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Abstract

The theme of this thesis is the enhancement of current IP backbone provisioning practices in the presence

of additional network measurements. Current practices are heavily dependent on the intuition of the

human operators. Traffic variability, scalability issues, lack of monitoring information, and complex

interactions between inter- and intra-domain routing protocols result in network management techniques

that usually rely on trial and error. In contrast with reductionist approaches, we demonstrate the benefits

of using different types of monitoring information in the formalisation of different network provisioning

tasks, and provide a methodological framework for their analysis.

We use four main sources of network monitoring information: (i) GPS-synchronised packet traces

listing every packet traversing a monitored unidirectional link, (ii) BGP routing table dumps, (iii) SNMP

information collected since 1999, and (iv) topological information. Combining the above sources of

information, and analysing them at the appropriate time scale, we demonstrate the benefits of additional

measurements on three specific network provisioning tasks.

First, we measure and analyse delay as experienced by packets while traversing a single router

inside the network. We show that packets experience minimal queueing delay and that delay through

the network is dominated by the propagation delay. Our results hold when network link utilisation stays

moderate. However, links are likely to experience short-lived congestion episodes as a result of link or

equipment failures. Our second network provisioning task regards the off-loading of congested links by

the re-direction of high-volume flows. We propose a methodology for the identification of those flows

traversing a link that contribute significant amounts of traffic consistently over time. Persistent link

overload can only be resolved through additional provisioning. Our third task focuses on the prediction

of where and when future provisioning will be required in the backbone. We obtain accurate predictions

for at least six months in the future.
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Chapter 1

Introduction

1.1 The Internet History

The origins of the Internet go back to the 1960s. The first recorded description of the social interactions

that could be enabled through networking is said to have been a series of memos written in August

1962 by J.C.R. Licklider of MIT, discussing his concept of a “Galactic Network” [1]. This network was

envisioned as a globally interconnected set of computers through which everyone could quickly access

data and programs from any site.

In approximately the same period, July 1961, Leonard Kleinrock of MIT published the first paper

on packet switching theory. According to Kleinrock’s theory, communication between computers could

be achieved with packets instead of circuits. Within the circuit-switching paradigm, deployed in the

telephone and telegraph network, users establish a dedicated connection with a fixed amount of band-

width between the source and the destination for the duration of their communication. This approach

is efficient for traffic such as telephone voice calls which transmit data at a constant bit rate and whose

connection duration is longer than the amount of time required to establish the connection. However,

data traffic is bursty, and therefore allocation of resources for the whole duration of a data transfer may

lead to periods of time when network resources are allocated but not used. Moreover, data transfers

over the network may be short in duration, and thus lead to a high overhead for the setup and tear-down

of the needed circuits. According to the connection-less packet switching paradigm, data transmitted

between two network entities are broken down into small units, which are called packets. Each packet

contains the destination and source address of the two entities exchanging traffic, as well as other control

information. In addition, each packet is forwarded independently across the network until it reaches its

destination, without requiring reservation of resources across its path. Experiments carried out in 1965

provided confirmation that time-sharing computers could work well together, running programs and re-

trieving data as necessary on remote machines, but that the circuit-switched telephone system was totally

inadequate for this task [2]. Thus, lending the packet switching paradigm as an appropriate technology

for inter-computer communication.

In the late 1966 the first concept of what was to become the first computer network was developed

[3]. Multiple researchers worked on the optimisation of the network topology, and the development of

the first host-to-host protocol, called the Network Control Protocol (NCP) [2]. The first large, successful
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demonstration of the first computer communications network, called the Advanced Research Projects

Agency Network (ARPANET), took place in 1972. Its first application was e-mail, also developed in

1972, soon to be followed by other applications aimed at facilitating the coordination among researchers.

1.2 From ARPANET to the INTERNET
The original ARPANET grew into the Internet based on the idea that there would be multiple indepen-

dent networks of rather arbitrary design. The key underlying technical concept was “open-architecture

networking”, introduced by Kahn in late 1972. The “open-architecture networking” concept had four

critical ground rules [2].

� Each distinct network had to stand on its own, and no internal changes would be required of any

such network before being connected to the Internet.

� Communications would be on a best-effort basis. If a packet didn’t make it to the final destination,

it would quickly be retransmitted from the source.

� Black boxes (later called gateways and routers) would be used to connect the networks. No in-

formation would be retained by the gateways about individual flows or packets passing though

them, keeping them simple and avoiding complicated adaptation and recovery from various fail-

ure modes.

� There would be no global control at the operations level.

These principles led to the design of the first communication protocol on the Internet, named Trans-

mission Control Protocol/Internet Protocol (TCP/IP). TCP/IP embedded all the necessary functionality

required for “open-architecture networking”. The initial protocol was later reorganised into two distinct

protocols: (i) the Internet Protocol (IP) which provides only for addressing and forwarding of individual

packets, and (ii) the separate Transmission Control Protocol (TCP) which provides service features such

as flow control and recovery from lost packets. For applications that did not need reliability, as provided

by TCP, an alternative protocol was devised to provide direct access to the basic IP service. This latter

protocol was named User Datagram Protocol (UDP). By the end of 1985, the Internet was established

as a technology supporting a broad community of researchers and developers and started to be used by

other communities for daily computer communications.

1.3 The Emergence of Internet Service Providers
Until the mid-1970s computer networks were springing up wherever funding could be found for this

purpose. In 1984-1985, the British JANET and the U.S. NSFNET programs explicitly announced their

intent to serve the entire higher education community regardless of discipline. In that same year, the

NSFNET (National Science Foundation Network) recognised the need for a wide-area networking in-

frastructure to support the general academic and research community. In addition, it became evident

that it was essential that a strategy was developed to establish such an infrastructure to be ultimately

independent of direct federal funding.
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The National Science Foundation (NSF) encouraged regional networks of the NSFNET to seek

commercial, non-academic customers. Federal agencies were to share the cost of common infrastruc-

ture, such as trans-oceanic circuits. NSF policies dictated that commercial users of the NSFNET were

prohibited from using the “Backbone” unless it was related with research or educational efforts. Such a

policy led to the emergence and growth of “private” competitive, long-haul networks, like PSI, UUNET,

ANS CO+RE, and later others. At this point, the Internet Service Provider (ISP) emerged as a distinct

service operation.

The NSFNET Backbone was officially defunded in April 1995. The funds recovered were redis-

tributed to regional networks to purchase national-scale Internet connectivity from the numerous, by

then, private, long-haul networks. The Backbone no longer consisted of routers developed within the

research community, but of commercial equipment. In less than 10 years the Backbone had grown from

six nodes with 56 Kbps links to 21 nodes with multiple 45 Mbps links. The Internet itself had grown to

more than 50,000 networks on all seven continents.

On October 24, 1995, the Federal Networking Council (FNC) unanimously passed a resolution

defining the term Internet. According to the FNC the term ”Internet” is defined as follows1.

”Internet” refers to the global information system that – (i) is logically linked to-

gether by a globally unique address space based on the Internet Protocol (IP) or its subse-

quent extensions/follow-ons; (ii) is able to support communications using the Transmission

Control Protocol/Internet Protocol (TCP/IP) suite or its subsequent extensions/follow-ons,

and/or other IP-compatible protocols; and (iii) provides, uses or makes accessible, either

publicly or privately, high level services layered on the communications and related infras-

tructure described herein.

1.4 Today’s Internet

The Internet has changed much since it came into existence. It was conceived in the era of time-sharing,

but has survived into the era of personal computers, client-server and peer-to-peer computing. It was

designed before Local Area Networks (LANs) existed, but has accommodated network technologies,

such as LAN, ATM, frame switched, and wireless services. It was envisioned as supporting a range

of functions from file sharing and remote login to resource sharing and collaboration, and has spawned

electronic mail, the World Wide Web, and is now asked to accommodate voice and video traffic. But

most importantly, it started as the creation of a small band of dedicated researchers, and has grown to be

a commercial success with billions of dollars of annual investment.

Today’s Internet consists of thousands of networks. What used to be the “Backbone” in the

1980s is now the interconnection of multiple backbone networks, belonging to large telecommunica-

tions providers. Providing Internet services is a new, challenging market. However, basic access has

become a market commodity without obvious differentiation, and, as such, is the subject of prolonged

price pressure. The Internet market is one of the most aggressively open markets, with few onerous reg-

1 ���������	�
�������� �����
��� �����	�
������� �
�!�#"�� ��"�� �
"�$%� ����&�'
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ulatory constraints on the operation of the enterprises that service this market. The environment is one in

which access tariffs are driven down to reflect the commodity price of carriage. In fact, in March 1998

the Financial Times reported that of the 25 most valuable Internet companies, with a combined value of

$37 billion, 20 were still operating at a deficit.

“The strategic task of the ISP today is to attempt to minimise the investment risk, through

the application of business and technical expertise to the operation of the service enterprise,

while attempting to maximise the financial outcomes from the investment.” [4]

1.5 Challenges

In such a fiercely competitive market, an Internet Service Provider has several challenges to address.

These challenges are not only related to business plans and financial investments, but also technological

advances. The Internet no longer accommodates a small scientific community, but supports business

critical applications, and has come to be relied on by large corporations for their every day activities.

Reliability and predictable performance are key differentiators between Internet Service Providers.

However, the performance experienced by a user does not only depend on the network he/she con-

nects to, but also on the networks that need to be traversed until the destination is reached. For that

reason, Internet Service Providers expand their networks to increase connectivity to diverse destinations.

In addition, they provision their networks in such ways that there is always available capacity to accom-

modate customer demand.

Current customer-provider contracts contain three main metrics describing the performance of ser-

vice offered to the user, namely delay through the network, loss, and port availability. These metrics are

part of what is often referred to as a Service Level Agreement (SLA). Increased competition has led to

SLAs guaranteeing delays through the network that compare to transmission at the speed of light, mini-

mal losses and high availability. Building a network that is capable of conforming to all the requirements

above corresponds to an immense investment that needs to be accompanied by justifiable profits.

Currently, plain network connectivity is either charged on a per circuit basis or on a subscription

basis. Tight market conditions and increased competition drive down the access tariffs leading ISPs

to operate at a marginal profit. As a consequence, ISPs look to offer value-added services on top of

their existing infrastructure that could be charged at different rates, and positively contribute to their

profit. Integrating the telephone network with the data network presents itself as an attractive proposition

that could limit the cost-profit gap currently faced by data providers. However, in order for Internet

Service Providers to offer services like voice over IP, or video distribution, they need to evaluate the

performance of their network, and ascertain its capabilities with respect to the requirements posed by

such applications.

In parallel to such efforts, network operators face an ever-increasing traffic demand, and severe

scalability issues with their current infrastructure. IP backbone networks consist of hundreds of nodes

and thousands of links. Complicated interactions between inter- and intra-domain routing protocols make

IP backbone network management a very challenging task. Abiding to strict SLAs within a complex
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backbone environment calls for better understanding of the carried traffic and the specifics of network

behaviour.

1.6 Provisioning IP networks

The above requirements are currently addressed by backbone network operators through “overprovi-

sioning”. The network features excess capacity, allowing for transient bursts of traffic, and short-lived

network element or link failures. Whenever parts of the network reach utilisation levels that could be

described as congested, the network operators increase the available capacity lowering the experienced

delays, and therefore improving the performance offered to the end user.

Such an approach leads to networks that could be described as being continuously “under con-

struction”. New links are added or upgraded weekly increasing the amount of available resources in the

network. However, such an approach ends up being rather costly, and given the difficult market condi-

tions, is very hard to justify. As a result, network providers need to find ways in which they could make

optimal use of their network’s resources and delay future investments as long as possible.

The task of optimally designing IP backbone networks imposes challenges for multiple reasons.

Firstly, an IP backbone network can easily consist of hundreds of network elements and thousands of

operational links. These links may reach 10 Gbps of capacity each2, while spanning multiple conti-

nents. Therefore, there is an evident scalability issue. Secondly, the amount of traffic flowing over an IP

backbone network does not only depend on the network itself but also on the traffic injected by its inter-

connected networks. Thirdly, stringent availability requirements dictate the existence of spare capacity

on the network, capable of carrying the traffic affected by failed links. Lastly, at all times the network

should be capable of meeting the Service Level Agreements drawn with customers.

1.7 The need for additional network measurements

The only piece of information currently available to the network operator for management and planning

is aggregate packet or byte counts for the traffic carried over a network’s links, and health status reports

from its individual nodes. Most of the time, troubleshooting the network can be a daunting task, given

the limited amount of information available and the fact that IP network routing protocols are designed

to automatically adjust to current conditions.

Improving the network design and the current best practices in network management requires the

presence of additional measurements from the network. Traditional telecommunications network design

theory assumes the existence of what is called a “traffic matrix”, denoting the amount of traffic flowing

between any source and any destination in the network. An IP network was not designed to provide such

detailed information, and given the scale of current backbone networks, even estimating such information

based on available measurements proves to be challenging.

In this thesis we look into provisioning practices for large scale IP backbone networks, consisting

of hundreds of nodes and thousands of links. We demonstrate how additional network measurements can

enhance the current network provisioning practices. We show that network operations can be greatly

2OC-192 (10 Gbps) links are the highest capacity links available in the Internet at the time of writing.
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improved based on network measurements, but those measurements need to be diverse and must

be analysed at different granularities of time and traffic aggregation. Depending on the task at hand,

most of the times the network operator needs to collect specific information that will allow him to seek

a solution.

In this thesis, we will mainly refer to results obtained from measurements collected in one of the

major IP backbone networks in the Internet, the Sprint IP backbone network. We provide results derived

from the analysis of four main sources of measurement information:

� Packet traces collected from selected links inside the Sprint IP backbone network. These packet

traces list the first 44 bytes of every packet seen on a unidirectional monitored link, along with

GPS timestamps for their time of appearance on the link.

� Link utilisation information collected throughout the network using the Simple Network Man-

agement Protocol (SNMP). This information contains a 5-minute average value for the utilisation

of every operational link in the backbone, and has been collected continuously every 5 minutes

since the end of 1999.

� Border Gateway Protocol routing tables collected from core routers inside three Points of Pres-

ence of the Sprint IP backbone network. These BGP tables contain all the globally addressable

network prefixes in the Internet at the time of the collection.

� Router configuration files listing all the active links for every router in the network, along with

their capacity, their IP address, and the name of the router and interface terminating the link at the

other end. Router naming conventions allow us to also identify the Point of Presence where each

router is located.

1.8 Thesis Outline

This thesis is organised as follows. In Chapter 2 we provide an overview of how an IP backbone network

is structured. We describe the way traffic flow is dictated throughout the network based on the interac-

tions between the inter- and intra-domain routing protocols. We then give a brief introduction on the

current best practices in the network management field, and identify issues that could be resolved with

additional network measurements.

In Chapter 3 we describe the state of the art in the field of network measurements. We report on

active projects that aim at evaluating the performance of operational networks based on active measure-

ments. We describe what active measurements are and show that even though they are capable of identi-

fying possible issues with the current network design, they usually do not offer enough information for

their resolution. Resolving such issues, and identifying alternative network designs capable of overcom-

ing such shortcomings require further measurements. In this area, there are far less active projects, and

they usually combine active network measurements with passive network measurements. Such projects

deploy dedicated monitoring equipment at specific points inside the network. They then attempt to
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understand the behaviour of the Internet traffic and the network dynamics based on the collected obser-

vations. In this thesis we focus on the analysis of passive measurements collected from multiple points

in the Sprint IP backbone network in conjunction with router configuration and topological information.

In Chapter 4, we analyse packet traces collected at several points in the network and router config-

uration information to measure the delay experienced by packets through a single node in an operational

IP backbone. We present our single-hop delay measurements and propose a methodology to identify

its contributing factors. We show that in addition to packets processing, transmission at the output link,

and queueing delay at the output queue, packets may face very large delays that cannot be accounted

for within the context of a pure FIFO output queue. These large delay values are thought to be related

to router idiosyncrasies, and only affect less than 1% of the packets going through a router. Our main

finding is that there is very little queueing taking place in the monitored backbone network. This is

consistent with the network design principles that dictate moderate link utilisations across the network.

We conclude that in today’s moderately utilised backbone networks queueing delay at backbone routers

adds insignificantly to the overall edge-to-edge delay.

However, our findings are only applicable to cases when link utilisation stays moderate; in our mea-

surements link utilisation never exceeds 70%, even when computed over 10 ms time intervals. Nonethe-

less, there will always be cases when unexpected link and equipment failures may lead to transient link

overload. In such cases, when particular links go down, other links in the network will be selected by

routing protocols to carry the affected traffic, and thus may reach prohibitive utilisation levels. As a

consequence, delays through these links will increase and loss may occur. In Chapter 5, we propose a

methodology for the classification of flows on a backbone link, so that in cases of transient overload a

network operator can offload the highly-utilised links by re-routing high-volume flows toward other parts

of the network. For this analysis, we use packet traces collected from multiple points in the network,

and BGP routing tables. We analyse traffic flowing on selected backbone links and show that when

aggregated on a destination network-prefix level it exhibits what is usually referred to as the “elephants

and mice” phenomenon; the majority of the traffic volume is due to a small number of the flows. We

present a methodology to identify the network-prefix flows on a link that persistently carry the majority

of the traffic over time; flows with small elephant duration are inappropriate for traffic engineering ap-

plications. Once the high-volume network-prefix flows have been identified, and in cases of high load,

the network operators can relieve overloaded links by re-directing specific “elephant” flows toward less

congested parts of the network. Such an approach provides a controlled way of avoiding long-lasting

congestion phenomena in the network.

An approach like the one proposed in Chapter 5 can only be applied if the network experiences tran-

sient phases of congestion. Consistent overload will be much harder to overcome with simple techniques

like the one we present. In such cases, parts of the network will need to be upgraded to accommodate

the increased demand. In Chapter 6 we present a methodology to identify when and where future link

upgrades will need to take place in the core of a backbone network. For our analysis we use three years

worth of SNMP data collected from every operational link in the Sprint IP backbone network. We corre-
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late this information with topological information and identify the amount of traffic flowing between any

two adjacent PoPs in the network. Using the Wavelet Multiresolution Analysis, we extract the long and

shorter-term trends in the evolution of inter-PoP aggregate traffic. We show that for network provisioning

purposes one needs only to account for the overall long term trend and the fluctuations of the traffic at

the 12 hour time scale. We model the inter-PoP aggregate demand using the two identified components

alone. We then predict the future aggregate demand between any two adjacent PoPs using linear time

series models, namely the AutoRegressive Integrated Moving Average (ARIMA) models. We demon-

strate that our technique is capable of providing accurate forecasts, within 15% of the actual values, for

at least six months in the future with a minimal computational overhead.

Lastly, in Chapter 7, we summarise our contributions, develop on the limitations of our work, and

discuss possible directions for future research.



Chapter 2

Background

2.1 The Internet Routing Hierarchy

The Internet is a collection of networks exchanging traffic using the Internet Protocol (IP) [5]. Each one

of those networks spans a subset of the IP address space, and is represented by a network and mask pair

[6]. This network and mask pair is called a network prefix, and is usually denoted as � prefix/length � ,

where “prefix” denotes the IP address of the network and “length” indicates the number of leftmost

contiguous bits corresponding to the network mask to be associated with that network address.

Large corporations or Internet Service Providers (ISPs) are likely to consist of more than one net-

work prefixes, thus forming an Autonomous System. More formally, an Autonomous System (AS) is

defined as a set of routers that has a single routing policy, and run under a single technical administration.

Hence, large IP networks are likely to be viewed in the Internet as a single entity, denoted by a single

identifier called an AS number.

The global Internet is formed by the inter-connection of different autonomous systems, exchanging

reachability information using inter-domain routing protocols. The Internet routing hierarchy is built on

the business relationships between different ASs, where each level of interconnection is usually described

as a Tier. According to this hierarchy entities at higher levels ( ����� ) provide services to their connected

entities at the layer directly below them ( � ) [7]. What constitutes a Tier-1 (highest level) network is rather

controversial, but the most popular definition is that Tier-1 ISPs are those networks that have access to

the global Internet Routing Table and do not purchase network capacity from other providers [8]. The

second tier generally has a smaller national presence than a Tier-1 ISP and may lease part or all of its

network from a Tier-1. Lastly, a Tier-3 ISP is typically a regional provider with no national backbone.

In this thesis, we look into provisioning practices for Tier-1 IP networks, also called “backbone”

networks. All the measurements presented throughout this thesis are collected inside the Sprint IP back-

bone network, one of the few Tier-1 networks in today’s Internet.

2.2 Backbone Network Architecture

The topology of an IP backbone network typically consists of a set of nodes known as Points-of-Presence

(PoPs) connected through multiple high capacity links. The Sprint IP backbone consists of approxi-

mately 40 PoPs worldwide. Out of those 40 PoPs, approximately 25 are located in the U.S.A. Figure 2.1
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presents the Sprint IP backbone topology for the continental U.S.1.

Figure 2.1: The Sprint IP backbone network topology (3rd quarter 2001).

Each Sprint PoP is a collection of routers following a two-level hierarchy, featuring (i) access

routers, and (ii) backbone routers (Figure 2.2). Such an architecture is typical among large Tier-1 ISP

providers [9]. Access routers are normally lower-end routers with high port density, where customers

get attached to the network. These routers aggregate the customer traffic and forward it toward the PoP’s

backbone routers. The backbone routers receive the aggregate customer traffic and forward it to other

PoPs or the appropriate access routers inside the same PoP (in case the destination networks can be

reached through the same PoP). Public and private peering points, where one ISP exchanges traffic with

other ISPs (usually of the same Tier), are often accommodated by selected backbone routers inside a

PoP.

The capacity of links interconnecting routers inside the PoP depend on their level in the hierarchy,

i.e. the level of traffic aggregation they correspond to. For instance, customer links are usually 45

Mbps (T3 or DS3) or greater. The links connecting access routers to backbone routers are an order of

magnitude larger, reaching 622 Mbps (OC-12). The backbone routers inside a PoP are densely meshed

(not necessarily fully meshed), and interconnected through higher speed links, i.e. OC-12 to OC-48 (2.5

Gbps). The inter-PoP links are long-haul optical fibres with bandwidth of 2.5 Gbps (OC-48) or 10 Gbps

(OC-192).

IP backbones are engineered for high availability, and resilience to multiple link and router failures,

while meeting the contracted Service Level Agreements (SLAs). Traffic is guaranteed to transit the

1 ������� � �
����� � $ ��� ��� �#" $�� '�� ����� � $%� � ��&����
"�$ ��� �
� " $ ��&���� $������ &�� �
	 � � ������� ����&�' . Other major Tier-1 ISP providers

follow similar architectures, as seen in ���������	�
�����%�%������#� �%$%� � ��&����#$ ��� ����& ' .
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Figure 2.2: Typical configuration for a Point of Presence.

network experiencing bounded edge-to-edge delays. In addition, even in cases when certain IP paths

through the network become unavailable, traffic is guaranteed to be delivered at its destination through

alternate paths. Consequently, each PoP is designed to connect to multiple other PoPs through multiple

high-capacity links (Figure 2.1). Dense connectivity between PoPs guarantees that traffic will go through

the network transiting a bounded number of PoPs. In the presence of link failures, there should exist other

links available to take on the affected load without introducing additional delay or loss. Given that the

inter-PoP links are covering large distances, thus accounting for the largest part in the edge-to-edge delay,

re-routing traffic across PoPs should be employed only as a last resort. For that reason, adjacent PoPs are

interconnected through multiple links. These links, when feasible, follow at least two physically disjoint

paths, thus offering resilience against fibre cuts which may affect more than one physical links sharing

the same fibre path.

2.3 Intra-domain Routing

IP paths taken by packets through the network are determined by the intra-domain routing protocol

deployed in the network. The most prevalent intra-domain routing protocols in today’s Internet are (i)

Open Shortest Path First (OSPF) [10], and (ii) Intermediate System-Intermediate System (IS-IS) [11].

Their ability to quickly detect topological changes and adjust traffic flow accordingly makes them the

most popular Interior Gateway Protocols (IGPs) currently operational in the Internet [12].

Both OSPF and IS-IS are link-state routing protocols, utilising a replicated distributed database

model. They work on the basis that routers exchange information elements, called link states, which

carry information about links and nodes in the routing domain.

More specifically, each OSPF router internal to an Autonomous System generates its own view

of the network consisting of its neighbours and possible costs involved in their inter-connection. This

view of the topology obtained by a single router inside the domain is reliably distributed throughout

the network, across all routers, via a flooding mechanism until all nodes in the network have obtained
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a copy. When the distribution is complete, every router in the network has a copy of the local view of

the network topology from every other router in the network. This is usually referred to as a link-state

database. Each router then autonomously constructs the complete topology for the entire domain. The

result of this process is an identical copy of the domain’s topology on each router in the network.

Once a router knows the current topology of the network, along with the costs involved in using

specific links across the network, it applies the Shortest Path First (SPF) algorithm, and calculates a tree

of shortest paths to each destination, placing itself as the root. At that point, we say that the routing

protocol has converged. The cost associated to each link in the network is also known as the OSPF/IS-IS

weight and is configured by the network operator. Decreasing the weight of a link in the network is likely

to attract more traffic towards it. Consequently, link weights express administrative preference toward

specific paths throughout the network.

Depending on the link weights configured across the network, the SPF algorithm may compute

multiple equal-cost paths toward specific destination networks. In case of equal-cost IP paths, traffic is

split among the different available IP paths, also described as load-balanced. Such an approach leads to

comparable utilisation levels across equally weighted links in equal-cost IP paths, and therefore a better

spread of the carried traffic across the network. As presented in the previous section, backbone networks

are likely to feature multiple links between two adjacent PoPs. Those links are usually configured with

equal link weights. As a consequence, when all links are operational, traffic is spread across all links, and

when a link fails, the affected traffic can revert to the remaining links without impacting the performance

observed.

2.4 Inter-domain Routing
Intra-domain routing protocols dictate the way traffic flows throughout a single AS. Traffic flow across

the Internet and between different autonomous systems is determined by the inter-domain routing proto-

cols.

Border Gateway Protocol (BGP) is the dominant inter-domain routing protocol used to exchange

reachability information between ASs in today’s Internet [13]. It is described as a path-vector protocol.

In essence, it is similar to a distance vector protocol [12], but instead of being told a distance to a

destination, a router is told an AS path to the destination, i.e. a sequence of AS numbers that correspond

to the Autonomous Systems that need to be traversed until the destination is reached.

For inter-domain routing each BGP router sets up TCP connections (also called sessions) with

other BGP routers (usually called its neighbours or peers) in neighbouring ASs, or within the same AS.

Reachability information for networks accessible through other ASs is conveyed via E-BGP (Exterior

BGP) connections between BGP speakers in foreign domains. This information is then re-distributed

within the AS via I-BGP (Interior BGP) so that all routers in a given domain know how to access specific

networks outside the AS.

Once two E-BGP peers establish a connection, they exchange information about the networks that

can be accessed through them, and the AS paths used. This information is then used to construct a graph

of AS connectivity from which routing loops can be pruned and some policy decisions at the AS level
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can be enforced. Each BGP peer calculates the shortest AS path toward each destination network and

advertises it to its own neighbours. The resulting routing table featuring entries toward each network

prefix, and the AS path associated to it, is called the BGP routing table.

Apart from reachability information between ASs BGP is also used to convey policy directives.

Local policy can be enforced by configuring E-BGP routers not to announce specific destination prefixes,

known to them, or to announce them with a much longer, artificially set, AS path. For instance, if a

network known to a particular BGP router does not correspond to a customer or a network receiving

transit services from the router’s AS, then the BGP router can be configured so as not to announce

this network to its peers. Announcing a network using a longer AS path is the current best practice to

discourage neighbouring networks from routing traffic toward a particular network through a given AS.

Further route filtering and routing information control in general can be achieved using the BGP

Path attributes. The BGP path attributes are a set of parameters that describe the characteristics of a

prefix. The BGP decision process couples these attributes with the prefix they describe, compares all

the paths available to reach a given destination, and then selects the best routes to be used to reach

the destination. Apart from the AS PATH attribute, which has been described already, other attributes

conveying policy information are the MULTI EXIT DISC, and LOCAL PREF [14].

The BGP Multiexit Discriminator (MULTI EXIT DISC or MED) attribute is an optional nontransi-

tive attribute (it is not propagated through ASs). It informs external neighbours about the preferred path

into an AS that features multiple entry points. The MED is also known as the external metric of a route.

A lower MED value is preferred over a higher MED value.

The Local Preference (LOCAL PREF) attribute is a well-known discretionary attribute. The local

preference attribute conveys the degree of preference given to a route compared to other routes for the

same destination. A higher local preference value indicates that the route is preferred. Local preference,

as indicated by the name, is local to the autonomous system and is exchanged between I-BGP peers

only. An AS connected via BGP to other ASs will receive routing updates about the same destination

from different ASs. Local preference is usually used to set the exit point of an AS to reach a certain

destination. Given that this attribute is communicated within all BGP routers inside the AS, all BGP

routers will have a common view of how to exit the AS.

Controlling the entry and exit points on an AS for specific prefixes allows operators to influence the

traffic flow through their network. The above path attributes are the “knobs” the operator has to tune in

order to achieve the desirable result. In more detail, the BGP decision process is as follows. A router

first checks for the path with the largest local preference value. If local preferences are the same, then

the router selects the path with the shortest AS PATH. If all advertisements have equal length AS PATH

attributes, then the path selected is the one with the lowest MED. Otherwise, the path is selected so

that it corresponds to the path that can be reached via the closest IGP neighbour. If none of the above

conditions leads to a best path toward the destination prefix, the tiebreaker is the BGP ROUTER ID. The

BGP ROUTER ID is usually set to the loopback address of the router, if configured, or the highest IP

address on the router. The tiebreaker process selects the best path to the destination as that path that was
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advertised by the router with the lowest ROUTER ID [14].

2.5 Network Management

Managing a large IP backbone network is a complex task handled by a group of human operators, usually

referred to as a Network Operation Centre (NOC). Network management involves observing the state

of the network and reacting to events that may lead to degradation in the performance experienced by

end users. Such events could involve equipment or link failures, denial of service (DoS) attacks, or

even sudden surges of traffic that increase link utilisation beyond the acceptable levels. The ability to

detect, and properly diagnose problems in a timely fashion depends on the information available from

the underlying network.

The designers of IP networks have traditionally attached less importance to network monitoring and

resource accounting than to issues such as distributed management, robustness to failure and support for

diverse services and protocols [15]. In other words, IP network elements have not been designed to retain

detailed information about the traffic flowing through them. Historically, the only information collected

by network elements has been status information (e.g. the operational status of links on a router) and

counts of aggregate activity (e.g. total number of packets or bytes) on a per link basis. This information

can be retrieved from network elements using the Simple Network Management Protocol.

2.5.1 Simple Network Management Protocol (SNMP)

The “Simple Network Management Protocol” is an evolution of the “Simple Gateway Monitoring Proto-

col” [16]. The first version of SNMP was defined in 1988, was updated in 1989, and became an Internet

standard in 1990 [17]. Most network elements in today’s Internet support the second version of SNMP,

which was defined by the IETF in 1996 [18]. A third version was proposed in 1999 [19], primarily

adding security and remote configuration capabilities.

SNMP is a very simple protocol, based on a client-server model and implemented over UDP. It has

been designed to allow implementation in low-cost systems with little memory and computing resources.

The simplicity of SNMP made it possible to require its support by all Internet systems, which in turn

greatly facilitates the management of the Internet.

SNMP enables network managers to remotely monitor and control the evolution of network entities,

e.g. routers or transmission equipment. The state of each entity is represented by a number of variables

and tables. The structure of these data is defined by a “management information base” (MIB). Monitoring

is performed by reading these variables through SNMP commands. Control is performed by “setting”

some essential parameters to a new value. There are MIBs defined for a very large number of “managed

objects”, notably the generic MIB which describes an IP router [20], also known as MIB-II, and specific

MIBs which describe the variables and tables for each routing protocol [21, 22].

SNMP read and write operations are triggered by the network operator. However, SNMP also offers

a small number of unsolicited messages, better known as SNMP traps that may be generated by the

network elements themselves, for instance when communication links fail, or become active [17]. The

destination of those messages is configured by the network operators. The collection station, receiving
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those traps, and recording the health status information is usually called a Network Management Station

(NMS).

2.5.2 Remote Monitoring MIB (RMON)

RMON is another standardised SNMP MIB, whose goal is to facilitate remote monitoring of Local Area

Networks (LANs) [23]. In the RMON context, a single agent is capable of monitoring a complete shared

LAN. The RMON agent is endowed with local intelligence and memory and can compute higher-level

statistics and buffer these statistics in case of outage. Alarm conditions are defined as well as actions

that should be taken in response, in the spirit of the SNMP traps. Lastly, filtering conditions and the

corresponding actions are defined, so that the content of the filtered packets can be captured and buffered.

RMON offers great flexibility in combining the above primitives into sophisticated agent monitor-

ing functions. However, this flexibility makes a full RMON agent implementation costly. Thus, RMON

has been only implemented (at least partially) for LAN router interfaces, which are relatively low-speed.

Implementations for high-speed backbone interfaces have proved to be infeasible or prohibitively expen-

sive. Instead, router vendors have opted to develop more limited monitoring capabilities for high-speed

interfaces [24].

2.6 Challenges

High-availability, adherence to strict SLAs and limited monitoring information from the network itself

makes network management a challenging task. In this section, we expand on these challenges of man-

aging a large-scale IP network.

2.6.1 Network Management

Everyday network operations include monitoring of the network’s state and taking corrective actions in

case of congestion. SNMP provides a simple way of monitoring IP networks by periodic polling of all

network entities and keeping track of their health status. However, SNMP information is usually limited

to the aggregate number of bytes sent or received by a link in the network, usually reported at 5-minute

intervals. Therefore, short bursts or dips in the utilisation of a link are very difficult to troubleshoot.

SNMP cannot provide information about the reasons behind such a behaviour. In this case, the network

operator needs information about the complete traffic flow throughout the network and possible routing

protocol interactions that may have resulted in the current status of the link.

As a consequence, problem diagnosis on the basis of aggregate SNMP information is usually based

on the intuition that network operators gain through years of experience managing IP networks. Such a

task is made even harder given that IP protocols have been designed to automatically respond to conges-

tion (e.g. TCP) and work around failures (e.g. routing protocols).

Lack of information which could lead to a definite answer as to the cause of certain events in a

network’s lifetime leads to current network engineering best practices being mostly based on trial and

error. It is not uncommon for network operators to notice congestion on the network, and attempt to

divert traffic to less congested areas by increasing the intra-domain link weights so as to repel traffic

from the affected area, as proposed in [25]. Observation of the resulting network state supports the
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current configuration change or calls for further action.

2.6.2 Network Design

In the same spirit, even network planning for large-scale IP networks is a process that is heavily based

on intuition. Traditional telecommunications network design is a well researched area offering several

techniques for network planning [26, 27, 28]. However, in the field of telecommunications networks

there is an inherent assumption about the ability to measure traffic flowing between any source and

destination accommodated by the network. The representation of the traffic demands between any source

and any destination in the network is usually referred to as a traffic matrix. Knowledge of the traffic

matrix and the routing policies in effect inside a network can allow for optimal planning and allocation

of a network’s resources.

Analytical network design techniques are usually specific to circuit-switched networks, where traf-

fic between two nodes follows a well-defined path, and where end nodes keep traffic statistics allowing

for the computation of the traffic matrix [28]. In a packet switched network, traffic between any two

nodes may follow multiple paths, and each packet in the flow is routed independently. Consequently,

network design techniques specific to packet-switched networks usually rely on network simulations and

require accurate modelling and forecasting of the incoming traffic, as well as knowledge of the network

traffic matrix. As described in Chapter 1, network elements in an IP network are not designed to retain

any detailed flow information. As a consequence, the derivation of a traffic matrix for an IP network is

a very hard task. Furthermore, depending on the network application the operator needs to address, a

traffic matrix may need to take several forms.

A taxonomy of different traffic matrices useful for traffic engineering and planning tasks is pre-

sented in [29]. According to [29], traffic matrices can be categorised based on a two level taxonomy.

The first level captures the spatial representation of network traffic in the traffic matrix, denoting whether

the demand is measured point-to-point, point-to-multipoint or should also include information about the

path taken through the network, described as “path point-to-point traffic matrix”. The second level

describes the aggregation level for the sources and destinations engaging in traffic exchanges, which

includes the granularity of aggregation of a PoP, a router, a link or even a network prefix. Depending on

the level of aggregation required by the application, the traffic matrix may contain billions of elements,

making its derivation computationally prohibitive. Moreover, even estimation techniques aimed at de-

riving the traffic matrix based on statistical assumptions face challenges when it comes to large-scale

networks with hundreds of nodes [30].

Inability to compute the traffic matrix for large-scale IP networks hinders the application of tra-

ditional network design techniques on large-scale IP environments, like that of a Tier-1 IP backbone

network. This is the main reason why current best practices in large-scale IP network management and

planning are largely dependent on human intuition. However, there are important factors that drive the

need for better network engineering tools.
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2.6.3 Service Level Agreements

Customers increasingly request more stringent assurances with respect to the performance, reliability,

and security of their connectivity. These assurances are normally given in the form of a Service Level

Agreement (SLA), where an ISP contracts to the performance that a customer should expect from the

service provided. Under the fierce competition between ISPs in the past years, those SLAs have been

modified, and nowadays, they essentially guarantee end-to-end delays, that compare to transmission of

packets across the network at the speed of the light, minimal disruption of customer connectivity, and

losses that are very close to zero.

However, the contracted metrics are normally monthly averages of the network-wide performance.

In other words, ISPs measure delays, and losses across the entire network, and then they average all

the measurements collected for the entire network across an entire month. As a consequence, poor

performance on a small number of paths across the network can be concealed by the good performance of

other, possibly shorter, paths. Moreover, averaging performance across hours and days leads to metrics

that cannot reveal the performance of the network when it is utilised the most, i.e. during the peak

working hours. Consequently, inclusion of measurements taken during the weekends and at night skew

the performance actually observed by the user contending for resources during the working hours.

2.6.4 New Services over Data Networks

Transmission of voice and video over the Internet demands the definition of new performance metrics,

that can characterise the performance a user should expect from such a service. Studies carried out on the

Internet showed that voice over IP could well be accommodated by certain backbone networks [31, 32].

However, such a statement does not hold for the global Internet [32]. Moreover, in case of link or router

failures, VoIP services may be disrupted beyond acceptable limits [31].

These two findings impose new network design requirements. Routing protocol convergence times

and resulting service disruption arise as issues that need to be resolved before such services can be

offered on top of a generic data network. In order to be able to address those issues there is a clear need

for additional measurements concerning routing protocol behaviour within IP networks.

2.6.5 Traffic Variability

Internet traffic is complex. IP traffic studies demonstrate that Internet traffic volumes fluctuate widely

across time [33]. Moreover, equipment or link failures are unexpected events that may lead to sudden

rises in traffic and congestion on certain parts of the network. Given the stringent SLAs in place, a

network operator has to provision his network in a way that such bursts can be accommodated without

any noticeable impact on the performance received by the user.

Current practices call for moderate link utilisations across the network. This technique is usually

described as “overprovisioning”. In essence, the network provider always makes sure that there is excess

capacity available in the network, and that links do not exceed certain provider specific utilisation levels.

Only under those conditions, can traffic affected by a link failure be re-routed to other parts of the

network that can carry it without affecting the performance received by users. Moreover, only in such

a case can a link sustain transient traffic rises, that may increase link utilisation up to 100% for brief
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periods of time.

Overprovisioning is successful at achieving the above goals, but is a very costly solution. It requires

large investments in network infrastructure, that are well justified only in the few occasions when unex-

pected events occur. However, without any understanding behind the reasons driving bursty behaviour

and approaches toward their avoidance, overprovisioning seems the only solution that can offer bounded

performance. Without any understanding behind link failures, their frequency, and their effect as seen

by routing protocols, network operators need to continue provisioning their networks beyond the cur-

rent needs. Evidently, network measurements could shed some light on the issues above, and identify

whether there are different provisioning approaches, that with a smaller cost could lead to similar results.

2.6.6 Network Growth

Another challenge that needs to be addressed by network operators has to do with the fact that individual

backbone networks are growing rapidly in size, speed, and scope. The industry is consolidating many

disparate networks into larger integrated networks. As a result, network management functions that

could once be handled by a small group of people, based on intuition and experimentation, must now

be supported by effective traffic engineering tools that unite configuration and usage information from a

variety of sources.

An IP backbone network consists of hundreds of network elements and thousands of active links,

some of which carry Gigabits of traffic every second. Interactions between routing protocols and traf-

fic flows across such large networks are very hard to conceive. Rarely can network operators predict

accurately and completely what the effect of a routing protocol configuration change may be. Network

measurements in conjunction with simulations capable of mimicking the network’s functionality would

be invaluable for the evaluation of configuration changes in the network.

2.6.7 Accounting and Pricing

Lastly, apart from the multiple applications that network measurements could have within the context of

network management and design, they could also be used as a service to the customer. In fact, several

large ISPs publish monthly-average values for the metrics included in their SLAs in dedicated web sites

reporting on their network performance (Table 2.1).
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Table 2.1: Performance Web Sites for Large IP Backbone Networks

Their methodology usually includes active measurements between different nodes in their network



32 Chapter 2. Background

[34]. Additional measurement information specific to the customer could also be provided as a value-

added service reporting on the performance experienced within the provider’s network; currently, cus-

tomers have no way of verifying the reported metrics. Similar measurements could also be used towards

more intelligent accounting tools providing input to more sophisticated pricing schemes.

2.7 Summary
The distribution of traffic over a backbone network is the result of interactions between BGP, guiding

entry and exit points for flows transiting the network, and IS-IS, dictating IP paths followed by flows

throughout the network. Requirements for strict guarantees concerning the edge-to-edge delay expe-

rienced by packets through the network and availability constraints result in overprovisioned networks

with large amounts of excess capacity, capable of absorbing sudden increases in load. Current network

management practices are usually based on operational observations and the intuition of the network

operators, rather than a complete understanding of the underlying network operations.

Measurements could enhance the current practices by offering some understanding about the un-

derlying network operations. However, the only measurements available in today’s networks are limited

to the aggregate number of bytes flowing over a specific link, or link utilisation. In most cases, these

metrics are provided as average values over fixed-time intervals, usually 5 minutes. There are no widely

available systematic, analytical engineering tools that allow network operators to make more rational

provisioning decisions and predict future provisioning needs.

In Chapter 3, we describe the State of the Art in the field of network measurements. We differentiate

between active and passive measurements, and report on measurement efforts towards understanding of

the internals of the dominant routing protocols. Lastly, we present current research efforts towards en-

hancing network provisioning and management practices for large-scale IP networks based on additional

network measurements.
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State of the Art

3.1 Network Measurements

Network traffic has been analysed since the original development of the ARPANET [35]. Measure-

ments collected in operational networks provide useful information about their performance and the

characteristics of the traffic they carry. Measurement systems can be classified into two categories: (i)

the passive and (ii) the active measurement systems. Passive measurement systems observe the traf-

fic flowing through selected points inside the network. Analysis of the collected measurements leads to

workload characterisation and gives insight into its characteristics. This method is non-intrusive in that it

is designed in a way that the collected measurements are not significantly affected by the presence of the

measurement system. Active measurements, on the other hand, inject probe traffic into the network and

extrapolate the network performance based on the performance experienced by the traffic injected. Such

active measurement techniques are usually considered intrusive, in the sense that probe traffic is likely to

influence the network operation and hence the collected results. For instance, if an active measurement

application aims at measuring the queueing delay observed on a particular link, then the existence of the

packet probes themselves may alter the queueing behaviour observed. Therefore, active measurement

tools have to be carefully designed in order to provide correct information on the targeted metric.

3.1.1 Active Network Measurements

Examples of simple active measurement tools are Ping, Traceroute, and Pathchar. Ping provides the

round trip time between any source and any destination on the Internet at the network level, Traceroute

the hops transited and their round trip times, and Pathchar the bandwidth, delay, average queue size

and loss rate through every intermediate hop respectively. Other active measurement tools target the

estimation of the per-hop capacity, such as clink [36], pchar [37], and the tailgating technique in [38],

or the end-to-end capacity, such as bprobe [39], nettimer [40], pathrate [41], and the PBM methodology

in [42]. Further research toward the estimation of the available bandwidth along an IP path has led to

Delphi [43], and pathload [44].

Within the context of active measurements Paxson has designed more complex systems [45, 42],

that have been further developed into the NIMI (National Internet Measurement Infrastructure) project

[46]. NIMI is a distributed measurement infrastructure, consisting of servers deployed at different points
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on the Internet. Monitoring traffic generated at specific NIMI servers is sent toward other servers within

the NIMI infrastructure, and traffic characteristics are computed based on the transmitted “active probes”.

The computed traffic metrics include available bandwidth, delay, and packet loss, but they are specific

to the IP paths between the servers. The large population of the deployed NIMI servers can provide

some insight into the performance received by traffic throughout the Internet. The nature and number

of probes injected into the network are defined based on the metric under observation and the level of

accuracy needed in the analysis.

Other active measurement projects include Surveyor, PingER, RIPE Test Traffic, MINC and AMP.

Surveyor uses a set of 41 GPS synchronised systems to measure one-way delay and loss [47]. PingER

(Ping End-to-end Reporting) measures packet loss and available bandwidth between high energy nu-

clear and particle physics research facilities [48]. The RIPE Test Traffic measurement project measures

bandwidth and delay performance between 24 measurement systems in Europe, North America and Is-

rael [49]. MINC (Multicast-based Inference of Network-internal Characteristics) measurement systems

transmit multicast probe messages to multiple destinations and infer link loss rates, delay distributions,

and topology on the grounds of the correlations observed for the received packets [50]. Lastly, the AMP

(NLANR Active Measurement Project) system consists of a set of monitoring stations that measure the

performance of the vBNS network [51]. In addition, companies such as Keynote and Matrix conduct

commercial network performance measurements [52, 53].

One of the major drawbacks of active measurement systems is that only a limited number of statis-

tics can be observed at a time. More importantly, active measurement techniques do not offer the possi-

bility of observing additional metrics for periods of time in the past. In other words, one is not capable

of reviewing a period in the past and identifying the reason why certain metrics behave the way they did

when recorded. Lastly, inability to control the IP path taken by probe packets makes interpretation of the

collected measurements a very hard task.

Efforts toward the standardisation of performance metrics and active measurement techniques for

their evaluation are carried out within the framework of the Internet Protocol Performance Metrics

(IPPM) working group of the IETF (Internet Engineering Task Force). Already proposed standards

include metrics for connectivity [54], one-way delay [55], one-way packet loss [56], round-trip delay

[57], and bulk transfer capacity [58].

3.1.2 Passive Network Measurements

Passive network measurements are usually reliant on the existence of dedicated monitoring equipment

in specific parts of the operational IP network. However, passive measurements can also be collected by

network elements inside the network, that support the necessary functionality. For instance, in essence,

SNMP provides passive measurements of specific metrics collected on every operational interface of a

given router (these metrics are usually number of bytes sent/received, packet drops, and errors). In the

same spirit, there are certain proprietary products that expand on this functionality, offering network

statistics at a granularity finer than the one of aggregate statistics on a per link basis.

NetFlow is a proprietary passive measurement tool developed by Cisco [24]. NetFlow collects
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information about every TCP and UDP flow on a particular input or output link of a router. A flow

record includes the source and destination addresses and port numbers, along with the number of bytes

and packets transmitted, and the duration of the flow. The flow information is recorded by the router

and collected by an external system periodically. While NetFlow is a powerful measurement tool, it may

lose up to 90% of the measurement data during periods of heavy load at the router [59]. Moreover, it has

been reported that it may impact the forwarding performance of the router, and thus is rarely activated

by network operators for high-speed core routers. For manageable overhead on high-speed links, recent

releases of NetFlow include support for sampling1 and aggregation2.

Within the same context, the IETF has made efforts to standardise flow-level measurements. The

Real-Time Traffic Flow Meter (RTFM) working group [60, 61] provides a formal definition of flows

and describes techniques for collecting the measurement data. More recently, the IP Flow Information

Export (IPFIX) working group [62] defines a format and protocol for delivering flow-level data from the

measurement device to other systems that archive and analyse the information.

OC3MON is a passive monitoring system for OC-3 links described in [63]. OC3MON collects

timestamped packet-level traces or flow-level statistics. Packet-level traces can be collected for limited

amounts of time, while flow-level statistics can be provided on a continuous basis. It has been deployed

at two locations of the MCI backbone network providing information about daily and weekly variations

in traffic volume, packet size distribution, and traffic composition in terms of protocols and applications

[64]. Support for OC-12 link speeds has been incorporated in [65].

Passive monitoring systems require specific hardware to collect data on the network. For OC3MON,

data capture relies on tapping the fibre through a dedicated network interface card (NIC). However, as

link speeds increase, packet capturing at equivalent rates imposes serious challenges [66].

Passive systems, like OC3MON, are useful in that they allow for an exhaustive analysis and archiv-

ing of the collected information. However, they pose challenges as far as their deployment is concerned.

Deployment of monitoring hardware throughout the entire network is cost-prohibitive. This is one of the

reasons why global observations are usually approached using inference techniques rather than exhaus-

tive monitoring.

3.2 The IP Monitoring (IPMON) infrastructure

The goal of the Sprint IP Monitoring System is to collect data from the Sprint Internet backbone that

is needed to support a variety of research projects. The particular research projects include studying

the behaviour of TCP, evaluating network delay performance, investigating the nature of denial of ser-

vice attacks, and developing network engineering tools. While each project could develop a customised

measurement system, many of the projects require similar types of data and installing monitoring equip-

ment in a commercial network is a complex task making a general purpose measurement system more

preferable.

To meet this goal, the IP Monitoring system is designed to collect and analyse GPS synchronised

1http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120limit/120s/120s11/12s sanf.htm
2http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120t/120t3/netflow.htm
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packet level traces from selected links in the Sprint Internet backbone. These packet traces consist of

the first 44 bytes of every packet carried on the links along with a 64 bit timestamp. The clocks which

generate the timestamps are synchronised to within 6 � s using a GPS reference clock. This provides the

capability to measure one-way network delays and study correlations in traffic patterns.

Trace collection and analysis is accomplished using three separate systems. A set of data collection

components (IPMON systems) collect the packet traces. The traces are transferred to a data repository

which stores the traces until they are needed for analysis. Analysis is performed on a cluster of 16 Linux

servers. The remainder of this section describes the requirements and architecture of the IPMON systems

used for the packet trace collection.

3.2.1 IPMON system architecture

The monitoring systems, called IPMON systems, are responsible for collecting packet traces from the

network. These systems consist of a Linux PC with a large disk array and a SONET (Synchronous

Optical NETwork) network interface, known as the DAG card [67, 68]. To collect the traces, an optical

splitter is installed on selected OC-3, OC-12, and OC-48 links in the network, and one output of the

splitter is connected to the DAG card in the IPMON system.
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Figure 3.1: Packet Record Format

The DAG card decodes the SONET payloads and extracts the IP packets. When the beginning of

a packet is identified, the DAG card generates a timestamp for the packet, extracts the first 48 bytes of

the Packet over SONET (PoS) frame which contains 4 bytes of PoS header and 44 bytes of IP data, and

transfers the packet record to main memory in the PC using DMA (Direct Memory Access). The format

of the packet record is shown in Figure 3.1. If the packet contains fewer than 44 bytes, the data is padded

with 0’s. Once 1 MB of data has been copied to main memory, the DAG card generates an interrupt

which triggers an application to copy the data from main memory to the hard disk. It would be possible

to transfer the data from the DAG card directly to the hard disk, and bypass the main memory. Main

memory, however, is necessary to buffer bursts of traffic as described later in the section.

The IPMON system has 5 basic design requirements:

� Support data rates ranging from 155 Mbps (OC-3) to 2.5 Gbps (OC-48).
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Table 3.1: Data rate requirements

OC-3 OC-12 OC-48

link rate (Mbps) 155 622 2480

peak capture rate (Mbps) 248 992 3968

1 hour trace size (GB) 11 42 176

� Provide synchronised timestamps.

� Occupy a minimal amount of physical space.

� Prevent unauthorised access to trace data.

� Be capable of remote administration.

In the next section, we describe how the system design meets each one of these requirements.

3.2.2 Data Rate Requirements

The data rate requirements for OC-3, OC-12, and OC-48 links are summarised in Table 3.1. The first

row of the table shows the data rate at which the DAG card must be able to process incoming packets.

After the DAG card has received a packet and extracted the first 44 bytes, the timestamp and additional

header information is added to the packet record and copied to main memory. If there is a sequence

of consecutive packets whose size is less than 64 bytes, then the amount of data that is stored to main

memory is actually greater than the line rate of the monitored link. The amount of internal bandwidth

required to copy a sequence of records corresponding to minimum size TCP packets (40 byte packets)

from the DAG card to main memory is shown on the second row of Table 3.1. To support this data rate,

the OC-3 and OC-12 IPMON systems use a standard 32 bit, 33 MHz PCI bus which has a capacity of

1056 Mbps (132 MB/sec). The OC-48 system requires a 64 bit, 66 MHz PCI bus with a capacity of 4224

Mbps (528 MB/sec). It is possible to have non-TCP packets which are smaller than 40 bytes resulting in

even higher bandwidth requirements, but the system is not designed to handle extended bursts of these

packets as they do not occur very frequently. It is assumed that the small buffers located on the DAG

card can handle short bursts of packets less than 40 bytes in size.

Once the data has been stored in main memory, the system must be able to copy the data from

memory to disk. The bandwidth required for this operation, however, is significantly lower than the

amount of bandwidth needed to copy the data from the DAG card to main memory as the main memory

buffers bursts of small packets before storing them to disk. Only 64 bytes of information are recorded for

each packet that is observed on the link. As reported in prior studies, the average packet size observed

on backbone links ranges from about 300 bytes to 400 bytes during the busy periods of the day [69].

For our design, we assume an average packet size of 400 bytes. The disk I/O bandwidth requirements

are therefore only 16% of the actual link rate. For OC-3 this is 24.8 Mbps; for OC-12, 99.5 Mbps; and

for OC-48, 396.8 Mbps. To support these data rates, we use a three-disk RAID array for the OC-3 and
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OC-12 systems which has an I/O capacity of 240 Mbps (30 MB/sec). The RAID array uses a software

RAID controller available with Linux. To support OC-48 we use a five-disk RAID array with higher

performance disks that can support 400 Mbps (50 MB/sec) transfers. To minimise interference with the

data being transferred from the DAG card to memory, the disk controllers use a separate 32 bit 33 MHz

PCI bus.

3.2.3 Timestamp Requirements

In order to be able to correlate traces collected in diverse geographical locations, the packet timestamps

generated by each IPMON system need to be synchronised to a global clock signal. For that reason each

DAG card features a dedicated clock on board. This clock runs at a rate of 16MHz which provides a

granularity of 59.6 ns between clock ticks. Packets are not timestamped immediately when they arrive at

the DAG card. They first pass through a chip which implements the SONET framing, and which operates

on 53 bytes ATM cells. Once this buffer is full, an interrupt is generated, and the packet is timestamped.

In other words, timestamping happens on the unit of 53 bytes, thus introducing a maximum timestamp

error of 2 � s, since this is the time needed for the transmission of 53 bytes on an OC-3 link. OC-3 links

are the lowest speed monitored links in our network. Thus, for higher capacity links this error will be

smaller.

Due to room temperature and the quality of the oscillator on board the DAG card, the oscillator

may run faster or slower than 16 MHz. For that reason, it is necessary to discipline the clocks using an

external stratum 1 GPS receiver located at the PoP. The GPS receiver outputs a 1 pulse-per-second (PPS)

signal which is distributed to all of the DAG cards located at the PoP.

Clock synchronisation on board the DAG card is achieved in the following fashion [70]. At the

beginning of the trace collection the clock is loaded with the absolute time from the PC’s system clock

(e.g. 7:00 am Aug 9, 2000 PST). The clock then begins to increment at a rate of 16 MHz. When the

DAG card receives the first 1 PPS signal after initialisation, it resets the lower 24 bits of the clock counter.

Thereafter, each time the DAG card receives the 1 PPS signal, it compares the lower 24 bits of the clock

to 0. If the value is greater than 0, the oscillator is running fast and the DAG card decreases the frequency.

If the value is less than 0, the oscillator is running slow and the DAG card increases the frequency.

In addition to synchronising the DAG clocks, the monitoring systems must also synchronise their

own internal clocks so that the DAG clock is correctly initialised. This is accomplished using the Net-

work Time Protocol (NTP). A broadcast NTP server is installed on the LAN which is connected to the

monitoring systems and is capable of synchronising the system clocks to within 200 ms. This is suffi-

cient to synchronise the beginning of the traces, and the 1 PPS signal is used to further synchronise the

DAG clock. There is an initial period when the DAG cards adjust the initial clock skew, so we ignore the

first 30 seconds of each trace.

There are several sources of error that may occur in the synchronisation of the systems. We’ll

distinguish between two types of errors: (a) timestamping errors specific to a single DAG card, and (b)

synchronisation errors between multiple DAG cards.

As already mentioned, the DAG card uses an ATM cell buffer to store the captured packet until it
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is timestamped. That may introduce a maximum error of 2 � s. Given that the resolution of the time tick

on board the DAG card is 59.6 ns, the use of this ATM cell buffer introduces a maximum timestamping

error of 2 � s.

All DAG cards in a specific PoP use the same GPS receiver for their clock synchronisation. There-

fore, synchronisation errors between DAG cards in the same PoP could be due to two possible reasons.

The first one is the difference in propagation time for the 1 PPS signal. The 1 PPS signal is distributed

to the DAG cards using a daisy chain topology. The difference in cable length between the first and the

last system is 8 meters, which corresponds to a propagation delay of 28 ns. The second source of error

is due to the fact that the clock synchronisation mechanism cannot immediately adjust to changes in the

oscillator frequency. Once the DAG card receives the 1 PPS interrupt, it has to increase or decrease the

oscillator frequency depending on the clock offset. We measured in the lab the maximum clock offset

observed when the card receives the 1 PPS interrupt. Its maximum value was 30 clock ticks, representing

an error of 1.79 � s, while the median error was a single clock tick (59.6 ns). Accounting for those errors,

the worst case skew between any two DAG clocks, participating in single-hop measurements, is less than

2 � s. The total effect of both types of errors is a maximum clock skew of 6 � s.

3.2.4 Physical Requirements

In addition to supporting the bandwidth requirements of OC-3, OC-12, and OC-48 links, the IPMON

systems must also have a large amount of hard disk storage capacity to record the traces. As the systems

are installed in a commercial network facility where physical space is a scarce resource, this disk space

must be contained in small form factor. Using a rack-optimised system, the OC-3 and OC-12 IPMONs

are able to handle 108 GB of storage in only 4U of rack space3. This allows the system to record data for

9.8 hours on a fully utilised OC-3 link or 2.6 hours on a fully utilised OC-12 link. The OC-48 systems

have a storage capacity of 360 GB, but in a slightly larger 7U form factor. This is sufficient to collect

a 2 hour trace on a fully utilised link. Fortunately, the average link utilisation on most links is less than

50%, allowing for longer trace collection.

The physical size constraint is one of the major limitations of the IPMON system. Collecting packet

level traces requires significant amounts of hardware. These traces are critical for conducting research

activities, but trace collection is not a scalable solution for operational monitoring of an entire network.

The ideal solution is to use traces collected by the IPMON system to study the traffic and develop more

efficient monitoring systems targeted toward monitoring of all the links inside a network for operational

purposes.

3.2.5 Security Requirements

The IPMON systems collect proprietary data about the traffic on the Sprint Internet backbone. Preventing

unauthorised access to this trace data is an important design requirement. This includes preventing access

to trace data stored on the systems as well as preventing access to the systems in order to collect new data.

To accomplish this, the systems are configured to accept network traffic only from two applications: ssh

and NTP. ssh is an authenticated and encrypted communication program similar to telnet that provides

31U is a standard measure of rack space and is equal to 1.75 inches or 4.45 cm.
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access to a command line interface to the system. This command line interface is the only way to access

trace data that has been collected by the system and to schedule new trace collections. ssh only accepts

connections from a server in our lab and it uses an RSA key based system to authenticate users. All data

that is transmitted over the ssh connection is encrypted.

The second type of network traffic accepted by the IPMON systems is NTP traffic. The systems only

accept NTP messages which are transmitted as broadcast messages on a local network used exclusively

by the IPMON systems. All broadcast messages which do not originate on this network are filtered.

3.2.6 Remote Administration Requirements

In addition to being secure, the IPMON systems must also be robust against failures since they are

installed, in some cases, where there is no human presence. To detect failures, a server in the lab

periodically sends query messages to the IPMON systems. The response indicates the status of the

DAG cards and of the NTP synchronisation. If the response indicates either of these components fails,

the server attempts to restart the component through an ssh tunnel. If the server is not able to correct

the problem it notifies the system administrator that manual intervention is required. In some cases,

even the ssh connection will fail, and the systems cannot be accessed over the network. To handle this

type of failure, the systems are configured with a remote administration card that provides the capability

to reboot the machine remotely. The remote administration card also provides remote access to the

system console during boot time. In cases of extreme failure, the system administrator can boot from a

write-protected floppy installed in the systems and completely reinstall the operating system remotely.

The one event that cannot be handled remotely is hardware failure. The monitoring systems play

no role in the operation of the backbone, and thus we decided not to provide hardware redundancy to

handle failures.

The design of the IPMON monitoring systems was primarily performed by Chuck Fraleigh. My

involvement was mainly in the debugging process of the DAG cards and the resolution of GPS syn-

chronisation issues between systems. Later on, I was also responsible for the trace collection and the

verification of correctness of the collected information.

3.3 Routing Protocol Listeners

Traffic flow over the Internet is determined by routing protocols. As described in Chapter 2, these proto-

cols are divided into two categories: (i) the intra-domain protocols, guiding the flow of traffic throughout

a single autonomous system, and (ii) the inter-domain routing protocols overseeing the exchange of

traffic between autonomous systems. All network measurement systems mentioned so far observe the

behaviour of the network as the result of the effect that those routing protocols have on the network traf-

fic demands. Recently, research in the area of network measurements turned its attention to the internals

of those protocols within a measurement context. The systems described in this section can also be con-

sidered passive measurement systems, but their functionality is limited to recording routing directives as

issued by the routers in a network.

A routing protocol listener is a system establishing routing sessions with the operational routers
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inside a network with the intent to record all the messages exchanged in the routing domain. To the best

of our knowledge, there are only two publicly available implementations of such systems: (i) zebra4, and

(ii) PyRT5. In fact, zebra is more than just a routing protocol listener. A system with the zebra software

installed acts as a dedicated router. It can exchange routing information with other routers, and update

its kernel routing table accordingly. Currently supported routing protocols include RIP, OSPF, and BGP.

The Python Routeing Toolkit (PyRT) is a tool written in Python [71] that supports the passive

collection and the off-line analysis of routing protocol data forming minimal router peering sessions and

dumping the routing PDUs (Packet Data Units) received over these sessions. PyRT currently supports

BGPv4 and IS-IS. Compared with full implementations of routing protocols, such as zebra, an advantage

of PyRT is that no routing information is ever advertised on these sessions and only a minimal amount

of information is injected into the network.

Only until recently were such systems deployed within operational networks. However, BGP rout-

ing information has been collected since 1989 in the form of periodical BGP routing table dumps. The

collected information is analyzed in [72].

3.4 Network Provisioning Based on Measurements

The majority of the projects in the field of active and passive network measurements usually focuses

on the performance evaluation of a network, or the characterization of its workload. In other words, it

focuses on the estimation and presentation of specific network performance metrics, such as delay and

loss, or the breakdown of the carried traffic into flows, applications, and protocols [65, 73].

However, the analysis of network measurements collected on the Internet is capable of providing

us with more than just simple performance statistics. Thorough analysis of collected active and passive

measurements can lead to a better understanding of the way IP networks function, and ways in which

network management and engineering tasks can be enhanced. In order to achieve such a goal, though,

several types of measurement data, collected at multiple locations inside the network, must be carefully

combined.

3.4.1 Network Traffic Demand Matrix

The Netscope project [25] collects measurements from the AT&T network in order to study the effect

of alternate routes and route configuration onto the network. The Netscope project collects packet-level

data from T3 and FDDI links using the proprietary PacketScope measurement system, as well as NetFlow

measurements from routers [74]. Additional information on router configuration and forwarding tables is

downloaded once per day from the operational routers. Combining all sources of information, the traffic

demands across the network are computed [59]. Those traffic demands correspond to the volume of

traffic exchanged between an ingress link, where flow measurements are available, and the set of possible

egress points as computed based on the information exchanged through BGP. The traffic demand is then

input into a simulator which is used to determine the effect of changing the network configuration.

4The official distribution site for zebra is at � ����� ���
������ � ��" � � ��� ��� � .
5The official distribution site for PyRT is at

������� ���
�������� $ � �����!�#'�� � $
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��� ��& " � � � ����� �
�!�#" ��� �����	���!�	����� � ��� �!�	�	��
��� � .



42 Chapter 3. State of the Art

The traffic demands derived for each ingress to a set of possible egress points correspond to one row

of the point-to-point traffic matrix, at the aggregation level of a link (as described in Section 2.6.2). As a

result, the proposed methodology can only be used to evaluate the effect of routing protocol configuration

changes on the customer traffic, for which measurements are available. Evaluation of different scenarios

concerning different traffic flows require the existence of the complete network traffic matrix.

A point-to-point traffic matrix on the aggregation level of a link contains one million entries, for a

network featuring one thousand active links. Therefore, for large-scale IP networks, like the Sprint IP

backbone, computation of the network-wide traffic matrix involves large overhead. As a result, in the

past few years, there has been a research effort toward estimating the traffic matrix based on available

network-wide measurements, like SNMP information [75, 76, 77]. The proposed techniques are com-

pared in [30]. Scalability and accuracy of the proposed methods are limiting factors in the estimation

process of a network-wide traffic matrix. An alternative technique based on “gravity models” is used for

the estimation of a PoP-to-PoP traffic matrix in [30]. Knowledge of this matrix could provide network

operations with useful knowledge about the traffic flowing on the most expensive part of the network,

i.e. the backbone.

In the following section we provide a description of other network management tasks that could

benefit from the existence of a network-wide traffic matrix.

3.4.2 Traffic Engineering

Traffic engineering involves controlling the flow of traffic on the backbone, and is dictated by the routing

protocols deployed. As described in Chapter 2, OSPF/IS-IS weights express administrative preference

of certain IP paths over others. These paths may be preferred because they correspond to increased

capacity, smaller propagation delays, or even redundancy at the physical layer. Knowledge about the

traffic demands flowing on the network could be useful for the optimal setting of the weights used by

intra-domain routing protocols.

A significant amount of research has been carried out in the area of intra-domain routing with

respect to techniques that are able to produce link weights across an entire network so as to achieve

specific performance objectives. The simplest objective function investigated is the minimisation of

the maximum utilisation across the network. Under such an objective link weights are selected such

that network traffic is spread across the network in a way that no parts are overutilized while others

carry minimal amounts of traffic. Heuristics for the computation of OSPF/IS-IS weights achieving the

described objectives are proposed in [78, 79], and have been shown to provide solutions within a few

percent of the optimal general routing, where the flow for each demand is optimally distributed over all

paths between source and destination. Other objective functions could target the minimisation of the

maximum delay across the network, maximisation of the average network-wide link utilisation, etc.

The techniques proposed for the selection of OSPF and IS-IS weights lead to near-optimal routing

of the traffic demands across the network under normal operation. However, in the case of a link failure,

new IP paths across the network are going to be selected and the resulting flow of traffic may lead to

violations of the performance objectives defined by the network operator. Under such circumstances, the
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operator has to manually interfere and divert traffic from the congested parts in the network, increasing

the link weights of the congested links or re-calculating the optimal link weights under the new network

topology, and traffic demands. Within the same context as the one for the selection of OSPF/IS-IS

weights new heuristics have been proposed to compute intra-domain link weights that will achieve the

desired objectives even in case of failures [80, 81].

The above techniques lead to promising results regarding the ability of intra-domain routing pro-

tocols of making optimal use of the network resources by distributing the traffic across diverse paths to

achieve a provider specific performance objective. However, all solutions rely on the explicit knowledge

of the network traffic matrix.

3.4.3 Tuning Routing Protocol Parameters

Emerging voice and video applications assume a stable underlying inter-domain forwarding infrastruc-

ture and fast IP path restoration. End-to-end availability and reliability of data networks is essential for

the rollout of such services. However, recent studies in the area of inter-domain routing have shown

that current BGP implementations may lead to temporary routing table oscillations during the BGP path

selection process on Internet backbone routers [82]. During these periods of delayed convergence end-

to-end Internet paths will experience intermittent loss of connectivity, as well as increased packet loss

and delay. Moreover, it may take up to fifteen minutes until a consistent view of the network topology is

reached after a failure [82, 83]. Addition of new autonomous systems to the Internet is likely to aggravate

this condition. Studies have shown that the BGP convergence time increases linearly with the number of

active autonomous systems in the best case, and exponentially in the worst [83].

The results reported above are derived from the experimental instrumentation of key portions of

the Internet infrastructure. In [83], the authors injected 250,000 routing faults, over the course of two

years, into geographically and topologically diverse peering sessions with five major commercial Internet

service providers. They then measured the impact of these faults through both end-to-end measurements

and recording of ISP backbone routing table changes. The behaviour reported can be improved upon

through changes in current BGP implementations. However, these changes to BGP will come at the

expense of a more complex protocol and increased router overhead.

Previous work by Labovitz et al. had shown that most Internet routing instability in 1997 was

pathological and stemmed from software bugs and artifacts of router vendor implementation decisions

[84]. Some of these implementation decisions were related to the default values of specific protocol

timers responsible for the re-computation of the BGP routing table. Later work by Labovitz et al. showed

that after the changes suggested in [84] were incorporated in commercial implementations the level of

routing instability dropped by several orders of magnitude [85].

All previous efforts have targeted the evaluation of the convergence properties of the dominant

inter-domain routing protocol, BGP. Recently, there have been further efforts towards the understanding

of the converge properties of intra-domain protocols, such as IS-IS. In [86] is presented a controlled

experiment performed in the operational Sprint IP backbone network, where specific links throughout

the network are shut down and IS-IS convergence time is measured through a combination of active
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and passive measurements. The total convergence time is broken down into the time taken for specific

operations in the convergence process. Results show that IS-IS takes seconds to converge due to the

presence of two protocol timers, set to default values of seconds.

In effect, both inter-domain and intra-domain routing protocols offer the network operators knobs

that they could tune to achieve the performance desired. However, most of the time, those knobs, usually

protocol timers, are left set at the default values, since the network operator has no clear intuition about

the effect that a timer change may have. Only experimental analysis and actual measurements taken in

operational networks can provide some understanding of the magnitude of the values that these timers

should be set to.

3.5 Summary
In this chapter, we demonstrated the diverse applications of network measurements in the context of

network provisioning. It is evident that network management and planning for large ISP networks is

a very challenging task. Current market conditions dictate optimal use of the network resources, and

performance within the bounds defined in rather competitive SLAs. Network measurements can pro-

vide the necessary knowledge that could allow the formalisation of different network provisioning and

planning tasks. Moreover, the development of sound methodological approaches toward the estimation

of different performance metrics can serve as a framework, according to which ISPs and customers can

evaluate the performance offered by packet-switched networks like the Internet.

In the next three chapters we present our work on ways in which current network management and

planning tasks could be improved upon in the presence of additional network measurements.



Chapter 4

Analysis of Measured Single-Hop Delay from

an Operational Backbone Network

In this chapter, we measure and analyse the single-hop packet delay through operational routers in the

Sprint IP backbone network. After presenting our delay measurements through a single router for OC-

3, and OC-12 link speeds, we propose a methodology to identify the factors contributing to single-hop

delay. In addition to packet processing, transmission, and queueing delay at the output link, we observe

the presence of very large delays that cannot be explained within the context of a FIFO output queue

model. We isolate and analyse these outliers.

Results indicate that there is very little queueing taking place in today’s backbone. As link speeds

increase, the most dominant part of single-hop delay is packet processing. We show that if a packet is

received and transmitted on the same linecard, it experiences less than 20 � s of delay. If the packet needs

to be transmitted across the switch fabric, its delay doubles in magnitude. We observe that processing

due to IP options results in single-hop delays in the order of milliseconds. Milliseconds of delay may also

be experienced by packets that do not carry IP options. We attribute those delays to router idiosyncratic

behaviour, that affects less than 1% of the packets. Lastly, we show that the queueing delay distribution

is long-tailed and can be approximated with a Weibull distribution with the scale parameter, � 
 ��� �
,

and the shape parameter, � 
 ��� �
to
��� �
	

. The measured average queueing delay is larger than predicted

by M/M/1, and FBM models when the link utilisation is below 70%, but its absolute value is quite small.

Required Network Measurements and Time Granularity

Computation of single-hop delay requires measurements taken at the finest granularity, i.e.

detailed packet traces with accurate GPS timestamps. The results presented in this chapter

are based on IPMON packet traces collected on specific links in the Sprint IP backbone

network, and topological information processed to identify links connected to the same

routers inside the network.

4.1 Introduction

Delay is a key metric in data network performance and a parameter in ISP’s Service Level Agreements.

In the Internet, packets experience delay due to transmission and propagation through the medium, as
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well as queueing due to cross traffic at routers. The characteristics of the traffic have significant impact on

the queueing delay. Willinger et. al first reported that network traffic is self-similar rather than Poisson

[33], and much research has been done since to explore the consequences of non-Poisson traffic on

queueing delay. The Fractional Brownian Motion (FBM) model has been proposed to capture the coarse

time scale behaviour of network traffic, and results in queueing behaviour that diverges significantly

from that of the Poisson traffic model [87, 88]. Follow-up work shows that the wide-area network traffic

is multi-fractal and exhibits varying scaling behaviour depending on the time scale [89]. Recent work

reveals that the queueing behaviour can be approximated differently depending on the link utilisation

[90].

The above analyses, however, have been based on packet traces collected from a single link and fed

into an output buffer, whose size and service rate vary. We are not aware of any measurement of the

queueing delay on operational routers. The difficulty in measuring single-hop delay in a real network is

threefold:

� Packet timestamps must be accurate enough to allow the calculation of the transit time through a

router. This requires in particular that the measurement systems (i) offer sufficient resolution to

distinguish the arrival times of two consecutive packets, and (ii) are synchronised to an accurate

global clock signal, such as Global Positioning System (GPS). These two conditions need to be

met so that the maximum clock skew between any two measurement cards is limited enough to

allow accurate calculation of the transit time of a packet from one interface to another interface of

the same router.

� The amount of data easily reaches hundreds of gigabytes. Data from input and output links need

to be matched to compute the time spent in the router.

� Routers have many interfaces; tapping all the input and output links to have a complete picture of

the queueing behaviour of any single output link is unrealistic in an operational network.

As described in Section 3.2, we have designed a measurement system that addresses the first two of

the above difficulties, and deployed it in the Sprint Tier-1 IP backbone network to collect packet traces

with accurate timestamps. We use optical splitters to capture and timestamp every packet traversing a

link (see details in Section 3.2). We obtain the single-hop delay of packets by computing the difference

between the timestamps at the input and output monitored links. The third difficulty is not easy to

overcome due to deployment cost and space issues. Although this prevents us from characterising the

queueing experienced by all packets, it does not affect the evaluation of the single-hop delay reported in

this chapter.

In Section 4.2 we describe the measurement environment where our data were collected. In Section

4.3 we present delay measurements of one hundred million packets matched among more than four

billion packets and 400 gigabytes of data collected from the Sprint IP backbone network. In Section

4.4 we provide a methodology for quantifying the various elements in single-hop delay. We identify the

impact that (i) transmission across the switch fabric, (ii) the presence of IP options, and (iii) increased
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output link speed have on the delay experienced by packets through a single node. Surprisingly, in

addition to the expected elements, such as transmission, queueing, and processing delays, we observe

very long delays that cannot be attributed to queueing at the output link. We use a single output queue

model to isolate these delays, and discuss their potential origin. Once the queueing delay component has

been quantified, we analyse its tail behaviour in Section 4.5. We summarise our findings in Section 4.6.

4.2 Measurement Environment

We have designed passive monitoring systems that are capable of collecting and timestamping the first 44

bytes of all IP packets at link speeds up to OC-48 (2.5Gbps), using the DAG card [67]. These monitoring

systems have been deployed on various links in four Points of Presence (PoPs) of the Sprint IP backbone.

We have collected day-long packet traces, and analysed them off-line. Details about the measurement

infrastructure can be found in Section 3.2.

The monitoring systems are GPS synchronised and offer a maximum clock skew of 6 � s. Details

on the clock synchronisation and possible errors in the accuracy of our delay measurements can be found

in Section 3.2.3.

4.2.1 Collected Data

We tap into the optical fibre and capture packets just before they enter and just after they leave a router.

We denote the packet arrival time at an input link as 0 '�. and the packet departure at an output link, as

0(� � � . For any given packet � , the single-hop delay through the router is the difference between its arrival

and departure timestamps: � � � � 
 0 � � � ��� ��� 0�'/. ��� � . This single-hop delay value corresponds to the

total time a packet spends inside a router.

Packet traces from more than 30 links, both OC-3 and OC-12, have been analysed. In this chap-

ter, we use packet traces from four OC-3 links, collected on August 9th, 2000, and four OC-12 links,

collected on September 5th, 2001. Those link pairs have been selected because they exhibit the highest

delays observed among all our measurements. Table 4.1 provides further details about these eight traces.

We label a router’s inbound link as in, and a router’s outbound link as out, and refer to them as a data

set for the remainder of the chapter.

Figure 4.1 depicts a typical setup in a PoP. Monitoring systems are attached to selected links inside

a PoP. For the eight traces selected, those links were attached to quad-OC-3 and quad-OC-12 linecards.

Those linecards accommodate four equal speed interfaces, as shown in Figure 4.1. Packets may transit

the router from one linecard to another (set1, set2), or from one interface of a linecard to another

interface of the same linecard (set3).

In Table 4.2, we present the architectural details of each data set collected. We denote each router

participating in the measurements with its own index � . Data set1 and set2 were collected through

the same router (Router1), and they correspond to the forward and reverse direction of the same router

path (the incoming link of set1 is the outgoing link of set2, and vice-versa). All data sets capture the

behaviour of the path between two quad linecards, with the exception of set4, that corresponds to the

path between a quad-OC12 card and a single OC-12 card. Data set1, set2, and set4 correspond to
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Figure 4.1: Typical configuration of monitoring systems in a PoP.

Set Link Speed Date Start Time End Time � packets Avg. Util. � matches

in1 OC-3 Aug. 9, 2000 16:56:33 UTC 02:56:07 UTC 793,528,684 70 Mbps
1

out1 OC-3 Aug. 9, 2000 16:56:00 UTC 02:56:07 UTC 567,680,718 60 Mbps
2,781,201

in2 OC-3 Aug. 9, 2000 16:56:03 UTC 17:41:04 UTC 28,213,976 30 Mbps
2

out2 OC-3 Aug. 9, 2000 16:56:04 UTC 17:41:04 UTC 48,886,948 50 Mbps
1,175,674

in3 OC-12 Sep. 5, 2001 05:00:34 UTC 11:17:11 UTC 1,386,697,577 150 Mbps
3

out3 OC-12 Sep. 5, 2001 05:00:34 UTC 11:17:11 UTC 1,116,885,094 250 Mbps
17,613,103

in4 OC-12 Sep. 5, 2001 05:03:15 UTC 17:32:50 UTC 157,518,386 6 Mbps
4

out4 OC-12 Sep. 5, 2001 05:03:15 UTC 17:32:50 UTC 169,006,605 6 Mbps
70,423,140

Table 4.1: Details of traces

measurements involving two different linecards, whereas set3 corresponds to measurements collected

on the same linecard. In Section 4.4.2 we show how such architectural differences affect the delay values

experienced by packets through a router.

Set From To Router Name Same Linecard Different Linecard

1 quad-OC3 quad-OC3 Router1 �
2 quad-OC3 quad-OC3 Router1 �
3 quad-OC12 quad-OC12 Router2 �
4 quad-OC12 OC12 Router3 �

Table 4.2: Architectural details for the routers where the traces were collected.

4.2.2 Router Architecture

All measurements are collected from routers of the same manufacturer, and of the same architecture,

running the same operating system version. Nevertheless, each router features a different number of

active links, of different capacities, and is located in a different part of the network. In this section, we

briefly describe their architectural design.

In the general architecture of an IP router, router functions can be separated into two types:
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� Datapath functions: operations that are performed on every datagram traversing the router. Such

operations are most often implemented in special purpose hardware, and include the forwarding

decision, the backplane and output link scheduling.

� Control functions: operations that are performed relatively infrequently. Such operations are in-

variably implemented in software and include the exchange of routing table information with

neighbouring routers, as well as system configuration and management.

As a consequence, when investigating the performance experienced by different packets through a

single router, we naturally focus on the datapath functions. Tracing the typical path a packet has to take

through an IP router we have:

� Forwarding Decision: When a packet arrives at the input link of an IP router its destination address

is looked up in the forwarding table, and the appropriate destination interface is identified. Its TTL

(Time to Live) field is decremented, and a new header checksum is computed.

� Backplane Transit: The packet is then forwarded across the backplane to the appropriate output

port. If the backplane is not available to transmit the packet from the input to the output port, then

the packet has to be queued. Moreover, if there is not sufficient queue space for the packet to be

stored, then the packet may need to be dropped or preempt some other packet from the queue.

� Output-Link Scheduler: Once the packet arrives at the outgoing port, it may need to wait for its

turn at the output queue. Usually this queue is a First Come First Serve (FCFS) queue, which

implies that packets are served in order of arrival at the queue.

The routers participating in our measurements are usually classified as high-performance routers.

Specific architectural design decisions include [91]:

� The forwarding table is updated at the main router processor and distributed across all the line

cards. The forwarding decision is made by dedicated CPUs residing at the line cards themselves.

� The backplane is a crossbar switch, where multiple cards can communicate with each other simul-

taneously.

The crossbar switch can be conceived as a grid among all the line cards of a router (Figure 4.2).

By closing several crosspoints at the same time, the switch can transfer packets between multiple ports

simultaneously. The crosspoints of this grid are controlled by a centralised scheduler, which selects the

configuration of the crossbar such that at any one instant each input port is connected to at most one

output, and that each output port is connected at most to one input.

Crossbar switches may be designed to transfer fixed or variable length units. The routers partici-

pating in our measurements feature crossbar switches designed to transfer fixed size units, also known

as cells. In other words, when a packet is ready to be transmitted across the crossbar, it is broken down

into fixed-length cells, which are transmitted independently. When all the cells arrive at the output port,

then the packet is reassembled and transmitted at the output link.
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Figure 4.2: A Four-Input Crossbar Interconnection Fabric.

Although a crossbar switch is internally non-blocking, there are three other types of blocking that

can take place inside the router: (i) Head Of Line blocking (HOL), (ii) input blocking, or (iii) output

blocking. If all the packets at the input link are stored in a First In First Out (FIFO) queue, then head

of line blocking occurs because a packet is considered by the centralised scheduler only when it reaches

the head of the queue. Therefore, if the front packet in the input queue is destined towards a particular

output port, which happens to be busy, it prevents from transmission all other packets behind it, which

may be destined to other, possibly idle output ports.

In order to avoid such a phenomenon, the routers at our disposal implement what is often referred

to as “Virtual Output Queueing (VOQ)”. Under such a scheme, each input interface features a separate

FIFO queue for each output interface (Figure 4.3). Once the forwarding decision is made, packets are

placed in the appropriate virtual output queue. A centralised scheduler examines the contents of all the

input queues, and produces the appropriate crossbar configuration.

Data H

Data H

Q(1,1)

Q(N,1)

...
...

Q(N,N)

Q(1,N) Crossbar
Switch

Input 1

Input N

...
...

...

...
...

...

...
...

...

Output 1

Output N

...
...

...

SchedulerVOQ Q(i,o): i = input #, o = output #
Centralised

Figure 4.3: Architecture of the routers participating in the measurements.
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Virtual Output Queueing resolves the issue of HOL, but not of the input or output blocking. Input

and output blocking are present in all crossbar switches. They arise due to contention for access to

the crossbar: each input and each output can transport or receive only one cell at a time. Therefore, if

multiple cells require access to the same input or output simultaneously, only one will be granted access,

and the others will have to wait. Such contention for access to the crossbar may lead to increased delays

for packets that have to wait multiple time slots until they are transmitted to the appropriate output.

Arbitration at the crossbar is based on an iterative algorithm called iSLIP [92]. According to [92],

at each time slot, multiple iterations are performed to select a crossbar configuration, matching inputs to

outputs. Using rotating priority (“round-robin”) arbitration each input and output are scheduled in turn.

The current best practice in order to limit the effect of input and output blocking inside a router

is to run the crossbar switch faster than the external line rate. Such a technique is usually referred to

as “speedup” [91]. If one chooses to operate the crossbar switch twice as fast as the external line, then

during each cell time one can transfer two cells from each input port to each output port. In such a

case, we say that the router offers a speedup of two. Alternatively, one may choose to use multiple

crossbar switches, or “slices”, in parallel in order to form a switch core. During each time slot, all �

crossbar slices are configured the same way by the centralised scheduler, forming a � -bit wide bus for

each line card to the switch core. Our routers use the latter approach offering a switch core comprising

four crossbar “slices”, with access of 1.25 Gbps towards each one of them. This translates into per link

transmission rates of 5 Gbps across the crossbar.

Knowledge of such router architectural details will be proven essential in the delay analysis pre-

sented in Section 4.4.

4.3 Delay Measurement

4.3.1 Matching Packets

The first step in our methodology is to identify those packets that arrive on the input links and depart on

the output links we monitor. We use hashing to match packets efficiently. The hash function is based

on the CRC-32 algorithm [93]. Only 30 bytes out of the 44 bytes are hashed, including the source and

destination IP addresses, the IP header identification number and the whole IP header data part, as shown

in Figure 4.4. The other fields are not used since they may be modified by the router (e.g. TTL) or carry

almost identical information in all IP packets (e.g. IP version field, TOS byte1). Using the 24 least

significant bits of the CRC-32 value, the hash function offers an average load factor of 5.7% when one

million packets are hashed into a single table. We decided to use hash tables of one million packets,

because one million average-sized packets transmitted at OC-3 speeds correspond to time periods larger

than one second. We assume that one second is the maximum delay a packet can experience through

a single node. The hash table size is increased to four million packets for the processing of the OC-12

traces for similar reasons.

To match packets, the traces are processed as follows: The first million packets from out are

1Our routers are never configured to modify the TOS byte.



52 Chapter 4. Analysis of Measured Single-Hop Delay from an Operational Backbone Network

0 8 16

TCP/UDP

IP header

Flags

HLenVersion

Fragment OffsetIdentification

Type of Service Total length

Protocol Header ChecksumTime To Live

Destination address

24 32

Source port Destination port

Sequence number

Ack number

Source address

Figure 4.4: Fields in the packet header used in the hash function.

hashed into a table called ��� , and the timestamp of the last packet is recorded as � ����� � . Then, in order

of arrival, each packet from in is hashed and its key value is used as an index in ��� . If table ��� contains

a packet for that specific index, we compare all 44 bytes of the two packets. If they are the same, we have

a match and we output a record of all its 44 bytes, along with the timestamps for its arrival on link in

and departure on link out. This process continues until we reach a packet from in that has a timestamp

one second or less than � ����� � . Then we hash the next one million packets from out and create a second

hash table ��� . Both �	� and ��� are used until the timestamp for a packet from in is greater than � ����� � .
When this happens, ��� replaces �	� , and the processing continues.

Duplicate packets have been reported previously [94]. We occasionally observe them in our traces

(they account for less than 0.001% of our packets), and have paid special attention to matching them.

Duplicate packets have all 44 bytes identical, and therefore hash to the same value. In most cases we

find that only after a packet left out, its duplicate arrived on in, making the classification unambigu-

ous. If that is the case, then we can match the duplicate packets with the correct arrival and departure

timestamps. In other cases, we ignore the matches.

As a result of the above process, four traces of matched packets are produced. The numbers of

matched packets are given in Table 4.1. We use these traces in Section 4.4 to analyse the single-hop

delay components.

4.3.2 Representativeness of the Data

Our traces of matched packets provide us with complete information about the path between a specific

incoming and a specific outgoing link. We have records of the arrival and departure times of each

matched packet, as well as timestamps for all the other packets sharing the same incoming and outgoing

link. We calculate the delays experienced by the matched packets. In this section, we investigate how

representative those delay results are for the rest of the traffic flowing on the same monitored links.

The matched packets form a subset of the traffic on the output link; matched packets in set1 and

set2 constitute 0.5% and 2.4% of the total packets on links out1 and out2 respectively. Similarly,

matched packets in set3 and set4 constitute 1.5% and 4.2% of the total packets on links out3 and
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out4. Although this subset results from a single input port, it will be equivalent to a pure random

sampling if the matched packets on the output link are geometrically distributed and independent [95].

We first analyse the distribution of the distance between matched packets in terms of packet counts.

We find that it fits a Weibull distribution2. Figure 4.5(a)-(d) shows the Quantile-Quantile plot of the

distribution of the number of packets between sequential matches and a Weibull distribution with a given

� parameter for all four data sets. A shape parameter of � 
 � makes the Weibull distribution coincide

with the exponential distribution, and indicates a pure random sampling (as the discrete equivalent of

the continuous exponential distribution is a geometric distribution). If � is close to 1, a sample set is not

purely random, but is close to random with occasional large gaps between matched packets.

Our two first data sets exhibit � 
 ��� ���
and � 
 ��� � 	

, respectively. The inter-packet distribution

of set2 is therefore very close to an exponential distribution, while for set1 is not. Similarly, for the

third and fourth data sets the � parameter is found to be equal to
��� ���

, and
�����

respectively. Analysis

of the distribution of the distance between two matched packets in terms of time yields similar results

(Figure 4.5(e)-(h)).

We further look into the sample autocorrelation function (ACF) of the inter-packet distance to in-

vestigate any correlation. In Figures 4.6(a)-(d) we present the ACF when the distance between matched

packets is measured in packets. In Figures 4.6(e)-(h) we present the ACF when the distance between

matched packets is expressed as the difference in their timestamps at the output link, measured in � s.

The y-axis on all the figures has been scaled such that comparison with the 99% confidence interval is

feasible. From Figure 4.6, we see that both in time and number of packets, the ACF of set1 exhibits

significant correlation. The other three data sets exhibit much less correlation, but some correlation still

exists at the lag of 50, when distance is measured in packets. Once distance between matched packets

is measured as the difference in their timestamps, then set2, set3 and set4 show no correlation.

Thus, although the distribution of the inter-packet distance in the second and third data sets is close to

an exponential distribution (Figure 4.5), it is difficult to assess how close our sample is to a pure random

sample, due to some correlation structure in the data set.

In summary, set1 and set4 cannot be considered as pure random samples of the queueing be-

haviour at the output link, while the two other data sets are very close. However, because we have a large

number of samples, we can consider our data sufficient for studying the queueing behaviour. Moreover,

in the case of the second and third data sets, our conclusions will be very close to the complete queueing

behaviour at the output link.

4.4 Delay Analysis

We start with general observations on the delay measurements. We plot the empirical probability den-

sity function of the measured single-hop delay, and quantify step-by-step its contributing factors. The

outcome of this step-by-step analysis is the derivation of the output queueing delay, which is analysed in

Section 4.5.

2The probability density function of a Weibull distribution is given by ������	�
���������� �
"��������� � , with ���! #" �$�! ; % is called

the scale parameter, while b is called the shape parameter.
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Figure 4.5: QQ-plot of the distribution of the number of packets and amount of time between two

sequential matched packets in the output trace out (x-axis) versus a Weibull distribution.
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Figure 4.6: ACF of the number of packets and amount of time between two sequential matched packets

in the output trace out. In Figures (a)-(d) the lag is expressed in number of packets, and in Figures (e)-(h)

the lag is expressed in the number of � s of difference between the timestamps of the matched packets.

The dashed lines denote the 99% confidence intervals.
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4.4.1 General Observations

We denote the � -th matched packet as � , and the total number of matched packets for a given set by � .

Figure 4.7 plots the minimum, average, and maximum values of the single-hop delay � � ��� ��� across each

one minute interval for all four data sets. We observe first that the minimum delay is stable throughout all

traces, while the average delay exhibits more oscillations and may drop as the link utilisation decreases

towards the evening. The minimum delay corresponds to the minimum amount of time a packet needs

to go through a router. Therefore, given that the minimum delay is constant throughout the day, there is

at least one packet that experiences no queueing in each one minute interval.
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Figure 4.7: Minimum, average, and maximum delay per minute for the matched packets of all four data

sets. The x-axis is adjusted to the duration of the data set. The y-axis spans between 10 � s and 100 ms

for set1, set2, and set4. For set3 the y-axis spans between 1 � s and 10 ms, given that delays are

much lower than in the other three data sets.

The maximum delay is more variable than the average delay. It shows occasional spikes of a few

milliseconds reaching up to 35 ms for set1 and 172 ms for set4. We also note that the maximum

delay remains consistently above 1 ms for the OC-3 data sets, and 0.2 ms for the OC-12 data sets, even

though the average delay decreases. We provide possible explanations in Section 4.4.4.
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4.4.2 Step-by-Step Analysis of the Single-Hop Delay

Figure 4.8 presents the empirical probability density function of � � �	� � ��� � � � � � , along with brief

statistical data on the upper right corner of each plot. Average delay values are around 100 � s for the

OC-3 data sets and show a four times decrease when the link speed increases to OC-12. We see that 99%

of packets experience less than 1 ms of delay on OC-3 links. For the OC-12 traces the 99th percentile

of the single-hop delay distribution is below 100 � s. However, the maximum delay observed is data set

specific reaching up to 35 ms in set1 and 172 ms in set4.
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Figure 4.8: Empirical probability density function of delay of matched packets � � ��� ��� .

There are three distinct peaks at the beginning of each density function. Previous work by Thomp-

son et al. reports that packets in the backbone do not have a uniform size distribution, but instead have

three unique peaks at 40 to 44, at 552 to 576, and at 1500 bytes [64]. The sizes of 40 and 44 bytes

correspond to minimum-sized TCP acknowledgement packets and telnet packets of a single key stroke;

552 and 576 byte packets correspond to default MTU sizes when path MTU discovery is not used by a

sending host; and 1500 byte packets correspond to the Ethernet MTU size. In all data sets, more than

70% of the packets are 40, 576, and 1500 bytes long (Figure 4.9). We thus conjecture the three peaks

at the beginning of the delay distribution to be related to the packet size. To verify this conjecture, we

group the packets of those three sizes for set1, and separately plot the empirical probability density

functions of the delay experienced by packets of the given size in Figures 4.10(b)-(d). Each distribution
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Figure 4.9: Packet size distribution for all four data sets.
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(a) set1. (b) Only 40 byte packets of set1.
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(c) Only 576 byte packets of set1. (d) Only 1500 byte packets of set1.

Figure 4.10: Single-hop delay distribution for the dominant packet sizes of set1.
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has a unique peak that matches one of the three peaks in Figure 4.10(a). We now identify and quantify

the factors that contribute the same amount of delay for packets of the same size.

Transmission Delay on the Output Link

A first cause is the transmission delay on the output link. Transmission delay is proportional to the

packet size and to the speed of the output link: ���2�3�-� � � , where ��� is the length of the � -th matched

packet, and �-��� � is the output link capacity3. We refer to the difference between the total delay of packet

� and its transmission time on the output link as the router transit time, denoted by � ��	� �	� � : � ��	� �	� � 

� ��� �� ���2�3�-��� � . The empirical probability density function of � ��	� �	� � is plotted in Figure 4.11.
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Figure 4.11: Empirical probability density function of router transit time, � ��	� ��� � 
 � ��� �� ���2�3�-��� � .

There still are three distinct peaks in the distribution, even though they are less pronounced than in

Figure 4.8. This may indicate that there is still a part of the router transit time that depends on the packet

size.

Minimum Router Transit Time

As described in 4.2.2, when a packet arrives at a router, its destination address is looked up in the for-

warding table, and the appropriate output port is determined. The packet is then broken down into the

3Throughout this chapter, for the OC-3 traces we set ������� 
���	  � 
�
��� ��� $ , which is the effective payload of PoS OC-3.

For the OC-12 traces � ����� 
��  ��
� 
����� ��� $ .
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appropriate number of cells, those cells are transmitted across the crossbar, and the packet is reassembled

at the output port. These latter operations impose a minimum amount of delay on every packet, propor-

tional to its size, which is likely to explain those remaining peaks in Figure 4.11. Below we quantify the

minimum router transit time experienced by packets in our data sets.

We plot the minimum router transit time per packet size � , � �-'/. ��� � , in Figure 4.12.
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Figure 4.12: Minimum router transit time versus packet size � : ���/��� � ��	� �	� � for �  �$#&% ��' 
 �*� .
Each figure contains one value, for the minimum router transit time, for each packet size observed in our

data. Delay granularity is 1 � s.

Figure 4.12 indicates that there exists a linear relationship between the two metrics. Moreover, we

clearly observe the effect of the crossbar cell size on the obtained minimum router transit time. Notice

that packets with different packet size in set1, set2, and set4 may face the same minimum router

transit time. Their maximum difference in size is 53 bytes, which is the size of a cell. All the packets

that get broken into the same number of cells face the same minimum delay while being transmitted

from the input to the output port of the router. A similar effect can be witnessed for set3, that does not

correspond to delay measurements through the crossbar switch. This effect is due to the granularity of

our delay measurements, which is 1 � s, as well as possible differences in memory access time for small
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and large packets.

In order to derive the linear relationship between the minimum router transit time and the packet

size we proceed as follows. Given that all data sets feature an order of magnitude more packets for the

size of 40, 576, and 1500 bytes, those three packet sizes are more likely to provide us with accurate

minimum values for the router transit time. For this reason, we rely on the measurements for these three

packet sizes in linear regression, and obtain Equation (4.1).

� �-'�. � � � 


����� ����
��� � 	
����� � � 	 �

� OC-3 on different linecards
��� � � ��� � � � �

� OC-12 on same linecard
��� �
�
� 	 � � � �

�
� OC-12 on different linecards

(4.1)

As seen in Figure 4.12, the linear relationship between minimum router transit time and packet size

is consistent among the OC-3 data sets, and differs among the OC-12 data sets. Moreover, for set3 and

set4 we need two different equations to express the relationship between the minimum router transit

time and the packet size. The reason for that is that packets that are received and transmitted on the same

linecard exhibit different behaviour compared to the packets that need to transit the switch fabric. From

Equation (4.1), we can identify the effect that such features of the router architecture may have on the

packet delay.

According to Equation (4.1), transmission of packets across different linecards for OC-3 and OC-

12 rates (set1, set2, and set4) leads to similar values for the slope capturing the linear relationship

between packet size and minimum router transit time. However, the constant term is different and larger

for the OC-3 case. This could be attributed to the fact that set4 does not involve two quad linecards

(Table 4.2), or that OC-12 linecards utilise more recent technology, and thus may be offering faster

packet processing than OC-3 linecards.

One important result derived from Equation (4.1) and Figure 4.12 is that packets which remain in

the same linecard are served much faster, i.e. in 7 to 20 � s. Packets that have to be transmitted across the

switch fabric are served in 19 to 39 � s. Similar analysis performed on other data sets containing packets

received and transmitted in the same quad linecard or across different linecards led to results consistent

with Figure 4.12, and Equation (4.1).

Subtracting � �-'�. � ��� � from the router transit time, � ��	� ��� � , we obtain the actual amount of time

packets have to wait inside the router. The new empirical probability density function is presented in

Figure 4.13.

Packet size related peaks have now disappeared and the delay distributions look similar for all data

sets. The distribution is characterised by very low delays: 45% of the packets in set1, and almost 50%

of the packets in set2 experience zero queueing delay. For the OC-12 data sets 30% of the packets in

set3, and 80% of the packets in set4 go through the router without any queueing at the output link.

Differences in the average delay can be explained by the packet size distribution of the two sets: set1

and set3 are dominated by packets larger than 500 bytes, while set2 and set4 contain mostly 40

bytes packets (Figure 4.9). In addition, set1 and set3 consist of highly utilised links (Table 4.1), thus

featuring higher queueing delay values than set2 and set4. Small peaks around 100 � s for the OC-3

data sets, and 20 � s for the OC-12 data sets correspond to the transmission of a maximum sized packet at
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Figure 4.13: Empirical probability density function of � ����	� �	� �+� � �-'�. � ��� ��� .

the respective line rate; thus accounting for the fact that a packet may arrive at the output queue, and find

it occupied by another, possibly maximum-sized, packet. However, the 99th percentiles are very small;

below 750 � s for the OC-3 data sets, and below 50 � s for the OC-12 data sets. As observed in Figure

4.13, the maximum delay is not consistent across data sets and reaches up to 172 ms for set4 and 35

ms for set1.

4.4.3 Possible Causes for Very Large Delay

In Figure 4.14, we present the cumulative distribution function (cdf) for the output queueing delay

( � � ��	� �	� � � � ��'/. � ��� � � ) observed for all four data sets. A key observation is that across all data sets

the tail of the delay distribution is very long, accounting for the presence of very large delays. However,

an examination of the output link data when the very large delays were observed shows that the link

was not fully utilised while those packets were waiting. Therefore part of the long delays is not due to

queueing at the output link. Those delays could be due to input or output blocking at the switch fabric, as

described in 4.2.2, or router design idiosyncrasies. In the remainder of this section, we look into possible

explanations for these large delay values.

One possible reason for these very long delays through a single router could be that the monitoring

systems lose synchronisation. We exclude measurement equipment fault as a cause for large delays
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Figure 4.14: Empirical cumulative density function of � ����	� ��� �� � �-'�. � ��� � � .

for the following reasons. If the two measurement systems had gone out of time synchronisation, the

minimum and average delay in Figure 4.7 would exhibit a level shift over time, which is not visible.

There is no way to tell if the system’s software had a bug, and produced the very large delays. However,

it is extremely unlikely that a software bug affected only a handful of packets, still maintaining the

strictly increasing nature of timestamps and keeping the minimum packet delay constant, both of which

we checked in our traces.

A second reason, that can be easily verified, is that the packets experiencing long delays contain IP

options. Most routers are designed to optimise the performance for the majority of packets. IP packets

with options require additional processing in the protocol stack, and travel through a slower, software

path than packets without options. IP option packets are present in set2, set3, and set4. In Table

4.3, we include the main statistics of the delay distribution derived from packets carrying IP options.

Results indicate that packets with IP options spend at least 36 � s inside the router, and they usually

account for the maximum delay in our single-hop delay distributions. The derived statistics should only

serve as an indication for the magnitude of delay that packets with IP options may face while traversing a

router, since the observed sample is too small to allow for generalisation. Given that delay measurements

for packets carrying IP options are not solely due to queueing, we do not include them in the remainder

of our analysis.
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set2 (9 matches)

( � s) min. avg. 90% 99% max.

� ��	� ��� � 242 453 1,145 1,659 1,659

set3 (21 matches)

( � s) min. avg. 90% 99% max.

� ��	� ��� � 36 225 367 438 438

set4 (39 matches)

( � s) min. avg. 90% 99% max.

� ��	� ��� � 270 11,219 10,629 172,074 172,074

Table 4.3: Delay statistics for the packets in the data sets that carry IP options.

Once IP option packets have been removed from our data sets, we find that the maximum delay

for set2 and set4 drops significantly (Table 4.4). Due to the fact that there is a very small number

of IP options packets present in our measurements, none of the other statistics of the distribution have

significantly changed. Packets carrying IP options are capable of justifying the maximum delay in our

data sets, but even after their removal the maximum delay experienced by packets in set1 and set4

remains in the order of tens of milliseconds. Other potential sources for non-queueing delays are: (i)

routers stopping forwarding packets for a short period of time when busy with some other CPU intensive

task, (e.g. routing table updates, SNMP requests, and garbage collection in memory), an effect usually

referred to as a “coffee break”, (ii) router interface cards with multiple ports or backplane switch fabrics

that could allow blocking, (iii) memory locks or poor scheduling, etc.

4.4.4 Filtering Based on a Single Output Queue Model

When packets arrive at a router, they contend for resources to be forwarded to the destination output

interface. The router can use various policies to resolve this contention. The FIFO (First-In First-Out)

output queue model captures the essence of how a router should serve packets contending for the same

resource in a best-effort fashion [96]. Thus, we model an output port of a router as a single output queue.

While a single output queue is not an accurate model of all the operations performed in the router, it is

sufficient to allow us to determine if the delay of a packet is due to output queueing or not, using only

the measurements we have at our disposal.

In the routers deployed in our network packet processing is heavily pipelined so that a packet expe-

riencing the minimum router transit time should not introduce extra queueing for the next packet arriving

at the input port. That is, the minimum router transit time simply delays a packet’s arrival time at the

output queue, without affecting other packets. We can thus assume that the � th packet arrives at the

output queue at 0 1'�. ��� � 
 0 '�. ��� � � � ��'/. � � � � , and set the service rate of the single output queue to the

transmission rate of the output link, as illustrated in Figure 4.15.

We expect a packet to wait at the output queue if and only if the output queue is busy serving other

packets. The waiting time of a packet is 0 ��� � ��� � � ��� �3�-��� � � 0 1'�. �	� � . In Figure 4.16 we plot the number
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original set non IP-options set

2,781,201 matches 2,781,201 matches

in1 to out1 ( � s) min. avg. 90% 99% max. min. avg. 90% 99% max.

����	� �	� � 26 112 226 754 35,342 26 112 226 754 35,342

����	� �	� �+� � �-'/. � � � � 0 70 183 710 35,309 0 70 183 710 35,309

original set non IP-options set

1,175,665 matches 1,175,656 matches

in2 to out2 ( � s) min. avg. 90% 99% max. min. avg. 90% 99% max.

� ��	� �	� � 26 63 116 352 1,660 26 63 116 352 1,547

����	� �	� �+� � �-'/. � � � � 0 33 87 321 1,633 0 33 87 321 1,520

original set non IP-options set

17,613,183 matches 17,613,162 matches

in3 to out3 ( � s) min. avg. 90% 99% max. min. avg. 90% 99% max.

����	� �	� � 7 20 35 60 546 7 20 35 60 546

� ��	� �	� �+� �,�-'/. � ��� � 0 8 23 48 527 0 8 23 48 527

original set non IP-options set

70,423,140 matches 70,423,101 matches

in4 to out4 ( � s) min. avg. 90% 99% max. min. avg. 90% 99% max.

����	� �	� � 19 24 34 63 172,074 19 24 34 63 16,091

����	� �	� �+� �,�-'/. � ��� � 0 2 2 39 172,054 0 2 2 39 16,045

Table 4.4: Statistics for the OC-3 and OC-12 data sets after the removal of packets with IP options.

T   (m)outinT  (m) T   (m)in
/

P
^

md  (l  )

Figure 4.15: Single output queue model of a router.

of bytes transmitted at the output link out during the time interval of � 0 1'/. �	� � ��0 � � � �	� � � � � ��� � � ��� versus

the size of the interval for all four data sets. The top line corresponds to the case when the number of

bytes transmitted between the packet’s arrival and departure time ( 0��'/. �	� � and 0(� � � �	� � � �����3�-��� � ) is

equal to the number of bytes that would be transmitted if the link continuously sent packets at line rate.

We observe that all data points lie below this top line. Moreover, most of the points that fall off this
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Figure 4.16: Number of bytes transmitted between 0�1'/. �	� � and 0(��� � ��� � � ���2�3�-��� � on out1, out2,

out3, and out4.

line are bounded by another line below, of the same slope, which allows for the transmission of one less

maximum-sized packet. This latter line is described by � 
 � �*��� � ��� � � � � � � � � , where � is the size of

the time interval, and � is the number of bytes. We allow one maximum-sized packet as the error margin

in our waiting time calculation, since the accuracy of the timestamps, the non-uniform distribution of

SONET overhead in the signals, and the uncertainty about operations inside the router are likely to

affect our computation. Those packets whose waiting times lie between the two lines are interpreted as

follows: while a matched packet is waiting to be transmitted between 021'/. �	� � and 0 � � � �	� �+� � � �3� � � � ,
the output link is fully utilised. We consider as the filtered data set those packets that lie between the

two bounding lines in Figure 4.16. For set1, for instance, the filtered set contains 93.4% of the total

number of packets in the set. Other packets are considered to have experienced delay not due to output

queueing4 beyond the error margin and are filtered out. To evaluate the magnitude of the delay values

that get filtered out by our simple output queue model, we proceed as follows.

We compute the amount of delay that each packet should have experienced in all four data sets

4Strictly speaking, transmission and propagation delays are not due to queueing. However, we limit the use of non-queueing

delay only to the delay experienced at the output queue due to congestion.
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according to the observed output link utilisation. We then subtract the computed delay from the actual

delay measured. The difference between those two values corresponds to the amount of additional delay

that a packet experienced inside the router. In Figure 4.17(a) and 4.17(b), we present the empirical

probability and cumulative density function for the difference in delay experienced by the set of packets

that got filtered out.
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Figure 4.17: Unexplained part of the delay in the measurements that get filtered out.

Figure 4.17(a) shows that the part of our delay measurements, that cannot be explained according

to our single output queue model, may reach up to tens of milliseconds. An important observation is that

for set1 and set2 the empirical probability density function shows a plateau between 10 � s and 1 ms.

For set4, the plateau area spans between 10 and 200 � s. Such a behaviour is consistent with a “coffee

break” effect. When a router goes into a “coffee break”, it stops forwarding packets for the duration of

the break. Therefore, all packets that arrive at the router during this period have to wait until the router

resumes the forwarding process, and therefore experience delays that may reach the duration of the break.

In our case, the observed behaviour resembles a 1 ms “coffee break” in our OC-3 measurements, and

200 � s in our OC-12 measurements. What is interesting is that no such effect is evident for set3, where

the maximum delay difference is limited to 17 � s. Recall that set3 corresponds to delay measurements

taken inside the same quad-OC-12 linecard. Therefore, such a finding could be an indication that the

“coffee break” effect is not taking place at the linecards themselves.

Unfortunately, seeking explanation for such a phenomenon requires detailed knowledge of the

router architecture, and constitutes proprietary information. Therefore we can only conjecture about

possible reasons behind this behaviour. Justification for the existence of delay discrepancies larger than

1 ms is even harder to provide. Queueing taking place at the input link and contention for access to the

switch fabric could be possible explanations, but cannot be verified solely based on our measurements.

In any case, as can be seen from Figure 4.17(b) such a phenomenon affects a very small number of

packets, namely between 20% and 40% of the filtered out packets. This percentage corresponds to less

than 1% of the total number of packets in each data set 5.

5The final percentage of packets that get filtered out is higher than 1% because of small delay discrepancies, below 10 � s.
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Given that delays experienced by packets beyond our error margins are not related to the cross-

traffic at the output link, we continue our analysis only with the filtered data sets. We summarise the

statistics for the router transit time and queueing delay of filtered and not filtered packets in Table 4.5.

The average delay, the 90th, and the 99th percentiles of the filtered data sets are now lower than in the

original data sets. Moreover, all of the delays larger than 5 ms in set1 and set4 have disappeared, and

the maximum delay has dropped to 3.9 ms and 160 � s respectively. On the other hand, the maximum

delay for set2 and set3 remains unchanged, indicating that the output link was fully utilised when the

maximally delayed packet was being held back from transmission. We plot the minimum, average, and

maximum values of the filtered delays for all four data sets in Figure 4.18. We compare to Figure 4.7

and notice that the maximum delay does not stay over 1 ms throughout the whole day. Consequently, the

single queue model is effective in filtering the delays which are not due to queueing at the output link.
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Figure 4.18: Minimum, average, and maximum single-hop delays per minute for the filtered packets of

all four data sets. The x-axis is adjusted to the duration of the data set. The y-axis spans between 10 � s

and 100 ms for set1, set2, and set4. For set3 the y-axis spans between 1 � s and 10 ms, given that

delays are much lower than in the other three data sets.
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original set filtered set

2,781,201 matches 2,596,486 matches

(6.6% filtered out)

in1 to out1 ( � s) min. avg. 90% 99% max. min. avg. 90% 99% max.

� ��	� ��� � 26 112 226 754 35,342 26 106 217 603 3,937

� ��	� ��� �� � �-'�. � ��� � 0 70 183 710 35,309 0 65 174 558 3,903

non IP-options set filtered set

1,175,665 matches 1,145,170 matches

(2.5% filtered out)

in2 to out2 ( � s) min. avg. 90% 99% max. min. avg. 90% 99% max.

� ��	� ��� � 26 63 116 352 1,547 26 56 112 230 1,547

� ��	� ��� �� � �-'�. � ��� � 0 33 87 321 1,520 0 27 82 200 1,520

non IP-options set filtered set

17,613,183 matches 17,613,018 matches

(0.0009% filtered out)

in3 to out3 ( � s) min. avg. 90% 99% max. min. avg. 90% 99% max.

� ��	� ��� � 7 20 35 60 546 7 20 35 60 546

� ��	� ��� �� � �-'�. � ��� � 0 8 23 48 527 0 8 23 48 527

non IP-options set filtered set

70,423,140 matches 69,710,887 matches

(1% filtered out)

in4 to out4 ( � s) min. avg. 90% 99% max. min. avg. 90% 99% max.

� ��	� ��� � 19 24 34 63 16,091 19 24 33 49 362

� ��	� ��� �� � �-'�. � ��� � 0 2 2 39 16,045 0 1 2 16 160

Table 4.5: Statistics for the OC-3 and OC-12 data sets before and after filtering.

4.5 Analysis of Output Queueing Delay

4.5.1 Tail Behaviour

In this section, we analyse the tail of the queueing delay distribution. This analysis will help us identify

possible models for the queueing delay in the backbone that could be exploited in simulation environ-

ments. We show that our results agree with previous analytical studies [87].

Tail behaviour can be categorised into three types: light tailed, long tailed, and heavy tailed. A light

tailed distribution has a probability density function whose tail approaches zero more rapidly than the

exponential distribution. A distribution is said to have a heavy tail if
� � � � � ����� � ��� as �	��
 ,

� � � � 	
[97]. This means that regardless of the distribution for small values of the random variable,

if the asymptotic shape of the distribution is hyperbolic, the distribution is heavy tailed. The simplest



70 Chapter 4. Analysis of Measured Single-Hop Delay from an Operational Backbone Network

heavy tailed distribution is the Pareto distribution which is hyperbolic over its entire range and has a

probability mass function � � � � 
 � � � � ��� � � � � � � � �
� ��� � , where � represents the smallest value

the random variable can take. Long tailed distributions are not strictly heavy tailed, but decay slower

than exponential. Lognormal and Weibull distributions with the shape parameter � � � belong to long

tailed distributions.

The network traffic is known to be long-range dependent, and such traffic can be modelled as

Fractional Brownian Motion (FBM) [89]. Norros shows that the queueing delay distribution of the FBM

traffic is approximated by a Weibull distribution [87].
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Figure 4.19: Log-log plot of CCDF for the queueing delay measured for all four data sets (data set 1, 2:

OC-3, data set 3, 4: OC-12)

To examine what tail category our delay distributions fall into, we first plot the complementary

cumulative distribution function (CCDF) of � � ��	� ��� �� � �-'�. � ��� � � in log-log scale for the first hour of

the filtered sets, where link utilisation remains approximately constant (Figure 4.19). If the tail of the

CCDF forms a straight line, then the distribution may be heavy tailed. From Figure 4.19, it is not clear

whether this is the case for our data sets. We use the aest tool to formally check if the queueing delay

distribution is heavy tailed [98]. The obtained results indicate that our delay distributions do not have

the power-law tail like the Pareto distribution, and are not heavy tailed.

We then look into whether our queueing delay distributions are long-tailed. As already mentioned,

a Weibull distribution with a shape parameter � less than 1 belongs to the long-tailed distributions. We

fit a Weibull distribution to our queueing delay distributions, and present our results in Figure 4.20 for

the first three data sets. Set4 is omitted because it is characterised by very low queueing delays, leading

to a very small number of samples in the tail of its distribution6. Figure 4.20 shows that the queueing

delay distribution for set1 and set2 fits to a Weibull distribution with a shape parameter � equal to

0.6, and 0.7 respectively. The OC-12 distribution for queueing delay inside the same linecard (set3)

6The link utilisation of both links in set4 is very low, equal to less than 10 Mbps out of the 622 Mbps of the link’s capacity.

As a consequence, the respective queueing delay distribution is characterised by a 99th percentile equal to 15 � s. This means that

the number of samples we have in the tail of this particular distribution is very limited, and since they are bounded by a maximum

queueing delay of 52 � s, they are very sensitive to our clock accuracy and our 1 � s granularity.
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Figure 4.20: Quantile-Quantile plot of the queueing delay distribution against a Weibull distribution

(OC-3, OC-12).

can be approximated with a Weibull distribution with a shape parameter � equal to 0.82. Therefore, the

distribution of queueing delay is long tailed, confirming the finding in [87].

4.5.2 Impact of Link Utilisation on Output Queueing Delay

In this section, we investigate the evolution of queueing delay with respect to link utilisation in our back-

bone network, where link utilisation rarely exceeds 70%. Simple models, such as M/M/1 and M/G/1,

fail to account for long-range dependence in the traffic, and are thus likely to predict smaller delays

than the ones actually experienced. On the other hand, the Fractional Brownian Motion (FBM) model

captures the characteristics of the observed traffic, but is mostly used in estimating the queueing delay

for links which are utilised above 80%; a highly untypical operating region for backbone links. We use

our measurements to study the effect of link utilisation on queueing delay, and to understand the delay

guarantees that can hold inside a backbone network.

We segment each trace into 100 ms intervals. We calculate average link utilisation and average

delay measured for each 100 ms interval. We proceed to correlate link utilisation with delay and we
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calculate the average delay seen for each level of link utilisation. In Figure 4.21, we present the average

queueing delay versus link utilisation for both OC-3 data sets, and compare them with the M/M/1 and

FBM models. The parameters of the models are estimated from the first data set. The M/M/1 takes

as input the average link utilisation, the average packet size, and the capacity of the output link. The

parameters for the FBM are estimated from the trace, and are equal to � 
 � ����� � � � � ��� � � � � 

� � ��� ��# ����� � � � � 
 ��� � �
�
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Figure 4.21: Comparison of the average queueing delay vs. link utilisation, derived from the OC-3

measurements, the M/M/1 model, and the FBM model.

As can be seen from Figure 4.21, the M/M/1 model captures the trend of the relationship between

queueing delay and link utilisation, but underestimates it. It is well known that the FBM model is

designed to capture the queueing behaviour at high link utilisations, while underestimating it at low

and intermediate link utilisations. Indeed, FBM is performing poorly for link utilisations below 70%.

Moreover, given that our links are never more than 70% loaded, we cannot compare the queueing delay

predicted by the FBM in cases of high load, with actual measurements. The OC-12 measurements

correspond to even lower link utilisation, never exceeding 55%, thus not shedding more light into what

the effect of higher link utilisation may be. In summary, for the operating regions that a large network

would choose to utilise its links at, both M/M/1 and FBM models underestimate the average queueing

delay.

4.6 Conclusions

To the best of our knowledge, this work is the first to provide data about actual delays incurred through

a single router in the backbone. We measure single-hop delay as experienced by packets in the Sprint

IP backbone network. We develop a methodology to identify the contributing factors to the single-

hop delay that is simple and applicable to any single-hop delay measurements. We demonstrate its

applicability on OC-3 and OC-12 packet traces. In addition to packet processing, transmission, and
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queueing delays, we identify the presence of very large delays that cannot be explained within the context

of a work-conserving FIFO output queue. We provide a simple technique to remove these outliers

from our measurements, and offer possible explanations regarding the events that may have led to such

extreme delays through a single node.

According to our results, 99% of the packets in the backbone experience less than 1 ms of delay

going through a single router when transmitted at OC-3 speeds. At OC-12 line rates, the single-hop delay

drops to less than 100 � s. After the extraction of the queueing delay component in our measurements, we

show that the largest part of single-hop delay experienced by a packet is not due to queueing, but rather

to the processing and transmission of a packet across the switch fabric. In addition, we observe a small

number of packets (less than 1% in our measurements) that may experience significantly larger delays,

either because they carry IP options or because they are affected by idiosyncratic router behaviour.

The analysis of the queueing delay distribution reveals that it is long tailed, and can be approximated

by a Weibull distribution with a scale parameter � 
 ��� �
, and a shape parameter � 
 ��� � � ��� �

for

transmission of packets across two different OC-3 linecards. If the forwarding of the packet does not

include transmission across the switch fabric, then the queueing delay distribution can be approximated

with a Weibull distribution with a higher shape parameter � 
 ��� � 	
. These results confirm previous

findings by Norros [87]. The measured average queueing delay is larger than predicted by M/M/1, and

FBM models when the link utilisation is below 70%, but its absolute value is quite small. Identification

and modelling of the several components comprising single-hop delay allows for more realistic backbone

router models, that could easily be used in simulation environments.

In summary, packets in the Sprint IP backbone network experience edge-to-edge delays that are

dominated by the propagation delay, and face minimal jitter. This result, though, should be evaluated

within the context of Sprint’s backbone design principles, that dictate moderate link utilisation across

the network; in our measurement all links were utilised less than 70% even at a 10 ms time scale.

The work presented in this chapter is the result of collaboration with Sue Moon, Chuck Fraleigh,

Patrick Thiran, and Christophe Diot. Chuck Fraleigh was mainly responsible for the IP monitoring

systems. Sue Moon contributed in the methodology. Patrick Thiran provided help with the statistics,

and Christophe Diot with the writing. However, the largest part of the methodological approach, all

the code and the detailed analysis of the collected traces have been done by me. During the analysis

of the collected information, certain issues with the monitoring cards and their synchronisation came

up. These issues were mainly resolved by Chuck Fraleigh and me.



Chapter 5

A Pragmatic Definition of Elephants in

Internet Backbone Traffic

In the previous chapter, we showed that very little queueing takes place in the monitored IP backbone

network. This is consistent with the network design principles that dictate moderate link utilisations

across the network. We concluded that in today’s moderately utilised backbone networks, queueing

delay at backbone routers adds insignificantly to the overall edge-to-edge delay.

However, our findings are only applicable to cases when link utilisation stays moderate. There will

always be cases when unexpected link and equipment failures may lead to transient link overload. In

those cases, when particular links fail, other links in the network will be selected by routing protocols

to carry the affected traffic, and thus may reach prohibitive utilisation levels. Under such conditions, the

current best practice is to increase the IS-IS/OSPF weight of the overloaded link and re-direct the traffic

to other areas inside the network, rarely being able to predict the future network state without direct

knowledge of the traffic matrix. In this chapter, we look into a controlled way of off-loading a link by

the re-direction of selected destination network prefixes that carry the majority of the traffic persistently

over time.

We propose a methodology for the classification of destination network prefixes on a link into two

classes, namely the “elephants”, that are limited in number and carry the majority of the load, and the

“mice”, that are large in number but carry insignificant amounts of traffic. We show that classifying flows

based only on their bandwidth during a single interval leads to high volatility in the elephant class, i.e.

the set of flows classified as elephants (or mice) differs significantly from one interval to the next. We

conclude that for traffic engineering applications, that require persistence of the derived classification,

one needs to also account for the temporal behaviour of the flows. We propose a new classification

scheme that incorporates a metric, called latent heat, that tracks the evolution of the difference in elephant

bandwidth and the class separation threshold over time. We demonstrate that the latter approach is

capable of correctly identifying elephant flows that do not only contribute high volumes of traffic but are

also more likely to maintain this property in time.

Required Network Measurements and Time Granularity

Identification of the elephant destination network-prefix flows on a link requires flow mea-



5.1. Introduction 75

surements at the granularity of the BGP network prefix. The results presented in this chapter

are based on IPMON packet traces collected on specific links in the Sprint IP backbone net-

work. The selected links correspond to sufficiently aggregated traffic, two hops away from

the periphery of the network capturing traffic towards the core. Destination network-prefix

flows are defined according to the collected BGP routing table. Bandwidth is computed at

the time granularities of 1 minute, 5 minutes and 60 minutes.

5.1 Introduction
Traffic engineering of IP networks has attracted a lot of attention in the recent past. Network operators

are seeking ways in which they could make optimal use of their networks’ capacity, without introduc-

ing complexity and maintaining the simplicity of the packet switching paradigm. With that in mind,

researchers have proposed different algorithms for traffic engineering tasks that could lead to better

utilised networks by exploiting certain properties of the underlying traffic [99, 100, 101, 102].

Studies of the Internet traffic at the level of network prefixes, fixed length prefixes, TCP flows,

AS’s, and WWW traffic, have all shown that a small percentage of the flows carries the largest part of the

information [99, 100, 101, 102]. This behaviour is known as “the elephants and mice phenomenon”, and

is considered to be one of the few invariants of Internet traffic [103]. In statistics, this phenomenon is also

called the “mass-count disparity”. The “mass-count disparity” states that for heavy-tailed distributions

the majority of the mass in a set of observations is concentrated in a very small subset of the observations

[104].

In order to be able to exploit such a property for traffic engineering purposes, one has to be able to

identify which flows carry the majority of the bytes. The attraction of classifying flows into elephants

and mice, is that by treating a relatively small number of flows differently one can affect a large portion

of the overall traffic. For this to be practical though, elephant flows would need to remain elephant flows

for reasonably long periods of time, so that a traffic engineering application need not change its policy

or state frequently.

To the best of our knowledge no systematic way has been proposed so far for choosing the criterion

that isolates the high-volume flows. This criterion should allow one to consider any particular flow and

to decide if it should be categorised as an elephant or a mouse. Our aim is to separate out a small

number of high-volume flows that persistently account for most of the traffic, from a very large number

of flows that contribute negligibly to the overall load. In the rest of the chapter we refer to the former

as the elephant class, and the latter as the mouse class. Note that previous definitions of elephant and

mice flows on the Internet were based on arbitrary criteria [101, 102, 105] and did not incorporate this

notion of persistence in time. They usually characterised flows as elephants or mice based on their

instantaneous behaviour, and focused on the usefuleness of such a classification with respect to specific

traffic engineering applications. The classification criteria were usually defined in terms of duration or

bandwidth, and the separating threshold between the two classes was set in an ad hoc fashion. Therefore,

our goal is twofold. Firstly, we want to define the criterion for the separation of the flows into two

classes. Secondly, we want to verify that the proposed criterion leads to time persistence in the resulting
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classification.

Separation of the flows that persistently contribute the majority of the traffic could have several

applications within a traffic engineering context. Some of these applications include multi-path rout-

ing, as suggested in [106, 107], the setup of MPLS tunnels throughout the network to accommodate

elephant flows [102], accounting as proposed in [105], or selective re-routing of elephant flows. The

latter application is envisioned to target the off-loading of congested links by the re-direction of elephant

destination network prefixes to less congested parts of the network. The current best practice to over-

come transient overload on a link in the network is the increase of the corresponding IS-IS/OSPF weight

[25]. However, without specific knowledge of the network traffic matrix, this type of operation usually

results in a network whose state can rarely be predicted. Therefore, in such cases, it may be preferable

for the network operator to selectively re-direct specific destination prefixes away from the congested

link, by changing the next-hop address for this particular prefix. In order for such a configuration change

to have the desirable effect, the elephant flow which is going to be re-routed has to be selected among

those network prefixes that not only contribute sufficient amounts of traffic, but that exhibit this property

persistently over time.

In accordance to the above requirements, we define flows at the traffic aggregation of a destination

network prefix, and we observe their bandwidth over fixed time intervals. Given that there is no system-

atic way proposed for the identification of elephant flows on a link based on their bandwidth, we first

investigate a number of schemes to identify elephants based on measurements collected in a single inter-

val. We call these schemes “single-instant” classification schemes since they classify flows according to

their behaviour during a single time interval.

Our first single-instant classification scheme exploits the property that the network-level prefix flow

bandwidth distribution is heavy tailed. It identifies the threshold separating elephants from mice, as a

cut-off point in the Complementary Cumulative Distribution Function (CCDF). This technique makes

no assumptions about how high or low the threshold should be. Instead, it defines the threshold as the

first point in the flow bandwidth distribution after which power-law behaviour can be witnessed. The

second method classifies as elephants the high-volume flows whose cumulative bandwidth is equal to a

certain fraction of the overall traffic. This second approach is more intuitive and may be preferred in an

operational setting.

The performance evaluation of the proposed schemes is done on the grounds of four performance

metrics. The first two metrics verify that the elephant flows identified indeed conform to the definition of

the elephant class. The remaining two metrics evaluate the persistence of the derived classification. Our

findings illustrate that classifying flows according to their “instantaneous” behaviour (i.e. their behaviour

during a single interval) leads to high volatility in the resulting elephant class. We demonstrate this

volatility in a number of ways: (i) the number of elephants at any time is highly variable, (ii) elephant

flows need frequent reclassification, and (iii) elephants do not remain elephants sufficiently long for

traffic engineering applications.

Because persistence in time is an important property and simple single-instant classification
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schemes cannot achieve this, we incorporate in the classification a metric that captures the temporal

behaviour of a flow, called latent heat. The latent heat metric is appealing because it reduces the clas-

sification schemes’ sensitivity to the natural variability of flows. We show that the “latent heat” scheme

avoids unnecessary reclassification of flows due to short-term fluctuations that do not change a flow’s

essential nature. Performance evaluation of the proposed scheme demonstrates that it is capable of iden-

tifying a small number of elephant flows, that capture the majority of the traffic, while maintaining their

state for much longer periods of time.

The remainder of this chapter is organised as follows. In Section 5.2, we describe the data analysed

throughout the chapter. In Section 5.3 we present our methodology and in Section 5.4 we provide results

on the performance of the classification when it is based on the single-instant flow behaviour. Results

on the “latent-heat” classification scheme are presented in Section 5.5. We characterise the identified

elephant network prefixes in Section 5.6 and conclude in Section 5.7.

5.2 Measurement environment

5.2.1 Collected measurements

The data used in this chapter come from packet traces collected in the core of Sprint’s Tier-1 IP backbone

network [73]. The analysis described throughout the chapter has been performed on 6 traces collected

on OC-12 and OC-48 links, yielding similar results. In this chapter we present results only from two

different OC-12 links. The specifics of those two traces are presented in Table 5.1. The links used are two

hops away from the periphery of the network, and traffic is captured on its way towards the core of the

network. Therefore, traffic towards specific destinations should exhibit a sufficient level of aggregation.

The utilisation levels of these two links are given in Figure 5.1 (The times displayed in the figures are

always in EDT.). We selected those two particular links because they exhibit different behaviour, which

has implications on the classification process as will be seen in later sections. The first of these links

exhibits a more pronounced bursty or busy behaviour. The second link provides a data set that varies in

a smooth fashion throughout the day.

Trace label Start time End time #packets Link Speed

west coast Jul 24 08:00:35 2001 EDT Jul 29 02:42:55 2001 EDT 1,677,983,111 OC-12

east coast Jul 24 08:00:34 2001 EDT Jul 25 13:21:55 2001 EDT 1,678,055,791 OC-12

Table 5.1: Description of collected traces.

In parallel to the packet trace collection, we collect the BGP routing tables at the corresponding

PoPs. Those BGP tables are default-free and contain approximately 120K entries, denoting all the IP

domains that are likely to receive traffic through the monitored network.
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Figure 5.1: Link utilization for the west and east coast trace.

5.2.2 Traffic and Time Granularity

The first issue addressed is the granularity level of the flows to be classified. For the purpose of intra-

domain traffic engineering the natural granularity level is that of network prefixes appearing in routing

tables. The granularity of a network prefix is a natural candidate for several reasons. First, such flows

can easily be manipulated by simply changing the next hop address in the routing table for that particular

flow. Second, routing policies tend to be applied to a network prefix as a whole, since network prefixes

are the smallest routable entities in the Internet. Therefore any change in policy would affect the entire

flow as we define it. This would not be the case, for example, for flows defined by destination address

or prefixes of a fixed length. Third, it has been observed that elephants and mice do exist at this level of

granularity [100].

Traffic engineering applications target optimal allocation of resources across the network by intel-

ligent handling of the carried traffic. Such applications need to operate at timescales that are not too

short, so that they are not affected by traffic variations due to protocol-specific behaviour. On the other

hand, they should not operate at timescales that are too long, in order to exhibit sufficient reactiveness

to events taking place inside the network. For instance, if the targeted application is the off-loading of

congested links through the re-direction of high-volume destination network prefixes to other places in

the network, then the time granularity over which volume measurements are computed should be limited,

i.e. in the order of minutes. This is motivated by the fact that network operators may need to wait up

to the duration of an entire interval (when new measurements become available) in order to react to the

observed congestion (which is likely to be monitored through SNMP at 5-minute intervals).

For those two reasons, we select 5 minutes as the default duration of the time intervals, over which

flow volume is computed. The time granularity of 5 minutes is also the default time granularity at which

network monitoring information is usually collected through SNMP. Therefore, such a choice seems to

agree with current network monitoring time scales. We investigate the effect of such a design choice in

later sections, by looking into other time scales for flow volume computation.

Previous attempts at classifying flows into elephants and mice use a single flow feature, which is
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either 1) bandwidth [100, 102], or 2) duration [101]. Given that we are interested in persistently high-

volume flows, for each flow we compute its bandwidth as the volume of the flow divided by the duration

of the measurement interval, and focus on techniques that identify elephants based on their bandwidth

alone. The duration of a network prefix flow bears no relevance in our problem, since our requirement

for time persistence inherently imposes restrictions on the flow duration.

Computing flow volume every 5 minute interval, we find that in any given measurement interval,

approximately 90% of the network prefixes have no traffic travelling towards them. We define a flow

to be active if it receives at least one packet during the measurement interval. Figure 5.2 presents the

number of active prefixes at each measurement interval over a two day period. The observation that

there are only a few flows active at any given time slot is further confirmation that this aggregation level

is appropriate for the identification of elephants in that it produces a limited number of flows on which

computations need to be carried out. Thus, allowing for a network-level traffic abstraction that could

also be applied to QoS and accounting policies.
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Figure 5.2: Number of active network prefixes for the west and east coast trace.

The cumulative distribution function (cdf) for the bandwidth of the derived flows is presented in

Figure 5.3. Each curve corresponds to a different 5 minute interval within the first hour of the trace. We

see that at any time during this hour, the top 100 flows account for 50% to 70% of the total traffic, while

the top 400 flows account for 75%-85% of the total traffic. This confirms that elephants and mice do

exist in our data set at the chosen granularity level.

We further examine our dataset for heavy-tail properties. In Figure 5.4 we present the complemen-

tary cumulative distribution function plot of the bandwidth values of our flows. The straight line at the

end of the distribution indicates that it may be heavy-tailed. We use the aest test designed by Crovella and

Taqqu (described in [108]) to estimate the scaling parameter of the distribution of the flows’ bandwidths.

We find a scaling parameter whose values vary between 1.03 and 1.2, verifying that the bandwidth dis-

tribution is indeed heavy-tailed. In Section 5.3, we describe the properties of the heavy-tail distributions,

and we devise a method in which we make use of these properties in the classification process.
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Figure 5.3: Cumulative Distribution Function of flow bandwidths for the first 12 5-minute intervals of

the east coast trace.
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Figure 5.4: Complementary Cumulative Distribution Function of flow bandwidths for the east and west

coast trace.

5.3 Elephant Classification

Before proceeding we introduce some notation. Let # denote the index of a network prefix flow, i.e.,

a BGP routing table entry. Let � denote the length of the time interval over which measurements are

taken. Time is discretized into these intervals, and � is the index of time intervals. We define � ' ��� � to

be the average bandwidth of the traffic destined to a particular network prefix # during the �
���

time slot

of length � . We use � � to represent the set of all flows considered elephants, and � � to represent the set

of flows considered mice.

Using our packet-level measurements, we aggregate packets into “flows”, based on their destination

network prefix as announced through BGP [109], and measure their bandwidth across fixed time inter-

vals. This gives us a set of flows, and an associated bandwidth for each flow. Given that there is no well

defined technique for the identification of elephant flows on a given time interval, we begin our investi-

gation focusing on a single time interval, and look into two different techniques for the classification of
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flows into “elephants” and “mice”. We call these techniques “single-instant classification techniques”,

since they classify flows based on their behaviour during a single time interval.

5.3.1 Single-Instant Classification

Our methodology consists of two phases: 1) threshold detection phase, and 2) threshold update phase.

In the first phase, we seek a bandwidth value � ��� � , such that if a flow’s average bandwidth in the chosen

time interval exceeds the threshold, it is classified as an elephant. Otherwise, it is considered a mouse.

In the second phase, we update the threshold, i.e., at time �
� � , based on the current threshold detected

plus past threshold values.

Threshold Detection Phase

In the detection phase of our classification process, we analyse the properties of the dataset collected

and calculate a threshold value � � � � accordingly. This value � � � � is likely to change with time always

isolating those flows that contribute the highest amount of information in each time interval.

We propose two different techniques to identify the initial threshold value.

1. The first method takes into account the heavy tail property of the collected data set. The threshold

value is set in such a way so that a flow is characterised as an elephant, only if it is located in the

tail of the flow bandwidth distribution.

2. The second technique is more intuitive, and could be preferred in operational environments. It

requires the setting of an input parameter corresponding to the fraction of total traffic we would

like to place in the elephant class. The threshold is set in such a way that all the flows exceeding it

account for the requested fraction of the total traffic.

(1) aest approach

A random variable X follows a heavy-tailed distribution (with tail index � ) if

� � � � � � � � � � � � � � � � 
 �
� ����� 	

(5.1)

where � is a positive constant, and where � means that the ratio of the two sides tends to 1 as

� � 
 . Aest is a method for the estimation of the scaling index � proposed by Crovella and Taqqu

[108].

The particular value of � is important in many practical situations, and a number of methods are

commonly used to estimate its value. For instance, values of � lower than 1 indicate that the random

variable X has an infinite mean. Values of � between 1 and 2 indicate infinite variance.

The aest method identifies the portion of a dataset’s tail that exhibits power-law behaviour. It is

based on the fact that the shape of the tail determines the scaling properties of the dataset when it is

aggregated. By observing the distributional properties of the aggregates one can make inferences about

where in the tail power-law behaviour begins. We use this method to identify the first point in the

distribution after which power law properties can be witnessed. We set this particular bandwidth value

as the threshold value separating elephants and mice in that given measurement interval.
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In other words, if we define
�� � � � as the complementary cumulative distribution function of the flow

bandwidths, i.e.
�� � � � = 1 - F(x) = P[X � x], then � ��� � = �� , so that

�� 
 ����� � ��� �	�����
�� � � �

�	����� �
� � � �

The aest methodology has the advantages of being nonparametric and easy to apply. Moreover, it

has been shown to be relatively accurate on synthetic datasets. More importantly, there has been evidence

that the scaling estimator, as calculated by aest, appears to increase in accuracy as the size of the dataset

grows. Given that our datasets feature at least two thousand measurements, this technique will provide

us with reasonably accurate values for the cutoff points in the heavy tail flow bandwidth distribution

measured in each time interval.

(2) Constant load approach

This second approach is a more intuitive approach towards identifying the threshold bandwidth

values separating elephants from mice. For each time interval � , we define local threshold � ��� � , such

that the flows exceeding this threshold account for � % of the total traffic on the link. We sort the flows

and starting from the largest, we proceed down the list adding flows into the elephant class. We stop

when the volume of the elephant class reaches � % of the link load. If we rank bandwidths in ascending

order, let � denote the index of a flow, and � denote the highest bandwidth flow in timeslot n, then
� ��� ��
 ��� � � ��� � where � is chosen such that:

��
	�
 �

� 	 ��� � ���
��

	�
 �
� 	 ��� � � � � �

� � ��
	�
 �

� 	 � � � � 
 �
��

	�
 �
� 	 ��� � �

Threshold Update Phase

To make use of the threshold derived for engineering purposes, we need to classify the data in time slot

��� � � � according to � � � � . This may not be adequate because we may not have a sufficiently large

number of measurements in each time interval to yield representative estimates. In addition, we expect

that correlations exist across time slots (shown later in Section 5.4.2) and are thus motivated to allow

past data to influence our choice of threshold. We thus calculate a more general classification threshold

�� ��� � using a simple exponential smoothing on � ��� � as follows.

�� ��� � 
 � � �� � �� ��� � � � � � � � � � � � (5.2)

We call this the update rule. We found that a value of � 
 ��� 	
leads to a sufficiently smooth �� � � � . We

now use the threshold �� ��� � to classify the traffic during the �
���

time interval. In other words, the final

decision rule is the following.

if � '�� � � � �� ��� � then #  � � else #  � � (5.3)

5.3.2 Incorporating temporal behaviour in the classification

As will be seen in Section 5.4, the two classes obtained using the single-instant classification schemes

exhibit insufficient persistence in time. What we want to avoid is reclassification of a flow if it transitions

to the other side of the threshold for a short time. In other words, large flows should be allowed to
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Figure 5.5: Illustration of the idea behind the “latent heat” metric.

experience short transient periods in which their volume drops. Similarly, small flows should be allowed

short-lived bursts. This motivated us to compute a second per-flow metric that takes into account the

temporal component of an elephant’s behaviour.

In thermodynamics, “latent heat” is the heat energy required to change a substance from one state

to another. In order to be able to identify the points in time, when elephant flows below the threshold

change state into mice, we define a new metric, which we call “latent heat”. An elephant is assumed to

accumulate “latent heat” as long as it exceeds the identified threshold. Once it falls below the threshold,

it starts losing “heat”, and changes state (i.e. becomes a mouse) when its “latent heat” becomes lower

than a preset value.

In Figure 5.5, we illustrate the idea behind the use of the “latent heat” metric. Figure 5.5 presents

the bandwidth measured for one particular destination network prefix on the west coast trace, along with

the computed “0.8-constant load” threshold separating the flow measurements into two classes. One can

see that this particular flow most of the time receives traffic at greater rates than the computed threshold

rate. Moreover, in most of the cases its positive bursts are greater than its negative dips. One could argue

that this flow should not be classified as a mouse for its short stays below the computed threshold. With

the “latent heat” metric we aim at postponing reclassification of flows due to short-lived bursts or drops.

In order to achieve this, at each time interval � , apart from the flow’s bandwidth, � ' ��� � , we calculate

the distance between the bandwidth achieved and the corresponding threshold value, � ��� � , derived using

the proposed approaches such as the “aest”, and the “constant load”. One could define the “latent heat”

as a function of the differences between the measured bandwidth and the computed threshold over a

number of intervals. Nevertheless, such an approach would imply maintaining statistics for the past flow

behaviour equal to the number of intervals we decide to use. In order to avoid maintaining large per-flow

statistics, we decide to use an exponential weighted moving average (ewma) for the computation of the

“latent heat” (for details on the ewma model please refer to Appendix A). We thus define “latent heat”

as follows:
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� ��'�� � � 

�� � � � ��� � � ��'�� � � � � � � � � ' � � � � � � � ��� � � ��� if � � �
�

if � 
 �
(5.4)

We would like our latent heat values to capture the temporal behaviour of a flow in the past hour

(i.e. 12 5-minute intervals). Notice that allowing the latent-heat metric to incorporate the behaviour of

the flow during the past 12 intervals will allow the flow in Figure 5.5 to be classified as an elephant

flow despite its few drops. As described in Appendix A, there is a clear relationship between � and

the number
�

of past measurements that are allowed to influence the current value of an EWMA1.

According to Equation (A.2), we set � equal to
	 � � � 	 � � ��
 ���

�
�
. If one prefers longer or shorter

influence of the past values on the current value, then one can set
�

, and consequently � , accordingly.

The value for the “latent heat” is a smoothed out value of the flow’s past behaviour. Thus, the

“threshold update” phase is already incorporated in the “latent heat” computation. Hence, we proceed to

classify flows at interval � as follows:

#���� ��'�� � � � ����� � � � #� � � � � � � � #� � � �

For the purposes of this work, we set ����� � � equal to 0. However, in case higher persistence in time is

desired, one could increase the value ����� � � to identify as elephants those flows that are characterised

by “latent heat” metrics greater than specific rate values. Moreover, if one wishes to identify the ele-

phant flows that have exhibited the highest persistence in time, then one can select these flows that are

characterised by the highest values of “latent heat”.

In the remainder of this section, we present the performance metrics used for the evaluation of the

proposed classification schemes.

5.3.3 Performance Metrics

In most applications of classification each data object inherently belongs to some particular class. This

class is unknown to the observer whose job is to guess correctly the true state of nature. Our situation

is different in that the flows do not naturally belong to a particular class. Instead we are imposing a

categorisation onto our flows because it is useful for traffic engineering purposes. Because of this, the

traditional performance measures based on misclassification errors cannot be used. The evaluation of

the type of classification techniques proposed here should be based on the needs of the particular traffic

engineering application that uses the classification. Given that we want to identify those flows that

contribute significant amounts of traffic persistently over time, we need to verify that the elephant class

obtained through our classification schemes indeed captures the majority of the traffic. Moreover, we

need to confirm that the number of elephants identified is limited. Consequently, the first two metrics we

use for the validation of our approach are the following.

1. The fraction of total traffic apportioned to the elephant class should be sufficiently large.

1In Appendix A, the number of past measurements that are allowed to influence the current value of the EWMA is denoted by

� and the scaling parameter in the definition of the EWMA is denoted by % .
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2. The number of elephant flows should be reasonably small, say less than a number
�

, where
�

is constrained by the router capabilities, and denotes a reasonable number of flows for which the

router can keep state.

We explained earlier that our goal is to identify those flows that contribute sufficient volumes of

traffic persistently over time. Ideally the majority of the elephants should remain elephants for long

periods of time, i.e. in the order of few hours. The length of time that an elephant can remain an elephant

is both a function of the flow itself and of the classification. It is a function of the classification in the

sense that a particular high-volume flow will remain in the elephant class as long as the continually

adjusting threshold stays lower that its average bandwidth. Because traffic on the Internet is highly

variable, we don’t expect flows to retain their classification indefinitely. We know that there will be

many flows that will burst for a small amount of time, and become quiet afterwards.

To define a performance metric to capture time persistence we proceed as follows. Note that the

classification scheme we have proposed, induces the following underlying two-state process on each

flow. Let �&' ��� �-
 � if #- � � , and �&' ��� �-
 �
if #- � � . At each classification time interval, the process

either transitions to the other state or stays in the same state. We define the following two performance

metrics in terms of this process.

3. For each flow # , we calculate the autocorrelation for a lag of 1, namely � � � �3' � � � 
�� � �&' ��� ���&' ��� �

� � � . This metric reflects how predictable the class of flow # is at time �
� � based on its class at

time � . The classification scheme with higher per-flow autocorrelation values is the one in which

the flows are more likely to retain their classification.

4. For each flow # , we calculate the average holding time the flow spends in the elephant state, and

its average holding time in the mouse state. The classification scheme that yields larger holding

times is more attractive for our purposes.

5.4 Results on the Single-Instant Classification Schemes

In this section we present the results derived applying the two single-instant classification methods de-

scribed in Section 5.3.1. We compare the two methods with respect to the four performance metrics iden-

tified. We demonstrate that the proposed single-instant classification schemes lead to a highly volatile

elephant (and mouse) class. This provides us with the motivation to introduce the “latent heat” metric,

as presented in Section 5.3.

5.4.1 Classification Results

Figures 5.6, 5.7, and 5.8 present the threshold values computed using the two proposed techniques, the

number of elephants, and the fraction of total traffic apportioned to elephants for both traces.

For the west coast trace, the threshold obtained with the “constant load” approach fluctuates

throughout the day between 1 KBytes/sec and 2.5 KBytes/sec. As already shown in Section 5.2, the

west coast trace exhibits high utilization levels during the peak period (Figure 5.1); a burst which is not
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Figure 5.6: Derived thresholds �� ��� � for 0.8-constant load, and aest.
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Figure 5.7: Number of elephant flows for 0.8-constant load, and aest.

accompanied by similar bursty behaviour in the number of active network prefixes (Figure 5.2). This im-

plies that the burst in link utilization is not due to new network prefixes becoming active, but rather due

to existing network prefixes receiving traffic at higher rates. Given this rise in the bandwidths achieved

by the already active network prefixes, it is expected that now the threshold value isolating the flows

contributing 80% of the total traffic is much higher.

The “aest” approach provides a lower estimate for the threshold. The reason why the threshold is

lower in the “aest” approach is because many of the flows in the peak period have now been positioned

in the tail of the bandwidth distribution.

The effect of the burstiness in the utilization of the west coast trace is that the number of elephants

identified with both techniques is much larger. Given that the “aest” threshold is much lower than the

“constant load” one, the number of elephants identified with “aest” is much higher, thus accounting for

as much as 90% of the total traffic on the link.

For the smoother east coast trace, where the trend in the link utilization is accompanied by similar

trend in the number of active network prefixes, the threshold values calculated with both techniques
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behave similarly in time. The threshold values are slightly higher for the “aest” approach, accounting for

less elephants, and smaller fraction of the total traffic. It is important to notice, though, that for the east

coast trace, the total amount of traffic apportioned to elephants is approximately constant with time, and

equal to 80% for the “constant load” (imposed by the technique itself), and 70% for the “aest” approach

respectively.
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Figure 5.8: Fraction of total traffic accounted to elephants for 0.8-constant load, and aest.

From the previous discussion it can be easily seen that in cases of bursty link utilization, maintaining

a constant amount of traffic in the elephant class leads to a volatile number of elephant flows, and equally

bursty threshold values. Moreover, in such cases, the performance achieved using the two suggested

techniques is much different. In the case of smooth traffic the two approaches achieve comparable

results.

5.4.2 Temporal Behaviour of Classification

One of our primary requirements is that the flows retain their class as long as possible. We say “as long

as possible” because on the one hand we want to avoid updating state too frequently, but on the other

hand we do not want to keep flows in a particular state if their bandwidth changes significantly. To assess

this issue of the persistence of the classification with time, we examine our last two metrics, namely, the

autocorrelation value at lag 1, and the average holding times in the elephant state. We compute these

values for the peak hours, which is the period during which persistence is perhaps mostly needed. The

peak hours are between 12pm and 5pm EDT.

Table 5.2 shows that the � ' � � � processes achieve high values of autocorrelation for both approaches

and for both traces. What has to be noted is that the values presented in Table 5.2 are highly biased

towards the performance of the mice flows. The total number of destination prefixes that become active

at some point throughout the duration of the west coast trace is 30,241 out of which the elephants vary

between 454 and 994 (depending on the time interval � ). In other words, only a small number of the

autocorrelation values correspond to elephant flows. This is one of the reasons we were motivated to

look at the holding times of the classification process.
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East Coast West Coast

AEST constant load AEST constant load

min. 0.8611 0.8687 0.8497 0.8583

5% 0.9789 0.9786 0.9737 0.9769

avg. 0.9827 0.9823 0.9814 0.9819

95% 0.9833 0.9833 0.9833 0.9833

max. 0.9913 0.9913 0.9906 0.9912

Table 5.2: Autocorrelation values at lag 1 for peak hours.

East Coast West Coast

AEST constant load AEST constant load

min. 1 1 1 1

20% 1 1 1 1

50% 1.5 1.5 2 2

avg. 3.72 4.1 8.63 8.09

80% 3.5 3.5 12 10.5

max. 60 60 60 60

Table 5.3: Average holding times in the elephant state for peak hours (in 5-minutes slots).

We compute the average holding time for each flow in the elephant state for the five hour busy

period. The distribution of the average holding times is shown in Figure 5.9, where the x-axis values

represent time slots of 5 minutes (so a value of 12 corresponds to 1 hour). Table 5.3 presents the basic

statistics for the average holding times in the elephant state. We see from this table that the average

holding time is approximately 20 minutes for the east coast trace, and 40 minutes for the west coast

trace.

We further show the cumulative density function of the average holding times in Figure 5.10. More

than 80% of the flows have average holding times less than half the maximum. It is clear from Table 5.3

and Figure 5.10 that few flows remain elephants “forever” (i.e., the duration of the entire peak period).

It is natural to ask how well past behaviour can predict future behaviour. In particular we would like to

know what is the likelihood that an elephant that has been an elephant for a certain amount of time will

remain an elephant “forever”. To measure this we calculate the probability that an elephant will remain

an elephant for the entire duration of the peak period, given that it has stayed in the elephant state for

a given number of intervals. In Figure 5.11, we present those probabilities for both traces and for both

approaches.

Figure 5.11 shows that for the bursty west coast trace the predictability of the elephants is very
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Figure 5.9: Distribution of the average holding time in the elephant state for peak hours (in 5-minutes

slots).
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Figure 5.10: CDF of the average holding time in the elephant state for peak hours (in 5-minutes slots).

limited. Flows that remain elephants for 36 intervals (i.e. 3 hours) during the peak period have a proba-

bility of less than 0.2 of remaining in that state for the whole 5 hours. For the east coast trace elephants

show a higher level of predictability, and if they remain elephants for 3 hours, they have a probability

greater than 0.5 of remaining elephants for the whole duration. Therefore, Figure 5.11 provides another

indication that network prefix flows are very volatile, and if persistence is the desired property, simply

classifying flows based on their bandwidth at each interval is not sufficient. In practical settings such

small probabilities of successfully identifying elephants in the future has limited applicability.

These results have implications for other methods proposed in the literature. For example, in [105]

the authors create state for each flow that exceeds their threshold, and they keep that state for the lifetime

of the application. That wouldn’t make sense for our data since less than 5% of the flows classified as

elephants in any instant remained elephants for the entire 5-hour period. We conclude that flows need to

be reclassified fairly frequently.

Until now we have considered reclassifying flows every 5 minutes. In order to evaluate other time
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Figure 5.11: Probability of “always” remaining an elephant for 0.8-constant load, and aest.
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Figure 5.12: Effect of infrequent classification on the load of the elephant class.

scales for reclassification, we consider two other cases, namely reclassifying every 30 minutes and 1

hour. Even though we reclassify at these intervals, we continue to measure flow bandwidth every 5

minutes. Figure 5.12 shows the amount of traffic apportioned to elephants using both techniques with

these longer reclassification times for the west coast trace. This helps us to understand how fast the list

of flows belonging to the elephant class becomes stale. Regardless of the method used for classification,

we see that when flows are updated at longer intervals, the fraction of total traffic apportioned to the

elephant class may drop dramatically, in particular it can fall as low as 40% within 25 minutes from

the last classification interval. Flows classified as elephants at 19:05 (Figure 5.12) experience lower

bandwidths in the next intervals, while flows that may experience high loads cannot be placed in the

elephant class, until the new update period. If we update too slowly, we can experience a significant

jump in the elephant load at the time of reclassification (e.g., at 19:35). Note that not updating the list

of elephants sufficiently often may endanger the efficacy of the traffic engineering application because it

may no longer be giving differential treatment to the largest flows.



5.4. Results on the Single-Instant Classification Schemes 91

5.4.3 Other Single-Instant Classification Techniques

The two metrics for the number of elephants identified, and the fraction of total traffic apportioned to

the elephant class are clearly related. The target of our second classification approach is to maintain a

constant elephant load. In this section, we report results on two additional single-instant classification

approaches that could be selected and would target at maintaining a constant number of elephants or a

threshold consistently equal to a specific fraction of the link utilization or capacity. This section should

not be conceived as a complete evaluation of the techniques described, but a simple illustration of how

alternative techniques would perform.

A simple way to identify the high-volume flows in a network is to collect the bandwidth distribution

for the destination prefixes in each interval, and to classify the top � flows at each interval as elephants.

For our west coast trace, we set � equal to 100 (approximately the number of flows consistently in the

elephant class for the 5-peak hours), and measure the fraction of total traffic apportioned to the elephant

class2. For comparison reasons, we also calculate the threshold value as the bandwidth of the smallest

elephant. This is the bandwidth values flows would have to exceed to be classified as elephants in the

threshold-based approaches.

Our results indicate that with such a technique the elephant load may fluctuate between 35% and

94% of the total traffic. This points to an important tradeoff. We saw in Figures 5.7 and 5.8 that methods

that succeed in keeping a reasonably consistent fraction of the total traffic in the elephant class yield large

fluctuations in the number of elephants. In this approach, that focuses on keeping the number of elephants

constant, we observe large fluctuations in the load due to elephant flows. It thus appears difficult to keep

both the elephant load and the number of elephant from experiencing fluctuations simultaneously.

The corresponding threshold range for this method was from 1 to 12 KBytes/sec depending on the

time of day, exhibiting similar busy periods as the utilization of the respective link. An important result

of this classification approach is that only 11 flows remained elephants for the whole 5-hour peak period,

while 97% of the other elephant flows featured holding times of less than 24 intervals (i.e. 2 hours).

During this 5-hour period, approximately 1800 flows became elephants at some point (in both traces).

Since only 11 of these remained elephants for the entire period, the probability that a given flow in the

set of top 100 at any given interval remains among the top 100 flows for a very long duration is minimal.

In an alternative approach we set the threshold value equal to 1% of the utilization of the monitored

link, as proposed in [105] (1% of the capacity of our OC-12 links was never exceeded by a single flow in

our traces). Under such a scheme, the number of elephants identified is limited between 3 and 23 flows,

and the amount of captured traffic fluctuates between 10% and 60% of the total traffic. The maximum

fraction of traffic is apportioned to the elephant class in the off-peak hours, when the utilization is much

lower, and therefore the computed threshold is easier to exceed. This classification process offers much

lower autocorrelation values than any other classification technique, while the maximum holding time

in the elephant class is 60 5-minute intervals, achieved by only 2 flows. All the other elephant flows

achieve holding times of less than 6 intervals (i.e. 36 minutes). The statistics for the average holding

2The nature of our results did not change for different values of � , ranging from 10 to 500.
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times achieved with the four single-instant classification methods described are summarised in Table 5.4.

Average holding time statistics

min. 20% 50% avg. 80% max.

AEST 1 1 2 8.63 12 60

constant load 1 1 2 8.09 10.5 60

constant number 1 1 1.2 3.47 2.75 60

1% utilization 1 1 1 4.12 3 60

Table 5.4: Statistics for the holding times at the elephant state for all four single-instant classification

methods (west coast in 5-minute slots).

This brief evaluation of alternate single-instant classification schemes gives us confidence in that

the volatility in the derived classes is not an artifact of the way the separation threshold is selected in our

proposed schemes. Rather, it stems from the fact that elephant destination network prefixes in the core

of our backbone network are not characterised by consistently high volumes of traffic. This result was

expected, since the bandwidth achieved by a destination network prefix will depend on current network

conditions, e.g. bottleneck bandwidth, etc.

5.4.4 Other Timescales for Measurement and Classification

Throughout this section we have considered measurement and classification intervals of � 
 �
minutes

each. In order to assess the utility of this time scale we also consider � 
 � and � 
 � �
minutes.

Table 5.5 presents the statistics for autocorrelation values achieved at lag 1, calculated over the five

peak hours, when � 
 � �
minutes. These values are much smaller than the ones in Table 5.2. At � 
 � �

we see more of a distinction between the two schemes than we did when � 
 �
. We also calculate the

main statistics for the average holding time at the elephant state, and we observe that the 80th percentile

of the derived distribution is equal to 3 intervals (i.e. 3 hours).

East-Coast � = 60 mins

AEST 0.8-constant load

min. 0.5833 0.8333

5% 0.8333 0.8333

avg. 0.8318 0.8373

95% 0.8333 0.8571

max. 0.8889 0.8571

Table 5.5: Autocorrelation values at lag 1 for the peak 5 hours ( � = 60 mins).

Therefore, it is evident that even at higher time scales, when flows’ bandwidth would be expected
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to behave in a smoother fashion, volatility is the main property of the elephant flows. We notice that the

autocorrelation at � 
 � �
is approximately 10% less than what it is at � 
 �

, and the number of intervals

an elephant may remain an elephant is much smaller than the one achieved when � 
 �
. In addition, as

noted in Section 5.2, such a large time scale for classification offers limited reactiveness to the network

operators.

We also consider the interval � 
 � minute. We find that the autocorrelation for � 
 � and � 
 �
are almost identical, indicating that there is not any need to go lower than 5 minutes. This is only an

initial examination into the appropriate time scale for such a classification. However, these remarks give

us confidence in that the results presented so far are not an artifact of the time scale used but rather a

property of the traffic itself.

5.5 Latent Heat Classification Results

In this section, we report on the results obtained using the latent heat classification scheme. As described

in Section 5.3, the latent heat metric is defined based on both the flow bandwidth and the classification

threshold separating flows into two classes. Therefore, the results presented in this section will report on

the performance of the latent heat scheme as applied on threshold values obtained using the “0.8-constant

load” and “aest” approach.
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Figure 5.13: Number of elephants derived using the latent-heat classification method.

In Figures 5.13 and 5.14, we present the number of elephants and fraction of total traffic apportioned

to the elephant class for both traces under the latent heat approach. If we compare these figures with those

of Figures 5.7 and 5.8, we see that with this classification approach we can keep the load reasonably

consistent (Figure 5.14) while simultaneously experiencing less fluctuations in the number of elephants

(Figure 5.13). Hence our latter classification scheme using latent heat achieves a better tradeoff between

reducing fluctuations in either elephant load or the number of elephants, than any of the single-instant

classification schemes.

The empirical probability density function for the average holding time in the elephant state is

presented in Figure 5.15. Specific statistics are given in Table 5.6. There is no longer a peak at small
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Figure 5.14: Fraction of total traffic apportioned to elephants using the latent-heat classification method.

holding time values. Recall that for single-instant classification we have average holding times of 20 and

40 minutes (depending upon the trace). Under this scheme we observe that average holding times for

both traces are 1 1/2 hours or longer. In Figure 5.16 we further show the cumulative density function

for the average holding times. Comparison of Figure 5.16 with Figure 5.10 clearly demonstrates the

improvement in the persistence of the elephant class once one allows flows to experience short-lived

bursts or drops. We believe that classification schemes such as this one, that avoid reclassification for

short-term fluctuations, identifies the type of long-lived elephant flows that are good candidates for traffic

engineering applications.
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Figure 5.15: Distribution of the average holding time in the elephant state, when classifying based on

the latent heat of a flow.

5.6 Profile of Elephant Flows

In this section we examine the profile of the elephants. We consider those flows that are classified as

elephants by our latent heat classification method (the threshold is set according to the “0.8-constant
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Figure 5.16: CDF of the average holding time in the elephant state, when classifying based on the latent

heat of a flow.

East Coast West Coast

AEST constant load AEST constant load

min. 1 1 1 1

20% 2.5 3 4.8 4.4

50% 6.33 7 14.66 14

avg. 13.59 14.21 21.71 21.25

80% 18.15 20.5 42 40

max. 60 60 60 60

Table 5.6: Statistics for the holding times at the elephant state under the latent heat classification scheme

(in 5-minute slots).

load” scheme) throughout the entire 5 hour peak period. As a preliminary assessment on the profile of

the elephants, we examine their network prefix lengths and the type of organisation they belong to.

One would expect that the network prefixes of the elephants would correspond to large domains

advertised through BGP. As already mentioned, the monitored links are OC-12 links interconnecting

backbone routers in a PoP, and traffic is captured as it travels towards the core of the network. In Figure

5.17 we present the density function for the length of network prefixes that become active at some point

in our trace. We observe that most of our active network prefixes come from /24 networks, followed by

/16 and /18. Active networks with prefixes of /8, and /10 are limited in number to less than 100. In the

same figure we present similar statistics for the network prefixes that get classified as elephants. The

lengths for the elephant prefixes are contained in a smaller region, namely between /12 and /26. For the

west coast we even witness a /32 network always in the elephant class. This is a customer network using

NAT, advertising a single IP address within the Sprint IP backbone.
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Figure 5.17: Network prefix length distribution for the elephants.

Finding only two or three (depending upon the trace) /8 flows among our elephants is an unexpected

result. Such a result cannot be generalised for the whole Internet because it is influenced by the way our

network is engineered, and the way BGP policies impact traffic flow throughout our network. Indeed,

comparing the elephants identified on the west and the east coast we found that some network prefixes

showed up on only one of the two coasts. This result is well expected since BGP policies guide the entry

and exit points in our network.

In order to gain a better understanding about the type of businesses contributing the most to the

overall load, we classify elephants into the following categories: Tier-1, Tier-2, Tier-3 ISPs, corporations,

universities, and government institutions. The definition of what constitutes a Tier-1 network is rather

controversial. The most popular definition is that Tier-1 ISPs are those networks that have access to

the global Internet Routing Table and do not purchase network capacity from other providers [8]. The

second tier generally has a smaller national presence than a Tier 1 ISP and may lease part or all of its

network from a Tier 1. Lastly, a Tier 3 ISP is typically a regional provider with no national backbone.

According to the above categorisation, we profile3 the elephants in our network as shown in Ta-

ble 5.7. The vast majority of the elephant network prefixes belongs to Tier-1, Tier-2, and Tier-3 ISP

providers. We believe that profiling elephant flows is essential once one intends to apply specific traffic

engineering policies on the traffic destined towards them.

Notice that certain businesses may advertise more than one network prefixes for their network.

Therefore, the results presented in Table 5.7 do not correspond to unique businesses, but rather to the

number of elephant network prefixes in each category.

3In order to derive the profile of the different elephant destination network prefixes, we had to name resolve the network

prefix, and determine the company it belongs to. Then we searched through its primary web site to identify whether the company

description complied with any of the above Tier- � definitions. For instance, most of the Tier-3 prefixes present in our data belong

to regional DSL and dialup providers.
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� elephants Tier-1 Tier-2 Tier-3 corp. .edu gov.

west coast 40 42 28 32 19 6

east coast 22 72 27 40 7 7

Table 5.7: Profile of the elephant network prefix flows.

5.7 Conclusions

One of the invariants of Internet traffic is what is often called the “elephants and mice” phenomenon; a

small number of flows contributes the majority of the traffic. Such a property could be exploited in a

traffic engineering context, since with the differential treatment of a small number of flows, the operator

is likely to affect a large amount of traffic. In order to capitalise on this phenomenon network operators

must be capable of identifying elephant flows in their network. Moreover, in order for such a classifi-

cation to be useful within a traffic engineering context, the resulting classes have to be characterised by

sufficient persistence in time.

In this chapter, we defined flows at the granularity of a destination network prefix and measured

their bandwidth at fixed intervals. We defined as elephants a small number of flows that contributes high

volumes of traffic persistently over time. Our contributions can be summarised as follows.

Firstly, we proposed two “single-instant” classification schemes for the separation of the flows into

two classes according to their properties during a single time interval. These schemes capitalise on the

properties of the collected data sets and compute the separation threshold between the two classes such

that (i) all the flows characterised by bandwidth values greater than the threshold are located in the tail of

the flow bandwidth distribution, or (ii) the amount of traffic placed on the elephant class equals a preset

fraction of the overall traffic. These schemes do not make any assumptions about how high or low the

separation threshold should be. Even though they were shown to result in highly volatile classes, they

could be employed in case persistence is not a requirement.

Secondly, we proposed four performance metrics for the evaluation of the proposed schemes. Two

of these metrics are specifically designed so that they evaluate the persistence of the derived classification

in time. Given that the issue of persistence in time for the elephant flows has never been addressed before,

to the best of our knowledge, this is the first work reporting on such metrics.

Thirdly, we showed that classifying flows based on their bandwidth during a single interval leads

to high volatility in the resulting classification. This volatility has been illustrated in three ways: (i)

we found that flows remain in the elephant state for surprisingly short periods of time; (ii) the number

of elephants varies considerably over different time intervals; and (iii) if elephants are not reclassified

frequently, the total load in the elephant class can change substantially. Consequently, classifying flows

as elephants according to their volume during a single time interval does not guarantee persistence of

their volume in future intervals.

Lastly, we presented a new classification approach that incorporates the temporal behaviour of

the destination network prefix flows. Under this scheme, classification of the flows is not done on the
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grounds of their bandwidth during a single interval, rather based on their “latent heat”. We defined

“latent heat” as the evolution of the difference between the flow’s bandwidth and the threshold computed

by the single-instant classification schemes. This new metric was shown to be capable to allow flows to

experience short-lived bursts or drops that would otherwise lead to a change of state. We showed that

classifying flows according to their “latent heat” leads to smaller fluctuations in the number of elephants

identified and reasonably consistent load in the elephant class. More importantly, under this classification

scheme, elephant flows maintain their class for much longer periods of time. Under our initial schemes,

the average lifetime of an elephant was between 20 and 40 minutes. Under the latent heat scheme, the

average lifetime of an elephant is greater than 1.5 hours.

In profiling the elephants, we found that elephant prefixes generally lie within a limited range of

network prefix lengths, between /16 and /26. Surprisingly, we found few large prefixes such as /8 and

/10. Although there were a few corporations, government agencies and universities among our elephants,

we learned that the vast majority of them are Tier-1, Tier-2 and Tier-3 ISPs.

Overall, we conclude that bandwidth variability is one of the main properties of a destination

network prefix flow, despite its level of traffic aggregation. Consequently, single-instant classification

schemes, even though attractive in their simplicity, they are probably insufficient for most traffic engi-

neering applications. While we believe that our latent heat classification scheme is more attractive to

traffic engineering applications, we also conclude that identifying persistent elephants imposes chal-

lenges. This is important because the idea of isolating elephants for traffic engineering purposes has

been widely proposed, but there has been no prior effort on assessing the feasibility and issues involved

in doing so.

The work presented in this chapter is the result of collaboration with Nina Taft, Supratik Bhat-

tacharyya, Patrick Thiran, Kavé Salamatian, and Christophe Diot. Patrick Thiran and Kavé Salamatian

helped in earlier stages of this work. Nina Taft, and Supratik Bhattacharyya have contributed to the

methodology and the interpretation of the results. In addition, Nina Taft and Christophe Diot have

helped with the writing. However, the largest part of the methodological approach, all the code, and

the detailed analysis and presentation of the collected results have been done by me.



Chapter 6

Long-Term Forecasting of Internet Backbone

Traffic

In the previous chapter, we proposed a scheme for the identification of these destination network prefixes

that carry the majority of the traffic flowing on a link persistently over time. We suggested that in cases of

link overload, the network operator may offload the congested link in a controlled fashion by re-directing

selected elephant prefixes to less congested parts inside the network. Such an approach can lead to the

desirable result only when the congestion effect witnessed is transient. Consistent overload will be much

harder to overcome with simple techniques like the one presented. In such cases, there is an indication

of traffic growth, which may require additional network provisioning.

In this chapter, we introduce a methodology to predict when and where link additions/upgrades have

to take place in an IP backbone network. Using SNMP statistics, collected continuously since 1999, we

compute aggregate demand between any two adjacent PoPs and look at its evolution at time scales larger

than one hour. We show that IP backbone traffic exhibits visible long term trends, strong periodicities,

and variability at multiple time scales.

Our methodology relies on the wavelet multiresolution analysis and linear time series models. Using

wavelet multiresolution analysis, we smooth the collected measurements until we identify the overall

long-term trend. The fluctuations around the obtained trend are further analysed at multiple time scales.

We show that the largest amount of variability in the original signal is due to its fluctuations at the 12

hour time scale.

We model inter-PoP aggregate demand as a multiple linear regression model, consisting of the two

identified components. We show that this model accounts for 98% of the total energy in the original

signal, while explaining 90% of its variance. Weekly approximations of those components can be ac-

curately modelled with low-order AutoRegressive Integrated Moving Average (ARIMA) models. We

show that forecasting the long term trend and the fluctuations of the traffic at the 12 hour time scale

yields accurate estimates for at least six months in the future.

Required Network Measurements and Time Granularity

Forecasting when and where link upgrades/additions have to take place in the core of a back-

bone network requires SNMP information collected throughout the core of the network, and
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topological information, listing all the active backbone routers, their operational links, and

their destinations. The results presented in this chapter are derived from the correlation of

the SNMP information with the topological information so as to identify aggregate demand

between any two adjacent PoPs. Inter-PoP aggregate demand is computed as the average

utilisation of a link in the aggregate at the time scale of 1.5 hours.

6.1 Introduction
IP network capacity planning is a very important task that has received little attention in the research

community. The capacity planning theory for traditional telecommunication networks is a well explored

area [28], which has limited applicability in a packet-based network such as the Internet. It normally

depends on the existence of a traffic matrix, identifying the amount of traffic flowing from any source

to any destination of the network under investigation. Moreover, it requires accurate modelling of the

incoming traffic, as well as accurate predictions of its future behaviour. The above information is then

combined in a network simulation to identify the points where future upgrades will be needed.

This approach cannot be used in the environment of an IP backbone network because (i) we do not

have a way of measuring or accurately estimating the traffic matrix for such a large scale network, (ii)

we do not really know how to model the incoming traffic of a backbone network, and (iii) simulating

such a large scale network is typically not feasible.

The current best practice in the area is based on the experience and the intuition of the network

operators. Moreover, it usually relies on marketing information regarding projected number of customers

at different locations within the network. Given provider-specific oversubscription ratios, and traffic

assumptions, the operators estimate the effect that the additional customers may have on the network-

wide load. The points where link upgrades will take place are selected based on experience, and/or

current network state. For instance links that currently carry larger volumes of traffic are likely to be

upgraded first.

Our goal is to enhance the above practices using historical network measurements collected with

the Simple Network Management Protocol (SNMP). The intuition behind our approach is to use mathe-

matical tools to process historical information and extract trends in the traffic evolution at different time

scales. This approach requires the collection of network measurements over long periods of time.

In this chapter, we analyse three years of SNMP information collected throughout a major Tier-

1 IP backbone. Correlating those measurements with topological information, we calculate the traffic

aggregate between any two adjacent PoPs and track its evolution over time. We explore the properties

of these time series, and propose a methodology that can be applied to forecast network traffic volume

months in the future.

Our methodology relies on wavelet multiresolution analysis and linear time series models. Initial

observations on the traffic reveal strong periodicities, evident long term trends, and variability at mul-

tiple time scales. We use wavelets to smooth out the original signal until we identify the overall long

term trend. The fluctuations of the traffic around the obtained trend are further analysed at multiple time

scales. This analysis reveals that 98% of the energy in the signal is captured by two main components,
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namely the long term trend, and the fluctuations at the 12 hour time scale. Using the analysis of vari-

ance (ANOVA) technique, we further show that a multiple linear regression model containing the two

identified components also explains 90% of the signal’s variance.

We model the weekly approximations of the two components using ARIMA models, and develop

a prediction scheme that is based on their forecasted behaviour. We show that forecasting network

backbone traffic based on our model can yield accurate estimates for at least six months in the future.

Moreover, with a minimal computational overhead, and by modelling only the long term trend and the

fluctuations of the traffic at the 12 hour time scale, we produce estimates which are within 10-15% of

the actual measured behaviour.

Our methodology combined with actual backbone traffic measurements leads to different forecast-

ing models for different parts of the network. Our results indicate that different PoP-pairs exhibit dif-

ferent rates of growth and experience different types of fluctuations. This illustrates the importance

of defining a methodology for deriving models as opposed to developing a single model for inter-PoP

aggregate traffic flows.

In section 6.2 we present previous efforts at forecasting Internet traffic. Our objectives are presented

in section 6.3. In section 6.4, we present the data analysed throughout the chapter and make some initial

observations. Section 6.5 provides an overview of the wavelet multiresolution analysis, along with results

of its application on our measurements. Forecasts are derived using linear time series models, presented

in section 6.6. We discuss our findings and future work in section 6.7. We conclude in Section 6.8.

6.2 Related Work

An initial attempt toward long-term forecasting of IP network traffic is described in [110]. The authors

compute a single value for the aggregate number of bytes flowing over the NSFNET, and model it using

linear time series models. They show that the time series obtained can be accurately modelled with a

low-order ARIMA model, offering highly accurate forecasts (within 10% of the actual behaviour) for up

to two years in the future.

However, predicting a single value for the future network-wide load is insufficient for capacity

planning purposes. One needs to pinpoint the areas in the network where overload may occur in order

to identify the locations where future provisioning will be required. Thus per-node or per-link forecasts

are required. The authors of [110] briefly address this issue, mentioning that initial attempts toward this

direction did not prove fruitful.

Other work in the domain of Internet traffic forecasting typically addresses small time scales, such

as seconds or minutes, that are relevant for dynamic resource allocation [111, 112, 113, 114, 115, 116].

To the best of our knowledge, our work is the first to model the evolution of IP backbone traffic at large

time scales, and to develop models for long-term forecasting that can be used for capacity planning

purposes.
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6.3 Objectives

The “capacity planning” process consists of many tasks, such as addition or upgrade of specific nodes,

addition of PoPs, and expansion of already existing PoPs. For the purposes of this work, we use the term

“capacity planning” only to refer to the process of upgrading or adding links between two PoPs in the

core of an IP network.

The core of an IP network is usually overprovisioned and consists of very high speed links, i.e.

OC-48, OC-192. Those links are a rather large part of a network operator’s investment and have a pro-

visioning cycle between six and eighteen months. Therefore, the capability to forecast when and where

future link additions or upgrades will have to take place would greatly facilitate network provisioning.

In order to address the issue of where upgrades or additions should take place, we measure and

forecast aggregate traffic between adjacent PoPs. In that way carriers can determine which pair of PoPs

may need additional interconnecting capacity. There are a number of factors that influence when an

upgrade is needed. These factors include service level agreements with customers, network policies

toward robustness to failures, the rate of failures, etc. We assume that carriers have a method for deciding

how many links should interconnect a given pair of PoPs and the acceptable levels of utilisation on these

links. Once carriers articulate a threshold beyond which traffic levels between PoPs are considered

prohibitive, one can schedule an upgrade before these levels are actually exceeded. Our task is to predict

when in the future the traffic levels will exceed these acceptable thresholds.

In this work, we use historical information collected continuously since 1999 on the Sprint IP

backbone network. There are many factors that contribute to trends and variations in the overall traffic.

Our measurements come from a highly dynamic environment reflecting events that may have short or

long-lived effects on the observed behaviour. Some of the events that may have a long-lived effect on the

observed behaviour include changes in the network topology and in the number of connected customers.

These events influence the overall long-term trend, and the bulk of the variability observed. Events that

may have a short-lived effect include link failures, breaking news or flash crowd events, as well as denial

of service attacks. These events normally have a direct impact on the measured traffic but their effect

wears out after some time. As a consequence, they are likely to contribute to the measured time series

with values which lie beyond the overall trend. Given that such events are very hard to predict, and

are already taken into account in the calculation of the threshold values that will trigger upgrades, as

described earlier in this section, we will not attempt to model them in this work.

6.4 Measurements of inter-PoP aggregate demand

We now describe the measurements collected and analysed throughout the chapter. We present some

initial observations about Internet traffic at time scales larger than one hour. These observations motivate

the approach used in later sections.

6.4.1 Data collected and analysis

We collect values for two particular SNMP MIB (Management Information Base) objects, incoming and

outgoing link utilisation in bps, for all the links of all the routers in the Sprint IP backbone throughout a
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period that spans from 1999 until July 1st 2002. This operation yields traces from more than 2000 links,

some of which may not be active anymore. The values collected correspond to an exponentially weighted

moving average computed on 10 second link utilisation measurements. The exponential weighted aver-

age has an average age of 5 minutes and allows for more recent samples to be weighted more heavily

than samples earlier in the measurement interval1.

Along with the SNMP data, we collect topological information. This information is collected sev-

eral times per day by an agent downloading configuration information from every router in the network.

It contains the names of the routers in each PoP, along with all their active links, and their destinations.

Therefore, it allows us to identify those links in the SNMP data set that interconnect specific PoPs in our

network.

We correlate the SNMP data with the topological information, and derive aggregate demands, in

bps, between any two adjacent PoPs. In this procedure we need to address two issues. Firstly, the

collection is not synchronised, i.e. not all links are polled at the same time to avoid overload at the

collection station. Secondly, the collection is not reliable (SNMP messages use UDP as their transport

protocol), i.e. we may not have one record for each 5 minute interval for every link in the network. As a

consequence, the derivation of the aggregate demands is performed as follows:

� For each link in the SNMP data, we identify its source and destination PoP. We use the notation

������� � � to denote the � th link connecting PoP � to PoP � .

� Time is discretised in 90 minute intervals. We denote time intervals with index � . The reasons why

we selected intervals of 90 minutes are provided in Section 6.5.1.

� The aggregate demand for any PoP-pair � � � ��� at time interval � is calculated as the sum of all the

records obtained at time interval � from all links � in � �����	� � � � , divided by the number of records.

This metric gives the average aggregate demand of a link from PoP � to PoP � at time interval � .

This approach allows us to handle the case of missing values for particular links in the aggregate

flow. Moreover, it does not suffer from possible inaccuracies in the SNMP measurements, since such

events are smoothed out by the averaging operation. With the aforementioned procedure we obtain 169

time series (one for each pair of adjacent PoPs in our network). For the remainder of the chapter we focus

our discussion on eight of those. These are the longest traces at our disposal which also correspond to

highly utilized paths throughout the network. In the following sections we look into their properties, and

devise techniques for forecasting their values in the medium (i.e. months ahead) and long-term future

(i.e. 6 months).

6.4.2 Initial observations

In Figure 6.1 we present the aggregate demand for three PoP pairs in our network. The time series span

from October 2000 to July 2002. Those time series correspond to an increasing number of links in time.

With vertical bars we denote the time when additional links became active in the aggregate. As can be

1Because these objects belong to a proprietary MIB, we have no further information about how this average value is calculated.
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Figure 6.1: Aggregate demand for Traces 1, 5, and 6.

seen, link additions are rarely preceded by a visible rise in the carried traffic. This behaviour is due to

the long provisioning cycles.

From the same figure we can see that different PoP pairs exhibit different behaviours as far as their

aggregate demand is concerned. A long term trend is clearly visible in the traces over the observation

period. For trace 1 and 5, this trend is increasing with time, while for trace 6 it looks more constant with

a sudden shift in January 2002, that lasts for two months.

Shorter-term fluctuations around the overall long term trend are also present across all traces, and

manifest themselves in different ways. For instance, trace 1 shows an increasing deviation around its

long term trend. On the other hand, trace 6 exhibits smaller fluctuations, that look consistent over time.

Regardless of the differences observed in the three traces, one common property is the presence of

large spikes throughout them. Notice that those spikes correspond to average values across 90 minutes,

which indicate a surge of traffic in that particular interval that is high or constant enough to have a

significant effect on a 90 minute average. Those spikes may correspond to link failures, which re-route

part of the affected traffic onto this particular path, routing changes, or even denial of service attacks. As

mentioned in Section 6.2, we decide to treat those spikes as outliers. This does not mean we ignore the

data but simply that we do not attempt to model or predict these spikes.

In Figure 6.2 we present a detail of Figure 6.1, which corresponds to the month of May 2002. This

figure indicates the presence of strong daily and weekly cycles. The drop in traffic during the weekend

(denoted by the dashed lines) may be substantial as in trace 1, smaller as in trace 5, or even non-existent

as in parts of trace 6.
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Figure 6.2: Aggregate demand in May 2002 for Traces 1, 5, and 6.

From the previous observations it is clear that there are strong periodicities in the data. In order to

verify their existence, we calculate the Fourier transform for the eight traces at our disposal. Our results

indicate that the most dominant period across all traces is 24 hours. Other noticeable periods correspond

to 12, and 168 hours (i.e. weekly period). Figure 6.3 presents the Fast Fourier Transform for three of

our traces. One can notice that when there is a strong 12 hour period, then it is usually stronger than the

weekly one. However, depending on the trace, such periods may not even be present2.

In summary, initial observations from the collected time series lead to three main findings: 1) there

is a multi-timescale variability across all traces (traces vary in different ways at different time scales),

2) there are strong periodicities in the data, and 3) the time series exhibit evident long-term trends,

i.e. non-stationary behaviour. Such findings can be exploited in the forecasting process. For instance,

periodicities at the weekly cycle imply that the time series behaviour from one week to the next can be

predicted. In the next section, we address the three points in our findings.

6.5 Multi-timescale Analysis

In this section, we analyse the collected measurements at different time scales. We show that using the

wavelet multiresolution analysis we can isolate the underlying overall trend, and those time scales that

significantly contribute to its variability.

2Trace 5, and 6, presented in the previous figures, exhibit similar behaviour to Trace 1. However, for Trace 6, the weekly period

is stronger than the 12 hour one.
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Figure 6.3: Fast Fourier Transform for Trace 1, 2, and 3.

6.5.1 Wavelet MRA overview

The wavelet multiresolution analysis (MRA) describes the process of synthesising a discrete signal by

beginning with a very low resolution signal (at the coarsest time scale) and successively adding on

details to create higher resolution versions of the same signal [117, 118, 119]. Such a process ends

with a complete synthesis of the signal at the finest resolution (at the finest time scale). More formally, at

each time scale
	 	

, the signal is decomposed into an approximate signal (or simply, approximation) and a

detailed signal through a series of scaling functions
� 	�� � � ��� and wavelet functions � 	�� � � ��� , where �  ��

is a time index at scale � . The scaling and wavelet functions are obtained by dilating and translating

the mother scaling function
� � ��� , � 	�� � � ��� 
 	 � 	�� � � � 	 � 	 ��� � � , and the mother wavelet function � � ��� ,

� 	�� � � ����
 	 � 	�� � � � 	 � 	 � � � � . The approximation is represented by a series of (scaling) coefficients � 	�� � ,

and the detail by a series of (wavelet) coefficients � 	�� � .

Consider a signal/time series � � ��� with � data points at the finest time scale. Using MRA, � � ��� can

be written as

� � ����
 �
�
	�� ��

� � �  � � � ��� � �
� � 	 � 

�
�
	�� � 	�� � � 	�� � � ��� (6.1)

where � ������� � . The sum with coefficients �� � � represents the approximation at the coarsest time scale
	  , while the sums with coefficients � 	�� � represent the details on all the scales between 0 and � .

Using the signal processing parlance, the roles of mother scaling and wavelet function
� � ��� and � � ���

can be described and represented via a low-pass filter � and a high-pass filter � [119]. Consequently, the

multiresolution analysis and synthesis of a signal � � ��� can be implemented efficiently as a filter bank.

The approximation at scale � , � � 	�� � � , is passed through the low-pass filter � and the high-pass filter � to
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produce the approximation, � � 	�� � � � � , and the detail, � � 	�� � � � � , at scale � � � . Note that at each stage,

the number of coefficients at scale � is decimated into half at scale � � � , due to downsampling. This

decimation reduces the number of data points to be processed at coarser time scales, but also leaves some

“artifacts” in coarser time scale approximations.

More recently, the so-called à-trous wavelet transform has been proposed, which produces

“smoother” approximations by filling the “gap” caused by decimation, using redundant information

from the original signal [120, 121]. Under the à-trous wavelet transform, we define the approximations

of � � ��� at different scales as:

� � � ��� 
 � � ��� (6.2)

� 	 � ����

��

� 
 � �
� � � � � 	 � � � �

� 	 	 � � � � � (6.3)

where � � � � � , and � is a low-pass filter with compact support3. The detail of � � ��� at scale � is given

by

� 	 � ��� 
 � 	 � � � ���+� � 	 � ��� � (6.4)

Let � 	 
 � � 	 � ��� � � � � � � � denote the wavelet coefficient at scale � , and �  
 � �  � ��� � � � � � � � de-

note the signal at the lowest resolution, often referred to as the residual. Then the set � � � � � � � ��� � � �� � �� �
represents the wavelet transform of the signal up to the resolution level � , and the signal � � ��� can be ex-

pressed as an expansion of its wavelet coefficients:

� � ����
 �� � ��� �
�
	�
 �

� 	 � ��� (6.5)

At this point we can justify our decision about averaging our measurements across 90 minutes

intervals. We know that using the wavelet MRA we can look into the properties of the signal at time

scales
	 	

times coarser than the finest time scale. Furthermore, the collected measurements exhibit

strong periodicities at the cycle of 12 and 24 hours. Using 1.5 hours as the finest time scale allows us to

look into the behaviour of the time series at the periods of interest by observing its behaviour at the 3rd

(
	 

� � � � 
 � 	 ) and 4th (

	��
� � � � 
 	 �

) time scale.

6.5.2 MRA application on inter-PoP aggregate demands

For the smoothing of our data we chose as the low-pass filter � in Equation (6.3) the
� 
 spline filter,

defined by (1/16, 1/4, 3/8, 1/4, 1/16). This is of compact support (necessary for a wavelet transform), and

is point-symmetric. Symmetric wavelets have the advantage of avoiding any phase shifts; the wavelet

coefficients do not “drift” relative to the original signal. The
� 
 spline filter gives at each resolution

level a signal which is much smoother than the one at the previous level without distorting possible

periodicities in the data, and preserving the original structure. The
� 
 spline filter has been previously

used in time series smoothing in [122, 123, 124].

In order to understand how � 	 � ��� is computed at each time scale � , we schematically present in

Figure 6.4 how � � � � � , � �	� � � , and � 
�� � � are calculated according to Equation (6.3), and the
� 
 spline

3Compact support means that the basis functions are non-zero only on a finite interval.
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filter. Element � � � � � is computed based on the values � � � ����
 � � ��� at times � � � 	 � , � � � � � , � , � � � � � ,
and � � � 	 � . Then, we can calculate � � � � � , based on � � � � � , � � � ��� , � � � � � , � � � � � , and � � � � � . Notice that

moving toward coarser levels of resolution we need values from the previous resolution level which

are farther apart from each other. For this reason, this wavelet transform is called the à-trous wavelet

transform, which means “with holes”. One important point we should make is that �  � ��� is defined for

each � 
 � � 	 � � ��� � � , where � corresponds to 1.5 hour intervals and is limited by the size � of the

original signal. According to Equation (6.3), computing �  ��� � requires values of �  � � until time �
� 	  ,

which iteratively requires values of �  � � until time �
� 	  � � , etc. As a consequence, the calculation of

�� ��� � requires the original time series � � ��� to have �
��� 	�
 	�
 � 	 	 values. Given that our original signal

contains � values, our wavelet coefficients up to the 6th resolution level will contain � values, where

�
��� 	�
 �	�
 � 	

	 
 � , or � 
 � � � 	 � .
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Figure 6.4: The à trous wavelet transform.

In Figure 6.5 and Figure 6.6 we present the approximation and detail signals for trace 5 at each

time scale, when it is analysed up to resolution level
	 � 
 � �

hours. We chose to use the 6th time scale

as our coarsest time scale because it provides a sufficiently smooth approximation signal, capturing the

evolution of the time series from one week to the next without the effect of the fluctuations at the 12 and

24 hour time scale. Figure 6.5 clearly shows how the wavelet MRA smoothes out the original signal.

Visual inspection of the derived detail signals in Figure 6.6 further suggests a difference in the amount

of variability that each one contributes.

Given the derived decomposition, we calculate the energy apportioned to the overall trend ( � � ) and

each one of the detail signals. The energy of a signal � � ��� � � � � � � � is defined as � 
 ���� 
 � � � � ��� .
Table 6.1 shows that the overall trend � � accounts for 95 to 97% of the total energy. Once one subtracts

the overall trend from the data, then we notice a substantial difference in the amount of energy distributed

among the detail signals. Figure 6.7 shows that across all eight traces in our study, the maximum amount

of energy in the details is always located at the 3rd time scale, which corresponds to the fluctuations

across 12 hours. Approximating the original signal as the long term trend, � � , and the fluctuations at the

12 hour time scale, ��
 , is further capable of accounting for 97 to 99% of the total energy (Table 6.1).

In the next section, we look into the properties of the signals derived from the wavelet MRA with

respect to the variance they account for in the overall signal.
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Figure 6.5: The approximation signals for trace 5.
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Figure 6.6: The detail signals for trace 5.
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Trace ID 1 2 3 4

� � 96.07% 97.20% 95.57% 96.56%

� �
� � 
 98.10% 98.76% 97.93% 97.91%

Trace ID 5 6 7 8

� � 95.12% 95.99% 95.84% 97.30%

� �
� � 
 97.54% 97.60% 97.68% 98.45%

Table 6.1: Percentage of total energy in ��� , and � �
� ��
 .
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Figure 6.7: Energy distribution for the detail signals.

6.5.3 Analysis of Variance

As explained in Section 6.5.1, the original signal can be completely reconstructed using the approxima-

tion signal at the 6th time scale, and the six detail signals at lower time scales. The model defined in

Equation (6.5) can also be conceived as a multiple linear regression model, where the original signal

� � ��� is expressed in terms of its coefficients.

The “Analysis of Variance” (ANOVA) technique is a statistical method used to quantify the amount

of variability accounted for by each term in a multiple linear regression model [125]. Moreover, it can

be used in the reduction process of a multiple linear regression model, identifying those terms in the

original model that explain the most significant amount of variance.

Using the ANOVA methodology we calculate the amount of variance in the original signal explained

by the 6th approximation signal and each one of the detail signals. The results indicate that the detail

signals � � , � � , ��� , and � � contribute less than 5% each in the variance of the original signal.

Ideally, we would like to reduce the model of Equation (6.5) to a simple model of two parameters,

one corresponding to the overall long term trend, and a second one accounting for the bulk of the vari-

ability. Possible candidates for inclusion in the model, except from the overall trend � � , are the signals � 

and � � . We know that the detail signal � 
 carries the majority of the energy among all the detail signals.
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Thus one possible reduced model is the following:

� � ����
 � �	� ��� � � �	
	� ��� � � � ��� (6.6)

Using least squares, we calculate the value of � for each one of the traces in our disposal. All traces

led to a � estimate between 2.1 and 2.3 (Table 6.2). Using ANOVA, we test how representative the model

of Equation (6.6) is with respect to the proportion of variance it explains [125].

Trace ID 1 2 3 4

� 2.09 2.06 2.11 2.23
� � 0.87 0.94 0.89 0.87

Trace ID 5 6 7 8

� 2.12 2.18 2.13 2.16
� � 0.92 0.80 0.86 0.91

Table 6.2: ANOVA results for all eight traces.

If � � ��� is the observed response, and � � ��� is the error incurred in Equation (6.6), we define ��� �!

� .� 
 � � � � ��� � � , ��� � 
 � .� 
 � � � ��� � . The total sum of squares ( ���+0 ) is defined as the uncertainty that

would be present if one had to predict individual responses without any other information. The best one

could do is predict each observation to be equal to the sample mean. Thus we set ���+0)
 � .� 
 � � � � ����
�
� � � . The ANOVA methodology partitions this variability into two parts. One portion is accounted for by

the model. It corresponds to the reduction in uncertainty that occurs when the regression model is used

to predict the response. The remaining portion is the uncertainty that remains even after the model is

used. We define ��� � as the difference between ���+0 and ��� � . This difference represents the sum of

the squares explained by the regression. The fraction of the variance that is explained by the regression,

��� � �����+0 , determines the goodness of the regression and is called the “Coefficient of Determination”,
� � . The model is considered to be statistically significant if it can account for a large fraction of the

variability in the response, i.e. yields large values for
� � . In Table 6.2, we present the results obtained

for the value of � , and
� � for all eight traces.

The reduced model is capable of explaining 80% to 94% of the variance in the signal. Moreover,

if we decide to include the term � � in the model of Equation (6.6), the results on
� � , presented in Table

6.2, are only marginally improved, and increased by 0.01 to 0.04.

6.5.4 Summary of findings from MRA and ANOVA

From the wavelet multiresolution analysis, we draw three main conclusions:

� There is a clear overall long-term trend present in all traces.

� The fluctuations around this long term trend are mostly due to the significant changes in the traffic

bandwidth at the time scale of 12 hours.
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� The long term trend and the detail signal at the 3rd time scale account for approximately 98% of

the total energy in the original signal.

From the Analysis of Variance, we further conclude that:

� The largest amount of variance in the original signal can be explained by its long term trend � �

and the detail signals � 
 , and � � at the time scales of 12 and 24 hours respectively.

� The original signal can be sufficiently approximated by the long term trend and its third detail

signal. This model explains approximately 90% of the variance in the original signal.

Based on those findings, we derive a generic model for our time series, presented in Equation (6.7).

This model is based on Equation (6.6), where we set � 
 � , for a model valid across the entire backbone.

� � � ����
 � �	� ��� � � �	
	� ��� (6.7)

6.5.5 Implications for modelling

For forecasting purposes at the time scale of weeks and months, one may not need to accurately model

all the short term fluctuations in the traffic. More specifically, for capacity planning purposes, one only

needs to know the traffic baseline in the future along with possible fluctuations of the traffic around this

particular baseline.

Component ��
�� ��� in the model of Equation (6.7) is defined for every 90 minutes interval in the

measurements capturing in time the short-term fluctuations at the time scale of 12 hours. Given that the

specific behaviour within a day may not be that important for capacity planning purposes, we calculate

the standard deviation of � 
 within each day. Furthermore, since our goal is not to forecast the exact

amount of traffic on a particular day months in the future, we calculate the weekly standard deviation

�	� 
 � � � as the average of the seven values computed within each week. Such a metric represents the

fluctuations of the traffic around the long term trend from day to day within each particular week.

In Figure 6.8 we show the aggregate demand for trace 5, as calculated from the SNMP data. In the

same figure we plot the long term trend in the data, along with two curves showing the approximation of

the signal as the sum of the long term trend plus/minus three times the average daily standard deviation

within a week (Equation (6.7)). We see that approximating the original signal in such a way exposes the

fluctuations of the time series around its baseline with sufficient accuracy.

Notice that the new signal �	� 
 features one value every week, exposing the average daily standard

deviation within the week. Similarly, we can approximate the long term trend with a more compact time

series featuring one value for every week. Given that the 6th approximation signal is a very smooth

approximation of the original signal, we calculate its average across each week, and create a new time

series ��� � � capturing the long term trend from one week to the next. The forecasting process will have to

predict the behaviour of

�� � � ��
 ��� � � � � �	� 
���� � � (6.8)
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Figure 6.8: Approximation of the signal using ���	� ��� and the average daily standard deviation within a

week ����
�� � � .

where j denotes the index of each week in our trace. The resulting signal is presented in Figure 6.9.

We confirm that approximating the original signal using weekly average values for the overall long term

trend, and the daily standard deviation results in a model which accurately captures the desired behaviour.

In the next section, we introduce the linear time series models, and show how they can help derive

forecasts for the two identified components. Once we have those forecasts, we compute the forecast for

the original time series and compare it with collected measurements.

6.6 Time Series Analysis using the ARIMA model.

6.6.1 Overview of linear time series models

Constructing a time series model implies expressing � � in terms of previous observations � � � 	 , and

noise terms � � which typically correspond to external events. The noise processes � � are assumed to be

uncorrelated with a zero mean and finite variance. Such processes are the simplest processes, and are

said to have “no memory”, since their value at time � is uncorrelated with all the past values up to time

� � � .
Most forecasting models described in the literature are linear models. From those models, the

most well-known are the “Autoregressive” (AR), “Moving Average” (MA), and “Autoregressive Moving

Average” (ARMA) models.

A time series � � is an ARMA(p,q) process if � � is stationary and if for every �

� � � �
� � � � � � ��� ��� �  � � �  
 � � ��� � � � � �

� � � � ����� � � �
�

where � � ��� � � � ��� � � and the polynomials � �-� �
�
	 � � � ��� �  	  � and � � ��� �
	 � ��� � ��� � 	

�
� have

no common factors [126]. If � 
 �
, then the model reduces to a pure MA process, while if � 
 �

, the
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Figure 6.9: Approximation of the signal using the average weekly long term trend ����� � and the average

daily standard deviation within a week ��� 
	� � � .

process reduces to a pure AR process.

This equation can also be written in a more concise form as:

� � � � � � 
 � � � ��� � (6.9)

where
� � � � , and

� � � � are the �
���

and �
���

degree polynomials, and
�

is the backward shift operator

� � 	 � � 
 � � � 	 �
� 	 � � 
 � � � 	 � � 


�
��� � ��� � � � �

The ARMA model fitting procedure assumes the data to be stationary. If the time series exhibits

variations that violate the stationary assumption, then there are specific approaches that could be used

to render the time series stationary. The most common one is what is often called the “differencing

operation”. We define the lag-1 difference operator � by

� � � 
 � � � � � � � 
 � � � � � � � � (6.10)

where
�

is the backward shift operator as already introduced. If the non stationary part of a time series

is a polynomial function of time, then differencing finitely many times can reduce the time series to an

ARMA process.

An ARIMA(p,d,q) model is an ARMA(p,q) model that has been differenced � times. Thus it has

the form:

� � � � � � � � � � � � 
 � � � ��� � � � � ��� � � � ��� � � (6.11)

If the time series has a non-zero average value through time, then the previous equation also features

a constant term � on its right hand side.
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6.6.2 Time series analysis of the long-term trend and deviation

In order to model the obtained components ����� � and �	� 
 � � � using linear time series models, we have to

separate the collected measurements into two parts: 1) one part used for the estimation of the model

parameters, and 2) a second part used for the evaluation of the performance of the selected model. Since

our intended application is capacity planning, where traffic demand has to be predicted several months

ahead in the future, we select the estimation and evaluation period such that the latter contains six months

of data.

For each one of the analysed traces, we use the measurements collected up to 15th January 2002

for the modelling phase, and the measurements from 16th January 2002 until 1st July 2002 for the

evaluation phase. Given that not all time series are of the same duration, the isolation of the last six

months for evaluation purposes may lead to specific traces featuring a small number of measurements

for the estimation phase. Indeed, after posing this requirement three out of the eight traces in our analysis

(Trace 2, 3, and 7) consist of less than six months of information. Such limited amount of information in

the estimation period does not allow for model convergence. As a consequence, we continue our analysis

on the five traces remaining.

We use the Box-Jenkins methodology to fit linear time series models [126]. Such a procedure

involves the following steps: i) determine the number of differencing operations needed to render the

time series stationary, ii) determine the values of � , and � in Equation (6.9), iii) estimate the polynomials
�

, and
�
, and iv) evaluate how well the derived model fits the data. For the model fitting we used both

Splus [127] and ITSM [126], and obtained similar results. The estimation of the model parameters is

done using Maximum Likelihood Estimation. The best model is chosen as the one that provides the

smallest AICC, BIC, and FPE measures [126], while offering the smallest mean square prediction error

six months ahead. Details about the metrics used in the quality evaluation of the derived models are

presented in Appendix B. One point we should emphasise is that metrics like AICC, and BIC not only

evaluate the fit between the values predicted by the model and actual measurements, but also penalise

models with large number of parameters. Therefore, the comparison of the derived models against such

metrics leads to the most parsimonious models fitting the data.

6.6.3 Models for ������� , and �	� 
 �
���
The computed models for the long term trend ������� indicate that the first difference of those time series

(i.e. the time series of their changes) is consistent with a simple MA model with one or two terms (i.e,

� 
 � � � 
 � � � � 
 � ���"
 	
), plus a constant value � (Table 6.3). The need for one differencing

operation at lag 1, and the existence of term � across all the models indicate that the long-term trend

across all the traces is a simple exponential smoothing with growth. The trajectory for the long-term

forecasts will typically be a sloping line, whose slope is equal to � . For instance, for trace 1 the long-

term forecast will correspond to a weekly increase of 0.5633 Mbps. This forecast corresponds to the

average aggregate demand of a link in the aggregate. The weekly increase in the total demand between

two adjacent PoPs can thus be estimated through the multiplication of this value with the total number

of active links in the aggregate. Given the estimates of � across all models in Table 6.3 we conclude that
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all traces exhibit upward trends, but grow at different rates.

ID Order Model � � �

T1 (0,1,2) ���.��� �����.�
	 =�������.���
	 � �= ��� �����.��	 =���	 � � � 
�� 
����.��	 ��� 0.5633E+06 0.2794E+15

T4 (0,1,1) ���.��� �����.�
	 =�������.����� � � � 
�� �����.��	 =�� 0.4155E+06 0.1339E+15

T5 (0,1,1) ���.��� �����.�
	 =�������.����� � �= 
 
 �����.��	 =�� 0.2301E+07 0.1516E+15

T6 (0,1,2) ���.��� �����.�
	 =�������.���
	 � � � � � �����.��	 =���	 � � � � 
 �����.��	 ��� 0.7680E+06 0.6098E+15

T8 (0,1,1) ���.��� �����.�
	 =�������.����� � � � ��� �����.��	 =�� 0.2021E+07 0.1404E+16

Table 6.3: ARIMA models for the long term trend.

ID Order Model � �
�

T1 (0,1,1) ���.��� �����.�
	 =��������.����	 � � � ��� �����.��	 =�� 0.3782E+05 0.2024E+14

T4 (2,0,0) ���.��� � � � � � ��= ���.��	 =���	 � � � � �����!�.��	 ��������.��� 0.1287E+08 0.7295E+13

T5 (0,1,1) ���.��� �����.�
	 =��������.����	 � �= ���������.��	 =�� 0.3094E+06 0.8919E+13

T6 (3,0,0) ���.��� � � � � 
 � �����.��	 =���	 � �= � � ���!�.��	 ���"	 0.2575E+08 0.3057E+14
� � � � �������.��	!��������.���

T8 (0,1,1) ���.��� �����.�
	 =��������.����	 � � ��� � �����.��	 =�� 0.3924E+05 0.4423E+14

Table 6.4: ARIMA models for the weekly deviation.

Applying the Box-Jenkins methodology on the deviation measurements, we see that for some traces

the deviation �	� 
 ����� can be expressed with simple AR models (Trace 4, and 6), while the remaining can

be accurately modelled as MA processes after one differencing operation (Table 6.4). Therefore, the

deviation for traces 1, 5, and 8 increases with time (at rates one order of magnitude smaller than the

increase in their long term trends), while the deviation for traces 4, and 6 can be approximated with a

weighted moving average, which indicates slower evolution. These results confirm earlier observations

on Figure 6.1 in Section 6.4.2.

From the previous tables we see that one cannot come up with a single network-wide forecast-

ing model for the inter-PoP aggregate demand. Different parts of the network grow at different rates

(long-term trend), and experience different types of variation (deviation from the long-term trend). Our

methodology extracts those trends from historical measurements and can identify these PoP pairs in the

network that exhibit higher growth rates and thus may require additional capacity in the future.

At this point we should note that the Box-Jenkins methodology could also have been applied on the

original time series � � ��� . However, given the existence of three strong periods in the data (which would

require a seasonal ARIMA model with three seasons [126]), the variability of the time series at multiple

time scales, the existence of outliers, and the size of the original time series, such an approach leads to

highly inaccurate forecasts, while being extremely computationally intensive. Our technique is capable

of isolating the overall long term trend and identifying those components that significantly contribute

to its variability. Predictions based on weekly approximations of those components provide accurate

estimates with a minimal computational overhead. All our forecasts were obtained in seconds.
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In the next section, we use the derived models for the weekly prediction of the aggregate traffic

demands. Our forecasts are compared against actual measurements.

6.6.4 Evaluation of forecasts

Using our models we predict a baseline aggregate demand for a particular week in the future, along with

possible deviations around it. The overall forecast for the inter-PoP aggregate demand is then calculated

based on Equation (6.8). We constrain ourselves to the upper limit alone, since this is the value that

would be used for capacity planning purposes.
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Figure 6.10: Six month forecast for Trace 5.

In Figure 6.10, we present the time series collected until July 1st 2002. On the same figure we

present the modelled behaviour in the estimation period, and the forecasts in the evaluation period4.

From visual inspection of the presented plot, one can conclude that the proposed methodology behaves

very well for this particular trace.

In order to be able to quantify the quality of the predictions with respect to the observed behaviour,

we proceed as follows:

� We apply the MRA on the measurements in the evaluation period.

� We calculate the long term trend ������� and weekly deviation �	� 
 ����� for each week in the same

period.

� We compute �� ��� � based on Equation (6.8).

� Lastly, we calculate the error in the derived forecast as the forecasted value minus �� � � � , divided

by �� ��� � .
4In Figures 6.10, 6.12 and 6.13, the vertical dashed line indicates the beginning of the forecasting period.
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In Figure 6.11 we present the relative error between the derived forecast and �� ����� for each week in

the evaluation period. Negative error implies that the actual demand was higher than the one forecasted.

As can be seen from the figure, the forecasting error fluctuates with time, but is centred around zero.

This means that on average we neither underestimate nor overestimate the aggregate demand. More

specifically, we see that 24 weeks in the future our prediction error is 4%. The average prediction error

across weeks is -3.6%. Lastly, across all five traces, the average absolute relative prediction error is lower

than 15%.
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Figure 6.11: Weekly relative prediction error for Trace 5.

Notice that our forecasting models can be used to predict demand for more than six months in the

future, and identify when the forecasted demand will exceed the operational thresholds that will trigger

link upgrades (as explained in section 6.3). In that case though forecasts should be used with caution.

As is the case with any forecasting methodology, the farther ahead in the future one attempts to predict,

the larger the error margin that should be allowed.

6.7 Discussion and Future Work
In the previous sections, we modelled the average aggregate demand between any two adjacent PoPs

based on its long term trend and possible short-term fluctuations around it. The long term trend in the

data is sensitive to long-lasting routing changes, topological changes, and market conditions that dictate

the behaviour of the users in the Internet.

Consequently, there will be cases when the fitted ARIMA models will have to be re-estimated in

order to adjust to changes in the environment. One example is trace 1. This particular trace is the worst-

performing trace in our dataset exhibiting a dramatic change in its overall long term trend right after

April 2002. Our analysis uses data until January 15, 2002 to estimate the parameters of the ARIMA

models, missing the change in trend that occurs in April. As a result our forecasts are highly accurate

until April 2002 (with an average relative prediction error of 1%) but substantially smaller than the ones

observed between April and July 2002 (Figure 6.12).

Nonetheless, if re-estimation of the model parameters is triggered at the end of April 2002, then the
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Figure 6.12: Weekly prediction for Trace 1.
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Figure 6.13: Adjusted weekly prediction for Trace 1.

forecasts are much closer to the measured behaviour, and within 7% (Figure 6.13). Due to lack of SNMP

information beyond July 2002, we cannot evaluate the accuracy of the new predictions in the six months

horizon.

Future work will address the issue of detecting changes in the overall trend. Once such a change is

detected, then our models can be applied as already shown. In fact, such a detection should not necessar-

ily be automated. Network operators themselves could trigger the re-estimation of the derived ARIMA
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models a few months after significant topological and/or routing configuration changes have taken place.

Within the topological changes, we also include the activation of new high-capacity customer links which

may have a significant effect on the load in the core. Such changes would usually be known ahead of

time. Consequently, in future work we also intend to incorporate marketing information in our model

and evaluate its effect on our forecasts.

6.8 Conclusions
In this chapter, we presented a methodology for predicting when and where link upgrades/additions

have to take place in the core of an IP network. We measured aggregate demand between any two

neighbouring PoPs in the core of a major tier-1 IP network, and analysed its evolution at time scales

larger than one hour.

We showed that the derived time series exhibit strong periodicities at the cycle of 12, and 24 hours,

as well as one week. Moreover, they experience variability at multiple time scales, and feature distinct

overall long-term trends.

Using wavelet MRA, we isolated the overall long term trend, and analysed variability at multiple

time scales. We showed that the largest amount of variability in the signal comes from its fluctuations at

the 12 hour time scale. Our analysis indicates that a parsimonious model consisting of those two identi-

fied components is capable of capturing 98% of the total energy in the original signal, while explaining

90% of its variance. The resulting model is capable of revealing the behaviour of the network traffic

through time, filtering short-lived events that may cause traffic perturbations beyond the overall trend.

We showed that the weekly approximations of the two components in our model can be accurately

modelled with low-order ARIMA processes. Our results indicate that different parts in the network

grow at different rates, and may also experience increasing deviations from their overall trend, as time

progresses. We further showed that calculating future demand based on the forecasted values for the two

components in our traffic model yields highly accurate estimates. Our average relative forecasting error

is less than 15% for at least six months in the future.

Due to the properties of the collected time series direct application of traditional time series anal-

ysis techniques proves cumbersome, computationally intensive and prone to error. Our methodology is

simple to implement, and can be fully automated. Moreover, it provides accurate forecasts for at least

six months in the future with a minimal computational overhead. In this chapter, we demonstrated its

performance within the context of capacity planning. However, multiresolution analysis of the original

signal and modelling of selected approximation and detail signals using ARIMA models could possibly

provide accurate forecasts for the behaviour of the traffic at other time scales, such as from one day to

the next or at a particular hour on a given day in the future. These forecasts could be useful for other

network engineering tasks like scheduling of maintenance windows or large database network backups.

The work presented in this chapter is the result of collaboration with Nina Taft, Zhi-Li Zhang, and

Christophe Diot. Zhi-Li Zhang suggested the use of wavelets for the detrending of the collected

timeseries, and helped with the theoretical aspects of the wavelet decomposition. Nina Taft supervised



6.8. Conclusions 121

this project and supplied help throughout the duration of this work. All three collaborators commented

on the writing. However, the methodological approach presented, all the code, and the interpretation

of the results have been carried out by me.



Chapter 7

Contributions and Future Work

Current IP backbone network design and provisioning practices are heavily dependent on the intuition of

the human operators. Traffic variability, scalability issues, lack of monitoring information, and complex

interactions between inter- and intra-domain routing protocols result in network management techniques

which usually rely on trial and error. The central goal of this thesis was to demonstrate the benefits

of using different types of monitoring information in the formalisation of different network provision-

ing tasks, and provide a methodological framework for their analysis. Our main contribution can be

summarised as follows:

Current IP backbone provisioning practices can be greatly enhanced based on mea-

surements, but require a diverse set of monitoring information collected or processed

at multiple granularities of time and traffic aggregation.

We collect four main sources of monitoring information from the Sprint operational IP backbone

network, and analyse them offline. These four sources correspond to (i) GPS-synchronised packet traces

listing the first 44 bytes of every packet traversing a monitored link, (ii) BGP routing table dumps col-

lected from a BGP router inside each one of the four PoPs where IPMON systems have been installed,

(iii) network-wide SNMP information on every operational link of the Sprint IP backbone, and (iv) topo-

logical information listing all the active interfaces of each router in the network, along with their capac-

ity, their IP addresses, and the name of the router and interface terminating the link at the other end. In

what follows we summarise our contributions, discuss possible limitations and alternative approaches to

addressing the problems at hand. Finally, we suggest possible directions for future research.

7.1 Contributions

7.1.1 Single-hop delay analysis

In Chapter 4, we focused on the evaluation of the queueing delay experienced by packets through a

single backbone router. Using the collected topological information, we identified the subset of the

links monitored by IPMON systems that are attached to the same router inside the backbone. We then

matched the packet traces collected on links connected to the same router in order to identify their

common packets. The outcome of this process is a trace containing all the packets present in both traces,

along with accurate timestamps for their arrival and departure at the respective router. Subtracting the
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arrival timestamp from the departure timestamp allows us to compute the total amount of time each

packet spends inside the router, which we call “single-hop delay”.

We presented our single-hop delay measurements and proposed a methodology for the identification

of its contributing factors. We showed that in addition to packet processing, transmission at the output

link, and queueing at the output queue, packets may face large delays that cannot be justified within the

context of a pure FIFO output queue. Using a single output queue model, we isolated those delays and

provided possible explanations for the events that may have led to such extreme delay values through a

single node.

Our contributions have been:

� We measured and presented the first actual single-hop delay measurements from an operational

backbone network.

� We introduced a methodology able to identify the different factors contributing to single-hop delay.

The modelling of the different factors in single-hop delay can be used in simulation environments

providing a more realistic model for backbone routers.

� We showed that packets experience minimal queueing in the backbone. A well-expected result,

given the amount of overprovisioning present in current backbone networks.

� We showed that router idiosyncrasies, however, may increase single-hop delays to the order of

milliseconds. This behaviour was shown to resemble a “coffee break” inside the router.

� We analysed the tail behaviour of the queueing delay distribution and showed that it can be mod-

elled with a Weibull distribution, as shown in previous analytical studies.

� The measured average queueing delay is greater than predicted by M/M/1 and FBM models when

the link utilisation is below 70%, but its absolute value is quite small.

We conclude that delays faced by packets while transiting the Internet core are dominated by the

propagation delays. As long as ISPs maintain their links moderately utilised, end-to-end delays will

mainly depend upon the physical paths taken throughout the network. However, link and equipment

failures are events in the lifetime of a backbone network, that are rather frequent and lead to unpredictable

resulting network state. Such phenomena are usually accompanied by transient overload on the links

selected by routing protocols to take over the traffic previously accommodated by the failed links. Under

such circumstances, network operators usually interfere manually, increasing the IS-IS link weight of

the overloaded link, so as to divert traffic to other, less utilised parts of the network. However, given that

the network operator does not have knowledge of the traffic matrix of his network, and therefore cannot

simulate the effect of his action, such a change in the link weight is not unlikely to cause overload on

other paths throughout the network.

7.1.2 Identifying persistent elephant flows

In Chapter 5, we looked into a controlled way of offloading heavily utilised links by re-routing the high-

volume destination network-prefix flows traversing the congested link. In order to be able to perform
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such an operation, the network operator needs to be able to identify those destination network-prefix

flows that account for the majority of the traffic on the link. Moreover, in order for such an operation

to have the targeted effect, the selected flows need to possess sufficient bandwidth persistence in time.

In Chapter 5, we proposed a methodology to identify these high-volume flows on a link, that are more

likely to contribute significant amounts of load persistently over time.

In our analysis we used BGP routing table dumps collected from two PoPs in the Sprint IP network,

and packet traces collected from OC-12 links in the respective PoPs. Similar analysis has also been per-

formed on OC-3 and OC-48 packet traces. We defined flows at the granularity of a destination network

prefix and measured their bandwidth at fixed intervals. We defined as elephants a small number of flows

that contributes high volumes of traffic persistently over time. We proposed two “single-instant” classi-

fication schemes for the computation of a threshold rate that separates flows into two classes according

to their properties during a single time interval. We showed that classifying flows based on their “instan-

taneous” bandwidth leads to high volatility in the resulting classification. We concluded that successful

identification of the persistent elephants needs to account for their temporal behaviour. We defined a new

metric, called “latent heat” to capture the temporal behaviour of a flow. We showed that classification

schemes accounting for the elephants’ latent heat are more successful at identifying elephants with the

desirable properties.

Our contributions can be summarised as follows:

� We analysed packet traces in conjunction to BGP routing tables, and showed that destination

network-prefix flows exhibit the behaviour usually referred to as the “elephant and mice” phe-

nomenon. A small number of flows is responsible for the majority of the load.

� We identified bandwidth persistence in time as an important property of elephant flows used in a

traffic engineering context.

� We proposed two “single-instant” classification schemes for the separation of the flows into two

classes according to their bandwidth during a single time interval. These techniques make no

assumptions about how high or low the separation threshold should be, but capitalise on the prop-

erties of the collected measurements for its derivation.

� We proposed four performance metrics for the evaluation of the proposed schemes. Two of these

metrics are specifically designed so that they evaluate the persistence of the resulting classification

in time.

� We showed that classifying flows according to their “instantaneous” behaviour leads to highly

volatile classes of traffic. This volatility was illustrated in three ways: (i) we found that flows

remain in the elephant state for surprisingly short periods of time; (ii) the number of elephants

varies considerably over different time intervals; (iii) if elephants are not reclassified frequently,

the total load in the elephant class can change significantly.

� We proposed a new classification scheme, which allows flows to experience short-lived bursts or

drops across the separation threshold. We defined a new per-flow metric, called latent heat, which
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tracks the evolution of the difference between the flow’s bandwidth and the threshold computed by

the single-instant classification schemes. We demonstrated that classification of flows according to

their latent heat leads to significant improvement in the volatility of the elephant class. Under our

latent heat classification scheme, the number of elephants identified exhibits smaller fluctuations,

the captured load is reasonably consistent in time, while the average holding time in the elephant

state has increased from 30 minutes to more than 1.5 hours.

Re-routing elephant destination network prefixes can be deployed as a solution to overcome con-

gestion only in cases when the observed congestion is a transient phenomenon. Persistent congestion

within the network will need to be addressed with further provisioning, in the shape of link additions or

link upgrades. However, given that circuit provisioning cycles can last six months, network operators

need to be able to identify the parts of the network that may need additional provisioning as early as

possible.

7.1.3 Forecasting Backbone Network Traffic

In Chapter 6, we analysed three years worth of SNMP information collected from the entire network.

This SNMP information reports on the utilisation of every operational link in the backbone at 5 minute

intervals. We combined the SNMP information with topological information and computed the average

aggregate traffic demand of a link between any two adjacent PoPs. We proposed a methodology that

can indicate when and where further provisioning will be needed in the core of an IP backbone network.

With minimal computational overhead our technique is capable of producing predictions within 15% of

the actual measurements for at least six months in the future.

Our main contributions can be summarised as follows:

� We presented the first analysis of Internet backbone traffic at time scales larger than one hour.

� We showed that Internet backbone traffic can be modelled for capacity planning purposes using a

parsimonious model with only two parameters. These parameters are the long term trend present

in the evolution of inter-PoP average aggregate demand, along with its shorter-term fluctuations at

the 12 hour time scale. The proposed model is able to account for 98% of the total energy in the

original signal, while explaining 90% of its variance.

� We demonstrated that the weekly approximations of the two identified components can be accu-

rately modelled with low-order AutoRegressive Integrated Moving Average (ARIMA) models.

� The derived models show that different parts of the network grow at different rates and may ex-

perience increasing deviations from their overall trend as time progresses. Therefore capacity

planning decisions should not only be based on current traffic volume between two PoPs, but also

on the rate of growth that the corresponding PoP pair exhibits.

� Using the derived models, we showed that Internet backbone traffic can be accurately predicted

for at least six months in the future with an average prediction error of less than 15%.
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� Direct application of linear time series modelling techniques on the collected data is computa-

tionally prohibitive and prone to error. Our technique is capable of focusing on the factors which

are important to capacity planning, and yields accurate estimates with a minimal computational

overhead.

7.2 Discussion and Future Work
The area of large-scale IP network measurements is a fairly new research area. Only until recently did

network providers and research facilities deploy dedicated monitoring equipment in operational networks

to study their behaviour. Therefore, in this thesis, we have only addressed three critical problems out of

the numerous problems that could be addressed within a measurement context.

Our work presented in Chapters 4 and 5 relies on the existence of packet traces collected from

the operational IP backbone network. However, our current belief is that unless passive measurement

capabilities are integrated with commercial router equipment, some of the analyses included in this

thesis will be rendered infeasible. It has already been noted in the research community that monitoring

equipment will face severe challenges as link speeds increase. Therefore, in future work we intend to

address network provisioning issues detached from explicit passive measurement information.

We are interested in devising techniques that could make use of ever-existing information, such

as SNMP, in order to formally define optimal network provisioning rules. In addition, we look into

lightweight ways in which additional information could be provided by the routers themselves. Our

analysis presented in Chapter 5 involved the correlation of BGP routing table dumps and packet traces

collected on specific links of the network. The volume of traffic destined towards specific destination

network prefixes could as well be provided by the router itself; a router needs to map each packet with the

appropriate destination network prefix in its routing table to decide on the appropriate output interface

the packet needs to be forwarded towards. Therefore, it would be an interesting avenue to investigate

how feasible it would be for a router to maintain counters on the activity of specific destination network

prefixes. Our analysis has shown that only a small number of destination network prefixes are active

at any 5-minute interval. Moreover, only a few hundreds out of those active prefixes receive traffic at

sufficiently high rates. Therefore, exporting traffic counts only for the “elephant” network prefixes may

be one way to obtain more detailed information from the router, that also incorporates specific knowledge

about the routing configuration itself.

Another interesting future avenue is to extend our delay and forecasting work to identify what

“acceptable utilisation levels” mean in an operational environment. The current best practice dictates

moderate network-wide link utilisation, that should rarely exceed 50%. This percentage is usually se-

lected so that any link can take over the load of any other neighbouring link in case of failure. However,

the utilisation of a link can only be observed using SNMP and is reported as a 5-minute average value. As

link speeds increase a transient burst lasting for 1 ms will correspond to Megabytes of traffic (at OC-192

rates (10 Gbps) 1ms corresponds to 10 Megabits of traffic). The analysis of link behaviour at time scales

smaller than 5 minutes is likely to reveal short-lived congestion events even when the reported SNMP

link utilisation is below 50%. Identifying the error margins that should be accounted for in network
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capacity planning based on SNMP information is an important task that would greatly enhance current

practices. Moreover, definition of alternate link utilisation metrics that could prove more meaningful for

link dimensioning tasks and included in proprietary MIBs is of great interest.

Knowledge of the appropriate link utilisation levels can further be incorporated in the forecasting

methodology proposed in Chapter 6, so that it leads to the exact number of links needed between any

two adjacent PoPs and their respective capacity. We would further like to enhance the proposed fore-

casting methodology to incorporate configuration and marketing information. As shown, the derived

predictions are accurate in cases when modifications in the network topology and configuration have not

led to dramatic changes in the traffic behaviour. Integration of our approach with specific configuration

information, and possible marketing predictions is an interesting problem that we intend to address in

future work.



Appendix A

Moving Average and Exponential Smoothing

Models

A.1 Simple Moving Average
In time series analysis and forecasting, we use a Moving Average model to estimate the current value

of the mean based on past measurements. The moving average is often called a “smoothed” version of

the original series, since short-term averaging has the effect of smoothing out the bumps in the original

series.

At any instant � , the average of the latest � samples of a data sequence � ' is given by

� � 
 ��
� � ��
' 
 � � .

� ' �

Hence, the forecast equals the simple average of the last � observations. This average is “centred”

at period # � ��� � � ��� 	 which implies that the estimate of the local mean will tend to lag behind the true

value of the local mean by about ��� � � � � 	 periods. Thus, we say that the average age of the data in the

simple moving average is � � � � � � 	 relative to the period for which the forecast is computed.

A.2 Simple Exponential Smoothing or Exponentially Weighted

Moving Average
The simple moving average model has the undesirable property that it treats the last � observations

equally and completely ignores all preceding observations. Intuitively, past data should be discounted in

a more gradual fashion. The simple exponential smoothing (SES) model accomplishes this. If � denotes

the “smoothing constant”, with
� � � � � , and � � denotes the value of the smoothed series at period

� , the following formula can be used recursively to update the smoothed series as new observations are

recorded:

� � 
 � � � � �
� � � � � � � � � � �

� � � � � � � � � � � � (A.1)

Thus, the current smoothed value is an interpolation between the previous smoothed value and

the previous observation, where � controls the closeness of the interpolated value to the most recent

observation. If we expand Equation (A.1) by substituting for � ' � � we have:
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� � 
 � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � 
 � � � � �
�
� � �*� � � � � � �

� � � � � � � � � � �

By recursively substituting for � � � � , then for � � � 
 and so forth until we reach � � which is equal to

� � , it can be shown that the expanding equation can be written as:

� � 
 �
� � ��
' 
 �

� � � � � ' � � � � � '
� � � � � � � � � � � � � � � � � � � � � � �

The above equation shows the exponential behaviour. We further can see from the summation term

that the contribution of each value � ' �+# � � to the smoothed value � � becomes less at each consecutive

time interval. The speed at which old responses are dampened is a function of the value � . When � is

close to 1, dampening is quick and when � is close to 0, dampening is slow.

The weights � � � � � � � decrease geometrically. Given that the mean of the geometric distribution of

the weights is equal to � � � , the “average age” of the data in the simple exponential smoothing forecast

is � � � relative to the period for which the forecast is computed. In the previous section, we saw that the

“average age” of the data in a simple moving average estimate for a period of � intervals is ��� � � ��� 	 .

Consequently, the rule of thumb for the setting of the “smoothing constant” � in order to exhibit an

average age of � periods can be described as:

�
�

� �
� �	 � � � � �

	
�

� �
(A.2)
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ARIMA model order selection criteria

From a forecasting point of view, it is not advantageous to choose � and � arbitrarily large. Fitting a

very high order model will generally result in a small estimated white noise variance, but when the fitted

model is used for forecasting, the mean squared error of the forecasts will depend not only on the white

noise variance of the fitted model but also on errors arising from the estimation of the parameters of

the model. These will be larger for higher order models. For this reason there is a need to introduce a

“penalty factor” to discourage the fitting of models with too many parameters.

Many criteria based on such penalty factors have been proposed in the literature since the problem

of model selection arises frequently in statistics, particularly in regression analysis. For the evaluation

of our models we restrict our attention to the FPE, AIC, and BIC criteria of Akaike and a bias-corrected

version of the AIC known as the AICC.

Before proceeding with the definition of the above criteria, we introduce the concepts of causality

and invertibility of an ARMA(p,q) process. These properties will be required in the definition of the

selection order criteria provided in the following sections.

Causality: An ARMA(� , � ) process � � is causal, or a causal function of � � , if there exist constants

� 	 such that
� �	�
 � % � 	 % � 
 and � � 
 � �	�
 � � 	 � � � 	 for all � . Causality is equivalent to the condition

� � 	 � 
 � � �
� 	 � � ����� � �	 ��
 � � � � � � � % 	 % � � �

Invertibility: An ARMA(� , � ) process � � is invertible if there exist constant � 	 such that
� �	�
 � %

� 	 % � 
 and � � 
 � �	�
 � � 	 � � � 	 for all t. Invertibility is equivalent to the condition

� � 	�� 
 � ��� �
	 � ��� � ��� � 	
� �
 � � � � ��� � % 	 % � � �

B.1 Forward Prediction Error (FPE) Criterion

The FPE criterion was developed by Akaike to select the appropriate order of an AR process to fit a time

series ��� � ��� � � � . . Instead of trying to choose the order � to make the estimated white noise variance as

small as possible, the idea is to choose the model for � � in such a way as to minimise the one-step ahead

mean squared error when the model fitted to � � is used to predict an independent realization � � of the

same process that generated � � � � .
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If �� � is the maximum likelihood estimator of � � , i.e. the white noise variance of the AR(� ) model,

then the FPE for an AR process of order � can be estimated according to the following equation:

� �
�  
 �� � �

� �
� � � (B.1)

To apply the FPE criterion for autoregressive order selection we therefore choose the value of � that

minimises
� �

�  as defined in Equation (B.1).

B.2 The AICC Criterion

A more generally applicable criterion for model selection than the FPE is the Akaike Information Crite-

rion, known as the AIC. This was designed to be an approximately unbiased estimate of the Kullback-

Leibler index of the fitted model relative to the true model (defined below). The AICC is a bias-corrected

version of the AIC, proposed by Hurvich and Tsai [128].

If X is an � -dimensional random vector whose probability density belongs to the family

� � � � ��� � ���  �� � , the Kullack-Leibler discrepancy between � � � � � � and � � � � � � is defined as

� � � % � ��
�� � ��% � ���� � � % � � �

where

� � � % � � 
 ����� � 	 ��� � ��� � � ��� 

	�

1 1
� 	 ��� � � �� � � ��� � �� � � � ��� �

is the Kullback-Leibler index of � � � ��� � relative to � � � � � � .
Given observations � � ��� � � � � . of an ARMA process with unknown parameters

� 
 � � ��� � � , the

true model could be identified if it were possible to compute the Kullback-Leibler discrepancy between

candidate models and the true model. Since this is not possible, we estimate the Kullback-Leibler dis-

crepancies and choose the model whose estimated discrepancy (or index) is minimum. In order to do

this, we assume that the true model and the alternatives are all Gaussian. Then for any given
� 
 � � ��� � � ,

� � � � � � is the probability density of ( � � � ��� � � � . )’, where � � � � is a Gaussian ARMA(p,q) process with

coefficient vector � and white noise variance � � .
We select the values � and � for our fitted model to be those that minimise AICC( �� � where

�
� �2� � � ��� 
 � 	 ���(��� � � � ��� � � � � � � � 	 � � � � � � � � � ��� � � � ��� 	 � � (B.2)

The AIC statistic, defined as

�
� � � � ��� 
 � 	 �(��� � � � ��� � � � � � � � 	 � � � � � � � � (B.3)

can be used in the same way. Both
�
� �2� � � ��� � � and

�
� � � � � � � � can be defined for arbitrary � �

by replacing ��� � � ��� � in the preceding definitions by � � . The value ��� � � � � � is used in Equation (B.2)

since
�
� �2� � � � � � � (like

�
� � � � � � � � ) is minimised for any given � by setting � � 
 ��� � � ��� � .
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B.3 The BIC Criterion
For fitting autoregressive models, Monte Carlo studies suggest that the AIC has a tendency to overesti-

mate � [129, 130]. The penalty factors
	 � � � � � � � � � � � � � � � � 	 � and

	 � � � � � � � , for the AICC

and AIC statistics are asymptotically equivalent as � � 
 . The AICC statistic, however, has a more

extreme penalty for large-order models, which counteracts the overfitting tendency of the AIC. The BIC

is another criterion that attempts to correct the overfitting nature of the AIC. For a zero-mean causal

invertible ARMA(p,q) process, it is defined to be [131]

�
� � 
 � � � � � � � � � � � �� � � ��� � � � � � � �

� � � � ��� � 	 � � �

� � � � � ����� � .� � 
 � � �� � � �� � � � � � � � ��� � (B.4)

where �� � is the maximum likelihood estimate of the white noise variance.

The BIC is a consistent order selection criterion in the sense that if the data � � � � ��� � � � . � are in

fact observations of an ARMA(p,q) process, and if �� and �� are the estimated orders found by minimising

the BIC, then �� � � and ��	� � with probability 1 as � � 
 [132]. This property is not shared

by the AICC or AIC. On the other hand, order selection by minimisation of the AICC, AIC, or FPE is

asymptotically efficient for autoregressive processes while order selection by BIC minimisation is not.

In the modelling of real data there is rarely such a thing as the “true order”. For the process � � 

� �	�
 � � 	 � � � 	 there may be many polynomials

� � 	 � , � � 	 � such that the coefficients of 	
	

in
� � 	 ��� � � 	 �

closely approximate � 	 for moderately small values of � . Correspondingly there may be many ARMA

processes with properties similar to � � � � . This problem of identifiability becomes much more serious

for multivariate processes. The AICC criterion does, however, provide us with a rational criterion for

choosing between competing models. It has been suggested that models with AIC values within � of the

minimum value should be considered competitive (with � 
 	
as a typical value) [133]. Selection from

among the competitive models can then be based on such factors as whiteness of the residuals and model

simplicity.
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