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Abstract

Genetic Programming(GP) is a technique that can be used to automatically program computers

to perform some required task. The technique is a kind of genetic algorithm in which the rep-

resentation is a program parse tree instead of a bit-string and the fitness of each parse trees is

evaluated by executing the computer program that it represents.

The subject of this thesis is to investigate the use of GP to automatically program multiagent

systems. To achieve this goal, we consider the general problems in creating multiagent systems,

and show how GP can be used to provide solutions to many of them. Our key contributions are

as follows:

We show that it possible to evolve multi-agent systems using GP that:

� exhibit coordinated, coherent behaviour

� communicate explicitly, and in doing so decide what to communicate and how

� can resolve conflicts

� can be integrated into an existing society of agents

We also consider the scalability problems involved in the use of GP, both generally and in par-

ticular as a technique for automatically programming agents, and propose solutions to these

problems.



Acknowledgements

I would like to thank the department of computer science at UCL for awarding me an EP-

SRC PhD quota award which funded this work. I would also like to thank my supervisor Jon

Crowcroft for his encouragement and support. Many thanks to William Langdon for introducing

me to GP, providing useful pointers and for reviewing some chapters of this thesis. Thanks also

to Thomas Haynes for answering questions relating to his research. My thanks to UCL computer

science and Java training company JB International for allowing me to use their machines for the

compute intensive task of evolving agents.



Contents

1 Introduction 13

2 Genetic Programming 16

2.1 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Variable Length and Hierarchical representations . . . . . . . . . . . . . . . . . 18

2.3 Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 The Five Basic Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 The Function and Terminal Sets . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 The Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.4 The Run Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.5 The Termination Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 GP Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Automatically Defined Functions . . . . . . . . . . . . . . . . . . . . . 24

2.4.2 Strongly Typed GP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.3 Steady State GP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.4 Indexed Memory and Data Structures . . . . . . . . . . . . . . . . . . . 26

2.4.5 Co-Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Fitness Landscapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.2 GP Schema Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 GP Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 GPsys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7.1 The Java Programming Language . . . . . . . . . . . . . . . . . . . . . 30

2.7.2 Application Programmers Interface . . . . . . . . . . . . . . . . . . . . 31

2.7.3 Internal Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Intelligent Agents and Multiagent systems 38

3.1 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



Contents 5

3.1.1 Deliberative Architectures . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.2 Reactive Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.3 Hybrid Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Multiagents Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Evolving Agents with GP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 GP as a Learning Technique for Agents . . . . . . . . . . . . . . . . . . 42

3.3.2 Evolving Complete Agents . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Task Allocation and Conflict Resolution 48

4.1 The Pursuit Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Using the Pursuit Domain to Investigate Task Allocation and Conflict Resolution 53

4.2.1 The Pursuit Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 The Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.3 Fitness Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.4 The Function and Terminal sets . . . . . . . . . . . . . . . . . . . . . . 56

4.2.5 Behavioural Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Experiment 1 - Basic Pursuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Experiment 2 - Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Experiment 3 - Mixed Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Experiment 4 - Conflict Resolution . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.7 Comparison with Random Search . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Communication 78

5.1 Experiment 5 - Communicating Agents . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.1 Run 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.2 Run 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Socialisation 89

6.1 Communicating Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



Contents 6

6.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 Pursuit Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7 The Scalability of Genetic Programming 96

7.1 Solving Space Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.1.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.1.2 Tuning the problem definition . . . . . . . . . . . . . . . . . . . . . . . 98

7.1.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2 Solving Processing Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2.1 Speeding Up Fitness Processing . . . . . . . . . . . . . . . . . . . . . . 100

7.2.1.1 Use Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2.1.2 Machine code GP . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2.1.3 Use Efficient High Level Languages . . . . . . . . . . . . . . 100

7.2.1.4 Compiled Code . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2.1.5 Parallel and Distributed Architectures . . . . . . . . . . . . . . 101

7.2.2 Reducing Fitness Function Evaluation Costs . . . . . . . . . . . . . . . 103

7.2.2.1 Deadlock Detection . . . . . . . . . . . . . . . . . . . . . . . 103

7.2.2.2 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2.2.3 Reducing Wasted Computation By Aborting Runs . . . . . . . 104

7.2.2.4 Simplifying the Code . . . . . . . . . . . . . . . . . . . . . . 104

7.2.2.5 Sampling Test Cases . . . . . . . . . . . . . . . . . . . . . . . 104

7.2.2.6 Redundancy in Test Cases . . . . . . . . . . . . . . . . . . . . 106

7.2.3 Improving the efficiency of the GP algorithm . . . . . . . . . . . . . . . 107

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8 Genetic Programming and Software Testing 111

8.1 Fitness evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.2 Software Testing and Quality Control . . . . . . . . . . . . . . . . . . . . . . . 113

8.2.1 The Definition of Software Testing . . . . . . . . . . . . . . . . . . . . . 113

8.3 Black Box Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.3.1 Equivalence Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.3.2 Boundary-value Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.3.3 Cause-effect Graphing . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.3.4 Error Guessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.4 White Box Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



Contents 7

8.4.1 Statement Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.4.2 Decision Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.4.3 Condition Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.4.4 Decision/Condition Coverage . . . . . . . . . . . . . . . . . . . . . . . 116

8.4.5 Multiple-condition Coverage . . . . . . . . . . . . . . . . . . . . . . . . 116

8.5 Applying Software Testing to GP . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.5.1 The Training Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.5.2 Generalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.5.3 The Pesticide Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.6 Testing Distributed and Multi-agent Systems . . . . . . . . . . . . . . . . . . . . 118

8.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9 Conclusion 120

9.1 Review of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9.2 Solving Key Issues in MAS Research . . . . . . . . . . . . . . . . . . . . . . . 121

9.3 A Methodology for Automatically Programming Multiagent Systems Using GP . 123

9.3.1 The Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.3.2 The Agent Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.3.3 The Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.3.4 Function and Terminal Sets . . . . . . . . . . . . . . . . . . . . . . . . 124

9.3.5 The Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.3.6 The Termination Criteria and Run Parameters . . . . . . . . . . . . . . . 125

9.4 Critical Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.5.1 Algorithmic Complexity, Computer Programming and Evolution . . . . . 126

9.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A Best Evolved Pursuit Agents 129

A.1 Experiment 1a - Basic Homogeneous (Best of Run 9) . . . . . . . . . . . . . . . 129

A.2 Experiment 1b - Basic Heterogeneous (Best of Run 6) . . . . . . . . . . . . . . . 130

A.3 Experiment 2 - Identity (Best of Run 1) . . . . . . . . . . . . . . . . . . . . . . 131

A.4 Experiment 3a - Basic31 (Best of Run 3) . . . . . . . . . . . . . . . . . . . . . . 132

A.5 Experiment 3b - Basic22 (Best of Run 9) . . . . . . . . . . . . . . . . . . . . . . 133

A.6 Experiment 3c - Basic211 (Best of Run 8) . . . . . . . . . . . . . . . . . . . . . 134

A.7 Experiment 4a - CRO Homogeneous (Best of Run 9) . . . . . . . . . . . . . . . 135

A.8 Experiment 4a - CRO Homogenous (Best of Run 9 Generation 249) . . . . . . . 136

A.9 Experiment 4a - CRO Homogenous (Best of Generations Run 9) . . . . . . . . . 137



Contents 8

A.10 Experiment 4b - CRO Heterogenous (Best of Run 2) . . . . . . . . . . . . . . . 138

A.11 Experiment 8 - CRO Homogenous Full Evaluation (Best of Run 4) . . . . . . . . 139

B Best Evolved Communicative Agents 141

B.1 Experiment 2 - Best Agent of Run 4 . . . . . . . . . . . . . . . . . . . . . . . . 141

B.2 Experiment 2 - Best Agent of Run 2 . . . . . . . . . . . . . . . . . . . . . . . . 141

C Best Socialised Agents 142

C.1 Experiment 5 - Best Socialised Communicating Agent of Run 4 . . . . . . . . . 142

C.2 Experiment 6a - Best Socialised Homegenous Pursuit Agent of Run 5 . . . . . . 142

C.3 Experiment 6b - Best Socialised Heterogeneous Pursuit Agent of Run 5 . . . . . 143

Bibliography 144



List of Figures

2.1 GA mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 GA crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 GP mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 GP crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 A difficult to search fitness landscape. . . . . . . . . . . . . . . . . . . . . . . 28

2.6 An easy to search fitness landscape. . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 GPsys a High Performance GP System . . . . . . . . . . . . . . . . . . . . . . 30

2.8 GPsys Parameters UML diagram . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.9 GPsys overall UML Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Soccerserver screenshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 The environment of the pursuit domain consists of a two dimensional (usu-
ally torroidal) world in which four predators must try to capture the prey by
surrounding it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 In the pursuit domain; a) movement is restricted to orthogonal directions, b)
capture positions are cells immediately adjacent to the prey, c) the prey is cap-
tured when all capture positions are occupied by predators, d) conflicts occur
when one or more agents try to occupy the same cell. . . . . . . . . . . . . . . 50

4.3 Collision conditions: a) agents 0 tries to move a cell occupied by agent 1, b)
agents 0 and 1 try to exchange positions, c) agents 0 and 1 try to move to the
same cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Video Player used to Trace Movement of Pursuit Agents . . . . . . . . . . . . 59

4.5 Experiment 1a : Performance Graphs of Evolved Homogeneous Agents . . . . 62

4.6 Experiment 1b : Performance Graphs of Evolved Heterogenous Agents . . . . 62

4.7 Experiment 1b: Capture Posistion Assignment . . . . . . . . . . . . . . . . . 62

4.8 Experiment 2 : Performance Graphs of Evolved Homogeneous Agents (with
identity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.9 Experiment 3a(31) : Performance Graphs of Evolved Mixed Agents . . . . . . 66

4.10 Experiment 3b(22) : Performance Graphs of Evolved Mixed Agents . . . . . . 66

4.11 Experiment 3c(211) : Performance Graphs of Evolved Mixed Agents . . . . . . 66

4.12 Experiment 3a(31): Capture Position Assignment . . . . . . . . . . . . . . . . 67



List of Figures 10

4.13 Experiment 3b(22) : Capture Position Assignment . . . . . . . . . . . . . . . 67

4.14 Experiment 3c(22) : Capture Position Assignment . . . . . . . . . . . . . . . 67

4.15 Experiment 4a : Performance Graphs of Evolved Homogeneous Agents (with
CRO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.16 Experiment 4b : Performance Graphs of Evolved Heterogenous Agents (with
CRO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.17 Experiment 4a(test 13) : End Game Trace of Agent Movement . . . . . . . . . 74

4.18 Experiment 4a(test 31) : End Game Trace of Agent Movement . . . . . . . . . 75

5.1 Experiment 5 : Performance Graphs of Evolved Communicating Agents . . . . 83

5.2 Experiment 5 : Evolved Parse Tree for best individual of Run 4 . . . . . . . . 83

5.3 Experiment 5 : Evolved Parse Tree for best individual of Run 2 . . . . . . . . . 84

6.1 Experiment 6 : Performance Graphs of Socialised Communicating Agents . . . 90

6.2 Experiment 7a : Performance Graphs of Socialised Homogeneous Pursuit Agents 92

6.3 Experiment 7b : Performance Graphs of Socialised Heterogenous Pursuit Agents 93

6.4 Experiment 7b : Capture Position Assignment . . . . . . . . . . . . . . . . . . 94

7.1 Parallel Demetic GP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Experiment 8 : Performance Graphs of Evolved Homogeneous Agents (Full
Evaluation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3 Experiment 4a : Performance Graphs of Evolved Homogeneous Agents (Fittest
of Generation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



List of Tables

2.1 The GP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 GPsys Design Goals and Implementation . . . . . . . . . . . . . . . . . . . . . 31

2.3 GPParameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 ChromosomeParemeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 GPObserver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Pursuit Domain Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Fitness Evaluation Pseudo code for the Pursuit Problem . . . . . . . . . . . . . . 55

4.3 Experiments 1-4 : Common Functions and Terminals . . . . . . . . . . . . . . . 57

4.4 Experiment 1 : Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Experiment 1a : Fitness of best evolved homogeneous agents . . . . . . . . . . . 61

4.6 Experiment 1b : Fitness of best evolved Heterogenous agents . . . . . . . . . . . 61

4.7 Experiment 2 : Additional Functions and Terminals . . . . . . . . . . . . . . . . 63

4.8 Experiment 2 : Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.9 Experiment 2 : Fitness of best evolved homogeneous agents (with identity) . . . 64

4.10 Experiment 3 : Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.11 Experiment 3a(31) : Fitness of best evolved mixed agents . . . . . . . . . . . . . 69

4.12 Experiment 3b(22) : Fitness of best evolved mixed agents . . . . . . . . . . . . 69

4.13 Experiment 3c(211) : Fitness of best evolved mixed agents . . . . . . . . . . . . 70

4.14 Experiment 4 : Additional Terminals and Functions . . . . . . . . . . . . . . . . 71

4.15 Experiment 4 : Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.16 Experiment 4a : Fitness of best evolved homogeneous agents (with CRO) . . . . 77

4.17 Experiment 4b : Fitness of best evolved Heterogenous agents (with CRO) . . . . 77

5.1 Experiment 5 : Actions Performed by Terminals and Functions . . . . . . . . . . 80

5.2 Experiment 5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Evaluation Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Experiment 5 : Results for Evolved Communicating Agents . . . . . . . . . . . 82

5.5 Experiment 5 : Simplified code for Run 4 . . . . . . . . . . . . . . . . . . . . . 83



List of Tables 12

5.6 Experiment 5 : Trace of Agent movement for Run 4 . . . . . . . . . . . . . . . . 86

5.7 Experiment 5 : Simplified code for Run 2 . . . . . . . . . . . . . . . . . . . . . 87

5.8 Experiment 5 : Trace of Agent movement for Run 2 . . . . . . . . . . . . . . . . 88

6.1 Experiment 6 : Results for Socialised Communicating Agent . . . . . . . . . . . 90

6.2 Experiment 6 : Simplified code for Run 2 . . . . . . . . . . . . . . . . . . . . . 91

6.3 Experiment 7a : Fitness of best socialised homogeneous pursuit agents . . . . . 93

6.4 Experiment 7b : Fitness of best socialised Heterogenous pursuit agents . . . . . 94

7.1 Experiment 8 :Fitness of best evolved Homogeneous agents (Full Evaluation) . . 107

7.2 Experiment 4a : Fitness of best evolved homogeneous agents at generation 249 . 108

7.3 Experiment 4a : Fitness of best homogeneous agents of run (no re-evaluation) . . 109



Chapter 1

Introduction

Nature has been very successful at ”programming” sophisticated multiagent systems ranging

from ”simple” agents such as ants and bees to sophisticated cognitive agents - ourselves. The

mechanism used to create these systems is Darwinian evolution. Our hypothesis is that a tech-

nique based on Darwinian evolution called Genetic Programming (GP) can be used to automati-

cally program software multiagent systems.

A multiagent system is one in which several interacting, intelligent agents pursue some set of

goals or perform some task. The central question in such systems is when and how should which

agents interact in order to achieve their goals. Answering this question is difficult and raises a

number of issues which are discussed further in the next chapter. We propose that we can use

genetic programming to provide a solution to this question and the related issues that it creates,

for any given problem domain.

Genetic Programming (GP) [Koz92b] is a relatively new technique that uses the principle of

Darwinian evolution [Daw86] to automatically program computers. GP has many advantages

over other techniques that have been used in an attempt to automatically program agents such

as neural networks and conventional genetic algorithms. The most important is that the repre-

sentation used by GP is a computer program. It is therefore possible for humans to understand

generated solutions and therefore predict their behaviour (compare with neural networks). Fur-

thermore, the generated programs are easily executed on current computer architectures and do

not require any specialised environments. A second advantage is that GP has been shown to be

very general and has been successfully applied to a wide variety of problems [Koz92b; Koz94b;

KDBK99]. Koza claims GP is the most general machine learning technique [Koz92b].

To prove our hypothesis that Genetic Programming can be used to automatically program multi-

agent systems we attempt to answer the following questions:

� What are the key issues in implementing multiagent systems?
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� Is GP capable of providing solutions to them?

� What are the problems in scaling GP to real world multi-agent applications?

� How can we solve these scalability problems?

Answers to the last three questions are supported by results from experiments.

Our key contributions are as follows:

We show that it possible to evolve multiagent systems using GP that:

� exhibit coordinated, coherent behaviour

� communicate explicitly, and in doing so decide what to communicate and how

� can resolve conflicts

� can be integrated into an existing society of agents

We also consider the scalability problems involved in the use of GP, both generally and in partic-

ular as a technique for automatically programming agents, and propose solutions to these prob-

lems. Related to scalability we discuss the importance of of formal software testing techniques

in the development GP technology, and look at the issues involved in the testing of MAS.

Lastly we designed and implemented a state of the art GP system in the Java programming

language and made it freely available (complete with source code and documentation) to the GP

community in 1997. This system has been supported and kept uptodate and has facilitated GP

research by others, which we believe is a key contribution to the GP community.

The layout of this thesis is as follows:

Chapters 2 and 3 introduce Genetic Programming and Multiagent Systems. Together, they set

the technical grounding for this thesis. Research combining the two fields is surveyed, and an

overview of our Genetic Programming system called GPsys is provided. The pursuit problem

was designed as a tested for researching MAS architectures. Haynes and Sandip [HSSW95b;

HS96c; HS97] used GP to evolve both heterogeneous and homogeneous agents for this problem.

We note however that whilst their work was successful at demonstrating how GP can decompose

tasks, conflict resolution was provided automatically by the environment and was not evolved.

The main focus of chapter 4 is to show that we can evolve agents that also resolve conflicts

using GP. We also further investigate task allocation for the pursuit domain. Communication

is an important aspect of multiagent systems, chapter 5 demonstrates that GP can be used to

evolve agents that communicate explicitly. We would like to be able add agents to a society of

previously-created agents to solve new problems. In chapter 6 We show that GP can be used
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to evolve agents that work within society of existing agents and learn to interact with them.

If we are to make GP a general technique for creating multiagent systems we need to assess

its scalability. Chapter 7 looks at scalability issues in GP with a particular emphasis on issues

that relate to its application to MAS. The fitness of programs evolved using GP is evaluated by

testing them. We believe that the GP community can benefit from formalised software testing

techniques developed to test human coded programs in software engineering. Chapter 8 looks at

software testing techniques for distributed and multiagent systems. Finally chapter 9 summarises

our work, and critically evaluates it. Further areas of research stemming from our work are

proposed. The appendices list the best evolved programs for each of the experiments that were

performed.



Chapter 2

Genetic Programming

The purpose of this chapter is to introduce genetic programming as a means of automatically

generating computer programs. The last part of the chapter provides an overview of a powerful

Genetic Programming system that we have designed and implemented.

Some of the most sophisticated programs in existence are not human coded, they evolved nat-

urally. They are to be found inside the cells of living creatures in the form of DNA. These

programs were “coded” by the process of natural selection as described by Charles Darwin and

are responsible for the highly optimised “machines” that we see around us. It is not surprising

therefore that AI community has been active in tying to harness the power of natural evolution

to build both hardware and software.

2.1 Genetic Algorithms

John Holland [Hol92] devised a class of algorithms inspired by Darwin’s theory of evolution by

natural selection called Genetic Algorithms. These algorithms abstract the key mechanisms used

in natural evolution, namely selection, reproduction and variation, and use them for optimisa-

tion and search [Gol89]. A population of trial solutions to a given problem are first generated

randomly. New solutions are bred from the fittest solutions selected from the old population

by applying genetic operators to them. These genetic operators vary the solutions, so that new

solutions are generated. The results is a new population of solutions. By repeatedly generating

subsequent solutions in the same manner we can theoretically generate progressively better so-

lutions. The best solution obtained so far is tracked during this process. When the best solution

meets our termination criteria, or we decide the the maximum number of generations that we

permit has been exceeded we terminate the run.

The representation of solutions used in Genetic Algorithms commonly consists of a bit-strings of

fixed length. In an engineering optimisation problem for example, these bit-strings might encode

a set of design parameters for which we are trying to find an optimal combination of values. The
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Figure 2.1: GA mutation
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Figure 2.2: GA crossover

initial population consists of a randomly generated set of such bit-strings. The fitness of the

bit-string is evaluated by measuring how useful it is. In our example we would decode each

bit-string to obtain our parameters, apply them to our model, and evaluate how well our model

behaves.

There are two selection schemes that are commonly used, fitness proportionate selection and

tournament selection. In fitness proportionate selection, individuals are selected with probabil-

ities in proportion to their fitness. This requires that the sum of the fitness values of the entire

population is known, and makes parallel/distributed implementations difficult. An alternative to

fitness proportionate selection is tournament selection. In tournament selection a small group of

individuals are chosen randomly from the population(typically 7), and ordered by their fitness

values. The fittest of these individuals are selected to take part in creating a new individual. In

steady state GAs, the individual to be replaced is often the individual with the lowest fitness in

the tournament. An advantage with tournament selection is that it is simple to implement, and

secondly that by varying the tournament size, one can vary the fitness pressure.

The genetic operators used to create new individuals include reproduction, mutation and

crossover. The reproduction operator simply creates an exact copy of the selected individual.

The mutation operator copies the selected individual and then randomly changes a portion of the

bit-string (figure 2.1). The crossover operator takes two individuals and exchanges random por-

tion of the bit-strings of each individual (figure 2.2). This operator potentially creates two new

individuals. Often however, only a single individual is created by discarding one of the resultant

off-springs.
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GAs have been successfully applied to a wide variety of problems including engineering, finan-

cial, imaging, VLSI circuit layout, gas pipeline control and production scheduling [Dav91], and

have been shown to provide near optimal solutions. A mathematical explanation for their suc-

cess called the Schemata Theorem was proposed by Holland [Hol73], and has been backed by

empirical support [Gol89]. The space of bit-strings of a given length can be partitioned into sets,

where each set consists of strings with similarities at certain positions in the string. For example

consider the set of all 5 bit-strings which begin with 1 and end with 0. We can describe such a

string by the similarity template or schema 1***0 where * represents a wild-card or “don’t care”

value. There are two properties of schemas that are used by the schemata theorem, order and

defining length. The order of a schema
�

, denoted ��� ���
is the number of fixed values in the

bit string. For example the string 01**1 has an order of 3. Schemas of higher order are more

specific than ones with lower orders. The defining length of a schema
�

, denoted ��� ���
is the

distance between the first and last fixed values. For example, the string 01*0* has a defining

length of 3. The schemata theorem makes predictions on the processing of schemas by the GA

which can be expressed mathematically as follows:

� � �
	��������� � � �
	������ � ���
�

� ������� � �� ��� � ��� ��� �"!$#
where:

�%� � �&	����
is the number of strings with schema

�
in the population at time

�
� � � ���

is the average fitness of the strings with schema
�

in the population

� � is the average fitness of the population

�
�

is the length of the strings

�
���

is the probability of crossover

�
�"!

is the probability of mutation

The theorem predicts that short defining length, low order, above average schemas called building

blocks receive exponentially increasing trials in subsequent generations. A possible explanation

of how GAs work is therefore by combining building blocks (or partial solutions) to form strings

of high fitness (optimal or near optimal solutions).

2.2 Variable Length and Hierarchical representations

A variable length representation for GAs was first proposed by Smith [Smi80] to create a variant

on the classifier systems (evolved production systems) defined by Holland and Reitman [HR78].
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Figure 2.3: GP mutation

The GA was used to evolve complete rule-based programs for playing poker. The crossover op-

erator used by Smith set restrictions on where crossover can be applied in an evolving structure.

This inspired Cramer [Cra85] to use a tree based representation to evolve symbolic expressions,

using sub-tree crossover. Koza developed a technique for using sub-tree crossover to evolve ex-

pressions in the LISP programming language and successfully demonstrated the usefulness of

the technique on wide range of problems [Koz92b]. This technique is now known as genetic

programming.

2.3 Genetic Programming

Genetic Programming is technique for automatically programming computers. It uses the power

of GAs to search the space of possible computer programs to find suitable programs for the de-

sired application [LQ95]. Koza describes it as “the most general machine learning technique”,

a claim which is substantiated by the large number of applications to which it has been suc-

cessfully applied [Koz92b; Koz94b; KDBK99]. The representation commonly used in GP is a

program parse tree. Program parse trees have the advantage that they represents syntactically

correct computer programs, and are easy to manipulate. The branches in the parse tree repre-

sent functions which take arguments, the leaves represent zero-argument functions, variables or

constants. The fitness of a GP is measured by testing the program that it represents. Fitness is

awarded to programs in proportion to how well they perform.

The reproduction, mutation and crossover operators work with program parse trees instead of bit-

strings. Reproduction creates a clone of the selected individual. Mutation works by copying the

parent parse tree, selecting a node in the copy at random and then replacing it with a randomly

created subtree (figure 2.3). The latter is created using the same process used for generation

of initial population. The crossover operator works by copying the parse trees of the parents,
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selecting random nodes from the copies and swapping them (figure 2.4). Although two children

can potentially be created, most GP implementations discard one of them.

The standard GP algorithm is essentially the same as a GA, and is described with pseudo code

in table 2.1. The most common selection methods used in GP are fitness proportionate selection

and tournament selection, and work in the same way as they do in GAs.

The initial population is created by randomly generating program parse trees. The parse trees

are formed by selecting functions and terminals from problem specific sets defined by the user.

The specific selection mechanism will be described later in section on run parameters. To allow

arbitrary trees to be generated, the functions in the function set must accept arguments chosen

from any of the primitives in the function and terminal sets. This property is called closure. Dur-

ing tree generation, whenever a function is selected, subtrees for its arguments are also created

recursively using the same process. Tree growth is restricted both naturally when the tree has

leaves on each outer node, and artificially when a branch of the tree reaches the maximum al-

lowable depth. Other possibilities include when the tree has the maximum allowable nodes, this

is typically used with linear representations. To prevent very short trees the root node is usually
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Table 2.1: The GP Algorithm

initialise population with randomly generated individuals

evaluate the fitness of the individuals in the population

while the termination criteria has not been met

for p = 1 to size of population

choose a genetic operator

select parent(s) from current population based on fitness

create offspring using selected operator and parent(s)

place offspring in the new population

evaluate the fitness of the offspring

endfor

the current population becomes the new population

endwhile

always chosen from the function set.

2.3.1 The Five Basic Steps

There are 5 preparatory steps required to code a GP application [Koz92b]. These involve defining

the following:

1. The Terminal Set

2. The Functions Set

3. The Fitness Function

4. The Run Parameters

5. The Termination Criteria

Koza [KDBK99] describes the first two steps as defining the search space for the problem, and

the fitness measure as a means of determining the outcome of the search.

2.3.2 The Function and Terminal Sets

The function and terminal sets together form a limited language with which GP can generate

programs. The function set contains the primitive functions in the language that take one or

more arguments. These functions are selected because they a-priori are believed to be useful

for solving the problem. The functions can be typical constructs found in most programming

languages such as:

� conditionals (if, if-then-else, or switch statements)
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� loops (while, for, do-while)

� recursive function calls

� variable assignments

� indexed memory operations (array manipulation)

� math functions

� logical and bitwise operations

Alternatively they can be user defined functions peculiar to the application domain, such as If-

CellOccupied, or sendMessage. It should be noted that the inclusion of loops and recursion

create the possibility that a program loops or recurses indefinitely, thereby making fitness evalu-

ation difficult. Many solutions to the iteration [Koz94b; KDBK99], and recursion [Bra95; Bra96;

WL96; YC98; KDBK99] problems have been provided.

The terminal set contains the variables, constants, zero-argument functions, and random

ephemeral constants for the application. Random ephemeral constants are real numbered or

integer constants that are initialised with random values at the start of the run and maintain their

values throughout the run.

2.3.3 The Fitness Function

The fitness function measures the success (fitness) of an evolved program. The value is typi-

cally obtained by executing the program for a set of test cases, and measuring how closely the

programs generates the desired output. The fitness of a program can also contain other mea-

surements such as efficiency and size of code. The measured fitness of a program is used to

determine whether it will be selected to take part in the production of the next generation. Good

fitness functions are those that are accurate and highly sensitive to differences in performance of

the programs.

The fitness measure can be thought of as a means of specifying the high-level requirement spec-

ifications for the solution. It describes “what needs to be done but not how to do it” [KDBK99].

2.3.4 The Run Parameters

Two of the most important parameters are the population size and the number of generations.

These parameters determine the amount of exploration and exploitation performed by the GA. A

small population that is evolved for a large number of generations is biased for exploitation. Sim-

ilarly, a large population evolved over a small number of generations is biased towards greater
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exploration. By carefully choosing the value of these parameters, one can balance exploration

with exploitation.

The reproduction, crossover and mutation probabilities are used to select the genetic operator to

be used to create offsprings. They specify the probability with which each of the three genetic

operators are chosen. Reproduction and mutation probabilities are usually set to be very small,

mutation rates of less than 0.05 are quite common.

The shape and depth of the trees created for the initial population can be specified by the cre-

ation method, and the maximum depth parameters respectively. There are two creation methods

commonly in use called the full and grow methods. The full method creates symmetric trees that

are of maximum depth along any branch from the root. This is achieved by selecting the root

node randomly from the function set, and then continuing recursively to select randomly from

the function set for sub-nodes until the maximum allowable depth is reached ( at which point a

node is selected from the terminal set).

Selecting the grow method creates asymmetric trees. As with full trees, the root is always chosen

from the function set, this time however we continue recursively by selecting children from the

function and terminal set, until either a terminal is selected or the maximum depth is reached (at

which point a terminal is always selected).

A third method called ramped half-and-half is used to ensure population diversity in the initial

population. The size of trees created is ramped up from 2 to the maximum allowable depth. Half

of these trees are created using the full method, and the other half are created using the grow

method.

2.3.5 The Termination Criteria

The termination criteria determines when the algorithm should stop. Typical termination criteria

include:

� the number of evolved generations exceeds some maximum

� the fitness of the best individual reaches desired value

� the genetic information known to be needed for the solution has been lost

The last first and last of these effectively abort a less than successful run.

2.4 GP Extensions

The original GP technique has been advanced with many extensions. Those that have been

used or referenced later in this thesis are described in this section. A more complete survey of
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techniques can be found in [LQ95] and in [BNKF98].

2.4.1 Automatically Defined Functions

If we chart the development of programming languages, we see a steady trend of higher and

higher levels of abstraction being applied. The earliest languages were machine code and were

quickly replaced by assembly level languages. These in turn lead to the development of high level

languages such as FORTRAN. The latter facilitated code reuse first in the form of subroutines

and later in the more easily parameterised forms of functions and procedures. Useful functions

were made available in the form of libraries which are themselves a higher form of functional

abstraction. The introduction of object oriented languages which support data abstraction or

abstract data types (ADTs) further increased the amount of code reuse.

The advantages of abstraction are that it allows the control of complexity and facilitates code

reuse. Code reuse is particularly useful for GP because it means that a block of useful code need

not be independently rediscovered at different places within the program where it is needed. In

this section we look at a key technique that has been used to introduce abstraction into GP.

Automatically Defined Functions(ADFs) [Koz93; Koz94b] are evolvable functions (subroutines)

within an evolving genetic program, which the main result producing branch of the program and

possible other ADFs can call. Each ADF is a separate tree; consisting of its own terminal and

functions sets. The terminal sets for ADFs that take arguments will also contain terminals for

each argument. These terminals get instantiated with the values of the parameters that have been

passed when the ADF is called during fitness evaluation. The functions sets for the ADFs can

contain primitive functions, as well as other ADFs that have been defined. The result producing

branch is just a special ADF which is called by the fitness function when evaluating the pro-

gram. ADFs effectively act as functional units or building blocks that can be combined to create

programs.

The crossover and mutation operations are modified to work with ADFs, so that mutation mutates

an ADF at random, and crossover exchanges subtrees between the same ADFs of each individual.

Depending on the implementation crossover will either be performed for a single ADF, or on all

ADFs.

ADFs have been successfully used on problems that proved too difficult for genetic programming

without ADFs. The addition of ADFs adds an extra step to the preparatory steps for a GP appli-

cation. The extra step defines the architecture in terms of number of ADFs and the arguments

that they take, and the result producing branch.
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2.4.2 Strongly Typed GP

Koza’s early GP system was restricted in that, functions and terminal were designed to be all of

the same type. This property that Koza calls closure allowed functions to take any terminals or

function calls as arguments, and return any terminals or function calls as results. The advantage

with this approach was that it greatly simplified tree generation and their manipulation by the

crossover and mutation operators.

Montana [Mon94] relaxed this restriction in his Strongly Typed Genetic Programming (STGP)

system thus allowing functions and terminals to have type specifications. STGP also supports

generic types, which help reduce the number of different function definitions that are needed.

In the implementation, the GP algorithm was modified to ensure that arguments to functions are

always of the correct type, and that the generated program (or ADF) returns the correct type.

Tree generation was facilitated by type possibility tables (computed at the start of a run) that

list functions and terminals available at a given tree depth. Care is taken so that when a tree is

mutated the root of the subtree replacing the node that is mutated is of the same type. Similarly

crossover is restricted so that only subtrees with roots of the same type may be exchanged.

Montana argues that the increase in complexity in the GP algorithm is more than compensated

by the considerable reduction in the size of the search space, which in turn reduces the effort

required to find solutions.

A concern with this approach, is the effect that it has on the connectivity of the search space.

Highly restrictive grammars may make the search space too sparse, making it difficult to move

from one point to another. This in turn is likely to cause premature convergence.

2.4.3 Steady State GP

The standard GP evolutionary engine is described as generational because it works in stages

called generations. After the initial population has been created, each subsequent generation is

created by applying genetic operators to individuals selected from the last generation to form

an entire new population which replaces the old. New individuals are not made available for

reproduction until the entire new population has been created.

In Steady State GP (SSGP) engine [Rey92; Rey94b; Rey94c], there is no notion of new or old

generations, instead there is just a continuous change of individuals in the population. When a

new individual is created it replaces an existing individual in the population, and hence imme-

diately becomes available for reproduction. The benefits of this approach are that it is memory

efficient, and that it is easy to parallelize. It is memory efficient because only one population

needs to be in memory, where as with a standard generational engine, two are required.
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2.4.4 Indexed Memory and Data Structures

In his earlier work, Koza used named memory to allow state to be maintained. The function Set-

Value in conjunction with a terminal representing a named memory location(variable) can be

used to set the value of that memory location. Teller [Tel94] added indexed memory capability

to GP. He used an array of memory locations which could be manipulated via read and write

functions. The latter take the index of the memory location as an argument.

Langdon [Lan95; Lan96a; Lan96b; Lan96c] used GP with indexed memory to successfully

evolve queue and stack abstract data types (ADTs) using a chromosome structure with multi-

ple trees. Each tree in the chromosome was used to represent one of the required ADT member

functions. The results suggest that it may be possible to extend the level of abstraction in GP

from pure functional abstraction as in ADFs to full ADTs. This may help increase the scalability

of GP.

2.4.5 Co-Evolution

In nature organisms interact not just with their environment, but also with each other. Sometimes

they are in direct competition with each other as happens with predators and prey, or parasites

and hosts. The fitness of these organisms becomes relative to each other. A predator is deemed

fit if it can catch prey necessary for its survival. Conversely, a fit prey is better able to escape

predators. Dawkins [Daw86] describes how such competitive co-evolution leads to an arms race,

where each organism evolves to counteract any improvement by evolution of its competitor.

This approach has been applied to GP [Koz91; AP93; Jan94; Rey94a; HSSW95b], and involves

creating and evolving two or more populations instead of one. The fitness of individuals in one

population is measured relative to individuals in the other and vice versa.

We can do this by testing each individual in one population against:

1. each individual in the other

2. a random subset of the other

3. the current best of the other

The first method is likely to be too compute intensive to be practical and hence one of the other

two techniques is normally used.

In cooperative co-evolution (which is comparable to symbiosis in nature [Sap94]) the programs

are tested together, and pairs of programs that work well together are rewarded with higher

fitness.
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2.5 Theory

2.5.1 Fitness Landscapes

In the traditional GA individuals in a population are represented as fixed length bitstrings. The

total number of possible individuals is equal to the total number permutations of the bitstring, or
���

where � is the of bits in the bitstring. Suppose that we plot these individuals as points on a

horizontal plane such that the distant between individuals is equal to the number of bit changes

required to get from the one individual to the other (the hamming distance). Suppose then that

we give these points a vertical component proportional to the fitness values of the individuals

that they represent. What we end up with is called a fitness landscape, where the peaks represent

location of high fitness, and the valleys locations of poor fitness. The actual ruggedness of this

landscape would depend on the difficulty of the fitness function. A particularly difficult function

might result in a fitness landscape which is flat and virtually featureless, with the exception of a

few widely distributed spires (figure 2.5). Conversely a very easy fitness function might consist

of a “mountain” with a single peak (figure 2.6).

When we generate an initial random population of individuals, we are effectively placing a mesh

over the fitness landscape, simultaneously sampling the fitness function at different places. Ge-

netic operators such as mutation and crossover then provide a means for exploring this landscape.

Single bit mutation allows us to move one point at a time across the landscape. Crossover and

multi-bit mutation allow us to take giant leaps across the landscape. An assumption of the GA is

that if we select individuals of higher fitness, then by applying the genetic operators, we should

end up on the landscape at a point of high fitness. Thus there should be some correlation between

parents and children, This notion is called auto-correlation.

The fitness landscape provides a powerful tool for visualising the difficulty of a problem. How-

ever, if we try to use this tool in GP, we run into one major difficulty; how to decide which points

are adjacent to each other. In the fixed-length standard GA we use the hamming distance, but

this is not possible in the GP representation which is neither bit oriented nor is it of fixed length.

The individuals in GP are program trees which must be compared in some way to determine how

far apart they are to be plotted on the fitness landscape. The latter is not very obvious. Kinn-

ear [Kin94] examines the structure of the fitness landscape on which GP operates, and analyses

the landscapes of a range of problems of known difficulty in order to determine the correlation

between landscape measures and problem difficulty. The landscape analysis techniques that he

employs include adaptive walks, and the autocorrelation of the fitness values of random walks.

His results indicate that former shows better correlation with the problem difficulty than the latter

for GP.
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Figure 2.5: A difficult to search fitness landscape.

Figure 2.6: An easy to search fitness landscape.

2.5.2 GP Schema Theorem

A number of attempts have been made to provide a schema theorem(ST) for GP. All the early

attempts were position-less STs, in which information about the position of the schema compo-

nents were omitted. Position-less schemas can be instantiated many times in the same program.

Koza defined a schema as a set of trees all having one or more subtrees in common [Koz92b].

O’Reilly and Oppacher [OO95] extended this definition to include incompletely defined expres-

sions called tree fragments. A tree fragment is a tree with at least one “don’t care”(symbol #)

leaf. In their definition a schema is multiset of subtrees and tree fragments.

In later attempts positioned schemas were used, in which schemas are represented using rooted

trees or tree fragments. Rooted schemas unlike position-less schemas, can be instantiated no

more than once in a tree. Rosca [Ros97; RB99] devised a rooted tree schema theorem in which

a schema is a tree composed of the same function and terminal sets as used in the run, with

the exception that the terminal set includes “#”, which can stand for any valid subtree. In Poli

and Langdon’s schema [PL97], the “don’t care” symbol (“=” in their case) is not restricted to

appearing in the leaves of schema trees, and furthermore instead of representing any valid sub-
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tree, it represents a single node. A schema therefore represents the set of trees that are of the

same size and shape, and which have the defined nodes of the schema in the same places. Their

schema theorem applies only to one-point crossover, and asymptotically converges to Holland’s

GA schema theorem. More recently in their hyperschema theorem [Pol00] they allow terminals

in a schema to contain either a wild-card that represents any node(“=”), or any valid sub-tree.

2.6 GP Applications

GP has been successfully applied to a very wide range of problems including:

image processing computer graphics

process control autonomous agents

robotics data mining

electical circuit design neural networks

modeling natural language processing

classification pattern recognition

signal processing art

A survey of some these applications can be found in [LQ95; BNKF98; Koz92b; Koz94b;

KDBK99]. William Langdon maintains a bibliography of published material at:

“http://www.cs.bham.ac.uk/ wbl/biblio/README.html”.

2.7 GPsys

To help advance research in Genetic Programming we designed and developed an extendable

GP system in the Java programming language. The system consists of over 16600 lines of code,

at least 50% of which are comments and documentation. This environment was used for all the

experiments in this thesis and is also used by many GP researchers worldwide(the current release

has over 500 recorded downloads). GPsys can be downloaded from:

“http://cs.ucl.ac.uk/staff/A.Qureshi/gpsys.html”.

The design goals of GPsys and how they were realised are shown in table 2.2.

We deemed the most useful GP extensions to be STGP and ADFs, these were consequently

in the design. It should be noted that in our ADF implementation, crossover is performed for

each ADF. Our original design (GPsys 1) used a SSGP engine to improve memory efficiency,

the current release has both a SSGP and a memory efficient generational engine. Many of our

design goals were realised just by choosing Java as the implementation language.
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Figure 2.7: GPsys a High Performance GP System

2.7.1 The Java Programming Language

Java is a robust, powerful and efficient, multi-threaded, distributed object oriented programming

language. Java compiles into bytecode, which is a machine code for a virtual machine called the

Java Virtual Machine (JVM). The JVM interprets the bytecodes to execute the program, and has

been ported to many different platforms (operating systems and processors) and provides Java

with excellent portability. Most JVMs contain code to speed up the execution of Java programs

including just in time compilers and run-time optimisers. The former dynamically compiles byte-

code into the machine code for the target processor, the latter monitors program execution and

optimises the executing code. Together these techniques overcome any performance arguments

against Java.

The Java language has been designed for robustness, which is achieved by minimising program-

ming errors. Programming errors are minimised by replacing the use of pointers by references.

References differ from pointers in that only the JVM can generate references, which cannot be

used in arithmetic operations to create new references. This feature alone removes many pointer

errors that plague languages like C and C++ such as segmentation violations and bus errors.

Arrays access is also checked at runtime for out of bound errors. The inclusion of exception

handling forces the programmer to consider and deal with run-time exceptions at compile time.

This again reduces the probability of errors.
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Design Goal Implementation

easy of use Plug and Play model

Factory/Observer-Observable design patterns

support for most useful GP extensions ADFs, STGP

extensibility OO-Design

flexibility OO-Design

portability Java

robustness Java, Exception Handling

high performance Java

efficiency SSGP, Memory Efficient Generational Engine

support for persistence Java Serialization, GZIP Compression

support for parallel/distributed architectures Java Networking/RMI

Table 2.2: GPsys Design Goals and Implementation

Java has an extremely rich library of pre-built objects which are included in every JVM. These

objects include support for graphics, databases, networking, input/output, advanced data struc-

tures, string manipulation, compression algorithms and much more. Thus small, very powerful

programs can be written with minimal effort.

There is excellent support for distributed computation, in the form of Sockets, or Remote Method

Invocation. JVMs are also included in many web browsers, which allows applets (Java code

designed to be run in a browser) to be loaded and executed securely within the browser thus

opening the possibility for massively distributed computing.

2.7.2 Application Programmers Interface

One of the key goals of GPsys was that it should be easy to use, requiring no code changes to the

GP engine by the user. We therefore created a “plug and play” model as depicted in figure 2.7.

To use GPsys, one instantiates a GPsys object, and then calls the evolve method, which starts

evolution. In order to instantiate GPsys, we must pass to the constructor a GPParameters object.

The GPParameters object codes all the parameters that are required by GPsys, and in addition

is used by GPsys to store all state information during a run. The GPParameters class definition

includes methods that allow a GPParameters object to be saved and restored from disk, hence

allowing a GPsys run to be suspended and restarted. The full set of parameters that can be

specified include parameters for the run, and parameters for the problem (table 2.3). GPsys

supports ADFs, and the parameters for each ADF tree is specified using ChromosomeParameters

(table 2.4). The function and terminal set for each ADF is specified as Function and Terminal
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arrays in a ChromosomeParameter. Each Function and Terminal in these arrays implements

the factory design pattern [GHJ � 95], so that GPsys can create many instances of these objects

by calling factory methods. Many common GP primitives are provided as part of a primitives

package in GPsys, including conditionals, arithmetic functions, and indexed memory operators.

Some of these primitives support generic types.

The object used to store and measure the fitness of an Individual is specified by the Fitness

object in the GPParameters object. Once again, the factory design pattern is used, so that many

Fitness objects can be created using this one instance. The Fitness object abstracts the user

implementation of a fitness function and fitness representation. Abstract methods define the

contract that the user must fulfill to allow the fitness object to be used by GPsys(table 2.5). The

termination condition is also specified by the fitness function.

GPsys makes use of the observer/observable design pattern [GHJ � 95] to provide a clean way

of monitoring a run. The users need to create and register an observer object with GPsys (the

observable object) in order to be told when something interesting happens. The observer object

must be an instance of a class that implements the GPObserver interface, and is registered by

passing a reference to it in the GPParameters object. The GPObserver interface specifies the

call-back methods that are used to communicate information by GPsys to the user (table 2.6).

2.7.3 Internal Data Structures

The internal data structures used by GPsys are shown in figure 2.9. A Population consists of

among other things an array of Individuals. Each Individual has associated with it an array of

Chromosomes, one for each of the ADFs and a Fitness. The result producing branch(RPB) is

normally the first ADF in the array, although this can be changed. Each Chromosome consists

of a tree of Genes.

There are two kind of Genes in the tree, GeneFunctions and GeneTerminals. GeneFunctions rep-

resent function calls and hence have an array of Gene arguments associated with them. GeneTer-

minals are the leaves in the Gene tree and represent Terminals. All Genes hold Primitives which

contain the Type and code definition for the primitive which they represent.

There are two kinds of Primitives, Functions and Terminals. Functions represent Primitives

which take arguments, and therefore contain Type specifications for each argument that they take.

Terminals represent zero-arity primitives, and hence just contain code definitions. ADFunctions

and ADTerminals are subtypes of Functions and Terminals which represent automatically de-

fined functions and terminals respectively. They therefore do not contain code definitions, but

instead contain an index of the Chromosome that defines them in an Individual’s Chromosome

array.
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Run Parameters

Parameter Name Description

populationSize The size of the population to be used.

generations The maximum number of generations.

pMutation The probability that a mutation operation is chosen.

pReproduction The probability that a reproduction operation is chosen.

tournamentSize The size of the tournament to be used for tournament selection.

rng The random number generator to be used.

rngSeed The seed to be used for the random number generator.

engine The GP engine to be used for evolution. Possible selections include

a generational engine or a steady state engine.

Problem Definition Parameters

Parameter Name Description

adf An array of ChromosomeParameters which define the parameters

for each Chromosome (ADF) to be evolved.

fitness The fitness definition for the problem.

observer The observer object to which information during evolution is sent.

Table 2.3: GPParameters

Users create their own functions and terminals by extending Function, Terminal, ADFunction or

ADTerminal classes. Functions and Terminals are evaluated by GPsys when a GP is executed

during fitness evaluation. The return value can be of any type, and depending on the type, the user

must override one of the evaluation methods which forms part of the contract of a user defined

Function or Terminal. These evaluation methods have been divided for efficiency reasons into

those that return Java primitives (byte, short, int, long, char, boolean, float, double) or those that

return an object or an array.

The Population object also contains a reference to a CrossoverBookingKeeping data structure.

The latter is used to implement memory efficient crossover for the generational evolutionary en-

gine as described by Koza [KDBK99]. Most GP systems maintain two populations during a run,

the first is the active population which is used to create the next population. This new population

then becomes the active population in the next iteration. The memory efficient crossover process

divides the task of generating a new population into two phases. In the first phase we decide

which parents from the current population are going reproduce using which genetic operation.

This information is stored in a book keeping data structure. In the second phase we execute the
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Parameter Name Description

createMethod The method used to create the initial population.

Possible values include Full, Grow and Ramped Half-and-Half.

maxDepthAtCreation The maximum creation depth of the Gene Tree for this chromosome.

maxDepthAtMutation The maximum depth of trees created for mutation.

maxDepthAt The maximum depth of trees for this chromosome.

functions The function set for this chromosome.

terminals The terminal set for this chromosome.

type The type to be returned by this chromosome.

types The set of types used by this chromosome.

Table 2.4: ChromosomeParemeters

Function Description

void add(Fitness f) Add a fitness to this fitness object.

void divide(int divisor) Divide the fitness by the specified integer.

boolean equals(Fitness f) Tests if this fitness � f.

boolean lessThan(Fitness f) Tests if this fitness � f.

boolean greaterThan(Fitness f) Tests if this fitness � f.

Fitness instance() Creates a default Fitness object.

Fitness instance(GPParameters p, Individual i) Creates a Fitness Object by evaluating

the fitness of i.

Table 2.5: Fitness

genetic operations to create the new individuals.

The advantage with this approach is that by carefully scheduling the order in which we execute

the genetic operations we can greatly reduce the amount of individuals that we need to hold

in memory. A pigeon hole argument can be used to calculate that if the population contains �

individuals, then we only need space for at most �  �
individuals, instead of the

� � individuals

normally used. The CrossoverBookKeeping data structure holds four lists. These four lists hold

information about parents and the genetic operations in which they are involved. Parents that

have 0, 1, 2 and more than two genetic operations outstanding are stored in lists 0, 1, 2 and

3 respectively. When executing the genetic operations, the individual to be replaced is chosen

from list 0 (which is always initialised to contain information about the two extra slots mentioned

earlier). The parent to be used in the next genetic operation is the parent with the least number
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Function Description

void generationUpdate( Invoked after a new generation has been created.

GPParameters p, int cm) cm specifies how generation was created

(via creation, from a stream or evolved)

void individualUpdate( Invoked after a new Individual has been created.

GPParameters p, Individual i, int cm) cm specifies how the Individual was created

(randomly, via reproduction, mutation or crossover).

void diagnosticUpdate( Invoked whenever unusual event occurs,

java.lang.String s) s indicates what happened.

void exception(GPException e) Invoked whenever an exception occurs.

Table 2.6: GPObserver

of outstanding genetic operations.

2.8 Conclusion

We can think of GP from two different perspectives. From a machine learning perspective

[Mit97], GP is a general technique that allows a machine to learn how to solve a given task

from training examples (the test cases). ML researchers would describe GP as a beam search in

which the population of computer programs is the beam, and the evaluation metric is the fitness

function. From an algorithmic complexity theory perspective [LV97], we can view GP as com-

pression algorithm which creates a compressed representation (the computer program) of a set

of input/output tuples (the test cases).
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Chapter 3

Intelligent Agents and Multiagent systems

In this chapter we provide a brief overview of the concepts of agents, and multiagents systems

and look at the key problems in designing and implementing them. A survey of the applica-

tion of Genetic Programming to the automatic programming of agents is presented, setting the

background for the rest of the thesis.

3.1 Agents

There is no universally agreed definition of the term agent, the definition of agents that we use

in this thesis is that used by Jennings and Wooldridge [JSW98; WJ95]:

“an agent is computer system, situated in some environment, that is capable of flexible au-

tonomous action in order to meet its design objectives.”

Their definition is based on the following concepts:

autonomy agents have the ability to act without the direct intervention of humans or other

agents, and can control their own actions and internal state

situatedness agents are situated in some environment which they can at least in part perceive

and manipulate

flexibility agents possess the properties of responsiveness, pro-activity and social ability

responsiveness the agents perceive their environment and respond in timely fashion to changes

that occur in it

pro-activity agents should not simply act in response to their environment, they are able to

exhibit goal-directed behaviour by taking the initiative

social ability agents should be able to interact with other agents(and possibly humans) to com-

plete their own problem solving and to help others with their activities



3.1. Agents 39

They further define an agent-based system as one in which the key abstraction used is an agent.

Such a system could be comprised of one or many agents. When they are composed of more

than one agent they are referred to as multiagent systems. A key question in agent research is

how to build agents that have the desirable properties stated above. A number of architectures

for building agent-based systems have been proposed. These can be classified into deliberative,

reactive and hybrid architectures.

3.1.1 Deliberative Architectures

Deliberative architectures are derived from classical approaches to artificial intelligence, and

treat agents as knowledge based systems. The emphasis is therefore on knowledge representation

techniques and inference methods. Typically a model of the environment, the goals of the agent

and its capabilities are represented symbolically, and some form of symbolic reasoning is used

to determine which action to perform. A weakness with this approach is that the time taken for

such reasoning may invalidate or reduce the utility of the action, so that responsive behaviour

may not be possible. Furthermore, symbolic representation of some environmental information

may not be easy to accomplish(consider visual information).

BDI agents are a class of deliberative agents that draw inspiration from the theory of human

practical reasoning developed by the philosopher Bratman [Bra87]. Such agents are built from

components consisting of data structures representing the beliefs, desires and intentions of

the agent, and functions that represent its deliberation and means-end reasoning. The infor-

mation that the agent has of its environment is represented by its beliefs. The desires rep-

resent options available to the agent, which become intentions if the agent decides to com-

mit resource to achieving them. Deliberation is the process of deciding what goals(desires)

we want to achieve, and means-end reasoning determines how to achieve them [Wei99;

JSW98].

3.1.2 Reactive Architectures

Reactive architectures pioneered by Brooks [Bro86] take a radically different approach to build-

ing agents than that of classical AI, and reject symbolic representation and reasoning. Instead

they stress the importance of situatedness and embodiment, in the creation of intelligent rational

behaviour. Intelligent behaviour is seen as emerging from the interaction of an agent with its

environment and from the interaction of simpler behaviours [Bro91]. To test these ideas, Brooks

developed an an agent control architecture called the subsumption architecture with these proper-

ties. In the subsumption architecture an agent is composed of a collection of task accomplishing

behaviours arranged in layers The task accomplishing behaviours themselves are extremely sim-

ple, consisting of finite state machines that map sensory input to some action. To prevent multiple
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behaviours from being simultaneously activated, the layers have priorities, such that lower layers

can inhibit behaviours in upper layers.

3.1.3 Hybrid Architectures

Hybrid architectures attempt to combine both deliberative and reactive approaches. These archi-

tectures often use vertical or horizontal software layers arranged in a hierarchy, with different

levels of abstraction. The distinction between the two layering methods is that with horizontal

layering, all layers have access to sensors and effectors, whereas with vertical layering, sen-

sors and effectors are each dealt with by at most one layer. Typically three layers are used,

which starting from the lowest layer include the reactive level, the knowledge level and the

social knowledge level. The knowledge level has a symbolic representation of the agent’s envi-

ronment, and the social knowledge level has a symbolic representation of other agents [Wei99;

JSW98].

3.2 Multiagents Systems

DAI is a subfield of artificial intelligence and is concerned with situations in which several sys-

tems, interact in order to solve a common problem [CC96]. These systems may include both

humans and machines. Whereas in classical AI, the metaphor of intelligence is based on an

individual human behaviour, and the emphasis put on knowledge representation and inference

methods, the metaphor used in DAI is based on social behaviour, and the emphasis is placed on

actions and interactions [SDB92].

Research in DAI is traditionally divided into two subfields, distributed problem solving(DPS) and

multiagent systems [CC96; Gas91]. DPS is concerned with dividing the work involved in solving

a particular problem amongst a number of nodes that divide and share knowledge about the

problem and developing solution. The emphasis in DPS is on task decomposition and solution

synthesis. MAS research is concerned with the behaviour of a collection of autonomous agents

aiming to solve a given problem, where the problem being solved is often beyond the knowledge

and capabilities of any individual agent [Wei99; CC96]. Weiss uses a modern definition of

multigents systems which is interchangeable with DAI and covers both DAI subfields [Wei99].

This is the definition that is used in this thesis. Potential benefits of MAS are increased reliability,

better performance and lower software complexity.

The characteristics of multiagents systems are as follows [JSW98]:

� Each agent has incomplete information, or capabilities for solving the problem, thus each

agent has a limited viewpoint;

� there is no global system control;
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� data is decentralised; and

� computation is asynchronous.

Owing to these characteristics the task of designing such agents is difficult. The following list

taken from [JSW98] represent the key problems in the design and implementation of MAS:

1. How to formulate, describe, decompose, and allocate problems and synthesise results

among a group of intelligent agents?

2. How to enable agents to communicate and interact? What communication languages and

protocols to use? What and when to communicate?

3. How to ensure that agents act coherently in making decisions or taking action, accommo-

dating the nonlocal effects of local decisions and avoiding harmful interactions?

4. How to enable individual agents to represent and reason about the actions, plans and

knowledge of other agents in order to coordinate with them: how to reason about the

state of their coordinated process (e.g. initiation and completion)?

5. How to recognize and reconcile disparate viewpoints and conflicting intentions among a

collection of agents trying to coordinate their actions?

6. How to effectively balance local computation and communication? More generally how

to manage allocation of limited resources?

7. How to avoid or mitigate harmful overall system behaviour, such as chaotic or oscillatory

behaviour?

8. How to engineer and constrain practical DAI systems? How to design technology plat-

forms and development methodologies for DAI?

Our general answer to these questions is that by using GP to evolve agents, we can simultane-

ously solve many of these problems. Furthermore, we are suggesting that GP could be used as a

general methodology for developing multiagent systems.

3.3 Evolving Agents with GP

We can apply GP to agent-based computing in the following ways:

� use gp as a learning or planning technique for agents

� evolve complete agents
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� combine both(use GP to evolve agents that themselve use GP as a learning technique)

All of the research applying GP to agents to date, has focussed on the first approaches. Much of

the research in GP suggests that GP can be used as very generic learning technique, and therefore

its use as a learning technique for agents is highly attractive.

3.3.1 GP as a Learning Technique for Agents

Clack et al [CFLY97; Cla97] for example use GP to evolve document classifying agents. GP is

used to search the space of document classification expressions to find expressions that correctly

classify the users information needs. The evolutionary process need not ever end, allowing the

classifications to co-evolve with changes in the users information needs.

Since plans are effectively just computer programs, the use of GP for plan generation is tempt-

ing. The Genetic Planner devised by Handley [Han93; Han91; Han94b] achieves planning by

searching the space of plans. The search space is defined in the usual GP way as the set of

functions(operators in planning terminology) and terminals. Plans are evaluated for fitness in a

simulation of the world in which they are to be executed. Handley showed that he could gen-

erate plans for navigation of a robot on 2d world without any reasoning mechanism, and thus

avoid traditional planning issues such as the Sussman anomaly, and the dynamic and temporal

world problems. Furthermore since we can stop the GP process at any point and ask for the

best evolved solution, Handley argues that the genetic planner is an anytime algorithm. A key

problem with this approach is that it requires a model of the environment, so that we can evaluate

the relative success of a plan without executing it. Furthermore measuring the relative success of

a plan requires generation of a fitness function, consider for example a plan that needs to switch

off a light in a room. Basing a fitness function on the desired outcome, which is that the state of

environment has changed so that the light is switched on, would not work. Partial plans that get

close to the switch for example would not be rewarded in this scheme. A second problem is the

time and space problems associated with evolving a large population of plans.

3.3.2 Evolving Complete Agents

Work done on applying GP to evolve agents has been focussed on mainly reactive agent ar-

chitectures. There are three key techniques that have been developed. The first is for creating

homogeneous agents, and involves evolving a single GP that is instantiated many times, once for

each agent [Koz94a; Koz91]. Fitness evaluation is performed by executing the same program

in the context of each agent repeatedly for a fixed number of iterations, or until the task that

the agents are trying to solve is completed. The fitness value assigned to the GP is measured

in terms of how close the agents were to solving the problem at hand. The second technique is

used to create heterogeneous co-operating agents, and involves evolving a GP that consists of
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multiple trees (similar to ADFs), one for each of the heterogeneous agents [HSSW95a; HS96a;

HS97]. During fitness evaluation each agent is instantiated using one of the trees in the GP.

The fitness is assigned in the same way as with homogeneous agents, so that the heterogeneous

agents are treated as unit or team. The advantage with these architectures is that they avoid the

credit assignment problem [Min63], i.e. how to assign credit to each of the participating agents.

The third technique is to co-evolve competing agents by using separate populations for each

of the competing agents [HSSW95b; HS95a]. Fitness evaluation pits agents in one population

against agents in the other, so that the fitness of agents in one population are relative to their

performance when tested with agents from the other population. Competing agents therefore do

not share fitness unlike the team approach mentioned above. Although this technique could also

be used to co-evolve co-operating agents [Iba96], the problem of credit assignment makes this

approach more difficult.

Koza used GP to evolve wall following behaviour for a simulated autonomous mobile agent

using the subsumption architecture [Koz92a]. The wall following problem was originally devised

by Mataric [Mat90], and consists of a robot situated in a irregular room that has the task of

following the walls of the room. To guide it, it is provided with 12 sonar sensors, each covering

30 degree sectors, and an additional sensor which could detect if the robot had stopped. The robot

capable of moving forwards and backwards by a constant distance, rotating left and right by 30

degrees, and stopping. Mataric developed a subsumption architecture comprising of 4 programs

that control the robot called stroll, avoid, align and correct. This architecture was sufficient

to achieve the task without any modeling or planning as is used in the design of non-reactive

robotic systems. Koza, showed that GP could be used to evolve a subsumption architecture for

this problem automatically. This paved the way for using GP to evolve reactive agents.

Koza evolved homogeneous reactive agents to solve the “painted desert” problem [Koz94a]. In

his definition of the problem, there are 10 ants and 30 grains of sand each of three colours.

The 10 ants and 30 grains are placed at random positions on two dimensional torroidal grid of

size 10 by 10. The ants are driven by a common program (the ants are homogeneous), and

can only sense information about its current grid position. No direct communication between

the ants is permitted. The goal is to arrange the grains in vertical bands, where grains in any

given band are of the same colour. In addition a band of a given colour must always occupy

the same predefined column on the grid (black, grey and striped bands occupy columns 1,2 and

3 respectively). Parallel movement of the ants is simulated by executing the evolved program

for each ant sequentially. This process is repeated for 300 iterations. Using simple function

and terminal sets and suitable fitness function, Koza was able to evolve a complete solution

to this problem, and hence demonstrated that homogeneous reactive multiagent systems that

cooperate to solve a task can be evolved using GP. A similar approach was used to program
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ants(homogeneous reactive agents) that collectively find and transport food in an efficient manner

to their nest [Koz91].

Andre [And94] used GP to evolve programs that are capable of storing a representation of their

environment (map-making), and then using that representation to control the actions of a simu-

lated robot. He used GP to effectively co-evolve two programs (each making use of ADFs) for

each individual. He split the fitness evaluation of each individual into two phases. In the first

phase, the first program is run to extract and store features from the environment. Only the first

program is provided with the set of functions to probe the environment. In the second phase, the

second program is executed to use the stored representation to control the actions of a robot. The

fitness value was awarded only for the success of this second phase. He found that using this

approach, he was able to successfully evolve programs that solve simple problems by examin-

ing their environment, storing a representation of it, and then using the representation to control

action. These programs can be viewed as communicating agents.

Reynolds [Rey94a] used competitive co-evolution to evolve vehicle steering control programs

for pursuers and evaders in the game of tag. He obtained near optimal solutions without the use

of either expert pursuers or expert evaders.

Haynes [HW95] evolved programs to control an autonomous agent that needs to survive in a hos-

tile environment. The simulated environment consisted of a 2 dimensional grid of cells which

can contain other agents, mines and energy. The goal of the agents was to sense and mark the

location of the mines and energy by moving through the minefield. Sensing was made possible

through tallies available at each cell which count the number of these items available in neigh-

bouring cells (like the game minesweeper). The agent also has access to memory containing in-

formation about visited cells. Using a fitness function that uses fluctuating environments he was

able to evolve a robust implementation that could handle any environment. Haynes and Sandip

[HWS94; HW95; HWS95; HWSS95; HS95b; HSSW95a; HS95a; HSSW95b; HS96c; HS96a;

HS97] evolved both homogeneous and heterogeneous agents for the pursuit domain. They also

competitively co-evolved predators and prey. Their work used the techniques mentioned at the

beginning of this section and is detailed in the next chapter.

Luke and Spector [LS96] compared cloned (homogeneous), free (heterogeneous with crossover

allowed between trees representing different agents) and restricted (crossover permitted only be-

tween trees representing the same agents) breeding policies for a predator/prey domain called

the Serengeti. They also compared a range of coordination mechanisms including no sensing (in

which the predators were unable to sense each others positions), deictic sensing (in which the

predators could sense each other in a relative manner such as the position of the nearest agent),

and name-based sensing (the position of other agents can be sensed referenced by their names).
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They found that the heterogeneous approaches produced better results than the homogeneous

approaches, and furthermore that the restricted breeding method worked best. Name-based sens-

ing was found to have produced better results than deitic sensing, which in turn produced better

results than no sensing.

Qureshi [Qur96] was first to show that GP could be used to evolve agents that use send and

receive operators for explicit communication. He evolved homogeneous agents for a co-operative

domain that learn both how and what to communicate. This work is detailed in chapter 5.

Iba compared homogeneous, heterogeneous and co-evolutionary (co-operative) breeding of 2

agents for the tile world problem [Iba96]. He used two different tile world problems, and found

that for the first, the heterogeneous worked best, and for the second the co-evolutionary ap-

proach worked best. In his co-operative co-evolution approach, he used three populations, one

population for each agent and a third as common pool for evolving shared building blocks.

Individuals from this shared pool were migrated from the common pool to the other popu-

lations (10 per generation). The fitness of the individuals from the two agent populations

were evaluated in the first generation by picking random partners from the other, and subse-

quently by teaming with the best of the other population. Iba also performed experiments in

which he evolved both homogeneous and heterogeneous agents that use send and receive prim-

itives similar to that used by Qureshi [Qur96] for a robot navigation domain [INU97; Iba98;

Iba99]. The send i deictic operators that he used sends the the position vector to the ith nearest

agent (there are 4 of these operators, one for each of the four agents), the receive operator returns

the first message from a FIFO queue for the receiving agent. In the same experiment he also used

specialised Send iS, Send iR, and Send iY operators (12 in total one of each of the four nearest

agents) to send stop, random and yield commands to the specified agents. These commands

cause the recipients to stay in the same place, move randomly, and move to one of the adjacent

vacant square respectively. The targeted agents do not execute any explicit receive primitive to

achieve these tasks, nor do they evolve any code to perform the intended task, or have in control

of whether the code gets executed. Instead the behaviour is precoded in the simulator, and hence

these operators are more like direct control operators. He also evolved heterogeneous preda-

tory agents for the pursuit domain that use name-based primitives called COM1, COM2, COM3,

COM4 which request position information from predatory agents 1, 2, 3 and 4 respectively. The

effect of this operator is to return the displacement vector from the calling agent to the target

if the receiving agent is within some fixed range of the prey, otherwise the only argument to

the function is returned. The agent that is the recipient of request however does not evolve any

code to respond to the request, instead this is precoded in the simulator. The operator is there-

fore more like a conditional sensor. More details of this work are provided in the next chapter.

Iba also evolved heterogeneous agents that use ACL-like communication commands (propose,
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Figure 3.1: Soccerserver screenshot

accept and reject) to negotiate cooperation in the tile world domain [Iba99].

The approach used by Haynes to evolve a team, represents each agent as a separate tree, rather

like an ADF. The number of agents to be evolved is therefore specified in advance by the number

of trees. By using Koza’a architecture altering operations [KDBK99], Bennett [Ben96a; Ben96b]

developed a method for evolving both the number of agents and their code.

A number of researchers [LHF � 97; Luk98; AT99] have investigated the use of GP to evolve

agents for robotic soccer played in a simulator (Soccer Server [Its95] as shown in figure

3.1). In the RoboCup competition (the softbot part), soccer teams consisting of 11 play-

ers (softbots) play in real-time tournaments against other teams. Luke et al [LHF � 97;

Luk98] evolved players for their team using GP. Each player consisted of a move program and a

kick program. Luke et al investigated the possibility of evolving both homogeneous and hetero-

geneous agents for this domain. The evolution of heterogeneous agents would have required that

each individual in the GP population consisted of 22 trees (11 move and kick tree pairs). They

therefore chose to evolve pure homogeneous agents and hybrid pseudo-heterogeneous teams.

The latter consist of a smaller number of heterogeneous agents than required, which are instan-

tiated multiple times to form squads which together generate a team of 11 (the team therefore

consists of sets of homogeneous agents which are heterogeneous with respect to each other). For
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both homogeneous and pseudo-heterogeneous approaches they disallowed crossover between

kick and move trees. Furthermore they used their restricted crossover approach mentioned ear-

lier to restrict crossover in the pseudo-heterogeneous approach so that it occurs only between the

same squads. To allow fitness evaluation, they used a competitive fitness approach (they were

hence co-evolving teams), pitting the team represented by each individual against the team of an-

other individual chosen randomly from the population. Their fitness measure was based crudely

on the number of goals scored. They found that the number of goals scored by individuals in

the initial population were surprisingly high. The best evolved solution which was of homoge-

neous type, was submitted to the RoboCup-97 competition and won the first two games against

human-crafted opponent teams.

Andre and Teller [AT99] used a similar approach to create a robotic soccer team which they call

“Darwin United”. They created heterogeneous agents (represented as 11 trees per individual)

which also share 8 ADFs (8 further trees per individual). A restricted breeding scheme is used

so that crossover occurs between trees representing the same player, and between the same num-

bered ADFs. Unlike the approach used by Luke et al, Andre and Teller use indexed memory, so

that the evolved agents are no longer just reactive. They also use a much more complex fitness

evaluation approach. A fitness value for a team consist of an ordered list where items ranging

from the least important (getting close to the ball and kicking it) to the most important (scoring

a goal and winning the games). Fitness evaluation involves pitting the team represented by the

individual being evaluated by graduations of progressively skillful players. The individual gets

to play successive teams if it succeeds against earlier teams, the score is the average across the

games played. The teams that the individual is pitted against range from an empty field (no

team) to the winning team from the 1997 Robocup competition . If the team represented by this

individual succeeds then it is also pitted against the teams represented by three individuals who

also got to this stage.



Chapter 4

Task Allocation and Conflict Resolution

Task allocation and conflict resolution are both key research areas in multiagent systems. In

this chapter we show that GP can be used to evolve agents that automatically allocate tasks

amongst themselves both statically and dynamically, and can resolve conflicts arising from their

interaction.

4.1 The Pursuit Problem

The pursuit problem (also called the Predator/Prey problem) is a well studied testbed for DAI

research. Benda et al [BJD86] formulated the original problem definition as consisting of four

predators that need to capture a single prey. The predators and the prey are situated on a two

dimensional world consisting of cells (figure 4.1). Movement in this world, is possible in orthog-

onal directions only, and takes the agents from one cell into another (figure 4.2a). The goal for

the predators is to move so as to capture the prey (figure 4.2c). To capture the prey, the predators

must occupy all cells immediately adjacent to the prey (which we call capture positions - figure

4.2b). The prey moves randomly, and is slower than the predators (usually implemented by en-

suring the prey is stationary some percentage of the time). In most the implementations, only

one agent may occupy a cell at a time, and therefore conflicts can occur if one or more agents

try to occupy the same cell (in figure 4.2d agents 0 and 1 are in conflict). Many variations to the

original definition have been devised by changing key domain parameters, these parameters are

described in [SV97] and listed in table 4.1.

Gasser et al proposed a solution based on what they call the Lieb configuration. In the Lieb

configuration the grid is divided into 4 quadrants by diagonal lines that pass through the cell

occupied by the prey, and the predators each occupy a different quadrant. They proposed that the

predators first try to achieve the lieb configuration, and then follow a set of Lieb Rules to capture

the prey.

Stephans and Merx [SM90] investigated the pursuit domain using three control strategies gov-
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Figure 4.1: The environment of the pursuit domain consists of a two dimensional (usually tor-

roidal) world in which four predators must try to capture the prey by surrounding it.

Table 4.1: Pursuit Domain Parameters

Parameter Examples

grid size finite, infinite

grid shape square, hexagonal, continuous, torroidal, edged

capture definition prey surrounded, predator on same square as prey

legal moves orthogonal only, diagonals permitted

movement agents take turns to move, agents move simultaneously

sensors what can be sensed, by whom and from how far away

predator communication permitted, disallowed, range, implicit, explicit

prey movement random, stationary, deterministic

predator/prey numbers 4x1, 6x2

erning the predator agents. The control strategies included local control, distributed control and

central control. In their local control strategy, the predator agents pursue their local goals and

only communicate when they occupy a capture position by broadcasting that position. This in-

formation is picked up by the other predators and update the list of potential local goals. In their

distributed control strategy, the predators use both a shared convention, and communication to

achieve capture. At the start of each move cycle, each agent computes the straight line distance to

each of the capture positions and chooses the closest position as their intention. This intention is

then broadcast to the other predators. The shared convention is that the agent furtherest (straight
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Figure 4.2: In the pursuit domain; a) movement is restricted to orthogonal directions, b) capture

positions are cells immediately adjacent to the prey, c) the prey is captured when all capture

positions are occupied by predators, d) conflicts occur when one or more agents try to occupy

the same cell.

line distance) from their intended capture position is allocated that position. In the central con-

trol strategy, one predator (which has complete and accurate information about the position of

the other predators) plans and broadcasts commands to other three. In all three control strategies,

the predators had accurate information of the position of the prey. They tested each of the control

strategies using 30 randomly generated initial placements of the predator agents (the prey was

always centered) on 30x30 grid. All agents moved at the same speed, the moves were ordered to

avoid collisions, and the prey moved randomly. In their results they report that the central control

strategy was the most successful, and the local control strategy least successful. Central control

however was less efficient than distributed control, and suffers from having a central point of

failure.

Korf [Kor92] proposed that the pursuit problem can be solved without any explicit coordination.

He investigated the use of purely greedy strategies for the predators. Korf conducted experiments

using 100x100 orthogonal, diagonal and hexagonal grid variations, in which the prey actively

tries to evade the predators by moving to a neighbouring cell that is the furtherest from the

nearest predator. In the diagonal grid configuration, the the agents can move diagonally as well

as orthogonally, and consequently eight predators instead of four were used. In the hexagonal

grid, 6 predators were used to cover each of the exit from a cell. Conflicts were avoided by

ordering the movement of the agents, and the prey moved at 90% of the speed of the predators

(the prey stays still with a probability of 0.1). The initial positions of the agents were randomly

generated. In his simplest solution (which solves problems for all three grid configurations),
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the predators try to minimise their distance to the prey. The more efficient solution which he

employs in the diagonal and hexagonal versions of the game, uses an attractive force towards the

prey and a repulsive force between the predators. Korf concludes that these results lend support

to the theory that much coordination and cooperation can be viewed as an emergent property of

the interaction of greedy agents in the presence of environmental constraints.

Manela and Campbell [MC93] agreed with Korf that the 4 predators, one prey game could be

solved without explicit coordination, but argued that the pursuit game could be made more in-

teresting by having more than one prey. They used a GA to optimise parameters of hand coded

predators that communicate. They also introduced the concept of boredom (similar to timeouts)

to prevent predators from repeatedly executing the same actions without getting any closer to the

goal.

Haynes et al [HWS94; HWSS95; HS95b; HSSW95b] used GP to evolve homogeneous predator

agents for the pursuit domain. They argued that the ordered execution of moves as used by

Korf is a form of communication that helps coordinate the predators. The agents in their version

of the pursuit game therefore move concurrently. Agents that try to move to the same cell are

bumped back to their original position. A predator may push another predator out of the cell

that it occupies if it decides not to move. However this push operator is not available in the

function set presented to the GP system. This form of conflict resolution therefore is executed by

the environment rather than the agents. They use a 30x30 torroidal, orthogonal game board, in

which the agents can move orthogonally or stay still, and randomly generated training test cases

consisting of the prey in the center, and the predators placed randomly. The prey moves at 90% of

the speed of the predators. They used a STGP system to allow functions and terminals of different

types to be combined in one tree, which they argue reduces the search space. They demonstrated

that the latter is superior to standard GP applied to this domain through comparison experiments.

Their trees return the direction to move, which can be any of North, East, South, West or Here

(random instances of which are generated as constants in the terminal set). Here indicates that the

agent is to stay put. They provide a function called CellOf which takes two parameters, the first

being an agent, and the second a compass direction (tack in their terminology), and return the cell

that is positioned in the specified tack relative to the cell occupied by the specified agent. The

terminal set includes a reference to the prey and current predator. Other functions that they use

include IfThenElse,
� and MD, where MD returns the manhatten distance between the two cells

that are provided as arguments. The fitness function that they employ awards agents for getting

close to the prey, with further bonuses for occupying capture positions, and capturing the prey.

To ensure stable captures as opposed to shadow captures they continue the simulation even when

the prey has been captured, unlike some of the other approaches mentioned above which stop

at this point. They used 100 time steps in their training, however when comparing the evolved
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predators with the handcrafted greedy algorithms devised by Korf, they use up to 2000 timesteps.

They also varied the type of prey, using randomly moving, move away from the nearest predator

(MAFNP), and competitively co-evolved preys. They found that GP evolved solutions that are

competitive with the hand coded greedy algorithms presented by Korf. Their results with a co-

evolved prey however was less successful. They had anticipated that the performance of the

predators and prey would oscillate as one populations learns to outwit the latest strategy used

by the other. Instead they found that a simple strategy employed by the prey, in which the prey

chooses a random direction and continues to move in that direction (referred to as the Linear

Prey) successfully evaded all of the predator strategies that they considered. Further investigation

showed that these strategies also performed badly against a still prey. Their analysis suggested

that the act of the prey moving helps the predators to get out of deadlock situations created by

their greedy approach. Later they evolved Heterogeneous predator agents [HSSW95a; HS96a;

HS96b; HS97] using the same games rules (including the implicit push operator), function and

terminal sets used in their homogeneous approach. The heterogenous agents were evolved as a

team by representing each agent as a separate tree in the same individual, as mentioned in the

previous chapter. This resulted in very a successful strategy being evolved, and they note that

this success is attributed to the ability of heterogeneous agents to avoid potential deadlocks.

Iba [Iba98] also used GP to evolve heterogeneous predators for the pursuit domain. In his game

configuration, Iba used a orthogonal grid, and a prey that tries to avoid the predators by moving

away from their centre of gravity. 15 training and 10 generalisation test cases were used, in

which the agents were placed in randomly generated Lieb configurations. Each individual was

evaluated in a simulator that runs for a maximum of 30 time steps, so that each agent could move

a maximum of 30 times. Simulation was stopped when either the prey was captured or the the

maximum simulation time expired. The agents could choose to stay in the current position or

to move into one of the four orthogonal cells. The fitness was calculated by summing the total

distances of each of the predators from the prey over each time step of the simulation. Lower

fitness values therefore correspond to fitter individuals. The fitness function effectively rewards

individuals that capture the prey in the shortest simulation time. It is unclear from the description

whether the agents move in order or concurrently. The function and terminal set operate over

vector types, and the evolved trees return this a value of this type. A mapping functions maps

the returned vector to one of the five movements mentioned earlier. The terminal set included

primitives that return the displacement vector to the prey, and each of the other agents, and hence

global information was available to the predators at all time. The function set included various

vector operators, and some conditionals. Thirty runs were executed, each with a population of

500 individuals evolved over 100 generations. The best individual of this experiment resulted in

a success rate (ranging 0 to 1) of close to 1. Iba repeated variations of this experiment to explore
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the use of communication. Curiously, in these experiment, he employed a randomly moving prey

instead of the evading prey used earlier. The range of the primitives used to sense the location of

the prey and the other agents were reduced so that they can only sense agents within a circle of

radius 5 around their position. Three experiments were conducted, the first of which was identical

to the earlier experiment except for the changes mentioned. The second experiment added what

Iba calls communication primitives to the function set. As mentioned in the previous chapter,

we view these primitives as conditional name-based sensors. The communication primitives

called COM0, COM1, COM2 and COM3 request position information from predatory agents 1,

2, 3 and 4 respectively. The effect of this operator is to return the displacement vector from the

calling agent to the target if the receiving agent is within some fixed range of the prey, otherwise

the only argument to the function is returned. However, a penalty associated with using these

operators is that the predator must wait one time unit before moving. In the third experiment in

addition to the communication primitives he added a VIEW primitive which evaluates the one

and only argument if and only if the prey is visible to the caller. The motivation for the latter was

to enable a reduction in the reliance on communication if the prey is already visible. Iba reports

that communication with the VIEW primitive gave the best results and reduced the amount of

communication necessary.

4.2 Using the Pursuit Domain to Investigate Task Allocation and

Conflict Resolution

In the pursuit domain conflicts arise when one or more agents try to occupy the same cell. If such

conflicts are not resolved, then they can result in deadlock. Just as in concurrent and distributed

systems, there are two ways of handling deadlocks in the pursuit domain; deadlock avoidance,

and deadlock detection and resolution. Deadlock avoidance is the simplest and most effective

approach that we can employ. Here the predators will need to coordinate their movement to

eliminate or minimise conflicts. Deadlock detection and resolution is far more complex. Agents

in conflict must first be able to detect the conflict and then coordinate their behaviour so as to

resolve it.

We note that in much of the research above, conflict resolution has been avoided by providing en-

vironmental mechanisms for resolving conflicts or avoiding them. Examples include the ordered

execution of moves used by Stephans [SM90] and Korf [Kor92], and the implicit push operator

used by Haynes et al [HSSW95b; HS96b]. One of the important points that Haynes raised for

the homogeneous agents that they evolved was that agents driven by deterministic algorithms can

get out of conflict situations by the act of the prey moving. Hence, still preys were very effective

at causing deadlocks. Furthermore given a large number of simulation cycles the predators are
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Figure 4.3: Collision conditions: a) agents 0 tries to move a cell occupied by agent 1, b) agents

0 and 1 try to exchange positions, c) agents 0 and 1 try to move to the same cell.

more likely to get out of deadlock situations as a result of the prey moving randomly and hence

later capture the prey. We note that in a separate non-GP study Haynes and Sandip [HLS96;

HS96d] employed a case-based reasoning approach to learning conflict situations which are sub-

sequently avoided by the predators. The main purpose of this chapter is to directly evolve conflict

resolution strategies.

4.2.1 The Pursuit Rules

Our pursuit games were designed to maximise the probability of conflicts, and reduce inadvertent

resolution of conflicts (those that occur due to the movement of the prey). The rules of our pursuit

games were as follows:

Goal: To capture the prey by occupying each of the four orthogonal positions around the prey

and maintaining these positions for the rest of the simulation.

� A simulation lasts for 50 cycles

� A new simulation is run for each test case

� For each simulation cycle each agent is allowed one move

� The moves can be any one of North, East, South, West or Here

� Here is used by an agent to forfeit its move and remain still

� Each of the agents move concurrently so that there is no ordering of moves

� No two agents can occupy the same cell

� If a collision occurs then the agents involved have their moves cancelled

� Collisions occur when:

one or more agents try to move to a cell that is already occupied (figure 4.3a)

two adjacent agents try to exchange cell positions (figure 4.3b)

two or more agent try to move to the same cell (figure 4.3c)
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� The randomly moving prey moves 90% of the time.

Our rules differ from those of Haynes and Sandip [HSSW95b; HS96b] in that we only allow

50 cycles for each test case instead of the 100 or more (upto 2000) reported. This reduces the

probability of deadlocks being resolved by the movement of the prey. Furthermore our agents

cannot exchange positions which would involving crossing each others paths. It is not clear

from the papers by Haynes and Sandip whether or not this was possible. This restriction was

introduced to maximise the likelihood of conflicts occurring. Our pursuit game does not feature

any implicit or environmental mechanisms for resolving conflicts.

4.2.2 The Fitness Function

We used the same fitness function as reported by Haynes and Sandip [HSSW95b; HS96b]. After

each cycle of a test we measure the manhatten distance between each of the agents and the prey,

the sum of which is added to the current fitness value. After each simulation we give further

rewards for each agent that is still occupying a capture position, and add yet a further bonus if

the prey is captured. This fitness function rewards movement close to the prey, with bonuses for

occupying capture positions and a further bonus for capturing the prey.

Table 4.2: Fitness Evaluation Pseudo code for the Pursuit Problem

initialise the positions of the agents according to the test case

fitness = 0

for cycle = 0 to MaxCycles

move the predators according to the evolved code

if the prey is not stationary move the prey (only 90\% of the time)

check to see if the moves are valid

undo invalid moves

commit valid moves

foreach predator p, fitness += gridWidth / mahattenDistance(p, prey)

endfor

fitness += MaxCycles * gridWidth * NoOfCapturePositionsOccupied

if the prey is captured

fitness += MaxCycles * gridWidth * 4

4.2.3 Fitness Evaluation

For training purposes, we used 30 randomly generated test cases, with the prey in the center

and the predators in random positions. For each test case, we deployed both randomly moving

and stationary preys. The latter again helps to maximise conflict situations as discussed earlier.

We therefore had 60 test cases. The computational costs of evaluation made it infeasible to run

every test case for each individual of each generation. There are four agents whose code need
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to be evaluated 50 times for each test case for each individual for each generation. For just one

generation the computational costs are 4 * 50 * 60 * M, where M is the population size. As-

suming a population size of 3000 as used in our experiments, this figure evaluates to 36 million

evaluations. We could reduce the computational cost by reducing the population size, however

this parameter is known to be one of the most important for the successful application of GP. We

therefore used a sampling technique whereby for each generation, we select 10 test cases at ran-

dom (without reselection) from the 60 test cases and use them to evaluate each individual. This

allows us to fairly compare the fitness of individuals of the same generation whilst minimising

the cost of evaluation. The cost of evaluating a generation is now reduced to 1/6th. However, a

penalty with this technique is that we need to run the evolutionary process for a longer number

generations to give a good chance for each test case to be evaluated many times. Hence we dou-

bled the number of generations that we would normally use, bringing a reduction in computation

to 1/3rd of the original number.

A key problem with this approach is that as we move from one generation to the next, the best

of the generation may outperform than the current best of the run, not because it is generally

better, but because the sampled test cases were easier. Ideally we should weight the fitness value

according to the difficulty of the test cases that were passed. Unfortunately this is not easy in

the pursuit domain, we discuss issue further chapter 7. To overcome this problem we devised

a technique whereby after each generation, we re-evaluate the best individual of the generation

using the full 60 test cases and store that individual in the variable bestRunFull if the fitness

value is better than the last value of bestRunFull. This mechanism provides an effective way to

to track the best individual of the run.

After each run, we took best individual of each run, and re-evaluated the individual using 1000

randomly generated new test cases. For comparison purposes the same one thousand was used

for each run. The results of this evaluation were used to measure and compare the generality of

the evolved solutions.

4.2.4 The Function and Terminal sets

Table 4.3 lists the functions and terminals that were common to all the pursuit experiments that

were performed. Additional primitives for experiment variations are described in the appropriate

sections. The functions and terminals operate over three types, Cell, Direction and Agent. The

Cell type represents cells on the playing field, the Direction type allows the evolved programs to

return a suitable direction in which to move, and also allows cells orthogonal to a given cell to be

accessed. Only four compass directions are permitted (North, East, South and West, an additional

direction called Here represents the null direction. The latter is used as a return value by evolved

programs to indicate the agent is to stay in the current cell, and is also used in conjunction with
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Table 4.3: Experiments 1-4 : Common Functions and Terminals

Primitive Purpose

Direction if c1 is North of c2 return d1

IfNorth(Cell c1,Cell c2,Direction d1,Direction d2) else return d2

Direction if c1 is East of c2 return d1

IfEast(Cell c1,Cell c2,Direction d1,Direction d2) else return d2

Direction if c1 is equal to c2 return d1

IfCellsEqual(Cell c1,Cell c2,Direction d1,Direction d2) else return d2

Cell CellYofX(Agent x,Direction y) return cell y of cell of x

Direction North the North direction

Direction East the East direction

Direction South the South direction

Direction West the West direction

Direction Here no direction

Agent Me the agent being evaluated

Agent Agent4 the prey

Direction Arg1, Arg2 arguments of current ADF

the CellYofX function to access the cell of a given agent. The CellYofX function is the only

function that operates on an agent and is equivalent to the CellOf function used by Haynes and

Sandip. The functions IfNorth and IfEast allow the relative position of cells to be compared and

depending on the result, allow one of two direction resulting expressions to be evaluated and

returned. These functions are aware of the torroidal geometry of the playing field, and have been

designed to simplify the task of sensing the relative direction of the prey. The terminal Me is

instantiated at run-time to be the current agent that is being evaluated.

4.2.5 Behavioural Analysis

To enable behavioural analysis of our evolved code, at the end of each run, we re-evaluated the

best Individual of the run using the full set of training test cases. During this evaluation, at the

start of each test and after each subsequent simulation cycle, we wrote the state of the game

board to a file. This file is effectively a video in which each game board state is a frame. A Java

“video player” application was written which allows these videos to be viewed, as shown figure

4.4. The video player has controls that allow each test for each experiment to be selectively

viewed and compared. A pause button together with frame advance and reversal allow each test

to be carefully analysed. Each frame shows the board state, with agents represented as numbers.

The pursuit agents are numbered 0, 1, 2, 3 and the prey is labelled 4. This numbering is useful
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for analysing who does what and when.

4.3 Experiment 1 - Basic Pursuit

Using our version of the pursuit game, and our primitives, we evolved both homogeneous and

heterogeneous pursuit agents. To improve scalability we used ADFs, so that the the architecture

for each agent consists of one result producing branch (RPB) and one ADF. The homogeneous

agents all run the same code, hence the architecture requires only one set of RPB and ADF to be

evolved. The heterogeneous agents require 4 sets. The detailed architecture of for each approach

is shown in table 4.4.

4.3.1 Results

The results of the experiments are detailed in tables 4.5 and 4.6, and shown as graphs in figures

4.5 and 4.6.

The evolved heterogenous agents show a very high capture rates. The best individual of all

the runs (best of run 6) successfully captures the prey in 57 out of the 60 training test cases.

This individual also generalises very well, successfully capturing the prey in 1700 out of the

2000 generalisation test cases. Behavioural analysis of these agents show that they use strict

task allocation to divide the capture task between them. Each agent assumes a different capture

position around the prey. This allows them to easily avoid conflicts and results in a high capture

rate. The generalisation of the solution is also very good for the same reason. The specific

capture position assignment used by the best individual of run 6 is shown in figure 4.7. Different

runs evolved different assignments.

As expected the homogeneous agents performed very badly, with the best individual of all runs

succeeding at capture in only 9 out of the 60 test cases. Behavioural analysis of this individual

revealed that without the environmental conflict resolution, the small number of permitted moves,

and the still prey test cases, the agents frequently got themselves in conflict situations which they

were unable to resolve, resulting in deadlock. Homogeneous agents unlike heterogenous agents

must allocate tasks dynamically. Without knowing which tasks have already been allocated it is

improbable that they choose a task which does not conflict with that of another agent. One way

around this problem would be to assign each agent a unique identity and to allow the agents to

access their identity and compare their identities with the set of assignable identities. This should

allow homogeneous agents to select tasks based on identity. We were also interested in seeing

how tasks would be allocated for a mixture of homogeneous and heterogenous agents. Both of

these issues are investigated in subsequent experiments.
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Figure 4.4: Video Player used to Trace Movement of Pursuit Agents
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Table 4.4: Experiment 1 : Problem Definition

Objective: Move the agents in directions that enable capture.

Homogeneous Agents: Functions Terminals

Adf0 IfNorth, IfEast North, South

IfCellsEqual East, West

Here, arg0, arg1

RPB (ADF1) IfNorth, IfEast Me, Agent4, North, South,

IfCellsEqual East, West, Here

CellYofX, ADF0

Heterogenous Agents: Functions Terminals

Adf0 IfNorth, IfEast North, South

IfCellsEqual East, West

Here, arg0, arg1

RPB (ADF1) IfNorth, IfEast Me, Agent4, North, South,

IfCellsEqual East, West, Here

CellYofX, ADF0

Adf2 IfNorth, IfEast North, South

IfCellsEqual East, West

Here, arg0, arg1

RPB (ADF3) IfNorth, IfEast Me, Agent4, North, South,

IfCellsEqual East, West, Here

CellYofX, ADF2

Adf4 IfNorth, IfEast North, South

IfCellsEqual East, West

Here, arg0, arg1

RPB (ADF5) IfNorth, IfEast Me, Agent4, North, South,

IfCellsEqual East, West, Here

CellYofX, ADF4

Adf6 IfNorth, IfEast North, South

IfCellsEqual East, West

Here, arg0, arg1

RPB (ADF7) IfNorth, IfEast Me, Agent4, North, South,

IfCellsEqual East, West, Here

CellYofX, ADF6

Fitness test cases: 10 randomly selected per generation from 60 fixed test cases.

Fitness: Average of the raw fitness scores of the 10 test cases.

Parameters: Pop = 3000, G = 500.

Termination Condition: Best solution captures prey for all 60 test cases.
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Table 4.5: Experiment 1a : Fitness of best evolved homogeneous agents

Homogeneous - Basic Training Tests (60) Generality Tests (2000)

Run Size Fitness Av. Cycles Captures Fitness Av. Cycles Captures

0 460 6616.667 50.000 3 6148.785 50.000 38

4 280 7061.233 47.850 5 6649.372 48.386 122

2 202 7395.900 46.650 8 6742.492 48.535 140

6 262 7447.050 48.067 5 7000.521 48.111 149

7 288 7486.783 46.733 7 6922.912 48.186 141

5 216 7598.467 46.883 8 6748.692 48.313 125

1 284 7798.900 46.467 8 6717.876 48.953 86

8 428 7864.367 46.417 9 6895.240 48.185 148

3 174 7881.050 46.933 7 6864.084 48.132 139

9 312 7906.450 46.083 9 7046.939 48.117 145

Mean 290.600 7505.687 47.208 6.900 6773.691 48.492 123.300

1.5m 340 6523.000 50.000 0 5832.845 50.000 0

Table 4.6: Experiment 1b : Fitness of best evolved Heterogenous agents

Heterogeneous - Basic Training Tests (60) Generality Tests (2000)

Run Size Fitness Av. Cycles Captures Fitness Av. Cycles Captures

3 582 9396.550 44.450 22 8191.741 45.564 500

2 670 10097.233 42.683 31 8736.327 44.376 750

4 574 11003.933 43.750 34 9575.257 43.896 843

0 430 12668.250 39.950 41 11081.221 42.028 1004

5 668 13215.467 38.517 45 12524.272 39.121 1361

9 652 13634.417 38.867 49 12062.410 41.320 1267

8 700 14253.783 35.933 50 12581.798 38.674 1366

7 582 14678.183 37.933 54 13547.649 37.638 1545

1 680 14704.650 34.167 52 13715.610 36.388 1528

6 724 15750.567 28.700 58 14586.280 32.969 1700

Mean 626.200 12940.303 38.495 43.600 11660.257 40.197 1186.400

1.5m 652 3786.200 50.000 0 3255.050 50.000 0
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Figure 4.5: Experiment 1a : Performance Graphs of Evolved Homogeneous Agents
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Figure 4.6: Experiment 1b : Performance Graphs of Evolved Heterogenous Agents

Figure 4.7: Experiment 1b: Capture Posistion Assignment
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4.4 Experiment 2 - Identity

In the previous experiments we evolved heterogenous agents that were very successful at cap-

turing the prey and noted that their success was as a result of static allocation of tasks between

the team members. In this experiment we assigned identities to each of the agents and provided

operators that allow agents to enquire their identity and to compare the identity with the set of all

identities allocated (see table 4.7). The purpose of this experiments was to see if we can evolve

homogeneous agents that use their identity to allocate tasks between them. The experimental

setup is described in table 4.8.

Table 4.7: Experiment 2 : Additional Functions and Terminals

Primitive Purpose

Direction if agent.id == id2 return d1

IfAgentIdEquals(Agent agent,AgentId id2,Direction d1, d2) else return d2

Direction id0 the identity id0

Direction id1 the identity id1

Direction id2 the identity id2

Direction id3 the identity id3

Table 4.8: Experiment 2 : Problem Definition

Objective: Move the agents in directions that enable capture.

Homogeneous Agents: Functions Terminals

Adf0 IfNorth, IfEast North, South

IfCellsEqual East, West

Here, arg0, arg1

RPB (ADF1) IfNorth, IfEast, ADF0 Me, Agent4, North, South,

IfCellsEqual, CellYofX East, West, Here

IfAgentIdEquals id0, id1, id2, id3

Fitness test cases: 10 randomly selected per generation from 60 fixed test cases.

Fitness: Average of the raw fitness scores of the 10 test cases.

Parameters: Pop = 3000, G = 500.

Termination Condition: Best solution captures prey for all 60 test cases.

4.4.1 Results

The results of the experiment are shown in table 4.9 and the graphs in figure 4.8. As can be

seen, the evolved homogeneous agents were significantly more successful at capturing the prey
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Table 4.9: Experiment 2 : Fitness of best evolved homogeneous agents (with identity)

Homogeneous - Identity Training Tests (60) Generality Tests (2000)

Run Size Fitness Av. Cycles Captures Fitness Av. Cycles Captures

0 380 8306.683 45.867 12 7212.681 48.199 226

4 164 8518.450 44.950 12 7354.320 47.915 192

2 334 8676.600 44.233 14 7175.482 48.038 163

7 370 9273.217 44.000 15 7708.118 47.059 223

8 322 9664.500 44.217 16 9285.950 44.345 465

3 358 10261.467 42.200 18 8390.556 46.540 251

6 296 10757.017 40.450 23 9054.132 44.421 427

9 430 11961.617 37.983 39 9541.213 42.336 795

5 186 12462.533 35.667 34 11309.306 39.231 838

1 374 12723.683 38.133 38 10983.227 42.174 884

Mean 321.400 10260.577 41.770 22.100 8801.499 45.026 446.400

1.5m 142 5938.200 50.000 0 5117.752 50.000 0
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Figure 4.8: Experiment 2 : Performance Graphs of Evolved Homogeneous Agents (with identity)

(percentile comparison) than the homogeneous agents of experiment 1a. Behavioural analysis

confirms the allocation of tasks between the agents based on their identities. In fact the best

individual of all the runs(best of run 1), employed the same assignment of capture positions

as the best evolved GP for the heterogeneous agents of experiment 1b (best of run 6). This is

probably the result of a bias created by the initial placement of the agents in the training set. Just

as with experiment 1a there were variations on the capture position assignments for the best GPs

from the other runs. Whilst the evolved agents were much better than in experiment 1a, they

still fall short of the heterogenous agents of experiment 1b. A possible explanation is that the

homogeneous agents have far fewer opportunities for crossover in the single set of ADFs than

the heterogenous agents where crossover occurs over multiple sets of ADFs, one for each agent.
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Furthermore the separate set of ADFs also allow better functional decomposition. If we were to

repeat the experiments using multiple ADFs and the ability to invoke any of these ADFs from the

RPB based on the identity of the agent, we should be able to substantially improve the results.

4.5 Experiment 3 - Mixed Agents

The purpose of these next set of experiments was to investigate how tasks are allocated to an

evolved mixture of homogeneous and heterogenous agents. There are three possible experiments

for our instantiation of the pursuit domain:

1. experiment 3a(31) one set of homogeneous agents and one agent that is heterogeneous

with respect to them

2. experiment 3b(22) two sets of homogeneous agents, where agents in one set are heteroge-

neous with respect to the other.

3. experiment 3c(211) one set of homogeneous agents and two agents that heterogeneous

with respect to each other and the homogeneous set

In experiment 3a we evolved two sets of agent code, the first set is used by the predatory agents

labelled 0 to 2, and the second by agent 3. This effective makes agents 0 to 2 homogeneous and

agent 3 heterogenous with respect to them. A similar setup is used for experiment 3b, where two

sets of agent code are also evolved, but this time the first set is used by agents 0 to 1, and the

second set by agents 2 to 3. This effectively creates two sets of homogeneous agents, but with

the two sets being heterogenous with respect to each other. Experiment 3b required 3 sets of

agents code to be developed, the first set is for homogeneous agents 0 and 1, and the second and

third are for heterogenous agents 2 and 3 respectively.

The problem definitions are similar to that of experiment 1 (see table 4.10, except that the archi-

tecture is is modified appropriately. Experiments 3a(31) and 3b(22) have the same architecture,

only two sets of agents code are evolved, so we need only Adf0, Adf1, Adf2 and Adf3. In exper-

iment 3a(31) Adf0 and Adf1(RPB) are used by all three homogeneous agents, the agent that is

heterogeneous with respect to them uses Adf2 and Adf3(RPB). In experiment 3b(22) Adf0 and

Adf1(RPB) is used by the homogeneous agents of the first set, Adf2 and Adf3(RPB) are used by

the second set of homogeneous agents. In experiment 3c(211) three sets of agent code is evolved,

the architecture therefore requires 3 Adf pairs in total. The 2 homogeneous agents share Adf0

and Adf1(RPB), the remaining agents use Adf2, Adf3(RPB) and Adf4, Adf5(RPB) respectively.



4.5. Experiment 3 - Mixed Agents 66

3000

4000

5000

6000

7000

8000

9000

10000

0 50 100 150 200 250 300 350 400 450 500
F

itn
es

s
Generation

Mixed Pursuit Agents - 31

best
average

worst
0
2
4
6
8

10
12
14
16
18

0 50 100 150 200 250 300 350 400 450 500

C
ap

tu
re

s

Generation

Mixed Pursuit Agents - 31

best
average

worst

Figure 4.9: Experiment 3a(31) : Performance Graphs of Evolved Mixed Agents
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Figure 4.10: Experiment 3b(22) : Performance Graphs of Evolved Mixed Agents

2000

4000

6000

8000

10000

12000

14000

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s

Generation

Mixed Pursuit Agents - 211

best
average

worst
0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350 400 450 500

C
ap

tu
re

s

Generation

Mixed Pursuit Agents - 211

best
average

worst

Figure 4.11: Experiment 3c(211) : Performance Graphs of Evolved Mixed Agents

4.5.1 Results

The results of the experiment are listed in tables 4.11, 4.12, and 4.12, and shown by the graphs

in figures 4.9, 4.10 and 4.10.

Behavioural analysis of the best solutions for all three experiments, shows that they made use

of as much static task allocation as possible. In experiment 3a(31), 3 captures positions were

allocated to homogeneous agents 0 to 2 which shared these positions, and the remaining capture

position was allocated to agent 3. Most of the conflicts occurred between the 3 homogeneous
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Figure 4.12: Experiment 3a(31): Capture Position Assignment

agents which need to dynamically choose from one of the three capture positions allocated to

them. The best individual of all the runs for this experiment (best of run 3) assigned the cap-

ture positions North, West and South of the prey to the 3 homogeneous agents, and the capture

position East of the prey to agent 3 as shown in Figure 4.12.

Figure 4.13: Experiment 3b(22) : Capture Position Assignment

The best solution for experiment 3b(22) allocated two sets of capture positions for each of the

two sets of agents. Again conflicts were avoided between the two sets of agents, but there were

conflicts within each set. The best individual of all the runs (best of run 9) assigned the capture

positions North and South of the prey to homogeneous agents 0 and 1, and assigned capture

positions East and West of the prey to homogeneous agents 2 and 3 as shown by figure 4.13.

Figure 4.14: Experiment 3c(22) : Capture Position Assignment

The best solution for experiment 3c(211), was also the best result for all the experiments as

we might expect. Two capture positions were allocated to the homogeneous agents, and of

the remaining captures positions, one was allocated to agent 2, and the other to agent 3. Again

conflicts were mainly between the homogeneous agents, but were minimal compared to the other

experiments as there was more static task allocation. The best individual (best of run 8) assigned

the capture positions North and West of the prey to homogeneous agents 0 and 1. The remaining

capture positions East and South of the prey were assigned to agents 2 and 3 respectively as

shown on figure 4.14.

These results suggest that GP tries to optimise the allocation of tasks to the agents.
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Table 4.10: Experiment 3 : Problem Definition

Objective: Move the agents in directions that enable capture.

Mixed Agents(31 and 22): Functions Terminals

Adf0 IfNorth, IfEast North, South

IfCellsEqual East, West

Here, arg0, arg1

RPB (ADF1) IfNorth, IfEast Me, Agent4, North, South,

IfCellsEqual East, West, Here

CellYofX, ADF0

Adf2 IfNorth, IfEast North, South

IfCellsEqual East, West

Here, arg0, arg1

RPB (ADF3) IfNorth, IfEast Me, Agent4, North, South,

IfCellsEqual East, West, Here

CellYofX, ADF2

Mixed Agents(211): Functions Terminals

Adf0 IfNorth, IfEast North, South

IfCellsEqual East, West

Here, arg0, arg1

RPB (ADF1) IfNorth, IfEast Me, Agent4, North, South,

IfCellsEqual East, West, Here

CellYofX, ADF0

Adf2 IfNorth, IfEast North, South

IfCellsEqual East, West

Here, arg0, arg1

RPB (ADF3) IfNorth, IfEast Me, Agent4, North, South,

IfCellsEqual East, West, Here

CellYofX, ADF2

Adf4 IfNorth, IfEast North, South

IfCellsEqual East, West

Here, arg0, arg1

RPB (ADF5) IfNorth, IfEast Me, Agent4, North, South,

IfCellsEqual East, West, Here

CellYofX, ADF4

Fitness test cases: 10 randomly selected per generation from 60 fixed test cases.

Fitness: Average of the raw fitness scores of the 10 test cases.

Parameters: Pop = 3000, G = 500.

Termination Condition: Best solution captures prey for all 60 test cases.
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Table 4.11: Experiment 3a(31) : Fitness of best evolved mixed agents

Mixed - 31 Training Tests (60) Generality Tests (2000)

Run Size Fitness Av. Cycles Captures Fitness Av. Cycles Captures

9 496 7187.717 47.617 8 6582.446 48.367 175

8 404 7794.700 47.200 8 6979.263 48.194 215

4 422 8206.400 45.333 12 6531.860 48.444 163

0 566 8717.350 45.467 11 8291.702 46.494 264

6 566 8861.500 44.700 13 7614.285 47.069 215

7 224 8943.217 45.417 15 7801.929 46.564 280

1 290 9108.100 43.850 13 7850.674 46.885 249

2 308 9416.250 43.000 16 8342.736 45.478 354

5 452 9429.150 44.300 18 7810.500 46.904 284

3 432 9802.317 42.550 18 8094.508 46.878 289

Mean 416.000 8746.670 44.943 13.200 7589.990 47.128 248.800

1.5m 364 5397.900 50.000 0 5146.313 50.000 1

Table 4.12: Experiment 3b(22) : Fitness of best evolved mixed agents

Mixed - 22 Training Tests (60) Generality Tests (2000)

Run Size Fitness Av. Cycles Captures Fitness Av. Cycles Captures

4 362 7346.567 47.617 8 6371.912 48.766 118

3 374 7628.767 46.983 11 6740.513 47.939 217

1 390 9202.883 43.383 16 7806.854 47.132 227

5 392 9358.717 45.200 16 8053.090 46.926 315

0 286 9376.183 43.017 16 8443.133 45.120 363

8 454 9472.033 42.183 17 8422.005 45.156 381

2 596 9798.183 43.016 19 8485.865 45.280 397

7 444 10218.000 41.717 22 8279.560 45.466 381

6 190 10355.533 39.867 24 8601.506 44.723 412

9 304 10760.950 40.183 24 8438.601 45.214 388

Mean 379.200 9351.782 43.317 17.300 7964.304 46.172 319.900

1.5m 318 4862.600 50.000 0 4131.602 50.000 0
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Table 4.13: Experiment 3c(211) : Fitness of best evolved mixed agents

Mixed - 211 Training Tests (60) Generality Tests (2000)

Run Size Fitness Av. Cycles Captures Fitness Av. Cycles Captures

7 422 10739.567 40.700 29 8411.547 45.066 525

1 424 10763.500 44.967 29 8803.552 45.783 578

6 648 10799.917 43.100 28 10041.422 44.066 778

5 628 10961.967 40.667 27 9986.056 42.937 726

3 476 11034.333 41.500 26 9381.893 44.870 531

4 606 11577.667 41.817 32 10388.950 42.896 808

9 606 11741.733 40.300 32 10114.998 42.828 723

0 504 12105.700 38.500 34 10537.085 41.878 836

2 332 12291.117 38.083 33 10162.118 43.302 708

8 642 12757.817 36.917 38 10839.444 41.383 840

Mean 528.800 11477.332 40.655 30.800 9866.707 43.501 705.300

1.5m 436 5461.900 50.000 0 4381.487 50.000 0
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4.6 Experiment 4 - Conflict Resolution

The purpose of the next set of experiments (which is also the main focus of this chapter) is to

see if we can evolve agents that make use of local information to avoid and/or resolve conflicts.

The local information is provided by an operator that allows the agents to detect whether or not

a cell neighbouring the cell that they or the prey occupy is also occupied (see table 4.14). We

are particularly interested in how the addition of this operator will help homogeneous agents to

resolve conflicts, as it is likely that heterogenous agents will still use static task allocation to

avoid conflicts. The experimental setup is detailed in table 4.15.

Table 4.14: Experiment 4 : Additional Terminals and Functions

Primitive Purpose

Direction if cell is occupied return d1

IfCellOccupied(Cell cell,Direction d1,Direction d2) else return d2

4.6.1 Results
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Figure 4.15: Experiment 4a : Performance Graphs of Evolved Homogeneous Agents (with CRO)
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Figure 4.16: Experiment 4b : Performance Graphs of Evolved Heterogenous Agents (with CRO)

The results of the experiment are listed in tables 4.16 and 4.17 and shown graphically in fig-
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ures 4.15 and 4.16. As expected there was little difference in performance for the heterogenous

agents, which continue to use static task allocation to avoid conflicts. The results for the homo-

geneous agents however showed a substantial improvement in capture rate when compared to

the homogeneous agents of experiment 1. Behavioural analysis of the best individuals revealed

that the mechanism used by the agents to improve their performance was far more sophisticated

than expected expected. We had intended the IfCellOccupied operator to be used by the ho-

mogeneous agents to avoid movement towards a cell that is already occupied, thus resolving

the conflict. This was evident in some test cases, however in many test cases, the agents used

what could be viewed as either polite social conventions or stigmergic communication to resolve

conflicts. Careful behavioural analysis of all 60 training test cases, revealed a total of 6 distinct

behaviour patterns which when combined yield very sophisticated conflict resolution strategies.

These 6 behaviour patterns are described below. In the descriptions ��������� is read the cell north of

the prey, and 	 �
� ������� � is read the cell that is east of the cell that is north of the prey (north-east

of the prey). Agents named agent 0 and agent 1 were used for illustration, but since the agents

are homogeneous the behaviour is not peculiar to these agents.

Behaviour EN

0 1

���
�

Agent 0 occupies cell � ������ , and agent 1 occupies the cell 	 �
� ������ � . Agent 0 responds by

moving upwards freeing � ������ .

Behaviour NN

1

0

���
�

Agent 0 occupies � ������ , and agent 1 occupies � �
� ������ � . Agent 0 reacts by moving to position
� �
�������� � freeing �������� .

Behaviour NW

1

0 ���
�
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Agent 0 occupies
� ������� , and agent 1 occupies � � � ������ � . Agent 0 reacts by moving to position

� � � ������ � freeing
� ������ .

Behaviour WS

01

���
�

Agent 0 occupies
� ������ , and agent 1 occupies

� � � ������ � . Agent 0 reacts by moving to position
� �
	 ������� � freeing

� ������ .

Behaviour SE

0

1

���
�

Agent 0 occupies
� ������� , and agent 1 occupies

� � � ������ � . Agent 0 reacts by moving to position

	 �
� ������ � freeing
� ������� .

Behaviour EE

0 1���
�

Agent 0 occupies 	 ������� , and agent 1 occupies 	 �
	 ������ � . Agent 0 reacts by moving to position

	 �
� ������ � freeing 	 ������ .
The above simple behaviours can be combined to create more complex patterns of behaviour. A

good example is the pass through behaviour shown below.

0 1

0

1 1 0

���
�

		




���
�

The pass through behaviour starts with agent 0 occupying � ������ , and agent 1 occupying

	 �
� ������ � , and hence agent 0 invokes behaviour EN and moves up. Agent 1 simultaneously occu-

pies the vacated position � ������ . Next agent 1 invokes behaviour NN, moving to cell
� �
� ������ � ,

the freed cell � ������ is simultaneously re-occupied by agent 0. The effect is that agent 0 al-

lowed agent 1 to pass through position � ������ . This example works because the two agents both

play their parts, one agent invokes a conflict resolution behaviour, the other cooperates in the



4.7. Comparison with Random Search 74

resolution.

Further examples of such behaviours are shown by frames captured from the video player ap-

plication used for behavioural analysis. To maximise illustration, the examples are chosen from

test cases in which the prey was still, although the same behaviours are used by the agents when

capturing moving prey. To minimise space, the frames were cropped around the prey and frames

were omitted when there was no change in the cropped region. In the examples shown by figures

4.17 and 4.18, the frames are to be read left to right, top to bottom.

In the example shown in figure 4.17, at the fifth frame, agent 3 is setup to follow behaviour EE

and move north. This happens in the next frame, and agent 2 takes occupies the now vacant

position. This in turn sets up agent 0 to invoke behaviour EN. In the next frame agent 0 therefore

moves north, and agent 3 occupies the vacated position. Now agent 3 is setup for behaviour

NN, and hence in the next frame moves west, and agent 0 re-occupies its previous position. In

the same frame agent 1 moved to the position 	 ������� , and is therefore setup for behaviour NW.

Agent 0 moves south in the next frame and agent 3 occupies 	 ������ . Finally the displaced agent 1

occupies the only vacant capture position by moving east. This example uses a total of 4 different

behaviours EE, EN, NN and NW to resolve conflicts and capture the prey. The example in figure

4.18 similarly shows the use of behaviours NN, NW and WS. Note how the movement of the

predators(driven by the best individual for this experiment) around the prey in both examples

is anti-clockwise. The best individuals of some of the other runs used similar behaviours, but

moved clockwise instead.

Figure 4.17: Experiment 4a(test 13) : End Game Trace of Agent Movement

4.7 Comparison with Random Search

For comparison, the equivalent number of individuals that are created during a run (1.5 million)

were randomly created using a technique similar to that used to generate the initial population.

The last row in the result tables for each experiment details the performance of the best of these
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Figure 4.18: Experiment 4a(test 31) : End Game Trace of Agent Movement

individuals. As can be seen from tables 4.5,4.6,4.9, 4.11,4.12,4.13, 4.16 and 4.17, in nearly all of

the experiments, the best individual created via random search did not manage to capture a prey

for any of the training or generalisation test cases. In the one exception (experiment 3a), a single

capture was achieved for 1 of the 2000 generalisation test cases. This shows the the solutions

could not have evolved through chance alone. GP for this application is clearly superior to

random search.

4.8 Conclusion

We have shown that GP can be used to evolve agents that:

� allocate tasks amongst themselves both statically and dynamically

� use their identities for task allocation

� try to optimise the allocation of tasks

� detect and resolve conflicts
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Table 4.15: Experiment 4 : Problem Definition

Objective: Move the agents in directions that enable capture.

Homogeneous Agents: Functions Terminals

Adf0 IfNorth, IfEast, IfCellsEqual North, South

East, West

Here, arg0, arg1

RPB (ADF1) IfNorth, IfEast, IfCellsEqual Me, Agent4, North

IfCellOccupied, CellYofX, ADF0 South, East, West

Here

Heterogenous Agents: Functions Terminals

Adf0 IfNorth, IfEast, IfCellsEqual North, South

IfCellOccupied East, West

Here, arg0, arg1

RPB (ADF1) IfNorth, IfEast, IfCellsEqual Me, Agent4, North

IfCellOccupied, CellYofX, ADF0 South, East, West

Here

Adf2 IfNorth, IfEast, IfCellsEqual North, South

IfCellOccupied East, West

Here, arg0, arg1

RPB (ADF3) IfNorth, IfEast, IfCellsEqual Me, Agent4, North

IfCellOccupied, CellYofX, ADF2 South, East, West

East, West, Here

Adf4 IfNorth, IfEast, IfCellsEqual North, South

IfCellOccupied East, West

Here, arg0, arg1

RPB (ADF5) IfNorth, IfEast, IfCellsEqual Me, Agent4, North

IfCellOccupied, CellYofX, ADF4 South, East, West

Here

Adf6 IfNorth, IfEast, IfCellsEqual North, South

IfCellOccupied East, West

Here, arg0, arg1

RPB (ADF7) IfNorth, IfEast, IfCellsEqual Me, Agent4, North

IfCellOccupied, CellYofX, ADF6 South, East, West

Here

Fitness test cases: 10 randomly selected per generation from 60 fixed test cases.

Fitness: Average of the raw fitness scores of the 10 test cases.

Parameters: Pop = 3000, G = 500.

Termination Condition: Best solution captures prey for all 60 test cases.
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Table 4.16: Experiment 4a : Fitness of best evolved homogeneous agents (with CRO)

Homogeneous - CRO Training Tests (60) Generality Tests (2000)

Run Size Fitness Av. Cycles Captures Fitness Av. Cycles Captures

7 331 9603.850 43.033 21 9401.273 44.210 624

2 297 11745.433 39.017 34 10355.528 42.105 798

4 323 11940.217 38.050 33 11498.195 39.086 1013

0 316 12542.667 38.750 38 10536.450 41.184 880

3 204 12632.417 34.617 39 11901.102 37.699 1114

6 295 12639.467 35.783 38 10860.907 39.818 890

5 299 12940.100 35.600 40 11382.413 38.935 1029

8 235 13730.600 32.700 44 11692.839 37.294 1072

1 412 14344.967 32.217 50 13030.682 35.325 1381

9 489 14969.417 32.400 53 14596.335 32.008 1695

Mean 320.100 12708.913 36.217 39.000 11525.573 38.767 1049.600

1.5m 115 5894.800 50.000 0 5665.396 50.000 0

Table 4.17: Experiment 4b : Fitness of best evolved Heterogenous agents (with CRO)

Heterogeneous - CRO Training Tests (60) Generality Tests (2000)

Run Size Fitness Av. Cycles Captures Fitness Av. Cycles Captures

4 615 10415.467 43.200 32 8000.069 46.290 607

3 706 10851.017 44.617 30 8355.619 47.090 509

8 556 12122.917 39.767 37 10137.040 42.784 892

5 744 12334.017 41.283 42 9802.103 43.930 933

9 757 12545.467 43.050 44 9377.983 45.388 772

0 532 13069.000 40.300 43 11934.951 41.045 1201

6 617 13235.800 37.500 47 11140.286 41.012 1154

1 846 14016.517 36.617 50 13270.028 37.664 1447

7 574 14850.400 33.800 53 13725.092 37.403 1573

2 730 15528.817 30.217 57 14763.829 32.877 1735

Mean 667.700 12896.942 39.035 43.500 11050.700 41.549 1082.300

1.5m 553 3975.100 50.000 0 3338.355 50.000 0



Chapter 5

Communication

Sophisticated multi agent systems will require agents to be able to communicate not just with

their environment, but with other agents to achieve their goals. Such communication may be

achieved implicitly through changes in the environment or explicitly via direct message passing.

In this chapter we show that GP can be used to evolve agents that communicate with each other

explicitly.

5.1 Experiment 5 - Communicating Agents

The purpose of this experiment is to see if GP can be used to evolve agents that communicate to

solve problems. For this purpose we have defined a simple problem for which it is necessary for

communication to take place and furthermore, for which it is easy to measure the effectiveness

of any communication. The problem involves two homogeneous agents A and B that steer two

vehicles placed on a two dimensional grid. The vehicles are constantly moving in the direction

that they are currently pointing. All movement is discrete, so that the vehicles always have integer

(x,y) coordinates. Initially the vehicles are pointing in random compass directions. The steering

mechanism allows the orientation of the vehicles to be changed to any one of the 8 compass

directions. The goal is to evolve the code for agents A and B such that they steer the vehicles to

enable them to meet. The vehicle model closely follows that used by Reynolds [Rey94a].

Agents A and B know only their own positions, but both have access to two bi-directional un-

buffered communication channels which can be used to send and receive messages to each other.

The communication channels are “wired” so that one end is connected to one vehicle and the

other to the other vehicle. A message sent from one end can only be received at the other end,

and vice versa. The channels can only be used to send and receive messages in the form of

integers. When an attempt is made to read from a channel the last message received is delivered

(default value 0).

Clearly what we would like is for agents A and B to evolve behaviours that use the communi-
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cation channels to exchange position information. The vehicles are given an equal amount of

energy at the start of a simulation, and a single energy unit is consumed each time a vehicle

moves one step in any direction. The game ends when both vehicles run out of energy or when

they meet.

The fitness of the evolved code is measured using a function composed of two parts. The first

part measures the degree of success and the second measures the efficiency. When comparing

two fitness values, the success measure is given priority so that the efficiency is considered only

when the success values are identical. The success is measured as follows:

�����������	��
�����������������	��
����� �������	����� 
�! ����
� �"�#�$���%� 
�! ����'& �)( �+*�,� 
�! ����

Where -/. ��021���� and -43 0�5 ��� are the Euclidean distances between A and B before and after exe-

cution respectively. This function produces a range of values varying between 0 and 1, where a

value of 0 indicates that the agents have moved an infinite distance apart, and a value of 1 means

that they have met.

The efficiency is defined as the percentage of energy remaining at the end of a simulation:

68797;: � : �$<9=9
�>��� 68797;: � : �+<9=9
?�����A@�B	@�CED 6 <F�+G$HE=JI �,K (MLON2LON�P 
�! ����
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Where
� � ��V � 	 �XW2Y[Z]\_^a`b` 1 � 3 5 ��c is the total amount of energy allocated to the agents before the

simulation, and
� � �%V � 	 �XW�Y�Zd\;e � ! 3gf � f �[h is the total energy remaining after simulation.

We had started off by providing each vehicle with a constant surplus amount of energy for each

test case. The result was that the code evolved made use of social conventions to obviate the

need for communication. The agents would always evolve to meet at an “agreed” location (often

location 0,0). We therefore rationed energy for each test case to a total value of 1.5 times the

initial Euclidean distance between the agents. This provides sufficient energy to allow solutions

that do not use diagonals to evolve, but at the same time inhibits solutions that merely use social

conventions.

An important aspect of our fitness function is that it takes into account the difficulty of the test

case in the fitness evaluation. Instead of merely measuring the distance between the agents after

the simulation, we also take into account how far apart they were at the start of the test case.

This ensures that test cases in which the agents are located at closer starting positions are not

advantaged over test cases where the distances are greater. This concept of weighting test cases

according to their difficulty is discussed in greater detail in Chapter 6.
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5.2 Architecture

Tables 5.1 and 5.2 provide details of the architecture used to evolve programs to steer the agents.

There is a single result producing branch (ADF0) which returns a compass direction used to steer

the vehicle.

Table 5.1: Experiment 5 : Actions Performed by Terminals and Functions

Primitive Purpose

Direction If(boolean test,Direction d1,Direction d2) if test return d1

else return d2

boolean GE(int v1,int v2) if v1 �
�

v2 return true

else return false

boolean LT(int v1,int v2) if v1 � v2 return true

else return false

int Add(int v1,int v2) return ���
&
���

int Sub(int v1,int v2) return �����	���
int SendA(int m) send message m via channel A; return m

int SendB(int m) send message m via channel B; return m

int GetX get the current X coordinate; return X

int GetY get the current Y coordinate; return Y

int RecvA get the message received at channel A;

if no message received yet, return 0;

else return last message received

int RecvB get the message received at channel B;

if no message received yet, return 0;

else return last message received

Direction North the North direction

Direction NorthEast the NorthEast direction

Direction East the East direction

Direction SouthEast the SouthEast direction

Direction South the South direction

Direction SouthWest the SouthWest direction

Direction West the West direction

Direction NorthWest the NorthWest direction

For fitness evaluation, we used the same sampling technique mentioned in the previous chapters.

One hundred test cases were randomly generated. Each test case consists of random initial

positions and orientations for each agent located within the region (-50,-50) to (50,50). For each
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Table 5.2: Experiment 5 :

Primitives: Functions Terminals

Adf0 (RPB) Add, Sub, If, GE, LT North, NorthEast, East

SendA, SendB SouthEast, South, SouthWest

West, NorthWest

RecvA, RecvB

Test cases: 100 randomly generated fixed test cases.

Energy: ���
��� � : � @�C <F��� �"�#�$���%� 
�! ����

Fitness: Average of the raw fitness scores of the 100 test cases.

Parameters: Pop = 1000, G = 100, grid range (-50,-50) to (50,50).

generation we select a sample of 5 unique test cases from the 100 previously generated ones

and use these five to evaluate each individual in the population. The fitness value awarded is the

average of the raw fitness for each of the five test cases. The best individual of the generation is

then re-evaluated using the complete set of 100 test cases, and becomes the best of the run if it has

the highest fitness recorded so far. At the end of a run, the best individual is further re-evaluated

to test for the generality of the solution by using 1000 randomly generated test cases.

Each individual in the population was evaluated by using it to steer both A and B. This is achieved

by alternately executing the GP once in the context of A, and then in the context of B. The result

of each execution is used to steer the respective vehicle, which is then moved forward one unit.

This process is repeated until either the two agents both run out of energy, or they meet. The

pseudo code in table 5.3 illustrates this approach.

Table 5.3: Evaluation Pseudo Code

agent = A

while ((A.hasEnergy() || B.hasEnergy()) && (!met(A,B))) {

if (agent.hasEnergy()) {

Direction d = eval GP in context of agent

agent.turnto(d)

agent.move()

agent.energy--

}

if (agent == A) agent = B else agent = A

}

The ordered execution of the agents has the important consequence of delayed communication

between the agents. If the agents were to use communication to exchange position information,
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the sender will always be at a different position by the time the recipient receives the message.

In our problem definition, for the agents to meet, they must be at exactly the same coordinates at

the same time. The agents will therefore also need to compensate for the communication delays.

5.3 Results

The results over ten runs of the experiment are listed in table 5.4, and summarised by the graphs

in figure 5.1. For comparison purposes the same number of individuals that are generated during

a run were created using a technique similar to that used for generating the initial population.

The fitness of the best individual found using this method is also listed at the end of the table,

and as can be seen performed significantly worse than the weakest evolved individual (with 17

meetings versus 47), and used significantly more energy (3% of energy saved versus 12%).

Table 5.4: Experiment 5 : Results for Evolved Communicating Agents

Evolved Code Training Tests (100) Generality Tests (1000)

Run Size Success Efficiency Meetings Success Efficiency Meetings

0 84 0.92711 0.11856 47 0.92452 0.12282 475

5 69 0.93485 0.14233 61 0.92100 0.13778 546

3 51 0.93925 0.19065 62 0.94333 0.21326 634

9 122 0.99048 0.05868 66 0.99403 0.07720 672

7 79 0.99359 0.26075 86 0.99608 0.26222 899

1 62 0.99523 0.18096 91 0.99513 0.18649 828

6 65 1.00000 0.28359 100 0.99925 0.29343 994

2 131 1.00000 0.37188 100 0.99984 0.38698 998

8 88 1.00000 0.37268 100 0.99968 0.38796 998

4 80 1.00000 0.39126 100 0.99969 0.39508 999

Mean 83.1 0.97805 0.23713 81.3 0.97726 0.24632 804.3

100k 72 0.771502 0.026155 17 0.782516 0.026597 156

Furthermore in four of the ten runs, code was evolved which successfully passed all 100 test

cases. Each of these solutions used the two channels to exchange X and Y coordinates, and

adapted their movement to achieve the goal. In addition, the evolved solutions found a means for

overcoming delays in communication.

5.3.1 Run 4

Run 4 evolved the best solution for both the training tests and the generality tests. The GP tree

representing this individual is shown in figure 5.2, the nodes labelled pruned represent branches

in the GP which contain redundant code and are hence not shown. The complete code can be
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Figure 5.1: Experiment 5 : Performance Graphs of Evolved Communicating Agents
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Figure 5.2: Experiment 5 : Evolved Parse Tree for best individual of Run 4

:

Table 5.5: Experiment 5 : Simplified code for Run 4

SendA X

SendB Y

If (RecvA - X < RecvB - Y)

If (RecvA >= X) N else NW

else If (RecvB >= Y) NE

else If (RecvA < X) SW else SE

found in Appendix A. We can simplify the code as shown in 5.5. Clearly Channels A and B

are used for exchanging X and Y coordinates respectively. The information received via these

channels is compared with local X and Y coordinates to determine movement. It should be noted

that the code used mainly diagonal movement instead of orthogonal movement. This is the result

of the restricted amount of energy allocated, and the efficiency pressure of the fitness function.
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Figure 5.3: Experiment 5 : Evolved Parse Tree for best individual of Run 2

Sample traces of agents movement are shown in figure 5.6. To illustrate the effects of evolution

we have compared the best evolved individual for this run for test case 45 at generation 41

with generation 99 (the final generation). One of the key differences is that at generation 41

whilst the evolved code has discovered how to communicate, the code does not take into account

the staleness of the information. The solution therefore often misses meetings by one pixel

distances. The code for generation 99 not only minimises the energy used, it also uses strategies

to overcome communication delay.

Note that the agents are only capable of moving in the directions N, NE, NW, SE, SW. The

terminals representing the other directions have been lost during evolution. However despite the

absence of the S direction, the agents have learned to achieve movement in this direction by

alternately moving SW and SE as shown by test case 21 in figure 5.6.

5.3.2 Run 2

The GP tree representing the best evolved solution for Run 2 is shown in figure 5.3, and the

simplified code that it represents is shown in 5.7. As is shown, this time Channel B is used to

communicate X coordinates, and Channel A for Y coordinates.

Figures 5.8, show snapshots of the output trace for this individual for some sample test cases.
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The snapshots were taken at the point when the agents met or when they ran out of energy.

Note how the solution involves diagonal movement at angles other than the 45 degree compass

directions. This is made possible by alternately moving in different directions. For example by

repeatedly moving in sequences of SE, SE, NE, we end up moving in the SE direction at far less

steep angle than by just moving in the SE direction.

5.4 Conclusion

We have shown that GP can be used to evolve agents that learn:

� what information is to be transmitted and received

� how to transmit/receive the information

� which channel to use to transmit/receive which piece of information

� how to adapt behaviour according to the communicated information to solve a problem

� how to deal with the staleness of data associated with communication delay

We hence conclude that it is possible to use GP to evolve agents that explicitly communicate with

each other to solve a global problem. The key limitations of our work is that we have evolved only

simple homogeneous agents which carry no state, working on a symmetric problem. An earlier

version of this work was presented at the GP 96 conference and published in the proceedings. It

is the first paper showing that GP can be used to evolve communicating agents.
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Table 5.6: Experiment 5 : Trace of Agent movement for Run 4
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Table 5.7: Experiment 5 : Simplified code for Run 2

sendA Y

SendB X

if (Y >= RecvA)

if (X >= RecvB) SW else SE

else if (X >= RecvB)

if (RecvB < X) NW else NE

else if ((RecvB - X) >= (RecvA - Y)) NE else N
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Table 5.8: Experiment 5 : Trace of Agent movement for Run 2
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Chapter 6

Socialisation

We would like to be able to design agents that work within an existing society of other agents.

The new agent must be capable of interacting both with the environment and with other agents to

help achieve individual or group goals. In human programmed MAS, this ability is programmed

into the new agents. The focus of this chapter is to show that GP can be used to evolve such

agents automatically. In particular we show that the agent learns through evolution to assume

a purpose in the team, communicate with team members, resolve conflicts and interact with

the environment to achieve goals. We name this process socialisation, as it is similar to the

sociological term which describes how humans are trained to become integrated members of a

society.

In previous chapters we have shown that GP can be used to evolve homogeneous and heteroge-

neous agents to solve problems. We evolved agents that learn to decompose a task, communicate

with each other and resolve conflicts. To build open an MAS, we must also be able to evolve

agents that work within a society of previously created agents. We therefore have devised three

experiments in this chapter to determine if GP can achieve this task. All three build on experi-

ments performed in the previous chapters.

6.1 Communicating Agents

In the first experiment we make use of the best evolved communicating agent of chapter 5 (the

best agent from run 2) and instead of using two instances of the same agent, we evolve a new

agent that replaces the counterpart. The new agent must learn how to communicate with the

other agent to allow them to meet. Unlike the original experiment the new agent cannot arbitrar-

ily exchange information using the channels allocated, but must learn the previously assigned

purposes of the channels. Success in these experiments would suggest that GP can be used to

create agents that learn how to communicate with a society of existing agents to solve a problem.

The architecture for the experiment remains identical, just the fitness function is changed so
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Figure 6.1: Experiment 6 : Performance Graphs of Socialised Communicating Agents

that the first agent is always instantiated using the best evolved agent from run 2 of the original

experiment.

6.1.1 Results

Table 6.1: Experiment 6 : Results for Socialised Communicating Agent

Evolved Code Training Tests (100) Generality Tests (1000)

Run Size Success Efficiency Meetings Success Efficiency Meetings

7 71 0.986758 0.190388 81 0.979776 0.218998 839

5 131 0.986959 0.267658 90 0.987769 0.263201 893

0 220 0.987354 0.264737 84 0.992426 0.271754 861

3 122 0.991897 0.250398 93 0.990781 0.272061 933

2 115 0.995644 0.271641 92 0.998126 0.282659 921

9 80 0.996498 0.227828 97 0.998936 0.244127 991

8 133 0.997794 0.228757 95 0.998234 0.252121 954

6 129 0.998048 0.357939 98 0.999793 0.371336 998

4 94 1.000000 0.293016 100 0.999067 0.308986 993

1 115 1.000000 0.373473 100 0.999760 0.383389 999

Mean 121 0.994095 0.272584 93 0.994467 0.286863 938.2

100K 34 0.876944 0.034519 18 0.883205 0.051225 238

The results over ten runs of the experiment are listed in table 6.1, and summarised by the graphs

in figure 6.1. As in previous experiments the same number of individuals that are generated dur-

ing a run were created using a technique similar to that used for generating the initial population.

The fitness of the best individual found using this method is listed at the end of the table, and as

can be seen performed significantly worse than the weakest evolved individual both in terms of

fitness, number of meetings and efficiency.
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Two of the 10 runs generated complete solutions, whilst the remaining 8 were very close. Struc-

tural analysis of the two solutions shows that both have learned how to correctly communicate

with the previously evolved agent. Furthermore, the agents also learned how make use of the

communicated information taking into account the effects of communication delay in order to

achieve meetings. Note that this task is actually quite complex. The new agent needs to predict

how information sent to the other agent is used by the other agent to alter its behaviour. At the

same time the new agent needs to learn how to make use of the information that is received to

govern its own behaviour to ensure successful meetings. A simplified version of the best evolved

solution (run 1) is shown in table 6.2 (the GP tree is too large to be displayed). As can be seen

the solution correctly communicates X and Y coordinates using channels A and B respectively.

There are however some differences in how the information is used, so that the to agents are no

longer homogeneous.

Table 6.2: Experiment 6 : Simplified code for Run 2

sendA X

sendB Y

If (RecvB + RecvA >= X + Y)

If (RecvB - Y >= RecvA - X)

If (X < RecvA) NE

else If (Y < RecvB) NW

else E

else If (Y < 2RecvB - X) E

else If (Y >= X/2)

If (Y < RecvB) NW

else E

else E

else If (RecvB < Y)

If (RecvA >= X) S else SW

else W

6.2 Pursuit Agents

The second and third experiments make use of the best evolved solutions of the homogeneous

and heterogeneous conflict resolution experiments for the pursuit domain of chapter 4.

In the homogeneous agents case, we instantiate two predator agents using the previously evolved

solution and grow a new program which is instantiated twice to serve the purpose of the re-

maining two predators. The new agents must learn to work within the homogeneous society

of existing agents which have been previously evolved to dynamically allocate tasks amongst
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themselves and to resolve any resulting conflicts. We know from our analysis of the best evolved

agent of the homogeneous conflict resolution experiment that the agents deal with conflicts by

avoidance, and detection/resolution. Conflict resolution was achieved mainly by means of social

rules or conventions. The new evolved code is instantiated twice so that it actually forms a ho-

mogeneous subgroup of agents. These agents must learn the social rules used to resolve conflicts

and are also free to determine new rules amongst themselves to help resolve conflicts.

The purpose of the third experiment is to see if a two new heterogenous agents can be evolved

to work within a heterogenous society of agents. We know that the best heterogeneous evolved

solutions for pursuit problem make use of static task allocation to minimise conflicts. We are

therefore interested to see if we can evolve new agents that determine their tasks in the team

without overlapping with tasks chosen by the previously evolved agents.

Once again the architecture for the two experiments is identical to that used in the conflict reso-

lution experiments of Chapter 4, except that for the heterogeneous predators, instead of evolving

trees for four different agents, we need only evolve trees for 2 different agents. The fitness func-

tion was modified appropriately so that predators 0 and 1 use instances of the previously evolved

code, and predators 3 and 4 make use of the individual being evaluated. For the homogeneous

society, agents 3 and 4 would be two instances of the individual (consisting of Adf0 and Adf1).

For the heterogeneous agents, Adf0 and Adf1 are used by the predator 2, and Adf2 and adf3 are

used by predator 3. Both experiments were executed with a population size of three thousand as

before, but the number of generations was restricted to 250. The same test case sampling scheme

was used for fitness evaluation as described in the previous experiments.

6.2.1 Results
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Figure 6.2: Experiment 7a : Performance Graphs of Socialised Homogeneous Pursuit Agents

The results of 10 runs of the homogeneous predator experiments are shown in table 6.3 and the

graphs of figure 6.2. The evolved homogeneous subgroup were not as successful as the original

agents, scoring a maximum of 41 captures out of the 60 test cases. Behavioural analysis of the
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Table 6.3: Experiment 7a : Fitness of best socialised homogeneous pursuit agents

Homogeneous - CRO Training Tests (60) Generality Tests (2000)

Run Size Fitness Av. Cycles Captures Fitness Av. Cycles Captures

2 297 10843.400 41.133 29 11081.581 41.333 1049

0 373 11275.700 39.617 28 11041.713 40.887 890

8 280 11714.733 38.350 32 10830.088 41.455 843

4 104 11745.183 40.767 32 10468.151 42.623 785

6 243 11803.683 38.717 33 10747.575 41.314 851

7 220 12107.250 39.750 37 10740.483 41.825 975

3 172 12132.550 39.650 38 10360.154 42.987 911

9 130 12195.583 40.500 37 10918.627 42.340 935

1 345 12227.517 39.517 34 11340.375 41.290 944

5 261 12971.517 35.917 41 10910.338 41.247 877

Mean 242.500 11901.712 39.392 34.100 10843.909 41.730 906

750K 151 11135.600 40.300 6 9933.580 43.589 420

best individual revealed that it had learned two of the behaviours described in experiment 4a

(EE and NN). The remaining four behaviour were not learned resulting in deadlocks when there

were conflicts. The evolved subgroup however did learn to make use of all the conflict resolution

capabilities of the previously evolved agents, hence the relatively high capture rate.

This result is still very promising, it suggest in principle that using GP we can evolve agents

that learn how to make use of social conventions programmed into an existing society of agents,

and furthermore we can actually train the new agents to behave according to the same social

conventions. We believe by using some of the scalability methods mentioned in the next chapter

we could greatly improve the performance of these agents.
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Figure 6.3: Experiment 7b : Performance Graphs of Socialised Heterogenous Pursuit Agents

The results of 10 runs of the heterogenous predator experiments are shown in table 6.4 and the
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Table 6.4: Experiment 7b : Fitness of best socialised Heterogenous pursuit agents

Heterogeneous - CRO Training Tests (60) Generality Tests (2000)

Run Size Fitness Av. Cycles Captures Fitness Av. Cycles Captures

4 310 12674.417 36.050 42 11779.794 39.085 1244

1 303 12768.533 40.783 42 11537.858 41.185 1134

7 442 13177.233 37.150 43 12149.423 39.099 1265

6 351 14491.217 35.683 51 12948.046 38.845 1415

8 431 15024.067 36.100 55 12889.357 38.387 1418

3 409 15076.650 30.083 53 13753.141 34.912 1521

9 398 15111.967 30.850 54 13485.342 35.467 1476

0 442 15164.967 31.217 55 14230.562 35.466 1657

2 441 15209.433 33.550 55 13593.414 37.841 1553

5 270 15272.000 30.867 55 14390.490 32.522 1640

Mean 379.700 14397.048 34.233 50.500 13075.743 37.281 1432.300

750k 167 9748.600 40.600 4 6449.118 47.500 146

Figure 6.4: Experiment 7b : Capture Position Assignment

graphs of figure 6.3. The evolved heterogeneous agents were spectacularly successful, three runs

of which achieved a capture rate of 55 out of 60. The generality was also very good, the best

being run 0 which scored a capture rate of 1657 out of 2000. Behavioural analysis of the best

evolved code confirmed that the new agents each selected one of the captures positions which

were not allocated to the previously evolved agents. The new agents learned through interaction

with the society their role in that society. Figure 6.4 shows the capture position assignments used

by the best individual.

6.3 Conclusion

We have shown that GP can be used to create socialised agents. These are agents that have been

evolved to work within an existing society of agents. We have also shown that the society can be

homogeneous, or heterogeneous, communicating or non communicating. We have demonstrated

that the new agents can learn to identify their role in the society and can communicate with ex-

isting members both implicitly and explicitly. They can also detect and resolve conflicts between
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themselves and the existing members. The latter can also involve learning the social conventions

of the society.

A important concept in software engineering is code reuse. Code reuse reduces the effort required

in large complex systems, whilst increasing the robustness of systems. The ability to use GP to

work with previously coded agents provides excellent code reuse and improves the scalability of

GP.



Chapter 7

The Scalability of Genetic Programming

Even for small sized problems, the memory and processing requirements of GP can be quite

significant. Consider for example the pursuit problem, with homogeneous predators. Let us

assume a population size of 10,000 individuals, using a GP system that uses 4 32-bit integers for

each node in the program tree.

If we assume that at worst each individual consists of 1000 nodes, then our estimate for space

requirements would be more than
��� 	�������� �������������	� � ��
�� ��+\ � W�� . If we assume the

use of a generational engine, then depending on the implementation we can assume memory

requirements that are up to double the calculated value.

If we then assume that we execute ten runs of this problem, where each run evolves the population

for 500 generations, and that evaluation of each generation involves running the fitness function

for each individual in the population, then the total number of fitness evaluations is
�������������

��� 	������ � ���������
. For the pursuit problem, if the fitness evaluation involves testing the program

for over a total of 60 test cases, where for each test case, the program is executed for 4 times (for

each predator), for each of the 50 cycles, then the total number of evaluations of the program is
��� ��� � ��
������������ � 
�� ����� �

evaluations.

Clearly this brings into question the scalability of GP for solving medium to large problems. This

issue is of particular importance when we use GP for evolving complex multi-agent systems. The

key factors are the space required to store the population, and the time taken to execute the fitness

function. The impact of both of these factor can be reduced by improving the performance of the

GP system so that it requires a smaller population, running for a fewer number of generations to

solve problems.

7.1 Solving Space Problems

We can reduce the memory requirements of the genetic programming algorithm by a several

ways. These can be categorised into three main groups, improving the implementation of the GP
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system, improving its performance and tuning the problem definition to optimise performance.

7.1.1 Implementation

We can implement the GP algorithm in ways that reduce the space requirements. The most

efficient way of representing a population in a GP system is to use a directed acyclic graph

(DAG). Handley [Han94a] used this method to represent the entire population of parse trees

as a single directed acyclic graph (DAG). One advantage with this approach is that eliminates

duplication of identical subtrees. Handley reported a 15-28 fold reduction in the number of nodes

per generation when using this representation.

An alternative is to use a linear representation, where each tree is represented in polish notation

as a byte array [KDBK99]. This is possible since the total number of terminals and functions is

unlikely to exceed 256, even when including ephemeral constants. This approach significantly

reduces the memory requirements. A program of 1000 nodes can now be represented using only

1KB instead of 16KB as in the above calculation.

There are two widely used GP engines, the Steady State Engine and the Generational Engine.

The Generational engine as defined by Koza generates an entire new population from the old,

replacing it. This would suggest that the implementation would require space sufficient to hold

twice the population of individuals to work. However, Koza [KDBK99] describes a memory

efficient crossover algorithm that requires space little more than populations size. This approach

has been implemented in a number of GP systems including GPsys. The steady state engine

works by placing newly created individuals into the population as they are created, and hence

only require a single population to be in memory.

Each of the above techniques will still cause problems as the population size and/or the program

size scales up. As the memory requirements increase, the operating system will use more and

more virtual memory, causing the process to start paging. Instead of using memory, we could

use as database to store the population. This is possible since, at most we need only two Indi-

viduals to be in memory at any given time. Fitness evaluation only requires one individual to

be in memory, and crossover requires two. Thus we could store the population in a database

and retrieve individuals as and when required. An important requirement of this approach is

that the time taken to download an individual from the database should be significantly smaller

than the evaluation time. Current RDBMS allow very fast storage and retrieval of a very large

number of objects (in the order of Terra-bytes) and hence retrieval of individuals from a database

should not impede performance significantly. Furthermore, since there are no concurrent access

requirements in our application, we would not require database locking and therefore should be

able to significantly increase the performance of database access.
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Using a RDBMS or an ODBMS, we should be able to apply GP to particularly difficult domains

where the population sizes are very large and/or the size of the evolved programs need to be

very large. Using the same calculations used at beginnings of the chapter, we can quite easily

increase the population size by 2 to 3 orders of magnitude without running into problems with

current databases. Alternatively or in addition, we could also increase the size of the individuals

by 3 orders of magnitude. This would allow us to evolve Megabyte size code using populations

of millions of individuals. Whilst this seems hopeful, in the next section we shall see that the

real constraint is the computational load.

The use of databases brings additional benefits:

� results stored in a relational database allow easy post-processing, and there many tools that

integrate RDBMS with spreadsheet calculators

� assuming the use of transactions to write each new generation to the database, we can

easily restart runs after a system crash or reboot using the last saved generation

� we could store every generation of a run to allow analysis of evolutionary flows. We would

also need to store information about the genetic operator used to create the individual

together with the trees/subtrees of the parents involved. This may help us better understand

the GP algorithm.

� We can have a population that grows by one generation each generation so that no individ-

uals are ever removed. This could be used to reduce loss of population diversity.

7.1.2 Tuning the problem definition

We could choose GP parameters that lower the space requirements. The most obvious ones are

to restrict the size of the population and the size of individuals in the population.

Restricting the size of individuals in the population is usually a requirement of nearly all GP

systems. However, there are two problems with this approach. The first is that it we cannot

predict in advance the size of solution programs. Whilst algorithmic complexity theory suggest

a lower bound on the size of such a program, the actual size of the evolved program cannot

known. A possible solution is the application of parsimony pressure in the fitness function.

The second problem is that to make GP more scalable we will need to be able to evolve bigger

programs. However, the use of ADFs and automatically evolved data structures may help.

The single most important factor for a successful GP application reported by GP practitioners is

the population size. Therefore reduction of the population size is unlikely to help make GP more

scalable. However, this possibility has been investigated by Gathercole and Ross [GR97a] who
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report that small populations evolved for a large number of generations can be better than large

populations over a few generations. It is noted that they use a high mutation rate (60%).

Considerable work has been done to demonstrate that Automatically Defined Functions can be

used to evolve code re-use [Koz94b]. Code reuse can be used to reduce the size of an evolved

solution as well as to reduce the computational effort required to find it, and should consequently

be used wherever possible.

7.1.3 Performance

We can optimise the GP algorithm to minimise the required population size. This would involve

making better use of a smaller population, the main obstacles of which are premature conver-

gence and bloat.

When a GP run has prematurely converged, the programs start to increase in size until they reach

the maximum allowed sized. The code that is added to the solutions is referred to as bloat or

introns and has no effect on the fitness of the evolved program. The cause of bloat has been

studied by Langdon and others [LP97a; LP97b; Lan97a; LP97c; Lan97b; Ang98]. Suggestions

have been made as to how we can reduce bloat and hence the size of evolved solutions. However,

this is likely to make little difference as the appearance of bloat marks premature convergence.

Premature convergence leads to the population converging on a less than optimal solution early

in the run. One of the explanations for premature convergence is the lack of genetic diversity in

the population. This happens when the proliferation of fit individuals earlier in the run, obviate

the need for primitives that are needed later. Small populations are more prone to this problem,

as convergence happens more rapidly. If however we detect loss of diversity and employ some

technique to re-inject it into the population, we may be able to reduce the effective population

size. Ways of maintaining population diversity include changing the fitness test cases, so as

to prevent individuals that work on easiest of test cases from dominating the population. This

approach was used in the experiments in this thesis. Other alternatives include using competitive

co-evolution to co-evolve the difficulty of the test cases together with the programs used to solve

them. This creates a continuous arms race and prevents simple solutions from dominating the

population. This technique was used recently to evolve a checkers program that can win even

expert checkers players without ever having played an expert [CF99].

The use of demes present a simple yet effective means of combating premature convergence and

is discussed further later in this chapter.

Another common method used to defend against premature convergence is to use mutation to

help re-create diversity and re-introduce lost genetic material. Koza initially avoided the use of

mutation in GP and relied entirely on crossover, but has since changed his policy.
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7.2 Solving Processing Problems

There are two ways that we can reduce the computational requirements for a GP run. We can

reduce the cost of evaluation and/or we can reduce the number of evaluations that are required.

The former relies on improving the efficiency of the fitness functions, and the latter on improving

or optimising the use of the GP algorithm.

In addition we can use various techniques to speed up the evaluation times, including hardware

solutions and parallel and distributed processing. The processing requirements can sometimes

be aggravated by paging caused by excessive memory utilisation. The solution to the latter has

already been covered in the previous section, and therefore will not be examined here.

7.2.1 Speeding Up Fitness Processing

7.2.1.1 Use Hardware

There is considerable work in progress with using evolutionary techniques to evolve hardware.

The technique involves evolving connections for Field Programmable Gate Arrays(FPGAs)

which can be reconfigured at high speeds, and allows low level signalling to be exploited without

simulation. It is doubtful however that this technique is any faster than simulation using Spice

[KDBK99] on the fastest general purpose processors. The FPGAs tend to have bandwidths of

10MHz or less whereas the top end Pentium processor have exceeded 1GHz.

7.2.1.2 Machine code GP

The principle is to get GP to directly evolve machine code. The idea being that the code generated

should be extremely fast in execution [NBF99; Nor97]. However, the cost is that we lose the

abstraction provided by high level languages resulting in larger code sizes, particularly when we

deal with complex problems. This in turn affects the search space; there are fewer permutations

and combinations of operators and operands in a 100 node tree than a 10000 node tree.

7.2.1.3 Use Efficient High Level Languages

It is argued that using efficient high level languages like C and C++ offers performance advantage

over languages like LISP, and we note that Koza now uses a C implementation of GP. Languages

such has Java however, offer alternatives such as run time optimization and results with GPsys

suggest that this may not be necessary.

7.2.1.4 Compiled Code

The code generated by GP is typically interpreted many times during fitness evaluation. We can

therefore speed the evaluation time significantly by writing the code to a file and compiling it

to generate machine code. This would only make sense if the evaluation time takes many times
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longer than the compilation time. Harris [HB96a; HB96b] used this approach to speed up the

evaluation time of feature detection code generated by GP.

7.2.1.5 Parallel and Distributed Architectures

The use of parallel and distributed architectures provides one of the most significant ways of

making GP scalable. The scalability comes from being able to add processing power incremen-

tally as and when required.

Parallel computers minimise the costs associated with having multiple processors by sharing

computer hardware, such as the motherboard, disks, memory, VDU and other peripherals be-

tween the processors. Their main disadvantage is that they present a single point of failure.

There is always a limit to how many processors can be added to a parallel processing system and

hence scalability is limited.

In comparison, distributed architectures are more costly per CPU, but offer greater flexibility

in that it is easy to add or remove processing power. There is theoretically no limit to how

many computers can be added and hence distributed architectures are extremely scalable. Each

networked computer can fail without affecting others and hence a distributed system is more

fault tolerant. The main disadvantages are cost and management issues.

The most recent trend is to combine both parallel and distributed architectures to produce super

computing clusters, which offer the best of each approach. The Linux Beowulf architecture is

one example.

There are a number of techniques we could employ to exploit parallel and distributed processing:

� evaluate individuals from a population in parallel

� evolve demes in parallel, allowing communication between demes

� execute a number of runs in parallel

The first technique works very similar to standard GP, except that we farm out evaluation of in-

dividuals to a number of processors. These processors may be on the same parallel processing

computer hosted by a multithreaded operating system, or distributed across networked comput-

ers. The latter is only effective if the time taken to evaluate an individual is significantly larger

than the time take to communicate individuals and evaluation results. A disadvantage with this

approach is that it is not fault tolerant. If one or more of the processors fail we need to ensure that

the evaluation of the individuals allocated to it are restarted elsewhere. As with all distributed

systems, complex failure semantics make the latter difficult.

The last technique is extremely simple, and is used by most GP practitioners. Here we execute
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a separate run on each processor or host. There are no communication overheads with this

approach.

The standard GP breeding policy is described as panmictic since it potentially allows any in-

dividual in the population to breed with any other individual. An alternative is to divide the

population into subpopulations called “demes”, or islands. These demes are typically positioned

on a two dimensional grid, and breeding is restricted so that any two parents have a much higher

probability of being selected from within the same deme or from geographically close demes.

This approach has been investigated both by D’Haeseleer and Bluming in [DB94], and by Tack-

ett and Carmi in [TC94]. Tackett and Carmi use explicitly defined demes of different sizes for

a problem with tunable difficulty (the donut problem). Their results suggest that use of demes

significantly improves performance. In contrast D’Haeseleer and Bluming instead of using ex-

plicit demes, introduce locality in the form of geographic neighbourhoods, and select parents

from the same neighbourhood and also place the child into the same neighbourhood. They have

detected the spontaneous emergence of deme like structures in their results and report that the

introduction of locality significantly improves population diversity which in conjunction with

slightly increased generality of individuals, yields a substantial improvement in the generality of

the population as a whole. Recalling that loss of population diversity is one of the reasons for

premature convergence, demes therefore delay convergence.

One of the advantages of the demic approach is that it is easy to implement using parallel or

distributed architectures and has very low communication overheads. A second advantage is that

it is extremely fault tolerant, the loss one or more demes does not halt a demetic run. Koza and

Andre [KA95; AK95; AK96a; AK96b] developed a GP system using a network of transputers

to exploit the parallelism inherent in the demic model. Each processor was allocated a separate

deme. The results of his experiments with EVEN-N-PARITY problems indicated that more

than linear speed-up in solving the problem using GP was obtained. Figure 7.1 a) shows the

architecture used by Koza. The demes were connected to form a torroidal structure which has the

advantage of good communication between neighbouring demes as well the ability to maintain

high connectivity in the face of node failure. Bennett and Koza have more recently employed

the use of a Beowolf architecture [IKSS99] which effectively combines distributed and parallel

architectures to provide scalable processing power. This architecture has been used for evolving

programs using GPPS which has 3 orders of magnitude greater processing requirements than

traditional GP systems.

The Internet with its millions of networked computers offers excellent possibilities for distribut-

ing work. This has been exploited by the SETI project which works by means of a specialised

screen saver. The latter kicks into operation during long periods of inactivity and connects to a
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Figure 7.1: Parallel Demetic GP

specific computer to download data to be processed. The results are shipped back to the same

computer after completion. It would easy to create a demic GP system which works on the

same principle. The architecture would probably be shaped as in part b) of figure 7.1. The com-

puter hosting the GP system would form the hub, allowing communication between demes to

occur and collection of results. This approach was used by Chong [Cho99a; Cho98; Cho99b;

CL99] via a Java based GP system running as an applet.

Poli [Pol96b; Pol96a; Pol97b] devised a new form of GP called Parallel Distributed Genetic

Programming(PDGP). PDGP uses a graph-like representation a provides fine-grain parallelism.

Poli has shown in experiments with PDGP on standard GP problems that it performs significantly

better than standard GP. An additional advantage with PDGP is that it allows symbolic and neural

processing elements to be combined freely [Pol96c; Pol97a].

7.2.2 Reducing Fitness Function Evaluation Costs

Reducing the evaluation cost ultimately relies on making the fitness function as efficient as possi-

ble. The most effective way of achieving the latter is by using test case sampling. The remainder

are simple rules of thumb.

7.2.2.1 Deadlock Detection

When evolving MAS programs, we normally repeatedly execute the evolved program for a given

test case until the maximum number of iterations permitted have been expended. In situations

where deadlock occurs we would be executing the programs needlessly until we have reached the

maximum number of iterations. Detection of deadlock would allow the test case to be aborted

and hence save processing time.
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7.2.2.2 Caching

During fitness evaluation, particularly involving ADFs, it is possible that the evaluation of a

branch or ADF gives the same results regardless of how many times it is executed, i.e. it is

idempotent. For this case we can cache the results in memory and use this value instead of

re-evaluating the code repeatedly.

Handley [Han94a] exploited the his DAG representation of the population to implement an ex-

tremely efficient method of caching. Duplicated subtrees are represented just once in the DAG

representation, and hence by caching the computed value of each subtree he was able to avoid re-

evaluation for each instantiation, even when the same sub-tree occurs in a different population.

This was made possible by restricting functions so that they have no side effects and by fixing

the test cases used by the fitness function. This approach reduced the number of node evaluations

by 11-20 fold per run.

7.2.2.3 Reducing Wasted Computation By Aborting Runs

If we can detect premature convergence, we can abort runs which will ultimately fail. However

detection of premature convergence is non trivial. One simple check is to ensure that the genetic

material known to be part of the solution has not been lost.

Teller and Andre [TA97] describe a method that can be used to reduce wasted computation in

fitness evaluation by choosing the optimal number of fitness cases for each individual. Gathercole

and Ross [GR97b] use the concept of an error limit to prevent individuals which exceed this limit

from being further evaluated. This allows them to reduce the number of fitness test cases applied

to an individual.

7.2.2.4 Simplifying the Code

We could copy the individual being evaluated and remove any redundant code (also known as

introns) from the copy just before evaluating it. This can be justified as long as the time take to

evaluate is significantly larger than the time taken to simplify the code. Care must be taken to

prevent code with side effects from being removed. An example is a subtraction resulting in zero,

where the operands are calls to functions that are expensive. Koza developed a LISP program

that automatically removed redundant code [Koz92b] for evaluation.

7.2.2.5 Sampling Test Cases

Reducing the amount of tests cases against which a program must be tested as part of the fitness

function is a simple and highly effective way of reducing the evaluation cost. The mechanism

that was used for almost all the experiments in this thesis is variation of test case sampling. In test

case sampling instead of applying the full set of test cases for each fitness evaluation, we sample
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from a set of test cases. Typically a sample size significantly smaller than the test case set is

chosen. In our experiments this sample size ranged from 1/6th for the pursuit problem to 1/20th

for communicating agents problem. In our approach, for each generation, we randomly sampled

a fixed number of test cases from the set of test cases and used them to evaluate each individual

of the generation. The fitness value assigned to each individual is the average over the test cases.

This approach allows individuals from the same generation to be compared easily. As mentioned

in chapter 3, a key problem with this approach is that as we move from one generation to the

next, the best of the generation may outperform than the current best of the run, not because it

is generally better, but because the sampled test cases were easier. Ideally we should weight the

fitness values according to the difficulty of the test cases that were passed. Unfortunately this is

not easy in the pursuit domain, where given a particular arrangement of agents it is difficult to

measure how much effort is required to enable capture. To overcome this problem we devised

a technique whereby after each generation, we re-evaluate the best individual of the generation

using the full training set of test cases. This individual becomes the best of the run if its full

fitness value is greater than the current best.

To justify our approach we conducted a comparison experiment (experiment 10). We imple-

mented an experiment which was identical to experiment 8 (homogeneous pursuit with conflict

resolution operators) except that the fitness evaluation used all 60 test cases for each individual

instead of samples of size 10. The significantly higher computational costs meant that we could

only run the experiment for 250 generations instead of 500. The results of the experiment are

shown in table 7.1 and the graphs of figure 7.2. The total number of evaluations of each indi-

vidual using this approach is estimated at
� ��� � � ����� ��
�� � ��� ��� ��� � �����

. For the original

experiment, the total number of evaluations is estimated at
����� � � ����� ����� � ��� � � � � ����� �

. The

new experiment therefore required 3 times as many evaluations as the original experiment. The

results, for the new experiment when compared with the results of the original experiment do

not justify the extra computational effort. furthermore, the results from the original experiment

show a greater generality.

It could be argued however that the new experiment was only run for 250 generations and there-

fore was disadvantaged in that the total number of individuals explored were fewer. To make

the comparison fairer, we therefore present results from experiment 8 at generation 249 in table

7.2. Clearly these results show that even after just 250 generations the runs produced on average

more general solutions. The best individual of the run was only slightly worse for the 60 test

cases (passing 50 instead of 53) but was significantly more general. Furthermore, we effectively

halved the number of evaluations and can therefore state that using our approach not only reduces

the evaluation cost significantly, it also creates more general solutions. The problem with using a

fixed of set test cases seems to be overfitting. These results should not surprise us, using the same
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fitness test cases for each generation allows successful individuals in early generations to swamp

subsequent generations which in turn causes loss in genetic diversity and leads to premature con-

vergence. By contrast in the sampling approach, those individuals successful in one generation

may not be so successful in subsequent generations. We believe that sampling effectively creates

niches in the population, where each niche contain individuals that are successful for a particular

set of test cases. Like demes these niches help preserve population diversity and hence delay

convergence. Furthermore as we move from one generation to the next, the individuals which

propagate the most are going to be those that can score high fitness regardless of the test cases

presented to them, meaning those that are more general. The graphs in figure 7.3 show how the

fitness and capture count of the best of the generation varies over generations. The graphs show

the averages for the runs, the best run and the worst.

We have one last point that needs testing; the re-evaluation of the best individual of a generation

using the full training set of test cases before comparing with the current best of the run. As an

alternative we could compare without a full evaluation. The results we would obtain using the

latter for experiment 8 are shown in table 7.3. Clearly these results are significantly worse than

the original results hence, justifying this approach.

The technique described by Gathercole and Ross [GR94] as Random Subset Selection is similar

to the technique described above.
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Figure 7.2: Experiment 8 : Performance Graphs of Evolved Homogeneous Agents (Full

Evaluation)

7.2.2.6 Redundancy in Test Cases

We note that as we approach the end of a run, the number of test cases that are failed become

smaller and smaller. It is likely that population would have converged on solutions to the easiest

of the test cases early in the run. It seems wasteful therefore that these same test cases are still

used later in the run. One solution might be to assign weights to the test cases dynamically,

such that test cases most frequently passed are deemed easier and hence have smaller weights

than those that are infrequently or never passed. In this scheme, the fitness sampling approach
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Table 7.1: Experiment 8 :Fitness of best evolved Homogeneous agents (Full Evaluation)

Homogeneous - CRO Training Tests (60) Generality Tests (2000)

Run Size Fitness Av. Cycles Captures Fitness Av. Cycles Captures

7 295 7704.550 50.000 0 6641.823 50.000 0

6 249 9781.967 42.733 21 8008.843 46.219 368

9 370 9977.433 43.550 23 7651.716 46.477 352

2 382 10138.950 43.283 22 7854.247 46.382 362

3 226 10595.300 41.817 22 9358.700 43.583 539

0 300 11248.617 40.883 29 10211.205 41.986 768

1 257 12107.433 39.750 35 9364.629 44.225 606

5 245 14179.183 38.067 50 11830.044 39.349 1235

8 266 14296.600 32.333 47 13166.297 34.562 1376

4 237 14918.783 32.117 53 12517.947 36.180 1275

Mean 282.700 11494.882 40.453 30.200 9660.545 42.896 688.100

750k 223 5654.633 49.950 1 5638.654 49.607 32
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Figure 7.3: Experiment 4a : Performance Graphs of Evolved Homogeneous Agents (Fittest of

Generation)

discussed earlier would be augmented to select test cases with probabilities in proportion to their

weights. The danger with this approach is that the population may ”forget” how to solve the

earlier test cases. However, the dynamic way in which the weights are defined should compen-

sate. This approach has been investigated by Gathercole and Ross and implemented as dynamic

subset selection [GR94; Gat98].

7.2.3 Improving the efficiency of the GP algorithm

We could reduce the cost of evaluation, by reducing the number of evaluations that are required.

The number of generations required to find a solution, or one that is closest, is highly dependent

on the problem domain. To minimise this number, we could:
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Table 7.2: Experiment 4a : Fitness of best evolved homogeneous agents at generation 249

Homogeneous - CRO Training Tests (60) Generality Tests (2000)

Run Size Fitness Av. Cycles Captures Fitness Av. Cycles Captures

4 258 8121.167 47.217 11 7343.922 48.300 205

7 331 9603.850 43.033 21 9401.273 44.210 624

2 229 10930.250 39.017 30 9478.439 42.790 697

0 281 11275.600 39.583 29 9255.731 44.354 541

5 228 11673.933 38.683 32 10188.894 41.212 768

3 186 11907.067 36.333 34 10473.023 40.379 812

1 338 12140.450 38.467 36 10992.288 39.824 953

6 227 12307.500 36.383 36 10805.262 40.014 878

8 238 12801.167 36.550 39 11967.796 37.739 1077

9 350 14320.900 32.383 50 13877.423 32.915 1565

Mean 266.600 11508.188 38.765 31.800 10378.405 41.174 812

� reduce the size of the search space

� improve the quality of the search space (make it less sparse)

� improve the genetic operators used to navigate the search space

� improve the starting population for a run

Important configuration parameters are the population size, the choice and number of func-

tions/terminals and the maximum allowed size of trees. Increasing the population size increases

the probability of obtaining a solution in earlier generations, but a significant cost is added for

evaluating each generation which is likely to cancel out any useful gains. The choice, and number

of functions and terminals directly affects the size of the search space; few high level functions

and terminals are likely to be better than many simpler ones. We can estimate an upper bound

for the number of possible program trees that we can generate. If we assume that the trees are

represented in polish notation, then we can treat them as simple strings of code. Let us assume

then that maximum size of the strings is restricted to N, and that the symbol set is of size Z (the

total number of functions and terminals). The total number of strings is ������ ��� � and shows the

importance these two parameters. Note that this is likely to be a significant overestimate, as we

have assumed that all symbols are equal and may be combined arbitrarily. In practice some of

those symbols will have been functions whilst others will have been terminals. Terminals cannot

have subtrees, and hence there are restriction on how we can generate these strings. Furthermore

the use of a strongly typed GP system [Mon93] will further reduce the number of possible strings
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Table 7.3: Experiment 4a : Fitness of best homogeneous agents of run (no re-evaluation)

Homogeneous - CRO Training Tests (60) Generality Tests (2000)

Run Size Fitness Av. Cycles Captures Fitness Av. Cycles Captures

7 362 8641.983 46.050 14 8802.604 44.564 506

6 320 10070.983 40.500 24 10420.545 40.244 803

2 251 10354.500 38.800 28 9487.855 43.035 700

3 262 10766.650 38.217 29 10322.856 40.523 824

0 274 11037.233 39.683 29 10079.818 42.301 730

4 241 11309.000 40.150 29 10424.150 41.860 784

5 281 11807.717 38.533 36 10488.759 40.588 885

8 192 12887.350 34.967 38 12137.954 37.553 1097

1 386 12982.317 34.550 42 12899.421 34.894 1342

9 352 13122.000 35.483 43 13157.326 34.996 1398

Mean 292.100 11297.973 38.693 31.200 10822.129 40.056 906.900

that we can generate. The latter however may impact the quality of the search space in a negative

way, by making it more sparse for example and thus making it more difficult to find solutions

and therefore cancelling any gains. Through use of ADFs we can restrict the maximum size of

the evolved solution and hence reduce the size of the search space. This mechanism is not known

to negatively impact the quality of the search space [Koz94b].

Improving the quality of the search space is very difficult. The major factors being the difficulty

of the problem itself, the choice of functions and terminals and the fitness function. An ideal

fitness function should be sensitive to extremely subtle changes in performance and be more

continuous in its measurement than discrete. The challenge is how to describe a problem in a

fitness function which has those characteristics.

The standard crossover and mutation genetic operators generate new individuals almost blindly,

from their parent(s). The result being that the new individual has a good probability that fit

portions of code are disrupted. Creating more intelligent genetic operators that avoid disrupting

part of the code marked as useful may help evolution. Teller [TV95; Tel96] developed an intel-

ligent crossover operator that learns to select good crossover points using information such as

the execution path of the evolved programs. He reported significant improvements in the rate of

production of fitter children using this operator.

Langdon recently analysed how the shape of trees generated for the initial population affect

the performance of the a run [Lan99]. He suggested that problems can be divided into two

types, those in which the solutions trees are deep and those where they are wide. The creation
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method parameter is used in GP systems to specify the shape of the initial population, with values

including Grow, Full or Ramped half and half [Koz92b]. The Grow method tends to create many

short trees, the full method creates deep trees. If we choose the wrong type for a given problem,

we may disadvantage the run. An analysis of the fittest individuals of randomly shaped trees

may provide insight into the value to be used for this parameter.

7.3 Conclusion

We have provided a solution to the space complexity issues of GP (the use of a database) and have

shown that the key issue is one of fitness evaluation. We have reviewed the techniques that are

currently in use to alleviate the demands of fitness evaluation and shown through experimentation

that fitness sampling is extremely effective.



Chapter 8

Genetic Programming and Software Testing

If we compare the human software development cycle with software generated by GP we note

that whereas test cases are used in software engineering to verify that the program conforms

to the requirement specifications, in GP the test cases along with the fitness function are the

requirement specifications. The analog of the traditional software testing phase in GP is the

testing that we perform at the end of a run for generalization of the evolved code. Once again

we note that instead of comparing the results of tests with the specifications, the test cases are

themselves most of the specification. This strong dependency of GP on software testing suggests

that formal software testing techniques are extremely important for GP. It is surprising therefore

that little work has been done on the use of formal software testing in GP. In the this chapter

we consider formal software testing techniques and comment on their suitability for genetic

programming. In particular we also look at techniques suitable for testing distributed/multiagent

systems.

8.1 Fitness evaluation

When evolving programs using GP we measure a programs fitness by testing the program and

measuring success. We test programs by initialising the inputs to some predefined parameters,

executing the program and then measuring in some way the difference between the desired output

and the output obtained. The tuple consisting of input values and desired outcome define a test

case. In GP the desired outcome is effectively encoded in the fitness function and hence only

the input values for each test case is required. Many test cases are needed to test a program.

Ideally we would like to apply all the possible test cases for a given application so that we get

an accurate measure of the program correctness or fitness. In practice however this is seldom

feasible due to large number of test cases that are possible. Consider for example, our pursuit

problem.

There are 4 predators and one prey that can be placed in any of the cells in a 30 by 30 board.
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If we place the prey first, there are 900 positions to choose from, and for each such positions,

we need to choose 4 positions for the predators. If the predators are homogeneous then we can

choose from any of the 899 cells in an order independent manner. For heterogeneous predators,

the order matters and we need to consider permutations of the different orderings. The number

of possible combinations for selecting cells for 4 homogeneous agents and from 899 positions is

given by the binomial co-efficient

���
� �
���

and evaluates to about 27 billion positions. Multiplying by 900 for the prey positions gives

approximately 24 trillion test cases. For heterogenous agents there is an additional factor ��� that

we must consider, since the ordering of the predators is important. This gives us approximately

583 trillion test cases. To make things worse, we can multiply the above values by the different

number of programs that we will be used to drive the prey, since each is effectively a different

test case. In a typical GP run consisting of a population of 1000 individuals, evolved for 500

generations, allowing 50 cycles for each test case will require
�������	���������	� W � ��
 V ��W � ���������

evaluations of our program.

Clearly exhaustive testing of our program is not going to be possible. We are therefore forced to

take a very small subset of the test cases and use them for training purposes. In our experiments

for the pursuit problem, we chose 60 such test cases, there were actually 30 different placements

for two different types of prey. Furthermore, out of the 60 test cases, to reduce the time taken to

evaluate individuals, we exposed each generation to a sample of only ten test cases, which are

chosen at random for each generation. Note that for our implementation of the pursuit problem,

since the agents are stateless, a new test case is effectively created by each simulation cycle.

Therefore the effective number of test cases seen by each individual during an evaluation can be

as many as 50 times the number of scheduled test cases. This is still a small number considering

the full space of test cases.

Even when testing the generality of any evolved solution at the end of a run, we still can only

sample from the full space of possible test cases because of the high cost of evaluations. For our

experiments, we generated 1000 unique random positions for the agents and created 2000 test

cases out of them using still and randomly moving preys.

Software testing is central to GP, and we therefore conclude that the GP research community

could benefit greatly from the experience gained in the formal software testing of human coded

programs.
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8.2 Software Testing and Quality Control

The testing of human coded computers programs is now an established part of software engi-

neering. There are number of well developed techniques that are used to test software and we

hope to show that these techniques can also be used to test programs evolved via GP.

8.2.1 The Definition of Software Testing

It is intuitive to think of testing as a means for checking whether a program achieves its in-

tended purpose. Using this definition it seems quite reasonable to use a random set of inputs and

compare the output with the desired output. However, in his classic book “The Art of Software

Testing” [Mye79] Myers argues that a better definition is that:

“testing is the process of executing a program with the intent of finding errors”

A successful test case would therefore be one that detects an error. If we use this definition, it

becomes apparent that random-input testing is less effective. Myers describes random-input test-

ing as probably the poorest testing methodology. If we think of the tests in terms of probability

of finding errors, it becomes clear that this approach is unlikely to be optimal or even close to

optimal.

One weakness with Myers’ definition of testing is that it relies entirely on program execution

for testing, there are other techniques that can be used which do not require the program to be

executed. This leads Hetzel [Het85] to use a more general definition

”Testing is the measurement of software quality. (where quality means meets the customers

requirements)”

This definition has the advantage that it allows for metrics other than program success that we

may use to judge the quality of the software such a size of code, economy in use of resources

and execution time. Furthermore it doesn’t just rely on program execution. A weakness with

this definition is that requirement specifications whilst being clear on what a program should do,

seldom specify undesirable features. This is not surprising as the list of undesirable behaviour is

often much larger than the list of desirable behaviour.

Beizer [Bei95] lists the following as part of the reasons for testing software:

� to falsify the object with respect to stated or unstated requirements

� to validate the object; that is, show that it works

Both of these help us to evaluate the quality of software. Tests used to falsify software are called

dirty tests or negative tests. Those used for validation are called clean tests or positive tests.
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By using both types of tests, we can get a good measure of the correctness of the program.

Falsification and validation should therefore important aims of a fitness function.

We know from our discussion earlier in the chapter that exhaustive testing is often impossible.

Any testing that we perform is hence incomplete. Our goal is therefore to cover as many errors

as possible with the minimum number of test cases. The key issue in software testing is one of

test case design:

”What subset of all possible test cases has the highest probability of detecting the most errors?”

Many of the techniques developed for software testing help in answering the above question.

These techniques can be divided into two sets, black box testing and white box testing. There are

also hybrid techniques that combine the two to maximise test coverage.

8.3 Black Box Testing

Black box, behavioural, functional and dynamic testing are all names for testing techniques that

test programs by executing them. They treat a program as a black box which has inputs and

outputs and are not concerned with the structure or internal behaviour of the underlying code.

Tests are performed by applying different inputs and checking the output for conformance with

the requirements. Clearly complete testing would therefore require tests for every possible set

of inputs, which is is not possible. Consider for example testing an optimizing “C” compiler!

Equivalence partitioning, boundary-value analysis, cause effect graphing and error guessing are

methods that can be used to design black-box test cases that maximise error coverage using the

minimum number of test cases. Beizer [Mye79] lists other techniques, but many of these require

building a graph based model of the program being tested and rely on assumptions about the

likely structure of the code being tested.

8.3.1 Equivalence Partitioning

Equivalence partitioning is a powerful means of reducing the number of test cases that are

needed. The approach involves partitioning the input domain of a program into a finite num-

ber of equivalence classes, such that testing one value from the class is equivalent to a test of any

other value. If one test in the class detects an error than the same error would be detected by any

of the other tests in the class. Since equivalence classes can overlap, it is also possible that a a

test case may simultaneously be representative of tests in more than one class. This type of test

cases is therefore even more useful than one that fits into a single equivalence class.

If we consider the communicating agents of chapter 5, it easy to see the kind of equivalence

partitions that we could create. The X-Y axis creates four quadrants, and the agents can be

located within the same quadrant or in different quadrants, each possibility could be seen as an
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equivalence class. In any case it is easy enumerate the total number of relative positions in terms

of quadrants. Alternatively we could partition the test case space by just the relative positions of

X-Y coordinates, so that �
� ��� ��� \ � � \ � is an equivalence partition. We could even use both

schemes, which would invariably result in overlaps, which could satisfied with fewer test cases

than the total number of equivalence classes.

8.3.2 Boundary-value Analysis

The general principle behind boundary-value analysis is that test cases that explore situations

that are on or near the edges between equivalence classes have a higher probability of finding

errors. So instead of just picking any value from an equivalence class, we select values that

put each edge of the equivalence class to test. Furthermore this approach is used with input

equivalence partitions as well as output equivalence partitions. Typically values are selected on

each boundary, and very near to the boundary, or on each boundary segment as well as near to

the boundary segments. This technique is also called extreme value testing. When the partitions

are defined by inequalities on the set of inputs they are referred to as domains and we use the

term domain testing instead of boundary analysis.

8.3.3 Cause-effect Graphing

Cause effect graphing is useful for finding errors associated with combinations of input values.

These type of errors are not exposed by the previous two methods. The general principle is to

translate by hand a requirement specification into a boolean graph (the cause-effect graph) or

set of graphs, where a cause is a distinct input condition or equivalence class, and an effect is

output condition or system change. The graph is then annotated with constraints and eventually

converted into a limited-entry decision table, where each column in the table represents a test

case.

8.3.4 Error Guessing

Error guessing involves predicting the type of errors we might have in a system from knowl-

edge of the application domain, or from statistical information about the relative frequency of

occurrence of different types of errors.

8.4 White Box Testing

White box, structural logic-driven and static testing are all names for test techniques that work on

the source code itself. Tests are created by examining the program logic and selecting inputs that

exercise as much of the logic as possible. The analogue of exhaustive input testing for white-box

testing is exhaustive path testing. Exhaustive path testing requires that we execute all possible
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paths of control flow through a program. The latter is again infeasible due to the very large

number of flows created via conditionals, loops and function calls. A number of methods are

available for white-box testing including Statement, Decision, Condition, Decision/Condition

and Multiple-Condition Coverage. All of these methods can be automated to enable white-box

test cases generated by a program. Many test generation tools use white-box testing.

8.4.1 Statement Coverage

Statement coverage requires that we design test cases such that every statement in the program

gets executed at least once. The weakness with this approach is that it does not exercise condi-

tional statements very well. As a result many paths containing errors may not be exercised.

8.4.2 Decision Coverage

Decision coverage requires that we write test cases such that each decision statement in the

program has a true and false value at least once. Assuming that a program contains at least one

decision statement (examples include If, While, For, Switch) then decision coverage

will also provide statement coverage.

8.4.3 Condition Coverage

Where a decision statement consists of more than one condition, such as If (e1 & e2) to

ensure that each condition is tested, we use condition coverage. Condition coverage requires us

to write test cases such that each condition in a decision assumes all possible values at least once.

8.4.4 Decision/Condition Coverage

Condition coverage does not subsume decision coverage. If consider the same example If

(e1 & e2) we note that condition coverage requires us to create two test cases represented

by the tuples (e1 = true, e2 = false) and (e1 = false, e2 = true). This clearly does not cause the

statement guarded by the If clause to be executed. We therefore still needs Decision coverage.

Decision/Condition coverage hence requires that we write test cases such that each condition in

a decision as well the decision itself takes on all possible outcomes at least once.

8.4.5 Multiple-condition Coverage

Many programming languages use lazy evaluation to evaluate and/or condition operations, so

that for example, if the first condition in an and expression is false, the second condition is

never evaluated. Similarly in an or expression, if the first condition is true, the second is never

evaluated. To ensure that errors in logical expression are detected, multiple-condition coverage is

used. This requires that test case are written such that all possible combinations of conditions in

each decision are covered. Multiple-condition coverage subsumes decision/condition, condition
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and decision coverage.

8.5 Applying Software Testing to GP

The use of test cases are important for two phases of GP. The first phase is for training purposes

and the second is for generalisation.

8.5.1 The Training Phase

During the training phase each program in each generation is tested via the function. The fitness

function executes the program using a set of test cases and measures success. The test cases could

be designed using software testing techniques such as white-box or black-box testing. However,

the programs that we are testing in GP are constantly changing, and therefore tests generated via

white-box testing techniques cannot be reused, and need to be re-generated for each program

during the evolutionary. Clearly this is likely to be too costly. Black box testing techniques are

ideal, as they do not rely on the structure of the code being tested. The implication is that we

can design test cases once using black-box techniques and use them throughout for testing each

generated program.

Black box-techniques such as equivalence partitioning and boundary-value analysis should help

us design the minimum number of test cases to cover a large areas of the test space. This should

in theory be much better than the random testing techniques that are commonly used, and hence

make our fitness functions more accurate as well as efficient. This in turn should help scale GP.

It should be noted that even using black-box techniques, the number of test cases is still likely

to be too high for evaluating each individual, and hence the sampling technique detailed in the

previous chapter and used in the experiments is still applicable. The main difference being that

the test cases that are sampled have been designed for maximum coverage.

As mentioned earlier, clean tests are used for validation, whereas dirty tests are used for falsifi-

cation. A key issue that needs to be researched is how the ratio of clean versus dirty tests affects

evolution.

8.5.2 Generalisation

At the end of a run GP practitioners usually retest the program using unseen test cases as check

of for the generality of the solution. This is typically done by using a larger sample of randomly

generated tests. As a quality control mechanism this is far from optimal. A better strategy

would be to use a combination of white-box and black-box test techniques which together would

provide a much more accurate measure of the quality of the program. White-box test techniques

can be used at the end of run since we only have a single program for which we need to generate

test cases.
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8.5.3 The Pesticide Paradox

In human coded software, information about errors that have been detected via a set of tests is

used to edit the programs and remove all occurrences of such errors. The usefulness of the set of

test cases that were used therefore decreases. A similar process happens in GP. As evolution pro-

gresses more and more test cases are passed by individuals in the population. The effectiveness

of such test cases is therefore decreased. Software testing techniques have therefore co-evolved

with the program errors that they try to detect. This suggest that maybe research into how we

can co-evolve test cases for any given application might be interesting.

8.6 Testing Distributed and Multi-agent Systems

There is has been a surprising shortage of research in the testing of distributed systems. One of

the reasons is that testing of distributed, multi-threaded applications is many times more diffi-

cult than testing non-distributed systems. Research has therefore focussed on formalised design

techniques which try to reduce errors. The following is a non-exhaustive list of issues associated

with testing distributed systems which apply equally well to multiagent systems:

� Transient Failures: distributed programs can suffer failures caused by temporary condi-

tions such as network delays due to high volumes of traffic, or router failures causing

network partitions. Communication delays can result in timing errors which can cause a

process to fail, which in turn will causes tests to fail. If the same tests were to be repeated

the errors may not occur.

� Reproducibility: Execution of a distributed application may depend on the order in which

component processes are executed as well as the order in which messages are received.

Thus execution of the same application using the same inputs hence may not yield the

same results.

� Observability: An attempt to gain information about the behaviour of a distributed appli-

cation may change its behaviour, so that for example errors disappear or are introduced by

the observer. This is known as the probe effect.

� Timing: A distributed system does not have a global clock. Hence analysis of system

logging from test execution does not accurately provide information about the sequence of

events. The notion of logical time based on causal ordering must hence be used.

Krawczyk and Wiszniewski [HK98] provide a detailed analysis of the issues in testing distributed

software applications.
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Low, Chen and Ronnquist [LCR99] propose a methodology for automatically generating test

cases to test BDI agents. Their methods are based on white-box testing techniques. They divide

test coverage into node based criteria and plan based criteria. Nodes are similar to statements and

hence node based criteria is similar to statement coverage. The key differences is that nodes can

fail. A plan consists of set nodes connected by arcs to create a node path. A plan is successfully

executed by executing each of the nodes in the path. Failure of plan occurs if any of the nodes in

the path fail. Communicative interaction between agents is modeled by the notion of connected

plans.

8.7 Conclusion

We propose that GP practitioners can benefit significantly through a better understanding of soft-

ware testing techniques developed for software engineering. We have shown how black-box

techniques could be used to design more efficient and accurate fitness functions, and have also

shown that by combining black-box and white-box test techniques we can more accurately mea-

sure the quality of programs evolved using GP. We have noted that the lack of documented sys-

tematic methods for the testing of distributed and multiagent systems may make it more difficult

to apply GP to these domains.

We hope that the strong dependency of GP on software testing, and intensive manner in which

testing is used, may help advance research in software testing.



Chapter 9

Conclusion

The elegance of using GP for programming multiagent system comes from being able to search

for desired behaviour at both the individual and group level simultaneously. Using GP we can

avoid having to deal with the micro/macro problem. We generate agents at the micro level,

and evaluate them at the macro level. The agents with the best evaluations(fitness) are used to

create new agents at the micro level. This process is iterated until desired micro and macro level

behaviours emerge. The fitness function does not need to detail how each agent is to behave,

or interact with each other or the environment. It just needs to provide a relative measure of

how successfully the agents solve the global problem. The potential ways in which agents can

interact with the environment and other agents is specified by the function and terminals sets.

Further advantages are that the GP approach does not rely on extensive domain knowledge, and

that it is focussed on performance, which in the end is what matters. Note that performance can

be measured in a number of ways, ranging from how effectively a systems meets its goals to how

efficiently this is achieved.

9.1 Review of the Work

In chapters 4,5 and 6 we used GP to evolve agents that show well coordinated, coherent be-

haviour. In chapter 4 we evolved both homogeneous and heterogeneous pursuit agents using

game rules and test cases that are biased towards creating more conflicts. We showed that it was

easier to evolve successful heterogeneous agents than homogeneous agents. The explanation was

that the heterogeneous agents avoided conflicts by statically allocating tasks between them. The

homogeneous agents must allocate task dynamically which is difficult. We showed that through

the use of identities that homogeneous agents could perform as well as the heterogeneous agents.

We noted that the problem with dynamic task allocation is that the agents are more prone to task

overlap. This task overlap in turn results in greater conflicts. We therefore added an operator that

we thought would be helpful for resolving conflicts. We then tried to evolve agents for the pur-

suit problem using this additional operator and showed that homogeneous agents had developed
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social conventions that help detect and resolve potential conflicts.

In Chapter 5 we showed how GP can be used to create multiagent systems in which the agents

communicate explicitly. We showed the evolutionary process can create programs that learn to

send and receive information across two channels. The programs decided what information was

sent across which of the channels, and how to interpret the information received from a channel

to achieve the task in hand.

In chapter 6 we evolved agents that learn to work within a society of existing agents. First an

agent was evolved which learns to communicate with the best agent evolved in chapter 5. The

evolved program through interaction with the environment and the other agent learned to cor-

rectly interpret information received through the communication channels and what information

it needs to transmit through the communication channels. Next we showed that we can evolve

a pair of heterogeneous agents which learn to work with two other heterogeneous agents(the

best evolved heterogeneous agents of experiment 4b). The heterogeneous agents of chapter 4

used strict task allocation, to avoid conflict. The new agents learned to divide the remaining

tasks between them. We then showed that we could also evolve a program that drives a pair

of homogeneous agents, which must interact with an existing society of homogeneous agents

(the best evolved homogeneous agents of experiment 4a) that have predefined social conventions

used to resolve conflicts. We showed that the newly program can at least in part learn to behave

according to the social convention used by the existing society, and can certainly exploit these

conventions.

In chapter 7 we considered the scalability issues in genetic programming, and reviewed possible

solutions. We concluded that fitness evaluation is the key scalability issue. Chapter 8 proposed

that software testing techniques that are used in software engineering may be useful for genetic

programming. We believe that the use of GP to evolve agents shifts the emphasis in the effort

required to building a MAS, into designing ways of testing them. This we argue is an area that

has had less research emphasis and may limit the use of GP.

9.2 Solving Key Issues in MAS Research

The following is a very rough attempt to use GP to tackle many of the key issues in MAS

described in chapter 2. An important point made by Jennings et al [JSW98] was that these issues

are intertwined. The answers that we propose all rely on a single coherent methodology that that

tries to address these issues simultaneously. We are therefore less likely to shift emphasis on

particular problems by solving others. We accept that the view proposed below is an extreme

view which is likely to create many more questions than it answers:

We can formulate a MAS problem by defining a fitness function. The fitness function needs to
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encode a way of measuring how successful the agents are at solving the problem. The principle

way of achieving this is to generate test cases and use them as specifications of the desired

behaviour. We can decompose the problem automatically by specifying how many agents are

to be evolved and what capabilities the agents possess(specified by the function and terminal

sets). Furthermore, we can evolve agents that allocate tasks between themselves both statically

and dynamically. Since the quality of result synthesis is the measure that we use when evaluating

programs for agents, we already constrain the search to programs that drive agents to synthesising

results.

We have shown in chapters 4, 5 and 6 that GP can be used to evolve agents that communicate both

implicitly and explicitly. The agents decided what and when to communicate and how, and can

develop their own interpretation of what is communicated. In chapter 6 we have even shown that

the agents can learn to communicate with existing agents, which use a predefined interpretation

of communicated information. If we model communication as function calls, then the act of

sending a message is the same as calling a function. The act of responding to a message, is

executing the function being called and returning the result. It has been demonstrated that GP

can evolve functions (ADFs) [Koz94b] and can make use of them, hence we should be able to

evolve sophisticated communicative behaviour quite easily.

By providing a fitness function that measures the success of the evolved agents at the group

level, we believe we should be able to eliminate programs which cause the agents to work in

an incoherent manner. Similarly harmful interactions may also be removed. We can avoid or

mitigate harmful overall system behaviour, such as chaotic or oscillatory behaviour by the design

of a fitness function that penalises such behaviour. The communication delays between the agents

of chapter 5, caused agents early in their evolution to exhibit such behaviour, however this was

eventually removed by natural selection.

We showed in chapter 4 how agents can be evolved that recognize and reconcile conflicting

intentions when trying to coordinate their actions. The agents of experiment 4a learned to avoid,

detect and resolve conflicts.

GP can create programs for agents that may or may not need to interact with other agents. If the

application requires that agents need to interact, then this would have been implicitly encoded in

the fitness function, and should have been made possible through the primitives provided. The

evolutionary process would therefore favour those programs which cause the agents to interact

in desirable ways. As shown in chapter 6 knowledge of other agents can be gained purely by in-

teracting with them. Tasks initiation and completion can be made implicit in the fitness function

(by rewarding agents that correctly identify these conditions). In the pursuit domain of chapter

4, we evolved predator agents that moved when the prey was not completely surrounded, and
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maintained their position around the prey once it was surrounded. They therefore recognised the

state of their coordinated process.

In chapter 4 we evolved agents that as well as having a primary goal, also had a secondary goal,

which was to reduce the expenditure of a resource(energy). We therefore showed that we could

evolve agents that solve a problem and are simultaneously economical in their use of resources.

We could just as easily attach penalties in the fitness function to reduce consumption of any

resource whose utilisation needs control, such as communication. We therefore believe that this

technique can be used to balance local computation and communication.

We propose that GP can be used as a general methodology for developing DAI systems. By

careful design of function sets, terminal sets and fitness functions, we can engineer and constrain

practical DAI systems.

9.3 A Methodology for Automatically Programming Multiagent

Systems Using GP

Our methodology for automatically programming a MAS requires the following computing en-

vironment:

� A Strongly Typed Genetic Programming System Supporting ADFs such as GPsys.

� An environment that is identical or closely simulates the environment in which the agents

are to work, and which can safely be used to test the agents in a controlled manner.

� A scalable computer architecture that can support the above.

There are then 8 preparatory steps required to code a GP MAS application. These involve defin-

ing the following:

1. The Environment

2. The Agent Classes

3. The Architecture

4. The Function Sets

5. The Terminal Sets

6. The Fitness Function

7. The Run Parameters

8. The Termination Criteria
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9.3.1 The Environment

We need to define the environment in which the agents will operate. The environment can be iso-

lated in that there is no predefined agent society operating within this environment, or populated

with other agents.

9.3.2 The Agent Classes

We need to choose whether our agents are to be:

� Cooperative or Competitive

� Homogeneous, Heterogeneous or Mixed Agents

� Reactive or Deliberative (with memory)

� Communicative or non-Communicative

The first choice is to decide whether the agents that we wish to generate are to cooperate or

compete. Competitive agents will generally require separate populations to be co-evolved, even

when they must sometimes cooperate with each other such as trading agents. Cooperative agents

can be evolved as heterogenous teams or as homogeneous agents. To create purely reactive

agents we can omit memory operators, otherwise we must provide a means of storing state

information. Communicative agents will require operators that allow communication to take

place, either explicitly like the agents of chapter 5 or implicitly like the agents in chapter 4

experiment 4a. It is helpful to know how many agents we require, although it may be possible to

discover this number automatically through evolution [Ben96a; Ben96b].

9.3.3 The Architecture

For each agent class that needs to be evolved, we need to define a set of ADFs including the result

producing branch. Alternatively we could parameterise the GP system to evolve this architecture

using the architecture altering operations reported by Koza [KDBK99].

9.3.4 Function and Terminal Sets

For each class of agent that we need to evolve, we need to define the function and terminal

sets. The latter should contain functions and terminals that can be used to compute decisions,

communicate with other agents and sense/manipulate the environment.

9.3.5 The Fitness Function

The key to evolving a MAS is to correctly define the fitness function. The fitness function should

measure how closely the agents achieve their intended purpose, awarding higher fitness to those
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individuals that are more successful. We can also add further criteria to the fitness function such

as a measure of how efficiently the agents achieve their purpose. We can penalise unwanted

behaviour by defining laws which have cost repercussions if they are broken, much like penalties

are used in human legal systems. Fitness is evaluated by testing the evolved code against test

cases representative of the real problems that the agents must solve. This evaluation involves

instantiating the desired number of agents of each class from the evolved code, and iteratively

executing them for the given test case until the problem is solved or the maximum number of

iterations have expired.

9.3.6 The Termination Criteria and Run Parameters

These are the same as described in chapter 2.

9.4 Critical Assessment

The following are key limitations of our work:

� We used only symmetric problem domains of limited complexity.

� We did not apply our technique on any real-world problems.

� We focussed our attention on evolving and co-evolving cooperative agents (both homo-

geneous and heterogeneous) and did not investigate competitive co-evolution of heteroge-

neous agents.

� We evolved only purely reactive agents.

� We proposed that software testing techniques may be useful for GP, but did not perform

any experiments to support our proposal.

9.5 Future Work

The following lists further research directions stemming from our work:

� Using GP for Real World/Large Scale MAS Applications

� Using GP for Assymetrical MAS Problems

� Competitive Co-Evolution of Heterogeneous Agents

� Evolving Agents With Memory

� Socialisation in More Diverse Agent Societies
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� ADFs and Communicating Agents (modeling communication as function calls)

� Design Patterns for MAS

� Agent Learning and the Baldwin Effect

� Evolving Distributed Algorithms

� Scalability of GP

� Software Testing and GP

� Automated Software Testing of MAS

� Investigating Evolution of Human Languages by Evolving Communicating Agents

In addition to the above we propose that Kolmogorov/Chaitin complexity theory may prove

useful for GP as discussed below.

9.5.1 Algorithmic Complexity, Computer Programming and Evolution

Algorithmic complexity theory which has its roots in information theory has already proved

useful in many diverse domains including probability theory, cryptography, communication and

compression algorithms [LV97]. It may also help us to formulate a theoretical framework for

Genetic Programming.

The process of programming a computer can be thought of as creating a sequence of bits that

code an algorithm that can generate the right output sequences for a given set of input sequences.

It is likely that there will be many such algorithms, and therefore many such codes.

The simplest being one that uses a table lookup to map the input to the output, and therefore

would have at least the same number of bits as the input/out pairs. We note also that such

a program does not try to make some generalisation between the inputs and the outputs and

therefore will fail if new inputs not present in its tables are presented. This compares with the

concept of overfitting in GP.

Any program code that is shorter than the number of bits required for the mapping table will

be of higher complexity than the simplest program. The most complex program will be the

shortest such program and will describe an algorithm that abstracts the relationship between the

input output pairs and will therefore be more general. Furthermore, we would expect the binary

sequence representing this program to be random, i.e. the program should be incompressible and

irreducible. Note that if there is no pattern to the mapping between the inputs and the outputs,

then the program will be equivalent to a table lookup.
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Assuming we have a fitness function which rewards programs that generate the correct output

for a given input and also rewards parsimony, we would expect the evolutionary process to lead

to fit programs that are also small. Indeed this has been demonstrated in a few GP applications.

Such a fitness function could be used to try to find the minimal program ie. one that is in-

compressible. One way of describing evolution could therefore be as a means of generating a

random sequence of bits (the program) which together with a an input sequence of bits encodes

a computation required to generate a required sequence of bits (the output).

We can then think of the fitness function as a kind of test of randomness for a finite sequence

of bits. Fitness proportionate selection then selects bit sequences in proportions related to their

randomness. We can then describe crossover as a process where we take two sequences of

bits, each of high complexity (fitness) and exchange a random subsequence of bits from each

sequence to yield two new sequences. The point of this operation would be to generate more

random sequences of bits (of higher fitness). Mutation too can be thought of as replacing a

subsequence of bits from a sequence of bits by randomly generated bits.

From the above we might conclude that the generation of random bit strings is a side effect of

the evolutionary process. An obstacle to this theory is the inclusion of introns in both real-life

DNA and in programs evolved through GP. Introns are redundant segments of code that have no

effect in the program other than increasing its size. However, since they have no effect on the

execution and are hence not really part of the algorithm description, we can exclude them from

our tests of compressibility.

We could carry out experiments to test this theory by measuring the compression ratios of each

individual as well as their fitness, to see if there is a correlation between the two. General

compression programs such a GNU gzip could be used to compress the text representation of

each individual, and we could calculate the compression ratio as the size before compression

divided by the size after compression. This is should be possible for large enough programs,

provided we remove introns when evaluating compressibility.

If the above were true as the average fitness of the population increases we should expect the

population to converge on bit sequences that are more difficult to compress. A simple test is

to use a general compression program like GNU gzip and use it to compress the populations of

each generation in a run and see what the relationship is to average fitness and compressibility.

The compressibility would be the uncompressed size divided by the compressed size. We should

find that the compressibility tends to one as the population converges on the solution.
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9.6 Summary

We have achieved our objectives of showing that GP can be used to evolve MAS automatically.

We have in particular shown that GP can be used to evolve agents that:

� exhibit coordinated, coherent behaviour (chapters 4, 5 and 6)

� can resolve conflicts (chapter 4)

� communicate explicitly, and in doing so decide what to communicate and how (chapter 5)

� can be integrated into an existing society of agents (chapter 6)

We have examined the scalability issues involved in the use of GP, both generally and in par-

ticular as a technique for automatically programming agents, and proposed solutions to these

problems. Related to scalability we have examined the importance of of formal software testing

techniques in the development GP technology, and looked at the issues involved in the testing

of MAS. Lastly we have proposed a methodology for automatically programming multiagent

systems using GP.



Appendix A

Best Evolved Pursuit Agents

A.1 Experiment 1a - Basic Homogeneous (Best of Run 9)

ADF[0] : (IfEast ADF0Arg1 ADF0Arg1 South (IfNorth ADF0Arg0 ADF0Arg1 (IfCellsEqual
ADF0Arg0 ADF0Arg1 (IfEast ADF0Arg1 ADF0Arg1 (IfEast ADF0Arg0 ADF0Arg1 East
(IfNorth ADF0Arg0 ADF0Arg0 North (IfEast ADF0Arg0 ADF0Arg1 East North))) East)
North) (IfNorth ADF0Arg0 ADF0Arg0 (IfNorth ADF0Arg1 ADF0Arg1 East East) (IfEast
ADF0Arg0 ADF0Arg1 East (IfNorth ADF0Arg1 ADF0Arg0 (IfNorth ADF0Arg0 ADF0Arg1
West (IfNorth ADF0Arg1 ADF0Arg1 North South)) West)))))
ADF[1] : (IfEast (CellYofX Me (IfNorth (CellYofX Me South) (CellYofX Agent4 (IfEast (Cel-
lYofX Agent4 North) (CellYofX Agent4 South) North (ADF0 (CellYofX Me West) (CellYofX
Me (IfEast (CellYofX Me East) (CellYofX Me West) North East))))) (ADF0 (CellYofX Agent4
North) (CellYofX Agent4 (IfEast (CellYofX Me East) (CellYofX Agent4 Here) (IfCellsEqual
(CellYofX Agent4 North) (CellYofX Me Here) West (ADF0 (CellYofX Me West) (CellYofX
Agent4 South))) South))) (IfEast (CellYofX Me (ADF0 (CellYofX Me North) (CellYofX Me
West))) (CellYofX Agent4 (IfNorth (CellYofX Agent4 Here) (CellYofX Agent4 South) West
(IfCellsEqual (CellYofX Agent4 South) (CellYofX Agent4 Here) East East))) (IfCellsEqual
(CellYofX Agent4 Here) (CellYofX Me East) West South) (IfEast (CellYofX Agent4 (ADF0
(CellYofX Agent4 West) (CellYofX Agent4 South))) (CellYofX Me (IfNorth (CellYofX Me
South) (CellYofX Me East) Here East)) East (IfEast (CellYofX Agent4 South) (CellYofX Me
West) (ADF0 (CellYofX Me West) (CellYofX Me South)) (IfEast (CellYofX Me East) (CellYofX
Me South) East North)))))) (CellYofX Me South) (ADF0 (CellYofX Me West) (CellYofX Me
(IfNorth (CellYofX Me West) (CellYofX Agent4 (IfEast (CellYofX Agent4 South) (CellYofX
Agent4 South) (ADF0 (CellYofX Me East) (CellYofX Me North)) (ADF0 (CellYofX Agent4
West) (CellYofX Me South)))) (ADF0 (CellYofX Me East) (CellYofX Agent4 (IfEast (CellYofX
Agent4 East) (CellYofX Agent4 North) (IfCellsEqual (CellYofX Agent4 South) (CellYofX Me
West) West North) Here))) North))) (ADF0 (CellYofX Agent4 West) (CellYofX Me (IfNorth
(CellYofX Agent4 (ADF0 (CellYofX Agent4 South) (CellYofX Me North))) (CellYofX Me
(IfEast (CellYofX Me West) (CellYofX Agent4 (ADF0 (CellYofX Me West) (CellYofX Agent4
North))) East (IfEast (CellYofX Agent4 South) (CellYofX Me West) North West))) (ADF0
(CellYofX Me Here) (CellYofX Agent4 North)) (ADF0 (CellYofX Agent4 North) (CellYofX
Me South))))))
Fitness : Fitness(7906.45,46.083333333333336,9)
Complexity : 312
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A.2 Experiment 1b - Basic Heterogeneous (Best of Run 6)

ADF[0] : (IfNorth ADF0Arg0 ADF0Arg0 East (IfNorth ADF0Arg0 ADF0Arg1 North
(IfCellsEqual ADF0Arg0 ADF0Arg0 (IfEast ADF0Arg0 ADF0Arg1 (IfNorth ADF0Arg0
ADF0Arg1 North (IfNorth ADF0Arg0 ADF0Arg0 North (IfNorth ADF0Arg1 ADF0Arg0
(IfNorth ADF0Arg1 ADF0Arg0 South East) East))) West) West)))
ADF[1] : (ADF0 (CellYofX Agent4 (ADF0 (CellYofX Agent4 (ADF0 (CellYofX Me Here)
(CellYofX Me West))) (CellYofX Agent4 (IfCellsEqual (CellYofX Agent4 North) (CellYofX
Me Here) West South)))) (CellYofX Me West))
ADF[2] : (IfNorth ADF0Arg1 ADF0Arg0 (IfEast ADF0Arg0 ADF0Arg1 South West)
(IfNorth ADF0Arg0 ADF0Arg1 (IfEast ADF0Arg0 ADF0Arg1 North West) (IfEast ADF0Arg1
ADF0Arg0 (IfNorth ADF0Arg0 ADF0Arg0 (IfCellsEqual ADF0Arg0 ADF0Arg1 (IfNorth
ADF0Arg1 ADF0Arg0 South South) (IfNorth ADF0Arg0 ADF0Arg0 (IfCellsEqual ADF0Arg0
ADF0Arg1 North (IfNorth ADF0Arg0 ADF0Arg0 (IfCellsEqual ADF0Arg0 ADF0Arg1
North South) West)) North)) (IfEast ADF0Arg1 ADF0Arg1 North West)) (IfNorth ADF0Arg1
ADF0Arg0 South East))))
ADF[3] : (ADF0 (CellYofX Agent4 (IfNorth (CellYofX Me (IfNorth (CellYofX Me Here)
(CellYofX Agent4 (IfNorth (CellYofX Me Here) (CellYofX Me Here) West (IfNorth (CellYofX
Me East) (CellYofX Me East) Here Here))) West (IfNorth (CellYofX Agent4 East) (CellYofX
Me East) Here Here))) (CellYofX Me (IfNorth (CellYofX Me West) (CellYofX Me West)
(IfEast (CellYofX Me South) (CellYofX Agent4 West) West East) South)) (IfNorth (CellYofX
Me East) (CellYofX Me South) West West) (IfNorth (CellYofX Me West) (CellYofX Me West)
East South))) (CellYofX Me (IfEast (CellYofX Me North) (CellYofX Agent4 (IfCellsEqual
(CellYofX Me Here) (CellYofX Me Here) West Here)) North Here)))
ADF[4] : (IfEast ADF0Arg0 ADF0Arg1 (IfEast ADF0Arg0 ADF0Arg1 (IfCellsEqual
ADF0Arg1 ADF0Arg1 (IfNorth ADF0Arg0 ADF0Arg1 (IfCellsEqual ADF0Arg0 ADF0Arg1
(IfEast ADF0Arg1 ADF0Arg1 (IfEast ADF0Arg1 ADF0Arg1 (IfEast ADF0Arg1 ADF0Arg1
North East) East) North) (IfEast ADF0Arg1 ADF0Arg0 (IfCellsEqual ADF0Arg1 ADF0Arg1
East North) East)) (IfNorth ADF0Arg1 ADF0Arg1 (IfEast ADF0Arg1 ADF0Arg1 West (IfEast
ADF0Arg0 ADF0Arg0 West West)) (IfEast ADF0Arg1 ADF0Arg1 (IfNorth ADF0Arg1
ADF0Arg1 Here (IfNorth ADF0Arg0 ADF0Arg1 North Here)) South))) North) (IfEast
ADF0Arg0 ADF0Arg0 (IfCellsEqual ADF0Arg1 ADF0Arg1 North North) (IfCellsEqual
ADF0Arg1 ADF0Arg1 North East))) (IfEast ADF0Arg1 ADF0Arg0 (IfCellsEqual ADF0Arg1
ADF0Arg1 (IfNorth ADF0Arg0 ADF0Arg1 (IfCellsEqual ADF0Arg0 ADF0Arg1 (IfEast
ADF0Arg1 ADF0Arg1 (IfEast ADF0Arg1 ADF0Arg1 (IfEast ADF0Arg1 ADF0Arg1 North
South) North) North) (IfEast ADF0Arg1 ADF0Arg0 (IfCellsEqual ADF0Arg0 ADF0Arg1 East
North) East)) (IfNorth ADF0Arg1 ADF0Arg1 (IfEast ADF0Arg1 ADF0Arg1 West (IfEast
ADF0Arg0 ADF0Arg0 West North)) (IfEast ADF0Arg1 ADF0Arg1 (IfNorth ADF0Arg1
ADF0Arg1 South (IfNorth ADF0Arg0 ADF0Arg1 North Here)) South))) North) (IfCellsEqual
ADF0Arg1 ADF0Arg0 North North)))
ADF[5] : (IfNorth (CellYofX Me (ADF0 (CellYofX Agent4 East) (CellYofX Me (IfEast
(CellYofX Me South) (CellYofX Me Here) (IfNorth (CellYofX Me East) (CellYofX Me West)
North Here) (IfCellsEqual (CellYofX Me Here) (CellYofX Agent4 North) South East)))))
(CellYofX Me (IfEast (CellYofX Me South) (CellYofX Agent4 (ADF0 (CellYofX Agent4
South) (CellYofX Me (IfNorth (CellYofX Me East) (CellYofX Me West) East Here)))) West
North)) (IfNorth (CellYofX Agent4 South) (CellYofX Me West) North West) (IfNorth (CellYofX
Agent4 North) (CellYofX Agent4 East) (ADF0 (CellYofX Agent4 (ADF0 (CellYofX Me East)
(CellYofX Me (IfEast (CellYofX Me South) (CellYofX Me Here) (IfNorth (CellYofX Me East)
(CellYofX Agent4 West) East Here) (IfCellsEqual (CellYofX Me Here) (CellYofX Agent4
North) West East))))) (CellYofX Me North)) South))
ADF[6] : (IfNorth ADF0Arg1 ADF0Arg0 (IfEast ADF0Arg1 ADF0Arg1 (IfEast ADF0Arg0
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ADF0Arg0 (IfNorth ADF0Arg0 ADF0Arg1 (IfCellsEqual ADF0Arg0 ADF0Arg0 (IfCellsEqual
ADF0Arg1 ADF0Arg1 (IfEast ADF0Arg1 ADF0Arg1 (IfEast ADF0Arg1 ADF0Arg1 (IfEast
ADF0Arg1 ADF0Arg0 East Here) South) West) (IfNorth ADF0Arg0 ADF0Arg0 Here South))
South) (IfCellsEqual ADF0Arg1 ADF0Arg1 (IfEast ADF0Arg1 ADF0Arg1 East West) (IfEast
ADF0Arg1 ADF0Arg0 West Here))) (IfEast ADF0Arg1 ADF0Arg1 West (IfNorth ADF0Arg1
ADF0Arg0 Here South))) West) (IfNorth ADF0Arg0 ADF0Arg0 West East))
ADF[7] : (IfCellsEqual (CellYofX Agent4 Here) (CellYofX Agent4 (IfCellsEqual (CellYofX
Agent4 (IfNorth (CellYofX Me (IfEast (CellYofX Me West) (CellYofX Agent4 South) West
North)) (CellYofX Agent4 (IfEast (CellYofX Agent4 Here) (CellYofX Agent4 Here) West
(IfEast (CellYofX Me North) (CellYofX Me South) North Here))) South North)) (CellYofX
Agent4 Here) East (IfCellsEqual (CellYofX Me (ADF0 (CellYofX Agent4 West) (CellYofX Me
Here))) (CellYofX Me West) Here South))) South (IfEast (CellYofX Agent4 (IfEast (CellYofX
Me North) (CellYofX Me Here) Here Here)) (CellYofX Agent4 (IfEast (CellYofX Agent4
(IfEast (CellYofX Agent4 West) (CellYofX Me North) East North)) (CellYofX Me Here)
(IfCellsEqual (CellYofX Me (IfNorth (CellYofX Agent4 West) (CellYofX Me South) Here
South)) (CellYofX Agent4 (ADF0 (CellYofX Agent4 Here) (CellYofX Me North))) West
(IfNorth (CellYofX Agent4 North) (CellYofX Me West) (IfCellsEqual (CellYofX Agent4 South)
(CellYofX Agent4 West) Here Here) South)) (ADF0 (CellYofX Me (IfEast (CellYofX Agent4
North) (CellYofX Me South) North Here)) (CellYofX Agent4 (ADF0 (CellYofX Me Here)
(CellYofX Me North)))))) (IfNorth (CellYofX Me (IfEast (CellYofX Me West) (CellYofX
Agent4 South) South North)) (CellYofX Agent4 (IfEast (CellYofX Agent4 (IfEast (CellYofX
Agent4 West) (CellYofX Agent4 South) South South)) (CellYofX Agent4 Here) West (IfEast
(CellYofX Me North) (CellYofX Me Here) North Here))) South North) West))
Fitness : Fitness(15750.566666666668,28.7,58)
Complexity : 724

A.3 Experiment 2 - Identity (Best of Run 1)

ADF[0] : (IfEast ADF0Arg0 ADF0Arg1 West (IfCellsEqual ADF0Arg0 ADF0Arg1 (IfCellsE-
qual ADF0Arg0 ADF0Arg0 Here (IfEast ADF0Arg1 ADF0Arg0 (IfEast ADF0Arg0 ADF0Arg1
East Here) (IfNorth ADF0Arg1 ADF0Arg0 North (IfNorth ADF0Arg0 ADF0Arg1 (IfCellsEqual
ADF0Arg1 ADF0Arg1 (IfCellsEqual ADF0Arg0 ADF0Arg1 (IfEast ADF0Arg0 ADF0Arg0
East West) North) Here) East)))) (IfNorth ADF0Arg1 ADF0Arg0 North (IfNorth ADF0Arg0
ADF0Arg1 (IfCellsEqual ADF0Arg1 ADF0Arg1 (IfCellsEqual ADF0Arg0 ADF0Arg1 East
South) West) East))))
ADF[1] : (ADF0 (CellYofX Me West) (CellYofX Agent4 (IfEast (CellYofX Agent4 (IfEast
(CellYofX Agent4 (IfCellsEqual (CellYofX Agent4 North) (CellYofX Me Here) (IfAgentIdE-
quals Me id0 West South) South)) (CellYofX Me (IfNorth (CellYofX Agent4 North) (CellYofX
Agent4 (IfAgentIdEquals Me id2 North East)) (IfCellsEqual (CellYofX Agent4 Here) (CellYofX
Agent4 Here) Here (IfAgentIdEquals Me id1 North West)) (ADF0 (CellYofX Agent4 South)
(CellYofX Agent4 South)))) (IfEast (CellYofX Agent4 (IfAgentIdEquals Me id0 (IfAgentId-
Equals Agent4 id3 South Here) Here)) (CellYofX Me (IfCellsEqual (CellYofX Agent4 Here)
(CellYofX Agent4 North) (IfAgentIdEquals Agent4 id0 West East) South)) (IfCellsEqual
(CellYofX Me Here) (CellYofX Me (IfAgentIdEquals Me id2 Here Here)) South North)
(IfNorth (CellYofX Agent4 Here) (CellYofX Agent4 Here) Here (IfEast (CellYofX Me North)
(CellYofX Me North) Here North))) (IfCellsEqual (CellYofX Me Here) (CellYofX Agent4
Here) (IfAgentIdEquals Agent4 id0 (IfAgentIdEquals Agent4 id0 North Here) (IfAgentIdEquals
Me id0 South Here)) South))) (CellYofX Me (IfNorth (CellYofX Me (IfAgentIdEquals Me id2
North East)) (CellYofX Agent4 (IfAgentIdEquals Me id0 North West)) West (ADF0 (CellYofX
Me Here) (CellYofX Me West)))) (IfEast (CellYofX Agent4 (IfAgentIdEquals Me id1 (IfAgen-
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tIdEquals Agent4 id0 South Here) East)) (CellYofX Agent4 Here) (IfEast (CellYofX Agent4
(IfCellsEqual (CellYofX Agent4 Here) (CellYofX Agent4 Here) (IfAgentIdEquals Agent4 id0
North South) South)) (CellYofX Me (IfNorth (CellYofX Agent4 North) (CellYofX Agent4
(IfAgentIdEquals Me id2 North East)) (IfCellsEqual (CellYofX Agent4 North) (CellYofX
Agent4 Here) West (IfAgentIdEquals Me id0 North West)) (ADF0 (CellYofX Me Here) (Cel-
lYofX Agent4 South)))) (IfEast (CellYofX Agent4 (IfAgentIdEquals Me id0 (IfAgentIdEquals
Me id3 South Here) Here)) (CellYofX Me (IfCellsEqual (CellYofX Agent4 Here) (CellYofX
Agent4 North) (IfAgentIdEquals Me id0 West Here) South)) (IfCellsEqual (CellYofX Me Here)
(CellYofX Me (IfAgentIdEquals Me id2 Here South)) South North) (IfNorth (CellYofX Agent4
Here) (CellYofX Agent4 Here) Here (IfEast (CellYofX Me North) (CellYofX Me North) South
North))) (IfCellsEqual (CellYofX Me Here) (CellYofX Agent4 Here) (IfAgentIdEquals Agent4
id0 North West) South)) (IfNorth (CellYofX Agent4 (IfAgentIdEquals Agent4 id0 Here Here))
(CellYofX Me Here) West (IfEast (CellYofX Agent4 Here) (CellYofX Me Here) West North)))
Here)))
Fitness : Fitness(12723.683333333332,38.13333333333333,38)
Complexity : 374

A.4 Experiment 3a - Basic31 (Best of Run 3)

ADF[0] : (IfCellsEqual ADF0Arg0 ADF0Arg0 (IfNorth ADF0Arg1 ADF0Arg1 (IfCellsEqual
ADF0Arg0 ADF0Arg1 (IfCellsEqual ADF0Arg1 ADF0Arg1 (IfNorth ADF0Arg1 ADF0Arg1
East (IfNorth ADF0Arg1 ADF0Arg0 North East)) East) South) (IfNorth ADF0Arg0 ADF0Arg0
South (IfNorth ADF0Arg0 ADF0Arg1 North (IfEast ADF0Arg0 ADF0Arg1 (IfNorth
ADF0Arg0 ADF0Arg1 (IfCellsEqual ADF0Arg1 ADF0Arg1 South East) East) South)))) East)
ADF[1] : (IfEast (CellYofX Agent4 (IfEast (CellYofX Me (IfEast (CellYofX Me (ADF0 (Cel-
lYofX Me East) (CellYofX Agent4 South))) (CellYofX Agent4 East) (IfCellsEqual (CellYofX
Agent4 North) (CellYofX Me South) East East) Here)) (CellYofX Me South) (IfEast (CellYofX
Agent4 (IfNorth (CellYofX Me North) (CellYofX Me West) West North)) (CellYofX Me (ADF0
(CellYofX Agent4 South) (CellYofX Me North))) (IfNorth (CellYofX Agent4 North) (CellYofX
Me North) West North) Here) (ADF0 (CellYofX Me (IfCellsEqual (CellYofX Me North)
(CellYofX Me Here) East East)) (CellYofX Agent4 West)))) (CellYofX Me (IfEast (CellYofX
Me East) (CellYofX Agent4 (IfCellsEqual (CellYofX Agent4 Here) (CellYofX Agent4 West)
(IfCellsEqual (CellYofX Agent4 (ADF0 (CellYofX Me North) (CellYofX Agent4 South)))
(CellYofX Me North) (ADF0 (CellYofX Agent4 West) (CellYofX Me North)) West) North))
(IfCellsEqual (CellYofX Agent4 South) (CellYofX Me East) Here (IfEast (CellYofX Me North)
(CellYofX Me East) (ADF0 (CellYofX Agent4 North) (CellYofX Agent4 East)) West)) (ADF0
(CellYofX Me East) (CellYofX Me South)))) (ADF0 (CellYofX Agent4 (IfEast (CellYofX
Me (IfNorth (CellYofX Agent4 North) (CellYofX Me East) West North)) (CellYofX Me East)
North North)) (CellYofX Me (ADF0 (CellYofX Agent4 (IfCellsEqual (CellYofX Agent4 North)
(CellYofX Agent4 North) North South)) (CellYofX Agent4 Here)))) West)
ADF[2] : (IfNorth ADF0Arg0 ADF0Arg1 (IfEast ADF0Arg1 ADF0Arg0 (IfNorth ADF0Arg1
ADF0Arg0 South North) (IfNorth ADF0Arg0 ADF0Arg1 Here (IfNorth ADF0Arg0 ADF0Arg0
(IfEast ADF0Arg1 ADF0Arg0 North (IfNorth ADF0Arg0 ADF0Arg0 South North)) North)))
(IfNorth ADF0Arg0 ADF0Arg0 (IfNorth ADF0Arg0 ADF0Arg1 (IfEast ADF0Arg1 ADF0Arg0
(IfNorth ADF0Arg1 ADF0Arg1 North North) East) (IfNorth ADF0Arg0 ADF0Arg1 (IfNorth
ADF0Arg0 ADF0Arg0 North South) (IfCellsEqual ADF0Arg1 ADF0Arg0 Here South)))
(IfCellsEqual ADF0Arg1 ADF0Arg0 East South)))
ADF[3] : (IfNorth (CellYofX Me East) (CellYofX Agent4 (IfEast (CellYofX Agent4 North)
(CellYofX Me West) Here Here)) (IfEast (CellYofX Agent4 Here) (CellYofX Agent4 North)
North South) (IfNorth (CellYofX Agent4 (ADF0 (CellYofX Agent4 (IfEast (CellYofX Me West)
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(CellYofX Agent4 Here) South North)) (CellYofX Me East))) (CellYofX Me (IfEast (CellYofX
Agent4 Here) (CellYofX Me North) (IfNorth (CellYofX Me Here) (CellYofX Me West) (IfNorth
(CellYofX Me West) (CellYofX Agent4 (IfEast (CellYofX Agent4 Here) (CellYofX Agent4
North) North East)) Here West) North) East)) (IfCellsEqual (CellYofX Agent4 Here) (CellYofX
Me West) (IfNorth (CellYofX Agent4 (IfCellsEqual (CellYofX Me South) (CellYofX Agent4
East) (IfNorth (CellYofX Agent4 Here) (CellYofX Agent4 North) (IfNorth (CellYofX Me East)
(CellYofX Agent4 West) Here Here) North) Here)) (CellYofX Me (IfCellsEqual (CellYofX
Agent4 North) (CellYofX Me North) Here Here)) (IfNorth (CellYofX Me Here) (CellYofX Me
West) (IfNorth (CellYofX Me West) (CellYofX Agent4 North) Here North) West) Here) North)
West))
Fitness : Fitness(9802.316666666668,42.55,18)
Complexity : 432

A.5 Experiment 3b - Basic22 (Best of Run 9)

ADF[0] : (IfNorth ADF0Arg0 ADF0Arg1 (IfEast ADF0Arg0 ADF0Arg1 West (IfEast
ADF0Arg1 ADF0Arg1 (IfEast ADF0Arg1 ADF0Arg0 (IfCellsEqual ADF0Arg0 ADF0Arg0
(IfEast ADF0Arg0 ADF0Arg0 South (IfNorth ADF0Arg1 ADF0Arg0 West Here)) (IfCellsE-
qual ADF0Arg0 ADF0Arg1 Here (IfNorth ADF0Arg0 ADF0Arg0 West Here))) (IfCellsEqual
ADF0Arg1 ADF0Arg1 (IfCellsEqual ADF0Arg0 ADF0Arg1 Here West) West)) South)) (IfEast
ADF0Arg1 ADF0Arg1 East North))
ADF[1] : (IfEast (CellYofX Me East) (CellYofX Agent4 (IfEast (CellYofX Me (IfCellsEqual
(CellYofX Me South) (CellYofX Agent4 South) South East)) (CellYofX Me (IfEast (CellYofX
Agent4 North) (CellYofX Agent4 North) East East)) West (IfCellsEqual (CellYofX Me (If-
CellsEqual (CellYofX Me West) (CellYofX Me East) East North)) (CellYofX Me (IfCellsEqual
(CellYofX Agent4 Here) (CellYofX Me Here) East Here)) (ADF0 (CellYofX Me East) (CellY-
ofX Me Here)) (ADF0 (CellYofX Agent4 East) (CellYofX Me North))))) (IfEast (CellYofX Me
West) (CellYofX Agent4 West) West (ADF0 (CellYofX Me (IfCellsEqual (CellYofX Agent4
Here) (CellYofX Me Here) East East)) (CellYofX Agent4 East))) East)
ADF[2] : (IfEast ADF0Arg1 ADF0Arg0 (IfNorth ADF0Arg1 ADF0Arg1 (IfEast ADF0Arg1
ADF0Arg1 North (IfCellsEqual ADF0Arg0 ADF0Arg1 North (IfEast ADF0Arg0 ADF0Arg0
(IfCellsEqual ADF0Arg1 ADF0Arg1 (IfCellsEqual ADF0Arg1 ADF0Arg1 South (IfEast
ADF0Arg0 ADF0Arg1 (IfCellsEqual ADF0Arg1 ADF0Arg1 Here North) West)) North)
North))) (IfNorth ADF0Arg1 ADF0Arg0 (IfEast ADF0Arg0 ADF0Arg1 West (IfCellsE-
qual ADF0Arg1 ADF0Arg0 East (IfEast ADF0Arg0 ADF0Arg0 (IfCellsEqual ADF0Arg1
ADF0Arg0 South North) West))) North)) (IfNorth ADF0Arg0 ADF0Arg1 East South))
ADF[3] : (IfEast (CellYofX Agent4 (IfNorth (CellYofX Me (IfNorth (CellYofX Me North)
(CellYofX Agent4 North) East South)) (CellYofX Me West) East (ADF0 (CellYofX Me
South) (CellYofX Agent4 West)))) (CellYofX Agent4 South) (IfNorth (CellYofX Me North)
(CellYofX Agent4 (IfNorth (CellYofX Agent4 Here) (CellYofX Agent4 Here) West West)) West
(IfEast (CellYofX Agent4 (IfCellsEqual (CellYofX Me Here) (CellYofX Me East) Here (ADF0
(CellYofX Me South) (CellYofX Agent4 West)))) (CellYofX Me West) (ADF0 (CellYofX Me
West) (CellYofX Me South)) West)) (ADF0 (CellYofX Agent4 (IfNorth (CellYofX Me (IfNorth
(CellYofX Agent4 West) (CellYofX Me South) West South)) (CellYofX Me East) East (ADF0
(CellYofX Me South) (CellYofX Agent4 South)))) (CellYofX Me Here)))
Fitness : Fitness(10760.95,40.18333333333333,24)
Complexity : 304
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A.6 Experiment 3c - Basic211 (Best of Run 8)

ADF[0] : (IfNorth ADF0Arg1 ADF0Arg0 North (IfEast ADF0Arg1 ADF0Arg1 (IfCellsEqual
ADF0Arg0 ADF0Arg0 (IfEast ADF0Arg1 ADF0Arg1 (IfNorth ADF0Arg1 ADF0Arg1 North
(IfEast ADF0Arg1 ADF0Arg1 (IfCellsEqual ADF0Arg0 ADF0Arg1 (IfEast ADF0Arg0
ADF0Arg1 South (IfCellsEqual ADF0Arg1 ADF0Arg1 North East)) (IfCellsEqual ADF0Arg0
ADF0Arg0 East North)) East)) (IfCellsEqual ADF0Arg1 ADF0Arg1 East (IfCellsEqual
ADF0Arg0 ADF0Arg1 East North))) (IfCellsEqual ADF0Arg0 ADF0Arg0 East North)) East))
ADF[1] : (IfEast (CellYofX Me South) (CellYofX Agent4 (IfNorth (CellYofX Agent4 (IfCellsE-
qual (CellYofX Agent4 Here) (CellYofX Me North) (IfCellsEqual (CellYofX Agent4 Here)
(CellYofX Me Here) South South) (IfNorth (CellYofX Me Here) (CellYofX Agent4 South) East
North))) (CellYofX Me South) (IfEast (CellYofX Me (IfEast (CellYofX Me East) (CellYofX
Agent4 East) West East)) (CellYofX Me (IfCellsEqual (CellYofX Agent4 East) (CellYofX
Me North) North South)) West North) North)) (IfEast (CellYofX Agent4 Here) (CellYofX
Me (ADF0 (CellYofX Agent4 West) (CellYofX Agent4 (IfEast (CellYofX Agent4 West)
(CellYofX Me West) East South)))) (ADF0 (CellYofX Me North) (CellYofX Me Here)) (IfEast
(CellYofX Agent4 (ADF0 (CellYofX Me South) (CellYofX Me North))) (CellYofX Me East)
(IfEast (CellYofX Agent4 (IfNorth (CellYofX Agent4 South) (CellYofX Agent4 South) East
East)) (CellYofX Agent4 (IfNorth (CellYofX Me East) (CellYofX Agent4 East) West South))
(IfNorth (CellYofX Agent4 East) (CellYofX Me North) West West) Here) West)) (IfCellsEqual
(CellYofX Agent4 (IfCellsEqual (CellYofX Agent4 (IfNorth (CellYofX Me North) (CellYofX
Agent4 East) South (IfCellsEqual (CellYofX Agent4 North) (CellYofX Agent4 North) North
East))) (CellYofX Agent4 Here) (IfEast (CellYofX Me South) (CellYofX Me East) West
(IfCellsEqual (CellYofX Me North) (CellYofX Me Here) East (IfCellsEqual (CellYofX Me
North) (CellYofX Me East) Here South))) (ADF0 (CellYofX Me (IfEast (CellYofX Me Here)
(CellYofX Agent4 West) North South)) (CellYofX Me (IfNorth (CellYofX Me Here) (CellYofX
Me West) North Here))))) (CellYofX Agent4 (IfEast (CellYofX Me (IfEast (CellYofX Agent4
West) (CellYofX Me East) Here South)) (CellYofX Me (IfNorth (CellYofX Me Here) (CellYofX
Agent4 West) South South)) (ADF0 (CellYofX Agent4 East) (CellYofX Agent4 Here)) North))
(ADF0 (CellYofX Agent4 East) (CellYofX Agent4 (ADF0 (CellYofX Me (IfEast (CellYofX Me
East) (CellYofX Agent4 East) West East)) (CellYofX Me (IfCellsEqual (CellYofX Agent4 East)
(CellYofX Agent4 East) South South))))) South))
ADF[2] : (IfEast ADF0Arg1 ADF0Arg0 (IfEast ADF0Arg1 ADF0Arg0 (IfNorth ADF0Arg1
ADF0Arg0 West (IfCellsEqual ADF0Arg0 ADF0Arg1 West North)) (IfNorth ADF0Arg0
ADF0Arg1 West (IfNorth ADF0Arg0 ADF0Arg0 (IfNorth ADF0Arg1 ADF0Arg1 (IfNorth
ADF0Arg1 ADF0Arg0 West West) South) (IfCellsEqual ADF0Arg1 ADF0Arg1 West North))))
(IfCellsEqual ADF0Arg0 ADF0Arg1 East (IfCellsEqual ADF0Arg0 ADF0Arg0 (IfCellsEqual
ADF0Arg0 ADF0Arg1 North (IfNorth ADF0Arg1 ADF0Arg0 (IfNorth ADF0Arg1 ADF0Arg1
(IfNorth ADF0Arg1 ADF0Arg0 West West) South) (IfCellsEqual ADF0Arg1 ADF0Arg1 West
West))) East)))
ADF[3] : (ADF0 (CellYofX Me (IfNorth (CellYofX Agent4 (IfCellsEqual (CellYofX Me
(IfNorth (CellYofX Agent4 Here) (CellYofX Me East) (IfNorth (CellYofX Me West) (CellYofX
Agent4 Here) West South) Here)) (CellYofX Me Here) (IfNorth (CellYofX Me Here) (CellYofX
Me South) Here West) West)) (CellYofX Agent4 Here) West (ADF0 (CellYofX Agent4 (IfNorth
(CellYofX Agent4 West) (CellYofX Me South) Here North)) (CellYofX Agent4 (IfNorth (Cel-
lYofX Agent4 West) (CellYofX Me South) West North))))) (CellYofX Me (IfNorth (CellYofX
Me (IfCellsEqual (CellYofX Me West) (CellYofX Agent4 Here) (IfNorth (CellYofX Agent4
South) (CellYofX Agent4 South) West Here) South)) (CellYofX Agent4 Here) North (ADF0
(CellYofX Agent4 Here) (CellYofX Me (IfNorth (CellYofX Agent4 Here) (CellYofX Me South)
(IfNorth (CellYofX Me West) (CellYofX Agent4 South) Here East) Here))))))
ADF[4] : (IfNorth ADF0Arg1 ADF0Arg0 (IfCellsEqual ADF0Arg1 ADF0Arg1 (IfEast
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ADF0Arg1 ADF0Arg0 (IfNorth ADF0Arg0 ADF0Arg1 West East) (IfEast ADF0Arg0
ADF0Arg1 West North)) (IfNorth ADF0Arg1 ADF0Arg1 (IfEast ADF0Arg0 ADF0Arg1 East
(IfEast ADF0Arg1 ADF0Arg1 (IfEast ADF0Arg1 ADF0Arg0 North (IfNorth ADF0Arg1
ADF0Arg1 South North)) (IfCellsEqual ADF0Arg1 ADF0Arg1 (IfEast ADF0Arg0 ADF0Arg1
(IfNorth ADF0Arg0 ADF0Arg1 (IfNorth ADF0Arg0 ADF0Arg0 Here West) South) (IfEast
ADF0Arg1 ADF0Arg0 (IfCellsEqual ADF0Arg1 ADF0Arg1 South Here) (IfCellsEqual
ADF0Arg1 ADF0Arg1 South East))) West))) West)) South)
ADF[5] : (ADF0 (CellYofX Me (IfCellsEqual (CellYofX Agent4 South) (CellYofX Agent4
North) (IfNorth (CellYofX Agent4 Here) (CellYofX Agent4 East) North (ADF0 (CellYofX Me
North) (CellYofX Agent4 West))) (IfEast (CellYofX Agent4 Here) (CellYofX Agent4 East)
(IfEast (CellYofX Agent4 East) (CellYofX Agent4 South) Here (ADF0 (CellYofX Me North)
(CellYofX Me East))) (IfNorth (CellYofX Me East) (CellYofX Agent4 South) North (ADF0
(CellYofX Me North) (CellYofX Agent4 East)))))) (CellYofX Agent4 Here))
Fitness : Fitness(12757.816666666668,36.916666666666664,38)
Complexity : 642

A.7 Experiment 4a - CRO Homogeneous (Best of Run 9)

(IfEast ADF0Arg0 ADF0Arg1 (IfCellsEqual ADF0Arg0 ADF0Arg1 (IfEast ADF0Arg1
ADF0Arg0 (IfNorth ADF0Arg0 ADF0Arg0 Here (IfCellOccupied ADF0Arg0 (IfCellsEqual
ADF0Arg1 ADF0Arg0 (IfEast ADF0Arg0 ADF0Arg1 (IfCellsEqual ADF0Arg0 ADF0Arg0
West West) East) (IfCellsEqual ADF0Arg1 ADF0Arg1 East (IfCellOccupied ADF0Arg1 North
East))) East)) (IfCellOccupied ADF0Arg0 West (IfCellsEqual ADF0Arg1 ADF0Arg1 North
(IfEast ADF0Arg0 ADF0Arg1 (IfCellOccupied ADF0Arg1 West (IfCellOccupied ADF0Arg1
North North)) East)))) (IfEast ADF0Arg1 ADF0Arg0 (IfCellOccupied ADF0Arg1 (IfCel-
lOccupied ADF0Arg1 North North) (IfCellsEqual ADF0Arg1 ADF0Arg0 (IfEast ADF0Arg0
ADF0Arg0 East (IfCellsEqual ADF0Arg1 ADF0Arg0 (IfEast ADF0Arg1 ADF0Arg1 North
East) (IfEast ADF0Arg0 ADF0Arg1 North East))) (IfCellOccupied ADF0Arg1 West (IfCellsE-
qual ADF0Arg0 ADF0Arg0 (IfEast ADF0Arg1 ADF0Arg0 South East) North)))) (IfEast
ADF0Arg0 ADF0Arg1 East East))) North)
ADF[1] : (IfNorth (CellYofX Agent4 (IfCellOccupied (CellYofX Me (IfCellOccupied (CellY-
ofX Me South) West (ADF0 (CellYofX Me West) (CellYofX Agent4 North)))) (IfCellOccupied
(CellYofX Me South) (IfEast (CellYofX Me Here) (CellYofX Agent4 Here) (ADF0 (CellYofX
Me West) (CellYofX Agent4 North)) South) (IfCellOccupied (CellYofX Me Here) (IfNorth
(CellYofX Me South) (CellYofX Me East) West Here) Here)) (IfCellOccupied (CellYofX Me
East) (IfNorth (CellYofX Agent4 South) (CellYofX Agent4 East) North (ADF0 (CellYofX
Agent4 Here) (CellYofX Me South))) (ADF0 (CellYofX Me Here) (CellYofX Agent4 West)))))
(CellYofX Me (IfNorth (CellYofX Agent4 West) (CellYofX Agent4 (IfCellOccupied (CellYofX
Me (IfCellsEqual (CellYofX Agent4 East) (CellYofX Me North) North (ADF0 (CellYofX
Agent4 West) (CellYofX Me North)))) South West)) West (IfCellsEqual (CellYofX Agent4
North) (CellYofX Agent4 West) (IfCellsEqual (CellYofX Me West) (CellYofX Me West) East
West) (IfCellsEqual (CellYofX Agent4 East) (CellYofX Agent4 South) West (IfEast (CellYofX
Me South) (CellYofX Agent4 South) Here South))))) (ADF0 (CellYofX Agent4 (IfNorth
(CellYofX Agent4 West) (CellYofX Me South) (IfCellOccupied (CellYofX Agent4 Here) Here
West) Here)) (CellYofX Me (IfNorth (CellYofX Me North) (CellYofX Agent4 (IfCellOccupied
(CellYofX Me East) West South)) (IfCellsEqual (CellYofX Me South) (CellYofX Me West)
(ADF0 (CellYofX Agent4 (IfCellsEqual (CellYofX Me Here) (CellYofX Agent4 West) North
East)) (CellYofX Agent4 East)) (IfCellsEqual (CellYofX Me East) (CellYofX Agent4 North)
South (IfCellOccupied (CellYofX Me West) (IfNorth (CellYofX Me North) (CellYofX Agent4
South) West South) Here))) (IfEast (CellYofX Agent4 Here) (CellYofX Me (IfCellOccupied
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(CellYofX Me South) (IfNorth (CellYofX Me North) (CellYofX Agent4 South) South Here)
West)) East (IfCellOccupied (CellYofX Agent4 South) West West))))) (IfEast (CellYofX Me
(IfEast (CellYofX Agent4 Here) (CellYofX Agent4 (ADF0 (CellYofX Agent4 East) (CellYofX
Agent4 East))) (IfCellsEqual (CellYofX Agent4 North) (CellYofX Me (ADF0 (CellYofX Me
East) (CellYofX Me South))) (IfNorth (CellYofX Agent4 South) (CellYofX Me Here) (ADF0
(CellYofX Agent4 West) (CellYofX Agent4 South)) (IfEast (CellYofX Me Here) (CellYofX
Me North) Here Here)) (IfCellOccupied (CellYofX Agent4 East) (IfEast (CellYofX Me South)
(CellYofX Agent4 South) West West) Here)) (IfCellOccupied (CellYofX Agent4 (IfNorth
(CellYofX Agent4 Here) (CellYofX Agent4 Here) Here North)) North (ADF0 (CellYofX Me
East) (CellYofX Agent4 West))))) (CellYofX Agent4 (IfCellOccupied (CellYofX Me South)
(IfCellsEqual (CellYofX Me South) (CellYofX Agent4 Here) (IfCellOccupied (CellYofX Me
North) West North) Here) North)) West (IfEast (CellYofX Me (IfNorth (CellYofX Agent4 Here)
(CellYofX Me West) (ADF0 (CellYofX Agent4 North) (CellYofX Me South)) (IfCellsEqual
(CellYofX Me North) (CellYofX Agent4 East) South East))) (CellYofX Me (IfCellsEqual
(CellYofX Me Here) (CellYofX Agent4 North) North South)) South West)))
Fitness : Fitness(14969.416666666666,32.4,53)
Complexity : 489

A.8 Experiment 4a - CRO Homogenous (Best of Run 9 Generation
249)

ADF[0] : (IfEast ADF0Arg0 ADF0Arg1 (IfCellsEqual ADF0Arg0 ADF0Arg1 (IfEast
ADF0Arg1 ADF0Arg0 West (IfCellOccupied ADF0Arg0 West (IfCellsEqual ADF0Arg1
ADF0Arg0 (IfEast ADF0Arg0 ADF0Arg1 North West) (IfEast ADF0Arg0 ADF0Arg0 (If-
CellOccupied ADF0Arg1 West (IfCellOccupied ADF0Arg1 North North)) East)))) (IfEast
ADF0Arg1 ADF0Arg1 (IfCellOccupied ADF0Arg1 North North) (IfEast ADF0Arg0
ADF0Arg1 East North))) North)
ADF[1] : (IfNorth (CellYofX Agent4 (IfCellOccupied (CellYofX Me (IfCellOccupied (Cel-
lYofX Me South) West North)) (IfCellOccupied (CellYofX Me South) (IfEast (CellYofX Me
Here) (CellYofX Agent4 Here) (ADF0 (CellYofX Me West) (CellYofX Agent4 North)) Here)
(IfCellOccupied (CellYofX Me Here) (IfNorth (CellYofX Me North) (CellYofX Agent4 East)
West North) Here)) (IfCellOccupied (CellYofX Me East) (IfNorth (CellYofX Agent4 East)
(CellYofX Me East) North (ADF0 (CellYofX Agent4 Here) (CellYofX Me South))) (ADF0
(CellYofX Me East) (CellYofX Me West))))) (CellYofX Me (IfNorth (CellYofX Me West)
(CellYofX Me (IfCellOccupied (CellYofX Me (IfCellsEqual (CellYofX Agent4 East) (CellYofX
Me South) North (ADF0 (CellYofX Agent4 West) (CellYofX Me Here)))) South East)) West
(IfCellsEqual (CellYofX Agent4 (IfEast (CellYofX Me Here) (CellYofX Me South) South
North)) (CellYofX Agent4 West) (IfCellsEqual (CellYofX Me West) (CellYofX Me West) East
North) (IfCellsEqual (CellYofX Agent4 East) (CellYofX Agent4 West) West (IfEast (CellY-
ofX Me Here) (CellYofX Agent4 Here) Here South))))) (ADF0 (CellYofX Agent4 (IfNorth
(CellYofX Agent4 (IfCellOccupied (CellYofX Me East) (IfCellOccupied (CellYofX Agent4
East) West Here) West)) (CellYofX Me South) (IfCellOccupied (CellYofX Agent4 Here) Here
Here) South)) (CellYofX Me (IfNorth (CellYofX Me North) (CellYofX Agent4 (IfCellOccupied
(CellYofX Me East) Here South)) (IfCellsEqual (CellYofX Agent4 South) (CellYofX Me West)
(ADF0 (CellYofX Agent4 (IfCellsEqual (CellYofX Me Here) (CellYofX Agent4 Here) North
East)) (CellYofX Agent4 South)) (IfCellsEqual (CellYofX Me East) (CellYofX Agent4 East)
Here (IfCellOccupied (CellYofX Me West) (IfNorth (CellYofX Me North) (CellYofX Agent4
South) West South) Here))) (IfEast (CellYofX Me East) (CellYofX Me Here) East (IfCellOccu-
pied (CellYofX Agent4 South) West West))))) (IfEast (CellYofX Me South) (CellYofX Agent4
(IfCellOccupied (CellYofX Me Here) (IfCellsEqual (CellYofX Me South) (CellYofX Agent4
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Here) (IfCellOccupied (CellYofX Me North) West North) Here) North)) West (IfEast (CellYofX
Me (IfNorth (CellYofX Agent4 Here) (CellYofX Agent4 North) (ADF0 (CellYofX Agent4
North) (CellYofX Agent4 West)) (IfCellsEqual (CellYofX Me Here) (CellYofX Agent4 Here)
Here East))) (CellYofX Me (IfCellsEqual (CellYofX Me Here) (CellYofX Agent4 North) North
North)) South West)))
Fitness : Fitness(14320.9,32.38333333333333,50)
Complexity : 350

A.9 Experiment 4a - CRO Homogenous (Best of Generations Run
9)

ADF[0] : (IfEast ADF0Arg0 ADF0Arg1 (IfCellsEqual ADF0Arg0 ADF0Arg1 (IfEast
ADF0Arg1 ADF0Arg0 West (IfCellOccupied ADF0Arg0 North (IfCellsEqual ADF0Arg1
ADF0Arg0 (IfEast ADF0Arg1 ADF0Arg1 North West) (IfEast ADF0Arg0 ADF0Arg0 (If-
CellOccupied ADF0Arg0 West (IfCellOccupied ADF0Arg1 North North)) North)))) (IfEast
ADF0Arg1 ADF0Arg1 West (IfEast ADF0Arg0 ADF0Arg1 East West))) North)
ADF[1] : (IfNorth (CellYofX Agent4 (IfCellOccupied (CellYofX Agent4 (IfCellOccupied (Cel-
lYofX Me East) (IfCellOccupied (CellYofX Agent4 East) West Here) West)) (IfCellOccupied
(CellYofX Me South) (IfEast (CellYofX Me Here) (CellYofX Agent4 Here) (ADF0 (CellYofX
Agent4 West) (CellYofX Me North)) Here) (IfCellOccupied (CellYofX Me Here) (IfNorth
(CellYofX Me North) (CellYofX Agent4 West) West North) Here)) (IfCellOccupied (CellYofX
Me East) (IfNorth (CellYofX Agent4 East) (CellYofX Me East) North (ADF0 (CellYofX
Agent4 Here) (CellYofX Me South))) (ADF0 (CellYofX Me Here) (CellYofX Agent4 West)))))
(CellYofX Me (IfNorth (CellYofX Me West) (CellYofX Me (IfCellOccupied (CellYofX Me
(IfCellsEqual (CellYofX Agent4 East) (CellYofX Me South) North (ADF0 (CellYofX Agent4
West) (CellYofX Agent4 Here)))) South East)) West (IfCellsEqual (CellYofX Agent4 (IfEast
(CellYofX Me Here) (CellYofX Me South) South North)) (CellYofX Agent4 West) (IfCellsE-
qual (CellYofX Me West) (CellYofX Me West) East North) (IfCellsEqual (CellYofX Me East)
(CellYofX Agent4 West) West (IfEast (CellYofX Me Here) (CellYofX Agent4 Here) Here
South))))) (ADF0 (CellYofX Agent4 (IfNorth (CellYofX Agent4 (IfCellOccupied (CellYofX
Me East) (IfCellOccupied (CellYofX Agent4 East) West Here) West)) (CellYofX Me South)
(IfCellOccupied (CellYofX Agent4 Here) Here Here) South)) (CellYofX Me (IfNorth (CellYofX
Me North) (CellYofX Agent4 (IfCellOccupied (CellYofX Me East) Here South)) (IfCellsEqual
(CellYofX Agent4 South) (CellYofX Me West) (ADF0 (CellYofX Agent4 (IfCellsEqual
(CellYofX Agent4 Here) (CellYofX Agent4 Here) North East)) (CellYofX Agent4 South))
(IfCellsEqual (CellYofX Me East) (CellYofX Agent4 East) Here (IfCellOccupied (CellYofX
Me West) (IfNorth (CellYofX Me North) (CellYofX Agent4 South) West South) Here))) (IfEast
(CellYofX Me East) (CellYofX Me Here) East (IfCellOccupied (CellYofX Agent4 South) West
West))))) (IfEast (CellYofX Me South) (CellYofX Agent4 (IfCellOccupied (CellYofX Me Here)
(IfCellsEqual (CellYofX Me South) (CellYofX Agent4 Here) (IfCellOccupied (CellYofX Me
North) West North) Here) North)) West (IfEast (CellYofX Me (IfNorth (CellYofX Agent4
Here) (CellYofX Agent4 North) (ADF0 (CellYofX Agent4 North) (CellYofX Agent4 West))
(IfCellsEqual (CellYofX Me Here) (CellYofX Agent4 Here) Here East))) (CellYofX Me
(IfCellsEqual (CellYofX Me Here) (CellYofX Agent4 North) North North)) South West)))
Fitness : Fitness(13122.0,35.483333333333334,43)
Complexity : 352
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A.10 Experiment 4b - CRO Heterogenous (Best of Run 2)

ADF[0] : (IfNorth ADF0Arg1 ADF0Arg0 (IfNorth ADF0Arg1 ADF0Arg1 (IfCellsEqual
ADF0Arg1 ADF0Arg1 (IfCellOccupied ADF0Arg0 North North) (IfNorth ADF0Arg0
ADF0Arg0 East (IfCellsEqual ADF0Arg1 ADF0Arg0 (IfEast ADF0Arg0 ADF0Arg1 (IfEast
ADF0Arg1 ADF0Arg1 North West) North) West))) North) (IfCellOccupied ADF0Arg0 (IfEast
ADF0Arg1 ADF0Arg1 North South) East))
ADF[1] : (IfCellsEqual (CellYofX Agent4 (IfCellsEqual (CellYofX Agent4 (IfCellsEqual
(CellYofX Me East) (CellYofX Me Here) North (IfCellsEqual (CellYofX Agent4 West) (Cel-
lYofX Agent4 East) South Here))) (CellYofX Me (IfCellOccupied (CellYofX Agent4 North)
East Here)) South (IfNorth (CellYofX Agent4 North) (CellYofX Agent4 (IfEast (CellYofX
Agent4 North) (CellYofX Me South) East West)) (IfEast (CellYofX Me East) (CellYofX Agent4
South) (IfCellOccupied (CellYofX Agent4 West) East West) South) (ADF0 (CellYofX Agent4
East) (CellYofX Me South))))) (CellYofX Agent4 (IfNorth (CellYofX Agent4 Here) (CellYofX
Agent4 South) (IfEast (CellYofX Me (IfNorth (CellYofX Agent4 Here) (CellYofX Agent4
North) East North)) (CellYofX Me (IfCellsEqual (CellYofX Me South) (CellYofX Agent4
Here) East South)) (IfCellsEqual (CellYofX Me Here) (CellYofX Me South) Here Here) West)
South)) West (ADF0 (CellYofX Me (IfNorth (CellYofX Agent4 West) (CellYofX Me (IfNorth
(CellYofX Agent4 Here) (CellYofX Agent4 South) South West)) South (IfCellsEqual (CellYofX
Agent4 East) (CellYofX Agent4 Here) (ADF0 (CellYofX Me (IfCellsEqual (CellYofX Agent4
West) (CellYofX Agent4 East) South West)) (CellYofX Me East)) Here))) (CellYofX Agent4
South)))
ADF[2] : (IfEast ADF0Arg0 ADF0Arg0 Here (IfEast ADF0Arg0 ADF0Arg1 (IfEast ADF0Arg0
ADF0Arg0 East (IfEast ADF0Arg0 ADF0Arg1 North (IfNorth ADF0Arg0 ADF0Arg0 North
East))) (IfNorth ADF0Arg1 ADF0Arg0 East South)))
ADF[3] : (IfEast (CellYofX Me East) (CellYofX Agent4 East) West (IfEast (CellYofX Agent4
(IfNorth (CellYofX Me (IfCellsEqual (CellYofX Agent4 Here) (CellYofX Me Here) South
East)) (CellYofX Me (IfCellOccupied (CellYofX Me North) East North)) (IfNorth (CellYofX
Me Here) (CellYofX Agent4 Here) (IfEast (CellYofX Agent4 East) (CellYofX Me South) East
South) East) (IfEast (CellYofX Agent4 South) (CellYofX Agent4 South) (IfNorth (CellYofX
Agent4 North) (CellYofX Agent4 North) Here Here) (IfCellsEqual (CellYofX Me Here)
(CellYofX Agent4 East) South Here)))) (CellYofX Agent4 East) (IfCellOccupied (CellYofX
Agent4 (IfCellOccupied (CellYofX Me East) (IfCellsEqual (CellYofX Me South) (CellYofX
Me North) East West) (IfCellOccupied (CellYofX Agent4 East) North East))) (IfEast (CellYofX
Agent4 Here) (CellYofX Agent4 East) (IfCellOccupied (CellYofX Agent4 North) South (IfEast
(CellYofX Me North) (CellYofX Agent4 North) North East)) Here) (IfNorth (CellYofX Me
(IfEast (CellYofX Me West) (CellYofX Agent4 Here) East Here)) (CellYofX Me Here) (IfNorth
(CellYofX Me South) (CellYofX Agent4 South) (IfNorth (CellYofX Agent4 Here) (CellYofX
Agent4 East) South North) West) (IfCellOccupied (CellYofX Agent4 East) East North))) (ADF0
(CellYofX Me East) (CellYofX Agent4 (IfCellOccupied (CellYofX Me East) Here (ADF0
(CellYofX Me East) (CellYofX Agent4 North)))))))
ADF[4] : South
ADF[5] : (IfCellsEqual (CellYofX Agent4 (IfEast (CellYofX Agent4 (IfEast (CellYofX Me
Here) (CellYofX Me Here) East Here)) (CellYofX Agent4 (IfCellOccupied (CellYofX Me East)
East (IfCellsEqual (CellYofX Me South) (CellYofX Me West) South East))) Here East)) (Cel-
lYofX Me (IfCellOccupied (CellYofX Agent4 East) West (IfCellOccupied (CellYofX Agent4
(IfEast (CellYofX Me East) (CellYofX Me East) East Here)) West (ADF0 (CellYofX Agent4
East) (CellYofX Me West))))) West (IfNorth (CellYofX Me East) (CellYofX Agent4 East)
(IfEast (CellYofX Me (IfNorth (CellYofX Me West) (CellYofX Me South) (IfEast (CellYofX
Agent4 Here) (CellYofX Agent4 East) North Here) (IfCellOccupied (CellYofX Me West)
East East))) (CellYofX Agent4 (IfNorth (CellYofX Agent4 North) (CellYofX Agent4 West)
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South East)) (IfCellOccupied (CellYofX Me West) East (IfCellOccupied (CellYofX Agent4
West) West (IfNorth (CellYofX Agent4 North) (CellYofX Agent4 East) South East))) (IfNorth
(CellYofX Me South) (CellYofX Agent4 West) (IfNorth (CellYofX Me East) (CellYofX Me
South) South (IfEast (CellYofX Agent4 Here) (CellYofX Agent4 North) East West)) (IfEast
(CellYofX Agent4 Here) (CellYofX Me Here) East South))) North))
ADF[6] : (IfNorth ADF0Arg1 ADF0Arg1 South (IfNorth ADF0Arg1 ADF0Arg0 South North))
ADF[7] : (IfCellsEqual (CellYofX Me (ADF0 (CellYofX Agent4 North) (CellYofX Me North)))
(CellYofX Me (IfCellsEqual (CellYofX Agent4 North) (CellYofX Agent4 (ADF0 (CellYofX Me
West) (CellYofX Agent4 (IfCellsEqual (CellYofX Me North) (CellYofX Agent4 Here) (ADF0
(CellYofX Me North) (CellYofX Agent4 Here)) (IfNorth (CellYofX Agent4 East) (CellYofX
Agent4 Here) East Here))))) North East)) West (IfEast (CellYofX Me (IfCellOccupied (CellYofX
Agent4 North) (IfNorth (CellYofX Me North) (CellYofX Me East) (ADF0 (CellYofX Agent4
North) (CellYofX Me East)) East) North)) (CellYofX Agent4 (IfCellOccupied (CellYofX Me
North) North (ADF0 (CellYofX Agent4 Here) (CellYofX Agent4 North)))) (IfCellOccupied
(CellYofX Me (IfCellOccupied (CellYofX Agent4 West) South (IfCellOccupied (CellYofX
Me North) South South))) (IfCellsEqual (CellYofX Agent4 North) (CellYofX Me North)
(IfNorth (CellYofX Agent4 (IfNorth (CellYofX Agent4 East) (CellYofX Me Here) North
Here)) (CellYofX Me North) (IfNorth (CellYofX Me North) (CellYofX Agent4 East) South
(IfCellOccupied (CellYofX Me North) South East)) West) (ADF0 (CellYofX Me (IfCellsEqual
(CellYofX Agent4 Here) (CellYofX Me North) North South)) (CellYofX Agent4 (IfCellOccu-
pied (CellYofX Agent4 East) West West)))) (ADF0 (CellYofX Agent4 North) (CellYofX Me
North))) East))
Fitness : Fitness(15528.816666666668,30.216666666666665,57)
Complexity : 730

A.11 Experiment 8 - CRO Homogenous Full Evaluation (Best of
Run 4)

ADF[0] : (IfEast ADF0Arg0 ADF0Arg1 (IfNorth ADF0Arg1 ADF0Arg0 (IfCellOccupied
ADF0Arg0 West East) (IfCellOccupied ADF0Arg1 South North)) (IfNorth ADF0Arg0
ADF0Arg0 East (IfCellOccupied ADF0Arg1 (IfNorth ADF0Arg0 ADF0Arg1 (IfNorth
ADF0Arg0 ADF0Arg0 (IfNorth ADF0Arg0 ADF0Arg1 South East) East) (IfCellOccupied
ADF0Arg1 (IfCellOccupied ADF0Arg0 (IfCellsEqual ADF0Arg1 ADF0Arg1 (IfCellOccupied
ADF0Arg0 East (IfCellsEqual ADF0Arg0 ADF0Arg0 South West)) Here) North) (IfCellsEqual
ADF0Arg0 ADF0Arg1 East Here))) North)))
ADF[1] : (IfEast (CellYofX Agent4 (IfCellOccupied (CellYofX Me Here) (IfNorth (CellYofX
Agent4 East) (CellYofX Agent4 (IfEast (CellYofX Me South) (CellYofX Me South) South
Here)) West (IfNorth (CellYofX Me North) (CellYofX Agent4 (IfEast (CellYofX Agent4 West)
(CellYofX Me Here) South (IfCellOccupied (CellYofX Me North) East North))) West (ADF0
(CellYofX Agent4 South) (CellYofX Me South)))) Here)) (CellYofX Me North) East (IfEast
(CellYofX Agent4 East) (CellYofX Me (IfCellsEqual (CellYofX Agent4 South) (CellYofX Me
West) (IfNorth (CellYofX Agent4 Here) (CellYofX Me (ADF0 (CellYofX Me South) (CellYofX
Agent4 East))) West West) (IfCellsEqual (CellYofX Me Here) (CellYofX Me South) West
(IfNorth (CellYofX Me (IfCellOccupied (CellYofX Me East) South North)) (CellYofX Agent4
North) (IfNorth (CellYofX Me South) (CellYofX Me South) Here North) (IfCellOccupied
(CellYofX Me West) West West))))) (IfNorth (CellYofX Me (ADF0 (CellYofX Agent4 Here)
(CellYofX Me South))) (CellYofX Agent4 West) (IfEast (CellYofX Agent4 East) (CellYofX
Me (IfCellOccupied (CellYofX Me (IfCellOccupied (CellYofX Me East) South North)) East
North)) South (IfCellsEqual (CellYofX Me (IfCellOccupied (CellYofX Me East) South North))
(CellYofX Agent4 East) (IfNorth (CellYofX Me Here) (CellYofX Agent4 East) South Here)
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(IfCellsEqual (CellYofX Agent4 South) (CellYofX Me South) North West))) North) West))
Fitness : Fitness(14918.783333333333,32.11666666666667,53)
Complexity : 237



Appendix B

Best Evolved Communicative Agents

B.1 Experiment 2 - Best Agent of Run 4

ADF[0] : (If (LT RecvA (Add (SendA (Sub RecvB (SendB GetY))) (SendA (SendA GetX)))) (If
(GE (SendA GetY) (SendB (SendB GetY))) (If (LT GetX GetX) (If (GE (Sub GetX (Sub GetX
RecvA)) RecvB) (If (GE GetX GetY) (If (GE GetY RecvA) S E) E) (If (GE RecvB (SendB
GetY)) SW (If (GE GetX GetX) S NW))) (If (GE RecvA (SendA (SendA GetX))) N (If (LT
GetY RecvA) NW NW))) E) (If (GE RecvB GetY) NE (If (LT RecvA (SendA GetX)) SW SE)))
Fitness : Fitness(1.0,80,100,0.3912639405204461)
Complexity : 80

B.2 Experiment 2 - Best Agent of Run 2

ADF[0] : (If (GE (Sub GetX (SendB GetX)) (Sub RecvA (SendA (SendA GetY)))) (If (GE
(SendB GetX) RecvB) SW SE) (If (GE (SendB GetX) RecvB) (If (LT RecvB GetX) NW (If
(LT (SendA GetY) GetY) (If (LT GetX (SendA GetY)) (If (GE RecvA RecvB) (If (GE (SendB
GetY) GetX) E SE) E) N) (If (GE GetX GetY) (If (GE RecvB RecvB) NE NE) NE))) (If (GE
(Sub (SendB RecvB) GetX) (Sub RecvA (SendA GetY))) (If (GE (SendB GetX) RecvB) (If
(LT GetX RecvB) SE N) NE) (If (GE (SendB GetX) RecvB) (If (LT RecvB GetX) NW (If (LT
(SendA (SendA RecvA)) GetX) (If (LT GetX (SendA GetX)) (If (GE GetX RecvB) SE SE) (If
(GE GetY GetY) SE NW)) (If (GE (Add RecvB RecvA) RecvB) (If (GE GetX RecvB) NE NE)
N))) N))))
Fitness : Fitness(1.0,131,100,0.37187997875730217)
Complexity : 131



Appendix C

Best Socialised Agents

C.1 Experiment 5 - Best Socialised Communicating Agent of Run 4

ADF[0] : (If (GE GetY GetY) (If (GE RecvB (Sub GetX (Sub (SendA (SendA (SendA RecvA)))
(SendB GetY)))) (If (GE RecvB (Sub RecvA (Sub (SendA GetX) (SendB GetY)))) (If (LT GetX
RecvA) NE (If (GE (SendA GetX) GetX) (If (LT GetY (Add (Sub GetX GetX) RecvB)) NW
(If (LT RecvB (SendB GetY)) E E)) E)) (If (LT GetY (Add (Sub RecvB GetX) RecvB)) (If (LT
GetY GetY) NE E) (If (GE (SendA (SendA (SendB GetY))) (Sub (SendA GetX) GetY)) (If
(LT GetY (Add (Sub RecvA RecvA) RecvB)) NW (If (LT (SendB GetX) (SendB GetY)) E E))
E))) (If (LT (SendA GetX) (Add (Sub GetX RecvB) GetY)) (If (GE (SendA (SendA RecvA))
(SendA GetX)) S SW) W)) S)
Fitness : Fitness(1.0,115,100,0.37347318109399896)
Complexity : 115

C.2 Experiment 6a - Best Socialised Homegenous Pursuit Agent of
Run 5

ADF[0] : (IfCellOccupied ADF0Arg1 West (IfCellOccupied ADF0Arg1 (IfCellOccupied
ADF0Arg1 (IfCellsEqual ADF0Arg0 ADF0Arg1 (IfCellOccupied ADF0Arg1 South South)
(IfCellOccupied ADF0Arg1 Here South)) (IfNorth ADF0Arg1 ADF0Arg1 (IfCellsEqual
ADF0Arg0 ADF0Arg1 South South) East)) (IfCellsEqual ADF0Arg1 ADF0Arg1 (IfEast
ADF0Arg1 ADF0Arg0 (IfCellsEqual ADF0Arg1 ADF0Arg1 (IfCellOccupied ADF0Arg1 (If-
CellsEqual ADF0Arg0 ADF0Arg1 (IfCellOccupied ADF0Arg1 North South) (IfCellOccupied
ADF0Arg1 West West)) (IfNorth ADF0Arg1 ADF0Arg0 (IfCellsEqual ADF0Arg1 ADF0Arg1
South West) North)) West) (IfEast ADF0Arg1 ADF0Arg0 East South)) (IfEast ADF0Arg1
ADF0Arg1 (IfEast ADF0Arg0 ADF0Arg1 North West) (IfCellsEqual ADF0Arg0 ADF0Arg1
South West)))))
ADF[1] : (IfEast (CellYofX Agent4 Here) (CellYofX Agent4 North) (IfEast (CellYofX Me East)
(CellYofX Agent4 West) West (IfEast (CellYofX Agent4 Here) (CellYofX Me South) South
(IfNorth (CellYofX Me East) (CellYofX Me Here) (IfEast (CellYofX Me East) (CellYofX Me
South) South East) West))) (IfNorth (CellYofX Me (IfNorth (CellYofX Me South) (CellYofX
Agent4 West) Here (ADF0 (CellYofX Agent4 (IfCellOccupied (CellYofX Agent4 North) North
East)) (CellYofX Me East)))) (CellYofX Agent4 Here) (IfEast (CellYofX Me (IfCellOccupied
(CellYofX Me North) (IfNorth (CellYofX Agent4 Here) (CellYofX Me North) West East)
(IfNorth (CellYofX Agent4 South) (CellYofX Me Here) West Here))) (CellYofX Agent4 Here)
West South) (IfEast (CellYofX Agent4 (IfCellsEqual (CellYofX Agent4 South) (CellYofX
Agent4 East) (IfCellOccupied (CellYofX Agent4 South) North Here) North)) (CellYofX Me
(IfEast (CellYofX Agent4 Here) (CellYofX Me South) South (IfNorth (CellYofX Me East)
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(CellYofX Me Here) (IfEast (CellYofX Me East) (CellYofX Me South) East East) West)))
(IfCellsEqual (CellYofX Agent4 (IfCellOccupied (CellYofX Agent4 Here) (IfEast (CellYofX
Me South) (CellYofX Agent4 Here) Here West) South)) (CellYofX Me North) (IfCellsEqual
(CellYofX Me (IfCellOccupied (CellYofX Agent4 North) East Here)) (CellYofX Agent4 North)
(IfNorth (CellYofX Me Here) (CellYofX Me South) East Here) North) East) North)))
Fitness : Fitness(12971.516666666666,35.916666666666664,41)
Complexity : 261

C.3 Experiment 6b - Best Socialised Heterogeneous Pursuit Agent
of Run 5

ADF[0] : (IfCellOccupied ADF0Arg0 East South)
ADF[1] : (IfNorth (CellYofX Agent4 (IfCellOccupied (CellYofX Me (IfEast (CellYofX Agent4
Here) (CellYofX Me South) (IfNorth (CellYofX Me North) (CellYofX Me South) Here Here)
North)) North (IfCellOccupied (CellYofX Agent4 (IfNorth (CellYofX Agent4 West) (CellYofX
Me Here) South Here)) Here (IfCellOccupied (CellYofX Me North) West East)))) (CellYofX Me
South) (IfEast (CellYofX Me East) (CellYofX Agent4 (IfCellsEqual (CellYofX Agent4 Here)
(CellYofX Agent4 West) East Here)) (IfNorth (CellYofX Agent4 Here) (CellYofX Me East)
North West) West) (ADF0 (CellYofX Me (IfNorth (CellYofX Agent4 (IfEast (CellYofX Agent4
South) (CellYofX Me North) North Here)) (CellYofX Agent4 (IfNorth (CellYofX Me Here)
(CellYofX Agent4 North) East West)) (IfNorth (CellYofX Me North) (CellYofX Agent4 West)
Here (IfNorth (CellYofX Me West) (CellYofX Me North) South (IfCellOccupied (CellYofX Me
North) (IfCellOccupied (CellYofX Me South) East Here) East))) South)) (CellYofX Agent4
(IfCellsEqual (CellYofX Agent4 (IfCellOccupied (CellYofX Agent4 South) West North))
(CellYofX Agent4 (IfCellsEqual (CellYofX Agent4 Here) (CellYofX Agent4 Here) East Here))
(IfCellOccupied (CellYofX Me South) South Here) (IfCellsEqual (CellYofX Agent4 South)
(CellYofX Me Here) (IfCellsEqual (CellYofX Me South) (CellYofX Agent4 West) Here East)
East)))))
ADF[2] : (IfEast ADF0Arg0 ADF0Arg1 (IfCellOccupied ADF0Arg1 (IfEast ADF0Arg1
ADF0Arg1 East (IfCellOccupied ADF0Arg1 (IfEast ADF0Arg1 ADF0Arg1 East South)
(IfNorth ADF0Arg1 ADF0Arg0 (IfNorth ADF0Arg1 ADF0Arg1 South East) (IfCellOccupied
ADF0Arg1 (IfCellOccupied ADF0Arg0 East East) South)))) (IfNorth ADF0Arg0 ADF0Arg1
(IfNorth ADF0Arg1 ADF0Arg0 East South) (IfCellOccupied ADF0Arg1 (IfCellOccupied
ADF0Arg1 South East) East))) West)
ADF[3] : (IfNorth (CellYofX Me Here) (CellYofX Agent4 West) (ADF0 (CellYofX Agent4
East) (CellYofX Me (IfEast (CellYofX Agent4 South) (CellYofX Me East) North (IfCellsEqual
(CellYofX Agent4 (IfCellOccupied (CellYofX Agent4 Here) West Here)) (CellYofX Me South)
(IfCellsEqual (CellYofX Me East) (CellYofX Agent4 East) (IfCellOccupied (CellYofX Agent4
East) South South) East) Here)))) North)
Fitness : Fitness(15272.0,30.866666666666667,55)
Complexity : 270
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