the frequency chart, and adding a bit
position to the string representation for them, with value 1 for one, 0 for the other,
then moving to the next less commonly occurring; eventually, the most commonly
occuring two values take two bits, one to say which is which, and one to say that it
is one of these two values, or its one of the 254 other values. And so on...

82 CHAPTER 4. CODING AND COMPRESSION

This scheme is optimal in only one case, which is when the probability of occur-
rences of codeword values is distributed as a set of inverse powers of 1/2, i.e. 1/2,
1/4,1/8, 1/6 etc. Otherwise the scheme is less and less good.

A generalization of huffman coding that avoids this latter problem is arithmetic
codeing, which uses binary fraction representations in building the coding tree. In
practice, this can be computationally expensive.

If one is transmitting huffman (or arithmetic) compressed data, one must also
share the same codebook at sender and receiver: the list of codes and their com-
pressed representation must be the same at both ends. This can be done on a case
by case basis, but is usually based in long term statistics of the data (e.g. the
frequency of occurence of the letter ‘ee” in the written English language i1s a well
known example of this sort of statistic).

4.5.3 Dictionary Approaches to Compression

A completely different approach is to look at the data as it arrives and form a
dictionary on the fly. As the dictionary is formed, it can be used to look up new
input, dynamically, and if the new input existed earlier in the stream, the dictio-
nary position can be transmitted instead of the new input codes. These schemes
are known as “substitutional” compression algorithms, and there are two patented
families of schemes invented by J Ziv and A Lempel in the 1970s that cover a broad
class of the ideas here.

Essentially, the dictionary is constructed as a data structure that holds strings
of symbols that are found in the input data, together with short bitstring entry
numbers. Whenever an entry is not found, it is added to the dictionary in a new
position, and the new position and string sent. This means that the dictionary
is constructed at the receiver dynamically, so that there is no need to carry out
statistics or share a table separately.

A second family of Lempel-Ziv dictionary based compression schems is based
on the idea of a sliding window over the input text. The compression algorithm
consists of searching for substrings ahead in the text, in the current window. This
approach constrains the size of the dictionary, which could otherwise grow in an
unbounded way.

4.5.4 Continuous Data: Sample Rates and Quantisation

In the next two sections, we look at audio and then video coding and compression.
Here, one is concerned with the initial fidelity of the signal which is tied up with the
sampling mechanism - the number of samples per second, and the number of bits
per sample (quanitisation levels) - in other words, one has to choose an accuracy
right from the beginning, and this represents an opportunity for compression even
before we have got to the digital domain! After this, there are a number of other
techniques, including the lossless ones just described, which are applicable.

4.6 Audio

Devices that encode and decode audio and video, as well compress and decompress
are called CODECs or CODer DECoders. Sometimes, these terms are used for
audio, but mainly they are for video devices.

Voice coding techniques take advantage of features of the voice signal. In the
time domain, we can see that there is a lot of similarity between adjacent speech
samples - this means that a system that only sends differences between sample
values will achieve some compression. We can see tha there are a lot more values

4.6. AUDIO 83

Figure 4.10: The Author Saying “smith”

in samples with low intensity, than with high. This means that we could use more
bits to represent the low values than the high ones. This could be done in a fixed
way and A and mu law encodings do just this by choosing a logarithmic encoding.
Or we could adapt to the signal, and APCM does this. These techniques can be
combined, and the ADPCM (Adaptive Differential Pulse Code Modulation) achieves
50% savings over basic PCM with no apparent loss of quality, and relatively cheap
implementation.

More ingenious compression relies on two things: an appreciation of the actual
model of speech and a model of the listener. Such techniques usually involve rec-
ognizing the actual speech production and synthesising a set of filters which are
transmitted to the receiver and used to reconstruct sound by applying them to
raw “sound” from a single frequency source and a white noise generator - examples
of CODECs that are based on this idea are Linear Predictive Coding (LPC) and
CELP (Code Excited Linear Predictor. Including a model of how humans perceive
sound (so called “psycho acoustics”) leads to more expensive, but highly effective
compression such as is used in MPEG audio CODECs.

4.6.1 Audio Input and Output

Audio signals to and from the real (analog) world have a less immediately obvious
mapping to the digital world. Audio signals vary depending on the application.
Human speech has a well understood spectrum, and set of characteristics, whereas
musical input is much more varied, and the human ear and perception and cognition
systems behave rather differently in each case. For example, when a speech signal
degrades badly, humans make use of comprehension to interpolate. This may be
harder or easier to do with music depending on levels of expertise and familiarity
with the style/idiom.

Basically, for speech, the analog signal from a microphone is passed through sev-
eral stages. Firstly a band pass filter is applied eliminating frequencies in the signal
that we are not interested in (e.g. for telephone quality speech, above 3.6Khz).!
Then the signal is sampled, converting the analog signal into a sequence of values,
each of which represents the amplitude of the analogue signal over a small discrete

1 This also has the effect of eliminating aliases, which are harmonic, or higher frequencies which
appear at the same inter vales as the actual frequencies that we want to have in our digital signal,
but more frequently.

84 CHAPTER 4. CODING AND COMPRESSION

Figure 4.11: Typical Voice Spectrum

4.6. AUDIO 85
Vowels Diphthongs | Semi-vowels | Nasals Fricatives | Affricatives | Plosives
/i/ heed | /gi/ buy /w/ was /m/ am | /s/ sail /dg/ jaw /b/ bat
/1/ hid /ai/ by r/ ran /n/ an /S/ ship | /tj/ chore | /d/ disc
/e/ head | /au/ bow /1/ 1ot /n/ sang
/ae/ had | /ao/ bough | /j/ yacht

|

Table 4.1: International Phonetic Alphabet for British English

time interval. This is then quantised, or mapped into one of a set of fixed values -
e.g. for telephone quality speech, one of 2*¥*8, or 256 possible values. These values
are then coded (represented in some standard form) for transmission or storage.
The process at the receiver is simply the reverse.
There are a number of particular features of the speech signal that make it
particularly possible to compress, and we look at some of these in chapter four.

4.6.2 Audio Output

Audio output is generally made by some physical process interacting with the air
(in space, of course, there is no sound!). The air conveys the sound to your ear (or
to a microphone or other input device).

To produce output from a computer, we need to take a digital signal, convert
it to analogue, and use that to drive a loudspeaker. Many PCs now feature fairly
standard hi-fi amplifiers and stereo speaker systems.

Sounds can be created purely digitally (from synthesiszers) or partly digitally
(from samples) or naturally from the surrounding world (wind in the trees, rain on

the roof), or from analog musical instruments or from human speech.

Audio Output by People

People generate sounds by breathing air through the vocal chords, which resonate,
and then controlling the production of sound by varying the shape of their vocal
tract, mouth, tongue and so on. For the purposes of communication, speech is
generally more useful than music, and happens to use a constrained part of the
frequency and power range that humans are capable of generating - and a much
more constrained part of the range than they are capable of hearing. Typically, we
can generate sounds over a dynamic range of 40 decibels, For recognisable speech,
the vast majority of important sounds are in the frequency range 60H to 8000Hz
(compared with music which is typically audible up to nearly 20KHz).

Speech is made up of sound units called phonemes (the smallest unit of distin-
guishable sound). These are specific to a language, so for example ,we find that
English and Japanese each have phonemes that the other language does not (e.g. “1”
and “r”) (hence the difficulty in learning to pronounce another distant language).
We illustrate some of the international phonetic alphabet for British English with
example words in the table 4.1 below.

Phonemes are vowels or consonants, where vowels are either pure or diphthongs
(made of two sounds), and consonants may be semi-vowel, fricative (use teeth to
make), plosive (use lips) or nasal (use nose). Other factors influencing the sound
we make are stress (change of strength), rhythm and pace, and intonation (pitch).

4.6.3 Audio Input by People

We hear mainly through our ears which respond over a frequency range of around
20Khz. Stereo is important to many human actions and even the phase difference

86 CHAPTER 4. CODING AND COMPRESSION

between signals arriving from the same source at each ear (as well as simple timing,
since sound moves so slow compared with light) gives us good directional hear-
ing, although mainly at high frequencies. As people et older, their high frequency
accuracy decreases quite markedly, although this doesn’t usually affect speech recog-
nition until old age.

4.6.4 Summary of Audio and Video Input and Output

Data (files etc.) typically compressed using simple schemes such as Run Length
encoding, or statistically based Huffman codes or dictionary based substitutional
schemes such as the Lempel-Ziv algorithms. Audio and Video are loss tolerant, so
can use cleverer compression that discards some information. Compression of 400
times is possible on video - useful given the base uncompressed data rate of a 25 fps
CCIR 601 image is 140Mbps.2 A lot of standards for this now including schemes
based on PCM, such as ADPCM, or on models such as LPC, and MPEG Audio.
Note that lossy compression of audio and video is not acceptable to some classes of
user (e.g. radiologist, or air traffic controller).

It is sometimes said that “the eye integrates while the ear differentiates”. What
is meant by this is that the eye responds to stronger signals or higher frequencies
with cumulative reaction, while the ear responds less and less (i..e to double the
pitch, you have to double the frequency - so we hear a logarithmic scale as linear,
and to double the loudness, you have to increase the power exponentially too).

A video CODEC can be anything from the simplest A2D device, through to
something that does picture pre-processing, and even has network adapters build
into it (i.e. a videophone!). A CODEC usually does most of its work in hardware,
but there is no reason not to implement everything (except the a2d capture:-), in
software on a reasonably fast processor.

The most expensive and complex component of a CODEC is the compres-
sion/decompression part. There are a number of international standards, as well as
any number of proprietary compression techniques for video.

4.6.5 The ITU (was CCITT) Audio Family

The fundamental standard upon which all videoconferencing applications are based
is G.711 , which defines Pulse Code Modulation(PCM). In PCM, a sample repre-
senting the instantaneous amplitude of the input waveform is taken regularly, the
recommended rate being 8000 samples/s (50 ppm). At this sampling rate frequen-
cies up to 3400-4000Hz are encodable. Empirically, this has been demonstrated to
be adequate for voice communication, and, indeed, even seems to provide a music
quality acceptable in the noisy environment around computers (or perhaps my hear-
ing is failing). The samples taken are assigned one of 212 values, the range being
necessary in order to minimize signal-to-noise ratio (SNR) at low volumes. These
samples are then stored in 8 bits using a logarithmic encoding according to either
of two laws (A-law and =-law). In telecommunications, A-law encoding tends to be
more widely used in Europe, whilst =-law predominates in the US However, since
most workstations originate outside Europe, the sound chips within them tend to
obey =-law. In either case, the reason that a logarithmic compression technique is
preferred to a linear one is that it more readily represents the way humans perceive
audio. We are more sensitive to small changes at low volume than the same changes

2To be more precise, the CCIR 601 standard defines a raw 4:3 rate of the full digitized TV
signal as 270Mbps, including the non-visible lines, the time for interframe synch and so on. With-
out all this redundant information, the pure PAIL and NTSC visible components can be coded
uncompressed at 143 and 177 Mbps respectively.

4.7. STILL IMAGE 87

at high volume; consequently, lower volumes are represented with greater accuracy
than high volumes.

ADPCM

LPC

CELP

MPEG AUDIO

Adaptive Differential Pulse Code Modulation ADPCM (G.721) allows for the
compression of PCM encoded input whose power varies with time. Feedback of
a reconstructed version of the input signal is subtracted from the actual input
signal, which is then quantised to give a 4 bit output value. This compression
gives a 32 kbit/s output rate. This standard was recently extended in G.726 |
which replaces both G.721 and G.723 , to allow conversion between 64 kbit/s
PCM and 40, 32, 24, or 16 kbit/s channels. G.727 is an extension of G.726
and issued for embedded ADPCM on 40, 32, 24, or 16 kbit/s channels, with
the specific intention of being used in packetised speech systems utilizing the

Packetized Voice Protocol (PVP), defined in G.764.

The encoding of higher quality speech (50Hz—7kHz) is covered in G.722 and
G.725, and is achieved by utilizing sub-band ADPCM coding on two frequency
sub-bands; the output rate is 64 kbit/s.

LPC (Linear Predictive Coding) is used to compress audio at 16 Kbit/s and
below. In this method the encoder fits speech to a simple, analytic model of the
vocal tract. Only the parameters describing the best-fit model is transmitted
to the decoder. An LPC decoder uses those parameters to generate synthetic
speech that is usually very similar to the original. The result is intelligible
but machine-sound like talking.

CELP (Code Excited Linear Predictor) is quite similar to LPC. CELP en-
coder does the same LPC modeling but then computes the errors between the
original speech and the synthetic model and transmits both model parameters
and a very compressed representation of the errors. The compressed repre-
sentation is an index into an excitation vector (which can be considered like
a “code book” shared between encoders and decoders. The result of CELP is
a much higher quality speech at low data rate.

High quality audio compression is supported by MPEG. MPEG I defines sam-
ple rates of 48 KHz, 44.1 KHz and 32 KHz. MPEG II adds three other fre-
quencies , 16 KHz, 22,05 and 24 KHz. MPEG 1 allows for two audio channels
where as MPEG 11 allows five audio channels plus an additional low frequency
enhancement channel.

MPEG defines three compression levels that is Audio Layer I, IT and TII. Layer
I is the simplest, a sub-band coder with a psycho-acoustic model. Layer II
adds more advanced bit allocation techniques and greater accuracy. Layer
IIT adds a hybrid filterbank and non-uniform quantization. Layer I, 1T and
I1I gives increasing quality /compression ratios with increasing complexity and
demands on processing power.

4.7 Still Image

“A picture is worth a thousand words”. But an image, uncomrpessed is worth many
megabytes.

4.7.1 How Big Is a Single Frame of Video?

First we consider the spatial size of analogue video when compared to the common
formats for digital video standards. A PAL television displays video as 625 lines
and an NTSC television displays 525 lines. Current televisions have an aspect ratio

88 CHAPTER 4. CODING AND COMPRESSION

Time:Size | 640x480 | 320x240 160x120|

1sec 27Mb 6.75Mb | 1.68Mb
1min 1.6Gb 400Mb 100Mb
lhour 97Gb 24Gb 6Gb

1000hours | 97Th 24Th 6Th

Table 4.2: The amount of data for full-motion digital video

of 4:3, giving PAL a spatial resolution of 833 x 625, and NTSC a resolution of 700
x 525, not all of which is visible. Most common formats for digital video are related
to the visible area for each of the television standards. The size of video when using
the international standard H.261, found in [92] is 352 x 288 for the Common Tmage
Format (CIF) format and 1762144 for the (Quarter CIF) QCIF format, and 704
x 576 for the (Super CIF) SCIF format, where a CIF image is a quarter the size
of the visible area of a PAL image. For NTSC derived formats 6402480, 3202240,
and 1602120 are common. Figure 4.12 shows the spatial size of these common
resolutions with respect to a PAL TV image.

]

640 x 480 320 x 240 160 x 120

Figure 4.12: The spatial size of digital video compared with a PAL TV image

It can be seen that digital images are all smaller than current television sizes.
Moreover, television images are significantly smaller than current workstation screen
sizes which are commonly of the order 1200 x 1000 pixels. Digital video utilizes even
less of a workstation screen.

Due to this significant size difference, some observers have commented that
digital video often looks like ”moving postage stamps”, on modern workstations.

For digital video, as with analogue video, a new frame is required every 1/25th
second for PATL and every 1/30th second for NTSC. If we assume that there are
24 bits per pixel in the digital video and 30 frames per second, the amount of disc
space required for such a stream of full-motion video is shown in table 4.2. The
table is presented for the amount of time the digital video is shown and for a given
spatial size in pixels.

We can see that 1 hour of video with a resolution of 640 x 480 would consume
97 Gb of disc space, which is significantly larger than most storage devices. An
equivalent amount of analogue video (i.e. a 1 hour video) , which has a higher
resolution and also contains audio, would only take between a half and a quarter of
a video cassette, for a 120 minute or a 240 minute cassette, respectively. However,
although there are devices that can store this amount of data, there are currently
no digital storage devices which could store 97 Gb on half a device which is the size
of a video cassette. The data shown in the tables was collated by Larry Rowe of
the Computer Science Division - EECS, University of California at Berkeley, for his
work on The Continuous Media Player [138].

In order to reduce the amount of data used for digital video, it is common to use
compression techniques, such as the international standards H.261, MPEG [131], or
to use proprietary techniques such as nv encoding [105] or CellB [111]. Rowe has

4.7. STILL IMAGE 89
Time v. Scale | None 3:1 25:1 (JPEG) | 100:1 (MPEG)
1 sec 27 Mb | 9 Mb 1.1 Mb 270 Kb
1 min 1.6 Gb | 540 Mb | 65 Mb 16 Mb
1 hour 97 Gb | 32 Gb 3.9 Gb 970 Mb

Table 4.3: The amount of data for compressed video of size 640x480

Time v. Scale | None 3:1 25:1 (JPEG) | 100:1 (MPEG) |
1 sec 6.75 Mb | 2.25 Mb | 270 Kb 68 Kb

1 min 400 Mb | 133 Mb 16 Mb 4 Mb

1 hour 24 Gb 8 Gb 1 Gb 240 Mb

Table 4.4: The amount of data for compressed video of size 320x240

also estimated the amount of space used when compression techniques are used.
Table 4.3 shows the space needed when compressing video of size 640 x 480 pixels,
and table 4.4 shows the space used when compressing video of size 320 x 240 pixels.
Both tables present data for a given scale factor of compression and for the time the
video is shown. The 97 Gb used for the 1 hour of 640 x 480 video can be reduced
to approximately 1 Gb when compression is done at a scale factor of 100:1.

Although the table shows compression factors for MPEG, the H.261 standard
uses a Discrete Cosine Transform encoding function which is similar to that used
in MPEG, therefore we can expect the compression ratios to be of a similar order
of magnitude. In reality, when encoding real video the compression factor is not
constant but variable because the amount of data produced by the encoder is a
function of motion. However, these figures do give a reasonable estimation of what
can be achieved.

It is significant that with digital video it is possible to dramatically reduce the
amount of data generated even further by reducing the perceived frame rate of the
video from 30 frames a second down to 15 or even 2 frames a second. This can
be achieved by explicitly limiting the number of frames or through a bandwidth
limitation mechanism. In many multicast conferences the bandwidth used is be-
tween 15 and 64 Kbps. Although the reduced frame rate video loses the quality
of full-motion video, it is perfectly adequate for many situations, particularly in
multimedia conferencing.

There are a large number of still image formats and compression schemes in use
in the network today. Common schemes include:

TIFF and GIF These both use compression schemes based o nthe Lempel-Ziv type of algo-
rithms described earlier.

JPEG This is from the Joint Photographic Experts Group in the International Or-
ganisation for Standardization (ISO).

The first two of these still image schemes are discussed elsewhere in great detail.
JPEG is interesting as it is also the same baseline technology as is used partly in
several populat moving image compression schemes. The JPEG standard‘s goal has
been to develop a method for continuous-tone image compression for both color and
greyscale images. The standard define four modes:

e Sequential In this mode each image is encoded in a single left-to-right, top-to-
bottom scan. This mode is the simplest and most implemented one in both
hardware and software implementation.

90 CHAPTER 4. CODING AND COMPRESSION

e Progressive In this mode the image is encoded in multiple scans. This is
helpful for applications in which transmission time is too long and the viewer
prefers to watch the image building in multiple coarse-to-clear passes.

o Lossless The image here is encoded to guarantee exact recovery of every source
image sample value. This is important to applications where any small loss
of image data is significant. Some medical applications do need that mode.

e Hierarchical Here the image is encoded at multiple resolutions, so that low-
resolution versions may be decoded without having to decode the higher
resolution versions. This mode is beneficial when transmission over packet
switched networks. Only the data significant for a certain resolution deter-
mined by the application can be transmitted, thus allowing more applications
to share the same network resources. In real time transmission cases (e.g. an
image pulled out of an information server and synchronized with a real-time
video clip), a congested network can start dropping packets containing the
highest resolution data resulting in a degraded quality of the image instead of
delay.

JPEG uses the Discrete Cosine Transform to compress spatial redundancy within
an image in all of its modes apart from the lossless one where a predictive method
issued instead.

As JPEG was essentially designed for the compression of still images, it makes
no use of temporal redundancy which is a very important element in most video
compression schemes. Thus, despite the availability of real-time JPEG video com-
pression hardware, its use will be quite limit due to its poor video quality.

4.8 Moving Image

Next we will talk in a bit more detail about input and output of images.

4.8.1 Video Input and Output

Before you can digitize a moving image, you need to know what the analog form is,
in terms of resolution and frame rate. Unfortunately, there are three main standards
in use. PAL is used in the UK, while NTSC is used in the US and in JAPAN, and
SECAM 1is used mainly in France and Russia. The differences are in number of
lines, frame rate, scan order and so forth. PAL is used most widely - it uses 625
lines, and has a line rate of 50Hz. NTSC is used in the USA and Japan - it uses
525 lines, and a line rate of 59.94Hz. SECAM 1is used in France and Russia These
all differ in number of lines, frame rate, interlace order and so on. There are also a
number of variants of PAL and NTSC (e.g. I/PAL is used in the UK and Ireland,
while M/NTSC is the ITU designation for the scheme used in the US and Japan).

Colour

Colour is very complex. Basically, light is from a spectrum (continuum), but we typ-
ically manipulate colors by manipulating discrete things like pens, or the coloured
dots of phosphor on a CRT which emit light of a given intensity but at a single
colour, when hit by an electron of a given energy. There are several ways of mixing
discrete colors to get a new colour that has the right appearance to the human eye.
The human eye does not perceive a spectrum, but rather all colors as combinations
of 3 so called primary colors, Red (435nm), Green (546nm) and Blue (700nm).
These primaries can be added to produce secondaries, magenta, cyan and yellow.
[The roles of primary and secondary are reversed in pigments, over those in light,

4.8. MOVING IMAGE 91

since the concern of a dye maker is concerned with which colour is absorbed, rather
than which is transmitted]. Most MM users use colour far too much, however, in
natural situations, it is very rich - this is a strange paradox.

Colour Input by Humans

The human eye can perceive a very wide range of colors compared with gray scales.
It actually has different sensors for colour than for monochrome. Colour is detected
by “cones” cells in the retina that distinguish a range of different signals, while
black and white (mono-chrome) is dealt with by rods. Rods are actually sensitive
to much lower light levels (intensity /power), and are particularly good at handling
motion. Cones are specialized to higher light levels (hence why colour vision doesn’t
work in dim light levels such as during dawn/dusk/twilight).

Colour Input by Computers

A colour input device such as a video camera has a similar set of sensors to cones.
These respond to different wavelengths with different strengths. Essentially, a video
camera is a digital device, based around an array of such sensors, and a clock that
sweeps across them the same way that the electron gun in the back of a TV or
computer display is scanned back and forth, and up and down, to refresh the light
emission from the dots on the screen. So, for a single, still frame, a scan produces an
array of reports of intensity, one element for each point in the back of the camera.
For a system with 3 colour sensor types, you get an array of triples, values of
intensity of light of each of the sensors at being a real. This is then converted into
an analog signal for normal analog recording. Some devices are emerging where the
values can be directly input to a computer rather than converted to analog, and
then have to be converted to digital again by an expensive frame grabber or video
card. Given the range of intensities the human eye can perceive isn’t huge, they
are usually stored digitally in a small number of bits - most usually 8 per colour -
hence a “true” colour display has 24 bits, 8 bits each for R, G and B. RGB is the
most commonly used computing colour model. CMY is just [1] - [RGB], and vice,
versa. [0,0,0] is black, and [255,255,255] is white.

Color Output by Computers and other Devices

Image or video output is just the reverse of input. Thus an area of memory is set
aside for the “frame buffer”. Data written here will be read by the video controller,
and used to control the signal to the display’s electron gun for intensity of each of
the colors for the corresponding pixel. By changing what is in the frame buffer once
per scan time, you get motion/animation etc. So to play back digital video from
disk, typically, you read it from disk to the frame buffer at the appropriate rate,
and you have a digital VCR (presumably with digital video tapes)!

“Video RAM” is not usually quite the same as other memory since it is targeted
at good row then column scans rather than true RAM access.

VRAM stores n bits of each of RGB If n = 8 | it is known “True Color” n < 8§,
can have colour maps then typically values are indexes to tables. These Color maps
lead to flicker or false colour n = 1, is just plain monochrome.

Towards Compressed Video

Video compression can take away the requirement for the very high data rates and
move video transmission and storage into a very similar regime to that for audio. In
fact, in terms of tolerance for poor quality, it seems humans are better at adapting
to poor visual information than poor audio information.

92 CHAPTER 4. CODING AND COMPRESSION

1024 x 1024 pixels,
3 bytes per pixel (24 bit RGB)

25 Frames per second

Table 4.5: Liberal Estimate for Uncompressed Video Data Rate
64x 64 pixels 3 bytes per pixel (24 bit RGB) 10 Frames per second

Table 4.6: Cautious Estimate for Uncompressed Video Data Rate

A simple minded calculation shows the amount of data you might expect, and
is shown in table 4.5.

yields 75Mbytes/second, or 600Mbps - this is right on the limit of modern trans-
mission capacity. Even in this age of deregulation and cheaper telecoms, and larger,
faster disks, this is profligate. On the other hand, for a scene with a human face in,
as few as 64 pixels square, and 10 frames per second might suffice for a meaningful
image.

yields 122KBytes/Second, or just under 1 Mbps - this is achievable on modern
LLANs and high speed WANs but still not friendly! Notice that in the last simple
example, we did two things to the picture.

1. We used less ”space” for each frame by sending less ”detail”.
2. We sent frames less frequently since little is moving.

This is a clue as to how to go about improving things. Basically, if there isn’t much
information to send, we avoid sending it. Spatial and temporal domain compression
are both used in many of the standards.

If a frame contains a lot of image that is the same, maybe we can encode this
with less bits without losing any information (run length encode, use logically larger
pixels etc. etc.). On the other hand, we can take advantage of other features of
natural scenes to reduce the amount of bits - for example, nature is very fractal,
or self-similar:- there are lots of features, sky, grass, lines on face etc., that are
repetitive at any level of detail. If we leave out some levels of detail, the eye (and
human visual cortex processing) end up being fooled a lot of the time. The way
that the eye and the ear work (integration versus differentiation) means that video
and audio compression are very different things.

Hierarchical Coding

Hierarchical coding is based on the idea that coding will be in the form of quality
hierarchy where the lowest layer of hierarchy contains the minimum information
for intelligibility. Succeeding layers of the hierarchy adds increasing quality to the
scheme.

This compression mechanism is ideal for transmission over packet switched net-
works where the network resources are shared between many traffic streams and
delays, losses and errors are expected.

Packets will carry data from only one layer, accordingly packets can be marked
according to their importance for intelligibility for the end-user. The network would
use these information as a measure of what sort of packets to be dropped, delayed
and what should take priority. It should be noted that priority bits already exist in
some protocols such as the IP protocol.

Hierarchical coding will also be ideal to deal with multicasting transmission over
links with different bandwidths. To deal with such problem in a non-hierarchical

4.8. MOVING IMAGE 93

encoding scheme, either the whole multicasting traffic adapts to the lowest band-
width link capabilities thus degrading the video/audio quality where it could have
been better or causing the low link to suffer from congestion and thus sites affected
will lose some of the intelligibility in their received video/audio. With hierarchical
coding, low level packets can be filtered out whenever a low bandwidth link is en-
countered thus preserving the intelligibility of the video/audio for the sites affected
by these links and still delivering a better quality to sites with higher bandwidth.

Schemes that are now in relatively commonplace use include H.261 for videotele-
phony, MPEG for digital TV and VCRs and JPEG for still images. Most current
standards are based on one simple technique, so first lets look at that.

o That last idea was that levels of detail can be sent at different rates or priorities

e This can be useful if there are different users (e.g. in a TV broadcast, or
Internet multicast)

e It can also be useful for deciding what to lose in the face of overload or lack
of disk storage etc.

e Many of the video encodings (and still picture standards) are well suited to
this.

Subband Coding

Subband coding is given as an example of an encoding algorithm that can neatly
map onto hierarchical coding. There are other examples of hierarchical encoding
none of them is a standard or widely used as the international standards such as
H261 and MPEG.

Subband coding is based on the fact that the low spatial frequencies components
of a picture do carry most of the information within the picture. The picture can
thus be divided into its spatial frequencies components and then the coefficients are
quantized describing the image band according to their importance; lower frequen-
cies being more important. The most obvious mapping is to allocate each subband
(frequency) to one of the hierarchy layers. If inter-frame coding is used, it has to
be adjusted as not to create any upward dependencies.

In the discrete cosine world, we can replace sin(wt) + jeos(wt) with just the
cos(t), and the integrals become sums. ¢ just references a token or symbol in
the original digital spatial sample (for an image). Of course, an image is two-
dimensional, which means we have to do the transform for two spatial coordinates,
rather than one temporal coordinate.

So to transform a block of image data, 8 by 8 pixels square into the frequency
domain, we apply:

DCTIi,] = 327 29 g0 c05(2pilwi +) f(z,1)

Let us have a look at how this works in practice. In the figure 4.13, we can see
some artificial images, and their transforms. In the transform, we can see how a
given artifact in the input appears. For example, the lower left corner of the DCT
represents the DC component (average), whilst the corners represent horizontal,
vertical and other frequency information.

Finally, we should observe that there are a set of well known optimisations of
the discrete Fourier and Cosine transforms, based on decimation in time. These
essentially all stem from the fact that there is a lot of symmetry in the transform,
and the relationship:

r=2,1=1, gives same cos() value as z = 1,i = 2

94 CHAPTER 4. CODING AND COMPRESSION

Discrete-Cosine-Transformation in JPEG Compression

Ophionz iew
" Pictue 1 Ok
™ Pictuse 2 For hurther information click on the curent &+ 0n
" Pictue 3 object with your right mouse-bulton!

Qualiy 2 4] | »]

Figure 4.13: Some Examples of DCT’d data

4.8. MOVING IMAGE 95

4.8.2 H.261

H261 is the most widely used international video compression standard for video
conferencing. This ITU (was CCITT) standard describes the video coding and
decoding methods for the moving picture component of a audiovisual service at the
rates of p * 64 Kbps where p is in the range of 1 to 30. The standard targets and is
really suitable for applications using circuit switched networks as their transmission
channels. This is understandable as ISDN with both basic and primary rate access
was the communication channel considered within the framework of the standard.

H.261 1s usually used in conjunction with other control and framing standards
such as H221, H230 H242 and H320, of which more later.

H.261 Source Images format

The source coder operates on only non-interlaced pictures. Pictures are coded as
luminance and two color difference components(Y, Cb, Cr). The Cb and Cr matrices
are half the size of the Y matrix.

H261 supports two image resolutions, QCIF which is (144x176 pixels)and , op-
tionally, CIF which is(288x352).

The three main elements in an H.261 encoder as illustrated in 4.14 are:

Prediction H261 defines two types of coding. INTRA coding where blocks of 8x8
pixels each are encoded only with reference to themselves and are sent directly
to the block transformation process. On the other hand INTER coding frames
are encoded with respect to another reference frame.

A prediction error is calculated between a 16x16 pixel region (macroblock) and
the (recovered) correspondent macroblock in the previous frame. Prediction
error of transmitted blocks (criteria of transmission is not standardized) are
then sent to the block transformation process.

e Blocks are inter or intra coded

e Intra-coded blocks stand alone

Inter-coded blocks are based on predicted error between the previous
frame and this one

e Intra-coded frames must be sent with a minimum frequency to avoid loss
of synchronisation of sender and receiver.

H261 supports motion compensation in the encoder as an option. In motion
compensation a search area is constructed in the previous (recovered) frame
to determine the best reference macroblock . Both the prediction error as
well as the motion vectors specifying the value and direction of displacement
between the encoded macroblock and the chosen reference are sent. The
search area as well as how to compute the motion vectors are not subject to
standardization. Both horizontal and vertical components of the vectors must
have integer values in the range 4+ 15 and 15 though

In block transformation, INTRA coded frames as well as prediction errors
will be composed into 8x8 blocks. Each block will be processed by a two-
dimensional FDCT function. If this sounds expensive, there are fast table
driven algorithms and can be done in s/w quite easily, as well as very easily
in hardware.

96 CHAPTER 4. CODING AND COMPRESSION

Block Transforma€juantization & Entropy Coding The purpose of this step
is to achieve further compression by representing the DCT coefficients with no
greater precision than is necessary to achieve the required quality. The number
of quantizers are 1 for the INTRA dc coefficients and 31 for all others.

Entropy coding involves extra compression (non-lossy) is done by assigning
shorter code-words to frequent events and longer code-words to less frequent
events. Huffman coding is usually used to implement this step.

In other words, for a given quality, we can lose coefficients of the transform
by using less bits than would be needed for all the values This leads to a
”coarser” picture. We can then entropy code the final set of values by using
shorter words for the most common values and longer ones for rarer ones (like
using 8 bits for three letter words in English:-)

4.8. MOVING IMAGE 97

p
CC -1
. ~ az
: T Q = Q
Qfl
T71
¥..

= V
= f
Transform p Flag for INTRA/INTER
Q Quantiser t Flag for transmitted or not

P Picture memory with motion

compensated variable delay Gz Quantiser indication

E Loo fil g Quantizing index for transform coefficients
oop filter

Y Motion vector
CC Coding Control

f Switching on/off the loop filter

Figure 4.14: H261 Encoder

H.261 Multiplexing

The video multiplexer structures the compressed data into a hierarchical bitstream
that can be universally interpreted.
The hierarchy has four layers:

1. Picture layer : corresponds to one video picture (frame)

2. Group of blocks: corresponds to 1/12 of CIF pictures or 1/3 of QCIF

3. Macroblocks : corresponds to 16x16 pixels of luminance and the two spatially
corresponding 8x8 chrominance components.

98 CHAPTER 4. CODING AND COMPRESSION
4. Blocks: corresponds to 8x8 pixels

H.261 Error Correction Framing

An error correction framing structure is described in the H261 standard. The frame
structure is shown in the figure. The BCH(511,493) parity is used to protect the bit
stream transmitted over ISDN and is optional to the decoder. The fill bit indicator
allows data padding thus ensuring the transmission on every valid clock cycle

4.8.3 H.263

H263+ is a new addition to the ITU H series and is aimed at extending the reper-
toire to Video Coding for Low Bit Rate Communication. This makes it eminently
suitable to a wide variety of Internet access line speeds, and therefore also probably
reasonably friendly to many Internet Service Providers backbone speeds.

Existing A/V Standards and Video and the basic technology of CCD camera and
of Television and general CRT dictates frame grabbing at some particular resolution
and rate. The choice of resolution is complex. One could have fixed number of
pixels, and aspect ratio, or allow a range of choice of line rate and samples rates.
H.261 and MPEG choose latter.

The line rate (a.k.a. Picture Clock Frequency - PCF) is 30,000/1001 or about
29.97THz but one can also use multiples of this. The chosen resolution for H.263
is dx*dy luminance and chrominanace is just one half this in both dimensions.
H.263+ then allows for sub-QCIF which is 128*96 pixels, QCIF - 176*144 pixels,
CIF - 352*288 pixels, 4CIF (SCIF in the INRIA Ivs tool) 704*576 pixels and 16CIF
1408*1152 pixels. The designer can also choose a pixel aspect ration; the default is
288/3: 352/4 which is 12:11 (as per H.261). The picture area covered by standard
formats has aspect ratio of 4:3.

Luminance and chromnance sample positions as per H.261, discussed earlier in
this chapter. The structure of the coder is just the same too, although there are
now two additional modes called the “slice” and “picture block” modes.

A block is 16*16 Y and 8*8 Cb and Cr each; The Group of Block, or GOB
refers to k*16 lines; GOBS are numbered using a vertical scan starting with 0 to k,
depending on the number of lines in Picture. e.g. normally, when

lines < 400

, k is 1. The number of GOBS per picture then is 6 for subQCIF, 9 for QCIF, 18
for CIF (and for 4CIF and 16CIF because of special rules).

Prediction works on Intra, inter, B, PB, EI or EP (the reference picture is
smaller).

The Macroblock is 16 lines of Y, and the corresponding 8 each of Cb and Cr
Motion vetors of which we can receive 1 per macroblock.

There is some provision for other technology - we could envisage ”intelligent”
device in camera, and only detect ”objects” and motion - this is some ways off in
the future and anyhow can be done after the event with general s/w intelligence
after dumb capture and compression (using compression for hints.

H.263 then, extends H.261 over lower bitrate (not just p*64kbps design goal)
and more features for better quality and services, but the basic ideas same.

e Intra and Inter frame compression

e DCT block transform plus quantization

There are then a number of basic enhancements in H263 including

4.8.

10.
11.

12.

13.

MOVING IMAGE 99

. Continuous Presence Multi-point and Video Multiplex mode - basically 4

in 1 sub-bit-stream transmission. This may be useful for conferences, tele-
presence, surveillance and so on

. Motion Vectors can point outside picture
. Arithmetic as well as variable length coding (VLC)

. Advanced Prediction Mode which is also known as “Overlapped Block Motion

Compensation” uses 4 8*8 blocks instead of 1 16%16, This gives better detail.

. PB Frames known as combined Predictive and Bi-Directional frames (like

MPEG 1I).

. FEC to help with transmission loss; Advanced Intra coding to help with in-

terpolation; Deblocking Filter mode, to remove blocking artifacts

. Slice Structured Mode (re-order blocks so Slice layer instead of GOB layer is

more delay and loss tolerant for packet transport

. Supplemental Enhancement Information, Freeze/Freeze Release and Enhance-

ment and Chroma Key (use external picture as merge/background etc...for
mixing).

. Improved PB mode, including 2 way motion vectors in PB mode

Reference Picture Selection

Temporal, SNR and Spatial Scalability mode; this allows receivers to drop
B frames for example - gives potential heterogeneity amongst receivers of
multicast.

Reduced Resolution Update; Independent Segment decoding; Alternate IN-
TER VLC mode

Modified Quantization mode (can adjust up or down the amount of quantiza-
tion to give fine quality/bit-rate control.

Chroma Keying is a commonly used technology in TV, e.g. for picture in pic-

ture/superimpose etc, for weather people and so on. The idea is to define some

pixels in an image as “transparent” or “semi-transparent” and instead of showing
these, a reference, background image is used (c.f. transparent GIFs in WWW). We
need an octet per pixel to define the keying color for Y, Cb and Cr, each. The
actual choice when there isn’t an exact match is implementor defined.

4.8.4 MPEG

The aim of the MPEG-II video compression standard is to cater for the growing need
of generic coding methods for moving images for various applications such as digital

storage and communication. So unlike the H261 standard who was specifically
designed for the compression of moving images for video conferencing systems at p
* 64Kbps , MPEG is considering a wider scope of applications.

e Aimed at storage as well as transmission

e Higher cost and quality than H.261

e Higher minimum bandwidth

e Decoder is just about implementable in software

100 CHAPTER 4. CODING AND COMPRESSION

e Target 2Mbps to 8Mbps really.

e The ”CD” of Video?

MPEG Source Images format

The source pictures consist of three rectangular matrices of integers: a luminance
matrix (Y) and two chrominance matrices (Cb and Cr).
The MPEG supports three formats:

4:2:0 format In this format the Cb and Cr matrices shall be one half the size of
the Y matrix in both horizontal and vertical dimensions.

4:2:2 format In this format the Cb and Cr matrices shall be one half the size of the
Y matrix in horizontal dimension and the same size in the vertical dimension.

4:4:4 format In this format the Cb and Cr matrices will be of the same size as
the Y matrix in both vertical and horizontal dimensions.

Looking at some video capture cards (e.g. Intel’s PC one) it may be hard to
convert to this, but then this is targeted at digital video tape and video on demand
really.

MPEG frames

The output of the decoding process, for interlaced sequences, consists of a series of
fields that are separated in time by a field period. The two fields of a frame may
be coded independently (field-pictures) or can be coded together as a frame (frame
pictures).

The diagram 4.15 shows the intra, predictive and bi-directional frames that
MPEG supports:

O PO S AN L SNt S I
I I I

AL L4l IL L4 1] ﬁ_ﬂ

IER
I

|| 4

11
l"_ll |

| - | -

Figure 4.15: MPEG Frames

An MPEG source encoder will consist of the following elements:
e Prediction (3 frame times)
e Block Transformation

¢ Quantization and Variable Length Encoding

4.8. MOVING IMAGE 101

MPEG Prediction
MPEG defines three types of pictures:

Intrapictures (I-pictures) These pictures are encoded only with respect to them-
selves. Here each picture is composed onto blocks of 8x8 pixels each that are
encoded only with respect to themselves and are sent directly to the block
transformation process.

Predictive pictures (P-pictures) These are pictures encoded using motion com-
pensated prediction from a past I-picture or P-picture. A prediction error is
calculated between a 16x16 pixels region (macroblock) in the current picture
and the past reference T or P picture. A motion vector is also calculated to de-
termine the value and direction of the prediction. For progressive sequences
and interlaced sequences with frame-coding only one motion vector will be
calculated for the P-pictures. For interlace sequences with field-coding two
motion vectors will be calculated. The prediction error is then composed to
8x8 pixels blocks and sent to the block transformation

Bi-directional pictures (B-pictures) These are pictures encoded using motion
compensates predictions from a past and/or future I-picture or P-picture. A
prediction error is calculated between a 16x16 pixels region in the current
picture and the past as well as future reference I-picture or P-picture. Two
motion vectors are calculated. One to determine the value and direction of
the forward prediction the other to determine the value and direction of the
backward prediction. For field-coding pictures in interlaced sequences four
motion vectors will thus be calculated.

It should be noted that a B-picture can never be used as a prediction picture
(obviously!).

The method of calculating the motion vectors as well as the search area for the
best predictor is left to be determined by the encoder.

MPEG Block Transformation

In block transformation, INTRA coded blocks as well as prediction errors are pro-
cessed by a two-dimensional DCT function.

e Quantization

The purpose of this step is to achieve further compression by representing the
DCT coefficients with no greater precision than is necessary to achieve the
required quality.

e Variable length encoding

Here extra compression (non-lossy) is done by assigning shorter code-words
to frequent events and longer code-words to less frequent events. Huffman
coding is usually used to implement this step.

MPEG Multiplexing

The video multiplexer structures the compressed data into a hierarchical bitstream
that can be universally interpreted.
The hierarchy has four layers :

Videosequence This is the highest syntactic structure of the coded bitstream. Tt
can be looked at as a random access unit.

102 CHAPTER 4. CODING AND COMPRESSION

At the encoder input

12 3 (415|678 |9 |10]11]12]| 13
1B B|P|B/B|PB|B|T |[B|B|P
At the encoder output

14 213|715 (6108 9 |13]11] 12
1P B|B|P|B|BI | B|B|P |B |B
At the decoder output

12 3145678 JoJioJir]i12[13]

Table 4.7: MPEG Source, Encoder and Decoder Frame Sequence

Group of pictures This is optional in MPEG TI. This corresponds to a series of
pictures. The first picture in the coded bitstream has to be an I picture. Group
of pictures does assist random access. They can also be used at scenes cuts or
other cases where motion compensation is ineffective. Applications requiring
random access, fast-forwarder fast-reverse playback may use relatively short
group of pictures.

Picture This would correspond to one picture in the video sequence. For field
pictures in interlaced sequences, the interlaced picture will be represented by
two separate pictures in the coded stream. They will be encoded in the same
order that shall occur at the output of the decoder.

Slice This corresponds to a group of Macroblocks. The actual number of Mac-
roblocks within a slice is not subject to standardization. Slices do not have
to cover the whole picture. Its a requirement that if the picture was used
subsequently for predictions, then predictions shall only be made from those
regions of the picture that were enclosed in slices.

Macroblock 1. A macro block contains a section of the luminance component
and the spatially corresponding chrominance components. A 4:2:0 mac-
roblock consists of 6 blocks (4Y, 1 Cb, 1Cr) A 4:2:2 Macroblock consists
of 8 blocks (4Y, 2 Cb, 2 Cr) A4:4:4 Macroblock consists of 12 blocks
(4Y 4Cb, 4Cr)

2. Block which, as with H.261, corresponds to 8x8 pixels.

MPEG Picture Order

It must be noted that in MPEG the order of the picture in the coded stream is
the order in which the decoder process them. The reconstructed frames are not
necessarily in the correct form of display. The following example in table 4.7 shows
such a case at the encoder output, in the coded bitstream and at the decoder input,
and at the decoder output.

Since the order of pictures at the decoder is not always in the display order, this
leads to potential for delays in the encoder/decoder loop This is also true of H.261
- at its highest compression ratio, it may incur as much as 0.5 seconds delay - not
very pleasant for interactive use!

Scaleable Extensions

The scalability tools specified by MPEG 11 are designed to support applications
beyond that supported by single layer video. In a scaleable video coding, it is
assumed that given an encoded bitstream, decoders of various complexities can
decode and display appropriate reproductions of coded video. The basic scalability
tools offered are: data partitioning, SNR scalability, spatial scalability and temporal

4.8. MOVING IMAGE 103

scalability. Combinations of these basic scalability tools are also supported and are
referred to as hybrid scalability. In the case of basic scalability, two layers of video
referred to as the lower layer and the enhancement layer are allowed. Whereas in
hybrid scalability up to three layers are supported.

MPEG Extensions include:

Spatial scalable extension This involves generating two spatial resolution video
layers from a single video source such that the lower layer is coded by itself to
provide the basic spatial resolution and the enhancement layer employs the
spatially interpolated lower layer and carries the full spatial resolution of the
input video source.

SNR scalable extension This involves generating two video layers of same spa-
tial resolution but different video qualities from a single video source. The
lower layer is coded by itself to provide the basic video quality and the en-
hancement layer 1s coded to enhance the lower layer. The enhancement layer
when added back to the lower layer regenerates a higher quality reproduction
of the input video.

Temporal scalable extension This involves generating two video layers whereas
the lower one is encoded by itself to provide the basic temporal rate and
the enhancement layer is coded with temporal prediction with respect to the
lower layer. These layers when decoded and temporally multiplexed yield full
temporal resolution of the video source.

Data partitioning extension This involves the partitioning of the video coded
bitstream into two parts. One part will carry the more critical parts of the
bitstream such as headers, motion vectors and DC coefficients; the other part
will carry less critical data such as the higher DCT coefficients.

Profiles and levels Profiles and levels provide a means of defining subsets of the
syntax and semantics and thereby the decoder capabilities to decode a certain
stream. A profile is a defined sub-set of the entire bitstream syntax that
is defined by MPEG TI. A level is a defined set of constraints imposed on
parameters in the bit stream.

To constrain the choice pragmatically, five MPEG I1 profiles are defined and four
levels of quality. However, It is important to realize specification is of an encoded
stream rather than of an actual compression and decompression mechanism. This
leaves lots of options open to the implementor Profiles allow us to scope these
choices (as in other standards, e.g. in telecommunications) This is important, as
the hard work (expensive end) is the encoder, while the stream as specified, is
generally easy however it Is implemented, to decode. The diagram below (4.16)
shows a comparison of the data rate out of an H.261 and an MPEG coder.

MPEG II is now an ISO standard. Due to the forward and backward temporal
compression used by MPEG, a better compression and better quality can be pro-
duced. As MPEG does not limit the picture resolution, high resolution data can
still be compressed using MPEG. The scaleable extensions defined by MPEG can
map neatly on the hierarchical scheme explained in 2.1. The out-of- order process-
ing which occurs in both encoding and decoding side can introduce considerable
latencies. This is undesirable in video telephony and video conferencing.

Prices for hardware MPEG encoders are quite expensive at the moment though
this should change over the near future. The new SunVideo board (see below) does
support MPEG 1 encoding. Software implementation of MPEG 1 DECoders are
already available.

Frame size (bytes)

2009917:: CHAPTER 4. CODING AND COMPRESSION
15000
— H261
10000 | MPEG
5000
0 N —— o~ _V;,‘ \ll\,u "“,,,‘»V""\,\,\,\,‘v vl'\,““‘ ,~/\f‘ ‘\,\,\,i"‘,\,,,,“"‘ — “V;,\,"“\“”,J" “\,\“,\," “\,\,<\,‘
0 50 100 150

Frame number

Figure 4.16: H261 versus MPEG data rates

MPEG III and IV

MPEG 111 was going to be a higher quality encoding for HDT'V. It transpired after
some studies that MPEG 11 at higher rates is pretty good, and so MPEG III has
been dropped.

MPEG 1V is aimed at the opposite extreme - that of low bandwidth or low
storage capacity environments (e.g. PDAs). Tt is based around model-based image
coding schemes (i.e. knowing what is in the picture!). Tt is aimed at UP TO 64Kbps.

4.8.5 Region Coding

Intel’s Digital Video Interactive compression scheme is based on the region encoding
technique. Each picture is divided into regions which in turn is split into subregions
and so on, until the regions can be mapped onto basic shapes to fit the required
bandwidth and quality. The chosen shapes can be reproduced well at the decoder.
The data sent is a description of the region tree and of the shapes at the leaves.
This is an asymmetric coding, which requires large amount of processing for the
encoding and less for the decoding.

DVI jthough not a standard, started to play an important role in the market.
SUN prototype DIME board used DVI compression and it was planned to be in-
corporated in the new generation of SUN videopix cards.

This turned out to be untrue. Intel canceled the development of the V3 DVI
chips. SUN next generation of VideoPix, the SunVideo card does not support DVI.
The future of DVI is all in doubt.

4.8.6 Wavelet, Vector Quantisation, and Fractal Compres-
sion

These are three techniques which are emerging from the research community for
improved quality or compression or even both.

Briefly, though Wavelets are a generalization of the Fourier Transforms. Vector
quantisation is a generalization of the quantisation mechanism, and fractal is a
generalization of an information free object based compression scheme.

All three are compute intensive, although there are many people working on
codecs (hardware and software) and we will probably see some low cost high quality

results soon.

4.9. MULTIPLEXING AND SYNCHRONISING 105

4.9 Multiplexing and Synchronising

In networked multimedia standards, the multiplering function defines the way that
multiple streams of different or the same media of data are carried from source to
sink over a channel. There are at least three completely different points in this
path where we can perform this function: we can design a multi-media codec which
mixes together the digital coded (and possibly compressed) streams as it generates
them - possibly interleaving media at a bit by bit level of granularity; we can design
a multiplexing layer that mixes together the different media as it packetizes them,
possibly interleaving samples of different media in the same packets; or we can let
the network do the multiplexing, packetizing different media streams completely
separately.

The approaches have different performance benefits and costs, and all three
approaches are in use for Internet Multimedia. Some of the costs are what engineers
call “non-functional” ones, which derive from business cases of the organisations
defining the schemes.

There are a lot of players (“stakeholders”) in the multimediamarket place. Many
of them have devised their own system architectures - none the least of these are
the I'TU, ISO, DAVIC and the IETF.

The TTU has largely been concerned with videotelephony, whilst DAVIC has
concerned itself with Digital Broadcast technology, and the TETF has slowly added
multimedia (store and forward and realtime) to its repertoire.

Each group has its own mechanism or family of mechanisms for identifying
media in a stream or on a store, and for multiplexing over a stream. The design
criteria were different in each case, as were the target networks and underlying
infrastructure. This has led to some confusion which wil lprobably persist for a few
years now.

Here we look at the 4 major players and their three major architectures for a
multimedia stream. Two earlier attempts to make sense out of this jungle were
brave goals of Applet and Microsoft, and we briefly discuss their earlier attempts
to unravel this puzzle - Microsoft have made recent changes to their architecture
at many levels and this is discussed in their product specifications and we will not
cover it here.

To cut to the chase, the ITU defines a bit level interleave or multiplex appropriate
to low cost, low latency terminals and a bit piple model of the network, while ISO
MPEG group defines a CODEC level interleave appropriate to digital multimedia
devices with high quality, but possibly higher cost terminals (it is hard to leave out
a function); finally, the DAVIC and Internet communities define the multiplexor to
be the network, although DAVIC assume an ATM network whereas the Internet
community obviously assume an IP network as the fundamental layer.

The Internet community tend to try to make use of anything that its possible to
use, so that if an I'TU or DAVIC or ISO CODEC is available on an Internet capable
host, someone, somewhere will sometime devise a way to packetize its output into
IP datagrams. The problem with this is that it means that for the non-purist
approaches of separate media in separate packets, there are potentially then several
layers of multiplexing. In a classic paper[134], David Tennenhouse describes the
technical reasons why this is a very bad architecture for communicating software
systems. Note that this is not a critique of the ISO MPEG, DAVIC or ITU H.320
architectures: they are beautiful pieces of design fit for a particular purpose; it is
merely an observation that it is better to unpick their multiplex in an Internet based
system. Tt certainyl leads to more choice for where to carry out other functions (e.g.
mixing, re-synchonisation, trans-coding, etc etc).

In the next sub-sections, we describe these schemes in some details.

106 CHAPTER 4. CODING AND COMPRESSION

4.9.1 The IETF Multiplex

The TETF addresses a broad range of scenarios, but at least in laboratories and
high tech. companies, access is via Local Area Networks, and backbone speeds are
appreciable. Thus a more loose approach has evolved, although mechanisms for
mapping this and optimising it for loweer speed networks are not ignored.

There are at least two separate mechanisms for naming multimedia content:

Mime Content-type Mime (“Multi-purpose Internet Mail Extensions”) is used
to wrap content that is retrieved from the World Wide Web, and typically
transferred using SMTP (the Simple Mail Transfer Protocol, used for Inter-
net E-mail) or HT'TP (The Hyper-Text Transfer Protocol) used for Web server
to browser communication. In either case, this is for non-realtime communi-
cation.

RTP Payload Types RTP Payload types indicate what media type and encoding
is in use in a realtime Internet session.

Neither case has an explicit multiplexing and synchronisation protocol. Instead,
in the MIME case, we retrieve all tyhe media, and then play hem using a single
local clock. In the RTP case, each stream has a source timestamp, and external
clock synchronisation can be used to playout separately sourced streams with lip
synch. This is discussed more in chapter five.

4.9.2 ITU Multiplex

The I'TU see their remit as providing quality videotelephonny over the typical tele-
phone companies infrastructure - due to the lowish speed of typical access lines, this
has led to a tightly specified multiplex for audio and video, and data being added
in an external manner.

Typically, ITU protocols (at least on lower speed access netowrks up to around
T1 or megastream) run over synchronous networks, so that the clock for the media
can be reasoanbly assumed to be that of the transmission system.

The framing structure for H.261 is H.221, which includes a FEC scheme, as
shown in the 2 diagrams 4.17 and 4.18 below.

H221 is the most important control standard when considered in the context
of equipment designed for ISDN specially current hardware video CODECs. Tt
defines the frame structure for audiovisual services in one or multiple B or HO
channels or single H11 or H12 channel at rates of between 64 and 1920 Kbit/s. Tt
allows the synchronization of multiple 64 or 384 Kbit/s connections and dynamic
control over the subdivision of a transmission channel of 64 to 1920 kbit/s into
smaller subchannels suitable for voice, video, data and control signals. Tt is mainly
designed for use within synchronized multiway multimedia connections, such as
video conferencing.

H221 was designed specifically for usage over ISDN. A lot of problems arise when
trying to transmit H221 frames over PSDN.

Due to the increasing number of applications utilizing narrow (3KHz) and wide-
band (TKHz) speech together with video and data at different rates, a scheme is
recommended by this standard to allow a channel accommodates speech and op-
tionally video and/or data at several rates and in a number of different modes.
Signaling procedures for establishing a compatible mode upon call set-up, to switch
between modes during a call and to allow for a call transfer, is explained in this
standard.

Each terminal would transfer its capabilities to the other remote terminal(s)
at call set-up. The terminals will then proceed to establish a common mode of

4.9. MULTIPLEXING AND SYNCHRONISING

H221 frame
80 bytes

A

8 bits

\j

\
=

A

7 bits

Figure 4.17: H221 Framing

107

2 bytes

Control data I

Audio data [————

Video data [CCFT

H.221 Framing

CRC framing

H.261 Video

Audio
(G711,
G722, etc)

User
Data

Figure 4.18: H320 Structure

108 CHAPTER 4. CODING AND COMPRESSION

operation. A terminal capabilities consist of : Audio capabilities, Video capabili-
ties, Transfer rate capabilities , data capabilities, terminals on restricted networks
capabilities and encryption and extension-BAS capabilities.

H.230 standard is mainly concerned with the control and indication signals
needed for the transmission of frame-synchronous or requiring rapid response. Four
categories of control and indication signals have been defined, first one related to
video, second one related to audio, third one related to maintenance purposes and
the last one is related to simple multipoint conferences control (signals transmitted
between terminals and MCU’s, as specified in H.231).

H.320 covers the technical requirements for narrow-band telephone services de-
fined in H.200/AV.120-Series recommendations, where channel rates do not exceed
1920 kbit/s. There is now convergence work between this group and the AVT and
MMusic groups in the IETF. This is discussed further in chapter six.

4.9.3 The ISO MPEG Multiplex - DMIF

The MPEG committee have defined the “Delivery Multimedia Integration Frame-
work”, to provide the multiplexing and synchronisation services necessary for the
various MPEG coding schemes.

THe DMIF specification compares the overall design to FTP. There is a DMIF
Application Interface (DAI) and the DMIF Network Interface (DNI). The applica-
tion uses the DAI to establish a session, and the DMIF layer maps this through to
the DNT to signal the appropriate network resources. How this happens is very ap-
plication pattern dependent. For example, an application for local storage is quite
different from one for remote interaction. Network channels are called transmuzes
and a general model of mapping elementar MPEG streams onto these channels is
defined, together with a specific mapping for low latency, low overhead (i.e. multi-
ple streams per network channel) is offered in the TransMux channel model in the
standard.

Other models are possible, but not specified - for example, a stream per channel
in keeping with the TETF model would be feasible. This could then be mapped to
an RTP flow, perhaps multicast and perhaps reserved using RSVP. This is currently
being explored for remote retrieval using RT'SP and for interactive use in the relevant
IETF workign groups.

4.9.4 The DAVIC Multiplex

DAVIC (the “Digital Audio Video Interactive Council) has chosen standards from
the ISO MPEG work for its transmission of digital broadcast television and ra-
dio. The MPEG systems stream conveys a system clock that allows playout of the
multiplex.

4.9.5 Proprietary Multiplexes

Apple and Microsoft have both defined standards for their respective systems to
accommodate video, namely quicktime, and the Multimedia PC architecture. How-
ever, in both cases, they are more concerned with defining a usable APT so that
program developers can generate applications that interwork quickly and effectively.
Thus, Video for Windows and Quicktime both specify the ways that video can be
displayed and processed within the framework of the GUI systems on MS-Windows
and Apple systems. However, neither specifies a specific video encoding. Rather,
they assume that all kinds of encodings will be available through hardware CODECs
or through software and thus they provide meta-systems that allow the programmer
to name the encoding, and provide translations.

4.10. STANDARDS AND FUTURES 109

4.10 Standards and Futures

Although we have mentioned H.261 before can be considered the most widely video
compression standard used in the field of multimedia conferencing, it has its lim-
itations as far as its suitability for transmission over PSDN. H261 does not map
naturally onto hierarchical coding. A few suggestions has been made as to how
this can happen but as a standard there is no support of that. H261 resolution is
fine for conferencing applications. Once more quality critical video data need to be
compressed, the upper limit optional CIF resolution can start showing inadequate.

4.11 Performance

Here we take a look at some performance aspects of coding and compression of
multimedia in packet networks. First we look at the sort of compression ratios that
can be achieved. Then we take a look at the effect of network behaviour on received
media streams. Finally we carry out a back-of-the-envelope analysis a particular
compression algorithm to see what sort of CPU costs are involved.

4.11.1 Typical Compression Achieved

The amount of compression that can (and should) be achieved for a given media
depends very much on the actual requirements of the user and their given task.

MPEG I and II targets for compression down to storage and transmission over
digital broadcast networks, so several Mbps are worth considering. H.261 is aimed
at interactive internet telpehony, so the target operating environment is the digital
phone net, at one to several multiples of 64kbps. H.263 and MNPEG TV are aimed
at lower capacity for each case - so we can envisage a range of a few 10s of kbps
up to several Mbps (some users report that motion JPEG for a broadcast quality
result typically takes near to 20Mbps peak).

4.11.2 Effect of Network Loss and Delay on Video

The effect variable network behaviour on audio or video are quite hard to estimate.

Typically, a playout buffer will be set given the delays in the encoder, compressor,
decoder, decompressor and transmission, and the overall delay budget, to put a drop
dead deadline on arrival of packets over the Internet.

Packets are either lost in transit or re-ordered or delayed so that some number
just don’t make it. The loss distributions in the Internet are complex, and change as
the network evolves. However, the degradation of the received and perceived signal
will increase with compression and loss - since the compression exploits redundancy,
it removes the signals very tolerance for loss. Lossy compression is worse sine it
reduces the signal to its bare essential components.

The designer of a compression scheme for packet transmission has two possible
approaches to this problem: firstly, careful choice of compression scheme and ratio,
to minimize the imact of loss for the average delivered rate; secondly, the use of
smart protection by re-adding redundancy to the packets in a way that is specifically
designed to protect against packet loss.

Suffice it to say that under heavy load, there are significant losses and that they
are quite often spatially and temporally correlated (that is to say that if a opacket
is lost, it 1s more likely that the next one to the same place is more likely to be lost,
and that packets destined for simialr areas of the network are also more likely to be
lost).

110 CHAPTER 4. CODING AND COMPRESSION

The size of a packet in the Internet for audio or video might be in the range 320
bytes up to 1500 bytes, typically. This means that the loss of media data is quite
significant even for only a single lost packet.

There are a variety of enhancement approaches to protecting the media stream
by clever mapping of the data into packets - one can go further and add general
packet level FEC codes, or even media specific FECs [130][?], or when the delays are
sufficiently low, or in a playback situation, recover from loss using retransmission
strategies - some users propose a hybrid of media specific FEC and retransmission.

Finally, it remains to be seen if new scalable CODECs might be devised that,
combined with intelligent distribution of the compressed media data over a sequence
of packets, lead to better quality results in the face of the Internet’s current curious,
and somewhat pathological loss behaviour.

4.12 Processing Requirements for Video Compres-
sion

In this section, we present a brief analysis of the complexity f implementing a lossy
video compression algorithm in software. We use an example loosely based on the
H621 scheme.

There has been some disagreement about just how many MIPs 2 it takes to
compress to a particular bandwidth.

Rather than look in detail at the exact standard, lets take a hypothetical coding
standard, called VRUM (Video Reduction for Usable Multimedia). This takes a
nominal 1024 pel square true color (24 bit per pel) video frame sequence, at 25
frames per second (75 Mbytes/Sec), and compresses as follows:

Intra frame coding Divide the 1024*1024 area into 8*8 blocks and run a discrete
cosine transform (16384 times).

Inter frame coding Meanwhile, for

1. i) difference each 8*8 area with same area in previous frame.

2. ii) For i=1 to 8 frames in sequence,
For each neigbour block in successive frames
if neigbour == current block offset by i pels
send motion vector for this block for all 8 frames
(and 1st DCT coded block, of course)

Obviously, a naive implementation of this could be very expensive, but there are
a number of very obvious optimisations (not the least is not to bother calculating
DCT on blocks that have not changed, or have simply moved and have motion
vectors being sent).

Now, DCT looks like this:

for (x=0..7, y=0..7)
f(x,y) = 1/4 Sum(i=0..7, j=0..7) C(i) C(j)
Cos(pi (2x+1) i/16)
Cos(pi (2y+1) j/186)

C(k) = 1/root2 for i=0, else 1

3MTIPs: million instructions per second - a common measure of CPU performance - too simple
for subtle work, but good enough for back of the envelope estimates.

4.12. PROCESSING REQUIREMENTS FOR VIDEO COMPRESSION 111

The range of f is -256..255.

We can precalculate all discrete Cos values for the 256 possible input values (i.e.
only have a table lookup of 256*2 entries for the transform itself). We could go

further and have a table of sums of cosines, but lets just leave it here for now.
This then gives each block taking:

8*8 * (add + (8*%8 (2 table lookups) + multiply)
= 64 * 130 = 8320

So for full inter-frame coded stream of 25 frames each taking

16384 blocks, this takes
25%16384%8320 =

3407872000 = 3000 MIPs
without any differencing...

However, if any significant number of blocks are similar, then we need to lok at
the relativer cost of differencing with “DCT-ing”:
To difference 16384 blocks, a simple minded cmp does this

blkecmp()
for(i=0..7, j=0..7)
pel = 1i%8+j

if (frame[seq] [block[pell] != frame[seq-1][block[pell]
return false
return true

Since a pel is 3 bytes, this is 3 compares * 64 to find true, or on average (whatever
that is) a lot less to find false.

This gives a result of roughly 196 instructions, to avoid 8320 DCT instructions.

In other words, if we run a simple blk cmp, and get some proportion n of blocks
the same, we reduce the MIP count to: n*1964 ((1—n)#* (83204 (px196))*25% 16384
where p is the proportion a changed block has changed. which (for largish n) is
approximately: (1 — n) * 3000M IPS For n = 2/3 (e.g. head and shoulders view)
we are now down to 1000 MIPs.

To reduce further, we should consider pre-calculating some subset of the DCT
Cos products, but need to then check that we do not have too high a memory
requirement. Now, the searches are a bit more complex: Each search is just like
the differencing code, only it costs more as we have to do it across 8 frames, and
across +/ — 8 in x and y directions, i.e. 16 * 16 * 8 times as much however, this is
only incrementing once per new frame, so effectively it is only calculated across the
16 * 16 moves.

In fact, if we roll this into the difference code (since a motion vector of 0,0 is
the same as an unchanged block), we have 16 % 16 x 196 instructions to see if a block
is unchanged, and moved or unmoved. This results in around 50176 instructions

So now we get

(n % 50176 4 (1 — n) * (8320 + (¢ * 50176))) % 25 * 16384 (4.1)

112 CHAPTER 4. CODING AND COMPRESSION

where q is the proportion a changed block has changed (whetehr moved ot not). ¢
is probably very small.

Unfortunately, this is rather worse than the mere intra-coded frame.

However, when doing the differencing, we can cache all previous points reached
in previous blocks, so we only need run another 196 instructions per frame per
block, and we get back to the previous result (1 —n) * 3000M I PS For n = .9, this
then gets us to around 300 MIPS

e Note that for H.261 input is defined to be CCIR 601 which is 720 x 486 (I

think), not 1024 square — i.e. a further factor of 3 smaller in area.

e In addition, your compares are on a byte by byte basis. You could take into
consideration a 32 bit word size.

e It is hard to see how you can use the results of previous comparisons in doing
the differencing. The origin of the new block with respect to the old is changed
for each iteration: they have nothing in common.

o If you reduce the frame rate to 5 Hz, then there will be less correspondence
between frames, and the motion compensation will give you less in terms of
compression. Since it’s optional for the encoder in the H.261 standard, why
not just difference. Ok - slightly less compression but a big win in terms of
computation. (On the other hand maybe not — differences will be detected
quicker).

Now the implementation results on modest performance PC processors achieve
5 frames per second (i.e. 1/5 our frame rate) and 1/4 CIF on a 30 MIPs machine,
which confirms our approximate analysis.

Arguments like these have been behind the design of rhe Intel MMX (Multi-
Media eXtensions) to the PC processor, and Sun Microsystems Visual Instruction
Set - along the lines of RISC arguments for running conventional programs, there
is a small number of possible additional instructions that are frequently used can

make a big difference to performance.

4.13 Summary

In this chapter we have looked at Video and Audio coding and compression tech-
niques. We have also introduced some preliminary ideas in conferencing and confer-
ence control protocols, by virtue of their being part of one of the dominant standards
for compression, namely the H.320 family: more of this in chapter six. Important
lessons for people using multimedia include:

1. Multimediais large! The same amount of information can often be represented
for human consumption in text taking far less storage or transmission than in
graphical form.

2. Multimedia is highly redundant, and compresses very successfully

3. Human perception is frail, and cognition smart. We can take advantage of it
- note that the auditory and visual systems, however, are quite different, with
persistence, averaging, and so on happening at different stages in each.

4. Users of some critical applications cannot tolerate any artifacts, and therefore
prefer lossless compression - examples are typically in the area of medical
imaging (Radiology, Ultrasound, Functional imaging from magnetic resonance
imaging and so on).

4.13. SUMMARY 113

5. There are a number of ways to multiplex a set of media together, and a set
of engineering tradeoffs associated with these. Different industries have made
different choices for good reasons. However, this means that in the Internet, we
have to unpick some of the multiplexes chosen in the broadcast and telephony
industries before gaining the advantanges of the Internet’s full generality.

6. Last but not least, it is very important that the more sophisticated the com-
pression technique (at least for video) the harder it is in processing terms; but
decompression is massively less expensive than compression. This means that
one-to-many applications are cost effective.

114 CHAPTER 4. CODING AND COMPRESSION

Part 11
Middleware

The advent of the Internet, with novel facilities such as multicast has led to the
separation of the protocols used for conference media streams from the protocols
used to setup and control various aspects of a conference, as mentioned above, such
as membership, session information, media activity, floor control and so on, as we
shall see 1 nthe next few chapters.

But the usefulness of the IP multicast service has made itself felt in the control
protocols too. A number of sites have used multicast as the way to disseminate
control information within a conference. Again, as with the media streams, the
advantages in terms of scalability are manifold.

Alongside the multicast group used to carry the media themselves, another as-
sociated multicast group can be used to disseminate this control information. The
model is that of a computer bus, on which messages can be placed, and received by
any device attached to the backplane. This Bus Model is used in two related ways:

1. The LBL tools [Jacobson, 94] use this as a local bus, to distribute information
between applications at a given site to coordinate the control activities that
are common. For example, if a user runs a video, audio and a whiteboard
application, there is little point in each of these applications sending activity
messages separately. They can be combined. Also, when a user is participat-
ing in multiple conferences, the coordination of ownership of devices such as
exclusive use audio input and output can be carried out through messages on
the local conference control bus.

2. UCL researchers have carried this, and the basic wide area session message
use of multicast to a general extreme, where the entire Mbone is used to
coordinate all conference control messages using a conference control channel.
This is illustrated below as the Multicast Control Bus.

The Local Bus can also be used to carry out receiver synchronization, If a
machine is receiving different media streams with different delay variations that
belong in the same session, then the adaptive playout buffer sizes can be exchanged
by multicasting their status on the local Mbone (local to the receiver machine only),
and used to add in a constant so that all streams are played out in synchronization,
with no need for any complex end to end protocol to carry out complex delay bound
calculations, as is used in many other systems.

The growth in the Mbone has led to some navigation difficulties (just as there
are in the World Wide Web, and in Usenet News Groups). This has led to the

creation of a Session Directory Service. This has several functions:

1. A user creating a conference needs to choose a multicast address that is not
in use. The session directory system has two ways of doing this: firstly, it

115

116 CHAPTER 4. CODING AND COMPRESSION

allocates addresses using a pseudo-random strategy based on how widespread
the conference is going to be according to the user, and where the creator is;
secondly, it multicasts the session information out, and if it detects a clash
from an existing session announcement, 1t changes its allocation. This is
currently the main mechanism for the management of allocation and listing
of dynamic multicast addresses.

2. Users need to know what conferences there are on the Mbone, what multi-
cast addresses they are using, and what media are in use on them. They can
use the session directory messages to discover all of this. The latest versions
of multicast include a facility for administrative scoping, which allows ses-
sion creators to designate a logical region of interest outside of which traffic
will not (necessarily) flow. This is mainly used to limit the network capac-
ity used rather than as a privacy enhancement, since there is little guarantee
that someone does not subvert the internet multicast routing anyhow, so it
cannot give a guarantee of protection against accidental or deliberate disclo-
sure. It can however protect cooperating users and sites from being overrun
by irrelevant video and audio traffic.

3. Furthermore, the session directory tools currently implemented will launch
applications for the user.

Conference Control [Schooler, 92] refers to the set of tasks concerned with man-
aging the tools that mediate between users. This includes controlling access and
membership, controlling starting and stopping media including coordinating this
with any floor control mechanism, reporting activity by a user of a given media
type, and so on.

Early Conference control systems in the Internet were modeled around telephony
and the T.120/T.GCC style of management, where each and every control action
is specified for a unique participant, and each and every action is specified to each
and every participant. Such systems were targeted at closed, secure, managed,
and generally floor controlled (chaired) conferences. Often, the conference control
architecture was dictated by the low level network call control model, or even by
the media distribution technology (as with MCU based T.120 based videoconference
systems).

The Mbone style of conferencing separates out this functionality, but in no way
precludes using tight coupling of control actions, participants and media. Indeed,
the use of the local and wide area bus model to propagate control actions leads
naturally to efficient scaling of all styles of conference. Yet again, we note the user
expectation is of potential dynamics in membership, and quality of conferences.
This is an advantage over hardwired groups and quality, since it is less constraining
to designers of conferencing tools. They can always add constraints later.

The use of a single approach that seemlesslessly scales from small to large sys-
tems, from homogeneous, to heterogeneous, and from one style of use to another,
is clearly a desirable engineering goal.

In following chapters, we will look at these various technologies.

Chapter 5

Transport Protocols

5.1 Introduction

In the Internet, the User Datagram Protocol, UDP is used to carry Interactive or
realtime multimedia data around. UDP is chosen because it is lightweight, but
also because it interposes no unpredictable or unnecessary functions between the
application and the network.

Multimedia transport protocols do not have to be complex or “heavyweight”, in
the sense that an all-purpose transport protocol such as the Transmission Control
Protocol, TCP is “heavyweight”. In fact, TCP is not really heavyweight, but it does
have, albeit parsimoniously, mechanisms for flow control, reliability, and ordering,
that are counter-productive for multimedia traffic. Tt is also completely impossible
to use in a scalable way for many-to-many communication[51].

The goal of transport protocols is to provide end to end services, that are specific
to some modest range of applications, and provide specific services that are not
common to all applications, and therefore not required in the network service.

However, UDP, being originally designed for lightweight management tasks such
as local time and name lookup services, does not always provide enough functional-
ity for multimedia data transport. Multimedia transport protocols need to provide
hooks for a common set of multimedia services, that can be distinguished quite
clearly from conventional data services, for example:

¢ A basic framing service is needed, defining the unit of transfer, typically com-
mon with the unit of synchronisation (in keeping with the Application Layer
Framing principle[20]).

e Multiplexing may be needed, since we may wish to identify separate media in
separate streams, but we may also wish to stack media together in the same
IP packets.

e Timely delivery is needed where possible, and can be traded off against relia-
bility. This means that it is unlikely in most scenarios that a error detection
and timeout/retransmission based error recovery scheme is appropriate. In-
stead, mostly we would employ media specific forward error recovery.!

e Synchronisation is a common service to almost all networked multimedia ap-
plications, so providing a common timestamping framework seems like a good

! There are exceptional circumstances where automatic repeat request protocols may be useful
for multimedia, for instance on local area networks where the delay incurred may be tolerable.
However, these are usually networks that have relatively low error rates, and FEC ma be more
acceptable here too. The main specialist area where ARQ might really be needed might just be

wireless LANs.

117

118 CHAPTER 5. TRANSPORT PROTOCOLS

component of a transport protocol, especially since it is between the sender
(who knows media sample times) and the receiver (who has to play out media
in the right order, and without gaps, gasps or unnecessary jitters that the
synhronisation is needed. Synchronisation is also needed between different
media, and this is discussed further later in this chapter.

The basic unit of transfer in the Internet is the IP packet, which carries appli-
cation data, and a transport protocol header preceded by the IP header. Packets
are demultiplexed at the host based on the transport protocol port numbers, and
routed in the network based IP addresses.

RTP, the preferred carrier/framing protocol for multimedia traffic, is carried on
top of UDP. It has the potential for further multiplexing information, since it carries
source identifiers. The main other item in the RTP header is the media timestamp
(for the sample carried) which is formatted specifically for each media type. This is
used for the playout and synchronisation algorithms. RTCP, the Real Time Control
Protocol, is used to convey additional information such as participant details and
statistics of packet arrivals and loss. It is typically sent on one UDP port number
higher than the UDP port used for the associated RTP packets.

One might envisage using the Internet to provide a rich medium for a Distributed
Orchestra or even a cattle Auction. However, there are limits imposed by the
speed of light, to the end to end and round trip delays, however fast the lines and
switching, and however ingenious the implementation of RTP. Musicians require
extremely short delays between hearing each other, and reacting, and reacting to
the reaction - for example, consider a rallentando when an entire orchestra slows
down the beat evenly - this may require delays of a few tens of milliseconds at most.
This precludes such activities over distances of more than a few hundred miles at
absolute best!

5.2 Roadmap

The transport protocol for multimedia provides some functions that are somewhat
different than those for elastic reliable data transfer, although some of the functions
could be seen as analogous.

RTP provides payload identification, multiplexing, and feedback from receivers
to senders of reception conditions. It also provides hooks for synchronisation, both
within and between streams. There are requirements from some applications for
soem levels of reliability - we have touched on these in chapter three, and revisit
them at the end of this chapter.

5.3 TCP Adaption Algorithms

Before we look at the mechanisms to multimedia adaption, 1t is worth explaining
how the current system survives at all for data flows! Tt is essentially achieved
by smoothly degrading everyone’s performance smoothly as load increases (rather
than blocking access) that the current Internet continues to function. This is done
through a variety of adaption algorithms, both for data and for multimedia appli-
cations. Adaption in protocols was first introduced in TCP in around 1988[146].

Adaption in TCP is both to the round trip time, in order to dynamically tune
retransmit timers for reliable delivery, and of the send rate in order to adapt to the
achievable transfer rate between the sender and receiver (possible due to network
bottlenecks, or receiver interface performance problems). The same techniques can
often be applied in other protocols, in particular for multimedia services to operate
over time varying network services.

5.3. TCP ADAPTION ALGORITHMS 119

Adaption to delay at the receiver can be used for two things:

1. Adaptive playout buffer to smooth playout so that a fixed rate media device
(e.g. within a single video frame scan, or a dumb CBR audio device) isn’t
starved of data, or overrun.

2. Syncronisation of streams from different source (timestamp) can be achieved
at a receiver.

The first of these is done by looking at the Inter-Arrival Time variation, and
calculating a ”rolling average”.

It is needed to deal with the fact that there are variations in network delay for
two reasons:

e Other traffic causes long term average to vary.
e Bursts of one’s own traffic cause ones own delay to vary quickly.

The usual algorithm for this is an “Exponential Weighted Moving Average”:

Assume we measure the arrival time for each (i’th) packet as TAT% then the
simple average would be: sum}_; IAT;, divided by the number of packets.

But since the average is not fixed, we give the most recent measurements a lot
more weight than the older ones by using:

TAT; = IAT; alpha + (1 — alpha) * TAT,_,

In other words, we give alpha’s worth of credence to the latest measurement,
and only 1 — alpha to ALL the previous ones. It is only a coincidence that the
equation for a rolling, moving average for /AT estimation is the same as the one
for TCP’s RTT estimation. It is worth noting, however, that in both cases, the
requirement is only for local clocks not to drift too fast so that the measurement of
successive arrival times of packets 1s accurate w.r.t the previous ones; but no clock
synchronisation is needed.

This is sometimes not used, as it includes all the past, and if there is a fundamen-
tal change in the network (e.g. a re-route) then a system that eliminates outlying
points quickly may be better. Henning Sculzrinne’s paper suggests a ”band pass
filter” approach to the estimation of mean /AT, based on taking only the sum of
the smallest of a set of measurements recently, over the number of them.

Once you have a mean T AT, then you can calculate the current required playout
buffer, since 1t is roughly twice the variation in interarrival.

Given two streams, to synchronise their playout at a receiver we need to know
the delay from each source to each destination, and the clock offsets in case the
clocks in the two (or more) senders are out of step with the receiver. This requires
the exchange of packets including each senders statement of the current clock from
its view. Assume that the delay in each direction on the net is the same (and if you
don’t it is impossible to solve this):

1. send a packet from s to d with source time in it (¢1) and it arrives at d when
d’s clock reads ¢2

2. send the packet back to s with ¢1,72andt3, the time on d’s clock when it sends
it

3. s gets the response at ¢4 by its clock.

4. if s and d have clocks that differ by offset, and the network delay is d then
t4 =13 4+ of fset + delay
but

120 CHAPTER 5. TRANSPORT PROTOCOLS

TCP Adaption Status: TETF Proposed Standard RFC 2001
RTP Status: TETF Proposed Standard RFC 1889.

Table 5.1: Status of Protocols with Adaption Algorithms

t2=1t1 — of fset + delay
SO
delay = (t4 + 12 —1t3+ tl)/?

and offset can be similarly calculated. we then do this for several goes, and
keep a mean and variance.

5.4 Playout Algorithms

For a variety of reasons, samples may arrive at different times than they were sent
- this variation can be coped with so long as the mean rate of delivery of samples
is maintained, and the variation is a second order (less important) effect compared
with the delivery delay. A playout buffer can accommodate a fixed variation in
arrival. If the arrival rate itself varies, it is possible to use an Adaptive Playout
buffer, which is continually re-calculated.

As explained above, the Internet typically currently provides no guarantees. The
throughput and delay along a path can vary quite drastically as other traffic comes
and goes. When the network is overloaded, packets get lost leaving gaps in the
information flow at a receiver. This is illustrated below. Two basic techniques have
emerged to deal with these two problems:

1. Audio, Video and other interactive application receivers generally use an adap-
tive playout scheme.

2. Senders are generally adaptive to reported network conditions, falling back to
lesser quality as the network becomes more highly loaded, and only, gingerly,
increasing the quality and subsequent load as the network is perceived to have
more spare capacity.

The way these two techniques work is quite ingenious, but once seen, relatively
simple [Jacobson, 94]. All sources that are generating information with time struc-
ture use a protocol called RTP, the Real Time Protocol, which places a media
timestamp in each packet that is sent. All receivers use this time stamp for two
purposes:

The inter-arrival time distribution is monitored. If the delay on the path varies,
it will probably vary fairly smoothly, with some sort of reasonable probability distri-
bution. By monitoring the mean difference between interarrival times, and adding
this to a playout buffer that is used to delay sending thing between the receiving
application and the output device (video window, audio, whiteboard | etc.), the
receiver can be assured to a high degree of chance that it wont be starved of data
(run out of steam). See figures 5.1 and 5.2 and

Figure 5.1 shows the components of a playout buffer. These include the mixing
of streams from multiple sources, which can also be used to synchronise media.
In figure 5.2, we can see the reason for this requirement graphically displayed:
interference from other traffic causes jitter within the network.

Receivers monitor gaps in the inter-arrival times (that correspond to missing
data, as opposed just to, say, silence in an audio stream). Periodically, Mbone
applications report the statistics about particular sources by multicasting a report

Depacketiser +
timing recovery

Figure 5.2: End to end requirement for playout adaption

Pre-filtering VAD /Frame Audio Channel S
Q—> Bias Removal > Classification Encoding Encoding P Packetization
Mixer Loss De-
Concealment packetization
3D Sample Audio Channel Playout
Rendering Conversion Decoding Decoding Buffering
Figure 5.1: Typical Media Tool Data Flows
Packetiser
A->D vz
20ms audio
timeslices
Shared link
20ms audio
timeslices
D->A iz

122 CHAPTER 5. TRANSPORT PROTOCOLS

to the same group. A sender/source can use this report to calculate whether the
network appears congested or not. The scheme used to adjust the sending rate is
basically that used in TCP, but must be implemented by degrading the quality of the
input media for audio and video - many video compression schemes are easily altered
to permit this. The total amount of traffic generated by these quality reports is
constrained to be a constant percentage of any conference session (typically around
Sconditions is that as a conference grows, the number of samples of different parts
of the net gets better and better, hence the quality of information in fact improves,
even though the quantity from any given receiver decreases. The receivers use the
reception of other receivers reports to give an estimate of the number of receivers,
and hence to reduce the frequency with which they send reports in a fully distributed
way.

5.5 MPEG Systems

We have discussed the MPEG Multiplex earlier in chapter two. MPEG systems
part is the control part of the MPEG standard. It addresses the combining of one
or more streams of video and audio as well as other data, into a single or multiple
streams which are suitable for storage or transmission. The figure below shows a
simplified view of the MPEG control system.

Packetised Elementary Stream (PES)

PES stream consists of a continuous sequence of PES packets of one elementary
stream. The PES packets would include information regarding the Elementary
clock reference and the Elementary stream rate. The PES stream is not defined
for interchange and interoperability though. Both fixed length and variable length
PES packets are allowed.

The diagram 5.3illustrates the components of the MPEG Systems module:

PS
Program
—>
Video Video Mux Stream
ol Video Encoder | | Packetizer PES|
Data =
Audio . ——
—— > Audio Encoder | ! packetizer
Data ————r
Audio | TS Transport
PES ——— >
Mux Stream

Figure 5.3: MPEG Systems Stream

5.6 Transport and Program Streams

There are two data stream formats defined: the Transport Stream, which can carry
multiple programs simultaneously, and which is optimized for use in applications

5.7. RTP 123

123456789012345678901
| sequence number |

timestamp |

synchronization source (SSRC) identifier |

contributing source (CSRC) identifiers |

Table 5.2: RTP Packet Format

where data loss may be likely (e.g. transmission on a lossy network), and the

Program stream, which is optimized for multimedia applications, for performing
systems processing in software, and for MPEG-1 compatibility.

5.6.1 Synchronization

The basic principle of MPEG System coding is the use of time stamps which specify
the decoding and display time of audio and video and the time of reception of the
multiplexed coded data at the decoder, all in terms of a single 90KHz system clock.
This method allows a great deal of flexibility in such areas as decoder design, the
number of streams, multiplex packet lengths, video picture rates, audio sample rates,
coded data rates, digital storage medium or network performance. It also provides
flexibility in selecting which entity is the master time base, while guaranteeing
that synchronization and buffer management are maintained. Variable data rate
operation is supported. A reference model of a decoder system is specified which
provides limits for the ranges of parameters available to encoders and provides
requirements for decoders.

5.7 RTP

The Real Time Protocol is the Internet Standard for conveying media streams
between interactive participants.

5.7.1 RTP Packet Format

The first twelve octets are present in every RTP packet, while the list of CSRC
identifiers is present only when inserted by a mixer.

version (V) : 2 bits
This field identifies the version of RTP. The version defined by this specifica-
tion is two (2).

padding (P) : 1 bit

If the padding bit is set, the packet contains one or more additional padding
octets at the end which are not part of the payload.

124 CHAPTER 5. TRANSPORT PROTOCOLS

extension (X) : 1 bit

If the extension bit is set, the fixed header is followed by exactly one header
extension, with a format defined in Section 5.2.1.

CSRC count (CC) : 4 bits

The CSRC count contains the number of CSRC identifiers that follow the
fixed header.

marker (M) : 1 bit
The interpretation of the marker is defined by a profile. Tt is intended to

allow significant events such as frame boundaries to be marked in the packet
stream.

payload type (PT) : 7 bits

This field identifies the format of the RTP payload and determines its inter-
pretation by the application.

sequence number : 16 bits

The sequence number increments by one for each RTP data packet sent, and
may be used by the receiver to detect packet loss and to restore packet se-
quence.

timestamp : 32 bits

The timestamp reflects the sampling instant of the first octet in the RTP
data packet. The sampling instant must be derived from a clock that incre-
ments monotonically and linearly in time to allow synchronization and jitter
calculations

SSRC : 32 bits
The SSRC field identifies the synchronization source.

CSRC list : 0 to 15 items, 32 bits each

The CSRC list identifies the contributing sources for the payload contained
in this packet. The number of identifiers is given by the CC field. If there
are more than 15 contributing sources, only 15 may be identified. CSRC
identifiers are inserted by mixers, using the SSRC identifiers of contributing
sources.

5.7.2 RTP Header Compression

The combination of the IP, UDP and RTP control information adds up to a sig-
nificant overhead for small media samples, particularly over low speed links, com-
monly in use by the domestic and small office user dialling up their Internet Service
Provider at a few tens of kilobits per second. An Internet Protocol Datagram has
a 20 byte header, while the UDP header is 8 bytes (source and destination ports,
plus length and checksum field). The RTP header adds 12 bytes to this, making
a total of 40 bytes of control for a single sample, in some cases (especially where
sampling /serialising delay is a problem) as little as 20ms worth of 8KHz speech.

Luckily, by far the common case of such usage is as stated when dialling up an
ISP, where the access router is connected to a high speed backbone. There is already
a technique for reducing the overhead of packets in such circumstances, designed
for compressing TCP/IP headers specified in RFC 1144 by Jacobson[42]. Casner
and Jacobson adapted this technique to RTP headers[43], noting certain particular
differences.

5.7. RTP 125

The technique consists of two parts: noting fields in the packet headers that do
not change over the life of a flow; and noting that there are few flows at the “edge
of the network” so that such information can be conveyed over the first hop by a
single packet, and subsequently referred to by a short “connection identifier”, which
serves to index the full state so that the first hop router can reconstruct the full
Internetwork packet. ITn RTP, it turns out that there are also fields that change only
by the same amount from each packet to the next, except in exceptional circum-
stances, so that this second order information can also be stored in the compression
state vector at the first hop routers. Note also that this compression state 1s “soft
state” in that it can be recovered simply by loss since the packet conveys enough
implicit information that end-to-end checksums are still computed, and hop-wise
recomputed from the state vector and from the remaining data in the compressed
header. In other words, if the router resets, or the route changes, or the end system
radically alters state, the invalid checksum causes a reset of the compressed state,
and an exchange of a full packet re-creates the necessary state from full anew. The
work is still in progress, although there are several implementations in common use,
and shows a typical reduction to a header size of 3-4 bytes (better than ten-fold
reduction in control overhead).

5.7.3 RTP Multiplexing

There are a number of circumstances in which one might wish to carry multiple
media flows within a single RTP data payload between two points. The two most
important cases are: TP paths between Internet Telephony Gateways; special hard-
ware devices such as CODECs with non-negotiable multiplexed media.

There are at least two ways to multiplex data in RTP packets. One could
(e,g. in the telephony case) assume that all the samples have the same payload
types, and are just offset in different end-to-end flows. Here we need a mapping
table in the gateways, that indicates the offset for each payload type and a list
of the flows in each packet. The second approach might be a more generic one
suggested by Mark Handley recently in work in progress; which is to adapt the
ideas from the previous section concerning RTP header compression and to allow for
multiple compressed headers within a single RTP packet, one for each of the samples.
This latter approach would not use precisely the same compression algorithm, since
the fields differ for different reasons, but would permit multiple different media to
be efficiently encapsulated in a single packet. This might address both types of
application of RTP multiplexing more effectively.

5.7.4 RTCP Packet Format

RTCP is the Real-time Transport Control Protocol, which may be used as a lightweight
companion to RTP to convey a number of statistics and other information about
an RTP flow between recipients and senders.

The header is illustrated below.

SR or RR : The first RTCP packet in the compound packet must always be a
report packet to facilitate header validation as described in Appendix A.2.
This is true even if no data has been sent nor received, in which case an
empty RR is sent, and even if the only other RTCP packet in the compound
packet is a BYE.

Additional RRs : If the number of sources for which reception statistics are being
reported exceeds 31, the number that will fit into one SR or RR packet, then
additional RR packets should follow the initial report packet.

126

CHAPTER 5. TRANSPORT PROTOCOLS

012345678901 23456789012345678901

r—+t=—T1T=T—=T—=T—

|v=2|P| RC
header

+=t=t=+=+=+=4=+=

SSRC of sender
+=+=t+=t=t+=t=t=+=t=+=+=+=+=+=+=+=+=+=+

=+

=+

=+

| NTP timestamp, most significant word

| NTP timestamp, least significamt word |
. ®T tinestamp |
| aender’s packet cowmt |
| semder’s octet comnt |
| SSRO\L1 (SSRC of first seurce)
i ér;c;i;nll;sé [o éu&uia;i;elngmge; ;flp;cge;sllos; | [

| extended highest sequence number received

interarrival jitter

last SR (LSR)

' '
T T T T T T T T
1 1 1 ! 1 1 1 1
+T—+—+—t—T—T—T—

F+=t=4=+=4+=+=4=4+=

delay since last SR (DLSR)
+=+=+=t+=+=+=+=+=t=+=t+=+=+=+=+=+=+=+=+
SSRC_2 (SSRC of second source)

=+

=+

I
=+

r—+-+-t—-+—-+—t+—-T—-t+—t+—T—T—T—T—T—T—T—T—7T

+=t=t=t=t=t=t=t=t=t=t=t=t=t=t=t=t=+=+
profile-specific extensions

=+

=+

T

=+

Table 5.3: The Real Time Control Protocol

sender
info

| report
block

| report
block
2

5.8. SYNCHRONISATION 127

SDES : An SDES packet containing a CNAME item must be included in each
compound RTCP packet. Other source description items may optionally be
included if required by a particular application, subject to bandwidth con-
straints (see Section 6.2.2).

BYE or APP : Other RTCP packet types, including those yet to be defined, may
follow in any order, except that BYE should be the last packet sent with a
given SSRC/CSRC. Packet types may appear more than once.

5.7.5 Payloads

There are quite a few payloads defined for RTP now, ranging from oens designed to
carry video and audio formerly available on hardware CODECs only, such as MPEG,
H.261, and the various CCITT/ITU voice coding schemes, through to some more
generic payloads designed to carry redundantly coded audio such as that used by
INRIA’s Freephone, and UCL’s RAT tools.

There has been some discussion in the IETF of a payload for multiplexed me-
dia within a single stream (such as the way the MOPEG systems stream of H221
framed stream emerge in a single bitstream from a hardware CODEC). To date,
the disadvantages of this have outweighed any perceived advantage.

5.7.6 RTCP Scaling Properties and Timer Considerations

The intention and original design goal of RTCP messages was for them to act as
a distributed source of lightweight session data that would allow a range of highly
fault tolerant, and reasonable scale mechanisms to be built including;:

membership RTCP reports carry the identifier of participants. There are also
“BYE’* messages which indicate the departure of a participant.

loss statistics RTCP reports convey information about packet losses. These could
be used not only as health reports, but also to select a CODEC or compression
level for sources capable of adaption.

RTCP reports are designed to be sent periodically, with a frequency inversely
proportional to the number of members. This can be set to constrain the bandwidth
consumed by RTCP to be a known fixed fraction of the total capacity required for
a many-to-many session. For multimedia conferencing this is an excellent solution
for many applications requirements for such data. However there are three cir-
cumstances where this approach creates a problem: firstly, when a session starts,
the members do not know the number of other members - initial membership for
a scheduled session could rise very sharply, leading to a flood of initial packets;
secondly, this effect can also happen for BYE messages; finally, for sessions where
there is some form of floor control, or few senders compared with recipients, the
fact that the RTCP reports are multicast means that they arrive at all participants-
this may still represent a non-trivial fraction of the capacity to a given participant
- in some cases, the state for large membership may impact on memory for small
multicast devices (Internet Telephones).

5.8 Synchronisation
First, some definitions:

e Intra-stream synchronisation - inside a stream, need to know where in the
”time structure” a bit goes

128 CHAPTER 5. TRANSPORT PROTOCOLS

o Inter-stream - e.g. we are watching two different people and want to see their
reactions to what they see of a third

o Inter-media - this is just lip-synch!

5.8.1 Intra-stream Synch

Intra-stream synchronisation is a base part of the H.261 and MPEG coding systems.
H.221 and MPEG systems, specify an encapsulation of multiple streams, but also
how to carry timing information in the stream. In the Internet, the RTP media
specific timestamp provides a general purpose way of carrying out the same function.

5.8.2 Inter-Stream Synch

The easiest way of synchronising between streams at different sites is based on
providing a globally synchronised clock. There are two ways this might be done:

1. Have the network provide a clock. This is used in H.261/ISDN based systems.
A single clock is propagated around a set of CODECs and MCUs.

2. Have a clock synchronisation protocol, such as NTP (the network Time Proto-
col) or DTS (Digital Time Service). This operates between all the computers
in a data network, and continually exchanges messages between the computers
to monitor:

e Clock Offsets Network Delays

Alternatively, the media streams between sites could carry clock offset informa-
tion, and the media timestamps with arrival times could be used to measure network
delays, and clocks adjusted accordingly, and then used to insert a baseline delay into
the adaptive playout algorithms so that the different streams are all synchronised.

5.8.3 Inter-media Synch

Options include having a global clock provided from the network or using clock
synch between computers. Or we could simply carry a clock in all packets and use
for clock synch calculation a la NTP/DTS.

More generally, we could encapsulate the media in the same transmission stream.
This 1s very effective but may entail computationally expensive labour at the re-
cipient un-ravelling the streams - for example, H.221 works like this, but since it is
designed to introduce only minimal delay in doing so, is a bit level framing protocol
and is very hard to decode rapidly. Some recipients may not want or be capable of
displaying all media (or have the capacity to receive all without disruption to some
or other stream!).

Alternatively, we could use much the same scheme as is used to synchronise
different sources from different places. However, since media from the same source
are timestamped by the same clock, the offset calculation is a lot simpler, and can
be done In the receiver only - basically messages between an audio decoder and
a video decoder can be exchanged inside the receiver and used to synchronise the
playout points.

This latter approach assumes that the media are timestamped at the ”real”
source (i.e. at the point of sampling, not at the point of transmission) to be accurate.

5.9. RELIABLE MULTICAST TRANSPORT 129

5.9 Reliable Multicast Transport

When people talk about ” Reliable Multicast”, they usually mean a single protocol
at a single "layer’ of a protocol stack, typically the transport layer (although T've
seen people propose it in the network and even link (ATM!) layers too), that can
act as any layered protocol can - to provide common functionality for applications
(higher layers) that need it.

So what’s wrong with that?

Well, possibly 3 things (or more):

1. Fate sharing
2. Performance

3. Semantics

5.9.1 Fate Sharing

Fate sharing in unicast applications means that so long as there is a path that TP
can find between two applications, then TCP can hang on to the connection as long
as they like. However, if either party fails, the connection certainly fails.

Fate sharing between multicast end points is a more subtle idea. Should ’relia-
bility” extend to supporting the connection for k recipients failing? Clearly this will
be application specific (just as timing out on not getting liveliness out of a unicast
connection is for TCP - we must permit per recipient Timeouts/Failures).

5.9.2 Performance

When a talks to b, the performance is limited by 1 path. Whatever can be done
to improve the throughput (or delay bound) is done by TP (e.g. load sharing the
traffic over multiple paths). When a talks to b,c,d,e,f, should the throughput or

delay be that sustainable by the slowest or average?

5.9.3 Semantics

As well as performance and failure modes, N-way reliable protocols can have differ-
ent service models. We could support reliable 1-n, reliable n-1 and reliable n-m.

Applications such as software distribution are cited as classic 1-n requirements.
Telemetry is given as a n-1 reliable protocol. Shared whiteboards are cited as
examples of n-m.

Now the interesting thing is to look at the reliability functions needed in these.
1-n and n-1 are effectively simplex bulk transfer applications. In other words, the
service is one where reliability can be dealt with by “rounding up’ the missing bits
at the end of the transfer. Since this need not be especially timely, there is no need
for this to be other than end to end, and application based. 2

On the other hand n-m processes such as whitebaords need timely recovery from
outages. The implication is that the ”service’ is best done somewhat like the effect
of having n*n-1/2 TCP connections. If used in the WAN;, the recovery may best be
distributed, since requests for recovery will implode down the very links that are
congested or error prone and caused the need for recovery.

Now there are different schemes for creating distributed recovery. If the applica-
tion semantics are that operations (ALF packets-worths...) are sequenced in a way
that the application can index them, then any member of a multicast session can

2Yes i know telemetry could be real timeish....but we are just trying to illustrate major differ-
ences clearly for now.

130 CHAPTER 5. TRANSPORT PROTOCOLS

Recovery Sequency Dalliance
Network not in our Internet | ditto int-serv
Transport one-many y adaptive
Application | many-many operation semantics | adaptive

efficiently help any other member to recover (examples of this include mark Hand-
ley’s Network Text tool...). On the other hand, packet-based recovery can be done
from data within the queues between network/transport and application, if they
are kept at all members in much the same way as a sender in a unicast connection
keeps a copy of all un-acknowledged data. The problem with this is that because
its multicast, we don’t have a positive acknowledgement system. Because of that,
there is no way to inform all end points when they can safely discard the data in
the ’retransmit’ queue. Only the application really knows this!

Well, this is not to say that there isn’t an obvious toolkit for reliable multicast
support - it would certainly be good to have RTP style media timestamps (deter-
mined by the application, but filled in by the system). It would be good to have
easy access to a timestamped based receive queue so applications could use this to
do all the above. It might be neat to have virtual token ring, expanding ring search,
token tree and other toolkits to support retransmit ’helper’ selection....

So, drawing a table of where we might put functions to provide reliability (re-
transmit), sequencing and performance (adaptive playout say versus end to end,
versus hop by hop delay constraint), we can see the following picture:

5.9.4 Congestion Avoidance for Reliable Multicast Applica-
tions

One of the big research areas not quite complete in this topic is how to achieve flow
and congestion control (or avoidance) for reliable multicast applications.

There are a number of options when confronted with a congested link or receiver,
and sending to a group. It depends on the nature of the application which is the
best option. The options can be seen as spanning a spectrum from sending at the
slowest rate, sending at the average or median, and sending at the fastest.

It depends on the nature of error recovery, and the time-frame of the session,
and the congestion, where we choose in this spectrum to run our algorithm.

For example, a reliable multicast protocol being used to pre-fetch data for Web
caches is only a performance enhancement to normal web access, so can run at the
average rate, and simply leave behind too slow receivers (and they can choose to
leave the receiver group if they can’t keep up). In fact, such an application could
be pretty tolerant of the group changing throughout a session.

On the other hand, distributing a set of slides to a distributed class might require
one to run at the minimum rate to be fair to the students.

The global congestion picture is not at all clear either for reliable multicast
(or unreliable for that matter). For example, TCP’s classic congestion control
algorithm[146] achieves a level of fairness for relatively long lived unicast congestion,
and even manages to allow the network to run at high utilisation. For a set of

multicast “connections”, it is not at all clear that the same scheme will be stable

)
enough, since there are multiple senders and recipients, some sharing links - there
may be multiplier effects that mean that an even more cautions back-off is needed

than TCP’s.

5.9. RELIABLE MULTICAST TRANSPORT 131

5.9.5 Reliable Multicast Framework

Handley has proposed a framework within which we can consider reliable multicast
protocol work. In this, he describes the categories of parameters of the system:

e Number of sources: 1-to-n, n-to-m, or other.

e Transmitter start time: is there one?; is there one for each receiver marked at
join time?

e Real time-Ness - what are the latency constraints on delivery of data from
source to one, any or all receivers?

e consistency

He lists as non factors both congestion control and ordering, since both can be
done orthogonally to the above categorisation.
He then groups applications into five main areas:

1. Bulk Transfer (VR database, Usenet news etc)

e l-many
e relaxed real time
e synchronised start time

o file (object) level consistency
2. Live data feeds (stock exchange etc)

e 1 source
e no start time
e quasi real time

e may need synchronised consistency
3. Resilient (streamed server data - like RTSP from video/audio from web site)

e | data source
e no start time
e stream consumed in near real time

e non consistency
4. shared applications (wb, nte etc)

e distributed data set

e all sites fold most

e relaxed consistency

e many sources of changed

Hybrid - some applications (in general, the Distributed Interactive Simulation
systems) may be a hybrid of all of the above.

ot

This is discussed further in chapter eight where we look at some applications
that require particular reliable multicast semantics.

132 CHAPTER 5. TRANSPORT PROTOCOLS

5.10 Summary

In this chapter we have looked at transport (end-to-end) protocols. To some ex-
tent, the term is meaningless for multimedia, and especially for multiple participant
multimedia systems, in the normal protocol layering sense. The “ends” of a flow
in a multimedia service are the sampling devices, and so the protocol system must
reach right into the depths of the application at source and sink. Ideally, it must
be possible to fill in (and extract) fields from the transport protocol header, from
control status registers in media devices, if we wish to minimise delays, and provide
the best possible stream synchronisation.

For some supporting applications, such as whiteboards, some slightly more con-
ventional protocol is required for reliability. yet we can see that the notion of
reliability is a slippery one when it comes to group and human communication.

Chapter 6

Session Directories,
Advertisement and
Invitation Protocols

In this chapter, we look at how multimedia sessions are set up. In principle, no
formal session set up mechanisms are needed for multicast communication - senders
send to a group address, receivers subscribe to the same address, and communication
ensures. However, in practice, we normally need a means for users that wish to
communicate to discover which multicast address to use, to discover which protocols
and codecs to transmit and receive with, and just to discover that a session is going
to take place at all. Sometimes email has served these purposes, but typically
we require more integrated mechanisms that are designed specifically with session
initiation in mind, and which hide most of the details from the users.

There are several complementary mechanisms for initiating sessions, depending
on the purpose of the session, but they essentially can be divided into invitation
and announcement mechanisms. A traditional example of an invitation mechanism
would be making a telephone call, which is essentially an inwvitation to participate
in a private session. A traditional example of an announcement mechanism is the
television guide in a newspaper, which announces the time and channel that each
program 1is broadcast. In the Internet, in addition to these two extremes, there
are also sessions that fall in the middle, such as an invitation to listen to a public
session, and announcements of private sessions to restricted groups.

6.1 Roadmap of the Protocols

There are two families of protocol for setting up multimedia sessions: the TETF
family of protocols, and the ITU family of protocols. There is some overlap between
these two families, and some re-use of IETF protocols in the ITU family. The reason
for the overlap is that the different standards groups started work from different
points, and slowly expanded their area of applicability so that now there are two
ways to do some things. In the long run, the market will no doubt decide which
protocol is chosen for a particular task, but for now the picture is a little confusing.

In the TETF arena, work started in the area of loosely coupled large scale mul-
ticast multimedia conferences.

In the I'TU arena, work started with ISDN-based circuit-switched video confer-
encing, and was expanded to extend ISDN conferencing over packet-switched LANs
within companies.

133

134CHAPTER 6. SESSION DIRECTORIES, ADVERTISEMENT AND INVITATION PROTOCOLS

At the time, wide-area internet telephony seemed a long way off because while
multicast offered great advantages for large conferences, the internet was a poor en-
vironment to provide high quality calls that compete with the traditional telephone
system.

In practice it seems that the latent demand for convergence of data and telephony
networks was larger than either group foresaw, and rapidly both sets of protocols
started to be applied to internet telephony and small wide-area video-conferences,
and hence although they were not designed as competitors, that is the situation we
find ourselves in today.

In this chapter we shall discuss the IETF family of protocols, including the
Session Description Protocol (SDP), the Session Announcement Protocol (SAP)
and the Session Initiation Protocol (SIP). In chapter 77 we will discuss the ITU’s
H323 family of protocols. In some environments we envisage that hybrids will be
widely used, for example, using SIP to initiate an H.323 conference. However, at
the time of writing it is not yet clear exactly what form such hybrids will take.

6.2 IETF Protocols for Setting Up Sessions

Generally speaking there are two ways to set up a session, although hybrids of the
two are possible: announce the session to all possible participants, or invite just
those participants you wish to be in the session.

To announce a session to all possible participants, the Session Announcement
Protocol is used. This sends out announcement information to anyone who is lis-
tening to the right multicast group giving them information about the session.

To invite someone into a session, the Session Initiation Protocol is used. The
sends an invitation to participate in a session to a specific user.

Both of these protocols carry the description of the session in a precise format
called the Session Description Protocol. This isn’t really a protocol, but a well-
defined format for describing which media are in a session, information about the
protocols and formats the session will use, and enough information to decide whether
or not to participate in the session.

6.3 Session Description Protocol (SDP)

‘Status:lETF Proposed Standard (RFC 2327)‘

A session description expressed in SDP is a short structured textual description
of the name and purpose of the session, and the media, protocols, codec formats,
timing and transport information that are required to decide whether a session is
likely to be of interest and to know how to start media tools to participate in the
session.

SDP is purely a format for session description - it does not incorporate a trans-
port protocol, and is intended to use different transport protocols as appropriate,
including the Session Announcement Protocol (see section 6.4, Session Initiation
Protocol (section 6.5), Real-Time Streaming Protocol (see chapter ?7), electronic
mail using the MIME extensions, and the Hyper-Text Transport Protocol (HTTP).

Although SDP is not intended to be read by humans, it is relatively easily
understood. An example session description is shown in figure 6.1.

Even without the annotation, it would be easy to guess that this session is
entitled “Multimedia Seminar”, that it will use audio, video and an application
called “wb”, and that someone called “Mark Handley” is responsible for the session.

6.3. SESSION DESCRIPTION PROTOCOIL (SDP) 135

v=0 [originator]
—(session ID and version timestamp]
{originating host]

o=mjh 2890844526 2890842807 IN IP4 128.16.6.4
N L

s=Multimedia Seminar (title
i=A Seminar on Internet Multimedia (information about the session j
u=http://www.cs.ucl.ac.uk [url for more information]
e=mjhQ@isi.edu (Mark Handley) [email address to contact]
connection information
c=IN IP4 224.2.17.12/127 {(multicast address and TTL)
— . .
£=2873397496 2873404696 %{Start time (NTP timestamp)
= (stop time (NTP timestamp)]
a=recvonly attribute indicating session
is receive—only

m=audio 49170 RTP/AVE 0 —(PCM audio using RTP on port 49170]

m=application 32416 udp wb———{\p application on port 32416

a=orient:portrait —(wb is in portrait mode]

m=video 51372 RTP/AVP 31 [H.261 video using RTP on port 51372]

Figure 6.1: Annotated SDP Session Description

However this SDP also indicates the precise timing of the session (the “t=" line
gives start and stop times), that the session is multicast to group 224.2.17.12 with a
TTL of 127, the audio is 8KHz plaw carried by RTP to UDP port 49170, the video
is H.261 encoded, also over RTP but to port 51372, and the whiteboard program
should be started up in portrait mode using port 32416.

Thus SDP includes the session name and a description of its purpose, the times
the session is active, the media comprising the session, and information to receive
those media (addresses, ports, formats and so on).

As resources necessary to participate in a session may be limited, some additional
information may also be desirable, including information about the bandwidth to
be used by the conference and contact information for the person responsible for
the session.

In general, SDP must convey sufficient information to be able to join a session
(with the possible exception of encryption keys) and to announce the resources to
be used to non-participants that may need to know.

Timing Information

Sessions may either be bounded or unbounded in time. Whether or not they are
bounded, they may be only active at specific times.

SDP can convey an arbitrary list of start and stop times bounding the session.
For each bound, repeat times such as “every Wednesday at 10am for one hour” can
be specified.

This timing information is globally consistent, irrespective of local time zone
or daylight saving time because it is given in UTC. Modifiers can be specified to
uniquely apply offsets if the session crosses a change to or from daylight saving time.

Media Descriptions

A session description is composed of general information that applies to the whole
session (such as the timing) followed by sections that are specific to each medium.

136 CHAPTER 6. SESSION DIRECTORIES, ADVERTISEMENT AND INVITATION PROTOCOLS

Thus in the above description, the “a=orient:portrait” line applies to the “applica-
tion/wb” medium, whereas the “a=recvonly” applies to the whole session.

For each medium SDP includes the type of media (video, audio, etc), the trans-
port protocol (RTP/UDP/IP, H.320, etc), the format of the media (H.261 video,
MPEG video, etc), and media or codec specific attributes.

For an TP multicast session, the multicast address for that medium and the
transport port are also conveyed. This address and port are the destination address
and destination port of the multicast stream, whether being sent, received, or both.

For an TP unicast session, the remote address for the media stream and the
transport port for the contact address are given. This makes sense in the context
of an invitation such as SIP, where the person making the call gives information
about where the person being called should send his audio and video streams. The
response to the invitation would then give similar information about where the
caller should send her audio and video streams.

6.3.1 SDP syntax

An SDP session description consists of a number of lines of text of the form:
<type>=<wvalue>

<type> is always exactly one character and is case-significant. <wvalue> is a
structured text string whose format depends on <type>. In general <wvalue> is
either a number of fields delimited by a single space character or a free format
string.

A session description consists of a session-level description (details that apply
to the whole session and all media streams) and optionally several media-level de-
scriptions (details that apply only to a single media stream). The session-level part
starts with a ‘v="line and continues to the first media-level section. The media
description starts with an ‘m="1line and continues to the next media description or
to the end of the whole session description. In general, session-level values are the
default for all media unless overridden by an equivalent media-level value.

The individual fields have the following meanings, and must be in this order,
with “*” indicating an optional field:

v= Protocol Version
o= The Owner/Creator and Session Identifier
s= Session Name

—*

Session Information

u=* URI of description

e=* Email Address

p=* Phone Number

Connection Information
=* Bandwidth Information
One or more time descriptions

z=* Time Zone Adjustments

k=* Encryption Key

a=* zero or more Session Attributes

Zero or more media descriptions

Each time description consists of a “t=" field, optionally followed by one or more
“r=" fields.

t= Time the Session is Active
r=* zero or more Repeat Times

6.4. SESSION ANNOUNCEMENT PROTOCOL (SAP) 137

Each media description consists of a “m” field, with other optional fields providing
additional information:

m= Media Name and Transport Address
i=* Media Title
c=* Connection Information

b=* Bandwidth Information
k=* Encryption Key
a= zero or more Media Attributes

The connection (‘c=") and attribute (‘a=’) information in the session-level section
applies to all the media of that session unless overridden by connection information
or an attribute of the same name in the media description. For instance, in figure
6.1, all the media inherited the multicast address 224.2.17.12.

The main way to extend SDP, other than by registering new codecs through the
MIME registry, is by using attributes. Adding new SDP fields to the list above is
not possible without revising the SDP protocol specification.

6.3.2 SDP: Summary

SDP originated for announcing multicast sessions, and it serves that task well. Tt
was not originally intended to deal with unicast sessions, but it works well enough
in the context of SIP and RTSP. It was certainly never intended to be a content
negotiation mechanism, because 1t lacks any clean way to group different options
together into capability sets. Although it can serve this role, when it does so, the
limitations of its original design purpose start to show through somewhat.

SDP is in widespread use in SAP, SIP, H.332, and RTSP, and has even been
proposed for use in the context of advanced television.

6.4 Session Announcement Protocol (SAP)

‘Status:lETF Experimental Standard ‘

The Session Announcement Protocol (SAP) must be one of the simplest proto-
cols around. To announce a multicast session, the session creator merely multicasts
packets periodically to a well-known multicast group carrying an SDP description
of the session that is going to take place. People that wish to know which ses-
sions are going to be active simply listen to the same well-known multicast group,
and receive those announcement packets. Of course, the protocol gets a little more
complex when we take security and caching into account, but basically that’s it.

The SAP packet format (for TPv4) is shown in figure 6.2. The Message Type
(MT) field indicates whether this packet announces a session, or deletes an an-
nouncement. One bit (E) indicates whether or not the payload is encrypted and
one bit (C) indicates whether or not the payload is compressed. The combination of
message ID hash and original source is supposed to provide a unique announcement
ID that can be used to identify this particular version of this particular session. This
is useful for caching or for ignoring packets that we previously failed to decrypt,
but as this announcement ID is not guaranteed to be unique, care must be taken to
also check the packet length and periodically check the packet contents themselves.

SAP announcements can be authenticated by including a digital signature of
the payload in the optional authentication header. Both PGP and PKCS#7 based
digital signatures are currently supported in the SAP protocol, although currently

138CHAPTER 6. SESSION DIRECTORIES, ADVERTISEMENT AND INVITATION PROTOCOLS

1 2 3
0‘1‘2 3‘4‘5 67 8‘9‘0‘1‘2‘3‘4‘5 6‘7‘8‘9‘0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘0‘1
V=1 MT |E|C Auth length Message ID Hash

Original Source

Optional Authentication Header

SDP Textual Payload

V=version, MT=Message Type, E=Payload Encrypted, C=Payload Compressed

Figure 6.2: Session Announcement Packets

not many announcements are authenticated. As multicast-based sessions become
more popular and people attempt to subvert them, this will no-doubt change.

SAP announcements can also be encrypted. However, this does not mean that
the standard way to have small private wide-area conferences will be to announce
them with encrypted SAP - the Session Initiation Protocol is a more appropriate
mechanism for such conferences. The main uses for encrypted SAP announcements
would appear to be in intranet environments where the SAP announcement bother
few additional people, or for very large sessions where members are charged to
participate. In the latter case, it would probably be a good idea to provide an
additional level of access control beyond SAP encryption because it is easy for one
misbehaving participant to leak a SAP key to other potential participant unless the
keys are embedded in hardware as they are with satellite television smart cards.

The announcement rate for SAP is quite low, with typically several minutes
between repeated announcements of the same session. Thus a user starting a SAP
receiver will have to wait for a few minutes before seeing all the sessions. This is
normally solved by caching - either by running a SAP receiver in the background all
the time to keep the cache up-to-date, or by going to a local SAP proxy on startup
and requesting a cache download.

It should be clear that although SAP will scale to any number of receivers, it
will not scale to huge numbers of sessions. It is currently an IETF Experimental
Standard, which reflects this belief that we will eventually need to replace it with
something different. In the meantime though, it is a great way to bootstrap the use
of TP multicast, and with appropriate caching, SAP will be OK with up to a few
thousand sessions advertised.

SAP should be used for sessions of some public interest where the participants
are not known in advance. If you know who you want in your session, a better
mechanism is to explicitly invite them using SIP.

6.5 Section Initiation Protocol (SIP)

‘Status:lETF Proposed Standard ‘

In the near future, if you make a telephone call, it’s quite likely that the Session
Initiation Protocol will be what finds the person you're trying to reach and causes
their phone to ring. SIP is all about calling people and services.

The most important way that STP differs from making an existing telephone call

6.5. SECTION INITIATION PROTOCOL (SIP) 139

(apart from that it’s an TP-based protocol) is that you may not be dialing a number
at all. Although SIP can call traditional telephone numbers, SIP’s native concept
of an address is a SIP URL, which looks very like an email address.

When you email joe@gadgets.com, as a user you have no real idea which com-
puter at gadgets.com your email will eventually reach, or indeed if Joe is currently
contracting at another company, your message may even be forwarded there. All
you wanted to do was to send a message to Joe.

The SIP authors believe that making a telephone or multimedia call should be
similar - you want to call Joe, but you don’t really care exactly which “phone” Joe
uses to answer your call. SIP solves this problem by combining user location with
the request to set up the call. It might seem that these should be separate, but this
is not the case - the routing the call takes may depend on who is trying to make
the call. If Joe’s sister calls him while he’s out at lunch, he might want the call to
be routed to his cell-phone, but if his boss makes the same call, the call gets routed
to his voice-mail. For privacy reasons, performing user location without actually
making the complete call is simply unacceptable to many people.

So how does SIP do this? SIP makes extensive use of proxy servers, each of
which looks at the call request, looks up whatever local information i1t has about
the person being called (i.e., the callee), performs any security checks it’s been asked
by the callee or her organisation to make, and then routes the call onward.

... =
-

whereis eve'> 1 1eve is at east

O3
P .Q
INVITE east.isi.edu qz;\oq

00 : INVITE eve@isi.edu E eve@east isi.edu - >
bl ; —_— C)

200 OK
- 'C_t_l_@_ﬂ"_on act; eve@eastisredu: ilm_ [
{ £/—— Contact: Y —
isiedu eve@east.isi.edu

Figure 6.3: SIP Request Being Relayed

When T call jane@euphoric-state.edu, my computer (or phone exchange) looks up
euphoric-state.edu in the Domain Name System (DNS) and looks for a SIP service
record giving the address of the STP server (in this case sip.euphoric-state.edu) for
Euphoric State University. It then sends the SIP request to that machine. At
sip.euphoric-state.edu, the server consults a database and discovers that Jane is a
staff member in the Computer Science department, and that the STP server for CS
is sipgw.cs.esu.edu. Tt then sends the SIP request on to sipgw.cs.esu.edu, which again
consults a database. This new database happens to be built dynamically by SIP
clients registering when people log on. Tt turns out that Jane is a professor, and
computer science professors never adopt new technology early so her workstation is
not capable of multimedia conferencing. Instead sipgw.cs.esu.edu routes the call to
her regular telephone and it acts as a gateway into the department PBX.

The example above uses proxies that relay the SIP call. This is illustrated in
figure 6.3. Relaying is often performed when the gateway or firewall to a site wishes
to hide any search that goes on internally from the caller’s machine.

An alternative to relaying is redirection, which is illustrated in figure 6.4. Redi-

140CHAPTER 6. SESSION DIRECTORIES, ADVERTISEMENT AND INVITATION PROTOCOLS

ns.isi.edu

_
%

LN

whereis eve? ' eve is at east

INVITE eve@isi.edu :
) N
|

301 Moved Temporaril
‘_C_I_I_@Ll_yﬂ_on act: eve(@east.ist.edu:

HV SN

Figure 6.4: STP Request Being Redirected

rection makes the caller’s machine do any additional work, so it makes life easier
for the proxy server. This might be appropriate when the callee has moved outside
of the local network of the proxy.

Of course if you do know the machine the callee is using, you can also direct the
request there directly without going through any proxies, but some sites may insert
a proxy in the path anyway because the proxy is on their firewall machine.

Figure 6.5 shows a complete SIP call, with the arrows indicating STP requests
and responses passing backward and forward. In this case the STP INVITE request
for eve@isi.edu is sent to isi.edu, but is then redirected to eve@east.isi.edu. A new
INVITE request is then made, which succeeds in finding Eve, and causing her phone
to ring, which is reported back to the caller. When Eve picks up the phone, the
request is completed with a “200 OK” response, which is in turn acknowledged, and
a voice call is set up. Multimedia information is now exchanged using RTP for as
long as they continue to chat. After they’ve finished their conversation, the caller
hangs up, and this causes a SIP BYF request to be sent, which proceeds to close
down the call.

SIP can set up many types of call, not just telephone calls, because it was
originally designed for setting up multimedia conferences. However, the world can
be a very heterogeneous place, and the person making a call may not be able to
predict what equipment is available at the other end to receive the call. For example,
I may make a video-phone call to you, and although you may have an equivalent
video-phone on your desk, it happens that you’re out of the office when I call.
Instead my call is redirected to your cell-phone, which unfortunately doesn’t yet
support video-conferencing, but it could perfectly well support an audio call.

This is illustrated in figure 6.6. The original call attempt requests an audio/video
call, and is relayed to mobile27 isi.edu. Mobile27 is a cell-phone, and so it rejects the
call with a “606 Not Acceptable” response code indicating that an audio-only call
would be possible. A new call attempt is made suggesting an audio call, and then
everyone 1s happy.

6.5. SECTION INITIATION PROTOCOL (SIP) 141

east.isi.edu
®® : INVITE eve@isi.edu -
= 100 TRYING
e
Lo
301 Moved Tem i isi.edu LN
4 . east.isi.edu
INVITE eve@isi.edu
© '\‘?%q
180 RINGING PR
200 OK answer’s call
Contact: eve@east.isi.edu

ACK eve@east.isi.edu

Audio and Video Data

talking talking
®®
hangs c

up BYE eve@east.ist.eau call finishes

200 OK

ACK eve@east.isi.edu

time

Figure 6.5: Complete SIP Call

6.5.1 SIP Protocol Details

SIP is a text-based protocol with syntax much like the Hyper-Text Transfer Protocol
(HTTP) and Real-Time Streaming Protocol (RTSP). A STP INVITE request looks
something like this:

INVITE sip:mjh@north.east.isi.edu SIP/2.0 47{request header and URL j
Via:SIP/2.0/UDP east.isi.edu —= (second relay
Via:SIP/2.0/UDP isi.edu =
Via:SIP/2.0/UDP chopin.cs.caltech.edu -———

To: sip:mjh@isi.edu -
From: eve@cs.caltech.edu =

CSeq:1 —= [command sequence no.]
Content-Type: application/sdp = [format of payload j
Content-Length: 214 — {length of payload)

v=0 payload: an SDP

description of the
o=eve 987329833 983264598 IN IP4 128.32.83.24 | gocsion this call

s=Quick call... is trying to set up

Typically the payload is an SDP description of the session the caller wishes
to set up. The Via fields indicate the path taken by the request through prox-
ies so far, with the first via field indicating the most recent proxy traversed and
the last one indicating the caller’s host. In this case Eve sent the message from
chopin.cs.caltech edu, it has traversed isi.edu and east.isi.edu, and is currently being
sent to north.east.isi.edu as indicated in the request URL.

A response to this message indicating that mjh does want to talk might look

like:

142CHAPTER 6. SESSION DIRECTORIES, ADVERTISEMENT AND INVITATION PROTOCOLS

INVITE eve@isi.edu isi-edu

m=audio, m=video

—

INVITE eve@mobile27.isi.edy
m=audio, m=video

mobile27.isi.edu

&>

06 UNACCEPTABLE
Contact: eve@mobile27.isi.edu

=" 606 UNACCEPTABLE
Contact: eve@mobile27.is

.edu

m=audio m=audio
INVITE eve@mobile27.isi.edu
m=audio S
Q'~‘?<9>

Q\
180 RINGING
200 OK answer’s call
contact. eve@mobile27.isi.edu
ACK eve@mobile27.isi.edu H

talking Audio Data talking

Figure 6.6: SIP “negotiation” of media parameters

SIP/2.0 200 OK
Via:SIP/2.0/UDP isi.edu

Via:SIP/2.0/UDP chopin.cs.caltech. edu}

To:sip:mjh@isi.edu

(Response header and code T
Via header for "east" already
removed by responding server

Refers to request "from"

and "to", not message from

b

Contact:sip:mjh@north.east.isi.edu;tag=76£a98
CSeq:1

From:eve@cs.caltech.edu

\ and to

f{Where the callee was found.]
(

Content-Type: application/sdp
Content-Length: 214

v=0
o=eve 987329833 983264598 IN IP4 128.32.83.2
s=Quick call...

Command sequence no.
Lechoed from request

payload specifying

the relevant addresses
and ports on the callee’s
machine

The response code 200 indicates success (many other response codes are pos-

sible).

When north east.isi.edu sent this response, it removed the first via field

(easf.isi.edu) and then sent the response to east. In this way the response retraces
the path through a chain of proxies that the request took.

SIP supports several request methods as shown below. The use of INVITE, BYE,
ACK and REGISTER methods is shown in figures 6.3 to 6.6.

Request Method | Purpose

INVITE Invite the callee into a session
OPTIONS Discover the capabilities of the receiver
BYE Terminate a call or call request
CANCEL Terminate incomplete call requests
ACK Acknowledge a successful response
REGISTER Register the current location of a user

In response to a request, a server sends a SIP response which gives a response

code indicating how the request was processed. Response codes are divided into six
categories depending on the general form of behaviour expected. These categories

6.5. SECTION INITIATION PROTOCOL (SIP) 143
are shown below.
Response Class | Meaning Example
1XX Information about call status 180 RINGING
2XX Success 200 OK
3XX Redirection to another server 301 MOVED TEMPORARILY
4XX Client did something wrong 401 UNAUTHORISED
5XX Server did something wrong 500 INTERNAL SERVER ERROR
6XX Global failure (don’t resend same request) | 606 NOT ACCEPTABLE

The normal progress of a SIP call involves sending an INVITE request, getting a
180 RINGING response, followed by a “200 OK” response when the callee answers,
then sending an ACK request to confirm the connected call.

After either party hangs up, a BYE request is sent, which elicits a “200 OK”
response, which in turn causes a final ACK request to be sent.

This whole process in illustrated in figure 6.5.

The CANCEL method is used when a call is made to more than one destination
at the same time. For example, a proxy server may respond indicating that someone
might be at one of server locations. My client can either call these one-by-one, or
call all of them simultaneously. If it does the latter, then when the callee answers at
one of these locations, my client sends a CANCEL request to all the other locations
to stop the phone (or whatever it is) ringing there.

6.5.2 SIP Reliability

SIP can run over both TCP and UDP. Clearly UDP is an unreliable protocol, and
so in this case SIP must provide its own reliability, which it does by retransmission.
So why run SIP over UDP when TCP provides reliability for free?

In truth, this reliability is not “for free”. When you use TCP, you use a general
purpose reliable transport protocol, and you get TCP’s concept of what reasonable
retransmission timeouts are. TCP is also totally reliable - once data is put into a
TCP connection, it will eventually come out the other end unless the connection
is terminated. Sometimes this isn’t what we want, because old data has been
superseded by new data, and if the old data hasn’t got there yet, we no longer
want it to be delivered. In short, UDP allows the STP applications to control the
timing and reliability, or so it gives improved performance to this kind of signalling
protocol.

In addition, when SIP uses UDP, a proxy server may be stateless - a SIP request
can be relayed without leaving behind state in the proxy because any response the
request later generates contains (in its Via fields) all the information needed for
the proxy to get these responses back to the caller’s client application. This allows
very large proxy servers to be built - if these servers used TCP, they would have to
maintain TCP connection state for all calls, and this would make very large proxy
servers a difficult proposition.

Why then support TCP at all? The primary reason is that many firewalls do
not allow UDP traffic to pass whereas it is relatively simple to configure them to
pass SIP traffic to an internal server which may then open a hole in the firewall for
the relevant RTP traffic. Eventually though we expect firewalls to be SIP proxies,
and we envisage that SIP over TCP will not be widely used.

6.5.3 SIP: In Summary

SIP is a very flexible, lightweight protocol for making multimedia calls. We’ve
mostly talked about telephone-style calls because they’re most familiar to most
people, but SIP really comes into its own with user mobility and heterogeneous
multimedia terminals.

144CHAPTER 6. SESSION DIRECTORIES, ADVERTISEMENT AND INVITATION PROTOCOLS

It is not yet clear whether STP will see widespread deployment, or whether the
ITU’s H.323 protocol which performs a similar task but is more heavyweight and
less flexible ends up becoming the de-facto standard. Hybrids of the two are also
possible. Time and the market will decide.

6.6 Summary

In this chapter, we have looked at the protocols associated with Sessions in the
Mbone. These currently include Session Description and Announcement/Advertisement,
as well as Invitation protocols. These can be seen in some senses as analogous with

the telephony work on Call Control protocols, although they have some other func-
tional elements, and interact with call routing, multicast address assignment, and
possibly even with signaling (e.g. RSVP) more directly than one would typical
admit to in ITU protocol designs.

Chapter 7

Conference Control

In this chapter, we look at two starkly contrasting approaches to multimedia con-
ference control.

The I'TU has devised a sophisticated system for controlling tightly coupled confer-
ences based around its H.261 video codec systems and ISDN networks, incorporating
the T.120 protocols, using Multipoint Control Units (MCUs) and a Multicast Com-
munication Service. In its original design, the scheme depended on a centralised
model of control, and on the reliable and constant bit rate nature of ISDN networks.
More recently, it has eveolved to include packet networks, and a more loosely cou-
pled and distributed approach to conference control that owes a lot to input from
researchers working in the I'TU and IETF working groups.

The IETF has evolved an altogether more loosely coupled approach, based around
the use of IP multicast. This is used for local system control (for example multi-
casting packets with a TTL of 0, to control a constellation of processes associated
with the same session within a single system) through to wide area multicast use for
session formation (the session directory and invitation protocols, the RTP RTCP
quality reports and so on) and Conference Control, for example using a system
like CCCP to build various types of control applications such as floor management.
This is usually claimed to scale to large numbers of participants rather better than
the MCU based approaches.

At the end of the chapter we also take a look at Interworking between the
Internet and ISDN approaches.

7.1 Roadmap

Controlling a multi-party session is a complex task, and there are various axes on
which one can design a system to achieve this task:

Distributed versus Centralised The various control functions (membership, speaker,
etc) could be located at a given node, or they can be deveolved to all partici-
pants.

Tight versus Loose The control functions may enforce exact behaviour (e.g. se-
quence of speakers, or other constraint on concurrent actions), or may leave
such decisions (partly or wholly) to human participants.

Homogeneous versus Heterogeneous A system may allow users to participate
when they have limited or different functionality to each other, or may require
a common minimum set of functionality for media and control, of all partici-
pants, including data delivery mechanisms (e.g. unicast versus multipoint, or
multicast; reservations; floor control, and so on).

145

146 CHAPTER 7. CONFERENCE CONTROL

The rest of this chapter looks at the two main standards arena proposals in the
area of conference control from these perspectives.

7.2 ITU Model H.320/T.Gcc

This design is based around the starting point of person to person video telephony,
across the POTS (Plain Old Telephone System) or its digital successor, ISDN (In-
tegrated Services Digital Networking). The Public Network Operators (PNOs, or
telcos or PTTs), have a network already, and its based on a circuit model - you
place a call using a signaling protocol with several stages - call request, call indi-
cation, call proceeding, call complete and so on. Once the call has been made, the
resources are in place for the duration of the call. You are guaranteed (through
expensive engineering, and you pay!), that your bits will get to the destination with
constant rate and constant delay, plus or minus a few bit times in a million.

To achieve this, the provider has a complex arrangement of global clocks and
an over resourced backbone network. To match video traffic to such a service, the
output from a video compression algorithm has to be padded out to a constant
bit rate (i.e. its constant rate, not constant quality). The assumption is that you
have a special purpose box that you plug cameras and mikes into, (a CODEC) and
it plugs into the phone or ISDN line or leased line, and you conference with your
equivalent at the far end of the call.

In such a system, we can ask: How is multisite conferencing achieved?

7.2.1 Multisite Circuit Based Conferencing - MCUs

In the absence of a shared multiplexed network, the design space for multisite
conferencing is quite limited. There are two ways you could set up a multisite
conference. Firstly, have multiple CODECs at each site, and multiple circuits, one
from each site to all the others. This would involve n * (n — 1) circuits in all, and
n CODECs at each site to decode the incoming video and audio. Alternatively
one could design and use a special purpose Multi-point Control Unit, which mixes
audio signals, and chooses which video signal from which site is propagated to all
the others.

With this latter approach, each site has a single CODEC, and makes a call to
the MCU site. The MCU has a limit on the number of inbound calls that it can
take, and in any case, needs at least n circuits, one per site. Typically, MCUs
operate 4 to 6 CODECs/calls. To build a conference with more than this many
sites, you have multiple MCUs, and there is a protocol between the MCUs, so that
one build a hierarchy of them (a tree). Essentially, this must reproduce some of
the funcitonality of routing in the multicast distribution schemes of the mbone.
However, currently, such systems are manually configured.

To select which site’s video is seen at all the others, a floor control protocol
is required, since the CODEC for circuit based video can usually only decode one
signal. FLoor control protocols distribute information through a control channel
to the conference sites concerning who is speaking, who wishes to speak, and who
can select who speaks next. They may be triggered by who is speaking, simply by
automatic detection of audio activity above some threshold level for some minimum
threshold period, or on a chairman approach, i.e. through human intervention.
Thus ISDN based conferencing systems must include a data channel between the
terminals to carry this control protocol, and have a user interface to allow users to
exercise this protocol. The diagram 7.1 illustrates the use of an MCU to link up 3
sites for a circuit based conference.

7.2. ITU MODEL H.320/T.GCC 147

Multipoint 4

Control
Unit (MCU)

\

Figure 7.1: Multipoint Control Unit

Should greater than basic rate ISDN be needed, it can be combined via a de-
vice that synchronises a set of parallel ISDN channels together, as shown in figure
7.2. This was once known as a “bonding” box, and is neccessary because seperate
channels are not guareanteed to be routed over the same path through a circuit
switched digital telephone network, so may incur different delays. Thus if data is
striped over these different channels, it is necessary to calibrate the delay offset of
the bits at the receiver end so that the origianl data order can be recovered.

L
G.703

=

PR-ISDN
——

Bonding
Box H221

— &

Figure 7.2: ISDN B Channel Bonding

7.2.2 Distributed Multisite Circuit BasedConferencing

In the ITU standards work, a “conference” refers to a group of geographically dis-
persed nodes that are joined together and that are capable of exchanging audiographic
and audiovisual information across various communication networks.

Participants taking part in a conference may have access to various types of
media handling capabilities such as audio only (telephony), audio and data (audio-
graphics), audio and video (audiovisual), and audio, video, and data (multimedia).

The F, H, and T Series Recommendations provide a framework for the inter-
working of audio, video, and graphics terminals on a point-to-point basis through

148 CHAPTER 7. CONFERENCE CONTROL

existing, telecommunication networks. They also provide the capability for three or
more terminals in the same conference to be interconnected by means of an MCU.

This Recommendation provides a high-level framework for conference manage-
ment and control of audiographics and audiovisual terminals, and MCUS. It coex-
ists with companion Recommendations T.122 and T.125 (MCS) and T.123 (AVPS)
to provide a mechanism for conference establishment and control. T.GCC also
provides access to certain MCS functions and primitives, including tokens for con-
ference conductorship. T.GCC, T.122, T.123, and T.125 form the minimum set of
Recommendations to develop a fully functional terminal or MCU.

Generic conference control (GCC) functional components: conference establish-
ment and termination. maintenance, the conference roster, managing the appli-
cation roster, remote actuation, conference conductorship, bandwidth control, and
application registry services. The service definitions for the primitives associated
with these functional components are contained later, as are the corresponding
protocol definitions are

The figure below shows an example of how the GCC components fit together.

The Top GCC Server contains Application Registry information for the confer-
ence

Each Node participating in a GCC conference consists of an MCS layer, a GCC
layer, a Node Controller and may also include one or more Client Applications.
The relationship between these components within a single node is illustrated in

the figure below.

Node
s N
Controller
Agent
N J
Multipoint
Communications
Service
Node
Node p
N

Figure 7.3: ITU Based Generic Conference Control

The Node Controller is the controlling entity at a node, dealing with the aspects
of a conference which apply to the entire node. The Node Controller interacts with

7.2. ITU MODEL H.320/T.GCC 149

GCC, but may not interact directly with MCS. Client Applications also interact
with GCC, and may or may not interact with MCS directly. The services provided
by GCC to Client Applications are primarily to enable peer Client Applications to
communicate directly, via MCS. Communication between Client

Applications or between Client Applications and the Node Controller may take
place, but is a local implementation matter not covered by this Recommendation.
The practical distinction between these Node Controller and the Client Applications
is also a local matter not covered by this Recommendation.

The Generic Conference Control Service includes the set of primitives as shown
in table 7.1 .

GCC-Conference-Join
GCC-Conference-Query
GCC-Conference-Create
GCC-Conference-Add
GCC-Conference-Invite
GCC-Conference-Lock
GCC-Conference-Unlock
GCC-Conference-Disconnect
GCC-Conference-Terminate
GCC-Conference-Eject-User
GCC-Conference-Transfer
GCC-Conference-Time-Remaining
GCC-Conference-Time-Inquire
GCC-Conference-Extend
GCC-Conference-Ping

The Conference Roster
GCC-conference- Announce-Presence
GCC-Conference-Roster-Inquire

The Application Roster
GCC-Application-Enrol
GCC-Application-Attach
GCC-Application-User-1D
GCC-Application-Roster-Report
GCC-Application-Roster-Inquire

Remote Actuation
GCC-Action-List-Announce
GCC-Action-List-Inquire
GCC-Action-Actuate
Conference Conductorship
GCC-Conductor-Assign
GCC-Conductor-Release
GCC-Conductor-Please
GCC-Conductor-Give
GCC-Conductor-Inquire

Table 7.1: Conference Control Primitives

7.2.3 Services provided by the MCS layer

The MCS protocol supports the services defined in TTU-T recommendation T.122.
Information is transferred to and from the MCS. Basically, it provides a reliable

150 CHAPTER 7. CONFERENCE CONTROL

transport service along the lines of RMP [52] or other simulations of multiple si-
multaneous TCP[146] type connections from a single source to multiple sinks.

MCS-CONNECT-F-PROVIDER
MCS-DISCONNECT-PROVIDER
MCS-Attach-USER
MCS-DETACH-USER
MCS-CHANNEL-JOIN
MCS-CHANNEL-LEAVE
MCS-CHANNEL-CONVENE
MCS-CHANNEL-DISBAND
MCS-CHANNEL-EXPEL
MCS-SEND-DATA
MCS-TOKEN-GRAB
MCS-TOKEN-GIVE
MCS-TOKEN-PLEASE
MCS-TOKEN-RELEASE
MCS-TOKEN-TEST

Table 7.2: Multicast Communications Service

Services assumed from the “conventional unicast” transport layer: The standard
states that “the MCS protocol assumes the use of a subset of the connection-oriented
transport service defined in CCITT Rec.X.214.”.

7.2.4 Distributed ITU Multisite Hybrid Packet and Circuit
Conferencing

The set of standards that go together to make up the full range of ITU conferencing
control facilities is very complex. A basic list of what has to be implemented is listed

in table 7.3.

Document ; What it defines

H.221,222,223 ; multiplexing video and audio.

T.120 ; telematics (e.g. white-board) transmission protocols

H225 ; Media Stream Packetization and Synchronisation for Non-Guaranteed QoS LANs
H245 ; Control Protocol for Multimedia Communication

H.310 ; overall broadband systems for a/v terminals

H.320 ; N-ISDN terminals

H.321 ; B-ISDN version of H.320

H.322 ; H.320 for LANs with QoS (new IEEE 802 standards)

H.323 ; H.320 for LANs without QoS (i.e. Internet)

Table 7.3: TTU Conferencing Standards

H323 defines the overall structure of ITU System for conferencing terminals
including Terminals, Gateways (to non packet nets or to QoS guaranteeing packet
nets:), Multipoint Controllers, Multipoint Processors and Multipoint Control Units.
It rests on a family of other protocols which do the actual work - i.e. its a framework.
Interoperability with H.324, H.322 (qos LAN), H.320 (ISDN) and H.321 (B-ISDN)
is via the gateways.

Multipoint Controllers serve functions that are based on IGMP and other group
management functions up to the H.232 application level, Multipoint processors serve
functions of mixing, multiplexing and basically getting between unicast sources and

7.2. ITU MODEL H.320/T.GCC 151

multicast delivery. Multipoint Control Units may incorporate some or all these
functions, as well as some conference control functions which are also present in all
H.323 terminals too and gateways.

H.323 terminals would typically be TCP/IP hosts (PCs) with RTP/UDP stacks
to carry H.261 (or H.263 or other coded video) and G.711 (or 722, 723, 728, 729)
coded audio - in the ITU view, the T.120 stack is used for conferencing ”data”
applications. (see later). To carry out tasks of assigning control and data flows to
the right port/address (TSAP in ISO/ITU parlance), the H.225 protocol is used.

On ISDN, H.221 (or similar) is used to multiplex audio and video (and data)
onto a virtual circuit. In a packet LAN, we may want separate recovery mechanisms
and different levels of reliability for data and video/audio stream (and conference
control) so H.221, with its rigid, TDM-like bit level multiplexing is inappropriate.
Instead, H.225 is provided. It makes use of underlying transport as much as possible
- 1.e. again, like H.323, of which it is part, its mainly a framework. It makes use of
RTP/UDP (and IGMP/IP multicast) as well as TCP. An important part of H.225
is Registration, Admissions and Services (“RAS”). This serves some of the functions
of DNS (as described in chapter one) and some of the functions of SAP/SDP/SIP
(as described in chapter six). RAS messages are used to tell gatekeepers about
H.323 terminals. RAS interacts, if needed, with Q931 signaling protocols to setup
calls. Once a call is setup, a terminal will have a TCP connection to then proceed
with H.245 messages to carry out next level up functions. For media, H.225 selects
appropriate TSAP Ids (i..e UDP ports and multicast addresses) to use.

So H.225 uses Q.931 first - i.e. call establishment and clearing via Alerting,
proceeding, connect, connect acknowledge, progress, setup, setup acknowledge, and
Disconnect, Release, Release Complete messages. Q.932 can be used to get more
IN like facilities - e.g. Hold, Hold Acknowledge, Hold Reject, Retrieve, Retrieve
Acknowledge, Retrieve Reject. On a packet LAN| clearly Q.931 and so on, are
not carried on a separate signaling channel (e.g. on N-ISDN or B-ISDN, there is a
pre-agreed circuit for signaling messages- the D channel in narrow band ISDN gives
a free 14 Kbps or so for this). On a packet LAN, messages must go on the LAN,
and must be reliable, so TCP is used to a well known port. H.225 defines what
the fields in the Q.931 messages (in the TCP data packets) carry - e.g. called and
calling party addresses - obviously, again, on the LAN, if an H.323 terminal is being
called (and not a H.321 ISDN terminal the other side of a gateway for example)
then there is no called address in the sense of ”p

User-to-user data in the Q.931 messages (in the TCP data messages on IP on
the LAN) can carry lots of information - e.g. arbitrary "key pad” data (can use a
phone style interface)

More importantly, the user-to-user field is used to carry complex messages en-
coded In ASN.1 [expand on ASN.1] to carry higher level (H.323, H.245) information.
This Setup carries protocol id H.245 transport address source address and informa-
tion active MC (which is an end point under control from an MC - see above and
later) conference ID conference goal (create, join, invite, etc) call type (point-to-
point, multicast, bandwidth!) Further messages that are conveyed according to the
H.225 specification, include RAS messages, again, specified in ASN.1 (encoded in
BER), and carried in user-to-user part of Q.931 messages over the TCP connection
that was setup for this.

RAS message types include: gatekeeper request, confirm, reject registration re-
quest, confirm reject unregistration request confirm reject admission request, con-
firm, reject, bandwidth disengage location info and so on. As can be seen, then,
these are mainly concerned with support for connecting with gateways that provide
interworking, between packet LAN and conferencing systems the other side of the
gateway. Once all this is done we can carry out some conferencing - this requires
video and audio, and conference control. The latter in H.323 is the job of H.245

152 CHAPTER 7. CONFERENCE CONTROL

H.245 uses other protocols too (e.g. H.235 for security specifications) - it is
used to select between multiplexing layers(H.220, 222, 223 and 225), and to provide
transport procedures - it provides analogous (but for a/v, not data) services to
T.120

So, because of the possible misunderstandings amongst an arbitrary set of peer
s on a packet net, H.245 provides master/slave determination. It then provides
capability exchange - i.e. what is each system able to send/receive (not just in
qualitative terms, but also absolute and relative quantitative ones (e.g. ”if i can
receive 3 video of such and such a resolution, i can only mix 2 audio of such a
coding).

In the IETF multicast tool-set, this could be done on the LAN with the confer-
ence bus, which is described in later in this chapter or it could be done with client
SAP advertisements or capabilities in svrloc or even partly DHCP.

H.245 provides logical channel selection (i..e pick a port). Then it provides RTT
estimation, channel maintenance (why do TCP and RM protocols not do that?),
and then a set of commands and indications - these are really the core conference
control facilities: (media control facilities and so on), as well as audio/video modes
(activity on/off messages, silence suppression on/off commands and so on).

Thus finally, we descend to the end users requirements, which include h.243
password and other access control, Chair token control, terminal control messages,
conference id info, facilities for exchanging certificates, ability to make a terminal
the broadcaster, send this source, request all identifiers, Remote MC control and so

forth.

7.2.5 Multicast Internet Based MCS

A recent workitem in the I'TU group defining these protocols has started to look
at how the MCS might be implemented on top of a reliable multicast transport
protocol with the Internet, instead of on top of ISDN. This is a very promising
direction for scaling to larger H.320 style conferences.

At the same time, there is a definition for the use of RTP for dissemination of
media from an MCU, onto a LAN. The combination of these two approaches brings
much closer together the I'TU approach to that of the Mbone. There are severla
further stages before there is complete unification - largely in the area of supporting
loosely coupled and anonymous sessions, and in supporting heterogeneity (varying
receiver capabilities) in the ITU H.320 approach.

7.3 MMCC - A Centralized Internet Model

It has been argued that the problem with the Internet model of multimedia con-
ferencing is that it doesn’t support simple phone calls, or secure closed “tightly
managed” conferences.

However, it is easy to add this functionality after one has built a scalable system
such as the Mbone provides, rather than limiting the system in the first place. For
example, the management of keys can provide a closed group very simply. If one
is concerned about traffic analysis, then the use of secure management of IP group
address usage would achieve the effect of limiting where multicast traffic propagated.
Finally, a telephone style signaling protocol can be provided easily to ”launch” the
applications using the appropriate keys and addresses, simply by giving the users a
nice GUI to a distributed calling protocol system.

Currently, the IETF working group on Conference Control is liasing with the
T.120 standards work in the ITU and have made some statements about partial
progress.

7.4. CCCP - DISTRIBUTED INTERNET MODEL 153

7.4 CCCP - Distributed Internet Model

In this section, we will discuss some of the lessons that we have garnered from
previous work involving computer based multimedia conferencing, and use these as
a basis for developing an architecture for the next generation of conference control
applications, suitable for conferencing over wide area networks. We show that a
simple protocol acting over a conference specific communications channel, named
the Conference Control Channel or CCC, will perform all tasks within the scope of
conference control.

The previous generation of conferencing tools, such as CAR, mmconf, ether-
phone and the Touring Machine ([108], [34], [33], [54]), were based on centralised
architectures, where a central application on a central machine acted as the repos-
itory for all information relating to the conference. Although simple to understand
and simple to implement, this model proved to have a number of disadvantages,
the most important of which was the disregard for the failure modes arising from
conferencing over the wide area.

An alternative approach to the centralised model is the loosely coupled model
promoted by Van Jacobson and exemplified by the vat[90][65] and wb[68] applica-
tions. In the “loose session model” | the network is regarded as inherently unreliable.
Our observations of the Mbone show that humans can cope with a degree of in-
consistency that arises from partitioned networks and lost messages, as long as the
distributed state will tend to converge in time. This model makes less demands on
the network, and recognises the possibility of failure modes up front.

We have taken these and the other lessons we have derived from experience with
conferencing tools, and derived two important aims that any conference control
architecture should meet:-

1. The conference architecture should be flexible enough so that any mode of
operation of the conference can be used and any application can be brought
into use. The architecture should impose the minimum constraints on how an
application is designed and implemented.

2. The architecture should be scalable, so that “reasonable” performance is
achieved across conferences involving people in the same room, through to
conferences spanning continents with different degrees of connectivity, and
large numbers of participants. To support this aim, it is necessary explicitly
to recognise the failure modes that can occur, and examine how they will af-
fect the conference, and then attempt to design the architecture to minimise
their impact.

We model a conference as composed of an (possibly unknown) number of people
at geographically distributed sites, using a variety of applications. These applica-
tions can be at a single site, and have no communication with other applications
or instantiations of the same application across multiple sites. If an application
shares information across remote sites, we distinguish between the cases when the
participating processes are tightly coupled ! - the application cannot run unless
all processes are available and contactable - and when the participating processes
are loosely coupled, in that the processes can run when some of the sites become
unavailable. A tightly coupled application is considered to be a single instantiation
spread over a number of sites, whilst loosely coupled and independent applications

1'We define a tightly coupled system as one which attempts to ensure consistency at all sites.
By contrast a more loosely coupled system tolerates inconsistencies, though it should attempt to
resolve them in time. A very loosely coupled system will not even know the full list of conference
members.

154 CHAPTER 7. CONFERENCE CONTROL

have a number of unique instantiations, although they possibly use the same appli-
cation specific information (such as which multicast address to use...).

The tasks of conference control break down in the following way:

e Application control - Applications as defined above need to be started with
the correct initial state, and the knowledge of their existence must be prop-
agated across all participating sites. Control over the starting and stopping
can either be local or remote.

e Membership control - Who is currently in the conference and has access
to what applications.

¢ Floor management - Who or what has control over the input to particular
applications.

¢ Network management - Requests to set up and tear down media connec-
tions between end-points (no matter whether they be analogue through a
video switch, a request to set up an atm virtual circuit, or using RSVP[39]
over the internet), and requests from the network to change bandwidth usage
because of congestion.

¢ Meta-conference management - How to initiate and finish conferences,
how to advertise their availability, and how to invite people to join.

We maintain that the problem of meta-conference management is outside the
bounds of the conference control architecture, and should be addressed using tools
such as sd, traditional directory services or through external mechanisms such as
email. The conference control system is intended to maintain consistency of state
amongst the participants as far as is practical and not to address the social issues of
how to bring people together, and co-ordinate initial information such as encryption
keys.

We then take these tasks as the basis for defining a set of simple protocols
that work over a communication channel. We define a simple class hierarchy, with
an application type as the parent class and subclasses of network manager, mem-
ber and floor manager, and define generic protocols that are used to talk between
these classes and the application class, and an inter-application announcement pro-
tocol. We derive the necessary characteristics of the protocol messages as reli-
able/unreliable and confirmed /unconfirmed (where ‘unconfirmed’ indicates whether
responses saying “I heard you” come back, rather than indications of reliability).

It is easily seen that both tightly and loosely coupled models of conferencing
can be encompassed if the communication channel is secure.

We have abstracted a messaging channel, using a simple distributed inter-process
communication system, providing confirmed/unconfirmed and reliable/unreliable
semantics. The naming of sources and destinations is based upon application level
naming, allowing wildcarding of fields such as instantiations (thus allowing messages
to be sent to all instantiations of a particular type of application).

Finally, we briefly describes the design of the high level components of the
messaging channel (named variously the CCC or the triple-C). Mapping of the
application level names to network level entities is performed using a distributed
naming service, based upon multicast once again, and drawing upon the extensive
experience already gained in the distributed operating systems field in designing
highly available name services.

7.4. CCCP - DISTRIBUTED INTERNET MODEL 155

7.4.1 Requirements
7.4.2 Multicast Internet Conferencing

Since early 1992, a multicast virtual network has been constructed over the Internet.
This multicast backbone or Mbone[37] has been used for a number of applications
including multimedia (audio, video and shared workspace) conferencing. These
applications involved include vat (LBL’s Visual Audio Tool), ivs (INRIA Video-
conferencing System[19]), nv (Xerox’s Network Video tool, [105]) and wb (LBL’s
shared whiteboard) amongst others. These applications have a number of things in
common:

o The are all based on TP Multicast.

e They all report who is present in a conference by occasional multicasting of
session information.

o The different media are represented by separate applications
e There is no conference control, other than each site deciding when and at
what rate they send.

These applications are designed so that conferencing will scale effectively to large
numbers of conferees. At the time of writing, they have been used to provide audio,
video and shared whiteboard to conference with about 500 participants. Without
multicast 3, this is clearly not possible. Tt is also clear that, with unreliable networks,
these applications cannot achieve complete consistency between all participants,
and so they do not attempt to do so - the conference control they support usually
consists of:

e Periodic (unreliable) multicast reports of receivers.

e The ability to locally mute a sender if you do not wish to hear or see them.
However, in some cases stopping the transmission at the sender is actually
what is required.

Thus any form of conference control that is to work with these applications should
at least provide these basic facilities, and should also have scaling properties that
are no worse that the media applications themselves.

The domains these applications have been applied to vary immensely. The same
tools are used for small (say 20 participants), highly interactive conferences as for
large (500 participants) dissemination of seminars, and the application developers
are working towards being able to use these applications for “broadcasts” that scale
towards millions of receivers.

It should be clear that any proposed conference control scheme should not re-
strict the applicability of the applications it controls, and therefore should not im-
pose any single conference control policy. For example we would like to be able to
use the same audio encoding engine (such as vat), irrespective of the size of the con-
ference or the conference control scheme imposed. This leads us to the conclusion
that the media applications (audio, video, whiteboard, etc) should not provide any
conference control facilities themselves, but should provide the handles for external
conference control and whatever policy is suitable for the conference in question.

2 Actually TVS does support audio, but has also been widely used as a pure video codec with
vat as the audio tool.

3or broadcast, but that is outside the scope of this document, as it does not usually provide a
reverse path from receiver to sender

156 CHAPTER 7. CONFERENCE CONTROL

7.4.3 Computer Based Multimedia Conferencing Require-
ments

Computer based multimedia conferencing has the somewhat different requirements
from POTS or ISDN based video conferencing which has made use of custom ter-
minals. Tt is also a requirement that such systems interwork with ISDN and POTS
based conferencing systems. All told:

e Multicast based applications running on workstations/PCs where possible.
e Hardware codecs and the need to multiplex their output.

e Sites connecting into conferences from ISDN.

e Interconnecting all the above.

These requirements have dictated that we build a number of Conference Man-
agement and Multiplexing Centres to provide the necessary format conversion and
multiplexing to interwork between the multicast workstation based domain and
unicast (whether IP or ISDN) hardware based domain.

Traditionally such a multiplexing centre would employ a centralised conference
control system. However, this is not scalable and we wish the users of such systems
to participate in large multicast based conferences. We also do not wish to change
the multicast media applications when they switch from a entirely multicast based
conference to one using a central system for some participants.

It is inevitable that translators, multiplexors, format converters and so forth will
form some part of future conferences, and that large conferences will be primarily
multicast based.

7.4.4 Where current systems fail

The sort of conference control system we are addressing here cannot be:
o Centralised. This will not scale.

e Fixed Policy. This would restrict the applicability. The important point here
is that only the users can know what the appropriate policies a meeting may
need.

e Application Based. It is very likely that separate applications will be used
for different media for the foreseeable future. We need to be able to switch
media applications where appropriate. Basing the conference control in the
applications prevents us changing policy simply for all applications.

e Heterogeneity. Most existing systems have been fairly homogeneous. An
increasing requirement is for different systems to interwork. There needs to
be some basis for this interworking, at both the media data stream level and
at the conference control level.

o Difficult to get right. Writing distributed group applications that interwork
and tolerate network failures is difficult to get right. Generally application
writers either start from scratch, which means re-implementing stock algo-
rithms, or base their applications on a scheme that promises to do everything,
but in practice turns out to be too inflexible.

7.4. CCCP - DISTRIBUTED INTERNET MODEL 157

7.4.5 Specific requirements
Modularity

Conference Control mechanisms and Conference Control applications should be
separated. The mechanism to control applications (mute, unmute, change video
quality, start sending, stop sending, etc) should not be tied to any one conference
control application in order to allow different conference control policies to be chosen
depending on the conference domain. This suggests that a modular approach be
taken, with for example, a specific floor control modules being added when required
(or possibly choosing a conference manager tool from a selection of them according
to the conference).

A unified user interface

A general requirement of conferencing systems, at least for relatively small confer-
ences, is that the participants need to know who is in the conference and who is
active. Vat is a significant improvement over telephone audio conferences, in part
because participants can see who is (potentially) listening and who is speaking.
Similarly if the whiteboard program wb is being used effectively, the participants
can see who is drawing at any time from the activity window. However, a partic-
ipant in a conference using, say, vat (audio), ivs (video) and wb (whiteboard) has
three separate sets of session information, and three places to look to see who is
active.

Clearly any conference interface should provide a single set of session and activity
information. A useful feature of these applications is the ability to “mute” (or
hide or whatever) the local playout of a remote participant. Again, this should be
possible from a single interface. Thus the conference control scheme should provide
local inter-application communication, allowing the display of session information,
and the selective muting of participants.

Taking this to its logical conclusion, the applications should only provide me-
dia specific features (such as volume or brightness controls), and all the rest of
the conference control features should be provided through a conference control
application.

Flexible floor control policies

Conferences come in all shapes and sizes. For some, no floor control, with everyone
sending audio when they wish, and sending video continuously is fine. For others,
this is not satisfactory due to insufficient available bandwidth or a number of other
reasons. It should be possible to provide floor control functionality, but the providers
of audio, video and workspace applications should not specify which policy is to
be used. Many different floor control policies can be envisaged. A few example
scenarios are:

e Explicit chaired conference, with a chairperson deciding when someone can
send audio and video. Some mechanism equivalent to hand raising to request
to speak. Granting the floor starts video transmission, and enables the audio
device. Essentially this is a schoolroom type scenario, requiring no expertise
from end users.

e Audio triggered conferencing. No chairperson, no explicit floor control. When
someone wants to speak, they do so using “push to talk”. Their video ap-
plication automatically increases its data rate from, for example, 10Kb/s to
256Kb/s as they start to talk. 20 seconds after they stop speaking it returns
to 10Kb/s.

158 CHAPTER 7. CONFERENCE CONTROL

¢ Audio triggered conferencing with a CMMC[108] Conference Management and
Multiplexing Centre - essentially one or more points where multiple streams
are multiplexed together for the benefit of people on unicast links, ISDN
and hardware codecs. The CMMC can mix four streams for decoding by
participants with hardware codecs. The four streams are those of the last
four people to speak, with only the current speaker transmitting at a high
data rate. Everyone else stops sending video automatically.

e A background Mbone engineering conference that’s been idle for 3 hours.
All the applications are iconised, as the participant is doing something else.
Someone starts drawing on the whiteboard, and the audio application plays
an audio icon to notify the participant.

Scaling from tightly coupled to loosely coupled conferences

CCCP originates in part as a result of experience gained from centralised Multi-
media Conference Control system. centralised system intended for use over ISDN.
As described earlier in this chapter, the functionality such systems provided can be
summarised up by listing its basic primitives:

[Create conference

Join/Leave Conference

List members of conference

o Include/exclude application in conference
e Take floor
In addition, there were a number of asynchronous notification events:
e Floor change
¢ Participant joining/leaving
e Application included/excluded

The application model was modeled around applications that could replicate either
themselves or their display onto remote machines if they were given a list of ad-
dresses or displays, hence the include/exclude functionality. However, these are the
basic primitives required to support a tightly coupled conference, although for some
uses others may be added.

Any conference control system that claims to be fairly generic must be able to
support these primitives with reasonable reliability. (Absolute consistency is not
really a feasible option in a multiway conference)

Loosely coupled conferences put less constrains on the protocols used, but must
scale to much larger numbers, and must be very tolerant of loss and network seg-
mentation.

Taking the modular approach described above, we would expect to change con-
ference controllers when moving from one regime to another, but we do not wish to
change the media applications * too.

4actually many shared workspace tools will not scale anyway, but we shall concern ourselves
here with those that will

7.4. CCCP - DISTRIBUTED INTERNET MODEL 159

7.4.6 The Conference Control Channel (CCC)

To bind the conference constituents together, a common communication channel
is required, which offers facilities and services for the applications to send to each
other. This is akin to the inter process communication facilities offered by the
operating system. The conference communication channel should offer the necessary
primitives upon which heterogeneous applications can talk to each other.

The first cut would appear to be a messaging service, which can support 1-to-
many communication, and with various levels of confirmation and reliability. We
can then build the appropriate application protocols on top of this abstraction to
allow the common functionality of conferences.

We need an abstraction to manage a loosely coupled distributed system, which
can scale to as many parties as we want. In order to scale we need the underlying
communication to use multicast. Many people have suggested that one way of
thinking about multicast 1s as a multifrequency radio, in which one tunes into
particular channels in which we are interested in. We extend this model to build
an Inter Process Communications model, on which we can build specific conference
management protocols. Thus we define an application control channel.

What do we actually want from the system?

o We want to ask for services

o We want to send requests to specific entities, or groups of entities and receive
responses from some subset of them, with notifications sent out to others.

: Session ! Session ! Session

. | Control . 1| Control . : | Control
Control : H . :
Applications . : : : :

Floor Floor Floor

! Control ! ! Control ! : Control

cccp §
Audio

Media
Applications

White
Board

Control Messages (CCCP) < »

Conceptualisation of CCCP Media Dala g

Figure 7.4: CCCP Conceptual Design

CCCP originates in the observation that in a reliable network, conference control
would behave like an Ethernet or bus - addressed messages would be put on the bus,
and the relevant applications will receive the message, and if necessary respond. In

160 CHAPTER 7. CONFERENCE CONTROL

the internet, this model maps directly onto IP multicast. This is illustrated in figure
7.4. In fact the TP multicast groups concept is extremely close to what is required.
In CCCP, applications have a tuple as their address: (instantiation, application
type, address). We shall discuss exactly what goes into these fields in more detail
later. In actual fact, an application can have a number of tuples as its address,
depending on 1ts multiple functions. Examples of the use of this would be:

Destination Tuple Message

(1, audio, localhost) <start sending>

(*, activity_management, localhost) <receiving audio from host:> ADDRESS
(%, session_management, *) <I am:> NAME

(*, session_management, *) <I have media:> {application list}

(*, session_management, *) <Participant list:> {participant list}

(*, floor_control, *) <REQUEST FLOOR>

(*, floor_control, *) <I HAVE FLOOR>

and so on. The actual messages carried depend on the application type, and
thus the protocol is easily extended by adding new application types.

In keeping with the underlying multicast message reception paradigm, a CCC
application needs to register its interest in messages before it will receive them.
Where possible, a CCC system uses the underlying multicast delivery to optimise
where messages are filtered.

7.4.7 CCC Names

Our model of the CCC is a broadcast bus, where the receivers filter the messages
according to what information and which protocols they need to receive and partic-
ipate in. Using this model, we based our naming scheme upon the attributes of an
application that could be used in deciding whether to receive a message. We thus
build a name tuple from three parts:

(instantiation, type, address)

An application registers itself with its CCC library, specifying one or more tu-
ples that it considers describe itself. Note that there is no conference identifier
currently specified as part of the tuple, but this is liable to change, since a con-
ference identifier may be useful in unifying conference management and conference
meta-management, and considerably simplifies the design of applications which may
be part of multiple conferences simultaneously. In the current prototype design, a
control group address or control host address or address list are specified at startup,
and that Meta-conferencing (i.e., allocation and discovery of conference addresses)
is outside the scope the CCC itself. The parts of the tuple are:

address

In our model of a conference, applications are associated with a machine and pos-
sibly a user at a particular machine. Thus we use a representation of the user or
the machine as a field in the tuple, to allow us to specify applications by location..
The address field will normally be registered as one of the following:

e hostname

e username@hostname

7.4. CCCP - DISTRIBUTED INTERNET MODEL 161

When the application is associated with a user, such as a shared whiteboard, the
username@hostname form is used, whereas applications which are not associated
with a particular user, such as a video switch controller register simply as hostname.
For simplicity, we use the domain naming scheme in our current implementation,
although this does not preclude other identifiable naming schemes. Note that the
hostname is actually shorthand for no-user@hostname, so that when When other
applications wish to send a message to a destination group (a single application is
a group of size 1), they can specify the address field as one of the following:

e username@hostname
e hostname

e *Q@hostname - Note that the hostname is actually shorthand for no-user@hostname,
so that this matches all applications on the given host.

e * - this is used to address applications regardless of location.

The CCC library is responsible for ensuring a suitable multicast group (or other
means) is chosen to ensure that all possible matching applications are potentially
reachable (though depending on the reliability mode, it does not necessarily ensure
the message got to them all).

It should be noted that in any tuple containing a wildcard (*) in the address,
specifying the instantiation (as described below) does not guarantee a unique re-
ceiver, and so normally the instantiation should be wildcarded too.

type

The next attribute we use in naming applications is based on hierarchical typing
of the application and of the management protocols. The type field is descriptive
both of the protocol that is being used and of the state of the application within the
protocol at a particular time. For example, a particular application such as vat may
use a private protocol to communicate between instantiations of the application, so
a vat type is defined, and only applications which believe they can understand the
vat protocol and are interested in it would register themselves as being of type vat.
An alternative way of using the type field is to embed the finite state machine cor-
responding to the protocol within the type field - thus a floor management protocol
could use types floor.management.holder and floor.management.requester in
a simple floor control protocol, that can cope with multiple requests at once. A
final way of using the type field is to allow extensions to existing protocols in a
transparent fashion, by simply extending the type field by using a version number.
Some examples of these techniques can be found in the examples given.

Some base types are needed to ensure that common applications can communi-
cation with each other. As a first pass, the following types have been suggested:

e audio.send - the application is interested in messages about sending audio
e audio.recv - the application is interested in messages about receiving audio
e video.send - the application is interested in messages about sending video
e video.recv - the application is interested in messages about receiving video

e workspace - the application is a shared workspace application, such as a
whiteboard

e session.remote - the application is interested in knowing the existence of
remote applications (exactly which ones depends on the conference, and the
session manager)

162 CHAPTER 7. CONFERENCE CONTROL

e session.local - the application is interested in knowing of the existence of
local applications

e media-ctrl - the application is interested in being informed of any change in
conference media state (such as unmuting of a microphone).

e floor.manager - the application is a floor manager

e floor.slave - the application is interested in being notified of any change in
floor, but not (necessarily) in the negotiation process.

It should be noted that types can be hierarchical, so (for example) any message
addressed to audio would address both audio.send and audio.recv applications.
It should also be noted that an application expressing an interest in a type does
not necessarily mean that the application has to be able to respond to all the
functions that can be addresses to that type. Also, (if required) the CCC library
will acknowledge receipt on behalf of the application.

Examples of the types existing applications would register under are:

e vat - vat, audio.send, audio.recv
e vs- ivs, video.send, video.recv
e nv-nv, video.send, video.recv
e wb- wb, workspace

e a conference manager - confman, session.local, session.remote, media-ctrl,
floor.slave

e a floor ctrl agent - flooragent, floor.manager, floor.slave

In the current implementation, the type field is text based, so that debugging is
simpler, and we can extend the type hierarchy without difficulty.

instantiation

The instantiation field is purely to enable a message to be addressed to a unique
application. When an application registers, it does not specify the instantiation -
rather this is returned by the CCC library such that it is unique for the specified
type at the specified address. It is not guaranteed to be globally unique - global
uniqueness 1s only guaranteed by the triple of (instantiation, type, address)
with no wildcards in any field. When an application sends a message, it uses one
of its unique triples as the source address. Which one it chooses should depend on
to whom the message was addressed.

7.4.8 Reliability

CCCP would be of very little use if it were merely the simple protocol described
above due to the inherent unreliable nature of the Internet. Techniques for increas-
ing the end-to-end reliability are well known and varied, and so will not be discussed
here. However, it should be stressed that most (but not all) of the CCCP messages
will be addressed to groups. Thus a number of enhanced reliability modes may be
desired:

e None. Send and forget. (an example is session management messages in a
loosely coupled system)

7.4. CCCP - DISTRIBUTED INTERNET MODEL 163

e At least one. The sending application wants to be sure that at least one
member of the destination group received the message. (an example is a
request floor message which would not be ACKed by anyone except the current

floor folder).

e n out of m. The sending application wants to be sure that at least n members
of the destination group received the message. For this to be useful, the
application must have a fairly good idea of the destination group size. (an
example may be joining of a semi-tightly coupled conference)

e all. The sending application wants to be sure that all members of the desti-
nation group received the message. (an example may be “join conference” in
a very tightly coupled conference)

It makes little sense for applications requiring conference control to reimplement the
schemes they require. As there are a limited number of these messages, it makes
sense to implement CCCP in a library, so an application can send a CCCP message
with a requested reliability, without the application writer having to concern them-
selves with how CCCP sends the message(s). The underlying mechanism can then
be optimised later for conditions that were not initially foreseen, without requiring
a re-write of the application software.

There are a number of “reliable” multicast schemes available, such as [52] and
[147], which can be used to build consensus and agreement protocols in asynchronous
distributed systems. However, the use of full agreement protocols is seen to be cur-
rently limited to tightly coupled conferences, in which the membership is known,
and the first design of the CCC library will not include reliable multicast sup-
port, although it may be added later as additional functionality. Unlike distribute
databases, or other automated systems that might exploit causal ordered multicast
discussed in chapters 2 and 3, communications systems for humans can exploit the
users tolerance for inconsistency.

We believe that sending a message with reliability “all” to an unknown group is
undesirable. Even if CCCP can track or obtain the group membership transparently
to the application through the existence of a distributed nameserver, we believe that
the application should explicitly know who it was addressing the message to. It does
not appear to be meaningful to need a message to get to all the members of a group
if we can’t find out who all those members are, as if the message fails to get to
some members, the application can’t sensibly cope with the failure. Thus we intend
to only support the all reliability mode to an explicit list of fully qualified (i.e.
no wildcards) destinations. Applications such as joining a secure (and therefore
externally anonymous) conference which requires voting can always send a message
to the group with ”at least one” reliability, and then an existing group member
initiates a reliable vote, and returns the result to the new member.

7.4.9 Ordering

Of course loss is not the only reliability issue. Messages from a single source may be
reordered or duplicated and due to differing delays, messages from different sources
may arrive in “incorrect” order.

Single Source Reordering

Addressing reordering of messages from a single source first; there are many possible
schemes, almost all of which require a sequence number or a timestamp. A few
examples are:

164

Ot

CHAPTER 7. CONFERENCE CONTROL

. Ignore the problem. A suitable example is for session messages reporting

presence in a conference.

. Deal with messages immediately. Discard any packets that are older than the

latest seen. Quite a number of applications may be able to operate effectively
in the manner. However, some networks can cause very severe reordering, and
it is questionable as to whether this is desirable.

Using the timestamp in a message and the local clock, estimate the perceived
delay from the packet being sourced that allows (say) 90% of packets to arrive.
When a packet arrives out of order, buffer it for this delay minus the perceived
trip time to give the missing packet(s) time to arrive. If a packet arrives after
this timeout, discard it. A similar adaptive playout buffer is used in vat for
removal of audio jitter. This i1s useful where ordering of requests is necessary
and where packet loss can be tolerated, but where delay should be bounded.

. Similar to above, specify a fixed maximum delay above minimum perceived

trip time, before deciding that a packet really has been lost. If a packet arrives
after this time, discard it.

A combination of [3] and [4]. Some delay patterns may be so odd that they
upset the running estimate in [3]. Many conference control functions fall into
this category, i.e. time bounded, but tolerant of loss.

Use a sliding window protocol with retransmissions as used in TCP. Only
useful where loss cannot be tolerated, and where delay can be unbounded.
Very tightly coupled conferences may fall into this category, but will be very
intolerant to failure. Should probably only be used along with application
level timeouts in the transmitting application.

It should be noted that all except [1] require state to be held in a receiver for
every source. As not every message from a particular source will be received at a

particular receiver due to CCCP’s multiple destination group model, receiver based

mechanisms requiring knowing whether a packet has been lost will not work unless

the source and receiver use a different sequence space for every (source, destination

group) pair. If we wish to avoid this (and I think we usually do!), we must use

mechanisms that do not require knowing whether a packet has been lost.

Thus the above list of mechanisms becomes:

1.
2.

Ot

6.

Have CCCP ignore the problem. Let the application sort it out.

Have CCCP deal pass messages to the application immediately. Discard any
packets that are older than the latest seen.

As above, estimate the perceived delay within which (say) 90% of packets a
particular source arrive, but delay all packets from this source by the perceived
delay minus the perceived trip time.

As above, calculate the minimum perceived trip time. Add a fixed delay to
this, and buffer all packets for this time minus their perceived trip time.

A combination of [3] and [4], buffering all packets by the smaller of the two
amounts.

Explicitly ack every packet. Do not use a sliding window.

Note that just because CCCP cannot provide more elaborate mechanisms; this

does not mean an application itself (with some semantic knowledge) cannot build

a more elaborate mechanism on top of any of [1]..[5]. However it does mean that
message timestamps and sequence numbers must be available at the application level.

7.4. CCCP - DISTRIBUTED INTERNET MODEL 165

Multiple Source Ordering

In general we do not believe that CCCP can or should attempt to provide ordering
of messages to the application that originate at different sites. CCCP cannot predict
that a message will be sent by, and therefore arrive from, a particular source, so it
cannot know that it should delay another message that was sent at a later time.
The only full synchronisation mechanism that can work is an adaptation of [3]..[5]
above, which delays all packets by a fixed amount depending on the trip time, and
discards them if they arrive after this time if another packet has been passed to
the user in the meantime. However, unlike the single source reordering case, this
requires that clocks are synchronised as each site.

CCCP does not intend to provide clock synchronisation and global ordering
facilities. If applications require this, they must do so themselves. However, for
most applications, a better bet is to design the application protocol to tolerate
temporary inconsistencies, and to ensure that these inconsistencies are resolved in
a finite number of exchanges. An example is the algorithm for managing shared
teleconferencing state proposed by Scott Shenker, Abel Weinrib and Eve Schooler
[she].

For algorithms that do require global ordering and clock synchronisation, CCCP
will pass the sequence numbers and timestamps of messages through to the appli-
cation. Tt is then up to the application to implement the desired global ordering
algorithm and/or clock synchronisation scheme using one of the available protocols
and algorithms such as NTP [lam], [fel], [bir].

7.4.10 A few examples

Before we describe what should comprise CCCP, we will present a few simple ex-
amples of CCCP in action. There are a number of ways each of these could be done
- this section is not meant to imply these are the best ways of implementing the
examples over CCCP.

Unifying user interfaces - session messages in a “small” conference

We illustrate how services and applications are unified using CCCP in figures 7.5
and 7.6.
Applications:

e An Audio Tool (at), registers as types: at, audio.send, audio.recv

e A Video Tool (vt), registers as types: vt, video.send, video.recv

o A Whiteboard (wb), registers as types: wb, workspace

o A Session Manager (sm), registers as types: sm, session.local, session.remote

The local hostname is x. There are a number of remote hosts, one of which is
called y.
A typical exchange of messages may be as follows:

From To Message
the following will be sent periodically:

(1,audio.recv,x) (*,sm.local,x) KEEPALIVE
(1,video.recv,x) (*,sm.local,x) KEEPALIVE
(1,wb,x) (*,sm.local,x) KEEPALIVE

the following will be sent periodically with interval
(1,sm,x) (*,sm.remote, *) I HAVE_MEDIA text_user_name audio.recv video.recv wb

166 CHAPTER 7. CONFERENCE CONTROL

: Session| < : » [0 other Session Controllers
Control

Control Messages (CCCP) < >

Media Data PR

audio data

Audio

video data

Video

White 0: graphical data
Board |

Figure 7.5: Unifying Services with CCCP

an audio speech burst arriwes at the audio application from y
(1,audio.recv,x) (*,sm.local,x) MEDIA STARTED audio y
sesston manager highlights the name of the person who is speaking

speech burst finishes
(1,audio.recv,x) (*,sm.local,x) MEDIA STOPPED audio y

session manager de-highlights the name of the person who was speaking

video starts from z
(1,video.recv,x) (*,sm.local,x) MEDIA_STARTED video z

periodical reports:

(1,audio.recv,x) (*,sm.local,x) KEEPALIVE
(1,video.recv,x) (*,sm.local,x) MEDIA_ACTIVE video z
(1,wb,x) (*,sm.local,x) KEEPALIVE

someone restarts the session manager:

(1,sm,x) (*,%,x) WHOS _THERE
(1,audio.recv,x) (*,sm.local,x) KEEPALIVE
(1,video.recv,x) (*,sm.local,x) MEDIA_ACTIVE video z
(1,wb,x) (*,sm.local,x) KEEPALIVE

and so on...

7.4. CCCP - DISTRIBUTED INTERNET MODEL 167

A voice controlled video conference

In this example, the desired behaviour for participants to be able to speak when
they wish. A user’s video application should start sending video when their audio
application starts sending audio. No two video applications should aim to be sending
at the same time, although some transient overlap can be tolerated.

E Session_- : » to other Session Controllers
: | Control .

Floor :

Control leg—p to other Floor Managers

: Control Messages (CCCP) < >

Media Data e

audio data
Audio

video data
Video

White | 0 graphical data
Board

Using CCCP for simple floor control

Figure 7.6: Unifiying Floor Control with CCCP

Applications:

e An Audio Tool (at), registers as types: at, audio.send, audio.recv

A Video Tool (vt), registers as types: vt, video.send, video.recv
o A Session Manager (sm), registers as types: sm, session.local, session.remote
¢ A Floor Manager (fm), registers as types: fm, floor.master

There are hosts x and y, amongst others.

It is assumed that session control messages are being sent, as in the example
above.

A typical exchange of messages may be as follows:

From To Message
the user at x starts speaking. Silence suppression cuts out, and the audio tool starts sending audio data:
(1, audio.send, x) (*,sm.local,x), (*,floor.master,x) MEDIA STARTED audio x

...this causes the sm to highlight the “you are sending audio” icon
it also causes the floor manager to report to the other floor managers:

(1, floor.master,x) (*, floor.master, *) MEDIA _STARTED audio x
and also 1t requests the local video tool to send video:

(1, floor.master,x) (¥, video.send, x) START SENDING video
...this causes the video tool to start sending

(1, video.send, x) (%, sm.local, x),(*.floor.master, x)MEDIA STARTED video x

...which, in turn, causes the sm to highlight the “you are sending video”icon

the user at x stops speaking. Silence suppression cuts in, , and the audio tool stops sending audio data

168 CHAPTER 7. CONFERENCE CONTROL

(1, audio.send, x) (*,sm.local,x), (*,floor.master,x) MEDIA STOPPED audio
...this causes the sm to de-highlight the “you are sending audio” icon
...the session manager starts a timeout procedure before it will stop sending video

a user at y starts sending audio and video data.

The local audio and video tools report this to the session manager:

(1,audio.recv,x) (*,sm.local,x) MEDIA _STARTED audio
(1,video.recv,x) (*,sm.local,x) MEDIA _STARTED video
...as in previous example, sm highlights sender’s name

Also y’s floor manager reports what’s happening:

(1, floor.master, y) (*, floor.master,*) MEDIA_STARTED audio
(1, floor.master, y) (%, floor.master,*) MEDIA_STARTED video
the local floor manager tells the local video tool to stop sending

(1, floor.master,x) (*, video.send, x) STOP_SENDING video
...this causes the video tool at x to stop sending

(1, audio.send, x) (*,sm.local,x),(*,floor.master,x) MEDIA_STOPPED video

7.4.11 CCCP Messages

Message format:

(SRC triple){list of (DST triple)s} FUNCTION parameter list

7.4.12 More complex needs
Dynamic type-group membership

Many potential applications require to be able to contact a server or a token holder
reliably without necessarily knowing the location of that server. An example may
be a request for the floor in a conference with one roaming floor holder. The
application requires that the message gets to the floor holder if it is at all possible,
which may require retransmission and will require acknowledgment from the remote
server, but the application writer should not have to write the re-transmission code
for each new application. CCCP supports ”at least one” reliability, but to address
such a REQUEST _FLOOR message to all floor managers is meaningless. By supporting
dynamic type-groups CCCP can let the application writer address a message to a
group which is expected to have only one (or a very small number) of members, but
whose membership is changing constantly.
In the example described, the application requiring the floor sends:

SRC Tuple DEST Tuple Message

(1, floor.master, x) (*, floor.master.holder, *) REQUEST_FLOOR

with ”at least one” reliability. retransmissions continue until the message is ac-
knowledged or a timeout occurs.

When the floor holder receives this message, it can then either send a grant floor
or a deny floor message:

SRC Tuple DEST Tuple Message

(1, floor.master, y) (1, floor.master, x) GRANT_FLOOR

This message is sent reliably (ie, retransmitted by CCCP until an ACK is received).
On receiving the GRANT _FLOOR message, the floor manager at x expresses an in-
terest in the type-group floor.master.holder. On sending the GRANT FLOOR message,

=~

=

7.4. CCCP - DISTRIBUTED INTERNET MODEL 169

the floor manager at y also removes it’s interest in the type-group floor.master.holder
to prevent spurious acking of other REQUEST FLOOR messages. However, if the
GRANT FLOOR message retransmissions time out, it should re-express an interest.

See section 3.9 on the Naming Service for more details of how dynamic type-
groups work.

Need to know

When an application sends a message, it is up to the sending application to choose
the reliability mode for the message. For example, in a large loosely coupled con-
ference, a floor change announcement may be multicast is an unreliable mode.
However, their may be a number of applications that really do require to see that
information. In the floor control example, the existing floor holding applications
need to see the floor change announcements. We propose allowing a receiving appli-
cation to modify the reliability with which other applications send specific messages
by allowing messages of the form:

(SRC triple)(*, floor.manager, *) NEED_TO_KNOW (*, floor.slave, *) [list of fns]

In this case the application specified by the source triple is telling all f£loor.manager
applications that when they send one of the specified functions to (¥, floor.slave,
*), this application would like reliable delivery of the message.

NEED _TO_KNOW messages should be sent periodically, and will timeout if one hasn’t
been received in a set amount of time. NEED_TO_KNOW requests will also time out at
a particular application if that application ever fails to reliably deliver a message
to the specified address. Clearly NEED_TO KNOW messages should be used sparingly,
as they adversely affect the scaling propertied of the CCC. However, there are
a number of cases where they can be useful. The same effect could be achieved
by declaring another type (for example floor.holder, which may be desirable in
some cases), but NEED_TO_KNOW also has the benefit that it can be used to modify
the behaviour of existing applications without a requirement to access the source
code.

7.4.13 The Naming Service

CCC can be run on the bus model, passing all messages around a single multicast
group per conference. This will scale reasonably, since it scales with the number of
participants in the conference. Name resolution occurs at each host, matching the
destination naming tuple in the message against the list of tuples that are registered
at this particular host. However, it it does not scale indefinitely, because the load on
each host and the network increases with the complexity of the conference and the
number of messages. To improve scaling, the communications should be optimised
so that messages are only propagated to the machines that are interested. Thus
we need a service that maps the naming tuples to locations, so that intelligent
mapping of message paths to locations can be performed (aka intelligent routing
and placement of multicast groups). This name location service (or naming service
as it is more generally known) has a number of properties that differentiate it from
other naming services such as X.500 and the DNS:

e Dynamic and frequent updates.
e Fast propagation of changes.

e Ability to fall back to broadcast to interested parties when uncertain about
the consistency of a refined addressing group, since names are unique per
conference and are included in each message.

170 CHAPTER 7. CONFERENCE CONTROL

The last property is important, since 1t allows a relaxed approach to maintenance
of consistency amongst the naming servers, saving greatly in the messages and
complexity of the internals of the service.

We intend to implement a nameserver suitable for loosely coupled conferences
as the default in the CCC library. However, CCCP will also allow the use of an
external nameserver to supplement or replace the internal nameserver behaviour,
which will allow much greater use of the nameserver to made in more tightly cou-
pled conferences, for instance by using the nameserver to keep an accurate list of
members.

7.4.14 Security

CCCP will implement two levels of security - a very simple host access model similar
to the xhost mechanism in the X window system[xse], and encryption of all CCCP
packets with a key provided.

Host access security

The application is started with an access control string, which is a list of hosts it
is prepared to accept commands from. It passes this to the CCC library, and the
CCC library then filters all messages whose source is not in the access control list.

This very simple level of security is intended primarily to prevent external at-
tacks such as switching media tools transmission on or off, and thus compromising
the privacy of users.

Note that the X magic-cookie mechanism is not too useful here, as the cookie
would have to be carried in over CCC packet, which lays it open to attack from
anyone who can capture multicast packets.

Encryption

We recognise that the only way for CCCP to be really secure is to use encryption of
all CCC packets, and CCCP will support an encryption scheme. The key distribu-
tion problem is considered to be outside the scope of CCCP itself, and CCCP will
require the application to pass the key to it. After this, all CCCP messages from
this library will be encrypted, and non-encrypted messages will be ignored.

CCCP will allow an encryption key per conference id, and a key for messages not
associated with any conference. Which encryption key to use for outgoing messages
is chosen by the CCC library according to the conference id. Once the application
has passed the set of keys to the CCC library, it no longer has to concern itself with
encryption.

Encryption and Host Access can be used simultaneously.

7.4.15 Conference Membership Discovery

CCCP will support conference membership discovery by providing the necessary
functions and types. However, the choice of discovery algorithm, loose or tight
control of the conference membership and so forth, are not within the scope of
CCCP itself. Instead these algorithms should be implemented in a Session Manager
on top of the CCC.

7.5 Using ISDN to do IP Access to the Mbone

Extending the Session Description protocol to provide mbone access from unicast
sites (behind ISDN or other links into the net).

7.5. USING ISDN TO DO IP ACCESS TO THE MBONE 171

Components:

e Session Directory Servers (SDS).

e Mixers (Application level multicast to Unicast Traffic Forwarder).
e A Modified SDP client.

e Two new protocols:

1. 1/ Session Lookup Protocol SLP
2. 2/ Remote Multicast Join/Leave Protocol RLIMP

7.5.1 Lookup and Control

Somewhere in the mbone, there is a mixer (or several), known to session directories
servers around the place. Ideally these mixers will be situated close to the point
where the ISDN/Unicast feed hits the Mbone. [In RTP, this mixer” is known as a
translator].

A Session Directory Server is a daemon that listens to SDP announcements and
caches them. On demand, it provides the latest list to clients that query it.

When a client queries an SDS | the sessions reported include the mixer to use for
the session with a unicast session address, but the media all have multicast address.
The choice of mixer is dependent on the locations of the SDS and the client.

A unicast SDP client program runs on a unicast host at a site 1 or more hops
removed from the mbone (i.e. one incapable of using multicast TP). On demand,
the SDP client contacts an SDS to get the current list of sessions, by making a TCP
call to a well known port and formulating an HTTP GET request. The returned
type contains the list of all sessions. T.e. the SL.P is based on HTTP over TCP.

A user then starts the media associated with a particular session by clicking
on that entry in the SDP (modified) client. The modified client then sends a re-
mote ”join” request to the mixer address (either configured, or retrieved from the
SLP lookup), and starts the media application on the unicast address+port of
their choice. The RLJMP join message contains an SDP session description, but
with added media fields (?mix-to”) with the media tool’s unicast address and port.
RLJMP messages are text based SDP v2 messages sent in a TCP connection to the
mixer on a well known port and preceded by a line containing the RLIMP command
(”JOIN” or "LEAVE”).

The mixer joins the group, and adds the maplet from this group to the ”mix-to”
site to its forwarding table. The session directory client on the monitors the receiver
program, and when it exits, sends a RLJMP leave message to the mixer.

7.5.2 Mixer Operation

The mixer 1s an application level program that is table driven. Basically, it is a
cousin of the NV to CUSeeMe reflector program (or monstermash program), that
receives multicast, and forwards to unicast, and receives on unicast and forwards to
multicast based on maplets based on table entries created and deleted by RLIMP
messages.

The mixer may optionally apply priorities to the traffic (a la Class Based Queu-
ing). For example a site might be down the end of a 64kbps ISDN dial up uncast
link to the remote mbone. A default might be that a mixer priorities audio, then
whiteboard, then video. An implementation hack might be that the forwarding loop
of the mixer simply ignores overlimit input queues (this is tricky if people multiplex

172 CHAPTER 7. CONFERENCE CONTROL

while(1) readmask = setupSelectMaskForThisTimeAround(); select(readmask);
dealWithReadDescritporsAndUpdateClassUsage(mask);

Table 7.4: Mixer Operation

media on the same port and the same multicast address or we want to treat different
sources differently, but will be easy otherwise).

As well as configured defaults at the mixer, we may want to specify priorities.
One possibility is to implement an RSVP client in the modified session descriptor
client and an RSVP server in the mixer. Easier might be a simply mix-to-priority.

To decide on overlimit actions, the mixer also needs to know the bandwidth
between it and the unicast client. This can be configured or monitored through
spying on RR messages perhaps.

Finally, a refinement of the model above might permit a user to specify priorities
w.r.t sources of traffic (Source Descriptor fields or source IP address + port if
available can be used to decide which class a flow belongs to).

The bandwidth (shared link) between the mixer and the unicast site is gleaned
through some other process (e.g. configured through management). For further
study is how an overlimit action might trigger demand for more bandwidth, again
through some other configured information (basically derived from policies at the
mixer and user site concerning costs and so forth).

Soft State The mixer MUST fail to not forwarding to a unicast site, since the act
of forwarding uses possibly expensive bandwidth. This is achieved by timing
out maplets in the table. Though the entry can be kept, it is marked as ”idle”
after timeout T1, and only deleted after a longer timeout T2. The entry is
refreshed by repeated RLIMP messages from the modified SD client at the
unicast site. The refresh time (T3) is hopefully shorter than the idle timeout
T1. Typical values of T1 will be set long enough to not incur costly control
traffic on the link, and T2 short enough to close the link after application
failure or abort/hangup by abrupt user without incurring costly forwarding
of multicast traffic down the unicast link.

Unicast Hop The mixer and session directory server may be co-located. Further,
they may be co-located on the unicast router immediately at the end of the
unicast hop from the user site to the mbone. More likely, they are a little
way off from this. If the unicast hop is a bandwidth on demand circuit, the
RLJMP is a way of implicitly controlling whether traffic goes to and from on
this hop (keeping any potentially costly call open). T3 can be set high (its
really a resource protection timeout). Example values might be T3 = 3600
secs, T2 = 120 secs and T1 = 60 secs.

7.5.3 Futures

You can connect two mbones with two umbone configurations - simplest example
is a small site (e.g. a school) with a unicast router and a local mbone router and
an ISDN link and a unicast router. There might be administrative reasons for not
running a tunnel over the link. You can extend this model to allow non-mbone-
application level gatewaying - e.g. an analog phone gateway. A touch tone dial
interface to a remote SD client would be the obvious control interface [c.f.. Internet
Phone model in the glorious rfc 1789].

Simplifications The modified sd server and mixer may be co-located or even the
same process. In some cases (e.g. no ISDN), the SLP step might not be

7.6. SUMMARY 173

needed, and the user site might simply get session advertisements mixed down
to them always. In other cases, the RLJMP step might not be needed, if there
were few sessions, and all could be accommodated.

Implementation The Session Directory tool is being modified to accommodate
SLP, and to be able to run as a daemon/server without a GUI. The mash
program can be extended easily to accommodate RLJMP, and then enhanced
through a user space version of CBQ to provide appropriate action when
inbound traffic to the mixer exceeds outbound bandwidth.

7.6 Summary

In this chapter, we have looked at conference control systems, raning from cen-
tralised, through distributed at the application level, as with MCUs in ISDN based
systems, on to multicast based ones using a conference control channel or bus as the
basic paradigm for messaging between conferencing components. The CCCP proto-
col was designed to be exemplary. It is probably far to complex to be implemented
in its entirity.

For small to medium scale in terms of numbers of participants, the H.320 systems
approach is feasible, and can be made to work on packet nets by simulating the
circuits for control messages by using a reliable multicast protocol. For larger scale
conferences, the Mbone approach, and use of multicast scales to large numbers of
senders and receivers, but more work 1s needed on the protocols and standards to
provide tight control of a set of participants.

We will certainly see interworking units relaying between systems employing
these two approaches - indeed, H.323 addresses simple dissemination of media from
an H.320 type system onto LAN based receivers. It is only a matter of time before
systems work the other way too.

174 CHAPTER 7. CONFERENCE CONTROL

Part 111

Applications and Services

In the preceding chapters, we have presented a number of aspects of the Internet
that have evolved to permit multicast multimedia applications. in particular, we
can identify certain functons of the internet that have made this evolution quite
rapid and effective.

No Circuits Thank You - the use of packet switching allows efficient multiplex-
ing. The fact that these packets contain both source and destination (possibly
group) address allows efficient distribution of control.

Scaling - Aggregation of Flow Information RSVP allows for policy free al-
location of resources. Where fine grain allocation is needed it is possible,
but where a best effort (or other emerging default Internet Packet Delivery
Service) is sufficient, it can be used for large aggregations of flows.

Multicast encourages distribution of control functionality to the edges of the
network, where the edge system is a computer, and is more flexibly program-
able 1 nany case. Ths makes deployment of new services much more feasible
than an approach which rests on Intermediate Nodes (e.g. smart MCUs or
other application level devices within the network)

Soft State and Receiver Reservation are based on a notion of optimism about
resource availability - essentially, the average case behaviousr is most common,
and it is that “calls” (or sessions or flows) are typically not blocked. Thus
we should only icur expensive, and delay-ridden round-trip-time exchanges of
call-control or signaling messages, when we really have to!

Based on all the above, the idea that a large scale system is always consis-
tent is clearly not achievable, and given the principles described here (really
a logical extension of the Clark End-to-End principles), we shoudl design dis-
tributed applications for Convergent State and Convergent Consensus. For
multiemdia applications with human users, this is particularly attractive be-
cause of humans tolerance for temproary inconsistencyt in many application
usage patterns.

Multicast is a very powerful building block. It has led to the evolution of a
whole new way of constructing protocols, based around the paradigm shift ®> from
sender based protocol design, to recetver based protocols.

The idea of receiver based protocols has now been applied in a number of ways:

The basic multicast join mechanism is receiver based (IGMP joins do not
involve sources ever).

5For once, we believe the use of the word paradigm is justified here, in its normal sense of
“pattern”.

175

176 CHAPTER 7. CONFERENCE CONTROL

e The Internet Resource Reservation protocol is receiver based.

e Receiver based adaption to congestion has been described by Steve McCanne,
using multiple TP multicast groups, and layered coded video with different
layers send on different addresses. COngestion avoidance is achieved as with
TCP, by a control loop based on perceived loss, but without the closed loop
feedback needed by TCP - receivers simply monitor loss for each level jand
leave the associated group if congestion is causing to high packet loss, and
carry out join experiments to probe whetehr they can start to receive more
layers on other groups as loss reduces on existing ones.

e Receiver driven repair protocols such as that in the scalable reliable multicast
protocol used in the LBL Whiteboard application, and a similar one in NTE;,
are seen has having very general application.

it is not yet clear, but if unicast is just a special case of multicast, it may be the
case that the receiver driven approach is appropriate to all types of communication
protocol.

The Mbone and the multicast multimedia applications have seen deployment
without any formal resource reservation system. It is now believed by not a few
researchers that a formal resource reservation protocol per se, may never be neces-
sary - a subscription based approach, combined with measurement based admission
control and queueing in routers that provides simple priority for interactive (e.g.
audio and web browsing) traffic may be sufficient, and sufficiently less complex in
management terms that the underutilisation that this might imply for the network
designer may be acceptable.

When we discussed the Mbone conference control and media delivery models,
one of the claims made was that they scaled well for systems with large numbers of
participants over very large networks, In the face of partial failures. Of course, this
means that there are (at least temporary) inconsistencies that may be perceived
by users. Luckily, humans (unlike bank managers) are quite capable of holding
inconsistent views temporarily, and waiting for conflicts to resolve, so this is not
necessarily a show stopper. Unreliability and Human Tolerance work surpassingly
well in the experience of many Mbone users. Ordering and Human Frailty may be a
problem for some classes of user, though. For example, a distributed auction system
would not be feasible using a scheme that did not constrain bids (and video/audio
from bidders) in the correct order. In a large scale system, it may be that this is only
achievable at a very large cost. There has been quite a bit of research on reliable,
and on ordered reliable delivery multicast protocols, and the work at Cornell on Isis
and Horus is particularly relevant. The most recent transport level work is t hat at
Berkeley for NASA, and we have a brief look at that next.

The Reliable Multicast Protocol is a multiservice protocol with the goal of sup-
porting a range of services on top of the Internet Mbone delivery service. RMP
supports various types of ordering, and organizes participants into virtual topolo-
gies to achieve levels of reliability. It remains to be seen whether a single protocol
can carry out the very broad range of services that we have so far outlined.

An often expressed concern about the Mbone open channel model of confer-
encing is that it is not secure. This is in fact simply not the case. Privacy and
authentication are end to end functions, and whether media and media control
are unicast or multicast is not relevant [Ballardie, 95]. There are only a couple of
consequences of the fact that Mbone conferencing uses multicast:

1. Since this encourages multi-way videoconferencing, there is a greater need for
Multiparty Key Distribution. Typically, this means that an asymmetric key
system is needed such as PKC based on RSA or PGP.

7.6. SUMMARY 177

2. Traffic analysis and denial of service, two threats to security which are often
overlooked, are potentially easier with a multicast network. It transpires
that the very techniques used to provide better resource guarantees (RSVP
and Integrated Service TP routers) can prevent the denial of service attack.
Traffic analysis may be a little harder to prevent in a multi-provider Internet.
Generally, it may be that sites will use random traffic from other sources, and
perhaps route their traffic so it appears to source from different entry points
to the net (perhaps different RPs or Cores in the multicast routing system),
to avoid analysis. Tt remains to be seen if this is a serious threat.

178 CHAPTER 7. CONFERENCE CONTROL

Chapter 8

Applications

8.1 Introduction

In this chapter, we have a lok at some Internet Multimedia applications. We have
looked at a number of the building blocks, and just seen that there are some prin-
ciples of design for Internet applications that have emerged that are very powerful:

¢ Application Layer Framing[20]

The notion that an application can best select the “element of synchronisa-
tion”, and that this is then suitable as the Protocol Data Unit, or packet size
to be used is pursuasive. It turns out that for multimedia applications and
especially for multicast, this greatly simplifies application design.

¢ Integrated Layer Processing[20]

This 1s more a hint to implementors than the previous principle which ad-
dresses system design. Layers of protocol software are often slowed down by
the very layering that makes their design simple. However, ILP is basically
the same idea as that which compiler writers call “in-lining”. Instead of a
hierarchy of layers mapping onto an implementation model of a sequence of
procedure or function calls, one can observe that much protocol processing
is repetitive sequences carried out over a PDU/packet which can be rolled
together. Together with ALF (which is a pre-requisite for ILP to deploy sen-
sibly), this can be applied, particularly to multimedia units of data sent as

RTP/UDP/IP encapsulations.

We do not need to go into the design of audio and video software here. Vic, Vat
and Rat are all well documented elsewhere, and the algorithms for compression,
playout adaptation and mixing have already nbeen described in earlier chapters.

Here we concentrate on the Shared Applications and the LBNL Whiteboard,
wb, and the UCL Network Text Editor, nte. We take a close look in particular at
the Distributed Repair Algorithms.

8.2 Roadmap

The main aspects of multimedia audio and video applications have already been
convered, but the real advantage of the Internet is that other applications oriented
around data can be coupled with the audio and video applciations. In this chapter,
we discuss two example applications, a shared editor to illustrate distributed reliable
data sharing, and a model for shared virtual reality or games, where reliability can
be relaxed further.

179

180 CHAPTER 8. APPLICATIONS

The lesson to take away from this chapter is that for each application the designer
needs to consider consistency and reliability anew.

8.3 Shared Applications in the Mbone

Shared applications that currently exist in the Mbone are what is termed Collabo-
ration Aware, which is to say that they have been written specifically to be used by
multiple simultaneous users, rather than simply being adapted through some kind
of wrapper such as a shared windowing system with floor controller, to such use.

Wb and Nt represent a fairly radical departure from previous shared applica-
tions, in that they are engineered in the context of very large numbers of users
(1000s) and over very long haul networks, where there are very poor guarantees of
full connectivity for the duration of a conference that is using the application, and
where the capacity and delay from any given source to the group of users of the
shared application may be varying by orders of magnitude.

To deal with this, the authors of both of these tools recognize up front that
consistency of views for all users is a holy grail, and simply unachievable within
finite resources. However, correctness of view should be possible up to some point.

The starting point for solving this is that an application specific reliability is
required, and that it is different for Wb and Nt.

Wb defines a set of operations that each user can carry out on the whiteboard,
each of which is idempotent, or can be repeated without danger. The reliability
in Wb is achieved through retransmission of missing operations. Again, to gain
scaling to large numbers of participants, there is a very ingenious scheme to decide
who requests a retransmission: Conventional schemes really on recipients notifying
senders of missing packets through negative acknowledgement packets or NACKs.
However, a NACK/Retransmit style protocols would not scale, as typically, a loss
that is incurred somewhere in the MBone might be perceived by entire cohorts of
receivers when a subsequent operation arrives; an implosion of NACKs from all
of them would then result. Wb uses multicast to its own benefit. All messages
for all functions are always multicast. They also all contain timestamps, and all
participants monitor their closeness to each other. When a recipient wishes to
request a repair retransmission, they first throw a dice with a number of sides
depending on how near they are to the source of the missing message, and wait for
the time indicated by the dice. If they subsequently see a repair request from one
of their cohorts, they suppress timer that would otherwise have gone off and caused
them to make the request.

The Wb scheme is self tuning, and works very well

Nt is somewhat different, in that it is not a whiteboard, but a shared doc-
ument editor (Network Text). Thus the operations by different users cannot be
conveniently made idempotent. Nt attempts a stronger ordering than Wb, but uses
similar schemes to achieve the repair. In the event of a partition of the network,
followed by a healed network, Nt will offer the users a choice of which branch of
the now disjoint edits to follow (or to revert to the pre-partition version of the
document).

8.3.1 Background to NTE

Since 1992, the multicast backbone (Mbone) on the internet has been used for a large
amount of multiparty multimedia conferencing experimentation. Although several
audio and video tools have been developed and used on the platform, only one
shared workspace tool has seen significant usage, namely the wb shared whiteboard
tool from Van Jacobson of Lawrence Berkeley Labs. Although wb is a good shared

8.3. SHARED APPLICATIONS IN THE MBONE 181

whiteboard tool, we have often seen it used in circumstances where a shared text
editor would have been a better choice of tool.

Wb is not a shared editor - for good reasons it keeps separate users’ drawings
and text separate, as this greatly simplifies both its usage and its data consistency
problems. We believed that for a relatively simple environment - that of shared
text editing - these consistency problems could be solved within a loose consistency
framework that had excellent scaling properties similar to those of wh.

Starting from some general guiding principles - those of TP multicast, Appli-
cation Level Framing and Light-weight Sessions, we set out to develop a scalable
shared text editor. In this section we discuss these general guiding principles. In
the next subsections, we discuss the more general requirements of a shared text
editor. Tn section 8.3.2 we explore in detail the effects of these requirements, the
development of a data model and the constraint the data distribution model places
on the operations that can be performed on the data set. In section 8.3.4 we ex-
amine some more detailed issues that affect the usability of our shared text editor,
and in section 8.3.6 we attempt to generalise from our experiences to see how some
of the solutions might be applied elsewhere.

Scalability

Typical usage of a multiway shared editor is envisaged as being in a “meeting” with a
number of people at geographically distributed sites. Although the number of people
actually making changes to a document at any time is likely to be relatively small,
we wish to avoid placing constraints on the number of people able to participate
in such a meeting. In particular, we do not wish the load! on any participating
component to scale’ with the number of participants.

Resilience

We wish a shared editor to be resilient to network conditions including packet loss,
link failure, and failure of any participating end system. In combination with the
scalability requirement, the necessity to tolerate link or end-system failures implies
that a distributed, replicated data model is appropriate. Resilience to packet loss
can be achieved through redundancy, through retransmission, or through network
reservation. Network reservation as is not widely available and we will aim to show
that it is unnecessary for this sort of application.

Loose Consistency

Observations from the MICE project of people using a shared whiteboard (wb) in
conjunction with an audio tool lead us to conclude that the users of such tools
will happily tolerate temporary inconsistencies between the view of a document at
one site and the view of it at another, so long as eventual consistency is achieved
and so long as the time they have to wait is predictable. This is fortunate as the
requirements of resilience and scalability dictate that total consistency of view is
not possible unless mechanisms requiring unacceptable delays are employed.

Interactivity

As a general rule, constraints on interactivity between users via a shared application
should be kept to a minimum, and only imposed as a policy where the users actu-
ally require such constraints rather than imposed by the mechanism of the shared

load, in terms of messages on any particular link, state or processing power
2we would like components to scale O(1). At the very worst, no component should scale worse
than O(n), and even O(n) is not acceptable in some circumstances.

182 CHAPTER 8. APPLICATIONS

application. Thus with a shared editor, the mechanism implementing the editor
should allow multiple users to edit the document simultaneously. Thus if the shar-
ing mechanism requires a lock to be imposed on a part of the data set, then this
lock should be imposed on as small a part of the data set as possible to maximise
the potential interactivity that can be achieved between users through the editor.
However, the imposing of locks of any sort is at odds with the resilience/scalability
requirements above, and because we do not require global consistency at any time,
the use of locks should be avoided if suitable alternative solutions are available.

Usage modes

Generally speaking there are two main forms of usage for a shared editor:
e Collaborative editing of a passage of text
e Annotation of a passage of text

In practice, when working in groups, we observe that shared editors also get used
to a degree as additional communication channel, but this can largely be though of
as annotation, even though these meta-annotations are not directly associated with
existing text. Thus it is important for a shared editor to be able to easily support
both these communication modes as transparently as possible.

If we satisfy the interactivity requirement above, it is vitally important, whether
annotating or modifying text, that the person making a particular change is easily
identifiable, even though several changes may be being made simultaneously.

8.3.2 Design

The basic building block for nt is IP multicast [15][29]. This provides us with many-
to-many communication at constant cost, irrespective of the number of receivers.
To achieve resilience, we adopt a distributed, replicated data model, with every
participant attempting to hold a copy of the entire document being shared. This
means that end-systems or links can fail, but that the remaining communicating
sites still have sufficient data to continue if they desire to do so. Updates to the
distributed data model are made using TP multicast, although this means that due
to packet loss, not all sites will receive a particular update - how this 1s resolved is
discussed later.

In designing nt, we attempted to apply the guiding principle of application level
framing (ALF, [20]) - thus the application and its communication model employ the
same data units.

Application Data Units

Our choice of application data units is driven in part by the model for data distri-
bution and our choice of data distribution model is driven in part by the choice of
application data units. Although we present the two as separate sections for the
sake of readability, it should be clear that the two really are closely interrelated.

The guiding factors in determining nt’s data model come from the interactivity
requirement listed above - many users must be able to work on the same document
simultaneously - and the observation of usage modes, particularly the need to be
able to keep annotations separate from the primary text being worked on.

These guiding factors led us to choose a hierarchical data model based around
blocks of text, each consisting of a number of lines of text. Each block of text is
independent of other blocks of text - it can overlap them if required although this
does not aid readability. An example of blocks of text used for annotation, with
each block in a different font, is given in figure 8.1.

8.3. SHARED APPLICATIONS IN THE MBONE 183

:—) Smiley Surprised smiley?
:=(Unsmiley
:—o Smiley singing national anthem
:—* Smiley after eating something sour
=:-) Smiley punk-rocker No, real punks don’t smile

OK, this is a real punk smiley:

=:—(

Figure 8.1: An example of blocks of text used for annotation

As it is not expected that most annotations will be modified by multiple users
simultaneously, this by itself allows a number of users to be working simultaneously
on the document in separate blocks.

However only allowing multiple people simultaneously to annotate a document
imposes too great a constraint on the potential usage modes of the editor. Thus we
also make each line of a block of a document a separate entity. This allows users
to be working on separate lines in the same block without there being a potential
conflict.

We could potentially have taken this model further, and treated each character
of a line as an independent entity. There are, however, a number of reasons why this
is undesirable. Firstly, the amount of state that needs to be kept for each separate
entity to ensure eventual consistency is significant. In addition, if we choose a line
rather than a character as an ADU, we do not need to receive all the individual
changes to the line as a user types - the most recent version of the line is sufficient,
which gives us a large degree of redundancy in the face of packet loss. Lastly, there
are potential transmission failure modes that with either line ADUs or character
ADUs render us with no globally consistent ordering for the ADUs - however, due to
the nature of the changes to text, these are significantly less likely to occur with line
ADUs than with character ADUs. We shall discuss these failure modes and also the
implications of two users attempting to modify the same line simultaneously later,
in the light of the loose consistency model described below.

It is perhaps not immediately obvious that either a line or a block is truly an
independent entity. A block of lines is an independent entity because it has no
interaction with, or dependency on, other blocks. However, within a block, lines
are dependent on the block that contains them as their location is dependent on its
position. In addition, a line has a position within a block. This can be represented
in a number of ways - the simplest being an absolute line number, or relative links to
next and previous lines. However, given that we wish to avoid any form of locking,
it is possible that a message conveying the creation of a new line by one user crosses
with a message conveying deletion of an earlier line by another user - in this and
other similar cases it is clear that an absolute line number is insufficient to uniquely
place the line within a block. Positioning a line relative to neighbouring lines is more
robust, as even if a line creation crosses with the deletion of the line immediately
previous to the new line, the location of the previous line can be retained after its
deletion and the location is still unambiguous. Perhaps as importantly, so long as
lines are only created or deleted (never moved) relative location of lines means that
only changes in the immediate location of the line in question can cause possible
confusion, which makes it much easier for the user interface to make the possible
confusion obvious to the users involved.

However, although relative location information for lines is more flexible, it is

184 CHAPTER 8. APPLICATIONS

insufficient to be able to display a block of text as it arrives complete with lost
packets - such as might happen when a file is loaded into the editor. In such
a case, adding additional line numbering allows the parts of the block that have
been received to be displayed immediately irrespective of whether there are any
missing lines at this stage. Whether this is an important requirement depends on
the importance placed on timeliness of display - we took the viewpoint that it is
important to be able to display any change as soon as it is received, and so added
line numbers to the line ADUs which are ignored after all previous lines in the block
have been received.

Given the choice of ADUs as lines and blocks, there is a certain amount of
meta-data that must be associated with each. Thus a block contains; amongst
other things, the following:

e position of the block on the page
¢ the line-id of the first line in the block
and a line contains, amongst other things:
e the text of the line
e the block-id of the block this line forms a part of
e the line-id of the previous line

the line-id of the next line

the line number of the block (ignored if all previous lines in the block are
present)

Thus, although lines and blocks are not completely independent, blocks can be
moved without modifying the lines contained in the block, and lines can be created,
deleted and edited independently of other lines or blocks. There are however a
number of desirable operations on lines that cannot be carried out independently -
we shall discuss these and their consequences later.

Distributing the data model

The choice of a line as the ADU was made in part due to the simple observation
that most consecutive changes are made to a single line - generally because a user
continues to type. Thus if the whole line is sent for every character typed the
additional overhead (over just sending the changes) is not great, the data transfer
is idempotent (assuming a version of the block has already been received), and a
great deal of “natural” redundancy is available - so long as a user continues typing
on the same line, lost packets are unimportant. However this is only the case if
we take a loose consistency approach - changes are displayed as soon as the arrive,
irrespective of whether other sites have received them.

In order to be able to use this “natural redundancy” property, it must be possible
to identify whether a version of a line that just arrived is more recent than the copy
of it we have already. This is necessary for two reasons - firstly to cope with
misordered packets from a single source, and secondly to cope with retransmitted
information from hosts with out of date versions of the data.

Misordered packets could be easily spotted using a sequence number; however
out of date retransmitted data is not possible to identify in this way. If we assume
synchronised clocks at all sites, recognising out of date information is very easy to
achieve by simply timestamping every line with the tome of its last modification, and
sending these timestamps along with the data. Packets containing a line or block

8.3. SHARED APPLICATIONS IN THE MBONE 185

with an out of date timestamp can be ignored at a receiver with a later version
of the same data. If we wish to take advantage of redundancy by not requiring
retransmission of many lost packets, and we have modification timestamps in the
packets, then we have no use for a sequence number in the packets. In general a
receiver does not care if it receives all the changes to a line as they happen; rather
it only cares that it receives the final version of a line, and that it receives sufficient
changes that users understand what it happening as it happens.

In practice, we can’t assume synchronised clocks, but we can implement our
own clock synchronisation protocol in the application. Also if a receiver sees a
retransmission of out of date data, it should attempt to update the sender of that
data - we shall discuss how this can be achieved scalably under retransmission
schemes below.

Clock Synchronisation

Given that all changes to a document are multicast, and that all changes are times-
tamped, we have a simple mechanism for clock synchronisation amongst the mem-
bers of a group:

e if a site has not sent any data and receives data from another site, it sets its
clock (application clock) to the timestamp in the received message.

e if a site has not received any data, and needs to send data, it sets its application
clock to its own local clock time.

o if a site then receives a message with a timestamp greater than its current
application clock time, it increases its application clock time to match that of
the received message.

These simple rules ensure that all sites application clocks are synchronised suffi-
ciently accurately for our purposes.

Application
Time

Message sent by

e S6 syncs all other

A E sources
i E
E

Message sent by
one of S1,52,S3
syncs S4 and S5

Message sent be S5 syncs S4

Message sent by S2 syncs S1,S3

Real Time

Figure 8.2: An example of application based clock synchronisation

186 CHAPTER 8. APPLICATIONS

Figure 8.2 illustrates this process. In this figure, source S2 sends the first mes-
sage, and S1 and S3 synchronise to the timestamp in the message. Note S1 can
only move its clock backwards because it has no data. Two new sources then join,
S4 and S5, and before any of the original sources send a message, S5 does so. As S4
has sent no message (therefore has no data), it now synchronises to S5. The three
original sources have data therefore do not synchronise to S5. One of the three
original sources then sends, and both S4 and S5 synchronise to the timestamp in
the message. A new source S6 then joins, and sends before anyone else does. As its
local clock is ahead, all the existing sources now synchronise to it.

To illustrate in more detail, this consider three sites A, B, & C, with three
application clocks t 4, tp, and t¢, and positive transmission delays dap, dac, etc.

if A sends the first message, we have
tp =ta —dap
tc =ta —dac

if dap ever decreases when A sends, then B will increase its clock to match the
new delay, and ¢4 and tg become closer.

if dyp increases, B continues to use tg
Now consider a message sent by C"

This message arrives at B with timestamp ¢4 — dy¢ and it arrives at time
ta—dap +dcp. A comparison is made and only if dac < dap — deop is the clock
at B increased to be t4 —dac. Thus the clock at B can only get closer to the clock
at A when a message is received from C'.

The process continues so long as messages are sent.

As all messages are timestamped anyway, global clock synchronisation to less
than the minimum delay between any two active sites is provided for free, and no
explicit clock synchronisation protocol is required. Naturally this assumes that all
local clocks run at the same rate. This is a reasonable assumption for almost all
of today’s workstations. Even if there is a clock in a conference that does not run
at the same rate as the rest, this does not cause the application any real problems.
The worst that can happen is that all clocks increase whenever a message from the
fastest clock 1s received, and that timestamps bear no relation to real time, and do
not get successively more accurate than the first pass approximation.

There are many algorithms that synchronise the clocks more accurately than
the algorithm given above, but for the purposes of consistency control, a necessary
feature is that clocks are never decreased, and the algorithm given is simple and
sufficient.

Implementation of this algorithm reveals that there is a case where clocks do not
stabilise to the fastest clock. This occurs when two sites with a clock tick of length
t are connected by a network with a transit delay of less than t, as illustrated
in figure 8.3. This can happen with some Unix workstations with a 20ms clock
resolution connected by a local Ethernet. Under these circumstances, the receiver
will synchronise to the sender to a resolution of less than t. If the two clocks are
not in phase, then the receiver can be ahead of the sender for part of each clock
cycle. If their roles as sender and receiver are reversed and the new sender now
sends a packet at a point in the clock cycle where its clock is ahead, the old sender
then increments its clock to match the new sender. If both sites send alternately,
this can result in both clocks being incremented indefinitely. This can simply be
avoided if the clock tick interval is known, by simply ignoring and clock differences
of less than the clock tick interval. This is not noticeable from the user’s point of
view as clock tick intervals are generally less than 20ms.

8.3. SHARED APPLICATIONS IN THE MBONE 187

Application
Time
(clock ticks)

A message sent by S2,
1= clock 1 incremented

.
et

message sent by S1,

: [clock 2incremented again

message sent by S1, clock 2 incremented

o Clock at S1

] Clock at S2

Intended maximum
of clock 1, clock 2

Real Time
| | | | | | (Clock Ticks)

Figure 8.3: Clock synchronisation failure due to clock granularity being less than
transmission delay

Towards Reliability

Due to the redundancy inherent in the data distribution model - namely that a user
that continues typing will refresh and repair earlier packet losses on the same line of
text - nte will often perform acceptably with no mechanism for ensuring reliability.
However, there are also many situations where this is not the case, and so we need
a mechanism to detect and repair the resulting inconsistencies.

Inconsistencies may result from:

e Simple packet loss not corrected by subsequent changes (particularly where
the last change to a line has been lost, or where a block is the result of loading

from a file)

e Temporary (possibly bi-directional) loss of large numbers of modifications due
to network partition.

e Late joining of a conference.

e Effectively simultaneous changes to the same line.

188 CHAPTER 8. APPLICATIONS

Inconsistency Discovery

Discovery of inconsistencies is not a difficult problem - however unlike the mech-
anisms used in RMP [52] and SRM [18] inconsistencies due to simple packet loss
cannot be discovered simply from the absence of a packet as we wish most such
changes to be repaired by redundancy, and therefore do not need to see every
packet at a receiver.

Instead we use a mechanism that ensures inconsistencies are resolved, irrespec-
tive of the number of packets lost. There are three parts to this inconsistency
discovery scheme.

e Two schemes are based on the session messages each instance of the appli-
cation sends periodically to indicate conference membership. These session
messages are sent by each site with a rate that is dependent on the total num-
ber of sites in the conference. Thus the total session message rate is constant
(albeit a low one). To detect inconsistencies, each session message carries two
extra pieces of information - the timestamp of the most recent modification
seen, and a checksum of all the data. If the timestamp given by another site
is later than the latest change a receiver has seen, the receiver can request all
changes from the missing interval without knowing what that data actually
was. This is most useful when changes have happened during a network par-
tition but all sites were passive when the partition was resolved. However, if a
network partition was a resolved as a site was transmitting, the receiver may
have the must recent changes, but not some older ones - hence the checksum
is a last resort to discover that a problem has occurred, if not which data is
missing.

e The third scheme is a more active scheme designed to prevent the above
schemes from needing to be used where possible. We have a concept of the
current site - this an instance of the application at the site which has most
recently been active. If more than one site is active, any of those sites can be
chosen as current site. The current site periodically multicasts out a summary
packet giving the timestamps and IDs of all the most recently changed objects
(lines and blocks). If a receiver has a different version (either older or newer) of
one of these objects then it 1s entitled to either request the newer version from
the current site, or to send its later version. The current site may change each
time a new user modifies the document; however the rate that these summary
packets are sent is a constant whilst any users are modifying the document -
a new current site simply takes over from the previous one. In fact sometimes
more than one site may think it is the current site at any one time.

An alternative to sending explicit summary packets might be for session and data
packets to have an additional object ID and its modification timestamp added to
them, and for all sites to take turns to report the state of the most recently modified
objects. Indeed, depending on the choice of retransmission scheme, this may be
preferable, but we have chosen not to use this scheme. We shall discuss why not
after we have discussed the choice of retransmission scheme.

Scalable Retransmissions

When a receiver discovers there is an inconsistency between its data and that of
another site, it cannot just send a message to resolve the inconsistency immediately
- if it did so there is a high probability that its message would be synchronised
with identical messages from other receivers causing a NACK implosion. Instead
we require a mechanism to ensure that approximately one site sends the message. If
such a message is an update, it should be multicast as this may update other sites

8.3. SHARED APPLICATIONS IN THE MBONE 189

with out of date information. In fact, if such a message is a retransmission request,
it should also be multicast, as then the reception of the request can be used at other
sites to suppress their retransmission requests.

Van Jacobson uses such a scheme in wb[18] where a retransmission request is
delayed by a period of time dependent on the round-trip time between the receiver
and the original source plus a random amount. This scheme requires all participants
to calculate a delay (round trip time) matrix to all other sites, and this is done using
timestamps in the session messages.

wb is more dependent on its retransmission mechanism than nte is, as wb has no
natural redundancy, and thus it requires its retransmission scheme to be extremely
timely. nte does not wish its retransmission scheme to be as timely as wb’s scheme,
as 1t expects most of its loss to be repaired by the next character to be typed. In
fact, in many cases this results in very significantly fewer packet exchanges because
in a large conference on the current Mbone, the probability of at least one receiver
losing a particular packet can be very high. Thus what we require is a retransmission
scheme that ensures that genuine inconsistencies are resolved in a bounded length of
time, but that temporary inconsistencies due to loss which will be repaired anyway
do not often trigger the retransmission scheme.

Whb’s scheme can be simply tailored to do this effectively by adding a “dead time”
to the retransmission timer to allow a window during which the next modification to
the line could arrive. If we used wb’s randomised time based scheme, then we would
probably opt for not sending summary messages but instead adding ID/timestamp
pairs to the session messages as described above. These would then tend to spread
the retransmission requests more evenly.

In fact, wb’s mechanism has not been described in detail at the time nte was
designed and implemented, and we used a different sender driven retransmission
request scheme.

Sliding Key Triggered Retransmissions

When a instance of nte sends a summary packet, it starts upon the process of
sending a sequence of keys. When a receiver matches a key sent by the sender,
it can immediately send its retransmission request (which can be many objects if
necessary) along with the key that was matched. On receiving this request, the
sender then starts the retransmission of the missing data.

What causes this to be scalable is the nature of the keys involved. The sender
generates a random integer when it creates its summary message. Upon receipt of
the summary message, the receiver also generates a random key. Then the sender
sends its key along with a key mask which indicates the bits in the sender’s key
that must be matched in order for the receiver to send a retransmission request.
This key/mask pair is sent several times (typically 2 or 3 times) and then if no
retransmission request is forthcoming, the number of bits indicated by the mask
is reduced by one, and the key/new mask pair is sent again. If no retransmission
request 1s forthcoming by the time the mask indicates no bits need to be matched,
then the process is started again with a new random key, a new summary report, and
possibly a new current site. If no change has occurred since the previous summary
report, the rate of sending sliding keys is reduced to half the rate for the previous
round or until it reaches a preset lower rate limit. This process is illustrated in
figure 8.4.

This is based on a scheme[19] devised by Tan Wakeman for the solicitation of
congestion report messages in multicast based adaptive video coders.

As the session messages give us a reasonable approximation of the size of the
conference at the point when we generate the summary message, the sliding key can
be started close to the point where it would be expected to elicit the first response

190 CHAPTER 8. APPLICATIONS

Sender chooses a random key, and a mask
appropriate for the size of the conference.
Receivers also choose a random key.

Sender

[EEEPEPPPEPEEEPR] Key

[|] Mask Each round, the sender reduces the mask by one,
and sends the key/mask pair again.

COEAPEPPPOEPR o] Round2
| [|

CPEEPEPPPEPEEED] Round3
[[|

CPETPIPPP PRI L] Round4
[[|

CPEIPIPPPEPIEEpr] Rounds
[[|

CPEIPIPPPEPIEEpr] Round6
[[|

TPERPEPPPLPRLER] Round7-Receiver 2 matches key
I |

\\\K,J

Key Matches
Receiver 1 Receiver 2 Receiver 3

11 S0 TN SN (N (O 0 O 1 N (N £ M o LPRLRJO[IfIoijoooLofifi] LLPRIPLPPOEIPEER]]

Receiver 2 can now request a retransmission

Figure 8.4: Sliding Key Triggered Retransmission Requests

if all receivers need a retransmission. For a typical thousand way conference, where
only one receiver requires a retransmission, with each key/mask pair sent twice per
round and an estimated worst case RTT of 250ms, this results in 4 (small) packets
per second and a maximum delay of 5 seconds before requesting retransmission.
Note that this is a much shorter time than can be achieved by having each receiver
randomly choose a delay from a sufficiently large uniform interval to ensure approx-
imately one retransmission request is made. If the conference was smaller, or more
sites had suffered loss, this time would be reduced.

8.3.3 Limitations of the Data Model

We have described a data model and a distribution model which are oriented to-
wards building a scalable distributed shared text editor. However, the data model
and more importantly its distribution model impose a set of limitations on the
functionality of the shared editor, or on the way this functionality is implemented.

Whilst a data model based on blocks and lines allows different blocks or lines to
be modified simultaneously without any problem, the lock-free distribution model
and the choice of a line as ADU mean that it is possible for more two or more users
to attempt to modify the same line effectively simultaneously.

In addition, network partitions can result in more complex inconsistencies aris-
ing. We shall show below that a few simple choices can result in all such more
complex inconsistencies becoming equivalent to a detectable case of effectively si-

8.3. SHARED APPLICATIONS IN THE MBONE 191

multaneous insertion of lines into the same place, and that this can be resolved as
all the alternative information is available at each site.

Effectively Simultaneous Changes to the Same Line

By “effectively simultaneous” we mean changes to the same line where due to net-
work delay, or partitioning, two users attempt to change the same line without
seeing the effects of the others changes first. Thus the timestamps of the changes
may not be identical.

Effectively Simultaneous Changes due to Transmission Delay

NTE is designed for use in multimedia conferences where there are other channels
of communication between users than just NTE. Thus two users whose sites are
not partitioned from each other attempting to modify the same line effectively
simultaneously will see the change made by the later site being substituted for the
change made by the earlier site. If such changes do not involve adding a line break
to the middle of a line, then no lasting confusion should remain, and at least one of
the users will be notified of what is happening. Hopefully, at this point the users
will talk to each other and decide who should actually make the change. Even if the
users do not have an out of band communications channel, they can always create
a new block to make meta-comments to resolve the confusion.

It should be noted that although there are circumstances when one site does
not even see the change made by the other site (for example, Site 1 does not seer
Change 2 in figure 8.5), it is possible for the user interface to flag the fact that
another user is attempting to modify the line, so that both users do realise exactly
what is happening.

Site 1 Site 2
change 1
change 2

change 3

v Y

Changes 1 and 3 prevail. Change 2 is seen briefly at site 2, then disappears.
Site 1 never sees Change 2 - it is already too old when it arrives at site 1.

Figure 8.5: Two users attempting to simultaneously modify the same line

If one of the users adds a line break to the middle of a line, this is mapped into
a truncation of the existing line, and the creation of a new line after the existing
line with the remainder of the text. The overlapping request, if it happens after the
line break insertion, but before the receipt of the message (see figure 8.6) will then
re-assert the previous line. This will be confusing for users, as suddenly text has
been duplicated.

One way to deal with this is to maintain a very short history, and if a remodi-
fication of a line we just modified arrives within the expected round trip time, we

192 CHAPTER 8. APPLICATIONS

Site 1 Site 2

change 1

change 2

Y v

change 1 results in a line being split in two, creating a modified line and a new line.
change 2 modifies the original line.

In a simple scheme, the new line from change 1 and the modfied original from
change 2 remain. This is most likely with a network partition, but could also occur
due to simple transmission delays.

Figure 8.6: Undesirable behaviour due to simultaneously splitting a line and modi-
fying it.

reassert (and retransmit with a new timestamp) the old unmodified line, and delete
the extra created line. This strategy can of course be defeated by packet loss, but
may reduce confusion in those cases where the problem can be detected.

It should be noted that packet loss can be treated as an abnormally long trans-
mission delay for these purposes.

An alternative depends on the model we use for deletion - if deletion is an
irreversible operation (i.e., deletion overrides modification), then simply deleting
the line to be split and inserting two new lines in its place prevents this undesirable
behaviour.

Effectively Simultaneous Changes due to Network Partition

Whereas in the case of simultaneous modification due to transmission delay, we
could effectively backup with a minimum of confusion to the user (so long as we
inform them why we’ve done so), we cannot do so in the case of simultaneous
modification due to network partitioning.

If only single lines have been modified, there is no real problem, as the later
change will be asserted, and although this may not be what the user whose change
Just got replaced actually wants, at least the document ends up in a consistent state.

However, if the user making the earlier modification adds any new lines (partic-
ularly if they do so by inserting a line-break into the middle of a line), then there is
a potential for the document to end up in an inconsistent state. We shall show later
that we can detect simultaneous insertion, thus to maintain internal consistency,
we should treat the splitting of a line (by adding a linebreak to the middle of an
existing line) as deletion of the old line, plus insertion of two new lines.

It is also possible to keep a local copy of the state of any line we have modified
at the time we last modified it in order to be able to re-assert the state if the
conflict resolution was not what we actually wanted. However, it is always possible
to envisage ways to defeat such a scheme if it were to be performed automatically,
so such a re-assertion should only be performed with explicit consent from the user
for each step.

We hope that these mechanisms will not be often called upon, but choosing a

8.3. SHARED APPLICATIONS IN THE MBONE 193

line as our minimum unit means that there will always be occasions when such
mechanisms are called upon. How effective they are depends largely upon how well
it 18 communicated to the user what has happened, and what options they have to
deal with it.

Deletion of Lines of Text

Deleted lines need to be stored as if they were modified lines, with a marker that
they are no longer visible. If they were not stored as actual objects, then they may
be re-asserted by sites which have missed seeing the deletion event. Unfortunately
it is necessary for deleted line ID’s and deletion times to actually be transmitted
and stored at all sites to prevent unintentional re-assertion of deleted lines after the
deleting site has left the conference.

If an entire block of text has been deleted, sites only need hold the ID and
deletion time of the block - the holding of information of lines within the block is
unnecessary.

To prevent the re-assertion of lines or blocks after deletion when a network
partition is resolved, it is even necessary to send deleted block and line ID’s and
timestamps to new sites joining the conference, so that they can continue to suppress
re-assertion of the deleted line or block after all the other members of this partition
have left the conference.

To prevent unnecessary usage of bandwidth and memory, line and block IDs
could be re-used for new lines and blocks. However, this is dangerous as a deletion
event and the subsequent re-use of the line ID in one partition, followed by the mod-
ification of the original line in another partition can lead to undesired consequences.
It would be possible to consider schemes where a line ID can only be re-used in a
different block from the one it was previously used in, and thus the line’s block id
field can be used for collision detection, but if the site originating the TD is no longer
reachable, it is far from obvious who can resolve the conflict without introducing
further complications. Thus in NTE, we have not attempted to implement any 1D
re-use system.

The most significant design decision here concerns the effects of network parti-
tioning - if a user at a site in one partition deletes a line, and subsequently another
user in the other partition modifies the line, we have two choices when the partition
is resolved:

e Rely only on modification time (i.e. treat deletion as just another modification
that can be rectified later if required)

e Impose an ordering on operations such that deletion is of “higher order” than
normal modification, such that deletion always prevails over modification.

If we treat deletion as modification, then when several neighbouring lines are
deleted in one partition, and one of the middle lines is subsequently modified in
the other partition, a single line would be re-asserted with no surrounding context.
There are mechanisms we could employ to deal with this, but they tend to add
unnecessary complexity, and generally are less natural to users.

If we treat deletion as a higher order operation, then a different scenario causes
potential problems - a line can be split into two lines in one partition (one modified
line and one new one), and subsequently deleted in another partition, leading to
only half a line remaining after the split when the partitioning is resolved.

We took the decision that deletion is a higher order operation, as this provides
us with a mechanism that is irrespective of causal ordering in a partitioned network,
and this causal ordering independence provides a mechanism which we can utilise
to achieve internally consistent global consistency.

194 CHAPTER 8. APPLICATIONS

Thus the problem above where a line is split in two (a “newline” is added to the
middle of the line) can thus be resolved by deleting the line we wish to split and
inserting two new lines in its place. This achieves internal consistency because even
if the line split in one partition is modified or deleted in the other partition, the
deletion operator overrides the modification operator, and the two new lines then
take its place. Of course if a line is split in both partitions, then we now get both
versions of the line after partition resolution, with no globally consistent view of
the line ordering in the block. Thus we’ve moved the problem to that of effectively
simultaneous insertion of lines. However, effectively simultaneous insertion is a
detectable situation, as we shall show below.

In fact to achieve inconsistency detection, there is one further requirement with
respect to deleted lines; they must not only be kept at all sites to prevent re-assertion
of the line from a site that missed the deletion, but they must also be kept in their
original place in the list of lines at each site. Thus, a line preceding a deleted line
must still be transmitted with its "next line” field indicating the deleted line. This
is necessary so that simultaneous insertion is a detectable situation.

Moving of sections of text

There are two ways to view the moving of a chunk of text:
e Deletion and then insertion of the contents of the deleted text

e Changing the bordering lines neighbours (sending modifications of the top
and bottom lines of text specifying new neighbours)

Deletion and then re-insertion is wasteful of bandwidth and causes extra state
to have to be held (and sent) for the deleted lines. We are sure however that no-
one can have already changed the new lines, assuming deletion is not overriden by
modification, that the original lines cannot be re-asserted.

Modifying the context information of the bordering lines and just re-sending this
information has the possible advantage that someone modifying the moved text in
its old position due to temporary partitioning sees her changes reflected in the new
positioning after the partitioning has been resolved. However, it is possible that one
or more of the bordering lines are modified in a partitioned site after the move has
occurred, and that the resolution of the partition then undoes or partially undoes
the move, resulting in a block where no-one knows the correct line ordering.

Allowing the possible situation of no-one knowing the correct line ordering is ex-
tremely undesirable, and so we treat moving as deletion and subsequent re-insertion,
despite the additional overheads this entails.

Garbage Collection and Check-pointing

Treating deletion as a higher order operation than modification gives us a mech-
anism for both check-pointing of blocks and of garbage collection of deleted lines.
Both of these can be done by deleting a block, and then re-asserting the same data
as a new block and lines. Although this might seem wasteful, it means that for the
additional cost of keeping deletion information for a single block, we no longer need
to store the deleted lines that used to be in the block. In addition, it means that
if there is a network partition that is subsequently resolved, any changes made in
the other partition will not be asserted. Of course this has to be implemented care-
fully, as the users in the other partition may not wish to see their changes simply
discarded, but there are times when it is desirable to assert the current state. If
both partitions checkpoint the same block, then the block will be duplicated at the
time of partition resolution, which may or may not be what 1s desired.

8.3. SHARED APPLICATIONS IN THE MBONE 195

ID: Payload: Prev: Next:

a null| b

e e null

Lines added in our partition

Lines added in the other partition.

Region of inconsistency

Figure 8.7: Simultaneous Insertion is a Detectable Situation

Effectively Simultaneous Insertion of Lines

Effectively simultaneous modification of a single line always results in a block that
is internally consistent and the document in a globally consistent state. We've
shown that if deletion is treated as a higher order operation than deletion, then
combinations of moving, deletion line splitting and so forth can be dealt with,
but with one potential side-effect - all these operations can result in effectively
simultaneous insertion of lines.

Effectively simultaneous insertion of lines is a slightly harder problem than the
problems discussed above, because it not only results in a document that is not
internally consistent (we have two copies of essentially the same line or lines) but
also the document is not globally consistent either (different sites can have different
views of the document). This occurs because two (or more) lines each have the
same neighbouring lines. The problem can be detected at all sites, because a set
of lines 1s received that should fit in the same place in a block as a set of lines we
already have.

At this point the choices we made above, about deletion being a higher order
operation than modification but that deleted lines are retained, and moving of lines
being treated as deletion and re-insertion, ensure that if a newly received line has a
particular previous line, then there are only three choices for where the next line is:

1. There 1s no next line. This line is the end of the block.

2. We have seen the next line, and it is later in the block (possibly deleted).

196 CHAPTER 8. APPLICATIONS

null] b

d [+ d —/
e e null

Lines added in other partition

Line deleted in our partition

Partition resolves to a consistent state

Figure 8.8: Simultaneous Deletion and Insertion - no inconsistency

3. We have not seen the next line.

If we have not seen the next line, then we know we have a potential inconsistency,
and thus we should not display the received line until we have the next line too. We
wait until the line’s “next line” arrives, and again go through this process again.
If the next line is a line we’ve seen, or the end of the block, then we have enough
information to know whether we have a problem or not. We can therefore treat a
connected set one or more new lines as if they were a single line - if the line in our
existing block following the “previous line” of the new data is not the same as the
“next line” of the new data, then we have an inconsistency which must be resolved
(see figure 8.7); otherwise we can unambiguously display the lines.

Now, so long as we keep deleted lines in their original place in the block and
simply don’t display them (see figures 8.8 and 8.9 for examples), and so long as we
treat moving as deletion and subsequent insertion, then there is only one way such
an inconsistency could occur - that alternative new lines were inserted effectively
simultaneously. Thus the question comes down to which of the two sets of lines to
keep and which to delete. So long as this matter is resolved globally consistently,
then global consistency can be restored to the block. In fact it is not quite so simple
as this, because if we delete one version of the lines, we must ensure that the block
is globally consistent including the position of the deleted lines or we may not be
able to detect further inconsistencies at all sites. However, we do not care about
the order of a set on consecutively deleted lines, so instead of deleting one of the
two alternative sets of lines, we must actually delete both alternative sets of lines
and re-insert one of them again.

The choice of which alternative set of lines to retain can be made automatically
(by the “current site”) or it can be made clear to the users that there is a problem
that requires resolution. Either way, if more than one site attempts to resolve the
conflict, the cycle is simply repeated again.

8.3.

SHARED APPLICATIONS IN THE MBONE 197

e e null

Lines added in our partition

Lines added in other partition

Line deleted in our partition

Partition resolves to an inconsistent state

Figure 8.9: Simultaneous Deletion and Insertion resulting in inconsistency

Summary of Inconsistency Avoidance Mechanisms

To summarise the limitations necessary to ensure eventual consistency after the

resolution network partitioning:

Simultaneous modification of a single line does not result in eventual incon-
sistency.

Deletion must always override modification, irrespective of the timing of the
two operations.

Deleted items must be transmitted to and stored at all sites to prevent re-
assertion.

Deleted lines must be kept in their original place in a block, and must remain
referenced by their neighbouring lines - this is a precondition for simultaneous
insertion detection.

Moving of text must be performed by deleting all the original lines containing
the text to be moved and inserting the new text in new lines, thus preserving
the original line ordering. This includes splitting a single line by adding a line
break to the middle of it.

If all the above are performed, line ordering within a block is only changed by
adding new lines. This makes simultaneous insertion of lines during a network
partition a detectable and resolvable situation.

These restrictions will ensure that eventual consistency is achievable, even in the

face of continuing modification during a network partitioning. However, they are

not always sufficient to ensure that the contents of the document eventually converge
on what all of the users actually wish it to be. Although this could be achieved by

198 CHAPTER 8. APPLICATIONS

locking of blocks to ensure that only one person can modify the a block at a time, we
believe this restriction is unnecessary and would restrict usage of the editor. Indeed,
under many circumstances, the usage patterns of the editor are likely to be such
that large scale simultaneous editing of a block during a network partitioning will
not happen because the vocal discussion needed to do so will be possible. If users
are concerned about simultaneous editing of a block during a network partition,
they should checkpoint the block to ensure no unseen changes can be made to it.
For paranoid users, this checkpointing procedure could be automated, although we
do not believe this is desirable or necessary.

8.3.4 Usability Issues
Much work in the field of Computer Supported Collaborative Working (CSCW) has

started from a detailed set of usability requirements, and attempted to engineer a
system to support these requirements. In single user systems, this works well, but
for near-synchronous shared tools, there is a real danger that this result in systems
that do not perform well in real-world networks.

We have started with a high-level set of usage and performance requirements,
and worked through a solution that satisfies these high-level requirements. Such a
solution imposes a tight set of constraints on the operations that can be performed
on the data set. In designing wb, it appears that Van Jacobson also pursued this
design path, although as the high-level requirements were slightly different, their
resulting constraint set is different. There is, of course, a danger that in pursuing
this type of path, the resultant system performs well but does not properly support
any required task. It is dangerous to attempt to draw general conclusions from a
small number of examples, but we believe that both nte and wb have resulted in
systems that support the users’ tasks well. Furthermore, we believe that engineering
a CSCW tool around a set of constraints that ensure good performance is likely to
result in a tool that is more likely to be used.

Having said this, it is vital that detailed usability requirements are given a great
deal of attention when working within our constraint set. The detailed requirements
we used to design nte include:

e Nt should be as simple as possible to use. It is not a word processor, as is not
intended for single user usage.

e It should always be possible to tell who is in the conference.
e It should always be obvious who is performing any change at any time.

e WYSIWIS (What You See Is What I See) is not a requirement. Different
users should be able to edit different parts of the document simultaneously,
even if these parts are separated by several screens of text.

e The primary user operations are:

— Block creation

— Text addition

— Text deletion

— Block deletion

— Block moving

— Cut, Copy and Paste of text

— Search and replace within a block

— Setting the font and colour of a block for identification purposes.

8.3. SHARED APPLICATIONS IN THE MBONE 199

— Using a Shared Pointer
— Loading text from a file
— Saving text to a file

o We expect that no other user operations on the text need to be supported as
they are unnecessary and increase the complexity of the user interface. Other
operations should be added only where they aid the above operations.

e Tt should be possible to prevent other users from editing a particular block of
text - a kind of “annotation only” mode.

o It should be possible to save the resulting text as either ASCII text or as
structured text maintaining the block structure.

e It should be possible to save selected blocks only.

There is little point in discussing all of these detailed design decisions here, as most
of them are uninteresting. However, a few are worthy of mention, as they were not
obvious (at least to the author).

8.3.5 Asynchronous Events - informing the user

One requirement is that it should always be possible to see who is changing what at
any time. In nte we achieve this by placing a labelled graphical icon at the place a
change is happening. This is necessary not only because it identifies who is making
a change, but also because it is not always very obvious that a change has been
made. For example, single character changes are not easy for a user to spot if his
attention was focused somewhere else at the time. Thus the appearance of the icon
serves to mark for a few seconds the location of a change, the nature of the change,
and (because the icons is labelled) who made the change.

In nt, all changes are marked in this way. However, when we started to use nte
in group conferences, it became clear that the screen could get very congested, and
also that when a block of text was deleted, users often could see that a block of text
had been deleted and who deleted it from the eraser icon and who deleted it, but
could often not remember which text it was that was deleted. The reason for this
was that their attention was elsewhere, and all they could tell was that something
had gone. The solution was simple - not only display the eraser icon and its label,
but also fade the block away so they can see what is happening as it happens. In
practice, this fade need take no longer than a second to remove the sense of surprise
that the users were feeling when blocks were deleted.

Block Locking

As mentioned above, one detailed requirement is to lock a block so that only its
creator can modify it. There are a number of cases where this is important, but
the most likely one is a scenario where a piece of pre-prepared text is included in
the conference for discussion. In this case, comments may be added as annotations,
but the original text most not be modified.

So long as a block has associated with it the meta-data of who its creator is,
then locking a block (at least amongst co-operating applications) is simply a case
of marking that block as not being editable.

However, given the unreliable nature of the underlying communications protocol,
if a block is created as unlocked, and then subsequently, locked there is no guarantee
that all sites will receive the “lock” message. Given the scalability and resilience
requirements, we do not even know for certain exactly who is currently in the session.

200 CHAPTER 8. APPLICATIONS

Thus any site that (temporarily) missed a lock message is still free to modify the
locked block until such time as the retransmission scheme succeeds in propagating
the lock message. Given a network partitioning, this could be a significant length
of time. Whilst this circumstance will probably be rare in occurring, we would like
the block locking to be a definite thing - if a user thinks a block is locked, there
should be no way for that block to be modified. A similar, though slightly less
strong, argument also holds for unlocking blocks.

There are a number of possible ways to ensure that block locking 1s unambiguous,
but many of them infringe our previously stated requirements. The following is in
line with our requirements:

1. Allow new blocks to be created as either “locked” or “unlocked”. Do not allow
a block to ever be changed between the two states.

2. Only allow a block to change state from locked to unlocked or vice-versa by
deleting the block and retransmitting its data as a new block.

In the current version of nt, we have only implemented 1. above. We do not
believe that block locking is frequently required, and when it is, it is most often
required on a block whose data has been loaded from a file. Making the decision
about whether or not a block should be locked at load time is quite natural. The
default for blocks created on-the-fly is for them to be unlocked.

8.3.6 Generalising the Models

Nt, its data model, and its underlying protocol were all designed to solve one specific
task - that of shared text editing. We used general design principles - those of 1P
multicast, light-weight sessions, and application level framing as starting points.
However, the application data model is intended only for text. The data distribution
model uses the redundancy achieved through treating a line as an ADU combined
with the fact that most successive modifications are to the same line to avoid the
need for most retransmissions.

However, the restrictions the data distribution model impose on a data structure
consisting of a doubly linked list of application data units can perhaps be generalised
somewhat. The imposition of a strict ordering of ADUs, combined with marking
deleted ADUs whilst leaving them in position in the ordering, allows the detection
of inconsistencies caused by network partitioning in a loose consistency application.
It is perhaps not easy to see how this could be applied to other near-synchronous
shared applications, so an example is in order.

In nt, the stacking order of blocks of text is a local issue so that overlapping
blocks can be simultaneously edited. However, in a shared drawing tool, stacking
order must be a global issue, as most drawing tools use overlaying of one object
over another to produce a more complicated object. In a shared drawing tool, each
drawing object (circle, polygon, rectangle, line, etc) is the drawing equivalent of a
line of text. The concept of a block does not exist as such, but instead there is
a strict ordering (analogous to line ordering in a block) which is imposed by the
stacking order. Thus, the same set of constraints that apply to lines of blocks in nte
should also be applied to the stacking order of drawing objects in this hypothetical
drawing tool.

The retransmission mechanism used in nte is novel, in that its requirements are
perhaps atypical of shared applications because of the wish to exploit redundancy.
For many applications, SRM is a more appropriate choice of retransmission mech-
anism, as, given a stream of packets with sequence numbers, it is likely to be more
timely. However, for applications where retransmission is a relatively rare phenom-
ena due to redundancy or other relaxed consistency requirements, and where we

8.4. DISTRIBUTED VIRTUAL REALITY 201

desire a sender controlled system, NTE’s retransmission scheme has some possible
benefits. Its sliding key messages can carry the latest ID and timestamp, which
can be used to ensure that partitions are resolved at the earliest opportunity. Al-
though we do not use the property in nt, sliding key schemes can be used to ration
retransmission requests - this might be useful where the reverse path from receivers
to senders is bandwidth limited.

8.4 Distributed Virtual Reality

Distributed VR, is a relatively new area of research. Virtual reality systems are now
largely software components, rather than requiring the dedicated head-up-display
input controllers and renderer hardware of the past. Current high-end workstations
can now render scenes described in VRML and other languages in near real time.

The introduction of audio and video input and output on desktop machines led
to the deployment of software based multimedia conferencing, we expect to see the
deployment of multi-user virtual environments over the Internet shortly.

In this paper, we present an architecture for distributed virtual reality. We
outline the necessary network support and a transport protocol, and the way that
distributed virtual reality applications would interact (the API if you like) with
each other using these mechanisms.

It is a goal of the architecture to provide policy free mechanisms for distributed
VR application builders. Tt is not a goal to make 1t easy to program such applica-
tions, since it is all too easy in providing easy-to-program distributed system tools
that let the application builder overload the network, and at the same time provide
suboptimal performance for the user.

The architecture provides necessary and sufficient hooks only for distributed
VR.

Multicast routing is a mature area of research in the Internet. The system
that we now call the “Mbone”[29] has its roots in the research by Cheriton and
Deering where they developed the Internet multicast model, including the idea of
host groups[7] and the basic service model for TP multicast[15]. Tt is now widely
deployed in the network, and available in most common host operating systems and
routers.

Some functions in a distributed system can best be performed in intermediate
nodes or routers, whilst others can best be performed in end systems or hosts. The
end to end principle[5] is used to select where to place a function. The principle is
that a function that requires end system knowledge to carry out correctly should
only exist in the end systems; where it appears in the network, it should only be as
a performance enhancement.

Two principles behind the design of high performance, low cost protocols that
have proved themselves in this environment are Application Layer Framing (ALF)
and Integrated Layer Processing (ILP)[20]. These state simply that: the unit of
synchronisation and recovery should as far as possible be the same as the unit of
communication (packet); and that where possible, modular functionality that is
specified in layered form should not be implemented as such, and that new designs
communications systems should factor this in so that processing associated with
layered modules can be integrated in one pass.

Combining these principles with the use of multicast for many-to-many commu-
nication, a number of further techniques have arisen for protocol design:

e Multicasting everything is a good idea. In applications with relatively high
packet rates, the use of multicast for control information as well as for user
data is not a high load, and can greatly simplify convergence of protocols for
correctness, as well as performance and synchronisation.

202

CHAPTER 8. APPLICATIONS

e As error rates in modern networks have decreased, end to end recovery from

packet loss or re-ordering has been seen to be a more optimal design than
hop-by-hop recovery. As we move from one-to-one, through one-to-many and
on to many-to-many applications, we can see that the same principle has to be
changed. Neither the original sender nor the network can deal with the task of
delivering packets in order, and senders cannot know when (or which) receivers
are missing packets. Tt is not a good idea to use a positive-acknowledgement
plus timeout-retransmission scheme for multicast applications because of the
well known “implosion” problem (congestive collapse caused by multiple ac-
knowledgements returning to the sender or senders)[51].

Scalable reliable multicast[18] is a technique that has seen wide deployment
in LBL’s whiteboard application (the so-called “wb”). Wb uses the principles
above to provide a reliable delivery. The protocol and repair algorithm are
briefly as follows (paraphrased from[18]):

Messages are sent with a sequence number plus a timestamp. There are
three basic types of messages: data messages, negative acknowledgements
and heartbeat messages.

All participants keep state for all other participants, which includes the fol-
lowing:

1. Source address, plus last seen in order sequence number

2. The estimated distance (delay) from this participant to each of the others.

In addition, participants keep a number of the most recently received messages
available.?

On detecting a missing packet from a gap in the sequence number space (be-
tween last received in order and newly received packet), a receiver prepares
to send (multicast) a negative acknowledgement, which acts as a request for
a repair from any other participant. However, the receiver defers from send-
ing the negative acknowledgement for a time. This time 1s set so as to cause
the set of potential participants sending a negative to (implicitly) conspire so
that usually only one (or a small number) of them make the request. To do
this, the timer is drawn from a uniform distribution over the range [c1*dsa,
(ci1+c2)*dsal, where ¢l and c¢2 are constants and da is the requesting par-
ticipant’s estimate of the delay to the source. This time is subject to a binary
exponential backoff in the usual manner if there is no response.

Participants that receive the request for repair, and wish to try and honour
it also dally before sending the repair. Their hiatus is drawn from the distri-
bution [di*dab, (d1+d2)*dab], to ensure that it is likely that only one (or
at least only a few) send the repair.

Repair request messages suppress repair requests from other sites missing the
same packet. Repair responses suppress other responses (as well as hopefully
satisfying the request!).

Finally, the delay estimation is based on the same algorithm used in NTP[148].
Heartbeat messages are sent by each participant carrying a list of other par-
ticipants, together with the timestamp from the last message seen from each
participant t1, and the difference, d, t3-t2, between its arrival time, t2 and
the heartbeat send time t3. On receiving a heartbeat message at t4, the delay

3This may in fact be a feature of the way that the application is structured in any case. For
example, if the application state is the same as the effect of the sequence of messages (as is the
case with a whiteboard), then it may be possible to cast a repair in terms of application state -
i.e. to reconstruct a message that has the same effect as the missing one.

8.4.

DISTRIBUTED VIRTUAL REALITY 203

can be estimated as (t4 - t1 - d)/2. This can be calculated using a rolling
average, and the mean difference kept for safety if required. (So long as paths
are reasonably symmetric, and clock rates not too different, this gives suffices
for the repair algorithm above).

Some applications require packets to have a particular inter-arrival rate. So
long as the network can support the average rate (i.e. there is no long term
congestion), “Receiver makes good” is generally a low cost solution to dealing
with jitter or partial packet re-ordering. It is hard to provide a globally trans-
mission clock in large heterogeneous networks. Essentially, if timestamped,
and a receiver clock does not drift or wander w.r.t a sender clock too quickly,
a receiver can run an adaptive playout buffer to restore the playout times of
packets. The size of the playout buffer is essentially twice the inter-arrival
variation, to ensure a significant percentage of packets arrive within the worst
case time. A rolling average of the inter-arrival times (kept in any case if
the algorithm described above is in use). If the mean delay varies (due to
increased or decreased load on the network, or due to route changes) then
quiet times can be used to make adjustments.

Cheriton[44] describes a a scheme called log based receiver repair which was
devised for distributed simulations in the DIS (the DSINet is an ARPA funded
program of work whose target is the development of a suite of systems to sup-
port the Synthetic Theatre of War demonstration in 1997. from which much
of this research stems). This is similar in spirit to the SRM approach, but
has separate log servers rather than expecting all applications to participate
in the repair algorithm. The upside of this is that a larger history may be
kept (and for applications where the entire history is necessary to reconstruct
current state, it may be too costly to distribute to all sites). The downside
is that a distinguished server type needs a distinguished protocol to maintain
replicant servers and so forth.

Synchronisation of messages from different sources is generally a bad thing.[13]
Open loop protocols such as the types we have described above (and many
other heartbeat style protocols such as routing update and reachability pro-
tocols) are prone to synchronise send times. This can be avoided by careful
selection of randomising timers based on unique participant data (own address
is a good example).

Multicast applications cannot use positive feedback for reliability. Nor can
they use positive explicit feedback for congestion or flow control. Instead,
implicit, and aggregated information may be more effective. One scheme
for congestion Control and multicast is described by Wakeman et al[19]. It
is important to be flexible. Depending on whether group communication
can proceed at the speed of the slowest participant (or link to them) or the
average, or be completely heterogeneous, we need different schemes for flow
and congestion control. We can separate these also in to sender and receiver
based adaptation, and the next item refers to work in this area. In Wakeman’s
scheme, the sender elicits responses from a receiver set at a given distance by
multicasting out a packet with a sliding key, which essentially acts as a selector
key to choose some small percentage of recipients to act as samples to report
n traffic conditions seen at their pint in the network w.r.t the sender.

In the LBL work, this idea is generalized: Multicast receivers keep state about
all senders. As with SRM, periodically, they send heartbeat messages, which
contain this state (perhaps spreading the state over a set of heartbeat messages
to keep the size of the updates small). This state can be used by senders to

204 CHAPTER 8. APPLICATIONS

estimate the conditions at all points in the network. To keep heartbeat/session
traffic to a reasonable level, the rate of the beat is reduced in proportion to the
number of participants. Although this means that the rate of samples from
any given system is decreased for a larger group, the number of samples stays
the same. In fact, as a group gets larger, it is statistically reasonable to assume
that it is more evenly and widely distributed, and may give better and better
samples concerning traffic conditions throughout the multicast distribution

fabric.

e McCanne, on his work on multicast video, has looked at layered media en-
codings, and how they may be mapped onto multiple groups.[149] In this
work, different levels of quality (or urgency, or interest) are sent to different
group addresses. The number of levels, and amount that is sent in each can
be adjusted using schemes such as the one described just before. However,
receivers can independently adjust the rate of traffic that arrives at them
simply by joining (to increase) or leaving (to decrease) one of more groups,
corresponding to the appropriate coding levels.

e Flow and Congestion Signal actions are generally the same for multicast ap-
plications as for unicast. The stable, and safe algorithm used in TCP since
1988[146], with a slow start cycle, a congestion control cycle with exponential
backoff and linear increase, and a fast retransmit cycle to avoid short lived
congestion can be employed.

The rest of this paper is structured as follows: In the next section, we outline
the structure of a distributed virtual reality system. After that we look at some
of the real requirements from distributed VR, both from systems and the human
perspective. Following that we present the transport protocol. Finally we look at
further work that needs to be done.

8.4.1 General Idea and Problems

Virtual Reality systems are really glorified renderers combined with simulations,
and some fancy display and pointer technology. The software components typically
include the roughly what you would expect, as illustrated in figure 8.10.

The performance requirements for distributing VR are surprising. Once a system
is up and running, it transpires that objects are introduced/created and destroyed,
with relatively low frequency. If a distributed VR system runs the collision detection
and rendering at all receivers, it is only POV and object locations and attitudes
that need updating. Here, though, there may be an extremely stringent latency
requirement because of multiple interactions with other objects.

We need three main components to a protocol to distribute this functionality:

1. A Virtual World bulk load protocol
2. An object naming system

3. An update protocol

The virtual world bulk load protocol could be based in a number of existing
protocols for large scale information dissemination. We assume that virtual worlds
are potentially very large databases (although many VRML examples are not that
large, we would anticipate this changing as time progresses and people develop a
richer taste in virtual environments). However, it may be possible to use the update

protocol that we are devising here too, if it is engineered for high throughput as
well as low latency.

8.4. DISTRIBUTED VIRTUAL REALITY 205

VR Application

Object Data Base (== Linda Tuple Space)

To
e . POV/Collision Detection
Other

Systems

Renderer

Figure 8.10: Virtual Reality Software Structure

The object naming system requires hierarchical naming and wildcarding, as well
as a clean mapping from object to multicast group. Such a system has been devised
in earlier work, and is partially implemented in the CCCP system[48].

The update protocol is what we will concentrate on here. Essentially, we propose
an extension of SRM, together with the congestion avoidance mechanisms taken
from Wakeman and McCanne’s work. We propose basing the protocol on RTP, as
is described in Parnes’ work[45], since it is likely that eventually VR worlds may
include media such as audio and video, and we see no reason to use a different
packet header to support point of view and object motion, and new object upload.

We propose that the constants of repair can be adjusted in favour of fast recovery
rather than low numbers of repeated requests and repairs, since the load caused by
this (given the size of repairs) is relatively small.

The sender application needs to specify the semantics of the operation, and this
is conveyed in single field in the protocol so that receivers can work out whether a
repair request is relevant or whether a new update will overwrite the effect anyhow.

8.4.2 Virtual Reality Operations, User Views and Networ
Considerations

For a distributed multi-party application, there are a number of constraints which
we might try to satisfy.

e Convergence, or does the interface show a system that reaches eventual con-
sistency.

e Determinism, or does the system behave according to users’ expectations of
the underlying model.

e Multiple Modifiers - does the system allow more than a single user to modify
an object (write/update state associated with an object).

e Interactivity - does the system let users lock an object so that they then have
exclusive write/update access.

206 CHAPTER 8. APPLICATIONS

A key point in the design of the system is that when operating over a network
with loss, reordering, and different levels of throughput/latency between different
senders and recipients, it is clear that 1t is impossible to satisfy all four of these at
any one time.

It should be sufficient to relax one of the constraints at one time, but it will
dependent on a particular application and user requirements which, constraint is
the appropriate one to relax.

Network conditions that pertain to each of these constraints are:

e Capacity - bits per second - may differ between a sender and a set of recipients
- a distribution tree rooted at each sender will have paths to recipients, and
different parts of the sub tree may have different capacity.

e Errors/Loss - packet loss may be due to noise on the line, transient outage,
or temporary congestion. Again, in a multi-party application, this may be
different for different receivers.

o Availability - networks can partition. Some senders or recipients may crash,
or reboot at different times during a multi-party session.

e Delay - delays over long-haul networks?, even without queues, can be signifi-
cant. Again, they will usually differ from one recipient to the next.

8.4.3 Application Model

Initially, we are making the big assumption here, that the model run at each
site/host is the same, and that the only differences are POVs and the user at
each host. However, 1t is not necessary for all users at all sites to “see” all ob-
jects. In fact, real estate probably precludes this. This means that certain (large)
optimisations are possible in terms of delivering operation/messages to each host.

The set of typical operations between a VR application and the underlying
system range from moving point of view to moving objects themselves and altering
the attitudes.

A more advanced approach, one could consider sending trajectories around, and
having receivers apply the model world to the object. (eg. gravity, wind, friction,
etc etc).

Messages may be idempotent (describe an absolute position for an object, or
position and velocity, and so on), or not (maybe they just say how far the object
has moved).

Interactions between users of a distributed VR application are complex. An
object must in some senses have an ”owner”. This may be the user at a site (e.g. if
the object is the POV itself, or the glove/pointer, etc), or an object currently under
the control of a user.

Thus we should associate a set of objects (and users) with a portion of the
multicast address space - the idea is that a user is in some locale and that only
operations relative to that locale need be delivered to their system.

Furthermore, there most be some notion of “real” virtual world distance. The
set of objects in VR in a locale that are “near” a user are subject to interactions
which can reasonably be modeled without having to worry about propagation delay
across the net. Beyond some distance, and the time to get a message from the
originator of the action to the hosts that a set of POVs that include this locale may
simply be too high to consider. For example, imagine playing catch in a virtual
world simulated between two machines on the net. The time for the ball to reach

4and is it really worth video conferencing with your next door neighbour?

8.4. DISTRIBUTED VIRTUAL REALITY 207

0 1 2 3
01234567890123456789012345678901

V=2|P|X| CC [M] PT | sequence number |

timestamp |

contributing source (CSRC) identifiers |

|
|
| synchronization source (SSRC) identifier |
|
|

Table 8.1: RTP Header

the ground is less than the time for the message to cross a terrestrial line more than
a few thousand miles.

However, it may be possible to introduce some element of representation of
distance into the user interface - two approaches suggest themselves based on physics
models of the real world:

1. Uncertainty - as an object gets further away, we can introduce less certainty
about its position (note that the SRM protocol above gives us enough infor-
mation to do this accurately!).

2. Relativity - we could warp spacetime in the virtual environment to produce a
similar effect to gravity - action at a distance could become much slower.

Given this, different VR, applications may need to relax a different one of the four
constraints, possibly at different times. In fact, we can envisage single applications
that need to relax different constraints for different objects at different times.

8.4.4 The Distributed Virtual Reality Multicast Protocol,
DVRMP

DVRMP runs on top of RTP[117] and UDP. All DVRMP messages are multicast.
As in Parnes’ proposal, we use RTP data packets as is, for data. If reliability is
needed, the RTP PT field is used to indicate SRM, otherwise it simply conveys
normal data.

The SSRC is the source VR application. the CSRC can be used for input from
specific devices.

We use RTCP as is for session quality reports, and respect the PARNES protocol
for reliability:

More than one multicast group is used. Session messages are used within one
multicast group to advertise the existence of participants and objects. Objects have
owners. At any one time, the owner is the source of the session messages about an
object.

Messages can be marked as reliable or not reliable, however, this is not binding on
recipients. Recipients can operate the repair algorithm on reliable object messages
in the normal way. Other messages are deemed ephemeral, and can be lost (or
discarded) at will®.

5this limits the amount of storage necessary for receivers participating in a possible repair. Tt

208 CHAPTER 8. APPLICATIONS

SRM RTCP Packet:

0 1 2 3
01234567890123456789012345678901

1 1 1 1 1 1 1 1 1 e e 1 e e 1 e e e 1 e e 1 e
+r—-+-+-+-+-+-+-+-+-+r-+-+-+-t+-+-+-+-+-+—-t+—-T+—-t+—-T—-T—T—T—T—FT—FT—T—T—T—7

[V=2|CM | Count | PT=SRM=205 | length | header
B o T i T e e aa

Heartbeats (CM = 0)
0 1 2 3
01234567890123456789012345678901

| Sequence number | Not Used
+=t+=+=+=+=+=+=+=+=+=+=+=t=t+=t+=+=+=t+=+=+=t+=t=+=+=t+=+=+=+=+=+=+=+=+

NACKs/Repair Requests (CM = 1)

0 1 2 3
01234567890123456789012345678901

Sequence number
t=t=t=t=t=t=t=t=t=t=tst=t=t=t=t=ttot=tstotstststst=tet=t=t= =4+

Followed by
0 1 2 3
01234567890123456789012345678901

1 1 1 1 1 1 1 1 e e 1 e 1
r—+=—-+t—-t—-+—-t+—+—t—T—+T—F+—T—T—F+—T—7

SSRC\ _

1 |blocki

1 1 1 1 1 1 1 1 e e 1 e 1
r—+-+t—-t—-+—-t+—+—t—T—+T—+—T—T—1+—T—7

|
| Last time-stamp(LTQ)
|

1 e e e 1 e e} 1 e
+—+—-t—-T+T—t—T1T—t+—+—FT—T—T—T—T—T—7T

1 1 1 1 1 1 1 1 e e 1 e e 1 e e e 1 e e} 1 1
r—+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-t+—T+-t+—-+—t+—-T+—t—T—T—T—T—T—T—T—7

DLTQ I
+=t=t=t=t=t+=t=t=t=t=t=t=t=+=t=+=t=t=t=+=t=t=+=t=t=t=+=+=+=+=+=+=+
I SSRC_2
|block?2

+=t+=+=+=+=+=t+=+=+=t+=+=+=t=t+=t=+=+=t+=+=+=t+=t=+=+=t+=+=+=+=t+=+=+=+=+

Table 8.2: RTP and SRM

8.5. SUMMARY 209

8.5 Summary

In this chapter we have looked at two application protocols in some detail - one is
a distributed multiuser network text editor. The other is a protocol for distributed
virtual reality.Both take advantage of Application Layer Framing and Integrated
Layer Processing to provide simple, scalable and performant systems.

is derived from the fact that there are many kinds of ways to send descriptions of object locations,
velocity, trajectory. Some are coded so that loss of a single message makes it hard to recover,
whilst others are largely simply lists of deltas, and recovery may be reasonably easy, whilst others
are explicit coordinates, and only the latest message is relevant.

210 CHAPTER 8. APPLICATIONS

Chapter 9

Media on demand

It is tempting to think of unifying the interactive multimedia applications that this
book has mostly been about, with the multimedia system that is the World Wide
Web. However, the paradigms of use and protocols are very very different. The Web
is very much a browser’s paradise, whilst the applications we have been concentrat-
ing on are much more active. This is shown by the design of user interfaces to a
large degree, and attempts to force conferencing applications into the straight-jacket
of a web browser, whilst very tempting, are mis-guided.

An important aspect of the web that makes it scalable is that (like DNS) it is
largely a “read only” database. This means that while it might be tempting to think
of it as a repository for media, for the type of interactive systems we are interested
in here, it may not be so suitable.

In this chapter, we present the components of a more suitable system for media
recording and playback on demand.

9.1 Roadmap

This chapter falls into two main components: recording and playback. First we look
at recording of multicast and multimedia data, then we look at realtime retrieval
and playback, which is a relatively new area for Internet standardization.

9.2 Recording and Playing Back Mbone Sessions

Experiences of interactive Internet multimedia applications, especially conferencing,
indicate that there is a need for a mechanism to record and playback the media of
these conferences [108] [139].

When recording, both audio and video streams need to be archived, and possibly
the shared workspace, with the possibility of having stream synchronisation. As
some conferences only require a subset of the conferees to be recorded, the record
mechanism should allow a selection of the streams to be specified. The retrieval of
recorded material needs to be easy for users to access, either for direct playback to
the user or for inclusion in another multicast multimedia conference. Users also need
to see which conferences have been recorded and are online for access in order to
select streams to play. As real-time multimedia applications generate vast amounts
of data, any recording system must therefore be fully equipped with large storage
capabilities.

To meet the above requirements, the objectives of a recording and playback
system need to be:

211

212 CHAPTER 9. MEDIA ON DEMAND

Media ; Address

audio ; 224.2.17.11/3456

video ; 224.2.17.11/2232
whiteboard ; 224.2.17.11/32415

Table 9.1: Multicast address use in session

e the ability to record multicast session data whose source may be any of the
conferees;

e the ability to playback recorded material either directly to one user or into
another multicast session;

e to provide synchronisation between streams from each source;

e to allow users to create their own segments of recorded material, and create
their own material for playback;

e to provide a single point of contact for recording and playback;

e to supply a large repository of archive space which is accessible to authorised
network users who wish to record or playback multimedia data;

In the next section we discuss previous attempts at recording and playback of
multimedia conferences, and see how they meet the above objectives. Then the
design of a system to achieve the above objectives 1s presented, showing what is ac-
tually required for recording, playback, and editing of multimedia streams. As the
media streams are large, it is pertinent to provide indexes into these streams. Mul-
timedia indexes are a novel approach to accessing such data, and these techniques
will be discussed later.

After this, we describe the Real Time Streaming Protocol, which is becoming
the standard for remote control facilities for multimedia servers.

9.3 Recording

First we consider multimedia recording and playback systems which are not specif-
ically designed with multimedia conferencing in mind. Most of these aim to be
video-on-demand systems [141]. Some of them aim to produce high quality, syn-
chronised video with attention paid to playback strategies in order to generate 30
frames per second of media[138]. The designers of such systems are interested in
high speed discs and storage structures using, for example, RAID disc technology
[140][123] in order to get high volumes of video data from storage to the user. Other
work focuses on designing models for presentation of media [132], and has been be
extended into the arena of distributed presentation of media [121][133][122], ad-
mission control for multiple users [136] , and the mix of both analogue and digital
components within the infrastructure [126].

9.3.1 Using IP Multicast

Within a multimedia conference the media tools utilize the TP multicast mechanism
by having every instance of a tool join the same multicast address. For each media
there 1s a unique address and port pair, on which the tool is started. For example,
the addresses used by MICE conferences are shown in the table 9.1 below.

Note that here the address is the same but the port changes. In other conferences
both the address and port change. Furthermore, each tool may use more than one

9.3. RECORDING 213

port, which is not always advertised. The tools send data to one port and non-core
data to another port. The non-core data usually consists of session information such
as the user name of the sender or some statistics regarding the quality of the received
data. These session messages are sent at low bandwidth as they are secondary to
the real data. It is most common for the session message port to be one higher than
the advertised port number. So, for the previous examples we would see session
messages for audio on port for video on port and for whiteboard on port

To record data from a multicast conference, the recorder need not be an active
part of the conference by executing any of the conference tools, but it must attach
to that conference to enable the multicast data to reach the recorder and hence be
collected. As data for each media within a conference will be seen on a different
address and port pair, the recorder must accommodate this. The collected data
for each media can then be saved in an archive for later use. To playback the
recorded data to a multicast conference, a player must join the multicast address
for each media in the conference to enable the data from the archive to be sent into
the conference. Again, each media’s data will go to a different address and port
pair. In figure 9.1 we see that before a recording or playback, the recorder or player
respectively, 1s independent of the conference, and that the data packets and session
messages are on different addresses.

source source source

multicast address for
data packets

multicast address
for session messages

player)
or archive
recorder

Figure 9.1: The recorder is independent of the conference

In figure 9.2 we see that the recorder or player has attached to the conference
in order to collect the data from each media.

9.3.2 Current Media Tools and Protocols

Multicast conferencing tools have been written and improved continuously by their
developers over the past three or four years, and new tools are still appearing.

As described in chapter five, the media tools send media data inside RTP packets
on one multicast address, and session message information inside RTCP packets on
another multicast address. For example, the audio tool used by each conference
participant sends audio data in small chunks of about 20 ms duration. Each chunk
of audio data is preceded by an RTP header; the RTP header and data are in
turn contained in a UDP packet. The RTP header indicates what type of audio
encoding, such as PCM, ADPCM or GSM, is contained in each packet so that
senders can change the encoding during a conference, for example, to accommodate

214 CHAPTER 9. MEDIA ON DEMAND

source source source

multicast address for

data packets

multicast address
for session messages

S
player

or archive
recorder

Figure 9.2: The recorder attaches to the conference to record the data

a new participant or from indications of network congestion. Similarly, the session
message data which uses the RTCP format is also contained in a UDP packet.

As all media data and session messages are sent within UDP packets there is
no guarantee of packet delivery to the receivers. Due to the nature of busy packet-
switched networks, some packets get seriously delayed and others are lost in transit.
To accommodate this most media tools have a playout mechanism that uses and
adaptive playout buffer [13] in an attempt to hide these effects from the end user.
In some circumstances the media tool cannot cope and the media is presented to
the user with loss.

Reliable Multicast

Many IP multicast tools use a reliable multicast mechanism to maintain consistency
between each instance of the tool. Reliable multicast is a mechanism by which data
which is multicast from a sender is guaranteed to reach the receivers at some time.
The reliability mechanism requires some form of acknowledgement scheme to say
which packets did arrive and did not arrive at a receiver, a kind of retransmission
scheme to send out lost or late packets, and support within the tools to participate
in these schemes.

For media such as video and audio, data arrives so fast it is better to present
it quickly and tolerate some reduction in quality if packets do not arrive on time,
or are lost in transmission. This can be done because humans are quite tolerant of
loss, particularly for video, and the information content is not drastically reduced if
loss does occur. Furthermore, with a reliable transmission scheme late or lost data
could be resent to the receiver at a significant amount of time after the original
send time, which would cause the immediacy of any interaction between users to be
eliminated. Clearly, this is not suitable for live, interactive conferences. However,
this level of reliability is very important for shared workspace tools where whole
objects need appear with all their data eventually, but where there is no immediacy
lost if a packet is retransmitted and arrives at some later time.

Both of the well known shared workspace tools, wb and nt, use a reliable mul-
ticast mechanism. The scheme used by Wb is described in [41] and that for Nte
is described in [129] Both schemes resend parts of objects that get lost on the net-
work. The RTP protocol is not used because the data is not real-time data, but

9.3. RECORDING 215

partial-object data. In nt, and possibly wb, the RTP timestamp does not have
enough resolution to hold all the timing information required. Therefore both nt
and wb have their own packet format to support their reliability and retransmission
mechanisms. It is unfortunate that the schemes are not described in enough detail
to build a new tool that could participate in these schemes.

9.3.3 A Multimedia Recording Server

To allow easy deployment, the interface to playback systems should be made com-
patible with WWW browsers, such as Mosaic or Netscape. This enables the media
to be selected and replayed using a GUI, and this approach avoids writing a spe-
cial playback client but requires the server playback interface to look like a WWW
server. However, using a naive approach, the user is able to playback the whole
conference, but is not able to select their own start point or end point.

Many of the problems associated with the delivery of multimedia to end-users
are issues of synchronisation. It has become apparent that synchronisation is more
complicated than one may think. We have determined that there are at least three
kinds of synchronisation that are important for media synchronisation. They are:

lip synchronisation where the movement of the lips as seen on the video and the
delivery of the audio persuade the user that the person is really speaking at
that time.

time synchronisation where a specification of time, either relative or absolute,
goes to the same point in time in each stream of each media, regardless of the
volume of data in the streams.

inter-packet synchronisation where packets are presented to the network, by a
player, in such a way that they arrive at the media tools in the same order
and inter-packet gap as when they arrived at a recorder. Where more than
one stream is being played some kind of inter stream multiplexing is required
to maintain this synchronisation.

It is desirable to have a unified approach which makes the tasks of recording
and playback simple to achieve, and overcomes the problems just discussed. By
considering the problems of the existing tools, it is apparent that a system that
does recording and playback must have:

1. a tool for recording multiple media within the same conference
2. a tool for playing multiple media into a new conference

3. user specifiable streams on recording or playback

4. synchronisation between the media streams

5. a single point of contact for accessing the recordings

6. a large repository of disc space for the recordings

9.3.4 Server Interfaces

Due to the multiple but specialized functionality required, a server has different
interfaces. The main include interfaces for recording, playback, and editing are dis-
cussed here, but the design allows the server to have as many specialized interfaces
as required.

216 CHAPTER 9. MEDIA ON DEMAND

Recording

The record interface of the server allows a client start a recording of any of the
media used in conference, to specify the duration of the recording, to specify one,
many, or all of the source streams, and to add a title and text description of the
recording. If more than one media is selected for a source, then the user may choose
to have time-based synchronisation between those streams at the server. This will
enable synchronisation within the playback mechanisms.

The server system collects all or some of the streams of media for a conference,
and a client allows the user to select which media to record and then instructs the
server to record them. The client does not need to be part of the conference. With
the server listening to the media tool session messages or observing the source ad-
dresses of incoming data each media of a conference, the server can decide who is in
each conference. Another feature of the server is the ability to allow synchronisation
between the incoming streams. In this way playback can be presented to the user
with the media streams for a source being synchronised.

A client connected to the record interface allows the user to select a media to
record, and then instructs the server to record that stream. The server can inform
its clients who it is currently recording a conference in order to stop more than one
client attempting to record the same media within that conference. It is expected
that a new client will be started for each different multicast conference. Figure 9.3
shows that the media tools send and receive data via IP multicast, and that the
server under instruction from the client receives that multicast data and records it.

source source source

multicast address for

data packets

muIticas_t address
for session messages

VCR hi
-
server archive

Figure 9.3: Client informs server which collects multicast data

Using this client/server configuration, many sites may have servers which are
able to record and playback conferences. These sites may choose to record data
for any authorised user on the network, not just for local users. Tt is not necessary
any special designated site to be the conference recording hub for the whole of the
MBone. With full deployment, there could be a large collection of servers on the
Internet. A client can connect to a server anywhere on the network to request a
recording.

9.3. RECORDING 217

Playback

The playback interface of the server allows a client to peruse all the online archives,
to allow the selection of one or more media and one or more streams for playback,
to specify the destination conference for the playback, and to control the media
during playback.

For playback a different client interface is used to access the server. The server
presents this client with information showing which conferences have been recorded,
which streams are available for playback, and which conferences are currently being
played back and on which address.

The playback of the recorded data can be presented to the user in various ways:

1. the user can choose to play a stream or many streams from an old conference
into a new conference. In this scenario, all members of the conference can see
the played-back streams.

2. the user can choose to see a stream or streams presented to his workstation
only. In this scenario only the user sees the streams.

3. the user can choose to play back a recording as a presentation to a small group
of people.

It would be possible to make the playback interface compatible with WWW
browsers such as netscape or Mosaic. This would enable the media to be selected
and replayed using a GUI, and avoids writing a special playback client but requires
the server playback interface to look like a WWW server by using the http protocol
[127] As we have already seen a mechanism similar to this has been successfully
deployed by Anders Klemets of KTH in Sweden. The approach suggested here does
require the playback interface of the server to look like a WWW server.

It may be possible to have a client that combined playback with recording in
order to have a GUI that allows both recording and search and access to pre-recorded
data. This may be desirable if one needed to provide an interface that looked like
a traditional tape recorder. In this instance the client would connect to more than
one server interface.

In some instances it may be desirable to have a full conference replay. As the
server is able to provide synchronisation data for the media streams, then during
playback it is possible to have all the media streams synchronised. The synchronisa-
tion means that the data is presented in near real-time rather than at an arbitrary
rate which is dependent on the speed of the machine.

Editing

The editing interface will allow the user to make copies of a whole media stream
or to select a segment of a media stream in order to create their own personal
archives. When editing, the user will be able to create a text description of arbitrary
parts of the media to aid playback selection. Further editing tools can be used to
combine pre-selected segments of media, from possibly different conferences, into
new presentation material. The new presentations could then be used as lecture
material, for summaries of work, or for presentations of project work. As these
newly created presentations will be independent of one another it allows multiple
uses of one recording and thus allow a more flexible use of the whole archive.

A full playback of a video conference can be time consuming and often not what
is required. It is envisaged that a set of media editors be designed to enable each
media to be made presentable for different uses. This will allow for:

e text annotations to be added at multiple positions in a recording

218

CHAPTER 9. MEDIA ON DEMAND

the creation of conference summaries
the elimination of quiet sections
the creation of lecture material

the creation of special presentations

The editing functions required are the addition of annotations, the selection of
segments, and the ability to do post-processing of the data.

Addition of Annotations The addition of annotations allows users to add meta-

data to a recording. These annotations can take on many forms, such as
text, to interface to browsing and selection tools; HI'ML data or URLs, to
interface with the World Wide Web; content classification data, to interface
to search engines; start of video frame or start of speech burst markers; to
interface to special player; and so on. The addition of text descriptions allows
users to specify what is contained in different sections of a recording. These
descriptions can be presented via the playback tool, and allow the user to
play from a specified point. Figure 9.4 show a stream with three added text
annotations.

| media stream |

Here is the Discussion of Discussion of
introduction slide 1 slide 2

Figure 9.4: Having multiple text descriptions for a media

Segment Selection The editing process allows segments of a recording to be se-

lected and saved for later use. These segments are independent of the original
recording and can be manipulated freely for other uses. Some related tech-
niques to the one suggested here are described by Hampapur in [128]. Figure
9.5 shows that some segments that have been selected from the original me-
dia stream. One selection has three small segments, whilst the other has one
larger segment. This results in three instances of media for the one recording;
the original media, the 3 small segments, and the larger segment. Each can
be used independently of the others.

For each type of media, and for each different format for that media, a different
segment selection editor may be required. For example:

For H.261 video, when using or an editor could select on Macro Block (MB)
or Group Of Block (GOB) boundaries closest to the selection made by the
user.

For audio, the selection boundary could be on either each audio sample or on
each talkspurt

9.3. RECORDING 219

original media media stream |

I SR A AN R
— s R

selected segments.

another, independent
selected segment.

Figure 9.5: Selecting segments from a recording

e For shared workspace applications, such as the whiteboard, an editor may not
be useful if selections were done on a time-slice basis. Both video and audio
are continuous media whereas the whiteboard is a non-continuous media, such
that selecting data from a time period would give a random set of objects.
Selection would only be useful on an object-by- object basis and therefore
some kind of post-processing is required.

When using stream synchronisation, the segments of the media should be syn-
chronised such that when one media segment is selected an equivalent part of some
associate media is also selected. Figure 9.6 shows that the user is able to select
segments (shown in grey) of video and audio which are equivalent with respect to
the synchronisation information stored by the server.

Sync
Info

cio [N N

Figure 9.6: The synchronisation of 3 segments of audio and video

9.3.5 Analysis and Post-Processing Tools

Although the server maintains all the recording information, and has interfaces to
allow recording, playback, and editing, this functionality is often not enough. For
extended use of the data it is beneficial to provide tools for analysis of the media
streams held in the server, and tools for post-processing the media streams in order
to modify them

These tools are different for each kind of processing and each kind of media.

With audio, for example, the tools envisaged are (i) for an analysis to graphically
present the temporal aspects of the audio for each user in a conference, and (ii) for
an analysis to determine the percentage of audio sent by each user in a conference.
The analysis data can be used to delete audio from some users in a recording.

With video, for example, it is envisaged that the media streams are post-
processed to generate more intra frames than exist in the original stream. Having
the extra intra frames enables playback from arbitrary places in the stream. With
analogue video a new whole frame is sent to the display every 25th of a second. Due
to the way H.261 digital video is compressed using intra frames and inter frames,

220 CHAPTER 9. MEDIA ON DEMAND

whole new frames are rarely (if ever) sent to the display. These intra and inter
frames are the differences from the previous image. A whole frame is reconstructed
from the differences of the image contained in the intra and inter frames.

For shared workspace the post-processing can reconstruct workspace objects
from the stream of sub-objects contained in packets.

This list is not exhaustive, but is meant to give a flavour of the kind of processing
required.

9.3.6 Clients

The clients of the multimedia server initiate the recorded, playback, or editing
for the user. Each interface uses a TCP stream in order to allow the building of
both simple text based user interfaces, based on the telnet model, or graphical user
interfaces based on windows. Each client can be designed to have a specialized task
such as recording or playback only by connecting to the relevant server interface.
It is possible to build more complex user interfaces by having the client connect to
more than one server interface and provide compound functionality for the user.

Multiple clients can connect to the server, and clients can connect to as many
interfaces as they require. There is no specific limit within the server pertaining to
the number of client connections.

9.3.7 Server Storage

The hardware available for the media include CD and DVD jukeboxes plus some
large magnetic discs. The hard discs are used as fast, temporary storage within the
server, whereas the CDs are used for mass storage. When recording, media streams
are sent from the network to the magnetic discs, and then onto CDs for permanent
storage. When replaying data, the media which is stored on CDs is taken from
the CD and sent to the magnetic drives for subsequent playback to the user. To
manage this hardware and to present media streams back to the user, some software
is needed to select CDs from the CD store and place them into the CD players of
the jukebox.

A jukebox is a large collection of CD discs in a box with a few CD drives. These
Jukeboxes have a huge capacity, going up to Terabytes. We have seen that a video
stream with a high compression ratio may generate over 1 Gb of data an hour,
therefore these jukebox devices seem to be ideal for video and audio because of
their large capacity, however their throughput could be a limitation. Currently a
high density CD has a capacity of 650 Mb per side. Figure 9.7 shows how the discs,
the network, and the server software are connected.

Given that an hour of compressed video can be expected to require about 240
Mb of storage per source, it is possible to evaluate the amount of storage space
needed by an average conference recording. From this figure we can extrapolate to
determine how much storage space such a system will require to be effective.

In terms of cost, as of December 1995, a 9 Gbyte disc drive costs about 1,500,
and a fully populated jukebox with 144 platters costs about 85,000. With a 9 Gbyte
disc drive one gets 6 Gbytes for 1,000, with a jukebox of 144 platters, each with 650
Mbytes per side, giving a total of 172 Gbytes, one gets 2 Gbytes for 1,000. Clearly
there is a factor of 3 in the cost of owning a jukebox, and to replicate this amount
of storage space on magnetic media with just 20 magentic drives would only cost
30,000. The main benefit of the optical device is that there is no need to buy extra
backup devices and media.

9.3. RECORDING 221

jukebox

raw
interface I
filing | Platter
' system driver
manager

)

raw
interface .
disc

filin i

driver manager

disc drive
network

Figure 9.7: Storage Devices for Multimedia on Demand Servers

Playout volumes

A real service needs to accommodate a large configuration, with a large optical
jukebox, a fast workstation front-end, plus a fast disc cache or just a workstation
with a few Gbytes of disc space.

For a larger configuration with a jukebox we can expect to store more low
bandwidth media than high bandwidth media. A jukebox with 144 platters, each
with a total capacity of 1.2 Gbytes has a total storage area of 172 Gbytes. The
amount of media which can be stored is:

e for a video stream which is presented at 2 Mbps then 500 seconds of video
would use 1T Gb. Therefore, in 172 Gb we could store 86,000 seconds worth,
which is about 1,440 minutes or 24 hours.

e for a video stream which is presented at 128 Kbps then 8,000 seconds of video
would use 1 Gb. Therefore, in 172 Gb we could store 1,376,000 seconds worth,
which is about 23,000 minutes or 380 hours or 16 days.

o for a video stream which is presented at 32 Kbps then 32,000 seconds of video
would use 1 Gb. Therefore, in 172 Gb we could store 5,504,000 seconds worth,
which is about 92,000 minutes or 1530 hours or 64 days.

The most common configuration is expected to be a system in which a worksta-
tion with a few Gb of disc space can be used as a server. Such a system could still
expect to store many hours of audio and video.

The factors to consider for the storage requirements of a large server are related
to (a) the total amount of physical data there is, and (b) the volume of data that
needs to be recorded or played in either Kbps or Mbps. For the amount of physical
data we need to consider file size, partition size, disc size as well as file structure;
for the volume of data we need to consider: disc speed, disc bandwidth, network
speed network bandwidth as well as read/write delay seek times, platter load times.

A full investigation of storage for high bandwidth video-on-demand servers can
be found in [125] In this section there is just an overview of the issues that need to
be considered for the storage requirements of the server.

222 CHAPTER 9. MEDIA ON DEMAND

Size and Structure

For storing large media streams, the use of a database which is amenable to continu-
ous media, or a special video filing system [120] seems pertinent. Using a traditional
relational database is not suitable as these RDBMS are optimised for indexed tables
of small data items.

Use of raw partitions

Here we consider why a server may choose to use raw partitions on a disc rather
than going through the filing system mechanism. The potential reasons for using a
raw partition rather than a UNIX filing system are:

e UNIX cannot create files greater than 2GB

e UNIX generally cannot address disc drives greater than 2GB, but this limit
has been increased under Solaris

e when creating a large file the indirection, double indirection, and triple indi-
rection to data blocks is an unnecessary overhead.

e because video archives are so large we would not get many archives on a
maximally large filing system.

e the overhead of i-nodes, superblocks, etc. are unnecessary

e the server may need to map an archive address which may be greater than
2GB into a disc specific address; having access to a raw partition will aid this.

It is pertinent to note that many relational database management systems, such
as Oracle, use raw partitions to increase performance, because the filing system is
too much of an overhead.

To fully evaluate the use of raw partitions on any particular architecture would
require some tests to be undertaken to determine the speed difference between a
the data transfer of a huge file representative of a video archive in a filing system
and the data transfer of an equivalent amount of data from a raw partition. These
tests would confirm if double and triple indirection really is very expensive, or if the
caching and read ahead techniques used by the file system make the speed difference
between a raw partition and a file system negligible.

Use of a Jukebox

There are many approaches to managing the jukebox. Something like a Hierarchical
Storage Manager can make many CDs look like one big partition. However, as each
high-density CD holds about 650 Mb per side, and UNIX generally allows a partition
to have a maximum size of 2 Gb, it only takes 3 CD sides to make a maximum sized
partition. To store video and audio requires partitions of hundreds of gigabytes.

Current jukebox hardware and software supports a range of the features required.
However, because some of the other features are not suitable, it may be desirable
to write a new jukebox manager. In particular, most jukebox software makes the
Jukebox look like a collection of NFS discs, with each disc having a UNIX file system.
For video archiving a different model 1s required. There will be far fewer files, but
their size will be huge. are:

9.3. RECORDING 223

Speed and Delay

To fully evaluate a hardware configuration the speedy and delays of the relevant de-
vices needs to be considered, particularly, their actual performance rather than their
nominal manufacturer specifications. Currently, magnetic devices are significantly
faster and have significantly lower latency than optical devices.

Magnetic drives

In the Video Conference Recorder magnetic drives are used as a front end to the
CD jukebox. These magnetic drives have fast access times and high bandwidth in
comparison to CD jukeboxes which have slow access times and low bandwidth but
very high storage capacity. Currently high-end disc drives such as 9 Gbyte drives
are cheap.

Jukeboxes

Currently a high density CD has a capacity of 650 Mb per side. As a video
stream may be more than 650 Mb, the server needs a mechanism to load a stream
from many CDs onto the magnetic media. When changing from one CD to another
there is a delay. The server mechanism should aim to hide the CD changeover time
from the user. If the changeover time is not hidden, the media streams would stop
until the new CD was loaded. The magnetic discs provide a buffering mechanism
whereby media data can be loaded from CDs onto the magnetic discs and played
out to the user with an initial delay. This delay can be large enough to hide the
changeover time.

When changing CDs, the number of CD drives within the jukebox affects the
performance of the server. Consider the process of accessing some data on a CD if
there are:

2 drives When using two drives it is possible to read from a CD in one drive and
to load another CD into the other drive in advance of its use. When one CD
is completely read, then access to another CD is just a case of flipping to the
other drive. The CD in the original drive can now be replaced with a new
CD. The delay is the time it takes to swap drives.

1 drive When using one drive, the data is read from the CD until completion.
Then there will be a delay whilst the CD in the drive is removed and put back
into the jukebox. A new CD has to be chosen from the jukebox and placed
into the drive. The delay is relatively large.

As stated, the use of front end magnetic discs can hide some of the delay by
doing large amounts of buffering.

9.3.8 Indexing Techniques

There are various facilities for utilizing the data which enhance the basic recorded
material; namely the selection of segments, the addition of annotations, and the
post-processing and analysis of data. Furthermore, as the data sets are real-time
multimedia, they are rather large. To enable the flexible use of the recorded data
and to enable access to these large data sets, the concept of the real-time multimedia
index has been devised.

These indexes allow access to the source streams in a multitude of ways. The
primary index used is created when a stream 1is originally recorded. For each source
of a media, the incoming data will be saved together with an entry in this index.
Each index entry contains a reference to the data, the time it arrived at the recorder,
and a reference to some meta-data, which will initially be empty. At the end of a
recording, each source will have a stream of data and a stream of index entries. It
is the editing client which allows the user to manipulate these indexes in order to

224 CHAPTER 9. MEDIA ON DEMAND

gain the flexibility required. For example, the user can add a text annotation to
any part of the recording, and the server will attach this to the source stream in
the relevant place in the index by updating the meta-data field of an index entry.

These indexes are different but complementary to Rowe’s indexes [137] which
are used in his Continuous Media Player. His indexes are for content categorisation
and are used to aid users in searching particular material in the database. For
example, in Rowe’s system the user might ask: List all videos about dinosaurs,
and the system would search the category index for dinosaur. Similar work in the
categorisation area has been done by Niblack et al, who build indexes based on the
colour, the texture, and the shape of the content [135] Also complementary is the
work by Hampapur on Video Data Management Systems [128] Other kinds of index
devised have been used for finding the site at which material is held in a distributed
multimedia system.

The index is one of the main design concepts and they allow access to the
multimedia data in a multitude of ways. When a stream is originally recorded is
index is created . This is called the primary index and used for access to the stream
of data. For each source of a media, every component of the incoming data will be
saved together with an entry in the primary index.

An important factor of indexes is that the kind of data being indexed is not im-
portant nor is its size nor its frequency. Implementors can write specialised recorders
and players for each specific data kind, all of which utilize, but are independent of
the index 1itself.

Index Approach and Implementation

An index has a name together with four structural components:

—_

. the data

2. the index elements

3. some annotations associated with the data
4. some header information

Each index has a header file that contains information such as where to find the
data, where to find the index elements, where to find the annotations, the type of
the data being indexed.

Each index entry contains a reference to the data, the time it arrived at the
recorder, and a reference to some meta-data annotations, which will initially be
empty. At the end of a recording, each source will have a stream of data and a
stream of index entries (called the index track). This is shown in figure 9.8.

Each annotation in the annotation list is an attribute-value pair, where the
attribute 1s a name and the value is any data, either text or binary, that is associated
with the particular index element. Each element of the attribute list contains the
following data:

e the total number of bytes in the attribute.

e some status information, such as ACTIVE or INACTIVE for the attribute.
e the number of bytes in the name

e the name of this attribute

e the number of bytes in the value

e the value of this attribute

This structure is show in figure 9.9.

9.3. RECORDING 225

milli secs number of :
since start | data bytes | thedata Data item

A\

-)Y :
milli secs pointer to
since start %oggtte; annotations Index element
(]
list of annotations Annotations

Figure 9.8: The structure of an index element

total no of bytes | attribute no of bytes

no of bytes | the value
in this attribute status in name nextone ...

the name | " 5106 data

Figure 9.9: The structure of an attribute element

Using Indexes For Annotations

After a recording has been completed it can then be manipulated using the editing
tools. In figure 9.10 we show an example where there are 3 text annotations for a
stream of a recording. The text annotations are linked into the recording by the

meta-data annotations of an index entry.

| media stream |

A A T A T T T A

| \ index track \
Here is the Discussion of Discussion of
introduction slide 1 slide 2

Figure 9.10: The data for a source and its index

The primary index provides a simple and fast access mechanism to any part of
a recording.

Any kind of annotation can be added to any point of a recording, and any index
element can have multiple annotations for each index element. The annotations
are independent of one another, and can be added at arbitrary times. Because no
meaning is imposed on the annotations by the indexing mechanism itself, their use
is application specific. The annotations could have values which are text, HTML,
URL’s, PostScript, references to other indexing systems, and many more.

226 CHAPTER 9. MEDIA ON DEMAND

Using Indexes For Segment Selection

To select segments of a media 1t is necessary to access the media by the selection
boundaries. Determining these boundaries for each media can be problematic, and
in general segment selection is a difficult task. When a separate index track exists,
it becomes possible to create multiple segments of a media for playback by choosing
a region of just the index elements. The segment of the index can be copied as
it contains references to the real data without copying the original media data.
Therefore, when editing, rather than changing the original data for a media to
create new segments, a copy of the index can be created. This means that the
original data is left untouched and available for use by other users, and the amount
of space used is reduced because copying a segment of an index requires far less
space than copying a segment of the media. The issue of boundaries is eliminated
because there is only index elements to view. Using this technique, arbitrary and
overlapping segments of edited material can be created. These new segments are
independent of one another. Figure 9.11 shows how multiple sequence tracks can
be created for one media source.

original media media stream
A A A A A A A T A T T T
original indexes | index track | ' ' '

T T T

selected segments.
copies of indexes

another selected
segment. copy of
index segment

Figure 9.11: Multiple edits of a media

Using Indexes For Analysis and Post-Processing

It is possible to create tools for both the analysis of the media streams and the post-
processing the media streams in order to create new modified streams. For video
it is envisaged that the media streams are post-processed to generate periodic full
intra frames in order to provide multiple entry points into the inter coded original
stream. This will enable playback from arbitrary places in the stream.

With analogue video a new whole frame is sent to the display every 25th of a
second. Due to the way digital video is compressed using intra frames and inter
frames, whole new frames are rarely (if ever) sent to the display. These intra
and inter frames are the differences from the previous image. A whole frame is
reconstructed from the differences of the image contained in the intra and inter
frames. Our technique will have the benefit of having a full image at all times
during playback. Without having these full inter frames it will be possible to replay
the video from an arbitrary place but only see a few flickering blocks of changing
inter coded video. Furthermore as this technique will generate whole images at a
regular frequency it will be possible to view a video sequence in a fast- forward
mode.

When using video data compression, such as the H.261 encoding, the encoded

9.3. RECORDING 227

data stream contains changes from the previous image. The changes take the form
of Inter frames and Intra frames. Inter frames are used for small local changes, and
Intra frames are used for large changes.

By doing an analysis on the Intra frames it is possible to determine when large
changes have occurred within a video sequence because a large change in the motion
or a scene change will cause the encoder to generate Intra frames. The analysis
could determine where Intra frames occur within a compressed video stream and
automatically create a new index into that video.

For fast perusal video, the compressed domain again provides some benefits. As
it is known where scene changes or major motion events occur, then an indexing
mechanism could be devised based on this information which will create a new index
with references only to the specified points. When such an index is created, the
playback mechanism could go to each indexed point in the video and play back a
few seconds to the user, and then skip to the next index point. In this way the user
will see all of the main events of the original video without the need to do a random
search. The user could then choose to go back to any point and start playing the
video in full.

To aid searching a continuous media stream such as video we plan to do auto-
matic scene-change analysis to determine when a scene has changed to a new one
and do motion analysis to determine if there has been a lot of motion within one
scene. It is at these points that the user will be interested.

Index References as Data

It is possible that the data referenced by an index is not a packet collected from
the network, but is a reference to an element of another index. That is, a level of
indirection is allowed. Once index references are available it is possible to build ar-
bitrary structures of indexes, including hierarchies and networks of inter-connected
indexed material.

There are two components that constitute an index reference. First, the name
of index being referenced, and second, an offset into that index. The offset is the
number of index elements from the start of the referenced index. Using this name-
offset pair as the data new indexes can be built that reference other indexes.

For example, one way want an index that only has entries when there are intra-
frames in a piece of video so that playback of video only happens when there is a
whole screenful of data. As intra-frames only occur occasionally, a smaller index
can be built that references the original index elements which point to the intra-
frame packets. In figure 9.12 the two indexes are shown. The index index0 is the
original primary index for the video media, and index1 is the index with the index
references. index1 only has 3 elements as there are only 3 packets with intra-frames
in the original data.

In the new index the value for the milliseconds since start field is application
specific and may be a copy of the time from the index element being referenced,
or it may be set to some other value. However, the annotations field will not be
copied as they are specific to the original index. The new index can have its own,
independent annotations. It is the responsibility of a player to determine the cause
and effect of these values.

Lists of Index References

By allowing the data field to an index reference rather than a packet different
structures of indexes can be built. However, there is often a requirement to have
one index element refer to multiple indexes. That is, the data field is a list of index
references rather than a single index reference. This allows one index to reference

index0

the original index

index1

the index of references

228 CHAPTER 9. MEDIA ON DEMAND

video stream

A A

index track

—

references

A A

A

new index track

Figure 9.12: An index of index references

a whole conference for example, and have playback via that index, and have all the
conference specific annotations attached to that index.

Using Indexes for Time Synchronisation

Once lists of index references are available then time-based indexes can be build.
These have an entry every n seconds, with the references to all of the media and
the sources for those elements. If there were, say, 12 sources then each new index
element would have a list of 12 index references. Each of the 12 references would
be for a time closest to the second boundary in the original indexes.

In figure 9.13 there is an example showing a time-based index referencing three
other indexes. There are 3 index references for each element of the time-based
index. The time-based index has an element for each second of elapsed time, and
the references associated with each element point to the index element whose time
is closest to the number of elapsed seconds.

[video stream [video stream [video stream

EENYYYNNNYRY HHHMHH‘ LXENENYY

index track index track mdex track

NEY!

e

data

index

EJ

¢ o

1

\

A

A $ A

1 second 2 seconds 3 seconds 4 seconds

Figure 9.13: A time-based index referencing three other indexes

9.3. RECORDING 229

Using Indexes for Sender Timestamps

Instead of relying on receiver based timestamps, which are in the main index for
a media, 1t is possible to create an index where the timing is based on the sender
timestamps. A mechanism is required which analyses each source packet for the
sender timestamp and creates an index entry based on that.

Using Indexes for Joining Segments

We have to consider how separate segments from different media can be combined
using the index. This process needs extra information in the index header. Also,
because the segments may come from arbitrary conferences the timestamps in the
indexes may not allow for synchronisation. Therefore, some normalising process is
required for all the timestamps within the joined segments.

Enhanced Use of Indexes

Researchers are investigating enhanced uses of index tracks, to aid both replay and
search of media streams. When playback access to digitized audio streams is done
from an arbitrary point the resulting sound is a comprehensible signal. However,
this approach is not suitable for compressed digitized video.

For video, it is difficult to go to exact places as one can in a book for instance.
Video is a continuous media without obvious demarcation points for the information,
at present it is not possible to peruse a video in the same way as a book. There is
no alternative but to watch large parts of the video by using the fast-forward and
rewind buttons to skip to a certain place and then watch a section to determine if
it is the correct one.

Researchers are designing some techniques that may be developed to improve
the ability to find information in continuous media such as video. Existing work
in this area uses just digitized video to extract information. Our approach is novel
in that i1t uses compressed digitized video which has been stored in a multimedia
storage system, such as the Video Conference Recorder, to extract the indexing
information. We believe that it is possible to devise techniques for video that are
equivalent to flicking through a book. This technique constructs a thumbnail video
with just key frames presented. For example, one could show 1 seconds worth of
frames for every 20 seconds or minute of real video. This will give a fast forward
view of the video.

Techniques for encoding indexes into video have been devised at many places
including MIT and Berkeley. These access digital video to create index information.
Because multimedia conferencing and distance learning as a whole use data com-
pression, it is pertinent to devise these new techniques which use the compressed
video directly.

The techniques which will be developed here will help users search and peruse
the online archives. If we compare finding information in a book with finding
information in a video we see there are significant differences. A book is structured
by separating information into chapters, sections, and paragraphs; a structuring
which aids human comprehension and allows non-sequential access to the data.
The book can be accessed one page at a time, or by going directly to a page which
is the start of a chapter or a section. This is because a book is a collection of
discrete sections. Further information about the book can be created by building
indexes into the book which can be used to go to parts of the book which are about
a subject in the index.

Once one can build indexes for the video, then the perusal of the stored video
material can be readily used in various applications. One of the main applications
for this kind of storage and indexing is in distance education in which compressed

230 CHAPTER 9. MEDIA ON DEMAND

video and audio are heavily used. In distance education most of the remote class-
rooms and students do not have access to the raw video of the main classroom, they
receive a compressed video stream which is stored for later use. It is expected that
the students use the indexing information to scan existing video recordings in order
to playback relevant parts of lectures and seminars. The indexes allow the student
to access and peruse many hours of video rapidly in a similar way to perusing a

book.

9.3.9 Strategies for Recording and Playing

This section describes the strategies that are needed in both the recorders and play-
ers to record and playback different kinds of media each possibly using a different
protocol.

9.3.10 The Recorder

The recorder must firstly deal with multiple media within each conference, and
secondly with multiple sources for each of the media.

Each media will be received on a different multicast address and port pair. It
is the responsibility of the recorder to collect data from the multicast address for
each media and determine the source of the sender. The utilization of the multicast
address is in effect a multiplexing process by the senders. Each source sends packets
to the same multicast address, and the underlying virtual network delivers those
packets to all the members of that multicast address. There is neither a guarantee
of delivery nor a guarantee of ordering for packets so each receiver may see the
data arriving differently. The recorder, which has to join the multicast address to
receive the data and is therefore a member, has to de- multiplex information from
the multicast address in order to determine the original source. This process is

shown in figure 9.14.

When the recorder receives packets for a media they are de-multiplexed from
the media’s multicast address, the source is determined, and the packet data is then
stored as-is using an index for each of the sources. This is the simplest approach to
recording, and can be used for data on any multicast address. The data does not
need to be a traditional media, but can be any multicast data.

Many media applications use two (and occasionally more) multicast addresses,
one for data and another for session messages. If two multicast addresses are
used the recorder needs to accommodate this. Given the different kinds of media
and their associated session messages it is pertinent to have specialised per-media
recorders that can deal with this.

Once the issue of multiple multicast addresses is dealt with, some recorders may
need to look at the contents of the packets before doing the indexing process. Of
particular interest are sender timestamps, which are contained in the packet header
for a media. Much of the RTP specification deals with sender timestamps and how
to process them. Tt is expected that a specialised RTP recorder can utilize this
functionality.

A further enhancement of the recorders is to deal with cross-media synchronisa-
tion signals. These will probably contain sender timestamps for multiple media, in
order to allow a receiver to calibrate themselves and facilitate lip synchronisation.
Without media tool support, lip synchronisation is not possible. Furthermore, any
recorder of such media must also cope with these calibration signals.

9.3. RECORDING 231

- VCR ;
. Media |
. Recorder !

multicast address for session messages

Multicast transmission

Data packets ———— Session messages

Figure 9.14: The recorder de-multiplexes data from a single multicast address

9.3.11 The Player

The player needs a mechanism for media selection and source selection. It must also
deal with the problem of address allocation, particularly with respect to uniqueness.
The player must deal with merging multiple media and multiple sources of each
media, and try and address the problem of multiple sources coming from a single
host.

The player has to play each of the sources in a synchronised way. It has to
cope with the fact that the recorder may have started before any data arrived for
a particular source. We observe that there is a different delay between when the
recording started and when data arrived for each source, and for each media. This
delay is shown in figure 9.15. The delay between the recording start time and the
arrival of the first packet may be very significant; running into hours. To avoid
players replicating this huge delay it is possible for the player to determine the
minimum time between the recording start time and the arrival of the first packet
for all the sources, and then to skip this amount of time during playback. Using
this mechanism at least one source would start to play immediately.

For a simple playback a player can join a multicast address, read data from
an index and send packets onto the network with the same inter-packet gap as
when they were recorded. If there is more than one index then the data from each
of the indexes has to be multiplexed onto the same multicast address. It is the
responsibility of the receiving tool to determine the source stream, but this can be
problematic as all data seems to come from one IP source.

When a recording has session messages a specialised player is needed to accom-

232 CHAPTER 9. MEDIA ON DEMAND

Conference Conference
start time end time

i source

‘ source media

‘ source

source

source media

‘ source

source

‘ source media

‘ source

— time

I no data receieved || data receieved

Figure 9.15: The delay between record start time and source data arrival

modate these. Whilst this special player is sending data packets to one port, the
session messages, or a modified form of them, should be played back onto the session
message port. With the addition of session messages in the player, the receiving
tool has a better chance to determine the source as extra information is available.

As some media use RTP for transmission special recorders can utilize the sender
timestamps in the RTP packets. Similarly, special players can be made to do the
same. In this way, a special RTP recorder-player pair can be devised which can send
data back to the network independently of the way it arrived at the recorder, but
with respect to the timestamps at the sender. Also, RTP has source identification
that is independent of the TP source so there is no reliance on where data came from.
This is beneficial for a system as each RTP source will have a different RTP source
identifier even though all the packets come from the one player. However, not all
tools currently utilize the RTP source identification correctly which undermines its
usefulness.

If recorders can deal with RTP together with cross-media calibration, then the
players also need to deal with it. This too will involve even more specialisation in

9.3. RECORDING 233

the player. It is of particular note that cross-media calibration requires the media
tools to participate in the scheme as well as recorders and players.

Because the user can create new indexes after the recording has finished it is
necessary to have special players that accommodate this feature too. This type of
player has to know how to player indexes that contain index references rather than
just data packets. Once these players have been devised then it will be possible
to have playback via time synchronised indexes. Such indexes have elements for
regular time intervals rather than having elements for when packets arrive. These
players will be able to skip backwards and forwards in time across every media and
every source because each index element will address a constant time interval as
opposed to the raw indexes which are recorded at irregular intervals.

Command Propagation

Each object in the hierarchy communicates by sending messages from one object
to another. In fig 9.16 we see how the play command to the conference object, is
duplicated and propagated to both the media objects and source objects in turn.
Each source object is responsible for playing each source, and does this by doing
operations on the index objects, and by using timer events in the event handler.
The similar approach is used when determining the minimum time between the
conference recording start time and the arrival of the first packet. The conference
object needs to know the minimum for all sources. The method uses is as follows:

e the conference object requests the minimum delay time from all of the media
objects.

e cach media object requests the minimum delay time from all of its associated
source objects.

e cach source object will report to its associated media object the time between
the record start time and the arrival of the first packet for that source.

e cach media object evaluates the minimum delay from the set of delays re-
ported by its sources. This per-media minimum is then reported back to the
conference object.

e the conference object evaluates the minimum delay from the set of delays
reported by each media object. This is the minimum for all of the sources.
This minimum value is sent to all the media objects.

e The minimum value is then reported, by the media objects, to the source
objects. Each source subtracts this minimum delay from the time to play its
first packet.

After this process is completed, at least one source will have no delay on start
up, and the media for that source will be sent to the user immediately.

9.3.12 Reliable Multicast

The recording and playback of most media involves the recorder collecting packets
from the network, and the player sending the packets back to the network. However,
for media that use a reliable multicast mechanism this approach is not possible. Tt
is necessary for the recorder and player to have an implementation of the reliable
multicast code within themselves.

Consider the case where a recorder notices that some of the shared workspace
data has not arrived. It is the recorder’s responsibility to request that the lost data

234 CHAPTER 9. MEDIA ON DEMAND

play Conference

Player

play play play
Media Media Media
Player Player Player
play [play\ = play play\ " pla play

play/ / play[,' play

Source) (Source) (Source Source\ (Source) (Source Source) (Source) (Source
Player/ \ Player/ \ Player Player/ \ Player/ \ Player Player/ \ Player/ \ Player

Index ops 3 | Index ops

= Conference control commands Control signals propogated to all player objects

7777777 Operations on indexes

Figure 9.16: The propagation of commands through the object hierarchy

be retransmitted, but without full knowledge of the details of the retransmission
scheme this cannot be done. Therefore, the data stays lost within the recording.
At playback time, when then player sends out the recorded data this loss will
be observed by the current receivers. They will send a retransmission request.
However, a player without a retransmission scheme implementation will be in a
poor situation. Firstly, it will not have the data to retransmit because the recorder
never recorded it, and secondly it cannot reply to the requests because it does not
have the relevant implementation.

This area of recording and playback is particularly tricky, and further work
needs to be applied to this. It also requires the tool writers to have stand-alone
implementations of their reliability and retransmission code, which can be slipped
into servers as required.

9.3. RECORDING 235

9.3.13 Address Allocation

One of the problems when playing back media to a single user or small group of
users is choosing a multicast address for the playback. This problem does not arise
when doing playback to a conference because conferences are usually on well known
or well defined addresses. In choosing an address for a user there must be no clash
with existing, in-use multicast addresses.

As well as uniqueness of the address it has to be decided who makes that decision.
There seems to be four choices for who does this:

1. the user
2. a client
3. the server

4. an external service

For the first three choices it is hard to determine how they can guarantee some
uniqgeness given they have no mechanism for deciding which addresses are already
in use, and therefore which are free to use. The most appealing choice is for some
external service to make the decision. This service can be used by all systems that
require a new multicast address for their purposes. Although such a service does not
currently exist, it is in the design phase. The session directory tool [30] already has
an intelligent mechanism for choosing new addresses for conferences started under
its auspices, but is not usable by other systems as it is standalone. Work described
in chapter seven will culminate in the definition of a session description protocol,
and should lead to the implementation of a server that does allocate new multicast
addresses on demand. Once this server has been implemented any program can get
unique multicast addresses.

9.3.14 Source Identification On Replay

When data is replayed by the server the receivers of this data observe that all
packets come from one host. Many media tools have been designed to expect that
each source comes from a different host. If multiple sources for each media are
being replayed then all the sources seem to be one host, which can confuse some
media tools. As there are some mechanisms available to overcome this problem
other media tools are more tolerant.

There are currently two known approaches to this problem:

1. in the vat protocol it is possible to add an IP address to the packet header to
signify that the original source of the packet is not the sender but is that put
in the packet.

2. in the RTP protocol there is a field for a host independent channel identifier.
This allows streams of media to be recognised by their channel id rather than
their source address. As this data is in the packet it will be recorded and
when replayed it will be used by the new receivers.

For problem free source identification on replay media tools need to be designed
with media recording and playback in mind. Using RTP is a good approach for this
as 1t allows host independent channel identification, however not all media tools are
compliant with this mechanism.

236 CHAPTER 9. MEDIA ON DEMAND

9.4 Remote Control of Playback

We are now used to being in control of the boxes which generate our media. Hifi
equipment have controls which allow us to start, stop and pause pre-recorded audio
playing from CDs, tapes or records. We can even use the controls to select which
parts of the recording we wish to listen to. Alternatively, we can tune into live
sounds from radio stations, and switch channels. If we have a spare tape, we can
record the live broadcast for posterity, or perhaps to listen to it at a more convenient
time as we drive home. Similar controls are available on our video devices, allowing
movies to be recorded from TV broadcasts, and giving us the opportunity to see
our favourite sporting events time after time, in excruciating slow motion, pausing
to find the exact moment when the pass was released for the winning goal.

If our audio and video streams come to us over a network, and are available
in the computer’s memory, then at the very least we should expect to be able
to control the streams in the same fashion as we control traditional media. We
should be able to start the program playing, pause the stream if we wish, skip
further along the stream to locate the interesting bits, and slow or speed up the
programme as required. Since the medium for the stream is a network connected to
a computer, then building the controls is simply a matter of designing a program
and the associated techniques for talking to other programs.

Earlier in the book, we talked about how the streams of data can be compressed
audio, video, or even data intended for updating some application, such as stock
market figures, or a sequence of polygons to be rendered in a Virtual Reality envi-
ronment. The stream is generated by a node on the network which we will term the
media server, and is sent as a stream of packets over the network to the receiver(s),
which appropriately process and pass the data up to the application.

We have two possible ways of controlling the media streams - we could send
messages back over the network to the source of the stream to ask the source to
play, stop, pause etc., or we could allow the stream to come to us, and simply
manipulate the media in memory, keeping control within the receiving computer.
Both techniques are possible, but are suitable in different environments.

When the stream of data coming over the network is shared by many different
users, such as in a multicast event, it becomes more appropriate to keep the con-
trols local to the receiver. Since the source has many different receivers, there is a
potential implosion problem if the receivers all sent control messages to the source.
The source may then be overwhelmed by messages. Alternatively if there are many
receivers and no floor control, the source may have difficulty in resolving the con-
flicting demands from the receivers - what to do if one asks to stop, whilst the
other asks to play? If authority over the view is delegated equally amongst all the
receivers, then each receiver should manipulate the stream locally. If they decide
to start the stream, then they should join the group and let the routing take care
of bringing the data to the computer. If they decide to pause, they should simply
stop displaying any more stream and buffer incoming data, and if they decide to
stop the stream, then they should leave the multicast group, allowing the routing to
prune their branch from the multicast tree.[CHECKDo we discuss this elsewhere
in the book]

When the stream of data coming over the network is owned by just one user,
then the network and server resources are more efficiently used if the media stream
is manipulated at source. Note that even though the media streams are multicast,
floor control within the session may have designated an owner who has control over
the streams.

9.4. REMOTE CONTROL OF PLAYBACK 237

9.4.1 Remote invocation of stream controls

Stream control requires the receiver to send a message to the media server, asking
it to perform some action. There may or may not be some response. This paradigm
of request/response over a network has been well-known for many years, and has
been formulated as a remote procedure call or rpe.

In a remote procedure call, the remote server offers a selection of procedures that
the local machine can call. These calls are labelled in a unique fashion across the
server. When the local machine wishes to make a call, the calling program constructs
a packet which references the label on the remote server, adds any arguments to the
call encoded in a machine independent format, and sends the packet to the server.
The server receives the packet, routes the request to the appropriate bit of code and
unpacks the arguments so that they can be understood and executes the request. If
there are any return values, or any error responses, these are packed into a packet
and sent back to the sender. The strength of rpc mechanisms lay in the fact that the
code to construct the packets at the local machine, and demultiplex and deconstruct
the arguments at the server can be automatically generated from descriptions of the
procedures that are similar to programming languages with which progrmamers are
already familiar, such as C. The canonical reference for rpc is the work by Birrell
and Nelson from Xerox PARC in [?]. The most widely used rpc system has probably
been the sun rpc system, whilst every vendor with an interest in providing network
solutions has some variation upon rpc, such as DCOM from Microsoft, the Java
RMTI system and the DCE rpc system.

Most projects which have designed networked multimedia systems have used an
rpc system to build the stream controls. An influential project was Pandora out of
Cambridge. This work pioneered the use of ATM type systems to deliver real-time
media such as audio and video, but also used RPC mechanisms to implement the
network controls.

Rpc systems make life very simple for the application programmer, and for the
conceptually simple controls for a media stream, they would seem to provide an
ideal solution. However, as ever, there are a few problems.

Rpc mechanisms are intended to support the networking of heterogeneous ma-
chines, but there is no widespread rpc system available across all platforms. CORBA
provides a generic object-oriented technology for integrating operating systems, and
is seen by many to be the key integrating technology. Currently, CORBA technology
is costly, but increasing use should see its use by more than major corporations.

Using rpc mechanisms makes defining the control interfaces easy. However there
remain some subtleties in interpreting the precedence of control requests. What
happens if a number of play requests are sent - should they be queued? How
then should the streams be interrupted if the requests are queued? How should
the server track the current state of the stream? There is the need for a small
stateful protocol at the server to deal with the ordering of play and pause requests
Inherent in controlling streams of data remotely is the necessity to keep state at the
server about the requests that have been made. Requests must have an associated
sequence number, so that the server can service the incoming requests in the correct
order, despite any re-ordering that may occur.

If a client requests the transmission of a stream, the server has to return some
identifier to the client so that this stream can be distinguished from others. The
mapping between this identifier and the stream is held both on the server and on the
client and can be the source of major difficulties in designing a complete solution.
The problem comes in deciding what happens when the state is lost at either the
client or the server. If the state is lost at the server, then the server can no longer
associate control requests with the outgoing stream. If the client loses state, then it
will not be able to generate control requests for the stream. If the stream consumes

238 CHAPTER 9. MEDIA ON DEMAND

many resources, then this may be disastrous, since a long lived stream which no
one is using, and which is uncontrolled is just a resource hog, and may block other
legitimate uses.

Solutions to the problem rely on either being able to recreate the state (discussed
elsewhere as the “soft-state” approach WHERE IS THIS DISCUSSED), or in en-
suring that the protocol is fail-safe, whereby unless control is continuously asserted,
the stream stops.

9.4.2 An Aside - The Hypertext Transfer Protocol as a Uni-
versal RPC Mechanism

Underlying the World Wide Web is the Hypertext Transfer Protocol or HT'TP. This
was orginally designed purely to serve HIML documents, so provided a simple GET
of a document URL, which received a response from the receiver consisting of the
HTML in plain ASCII. But it is in the nature of all good ideas to become more
complicated. Why should documents simply be ASCII? Why not allow other char-
acter sets? Documents don’t consist entirely of words - why not allow pictures and
other forms of media? And so it came to pass that HTTP used the MIME standard
(REF?) to encode the documents transferred from server to browser, allowing a
range of media types and encodings. Since HT'TP was now passing generic objects
around, identified using the URI and typed by MIME, the current set of designers
thought to themselves, “Hey, we have the basis of a generic request response proto-
col which we can use for rpc, but encoded in ASCII. Let’s turn the next generation
of HTTP into an rpc protocol”

So, the Hypertext Transfer Protocol in its current formulation of version 1.1 [?]
has extended its capabilities beyond a simple protocol to transfer html documents to
becoming a generic request-response protocol for the Internet. Its authors describe
it as an “application-level protocol” which is a “generic, stateless object-oriented
protocol which can be used for many tasks, such as name servers and distributed
object management systems through extension of its request methods”.

Like many other protocols emerging from the IETF, the protocol is based around
ASCII header fields!. The model is that the client sends a request to a server, possi-
bly via one or more proxies. If the request isn’t serviced by any of the intermediate
proxies, then it eventually reaches the server. The server responds to the request
with a response which returns via the proxies. The fields of the messages are split
into four separate headers which relate to different parts of the protocol. We give
a brief overview below, which is sufficient to understand the structure of the RTSP
protocol; for full details the reader should go to the HTTP standard itself, in [?].

The HTTP messages have a first line which contains the type of request or the
response, followed by a general header, a request or response header, and an entity
header. If appropriate, there is also a message body.

The first line of any request indicates the type of method;“GET”, “HEAD”,
“OPTIONS, “POST”, “PUT”, “DELETE”, “TRACE” are currently defined. After
the type of request comes the Uniform Resource Identifier (generally a URL) upon
which the request is to act, followed by the version of the protocol. The first line of
any response gives the status of the request, which has the version of the protocol,
a numeric code and a textual description of the response, eg numeric code 200 is
“OK”, whilst 404 is “Not Found”.

The general header applies to both request and responses, but not to the body.
They include the fields Cache-ontrol, Connection, Date, Pragma, Transfer-Encoding,

1 The use of text based protocols is still controversial. The proponents claim it provides easier
design, the assumption of Least Common Denominator, the ability to use powerful tokenising
tools, debugging capabilities and to easily extend via self describing fields, against slightly more
complex specifications and a less efficient protocol

9.4. REMOTE CONTROL OF PLAYBACK 239

Client Server

Request Line
General Header
Request Header
Entity Header

|
| Message Body of I
I One or more Entity Bodielk
|

Status Line
General Header
Response Header
Entity Header

: Message Body of

! One or more Entity Bodies!
I

Figure 9.17: Basic HI'TP Exchange

Upgrade and Via.

The request header includes additional information for the request, such as the
range of encodings that the client can accept, the most recent entity the client has,
and the client software. Response headers give information about the age of the
response, when to retry on failure and the type of server.

The entity header gives optional information about the body of the message,
such as the length (Content-Length), the type of the entity (Content-Type), when
it expires (Ezpires) and when it was last modified (Last-Modified). There may be
an entity header for each of the entity bodies present.

Finally, the bodies contain the actual data associated with the request and the
resource, such as the HTML page, the image, or the audio file.

9.4.3 The Real Time Stream Protocol - RTSP

In the words of the authors,

The Real-Time Streaming Protocol (RTSP) establishes and controls ei-
ther a single or several time-synchronized streams of continuous media
such as audio or video. .. In other words, RTSP acts a “network remote
control” for multimedia servers.

As we have already discussed above, the interactions of a client with a server using a
network remote control is best modelled by the use of an rpc mechanism. However,
rather than using an rpc mechanism directly, the designers of RT'SP decided to use a
variation on HT'TP, since in its current incarnation of version 1.1, it approximates
an application level rpc mechanism. The designers felt that they could leverage
the work already done in producing HTTP to produce production code for RTSP

240 CHAPTER 9. MEDIA ON DEMAND

clients and servers?, and in particular, use the technology developed for proxies and
security.

Multimedia presentations are identified by URLs, using a protocol scheme of
“rtsp”. The hostname is the server containing the presentation, whilst the port
indicates which port the RTSP control requests should be sent to. Presentations
may consist of one or more separate streams. The presentation URL provides a
means of identifying and controlling the whole presentation rather than coordinating
the control of each individual steam. So,

rtsp://media.example.com:554 /twister /audiotrack

identifies the audio stream within the presentation twister, which can be controlled
on its own. If the user would rather stop and start the whole presentation, including
the video, then they would use the URL:

rtsp://media.example.com:554/twister/
RTSP add a number of new requests to the existing HTTP requests. These are

DESCRIBE Causes a server to return a description of the protocol using the
Session Description Protocol.

ANNOUNCE Allows a client or server to register a description of a presentation.
OPTIONS Causes a server to return the list of supported methods.

SETUP Causes a server to allocate resources for a stream and starts an RTSP
session. This manipulates state.

PLAY Starts data transmission on a stream allocated by SETUP. This manipu-
lates state.

RECORD Starts a server recording an allocated stream. This manipulates state.

PAUSE Temporarily halts transmission of a stream without freeing server re-
sources. This manipulates state.

TEARDOWN Frees resources associate with a stream, so that the RTSP session
ceases to exist. This manipulates state.

GET PARAMETER and SET PARAMETER. Placcholder methods to allow
parameters of presentations and sessions to be manipulated.

REDIRECT Causes a client to go to another server for parts of a presentation.

Putting this altogether, to send a control request, the client constructs a line con-
sisting of the method, the request URIL, and the procol version number. Then it
includes a general header, a request header and possibly an entity header, as for
the http protocol. This is sent to the server, who executes the request if possible.
It then returns a response containing a status-line and general, response and entity
headers. The status line contains the protocol version, the numeric status code and
a textual description.

The media streams are left unspecified by RTSP. These could be RTP streams,
or any other form of media transmission. RTSP only specifies the control and its
up to the client and server software to maintain the mapping between the control
channel and the media streams.

A key concept in RTSP is the notion of a session. RT'SP works by first request-
ing a presentation to be started by a server, receiving in return a session identifier

20ne of the key designers also works at Netscape...

9.4. REMOTE CONTROL OF PLAYBACK 241

which it then uses in all subsequent controls. Eventually, the client can request
the teardown of session, which releases the associated resources. The session iden-
tifier represents the shared state between the client and server. If the state is lost,
for example through one of the machines being rebooted, then the protocol re-
lies on the transport of the media stopping automatically, eg. through not receiving
RTCP messages if using RTP, or the implementation using the GET_PARAMETER
method below as a keep-alive.

The control requests and responses may be sent over either TCP or UDP. Since
the order of the requests matters, the requests are sequenced, so if any requests
are lost, they must be retransmitted. Using UDP thus requires the construction of
retransmission mechanisms, so there are very few occasions when the application
can get away with using UDP.

The most obvious additions to the request header fields are a Cseq field to contain
the sequence numbers of requests generated by the client, and a Session field to
both request and response headers to identify the session. Session identifiers are
generated in response to a SETUP request, and must be used in all stateful methods.
The Transport field allows the client and server to negotiate and set parameters for
the sending of the media stream. In particular, it allows the client and server to set
ports and multicast addresses for the RTP streams. There are a number of other
header fields, such as the time range of the presentation upon which the method
executes (Range), and various fields which interact with caches and other proxies.

Descriptions of session use the Session Description Protocol (described in Chap-
ter ?7), which provides a generic technique for describing the details of the pre-
sentation, such as transport and media types of the stream, and the presentation
content. Importantly, it also provides the start and end times of the presentation,
so that the client can PLAY form and to any point in the presentation they wish.

Media streams are referenced through specification of their times, either relative
to the start time of the presentation, or in real time. Rtsp allows the use of the
standard time codes used in industry such as SMTPE or Normal Play Time, or by
specifying an absolute time for presentations in real-time.

To display a presentation, the client software first requires the Rtsp URL of the
presentation. If it has this URL, it can then display the presentation by following
these steps.

1. The client first requests the description of the presentation using the DE-
SCRIBE method. This supplies details of the media streams, so that the
client can start the appropriate media applications.

2. The client then requests that the session is SETUP, receiving a session iden-
tifier in return. The server would allocate state, such as the sockets through
which the media will be sent, plus any reservations for bandwidth.

3. The client requests that the media streams of the session are PLAYed, by
specifying the URL and the session identifier, and a time range to start and
finish playing at.

4. At any point they may PAUSE the presentation, and continue form any other
point in the presentation by using specifying a new range in the PLAY request.

5. When the client has completed, the client issues a TEARDOWN request to
destroy the session, and deallocate any resources.

Rtsp is intended to be a generic protocol for manipulation of continuous media
over the Internet. For a given presentation or server, there may be limitations upon
the controls the client can use. For instance, if a company has created a media
presentation, they may well desire that a session is not recorded. Since the controls

242 CHAPTER 9. MEDIA ON DEMAND

may sometimes be present and at other times not, this presents a problem in the
design of a user interface. If a control is represented in the user interface, but isn’t
available for a particular presentation, then the user may attempt to use the control
and be confused by the subsequent interactions.

Fortunately, the OPTIONS command allows the client to interrogate the server
to determine the available methods, and the component streams. Once these have
been determined, the client software can then build an appropriate interface, repre-
senting only the available control, and presenting an indication of the components
of the stream.

9.4.4 Movies on Demand

To show how RTSP is used, we shall demonstrate the implementation of a Media
on Demand Service, borrowed from the standard itself. The client wants to receive
audio and video streams from two different media servers A and V respectively. The
actual description of the movie is held on a web server W, which contains sufficient
information to allow the client to set up the appropriate receiving applications.
We assume that the reader is familiar with the Session Description Protocol from
Chapter ?7.

C—>W: DESCRIBE rtsp://foo/twister RTSP/1.0
CSeq: 1

W->C: RTSP/1.0 200 OK
CSeq: 1
Content-Type: application/sdp
Content-Length: 164

v=0

o=- 2890844526 2890842807 IN IP4 192.16.24.202
s=RTSP Session

m=audio O RTP/AVP 0
a=control:rtsp://audio.example.com/twister/audio.en
m=video 0 RTP/AVP 31
a=control:rtsp://video.example.com/twister/video

The client first requests the description of the protocol. Notice that the request has
a sequence number CSeq associated. The response returns with the numeric status
code of 200, indicating “OK”. It returns the sequence number, along with entity
headers describing the body of the message. The description of the presentation is
held within the message body using the session description protocol. The session
consists of two streams, an audio and a video stream.

C->A: SETUP rtsp://audio.example.com/twister/audio.en RTSP/1.0
CSeq: 1
Transport: RTP/AVP/UDP;unicast;client_port=3056-3057

A->C: RTSP/1.0 200 OK
CSeq: 1
Session: 12345678
Transport: RTP/AVP/UDP;unicast;client_port=3056-3057;
server_port=5000-5001

C->V: SETUP rtsp://video.example.com/twister/video RTSP/1.0
CSeq: 1

9.4. REMOTE CONTROL OF PLAYBACK 243

V->C:

Transport: RTP/AVP/UDP;unicast;client_port=3058-3059

RTSP/1.0 200 OK

CSeq: 1

Session: 23456789

Transport: RTP/AVP/UDP;unicast;client_port=3058-3059;
server_port=5002-5003

The client then requests the SETUP of the audio and the video streams, using the
Transport header field to indicate the preferred parameters for the RTP streams.
The responses confirm these are ok, adding the necessary ports to receive from the
server. Importantly, the SETUP responses return session identifiers to be used in
associated commands with the appropriate streams in all subsequent messages.

C-—>V:

PLAY rtsp://video.example.com/twister/video RTSP/1.0
CSeq: 2

Session: 23456789

Range: smpte=0:10:00-

: RTSP/1.0 200 OK

CSeq: 2

Session: 23456789

Range: smpte=0:10:00-0:20:00

RTP-Info: url=rtsp://video.example.com/twister/video;
seq=12312232;rtptime=78712811

: PLAY rtsp://audio.example.com/twister/audio.en RTSP/1.0

CSeq: 2
Session: 12345678
Range: smpte=0:10:00-

: RTSP/1.0 200 OK

CSeq: 2

Session: 12345678

Range: smpte=0:10:00-0:20:00

RTP-Info: url=rtsp://audio.example.com/twister/audio.en;
5eq=876655;rtptime=1032181

The client then requests that each of the streams are played, specifying the range
using SMTPE timestamps. The start times of each of the streams is actually spec-
ified as 10 minutes into the stream. The servers respond OK, returning the end of
the time range that will be played.

: TEARDOWN rtsp://audio.example.com/twister/audio.en RTSP/1.0

CSeq: 3
Session: 12345678

: RTSP/1.0 200 OK

CSeq: 3

: TEARDOWN rtsp://video.example.com/twister/video RTSP/1.0

CSeq: 3
Session: 234567839

: RTSP/1.0 200 OK

244 CHAPTER 9. MEDIA ON DEMAND
CSeq: 3

Finally the client requests that the session be ended, tearing down the state associ-
ated with the media streams.

9.4.5 RTSP Criticisms

RTSP suffers from attempting to produce a lowest common denominator standard,
using extensions of a stateless protocol. Since the ordering of PLAY requests mat-
ters, the sequence numbers must be used to order the PLAY requests. In addition,
the sending of a PAUSE request stops the stream, and places the server into a state
where 1t must remember where the current position in the stream is. Allowing the
control requests to be sent using UDP in which messages can be lost allows the possi-
bility of the server and client locking when the stream is paused and the server loses
a PLAY message. Hopefully these problems can be overcome by the user thinking
their way around and repeating requests, but this is not satisfactory. When packets
can be lost, there are no real substitutes for building a reliable transport protocol
such as TCP.

More importantly, the protocol says nothing about the problems of recovering
state over machine or software failure. Imagine the situation where a user is listening
to a presentation at home on their PC, and some unlikely event occurs requiring the
PC to be rebooted. The client software has now lost state and can no longer send
any control messages to turn off the media streams. The media streams are high
bandwidth and continue to occupy most of the incoming bandwidth into their home.
What can they do? The current protocol doesn’t describe how a session identifier
can be recovered after state loss as in the soft state approach described above.
The authors of the standard hope that implementations use a fail safe mechanism,
relying on the media stream to remain live, or using dummy GET_PARAMETER
messages to probe the liveness of the client.

9.4.6 Conclusion

The Real Time Stream Protocol is an Internet standard, defined in RFC2326. Tt pro-
vides a base set of control messages for controlling media streams, such as SETUP,
PLAY and PAUSE. With these simple controls, it is possible to control many com-
plex multimedia presentations, but at the cost of fairly complex logic in the client
and servers.

9.5 Summary

In this chapter we presented emerging Internet multimedia recording and playback
technologies.

The main requirements for a video conference recorder are the following: when
recording, multiple media streams need to be archived, with the possibility of hav-
ing stream synchronisation; the record mechanism should allow a selection of the
streams to be specified; the retrieval of recorded material needs to be easy for users
to access, either for direct playback to the user or for inclusion in another multi-
cast multimedia conference; users need to see which conferences have been recorded
and are online for access in order to select streams for playback; and the recording
system must be fully equipped with large storage capabilities.

To meet those requirements, the followings objectives were set:

e the ability to record multicast conference data whose source may be any of
the conferees;

9.5. SUMMARY 245

e the ability to playback recorded material either directly to one user or into
another multicast conference;

e to provide synchronisation between streams from each source;

e to allow users to create their own segments of recorded material, and create
their own material for playback;

e to provide a single point of contact for recording and playback;

e to supply a large repository of archive space which is accessible to authorised
network users who wish to record or playback multimedia data;

9.5.1 Synchronisation Support

As stated, the system does support the synchronisation of different media. For the
three kinds described earlier, the following type of support is provided:

e For inter-packet synchronisation there is support in each player. This means
that data is sent to the network either (i) with the same order and inter-
packet gap as the recorder saw by using the recorder timestamps, or (ii) with
the same order and inter-packet gap as the original sender intended by using
sender timestamps.

e For time synchronisation there is support via the indexes. It is possible to
have an index entry at a specified regular time interval with references to each
media stream. By following these references it is possible to access the media
streams in a time synchronised way.

e For lip synchronisation there 1is little support that the server can provide. It
relies on cross-media control messages, plus support in the receiving media
tool. Without this support lip synchronisation can never be achieved.

9.5.2 An Index Architecture

Indexes form the basis for a general set of applications based on multimedia. They
provide the general facilities required for real-time media interaction and presenta-
tion. These facilities can be viewed as an architecture for operating on real-time
media. In figure 9.18 an architecture for indexes is presented. At the two lowest
levels are the data and the indexes themselves. For server purposes the data is
either video, audio or whiteboard packets, with index entries for each packet. The
next layer has the operations on the indexes. These operations include such things
as creating an index element, selecting regions of an index, adding an annotation
to an index element, an so on. The top level of the architecture has applications.
These do operations on indexes to achieve media recording or media playback.

9.5.3 Control of playback

Clearly, a multimedia recording and playback server is a small part of a much
larger architecture. It is possible to design and build a large set of applications
on top of real- time multimedia indexes. For future reference, there are at least
two major efforts underway to define protocols for retrieving multimedia from web
servers, and even organising collections of web servers to function as a type of
application level multicast delivery network. These are the RealAudio effort from
Progressive Networks, and the RTSP (Real Time Stream Protocol) currently udner
discussion in the IETF Working Group on multimedia. More details are available
from http://cgi.realaudio.com/, and the relevant workingdraft standards.

246 CHAPTER 9. MEDIA ON DEMAND

VCR
server
N index annota}ion
recorders players : perusa
editors
tools
applications

operations on indexes

e.g. create an index entry,follow an index entry,
select regions, add annotations, list annotations

indexes

0000 O0C

data

556068

Figure 9.18: The Index Architecture

RTSP is designed to operate over TCP, and over RTP/UDP, and is largely
aimed at controlling the playout of media, much i nthe way that a (typical Infra
Red based digital wireless transmission) remote control is used to control a domestic
VCR. The actual delivery of the media itself, if VoD, near VoD, or realtime, would
be accomplished typically using techniques described in the rest of this book.

One interesting exception to this design approach is one of the proposals in
DAVIC, designed for delivery of digital TV over Cable TV networks. Here audio-
visual information is the only first class citizen, and other data types are layered
on top of the media stream. which, it has been proposed, would be carried i nan
MPEG systems stream over an ATM layer modulated on the raw cable signal.

Whether this takes off in any way remains to be seen, but it seems more likely
that a pervasive 1P based approach offers more flexibility and management, as well
as immediate availability of a range of other Internet based applications.

Chapter 10

Security and Policy in
Multicast Multimedia

10.1 Introduction

This book is about using computer networks to enable people to communicate with
each other. Whilst there will no doubt be different forms of interaction, we will
generally talk about the same subjects - work, play and the other parts of the rich
fabric of our lives - as we do in face to face situations. Because we live in an imperfect
world, we can thus expect the problems that come with communication to be the
same as they have always been, such as fraud, eavesdropping and prevention of
communication, along with new problems from using new technology, and changing
relationships between people and technology. In this chapter, we focus upon the
problems of security, and ensuring that the human goals of communication cannot
be subverted by other people.

10.2 Roadmap

We first motivate the need for security by examining a number of hypothetical
scenarios, and extract the major security requirements for multicast multimedia.
We then give a brief overview of a very useful weapon in keeping streams secure -
cryptography. We then discuss techniques to keep the media streams secure, ranging
from solutions at the network level and at the transport level, and finally we discuss
the infra-structure problems in distributing keys.

10.2.1 Formal Distributed Conference

Imagine the situation - a global tele-conference has been convened by the UN to
discuss how to regulate the global Internet. FEach participant is geographically
separate from all others, and uses the Internet to communicate with the other
participants. Meanwhile there are myriad observers who wish to discover how their
favourite communication medium is going to evolve. Because such weighty matters
hang upon the utterances of each speaker, the participants need to be sure that
each speaker is actually who she purports to be. Indeed, there is a band of rogue
hackers who disagree with the direction that Internet Evolution is proceeding, and
wish to subvert the conference. The hackers intend to imitate speakers and thus
drag the conference to a more anarchic decision.

For the technology described previously, the hackers need only create the speech
packets, and then send to the multicast group, using the same identifiers as the real

247

248 CHAPTER 10. SECURITY AND POLICY IN MULTICAST MULTIMEDIA

participant!. If they wish to be really sneaky they could forge group leave packets
for the participant they are imitating, and then feed the imitated person sufficient
of the conference so that their suspicions are not aroused.

It is obvious that the technology in the above scenario needs to be extended:

o It is necessary to prove the identity of the speakers to the participants, and
to a lesser extent the observers.

e The routing of the traffic must be protected to ensure that listeners cannot
be denied service

How 1s the identity of the speakers proven? Through authenticating that the
packets really came from the purported source, generally by attaching some data
explicitly, or implicitly in the stream, which can only be generated by the source.
In talking to people, this comes in voice patterns, in the patterns of speech such as
mannerisms, in the subjects and things they know, and most importantly, by check-
ing that their physical appearance corresponds to the person we believe. However,
there are times when we do not know enough about the individual to use these
techniques - instead we trust to some token which only the individual could possess
- a letter of introduction from a trusted friend or the policeman’s badge.

In the networked domain, we use the same techniques - if we are talking to
people we know, then it is sufficient to trust to the past history to give us clues that
they are who they say they are. However, this is more difficult in the electronic
domain, and so we can expect the growth of new urban myths where students
embarrass teachers by pretending to be someone else. In the plenary session above,
the technique used would be to attach a token to the packets, which can only have
been generated by the individual. How can we generate these tokens? We shall
discuss this below in the use of cryptography.

Our hackers above could deny service to the participant because the network is
open. There are many good reasons to design open networks?, but there are times
when it is necessary to protect the network. This can be achieved through the use
of features of the routing protocols the judicious use of filters and firewalls, and
careful design of network topology.

10.2.2 Pay per View Distribution of Rolling Stones

One of the first times the Mbone gained exposure on TV and in newspapers was
when the Rolling Stones provided an Mbone feed of their [Which venue, altamont?]
concert on the Voodoo Lounge tour. Mick and Keith strutted and posed over
the nascent multicast network, and the audience whooped in appreciation. The
next time the Stones appear on the Internet, they may be selling a pay per view
distribution of the event. In a similar fashion to cable or satellite tv pay per view
events, only the punters who have paid the fee should be able to see this event.
For satellite and cable, this is achieved by encrypting the tv signal, and handing
out the decryption key for money. In a similar fashion, the multicast multimedia
extravaganza would be encrypted and could only be decrypted by those who had
paid for the decryption key.

What are the requirements here? Obviously, we need to be able to encrypt
and decrypt the stream. A subtler requirement is the need to distribute keys in a
scalable manner - in a world of information, it i1s unlikely that the key would be
contained in a physical medium such as a smart card for a large consumer event,

1Since the voice characteristics which make voices unique are removed in compressing speech,
it becomes easier to produce good copies of someone else’s speech - how many times have you been
mistaken for someone else on the 3 KHz telephone?

2Ponder the irony that the US DoD funded the design of the very open Internet...

10.2. ROADMAP 249

since the physical distribution costs would be large. Instead, the keys would be
distributed to the millions using the same Internet. Since the distributors would be
encouraging people to sign up at any time, the key distribution mechanisms would
need to scale and not melt down upon receiving too many requests.?

10.2.3 Inter company Brainstorm

Two companies have organised an informal tele-conference in which they intend to
brainstorm a new product. This is a tentative meeting, in which options for coop-
eration will be investigated. To ensure the maximum creativity and imagination,
the participants want guarantees that nothing they say can be used against them
later, and that no commitments can be made inside of the conference. In a compet-
itive market place, the ideas discussed are valuable commodities, and so the media
streams should be protected against eavesdroppers. Indeed, the fact that the two
companies are talking to each other may be valuable, since it may affect the share
prices of the company.

The need to ensure that participants can repudiate what they have said 1s a
contradictory requirement from ensuring that the members are authenticated. It
can be achieved by sending the data through a trusted third party, who acts as an
anonymiser. Authentication is provided to the third party on both input streams
and output streams. Going further, the third party can help in preventing connec-
tivity leakage by aggregating many traffic streams, and ensuring that there is no
mapping between input and out streams.

10.2.4 Global Traffic Disasters

We can distinguish two (unfortunately common) further types of attack, being gen-
eral denial of service by flooding (all too easy with multicast or reflectors) and
traffic flow (source destination matrix) analysis. Defenses against these range from
the introduction of inter-router authentication, to the generation of uniform random
traffic noise that is reduced as real traffic is added. Charging for traffic also helps
deter the former problem. A scenario that represents an extreme case of potential
paranoia where we would be concerned with these attacks is that of an Mbone based
Share Auction.

10.2.5 Pulling the requirements together
In the scenarios above, the requirements have built upon each other.

Service protection If the connectivity is crucial to the mission, then sufficient
security must be built into the system such that the probability of a denial
of service attack being mounted and succeeding is less than or equal to the
probability of connectivity being broken through faulty equipment or human
error in configuration or maintenance.

Data Integrity Obviously, if data can be removed, substituted or appended, then
things can go wrong. For video and audio streams, the results could be any-
thing from embarrassing through to disastrous - imagine insertion of manip-
ulated images into a video stream to show someone with rabbit ears.

Authentication It is often required that the sender of a stream must be authenti-
cated, and additionally, the receivers of a stream must be authorised to view
the media. This requires authentication.

30f course, it is a lot easier to design a scalable key distribution protocol in a symmetric
capacity network such as the current day Internet, than in an asymmetric system such as the
current day cable TV net, or proposed IP on ADSL and Cable Modem networks!

250 CHAPTER 10. SECURITY AND POLICY IN MULTICAST MULTIMEDIA

Confidentiality The stream should be protected from prying eyes, depending
upon what is in the stream.

Key Distribution Key distribution should be only to the authorised users, and
on some occasions must scale both in the number of users and in the rate at
which keys change.

Specialist requirements There are many other security requirements depending
upon particular circumstances, such as the ability to repudiate transmissions
in the brain-storming scenario above. Other possibly requirements include
the access control to the equipment in a video conference such as the cameras
and microphones, and non-repudiation of transmission.

For the individual requirements, the best approach is to separate the actors within
the application and construct their security requirements. However, in all cases, one
must make the engineering trade-off of the cost of meeting the security requirement
against the cost of not meeting the requirement and being insecure. There may
be occasions when a different means of transmission, such as delivery by trusted
human courier may be preferable.

10.3 A brief Introduction to Cryptographic Tech-
nology

10.3.1 What is Cryptography?

Cryptography according to Schneier [118] is “the art of keeping messages secure”.
There are two choices for communication over networks: prevent unauthorised peo-
ple gaining access to the network, as described in Section 10.4; or scrambling the
data so that it can’t be understood. If the latter root is taken, then cryptographic
technology will be used. For multimedia streams this generally requires the use of
fast encryption using shared keys on the media streams, and public key cryptogra-
phy to distribute the shared keys for the media streams.

! Sp. password |
e v

| |

| j/ g plaintext iphertext
|

|

|

insecure
transmission

Figure 10.1: Encrypting to provide confidentiality

Remember that our information is just bits in memory and on the wire. If this
data is viewed as the representation of large numbers, then we can apply math-
ematical functions to the data, ie if our input text, known as cleartext, is z, our

10.3. A BRIEF INTRODUCTION TO CRYPTOGRAPHIC TECHNOLOGY 251

cryptographic function is f() and we have a key k, the output of f(k,z) is the
encrypted text y or cyphertext. Now if we choose our mathematical function f()
so that there 1s no easily discovered inverse mapping, ie given y, it is extremely
difficult to calculate z without knowing k, but it is possible given the knowledge of
k, then we have a means of encrypting our data.

10.3.2 Symmetric Cryptography

If the key for encryption and decryption is the same shared secret, then the crypto-
graphic algorithm is termed a symmetric algorithm. As in Figure 10.1, the key must
be shared by both the sender and the receiver. The sender applies the encryption
function using the key to the cleartext to produce the cyphertext. The cyphertext is
sent to the receiver, who then applies the decryption function using the same shared
key. Since the cleartext cannot be derived from the cyphertext without knowledge
of the key, the cyphertext can be sent over public networks such as the Internet.

The US standard for symmetric cryptography, in which the same key is used for
both encryption and decryption is the Data Encryption Standard (DES). This is
based upon a combination and permutation of shifts and xors and so can be very
fast when implemented directly on hardware (1 GByte/s throughput or better) or
on general purpose processors. The current key size of 56 bits (plus 8 parity bits) is
now starting to seem small, but the use of larger keys with triple DES can generate
much greater security. Since the implementation of DES is fast, it can easily be
pipelined with software codecs and not impact the performance.

IDEA is an alternative and stronger form of symmetric block encryption. Its
security is based upon combining xors with addition and multiplication in modulo
16 arithmetic. This is also fast on general purpose processors and is comparable
in speed to DES implementations. The major advantage of IDEA is that the keys
are 128 bits and thus much stronger (a.k.a. harder to break) than standard 56 bit
DES.

What size keys?

The larger the key, the more security one gets. Since most attempts to decrypt
rely on searching through the key space, adding another bit to the key doubles the
size of the search space. One can see that large keys will generate large search
spaces. 64 bit keys can probably be broken in under 245 hours, 128 bit keys need
the development of faster computers to be breakable in a realistic time. However,
large keys do slow the speed at which encryption can take place, but not very much.
And if speed is essential, one can always buy a faster computer. More importantly,
large keys are frowned upon by governments, since it then becomes difficult for
government agencies to decrypt all the encrypted traffic lowing over the Internet
which is generated by criminals - or at least that is the excuse that governments
offer for refusing to allow good encryption.

Instead, one can use key escrow, where a part of your key is held ina secure
registry, which only a trusted member of the security agencies can get at it. Thus,
when you encrypt, anyone who isn’t a member of the government has to decode
using the full length of key, but government agencies get a head start by knowing a
large portion of your key. In this way, only the government agencies can read your
email and listen to you audio calls. Doesn’t that make you sleep happier at night?

10.3.3 Public Key Cryptography

Public key encryption is a much slower alternative to symmetric cryptography. Its
based upon mathematical functions upon two pairs of numbers. For the well-known

252 CHAPTER 10. SECURITY AND POLICY IN MULTICAST MULTIMEDIA

RSA algorithm, the security comes from the difficulty of factoring large numbers in
Galois Fields.*

Each key 1s a pair of keys K and K — 1. If a message is encrypted using K then
it can only be decrypted using K — 1. If A means the application of the encryption
function and text is the cleartext, then the following all hold true.

(text) N\K A K — 1 = text
(teat) N K AN K # teat
(text) N\K — 1 AK = text
(text) N\K — 1A K — 1 # text

Importantly, one cannot derive K from knowledge of K —1 or vice versa. This allows
the primary use of public key technology, where one key is made public and one key
remains secret. This provides a much larger degree of functionality, extending the
use of cryptography to supply authentication and integrity as well as confidentiality.

Authentication is provided by taking a piece of text, encrypting it using the
private key which is only known by you. If it can be decrypted using your public
key, then it 1s known to be encrypted by you. This then functions to authenticate
the text.

But, encryption is slow, so what is used 1s another mathematical function which
takes text in and produces a pseudo random fixed size number out that can only
have come from the original input text. This is known as a hash function. The hash
function takes in the whole of the cleartext, generates a 128 byte message digest,
which is then encrypted using the public key. This is known as a digital signature.
When the receiver receives the message, they run the hash function over the data
to regenerate the message digest. They decrypt using the public key, and if the
digests match, then they know that the message was really sent by the purported
sender, and that the message was not interfered with - the integrity of the message
has been protected.

| private key l
| i !
| |
| cleartext | hash message digest |
— . »| encrypt
| functio: T
| | (cleartext,
| |
________________________ 1 digital signature)
) |
cleartext
hash | !
. |
accept

|

|

digital |
signature |
|

|

|

|

|

|

|

| T
| or reject \

| decrypt log
|

|

|

|

|

Figure 10.2: Authentication and Integrity with digital signatures

In the original Diffie-Hellman proposal, the two parties, Alice and Bob, choose
two large integers, n and g, such that g is less than n. Then the following occurs:

4knowing what a Galois Field represents another convenient barrier to breaking such systems:-)

10.4. NETWORK LEVEL SOLUTIONS 253

1. Alice chooses a random large integer z and calculates

X =¢"modn (10.1)

2. Bob also chooses a random large integer y and calculates

Y =¢Y modn (10.2)

3. Alice sends Bob X and Bob sends Alice Y. z and y are both kept secret.

4. Alice computes

k=YY" modn (10.3)

5. Bob computes
k' = XY mod n (10.4)

Both k and &’ equal ¢°¥ mod n. However, its very unlikely that anyone else listening
on the channel can calculate the key, since the calculation of discrete logarithms
under field arithmetic is very hard (see Galois Fields).

Whilst RSA is the normal set of algorithm used in public key cryptography,
Diffie-Hellman is still used in such places as the SKIP protocol.

10.4 Network level solutions

If the goal of security is to prevent the unauthorised discovery of information or
use of resources, then one way of meeting this goal is to prevent intruders being
able to read or access the protected information. If the intruder cannot copy the
communication data, then they cannot read it. So the first level of security is to
implement network level solutions to prevent the traffic being visible to potential
miscreants.

At the lowest level, networks are physical communication links and lines joined
together by packet switches. If these lines, links and switches are physically se-
cured by locking them up in bomb-proof rooms and guarding the passage of the
communication link with razor wire and armed guards, then the administrator can
be fairly certain that the lines will not be physically tapped. Not every enterprise
has the resources to implement military security, so isolating the network within
the headquarters may be sufficient, where the wires run through the dry risers, and
switches are kept in locked cupboards and machine rooms.

If communication only occurs between those people in the building, then the
administrator may feel relatively happy - they need only worry about the trust-
worthiness of the employees. But if the network connects with the outside world,
the network administrator has to ensure that any valuable information does not
inadvertently leak outside. For this, the administrator has to keep a careful rein on
the routing of packets within the network, and to carefully configure what is known
as a firewall. Whilst this is not the place to fully discuss securing an enterprise net-
work, we shall discuss the implications of the multicast multimedia for controlling
the routing and implementation of firewalls.

The problem with multicast for the conscientious network administrator is that
the TP multicast model allows open and unknown receiver groups. For security
purposes, this is anathema, and so the security minded administrator must work at
controlling the routing of multicast groups, so that they don’t leak outside the pro-
tected domain to unknown receivers. One can filter at the boundaries of a network
based on known sets of multicast addresses, a technique known as Administrative
Scoping. Having set up known groups of addresses, one needs to dynamically grow

254 CHAPTER 10. SECURITY AND POLICY IN MULTICAST MULTIMEDIA

the boundaries of the enterprise, according to the communication requirements, so
one tunnels through the Internet to connect bounded domains. Tunneling is made
more difficult through the use of firewalls, which need to be carefully configured. In
order to disguise communication patterns, ie that IBM and Digital executives are
talking to each other, the traffic may go through Redistribution centres. Finally,
the eventual goal is for the inter-domain routing of multicast to be amenable to
configuring the policy of the domains explicitly.

10.4.1 Administrative Address Scoping

One way of preventing groups leaking is to set up filters on the group addresses
at the border routers of the region. This is implemented inside of the mrouted
release, but is not terribly well-known. A group of addresses are defined as being
administratively scoped, and when they reach the borders of the region they are
blocked from going outside. Similarly, packets using the same group address in the
outside world cannot leak inside (7).

10.4.2 Tunnels

Tunnels, in which packets are encapsulated inside other packets, are a feature of
today’s Internet, since they provide a way of creating a Virtual Private Network
(VPN) over the Internet. Two machines are setup as the tunnel endpoints, and when
traffic is to be sent to the sites from inside one of the other sites, it is redirected to
the tunnel end-point, encapsulated inside IP (protocol version 4) or inside a UDP
packet, possibly encrypted and sent to the other machine over the Internet.

However, although tunnels provide the VPN, managing them within the frame-
work of multicast TP routing prevents some complex problems. The Mbone has
grown as a Virtual Network using tunnels, but there have been a number of prob-
lems related to the fact that all the tunnels have to be manually administered. If
a metric is badly set then a site can disappear and appear unreachable. If tunnels
are used to connect sites together as a single domain for multicast, then a lot of
work must be done to ensure that the domain remains convez; i.e. there is no bet-
ter route to the sites than through the tunnels.® If there is, then administratively
scoped traffic won’t be able to reach the other site. If the traffic doesn’t reach the
site then 1t is useless.

10.4.3 Firewalls

Firewalls are used to prevent traffic entering a site (and sometimes to prevent traffic
leaving a site). They work on assuming that the services that people use are fixed
and well-known and can be configured in a filtering table. However, multicast
uses dynamically assigned addresses, and to allow users access to traffic requires a
programmable filter.

The safest way of achieving dynamic programming is to use a pair of multicast
relay machines either side of the firewall. The machine on the unfriendly side of
the firewall receives all the multicast traffic, and only allows groups through which
it has been programmed to accept. It then encapsulates the traffic and sends it
through to the other side of the relay, which checks the origin of the traffic (to
prevent spoofing), unwraps it and sends it out. The dynamic programming can
be achieved through authenticated RPC control, and sensible policy in recognising
which sessions should be allowed.

5recent work is addressing this problem.

10.5. MEDIA ENCRYPTION 255

10.4.4 Redistribution Centres

Traffic analysis is a potential problem. If both company A and company B are in the
same encrypted multicast session, the fact that they are talking to each other may
leak valuable information. To prevent this, trusted service providers may provide
anonymous redistribution, using address mappings to prevent eavesdroppers from
easily determining origin. In order to make traffic analysis more difficult, extra
bogus traffic can be generated from the redistribution centre to hide the actual
traffic patterns.

10.4.5 Policy Routing of Multicast

Administrative scoping, tunnels and redistribution centres all have a common aim -
to control the routing of multicast traffic so that the receiver and sender groups are
constrained. This should really be controlled by the routing protocol, in the same
way that the Border Gateway Protocol controls the placement of unicast routes.
However, as yet, none of the multicast routing protocols appear to have properly
addressed the question of policy (although PIM is doing better than any of the
others).

One can expect to see a multicast policy and QoS routing protocol appear from
out of the IETF within the next year or two.

10.5 Media Encryption

For the media streams, the processor should be concerned with generating and
processing the media, not with encryption. Thus the encryption should be low
cost. Fortunately, both DES and IDEA are fast encryption technologies, and data,
audio and video can be encrypted in real-time on an ordinary processor nowadays.

Session keys have to be human readable to allow people to type them in. How-
ever, the entropy of the session keys (the randomness) of the keys is then badly
compromised since the keys tend to come from real words. To increase the distribu-
tion of keys over the space of possible keys, most applications generate the actual
session key from the input string by running a hash function over the key such as
the MD5 digest function. Whilst this doesn’t increase security, it requires attackers
to compute an MDb) of every string they want to try.

At which point in the protocol stack to encrypt is yet to be determined - until
the IP security architecture described is in place, the current Mbone applications
will use the ad hoc approach to encryption discussed in RTP.

10.5.1 TP Security Architecture

The IP security architecture [114] uses the concept of a security association as the
basis for building security functions into TP. A security association is simply the
bundle of algorithms and parameters (such as keys) that is being used to encrypt
a particular flow. The actual choice of algorithm is left up to the users. A security
parameter index (SPI) is provided along with the destination address to allow the
security association for a packet to be looked up. For multicast therefore, a security
association is provided for the group, and is duplicated across all authorised receivers
of the group. There may be more than one security association for a group, using
different SPIs, so allowing multiple levels and sets of security within a group. Indeed,
each sender can have multiple security associations, allowing authentication, since
a receiver can only know that someone knowing the keys sent the data. Note that
the standard doesn’t describe how the association is chosen and duplicated across
the group; it is assumed that a responsible party will make the choice and

256 CHAPTER 10. SECURITY AND POLICY IN MULTICAST MULTIMEDIA

Two headers have been designed to provide security for both TPv4 and IPv6:

e The IP Authentication Header [115] provides integrity and authentication
and non-repudiation, if the appropriate choice of cryptographic algorithms is
made.

e The TP Encapsulating Payload [116] provides confidentiality, along with au-
thentication and integrity.

As usual, the default algorithms used are keyed MD5 for integrity in the AH
and DES-CBC (Cypher Block Chaining) for confidentiality in IPEP.

10.5.2 RTP Security

Eventually all low layer security services will be provided by the IP security archi-
tecture. However, since deployment of security is never speedy, due to government
intervention and export problems, RTP [117]has defined how streams can be en-
crypted at the RTP layer to provide confidentiality.

The base encryption algorithm used is DES in CBC mode, with the initialisation
vector chosen to be zero. RTP packets have pseudo random headers from the time
stamp, but since RTCP has known plaintext at the start of each packet, a random
32 bit number is prepended to the RTCP header before encryption. Each packet
is padded to multiples of 64 bits before encryption. Validity checks on each header
are used to ensure that the data has been decrypted properly, such as checking that
the payload types are known, and the SSRC id has been seen before.

Key munging techniques are outside the scope of the specification but are agreed
between the implementors of tools which desire to be inter-operable.

10.6 Key Distribution

Here we look at the Key Distribution problems, including aspects of the following;:
e Problems of scalability
e SKIP and Photuris
e Core Based Trees
e Email - PEM and PGP
o X.509
e Session Invitation Protocol

The easiest way to distribute a key for a session is by hand (or telephone, or
any other out-of-bounds technique), so that the channel is out of bounds from the

network, and the user puts the key in by hand. There are a number of problems
with this approach though:

e The user may make a mistake in entering the key.
e The key must be secured on its passage.

e It is not very timely

e It is labour intensive.

o It doesn’t scale.

To reduce the amount of manual work, encrypted email can be used to deliver the
key, and the key can be processed automatically by the local environment.

10.6. KEY DISTRIBUTION 257

10.6.1 Emalil Invitations

Encrypted email is becoming widespread. The PGP package [113] is widely used,
and provides encryption capabilities that are strong enough for all except the most
paranoid to sleep easy at night. PGP hasn’t acquired the stamp of the IETF though
- the IETF have produced their own secure mail standards in Privacy Enhanced
Mail (PEM) and MIME Object Security Services (MOSS). But given the headstart
that PGP has been given, the IETF standards may not be used in the wider world.

With the use of MIME objects encapsulated in secure mail, it is possible to send
mail to individuals that will enable the receiver to start the conference applications
automatically and securely. If someone wants to start a secure conference, she first
collects the names and email addresses of everybody who will be invited. She then
constructs the message, adding a specially delineated section that can be used to
start the media receivers using the keys needed to decrypt the media, and on the
selected address(es). She sends the mail out to everybody through her secure email
agent, which encrypts, authenticates and adds integrity checks. The receivers get
the email and pass it through their secure email agent to discover that its really
from who they thought, and hasn’t been tampered with. They then have the option
of starting the session using the supplied key and address, or if their user agent has
been enhanced, by simply clicking a button.

However, although secure email improves the scalability of issuing invitations,
it still suffers from scalability problems, since a separate email must be sent out for
each user. In sending the email, the public keys for the receivers must be found, and
used, whilst at the receivers, the public key for the sender must be used to decrypt
and authenticate the message. If these public keys are cached locally, then this is
not too much of a performance problem, but if they must be obtained through the
use of a public directory such as X.500, then the overhead in processing the message
may be very high. In the case of a pay-per-view scenario, it is unlikely that the
customers would be happy about receiving their keys so slowly.

10.6.2 Certification Hierarchies

In using a public system, there has to be a way of obtaining the public key. The
obvious way is to store public keys on a server and then request the keys as required
from the server. But, this presents problems, since if an imposter was able to
intercept the request to the server and substitute a different public key, then they
would be able to read all mail sent with that key and the intended recipient would
not be able to. So, there must be a way of ensuring that public keys are really the
intended public key.

One way of doing this is to have a trusted third party authenticate and sign
the keys, so that as long as the certifier is trusted, then the public key can be
believed. This approach is embodied in the X.509 certification standard. This
standard defines the format of certificates which are authenticated by trusted third
parties, such as the government agency responsible for telecommunications. The
authentication of the certificates can be delegated to other agencies, such as Internet
Service Providers, so creating a hierarchy of certifiers. Thus when one receives a
certificate, as long as one can trace a path up and down the hierarchy to a certifier
one trusts, then one can trust that the public key within the certificate is really the
public key of whom it purports to be.

10.6.3 Problems of Scalability

Basic problem with using cryptographic techniques is that each person to whom a
key must be distributed has to be authenticated. This is not a great way to scale.

258 CHAPTER 10. SECURITY AND POLICY IN MULTICAST MULTIMEDIA
Alternative solutions which are based on shared secrets are not as secure.

10.6.4 SKIP and Photuris

At the time of writing, the default key management protocol for the IP security
architecture hasn’t been chosen. The choice appears to be between Photuris, a
connection oriented session protocol, and SKIP, a stateless connectionless key man-
agement scheme. SKIP appears to be the better choice for multicast, so this will
be described.

SKIP is based on the Diffie-Hellman transformation, where to construct a key
for communication, each of the participants combines their private part with the
other’s public part to create a shared secret key. This 1s then used to send a session
specific key to the other which is used from then. This is completed in message
exchange and so requires very little overhead. The construction of the shared secret
key can include a time component so that the shared key doesn’t remain constant
over time, and since it is only used to pass the session key, there is very little text
to attempt to break the secret key of the users.

The public part of the key is assumed to come from a directory of some sort,
such as from the X.509 certification hierarchy or secure DNS. To this end, the name
space identifying who’s public key should be used is flexible and so can use 1Pv4 or
IPv6 address space, domain names or X.500 distinguished names. Keys can also be
manually configured for machines, so that the public keys for each of the machines
in a trusted network can be stored in a file on each machine.

For multicast, the above approach is generalised by assuming that there is a
group owner identified with the group. To get the session specific keys, the group
members contact the group owner using the normal SKIP protocol, and thus the
SKIP protocol introduces membership control based on the authentication involved
in SKIP.

10.6.5 Core Based Trees

As described in Chapter Three, CBT sets up hard state in the routers that are part
of the delivery tree. Since a lot of work goes into establishing this tree, it is possible
to complement the tree construction with security services, such as authentication.
In particular, the tree lends itself to scalable key distribution, since the tree can
be seen as a hierarchy of routers, with the core at the top of the hierarchy. Key
distribution can then be performed by sending the key from the core on demand to
the authenticated routers, using encrypted exchanges.

10.6.6 Session Announcement Protocol

In the session announcement protocols described in Chapter Seven, announcements
that are multicasted out can include a session key for each media stream. Obvi-
ously, the announcement packets must themselves be encrypted. It is intended that
the receivers will be supplied with a set of keys which are used to receive session
announcements. When an encrypted announcement is received, the receiver will go
through the set of keys trying to decrypt the message using each of its keys. If it
succeeds, then the announcement is displayed and cached, or else it is discarded,
and only the id of the announcement is retained to discard duplicates.

10.7 Conclusion

Security in the Internet is improving. The increasing use of the Internet for com-
merce is improving the deployed technology to protect the financial transactions.

10.7. CONCLUSION 259

Extension of the basic technologies to protect multicast communications is possible
and can be expected to be deployed as multicast becomes more widespread.

Control over routing remains the basic tool for controlling access to streams.
Implementing particular policies will be possible as multicast routing protocols im-
prove. Cryptography is a tool which may alleviate many of the perceived problems
of using the Internet for communications. However, cryptography requires the safe
implementation of complex mathematical equations and protocols, and there are
always worries about bad implementations. A further worry is that users are inte-
gral to securing communications, since they must provide appropriate keys. As the
founders of First Virtual point out [119]

...a safe application of cryptographic technology will pay close attention
to how public keys are associated with user identities, how stolen keys are
detected and revoked and how long a stolen key is useful to a criminal.

Cryptography may be groovy technology, but since security is a human issue, cryp-
tography is only as good as the practices of the people who use it. Users leave keys
lying around, choose easily remembered keys, don’t change keys for years. The com-
plexity of cryptography effectively puts it outside the understanding of most people
and so motivation for the practices of cryptographic security is not available. [120]

260 CHAPTER 10. SECURITY AND POLICY IN MULTICAST MULTIMEDIA

Afterword

The future is very hard to predict. Sometimes, technology is selected by the market
which is severely sub-optimal, but at a large enough production scale, the difference
becomes marginal. One can cite CD and VHS video as multimedia examples of just
this. In other cases, such as TV standards, the market permits multiple standards
to exist.

In the future, the firmament of network technologies will no doubt expand. We
can see some interesting transmission technology for expansion of reach and capacity
for the Internet in the emergence of cable modems, ADSL, and Satellite, as well as in
mobile/wirelss access through GSM, LEO and Wavelan and TrDA access networks.

These will no doubt lead to certain interesting problems. Amongst those that
we can say now that we have to solve are the following:

e Routing and QoS for mobile
e Routing and QoS for asymmetry (cable, adsl, satellite)
e quality of service for multicast sessions

e quantitative scaling for very large groups and very large numbers of groups
potentially with high receiver and sender change rates.

¢ Simplicity/management of new services.
o Integration of legacy tv/telephone services.

e Possible web/mbone unification.

261

262 CHAPTER 10. SECURITY AND POLICY IN MULTICAST MULTIMEDIA

Glossary

A2D Analog to Digital

AAL ATM Adaptation Layer - a framing protocol to enhance cell switched net-
works

AALS5 The framing protocol to turn a cell switched network into a packet switched
network

ABR Available Bit Rate - an ATM Bearer Service Class for adaptive applications
to be given, dynamically, a fair share of the network.

ADSL Asymmetric Digital Subscrber Loop - a recent way to provide Mbps over
standard phone lines.

ADU Application Data Unit - the programs view of the packet.

ALF Application Layer Framing - a technique for designing protocols around the
synchrnonsiaiton unit that is most convenient for the application

API Application Programming Interface - a standard set of calls for the user.
ARP Address Resolution Protocol
ARQ Automatic Repeat Request

ATM Asyncronous Transfer Mode (or Automatic Teller Machine) - the former is
another name for cell switched networks. (The latter is another name for Sell
Switching Networks)

AVT Audio Video Transport - the IETF’s working group that devised RTP.
BCH Bose, Chaudhurie and Hocquemham signaling technique

BONDing A technique for turning seperate ISND B channels into a higher band-
width aggregate serial channel.

Broadband As opposed to narrow band - use of higher capacity, generally (specif-
ically, used to refer to use of multiple frequencies on the same trasmission
medium).

CBQ Class Based Queueing - an architecture for supporting IP QoS

CBR Constant Bit Rate - ATM Bearer Service Class that emulates leased digital
circuits

CBT Core Based Trees - a multicast routing algorithm.

CCCP Conference Control Channel Protocol

263

264 CHAPTER 10. SECURITY AND POLICY IN MULTICAST MULTIMEDIA

CDs Compact Disk

CELLB Sun Video Compression scheme

CELP A high compression standard for audio.

CGBT Core Group Based Trees, an hierarchical variant of CBT

CIDR C(lassless Inter-Domain Routing - Hierarchcail aggregation of Internet Ad-
dresses

CIF Common Interchance Format, as per H.261 video input
CLNP Connectionless Network Protocol

CLNS Connectionless Network Service

CMMC Communications Multimedia Multiplexing Center
CMY Cyan, Magenta, Yellow

CNAME Canonical Name

CODEC Coder Decoder.

CSCW Computer Supported Collaborative Work
CUSeeMe Cornell University’s MAC and PC Video Conferencing Tool
Chrominance Colour Content

Cypher A Code

DCT Discrete Cosine Transform - basic buildign block for H.261 and MPEG Video
Compression

DHCP Dynamic Host Configuration Protocol - An Internet Standard for config-
uring nomadic and mobile hosts.

DNS Domain Name System

DRs Designated Routers

DTS Digital Time Service, DEC service similar to NTP
DVI Digital Video Interactive

DVMRP Distance Vector Multicast Routing Protocol
DoD Department of Defence, USA

FDCT Forward Discrete Cosine Transform Protocol
FDDI Fiber Dual Distributed Interface - 100Mbps LAN standard
FEC Forward Error Correction

GCC Generic Conference Control

GSM Groupe Spatiale Mobile

GUTI Graphical User Interface.

HDTYV High Definition Tele Vision

10.7. CONCLUSION 265

HPIM Hierarchical Protocol Independant Multicast
HSV Hue, Saturation, Value

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HyTime

Hz A Car Rental Company

IETF Internet Engineering Task Force

IGMP Internet Group Management Protocol

ILP Integrated Layer Processing

INRIA INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET
EN AUTOMATIQUE

IP Internet Protocol

IP4 Version 4 (current) of the Internet Protocol
IP6 Version 6 (being developed) of the Internet Protocol
IPEP The IP Encapsulating Payload

ISDN Integrated Services Digitial Network
ITU International Telecommunicaitons Union
IVS INRIA Videoconferencing System

Imm Image Multicast

JPEG Joint Picture Expert Group

LAN Local Area Network

LBL Lawrence Berkeley Laboratories

LPC Linear Predective Coding

LSA Link State Advertisement

MBone Multicast backBone

MCR. Minimum Cell Rate

MCS Multipoint Communications Service
MCU Multipoint Control Unit

MD5 Message Digest Algorithm number 5
MMCC Multiedia Conference Control
MOSPF Multicast Open Shortest Path First
MPEG Motion Picture Expert Group
NACK Negative Acknowledgement

266 CHAPTER 10. SECURITY AND POLICY IN MULTICAST MULTIMEDIA

NBMA Non-Broadcast Multiple Access

NFS Network File System

NTE Network Text Editor

NTP Network Time Protocol

NTSC North American Television Standards Committee
PEM Privacy Enhanced Mail

PES Packetised Elementary Stream

PGP Pretty Good Privacy

PIM Protocol Independant Multicast

PNNI Private Network Network Interface
PINOs Public Network Operators

POV Point of View

PSDN Packet Switched Digital Network

PST Pacific Standard Time

PTTs Post, Telegraph, and Telephone

PVP Packet Voice Protocol

QCIF Quarter Common Interchange Protocol
QoS Quality of Service

RDBMS Relational Database Management System
RF Radio Frequency

RFC Request for Comments

RGB Red, Green, Blue

RLIMP Remote Leave and Join Multicast Protocol
RMP Reliable Multicast Protocol

RP Rendezvous Point

RPC Remote Procedure Call

RSA Rivest Shamir Adelman

RTCP Real Time Control Protocol

RTP Real Time Protocol

RTT Round Trip Time

SCIF Super Common Interchange Format
SDAP Session Directory Advertisement Protocol

SECAM Sequential Coleur a Memoire

10.7. CONCLUSION 267

SMDS Switched Multi-megabit Data Service
SNR Signal to Noise Ratio

SPF Shortest Path First

SPI Security Parameter Inde

SRM Scalable Reliable Multicast

SSRC Synchronisation Source

TCP Transmission Control Protocol
Terabytes A Whole Lot of Data

ToS Type of Service

UBR. Unspecified Bit Rate

UCL University College London

UDP User Datagram Protocol

UI User Interface.

UNI4 User Network Interface 4.

URL Uniform Resource Locator

UTC Universal Coordinated Time

VBR. Variable Bit Rate

VC Virtual Circuit

VCI Virtual Channel Identifier

VCR Video Cassette Recorder

VJCC Van Jacobson Congestion Control
VPI Virtual Path Identifier

VPN Virtual Private Network

VR Virtual Reality

VRAM Video Random Access Memory
VRML Virtual Reality Markup Language
WAN Wide Area Network

WWW World Wide Web

chrominance Colour Presece

268 CHAPTER 10. SECURITY AND POLICY IN MULTICAST MULTIMEDIA

Bibliography

[1] “ITU Recommendation H.320” Available from http://www.itu.int/

[2] “An Architecture for Wide Area Multicast Routing” S.Deering, D.Estrin,
D.Farinacci, V.Jacobson, C-G.Liu, L.Wei ACM SIGCOMM 1994, London
October 1994, ACM CCR Vol 24, No. 4, 126-135

[3] “Distance Vector Multicast Routing Protocol” RFC 1075 S. Deering, C. Par-
tridge, D. Waitzman, 11/01/1988.

[4] “Dynamic Host Configuration Protocol“, RFC 1541 R. Droms, 10/27/1993.

[5] “End-to-End Arguments in System Design” JH Saltzer, DP Reed, DD Clark
ACM Transactions on Computer Systems, 2, 4, pp 277-288 November 1984

[6] “Multicast Extensions to OSPF”, RFC 1584 J. Moy, 03/24/1994.
[7] Host Extensions for IP Multicasting, RFC 1112, Steve Deering
[8] ITU Recommendation T.124 - Generic Conference Control

[9] “FIPS Publication 46-1: Data Encryption Standard”, National Institute of
Standards and Technology (NIST), January 22, 1988

[10] “The MD)5 Message-Digest Algorithm”, Rivest, R., MIT Laboratory for Com-
puter Science and RSA Data Security, Inc., April 1992 RFC 1321,

[11] “Recommendation X.509: The Directory - Authentication Framework.”
CCITT (Consultative Committee on International Telegraphy and Tele-
phony). 1988.

[12] “Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryp-
tion and Authentication Procedures”, RFC 1421 J. Linn, Feb 1993

[13] “A Reliable Multicast Framework for Light-weight Sessions and Application
Level Framing” S.Floyd, V.Jacobson, S.McCanne, C-G. Liu, L.Zhang ACM
SIGCOMM 1995, pp 342-356

[14] MULTICAST “Multicast Routing in Internetworks and Extended LANs”,
Steve Deering ACM SIGCOMM 88, August 1988, pp 55-64

[15] “Multicast routing in datagram internetworks and extended LANs.” S.Deering
and D.Cheriton. ACM Transactions on Computer Systems, pages 85-111, May
1990.

[16] CBT “An Architecture for Scalable Inter-Domain Multicast Routing”,
A .Ballardie, P.Francis, J.Crowcroft ACM SIGCOMM 1993, pp 85-95

269

270 BIBLIOGRAPHY

[17] HDVMRP “Hierarchical Distance Vector Multicast Routign for the Mbone”
Ajit, S. Thyagarajan, S.Deering ACM SIGCOMM 1995, Cambridge, Mass,
1995, ACM CCR Vol 25, No 4, pp 60-67.

[18] “A Reliable Multicast Framework for Light-weight Sessions and Application
Level Framing”, S. Floyd, V. Jacobson, S. McCanne, C-G. Liu, L. Zhang,
Proc ACM SIGCOMM 1995, Cambridge, Mass.

[19] “Scalable feedback control for multicast video distribution in the Internet”,

J. Bolot, . Wakeman, T.Turletti, Proc ACM SIGCOMM 1994, London, UK

[20] “Architectural Considerations for a New Generation of Protocols”, D.D.
Clark, D.L. Tennenhouse, Proc ACM SIGCOMM 1990, Philadelphia, Penn-

sylvania

[21] CGBT “Multiparty Videoconferencing using IP Multicast” Y.-C Chang, Z.-
Y .Shae, .H.Willebeek-LeMair Multimedia Computing and Networking 1996

[22] WATATM “Multicast Provision for High Speed Networks” TFTP High Perfor-
mance 92 in Danthine, A., Spaniol, O

[23] WATHEU “A New Heuristic for ATM Multicast Routing” 2nd IFIP Confer-
ence on Performance Modelling 4-7 Jul, 1994, Bradford

: mimising Packet Copiles in Multicast Routing bt Exploiting (seo-
24] KATM “Minimising Packet Copies in Multi Routing bt Exploiting G
graphic Spread” ACM CCR, Vol 24, No. 3, July 1994, pp 47-62

[25] “How Bad is Naive Multicast Routing” Matthew Doar, Ian Leslie, Proc IEEE
Infocomm 1993

[26] STEI “The Steiner Problem in Graphs” S.E.Dreyfus and R.A.Wagner Net-
works 1, pp 195-207, 1972

[27] wei “A Comparison of Multicast Trees and Algorithms” Liming Wei and Deb-
orah Estrin INFOCOM 94

[28] “A Reliable Multicast Protocol for a White Board Application” W. Dabbous,
B. Kiss, Research Report, INRTA

[29] “Mbone Provides Audio and Video Across the Internet”, M.R. Macedonia, |
D.P. Brutzman, IEEE Computer, Vol.27 No.4, April 1994, pp. 30-36.

[30] “SDP: Session Description Protocol” M. Handley, V. Jacobson Internet Draft
draft-ietf-mmusic-sdp-02.txt, Work in Progress, Feb 1996.

[31] “SAP: Session Directory Announcement Protocol” M. Handley, Internet Draft
draft-ietf-mmusic-sap-00.txt, Work in Progress, Feb 1996.

[32] “Personal Mobility for
Multimedia Services in the Internet” Schulzrinne, H., IMDS’96, March 4-6
1996. ftp://ftp.fokus.gmd.de/pub/step/papers/Schud603:Personal.ps.gz

[33] “Case Study: Multimedia Conference Control in a Packet-switched Tele-
conferencing System” Schooler, E.M.; Journal of Internetworking: Research
and Experience, Vol.4, No.2, pp.99-120, June 1993; also available as an
IST technical report IST/RS-93-359, Aug 1993. ftp://ftp.isi.edu/pub/hpce-
papers/mmc/joi.ps

[34] “MMConf: An infrastructure for building Shared Multimedia Applications”
A Crowley in Proceedings of CSCW ’90, Los Angeles, USA, October 1990

BIBLIOGRAPHY 271

[35] “A DNS RR for specifying the location of services” A. Gulbrandsen, P. Vixie,
Internet Draft draft-gulbrandsen-dns-rr-srves-02.txt, Work in Progress, Jan
1996.

[36] “The design philosophy of the DARPA Internet protocols”, David D. Clark,
in SIGCOMM Symposium on Communications Architectures and Protocols,
(Stanford, California), pp. 106-114

[37] “MBone Provides Audio and Video Across the Internet” Michael R. Macedo-
niaand Donald P. Brutzman, IEEE COMPUTER, pp. 30-36, April 1994.

[38] “Integrated Services in the Internet Architecture: an Overview.” R. Braden,

D. Clark, S. Shenker, RFC 1633 , 06/09/1994.

[39] “Rsvp: a new resource ReSerVation protocol”, Lixia Zhang, Stephen Deering,
Deborah Estrin, Scott Shenker, Daniel Zappala, IEEE Network, vol. 7, pp.
8-18, Sept. 1993.

[40] “Internet Multimedia Tutorial” Van Jacobson, ACM Sigcomm Conference,
London 1994, http://www.cs.ucl.ac.uk/mice/van/

[41] “A Reliable Multicast Framework for Light-weight Sessions and Application
Level Framing”, Sally Floyd, Van Jacobson, Steve McCanne, Ching-Gung Liu
and Lixia Zhang, to appear in ACM SIGCOMM 95, Cambridge Mass, Sep
1995.

[42] “Compressing TCPIP headers for low-speed serial links”, V. Jacobson, Jan-
uary, 1990. RFC 1144,

[43] “Compressing IPUDPRTP Headers for Low-Speed Serial Links”, by S. Casner,
V. Jacobson, July 98. Work in progress

[44] “Log-Based Receiver-Reliable Multicast for Distributed Interactive Simula-
tion” H.Holbrook, S.Singhal and D.Cheriton ACM SIGCOMM 1995 Vol 25,
No. 4, pages 328-341

[45] RTPSRM “RTP extension for Scalable Reliable Multicast” Peter Parnes,
LuTH/CDT draft-parnes-avt-srm-00.txt, Work in Progress.

[46] SYNC “On the Synchronisation of Periodic Routing Messages” Sally Floyd
and Van Jacobson Proc ACM SIGCOMM, 93, San Francisco 1993.

[47] “Case study: multimedia conference control in a packet-switched teleconfer-
encing system”, Eve M. Schooler, Journal of Internetworking: Research and
Experience, vol. 4, pp. 99-120, June 1993

[48] “The Conference Control Channel Protocol”, Handley, Wakeman, Crowcroft
in ACM SIGCOMM 95, Cambridge Mass, Sep 1995.

[49] “Managing shared ephemeral state: Policy and mechanism”, Scott Shenker,
Abel Weinrib, and Eve Schooler, in Proc. of the International Workshop on
Multimedia Transport and Teleservices (COST237), (Vienna, Austria), Nov.
1994.

[60] “Multicast Transport Protocol” RFC 1301 S. Armstrong, A. Freier, K.
Marzullo,

[61] “A Reliable Multicast Transport Protocol”, K. Paliwoda and J. Crowcroft,
ACM SIGCOMM 1988

272

[52]

[56]

[65]

BIBLIOGRAPHY

“RMP” http://research.ivv.nasa.gov/projects/RMP/RMP.html Todd Mont-
gomery jtmont@cerc.wvu.edu; NASA /Berkeley, Concurrent Engineering Re-
search Center

“Multicast-Specific Security Threats and Counter-Measures”, T Ballardie and
J. Crowcroft, Proc.ISOC Symposium on Network and Distributed System
Security 1995

“Touring Machine: A software platform for distributed multimedia applica-
tions,“, M. Arango, P. Bates, R. Fish, R. Gopal, N. Griffeth, G. Herman, T.
Hickey, W. Leland, C. Lovery, V. Mak, J. Patterson, L. Ruston, M. Segal,
M. Vecchi, A. Weinrib, and S. Wuu, in IFIP’92, (Vancouver, Canada), p. 11,
IFTP, May 1992.

“Touring Machine: a software infrastructure to support multimedia commu-
nications,“ Mauricio Arango, Peter Bates, Gita Gopal, Nancy Griffeth, Gary
Herman, Takako Hickey, Will Leland, Victor Mak, Lillian Ruston, Mark Segal
Mario Vecchi, Abel Weinrib, and Sze Ying Wuu, ACM Computer Communi-
cation Review, vol. 22, pp. 53-54, Mar. 1992.

“Enhancing the Touring Machine API to support integrated digital trans-
port,“ Mauricio Arango, Michael Kramer, Steven L. Rohall, Lillian Ruston,
and Abel Weinrib, in Third International Workshop on network and operat-
ing system support for digital audio and video, (San Diego, California), pp.
166—-172, IEEE Communications Society, Nov. 1992.

“An application level video gateway,“ Elan Amir, Steve McCanne, and Hui
Zhang, in Proc. of ACM Multimedia, (San Francisco, California), Nov. 1995.

“Are you on the MBone?”, Stephen Casner, IEEE MultiMedia, Summer 94,
pp. 76-79, 94.

Tan Wakeman, “Multimedia application requirements for multicast communi-
cations services,“ S. Chuang, Jon Crowcroft, S. Hailes, M. Handley, N. Ismail,
D. Lewis, and in Proceedings of the International Networking Conference
(INET), (San Francisco, California), pp. BFB-1 — BFB-9, Internet Society,
Aug. 1993.

“WWW page distribution using multicast”, James E. (Jed) Donnelley, Tech-
nical memorandum, Nov. 1994.

“MBone — the multicast backbone”, Hans Eriksson, in Proceedings of the
International Networking Conference (INET), (San Francisco, California), pp.
CCC-1 — CCC-5, Internet Society, Aug. 1993.

“MBONE: The multicast backbone”, Hans Eriksson, Communications ACM,
vol. 37, pp. 54-60, Aug. 1994.

“Call admission and resource reservation for multicast sessions,“ Victor Firoiu
and Don Towsley, Technical Report TR 95-17, Department of Computer Sci-
ence, University of Massachusetts, Amherst, Sept. 1995.

“Multimedia conferencing on the Internet”, Van Jacobson, in SIGCOMM
Symposium on Communications Architectures and Protocols, (London, Eng-

land), Aug. 1994. Tutorial slides.

“The LBL audio tool vat”, Van Jacobson and Steve McCanne, Manual page,
July 1992.

BIBLIOGRAPHY 273

[66]

[67]

[68]

[69]

[77]

[78]

“MBone: Interactive Multimedia On The Internet”. Vinay Kumar, Macmillan

Publishing (Simon & Schuste), 1995.

“Drinking from the firehose: multicast USENET news,“ Kurt Lidl, Josh Os-
borne, and Joseph Malcolm, in Proc. of Usenix Winter Conference, (San Fran-

cisco, California), pp. 33-45, Jan. 1994.

“vic: A flexible framework for packet video”, Steve McCanne and Van Jacob-
son, in Proc. of ACM Multimedia ’95, Nov. 1995.

“Multicast routing extensions for OSPF”, John Moy, in Proceedings of the
International Networking Conference (INET), (San Francisco, California), pp.
BCC-1 - BCC-7, Internet Society, Aug. 1993.

“Evaluation of a distance-vector based multicast-routing protocol for data-
gram internetworks”, Bernhard K. Rathke, Diplomarbeit, Department of
Telecommunications, TU Berlin, Berlin, Germany, Oct. 1995.

“A distributed architecture for multimedia conference control”, Eve M.
Schooler, Tech. Rep. ISI/RR-91-289, University of Southern Califor-

nia/Information Sciences Institute, Nov. 1991.

“Single connection emulation (SCE): an architecture for providing a reliable
multicast transport service,“ Rajesh Talpade and Mostafar H. Ammar, Tech-
nical Report GIT-CC-94-47, Georgia Institute of Technology, Atlanta, Geor-
gia, Apr. 1995. to be published in Proceedings of the International Conference
on Distributed Computer Systems (DCS).

“Making the MBone Real,“ Ajit S. Thyagarajan, Stephen L. Casner, and
Stephen E. Deering, in Proceedings of the International Networking Confer-
ence (INET), (San Francisco, California), p. 9, Internet Society, June 1995.

“The role of multicast communication in the provision of scalable and in-
teractive video-on-demand service,“ K. Almeroth and M. Ammar, in Proc.
International Workshop on Network and Operating System Support for for
Digital Audio and Video (NOSSDAV), Lecture Notes in Computer Science,
(Durham, New Hampshire), pp. 267-270, Springer, Apr. 1995.

“Competitive multicast routing in virtual circuit environments ” B. Awerbuch
and Y. Azar, Wireless Networks, vol. 1, Jan. 1995.

“Multicast and Multiprotocol Support for ATM Based Internets” G. J. Ar-
mitage, ACM Computer Communication Review, vol. 25, Apr. 1995.

“Connection establishment for multi-party real-time communication”, R. Bet-
tati, D. Ferrari, A. Gupta, W. Howe W.Heffner, M. Moran, Q. Nguyen, and
R. Yavatkar, in Proc. International Workshop on Network and Operating Sys-
tem Support for for Digital Audio and Video (NOSSDAV), Lecture Notes in
Computer Science, (Durham, New Hampshire), pp. 255-266, Springer, Apr.
1995.

“WAVE: a new multicast routing algorithm for static and dynamic multicast
groups”, E. Biersack and J. Nonnenmacher, in Proc. International Workshop
on Network and Operating System Support for for Digital Audio and Video
(NOSSDAV), Lecture Notes in Computer Science, (Durham, New Hamp-
shire), pp. 243-254, Springer, Apr. 1995.

274

[79]

[80]

[82]

[83]

[84]

BIBLIOGRAPHY

“Degree-Constrained Multicasting in Point-to-Point Networks”, Fred Bauer
and Anujan Varma, in Proceedings of the Conference on Computer Commu-
nications (IEEE Infocom), (Boston, Massachusetts), Apr. 1995.

“Dynamic QoS management for scalable video flows”, A. Campbell, D.
Hutchinson, and C. Aurrecoechea, in Proc. International Workshop on Net-
work and Operating System Support for for Digital Audio and Video (NOSS-
DAV), Lecture Notes in Computer Science, (Durham, New Hampshire), pp.
107-118, Springer, Apr. 1995.

“Address Management and Connection Control for Multicast Communication
Applications” A. Eleftheriadis, S. Pejhan, and D. Anastassiou, 'in Proceedings
of the Conference on Computer Communications (IEEE Infocom), (Boston,
Massachusetts), Apr. 1995.

“The use of plain text keys for encryption of multimedia conferences,“ Mark

Handley, Draft V1.4, Feb. 1995.

“Comparison of Wide-Area Dynamic Multicast Routing Algorithms”, James
Kadirire, in Proceedings of the Conference on Computer Communications
(IEEE Infocom), (Boston, Massachusetts), Apr. 1995.

“Multicast and Self-Routing in ATM Radix Trees and Banyan Networks,”” Ka
Lun Eddie Law and Alberto LeonGarcia, in Proceedings of the Conference on
Computer Communications (IEEE Infocom), (Boston, Massachusetts), Apr.

1995.

“Distributed multicast address management in the global internet”, Sassan
Pejhan, Alexandros Eleftheriadis, and Dimitris Anastassiou, IEEE Journal
on Selected Areas in Communications, vol. 13, pp. 1445-1456, Oct. 1995.

“A flexible network architecture for data multicasting in “multiservice net-
works”” , K. Ravindran, IEEE Journal on Selected Areas in Communications,

vol. 13, pp. 1426-1444, Oct. 1995.

“Models for Multipoint Connections in Gigabit Networks”, Bernard M. Wax-
man, in Proc. of Gigabit Networking Workshop, (Boston, Massachusetts),
Apr. 1995.

“Reservations or no reservations”, Lixia Zhang, Scott Shenker, Dave Clark,
Christian Huitema, Steve Deering, and Domenico Ferrari, in Proceedings
of the Conference on Computer Communications (IEEE Infocom), (Boston,
Massachusetts), Apr. 1995. panel-discussion slides.

“Integrated Services in the Internet Architecture: an Overview”, Braden,
R., D. Clark, and S. Shenker, RFC 1633, Network Information Centre, SRI
International, September 1994.

“First IETF Internet Audiocast, Casner, Steve and Steve Deering, Computer
Communications Review, vol. Vol 22,3, July 1992.

“PVP - A Packet Video Protocol”, Cole, E, USC-ISI Tech Report, USC-ISI,
LA, Aug 1981.

CCITT H.261, Video CODEC for Audiovisual Services, CCITT/H.261,
Geneva, 1990.

“Software Codecs and Work-Station Video Conferences”, Huitema, C,
INET92, Internet Society, Kobe, Japan, June 1992.

BIBLIOGRAPHY 275

[94]

[95]

[96]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

“The DARPA Internet Protocol Suite,“ Leiner, B.M., R.H. Cole, J.B. Postel,
and D. Mills, Proceedings IEEE INFOCOM, TEEE, March 1985.

“Some Economics of the Internet”, Mackie-Mason, Jeff and Hal Varian, Net-
works, Infrastructure and the new task of regulation, Cambridge, Ma, 1993.

“The impact of Scaling on a multimedia Connection Architecture” | Schooler,
Eve, Proceedings of the Third International Workshop on Network and Op-
erating System Support for Digital Audio and Video, p. ACM, San Diego Ca,
November 1992.

“Resource ReSerVation Protocol (RSVP) - Version 1 Functional Specification”
Zhang, L., R. Braden, D. Estrin, S. Herzog, and S. Jamin, Internet Draft,
IETF RSVP Working Group, July 1994.

“The BERKOM multimedia collaboration service,“ Michael Altenhofen, Jr-
gen Dittrich, Rainer Hammerschmidt, Thomas Kppner, Carsten Kruschel,
Ansgar Kckes, and Thomas Steinig, in Proc. of ACM Multimedia, (Anaheim,
California), pp. 457-463, Aug. 1993.

“Dynamic QoS control of multimediaapplications based on RTP,“ Ingo Busse,
Bernd Deffner, and Henning Schulzrinne, in First International Workshop
on High Speed Networks and Open Distributed Platforms, (St. Petersburg,
Russia), June 1995.

“Connection establishment for multi-party real-time communication”, R. Bet-
tati, D. Ferrari, A. Gupta, W. Howe W.Heffner, M. Moran, Q. Nguyen, and
R. Yavatkar, in Proc. International Workshop on Network and Operating Sys-
tem Support for for Digital Audio and Video (NOSSDAV), Lecture Notes in
Computer Science, (Durham, New Hampshire), pp. 255-266, Springer, Apr.
1995.

“The AURORA gigabit testbed”, David D. Clark, Bruce S. Davie, David
J. Farber, Inder S. Gopal, Bharath K. Kadaba, Jonathan M. Smith, David
W. Sincoskie, and David L. Tennenhouse, Computer Networks and ISDN
Systems, vol. 25, pp. 599-621, Jan. 1993.

“High-Quality Multimedia Conferencing Through a Long-Haul Packet Net-
work” | Chip Elliott, in Proc. of ACM Multimedia 93, (Anaheim, California),
pp. 91-98, June 1993.

“A ’Sticky’ conference control protocol”, Chip Elliott, Internetworking: Re-
search and Experience, vol. 5, pp. 97-119, 1994.

“Workstation video playback performance with competitive process load”, K.
Fall, J. Pasquale, and S. McCanne, in Proc. International Workshop on Net-
work and Operating System Support for for Digital Audio and Video (NOSS-
DAV), Lecture Notes in Computer Science, (Durham, New Hampshire), pp.
179-182, Springer, Apr. 1995.

“Experiences with real-time software video compression”, Ron Frederick, in
Sixth International Workshop on Packet Video, July 1994.

“Network support for dynamically scaled multimedia data streams”, Don
Hoffman, Michael Speer, and Gerard Fernando, in Proceedings of the 4th
International Workshop on Network and Operating System Support for Dig-
ital Audio and Video, (Lancaster, U.K.), pp. 251-262, Lancaster University,
Nov. 1993.

276

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]
[116]
[117]

[118]
[119]

[120]

[121]

[122]

[123]

[124]

BIBLIOGRAPHY

“A comparison of face-to-face and distributed presentations”, Ellen A. Isaacs,
Trevor Morris, Thomas K. Rodriguez, and John C. Tang, in Proc. of the
Conference on Computer Human Interaction (CHI) ‘95, (Denver, Colorado),

pp- 354-361, May 1995.

“Piloting of multimedia integrated communications for European researchers
(MICE)”, P. T. Kirstein, M. J. Handley, and M. A. Sasse, in Proceedings of
the International Networking Conference (INET), (San Francisco, California),
pp. DCA-1 - DCA-12, Internet Society, Aug. 1993.

“Dynamic configuration of conferencing applications using pattern-matching
multicast” | Henning Schulzrinne, in Proc. International Workshop on Network
and Operating System Support for for Digital Audio and Video (NOSSDAV),
Lecture Notes in Computer Science (LNCS), (Durham, New Hampshire), pp.
231-242, Springer, Apr. 1995.

“Security services for multimedia conferencing”, Stuart Stubblebine, in 16th
National Computer Security Conference, (Baltimore, Maryland), pp. 391-395,
Sept. 1993.

“Cell image-compression bytestream descriptions”, Sun Microsystems Com-
puter Corporation, unpublished memorandum, July 1993.

“Why do users like video? studies of multimedia-supported collaboration”,
John C. Tang and Ellen Isaacs, Computer Supported Cooperative Work
(CSCW), vol. 1, pp. 163-196, 1993. Sun TR-92-5.

“The Official PGP User’s Guide”, P. Zimmermann, MIT Press, 1995

“Security Architecture for the Internet Protocol”, R. Atkinson,
IETF,1995,RFC1825

“TP Authentication Header®, R. Atkinson, IETF, 1995, RFC1826
“TP Encapsulating Payload”, R. Atkinson, TETF,1995, RFC1827

“RTP: A Transport Protocol for Real-Time Applications”, H. Schulzrinne et
al, IETF, 1996, RFC1889

“Applied Cryptography”, Bruce Schneier, Wiley, 1994

”Perils and Pitfalls of Practical Cyber-Commerce”, Nathaniel Borenstein, et

al, Communications of the ACM, 1996, 39, 6, 36-45, June

“A File System For Continuous Media”, D.P. Anderson, Y.Osawa, and R.
Govindan, ACM Transactions on Computer Systems, vol. 10, no. 4, 1992.

“Supporting Interactive Presentation for Distributed Multimedia Applica-
tions”, J. Bates and J. Bacon, Multimedia Tools and Applications, vol. 1,
pp. 47-78, 1995.

“Architecture for distributed multimedia database systems”, P.B. Berra and
et al, Computer Communications, vol. 13, no. 4, 1990.

“Design of a Large Scale Multimedia Server”, M.M. Buddhikot, G.M.Parulkar,
and J.R. Cox, Jr., Proc. INET 94, 1994.

“Frequently Asked Questions (FAQ) on the Multicast Backbone (MBone)”,
S. Casner, 1993.

BIBLIOGRAPHY 277

[125] “Tertiary Storage: An Evaluation of New Applications”, A.L. Chervenak,
PhD, Dept of Computer Science, University of California at Berkeley, 1994.

[126] “A Distributed Multimedia Information Resource” E.Duval, H. Olivie, and et
al, Dept of Computer Science, Katholieke Universiteit Leuven, 1993.

[127] “Hypertext Transfer Protocol - HTTP/1.1”, R. Fielding, H. Frystyk, and T.
Berners-Lee, RFC 1945, 1996

[128] “Production Model Based Digital Video Segmentation”, A. Hampapur, R.
Jain, and T.E. Weymouth, Multimedia Tools and Applications, vol. 1, pp.
9-46, 1995.

[129] “Network Text (nt) - A scalable shared text editor for the Mbone” M. Handley,
Dept. of Computer Science, University College London, 1995.

[130] “Reliable Audio for Use over the Internet”, V. Hardman, A.Sasse, and A.
Watson, Proc. INET 95, 1995.

[131] “RTP Encapsulation of MPEG1/MPEG2”, D. Hoffman, G. Fernando, and T.
Lyon, Internet Draft, 1994.

[132] “Multimedia Data Model for Advanced Image Information System”, T. Kato
and T.Mizutori, ADSS, Kyoto, 1989.

[133] “Spacio-Temporal Composition of Distributed Multimedia Objects for Value-
Added Networks”, T.D.C. Little and A. Ghafoor, IEEE Computer, vol. 77,
no. 10, pp. 42-50, 1991.

[134] “Layered Multiplexing Considered Harmful” D L Tennenhouse Protocols for
High Speed Networks H Rudin & R Williamson editors, May 1989, Elsevier
Science Publishers, IFIP

[135] “The QBIC Project: Querying Images by Content Using Color, Texture, and
Shape”, W. Niblack, R. Barber, et. al., IS&T/SPTE Symposium on Electronic
Imaging: Science and Technology, 1993.

[136] “Designing an On-Demand Multimedia Service”, P.V. Rangan, H.M. Vin, and
S.Ramanathan, IEEE Communications Magazine, vol. 30, no. 7, 1992.

[137] “Indexes for User Access to Large Video Databases”, L. Rowe, J.S. Boreczky,
and C.A.Eads, Computer Science Division, University of California Berkeley,
1994.

[138] “A Continuous Media Player”, L.. Rowe and B.C.Smith, Computer Science
Division, University of California Berkeley, 1992.

[139] “Remote Seminars Through Multimedia Conferencing: Experiences From the
MICE Project,“ A. Sasse, U.Bilting, C-D. Schultz, and T.Turletti, Proc. INET
94, 1994.

[140] “The Image Server System: A High Speed Parallel Distributed Data Server”,
B.L. Tierney, W.E.Johnson, et. al., LBL-36002, Lawrence Berkeley Labora-
tory, 1994.

[141] “Designing a Multiuser HDTV Storage Server”, H.M. Vin and P.V. Rangan,
IEEE Journal on Selected Areas In Communications, vol. 11, no. 1, 1993.

[142] “Why Crypto Systems Fail”, Ross Anderson, CACM, 1995

278 BIBLIOGRAPHY

[143] “An Ethernet Address Resolution Protocol” D C Plummer RFC 826, Novem-
ber 1982

[144] “Mechanisms for Broadcast and Selective Broadcast”, David W. Wall, PhD
Thesis, Dept of Electrical Eng, Stanford University, 1980

[145] “Routing Information Protocol”, C. Hedrick, RFC 1058 06/01/1988.

[146] TCP “Congestion Avoidance and Control” Van Jacobson Vol 18, No. 4, pages
314-329, ACM SIGCOMM 1988, Stanford, USA

[147] “The Process Group Approach to Reliable Distributed Computin”, Ken-
neth P. Birman. Technical Report, Cornell University, Tthaca, USA, July 1991.

[148] “Network Time Protocol version 2 specification and implementation”, D.

Mills, RFC 1305

[149] RLM “Receiver-driven Layered Multicast”, S. McCanne, V. Jacobson, and
M. Vetterli, (Univ. of California, Berkeley and Lawrence Berkeley National
Laboratory) ACM SIGCOMM, Stanford, Cal, August 1996

[150] “Tariffs and Effective Bandwidths in Multiservice Networks”, Proc. 14th Int.
Teletraffic Cong., 6-10 June 1994 North-Holland Elsevier Science B.V., 1,
1994, 387-410

[151] BUR “Charging and Accounting for Bursty Connections”, F.P.Kelly, in In-
ternet Economics, Lee W. McKnight and Joseph P.Bailey, MIT Press, 1996

[152] “Random Early Drop Gateways”, Sally Floyd and Van Jacobson IEEE/ACM
Transactions on Networking August 1993, Vol, 1, No. 1, PP 397-413.

[153] “Host Anycasting Service”, C. Partridge, T. Mendez, W. Milliken, RFC 1546,
11/16/1993.

[154] “Many-to-Many ATM Multicast”, E.Gauthier, J-Y Le Boudec, Ph. Oechslin,
Report no. 96/168, March 1996, EPFL

[155] “How Bad is Naive Multicast Routing”, Matthew Doar & lan Leslie, Proc
IEEE Infocomm 1993

[156] “Specification of Committed Rate Quality of Service”, F. Baker, R. Guerin
and D. Kandlur. Internet Draft, June 1996, Work in progess.

[157] “Integrated Services in the Internet Architecture: an Overview”, R.
Braden, D. Clark and S. Shenker. Request for Comments, July 1994,
ftp://ds.internic.net /rfc/rfc1633.txt.

[158] “Resource Reservation Protocol (RSVP) - Version 1 Functional Specification”,
R. Braden, L. Zhang, S. Berson, S. Herzog and S. Jamin. August 12, 1996.
Available via http://www.ietf.org/html.charters/intserv-charter.html.

[159] “The Design Philosophy of the DARPA Internet Protocols”, D. Clark. ACM
SIGCOMM 88, August 1988.

[160] “Internet Stream Protocol Version 2 (ST2) Protocol Specification - Version
ST2+”, L. Delgrossi and L. Berger. Request for Comments. August 1995,
RFC1819, ftp://ds.internic.net /rfc/rfc1190.txt.

[161] “Protected Best Effort Service”, J. Heinanen. Internet Draft, February 1996,
ftp://ds.internic.net/internet-drafts/draft-heinanen-pbe-sve-01.txt.

BIBLIOGRAPHY 279

[162] “An Architectural Comparison of ST-IT and RSVP”, D. Mitzel, D. Estrin,
S. Shenker, L. Zhang. Proceedings of Infocom 94,
http://www.isi.edu/div7/rsvp/pub.html.

[163] “Specification of Guaranteed Quality of Service”, S. Schenker, C.Partridge,
R.Guerin. Internet Draft, August 1996, ftp://ds.internic.net/internet-
drafts/draft-ietf- intserv-guaranteed-svc-06.txt.

[164] “Experimental Internet Stream
Protocol, Version 2 (ST-II)”, C. Topolcic. Request for Comments, October
1990, RFC1190, ftp://ds.internic.net/rfc/rfc1190.txt.

[165] “Specification of the Controlled-Load Network Element Service”, J.
Wroclawski. Internet Draft, August 1996, ftp://ds.internic.net/internet-
drafts/draft-ietf-intserv-ctrl- load-svc-03.txt.

[166] “The Use of RSVP with IETF Integrated Services”, J. Wroclawski. Internet
Draft, August 1996, Work in progress.

[167] THe IETF Home Page, http://www.ietf.cnri.reston.va.us.

[168] The Integrated Services Charter, http://www.ietf.org/html.charters/intserv-
charter.html

[169] Integrated Services over Specific Link Layers (iss]) Charter,
http://www.ietf.org/html.charters/issl-charter.html.

[170] “Multicast Routing”, Steve Deering, PhD Thesis, Stanford, 1988

[171] “Scalable Compression And Transmission of internet Multicast Video”, Steven

McCanne, Report No. UCB/CSD 96-928, Dec 1996. PhD Thesis

[172] “The Robust Audio Tool”, Colin Perkins, Vicky Hardman, Angela Sasse, in
Communications of the ACM, 1997.

[173] “Random Early Detection Gateways”, Floyd, S., and Jacobson, V., Random
Early Detection gateways for Congestion Avoidance, IEEE/ACM Transac-
tions on Networking, V.1 N.4, August 1993, pp. 397-413.

[174] “Implementing Real Time Packet Forwarding Policies using Streams” Wake-
man, Ghosh, Crowcroft, Jacobson and Floyd, in Proceedings of the Usenix
Conference, New Orleans, January 1995.

[175] “Pricing in Computer Networks: Reshaping the Research Agenda”, S.
Shenker, D.Clark, D.Estrin, S.herzog, in Internet Economics, Lee W. McK-
night and Joseph P.Bailey, MIT Press, 1996

[176] “Protocols for Distributed Interactive Simulation Applications”, IEEE Stan-
dard for Information Technology - IEEE Std. 1278-1993.

[177] “TRANSMISSION CONTROL PROTOCOL”, RFC 793 Ed., Jon Postel, Sep
1981

[178] “INTERNET PROTOCOL”, RFC 791 Ed., Jon Postel, September 1981

[179] “TCP/IP Illustrated, Vol 1, 2 and 3” W Richard Stevens, Addison Welsley
Professional Computing Series, 1992, 1994, 1996 ISBN 0 201 63354-X

[180] “Gigabit Networking”, Craig Partridge Addison Welsley Professional Com-
puting Series, 1993 ISBN 0 201 56333 9

280 BIBLIOGRAPHY

[181] “Small
Forwarding Tables for Fast Routing Lookups”, Andrej Brodnik, Svante Carls-
son, Mikael Degermark, Stephen Pink Procedings of ACM SIGCOMM 1997,
Cannes, France. http://www.inria.fr/rodeo/sigcomm97 /papers/p192.html

[182] “A Generalized Processor Sharing Approach to Flow Control-The Single Node
Case”, A. Parekh and R. Gallagher. In IEEE /ACM Transactions on Network-
ing, 1(3), pp. 366-357, 1993.

[183] “A Generalized Processor Sharing Approach to Flow Control-The Multiple
Node Case”, In A. Parekh and R. Gallagher. IEEE/ACM Transactions on
Networking, 2(2), pp. 137-150, 1996.

[184] “The Integrated Service Internet- State of the Art”, Paul White and Jon
Crowcroft in Procedings of the IEEE 1997.

[185] “WF2Q: Worst-case Fair Weighted Fair Queueing”, J.C.R. Bennett and H.
Zhang, INFOCOM’96, Mar, 1996.

[186] “Implementing Distributed Packet Fair Queueing”, in a Scalable Switch Ar-
chitecture Hui Zhang and Donpaul Stephen Work in progress

Index

281

