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0. Introduction. 

Petri nets are a fundamental model of concurrent processes and have a wide range of applications. 

They can be viewed as generalisation of transition systems in which concurrency is not simulated by non-

deterministic interleaving. They were invented by C. A. Petri in the 60's. (A reference work is [Br].) 

It can be argued that the main effort and success of Petri Net Theory has been in developing techniques 

for showing properties of arbitrary Petri nets, e.g. Kurt Lautenbach has used techniques of linear algebra 

to discover invariants (properties which hold at all reachable markings). These techniques can be used 

to prove properties of concurrent programs. First represent the program as one big net and then prove 

properties about that. The problem is that big nets get out of hand, and more easily out of mind. For this 

reason chiefly, Hartmann Genrich, Kurt Lauteubach and Kurt Jensen invented predicate transition nets and 

coloured nets [GL, J] and accompanying techniques to find their invariants. Although they certainly do give 

a more compact way to model programs and systems they are necessarily more complicated, are more like 

programs, and need a semantics to relate them to structures which are more simple and universal. 

We address another problem, that of constructions on Petri nets and how to prove properties of a 

compound process by proving properties of its components. The constructions follow from a new notion of 

morphism on Petri nets—it is not the same as Petri's original notion. The morphisms respect the token game 

unlike Petri's original. The category of nets with the new morphisms has a product which is closely related 

to various parallel compositions which have been defined on labelled Petri nets for synchronising processes 

(see e.g. the compositions on nets defined in [LS,...] and section 3). It has a coproduct which is a generalised 

form of the "sum" operation as used for example in [M]. 

One can use Petri nets to give semantics to programming languages. But, what is the semantics of nets? 

In themselves nets are complicated objects whose behaviour is rather intricate. When do Petri nets have the 

same behaviour? Attempting to answer these questions leads naturally to occurrence nets first introduced 

in [NPW1, 2]. Occurrence nets form' a subcategory which bears a pleasant relation to the larger category 

of nets; the inclusion functor has a right adjoint which is an operation taking a net to its unfolding to a 

net of condition and event occurrences. (This construction was introduced in [NPW1, 2, W] but without 

this abstract characterisation.) It is argued that the meaning, or semantics, of a net is its occurrence net 

unfolding so that two nets are regarded as having essentially the same behaviour if they have isomorphic 

unfoldings. 

The point of this work is to develop ways to structure (and so prove) properties of behaviour of large, 

even infinite, Pctri nets while still keeping the nets of the straightforward form originally proposed by Petri 

[P]. I hope the neatness of the constructions and their simple characterisations counter one frequent criticism 

of Petri nets, that their mathematics is unwieldy. 



1. Petri nets. 

Petri nets have a structural part and a dynamic part. The structural part specifies the causal relation 

between events and conditions (=local states or propositions that can be made) of a system. The dynamic 

part specifies how the system evolves in time. Frequently a Petri net is identified with just the structural 

part, now defined. 

1.1 Definition. A Petri net is a 3-tuple (B,E,F) where 

B is a set of conditions, 

E is a set of events, 

F Q {B X E) U [E X B) is the flow (or causal dependency) relation 

which satisfy the restriction: 

{ 6 6 B | bFe } is a non-null, finite set for all events e G E. 

Thus we insist that each event causally depends on at least one condition, but require that the number 

of conditions on which it depends is finite. 

Nets are often drawn as graphs in which eyents are represented as boxes and conditions as circles with 

directed arcs between them to represent the flow relation. Here are some examples. 

1.2 Example. (Some simple nets). 

y r 

1.3 Example. (An example which fails the finiteness restriction) 

The above structure fails the restriction, { 6 € B \ bFe }<oo, which we have imposed on nets. Think of 

the intuitive behaviour of the net: the infinite chain of events and conditions is imagined to occur and only 

then does the event e occur—a strange computation! Petri forbids this kind of net by imposing an axiom 

called K-density (see [P]). However we find that axiom far too restrictive because if one accepts it one cannot 

model as wide a range of computations as one would wish—see [Wl] for arguments against K-density—and 

so we prefer the weaker axiom we impose. (Later when defining occurrence nets—representatives of net 

behaviour—we shall impose further restrictions.) 

1.4 Notation. Let N = (B, E, F) be a net. Let x be an event or a condition so x G B U E. Define 

*x = F~1{x} = {y £ B U E \ yFx). 

When x is an event e £ E we call the set *e its precojidifcions.Siinilarly define 

x* = F{x} = {yeB\jE\xFy}. . 
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When x is an event e the set e* is called its postconditions. We extend the "dot" notation to sets: 

•A = (J #a and A' = (j a\ 

So far, as we have defined them, nets are rather static objecta. Their dynamic behaviour is based on 

these principles which specify how the occurrence of events affect the holding of conditions—a condition is 

said to hold when it is true: 

(i) An occurrence of an event e ends the holding of its preconditions *e and begins the 

holding of its postconditions e". 

(ii) (a) The holding of a condition 6, when it ends, ends because of the occurrence of a 

unique event in 6". 

(ii) (b) The holding of a condition 6, when it begins, begins because of the occurrence of 

a unique event in *b. 

Remark. The first principle (i) is often stated. The principles (ii)(a) and (ii)(b) do not seem to be recognised 

and stated so so widely (they are stated by Winkowski in [Win]). Principles (ii)(a) and (b) are consequences 

of a more basic principle: 

If the occurrences of two events in a net are ever coincident (or synchronised) then the two events are 

identical. 

This principle expresses our understanding of the concept of an event; it says if the occurrence of two events 

is synchronised then they have to be the same event.. (This principle docs not hold in all applications of nets 

e.g. in [Sif] where two, or more, distinct events in the same net are forced to occur at the same time.) 

Of course we need a way to specify what conditions hold. We introduce an idea of global state which 

just specifies what subset of conditions hold (= are true). 

1.5 Definition. Let N = [B, E, F) be a Petri net. A marking of TV is a subset of conditions M C B. 

The marking of a net changes over time according to rules, commonly called "the token game" because 

a marking is often specified by laying tokens on those conditions in the marking; as events occur tokens are 

picked-up and put-down in accord with the fundamental principles above. From the fundamental principles 

it follows, only informally, of course, that an event can occur only once all its preconditions hold and none 

of its postconditions which are not preconditions hold. Here are two cases where the occurrence of an event 

produces the changes in the marking shown^ 

In neither case below can the events occur: 

1. 
o 

A, 

In 1 not all the preconditions hold so how could the occurrence of end the holding of the unmarked 

condition. In 2 a postcondition holds already, so how could the events occurrence begin its holding? The 

occurrence of the event in either 1 or 2 would contradict the principle (i) above. 



When an event can occur it is said to have concession or to be enabled. 

So far we have looked at the occurrence of one event alone. Petri nets allow more than one event to 

occur together but there are situations where the occurrence of one event excludes the occurrence of another 

and vice versa - a phenomenon called conflict. Consider two events e\ and e^ which are both able to occur 

but which have a precondition 6 in common. In a picture we might have, for example 

From the principle (ii)(a) it follows that only one of et and e2 can occur; otherwise they would both end 

the holding of the condition 6. This is an example of forwards conflict. 

Now consider two events which both have concession but which have a postcondition in common, for 

example 

By (ii)(b) only one of ei , and e% can occur. This is an example of backwards conflict. 

Now we can formally define the token game which specifies how the marking changes as events occur. 

1.6 Definition. The token game Let N — {B, E, F) be a Petri net. Let M be a marking. 

Say an event e£ E has concession at M iff 

#e C M & (e* \ *e) n M = 0. 

Let e,e; be events with concession at M. Say e and e' are in forwards conflict at M iff 

e 7^ e' & *e fl mer 7^ 0. 

Say they are in backwards conflict at M iff 

e ̂  e' & e1 fl e" ̂  0. 

Let M and M' be markings. Let A C E. Define M -4- M' iff 

Ve E A.e has concession at M & 

Vc, e' 6 Ae, e' are not in conflict & 

Af' = (M \ 'A) U A*. 

A marking M' is said to be reachable from a marking M iff M = Mo —9 M\ —J • • • —?~$n = 

In this situation the events A are said to occur concurrently. 

A marking M' is said to be reachable from a marking 

for subsets of events A^Ai,.. .,An -i and markings Mo, Mi,..., Mn. 

Remark. There are three points to clear up. Firstly we allow the event e to occur in 

although we do not allow the event e to occur in G\ vr-i s(S) 
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The reason is that in the first, the condition a is ended and then begun by the event occurrence, in time it 

looks like v^.. -y 

while in the second, the condition 6 is not first ended by the occurrence of e. 

The second point is for those familiar with a token game in which more than one token is allowed or a 

condition, local states are allowed a certain multiplicity so that they can model, for example, the availability 

of a number of resources. We shall not allow more than one token on a condition, partly for simplicity and 

partly because I believe much more complicated nets should ultimately be abbreviations for the simpler nets 

we consider. 

The third point is that in the U.S.A. the token game is often played differently to the way it is played 

in Europe. In the introductory book by Peterson [Pe], only one event is allowed to occur at a time, while in 

Europe, generally it is possible for a set of events to occur concurrently, as decribed here. 

1.7 Example. 

Initially the net is marked as shown. The events 0, 1 are in both forwards and backwards conflict so 

either 0 or 1, but not both can occur. Certainly the event 2 can occur. It is not in conflict with either 0 or 

1 so 2 can occur concurrently with 0 or 1, but not both. For example, taking M to be the marking above, 

M' to be the marking below and A = { 0,2 } we have M —► Mf. 

Of course from the marking M' the event 3 can occur giving rise to the marking M again, and we can 

start all over again, perhaps letting event 1 occur this time. 

1.8 Example. Mutual exclusion JO 

The two processes P\ and P% cannot both be in their critical regions CRi and GRi simultaneously. 

Generally a process is modelled by a Petri net with an initial marking from which it reaches other 

markings as events occur. 

1.9 Definition. A Petri net with initial marking is a structure [B, E, F, Mo) where (B, E, F) is a Petri net 

and Mo is a marking called the initial marking. Markings reachable from the initial marking are called 

rcachabJe markings. 
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There is said to be contact at a marking M of a net if for some event 

*e C M & (e# \le)nM^0. 

A Petri net with initial marking is contact-free iff there is not contact at each reachable marking. 

1.10 Example. A simple example of contact 

1.11 Example. Here is an example of net with initial marking which is contact-free, but which has 

backwards conflict at a reachable marking. 

1.11 Example. The following nets with initial marking are not contact free. 

Contact-free nets have the pleasant property that an event can occur at a reachable marking iff its 

preconditions are included in the marking. If one accepts the earlier principles, the behaviour of nets with 

contact is weird; it seems an event is prevented from occurring by the knowledge of what would happen in the 

future if it did—see the above examples. For this reason it is difficult to understand their behaviour. Later 

when we come to associate an occurrence net unfolding with the behaviour of a net—thus giving nets a formal 

semantics in terms of more basic nets—we shall only be able to do this with for nets which are contact-free. 

One view of nets with contact is that they are improper descriptions. As has been remarked, there are other 

token games in which conditions can have multiple holdings. For such nets the above principles are invalid. 

The understanding of such nets is less settled; for example the question of the equivalence of two nets is 

unsure, though a start has been made in [GR]. 

When a net is contact-free the token game simplifies as we now describe. 

1.12 Proposition. The token game for contact-free nets: 

Let N = (B, E, Ft Mo) be a contact-free net with initial marking. Let M be a reacfiabie marking. 

Let e be an event. Then e has concession at M iff "e C M. 

Let e,e' be events. Then e, e' are in conflict at M iff'e f~l V ̂  0. 

Let M1 be a marking of N. Then 

M -^M* <=*Ve e A.'e C M 
&Ve,e'eA*enV= 0 

&Af' = (M \ 'A) U A\ 



2. The new definition of morphism on nets. 

Our deQnition of morphism on nets involves binary relations, sometimes specialised to being partial or 

total functions. Here are the elementary notations, properties and operations on relations we shall use: 

2.1 Notation. A relation from a set X to a set Y is a subset R C X X Y. When (x>y) e R we write 

xRy. A relation R has an opposite or (converse) relation, Rop} given by 

Clearly xRy & yRopx. 

When the relation R satisfies the property My,y' G YVx G X.xRy & xRy1 =► y = y' the relation i? is 

said to be a partial function. A partial function R is said to be total when it satisfies the additional property 

Vx € X3y 6 r.zity. 

The composition of relations is defined as follows: Let R be a relation from a set X to a set Y and S a 

relation from the set Y to a set Z. The composition of 72 with 5 is the relation SoR from X to Z given by 

SoR = {(x,z)eX xZ\3ye Y.xRy & ySz }. 

Note the order of the composition which follows that generally used for functions but unfortunately not 

that commonly used for relations—using both functions and relations in the same breath we had to make 

a choice for one notation and chose to stick with the one for functions. We shall frequently miss-out the 

composition symbol o and write S o R as just SR. 

When a relation R is a partial function, and we are thinking of it as taking an argument x an'd giving a 

value R(x)} it is useful to have a symbol to invoke when the value R(x) does not exist. We use * to represent 

undefined and so write 

R{x) = * ttfiy.xRy 

when R is a partial function from X to Y. 

If R is a relation from X to Y and ACIwe define the image of A under R to be the set RA given 

by 

• RA={yeY | 3xeA.xRy}. 

Note the clash with abbreviated relation composition; any ambiguities can be resolved from the context. 

Let Nq = (B0}Eo,F0,Mo) and N± = (Bi,EltFi,Mt) be two nets. A morphism from No to Ni is to 

be a pair of relations (e,/3) where e is a relation between events, e C Eo X Ei, and {3 is a relation between 

conditions, /? C Bo X B\. The relation eoeei means: when eo occurs its occurrence is synchronised with the 

occurrence of ei. The relation 60/36i means: when 6o begins to hold its beginning is synchronised with the 

beginning of the holding of bl} and when &o ends holding its end is synchronised with the end of &i. (In the 

following discussion conditions in the initial markings are assumed begun by some starting event.) 

An informal argument suggests that e should be a partial function: Assume eoeej and eoee\ for events 

e0 in No and ei, e\ in N\. Then the occurrence of €q implies the synchronised occurrence of ei and ej. 

This makes the events ei and e\ synchronised together. According to our informal understanding of the 

behaviour of iVi—as given in the last section—the two.events can only be synchronised together if they are 

the same event so e^ = e^. 

From our interpretation of 0 if bo(3bi and 60 begins to hold in No then &i should begin to hold in Nt. 

Thus if eo^o^o and &o/?&i> so eo begins the holding of b0 which is synchronised with the beginning of the 

holding of &i, there should be an event ei synchronised with e0 which begins the holding of &i i.e. eoeei and 

exFibi. In particular, if 6q £ Mo and bo@bi then as b0 holds initially so should &i, making bL E Mi. (Recall 



conditions of the initial markings are imagined started by a starting event.) Similarly if 6o^oeo and 

then there should exist an event e.y such that eocei—consider how the holdings of the conditions end. 

In order for the pair (e, /?) to be a morphisrn we insist that some further restrictions are met in the 

neighbourhood of events. Suppose eocei for an event eo c /?o a°d event e\ G E\_. If biF\ei, so e\ ends 

the holding of 61, we insist there is a unique condition 60 so that 6o/foeo and &o/?&i- Similarly if ei-Fi&i we 

require there exists a condition 60 such that eo^o&o and &o/36i. In particular for the initial marking (imagined 

started by a starting event) we have V61 £ Mi3!6o £ M 

We define morphisms between general marked Petri nets. Later we shall have reason to specialise to 

contact-free nets. 

2.2 Definition. Let N = (Bi,Ei,Fi, Mi) be nets for i = 0,1. Define a morphism of nets from No to TVi 

to be a pak of relations (e,/?) such that e C #0 X E\ is a partial function, /3 C Bo X Bi which satisfies the 

restrictions 

V61 6 

and for all eo £ #0) 

& bLFiei) 

360.(60/56! & 60^060) 

3160.(60)86! & 

3ei.(cO€Ci & 

and 

3ei.(e0ee! & eiF^i) => 3!&0.(60/?&i & e0F060) 

36o.(6o/?6i & eo-^o^o) =* 3ei.(eo€ei & eii^i). 

When the function e is total we say the morphism (c, /?) is synchronous. 

When the relations e and /3 are total functions we say the morphism (e, ft) is a folding. 

When (e, /3) is a morphism, Bo C Bi and Eq C £^1 and the relations e and /? are the restrictions of the 

inclusion relations, i.e. eoeei *4 e© ^ ei and 60/?6i 4=* 6q = 61, we say the net Nq is a subnet of ATi. 

Recalling our intuition about the F relation, the restrictions above say of a morphism: 

An event c(eo) ends/begins the holding of a condition 61 iff e0 ends/begins the holding of a unique 

condition 60 such that 

2.3 Example. Here are tftpgexamples of morphisms: 

A ^g'ct'M 
A. tuj*cn-oh 

2.3 Proposition. Let No = (Bo, #01 ̂ o> ̂ 0) and N\ = (Blt E\t F\> Mi) be two nets. Let (6, j3) be a pair 

0/ relations e C Eo X Et and ̂  C Bo X B^ 
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The pair is a morphism, (e, 0) : No -* Ni iff e is a partial function, (30p li Mi X Mo : Mi -+ Mo is a 

total function and 

Veo,ei.eoeci =4/?*e0 = *ei & 

/?op n *ci X #e0 : ei*.-+ e0* is a total function, & 

j0eo* = ei* & 

/3op Pi ei* X eo" : *ei —»■ *eo is a total function. 

The pair (e, /5) is a folding iff e and fi are total functions, /3 fl Mo X Mi is a one-one correspondence between 

initial marJtings and jflfl'eX *c(e) (respectively /3 fl e* X c(e)-J is a one-one correspondence between tie 

preconditions (respectively postconditions) of e and e(e). 

Proof. Directly from the definition of morphism. 3 

Thus our definition of folding is not the same as Petri's; his allows, for example, more than one 

precondition of an event to map to the same condition in the image, a possibility not allowed by our definition 

of morphism. Still our definition of folding and Petri's appear to agree on all the important examples. 

2.4 Lemma. Let [e,(3) : Nq -*■ Ni be a morphism between nets Nq = (So,^oj^o>Mo) and JVi = 

{Bi,EuFi, Mi). Let A be a subset of the events of No. Then 

Also, suppose e and e' are two events of Nq such that e(e) y£ * and c(e') ^ * and *e,'ef C Mo. Then 

•e(e) n #e(e') ^ 0 =4 *e f\ V^ 0-

2.5 Theorem. Let N — {Bit Eit Fi} M.) be nets for i = 0,1. Let Ni be contact-free. Let (e, /?): No -> Ni 

be a morphism of nets. Let C be a reachable marking of Nq and suppose 

G^+C in No. 

Then fiC is a reachable marking of Ni and 

{3C -M pcf in Nl 

Further, for all reachable markings C of No, 

V6i e pC3!b0 £ C.boPh. 

Proof. We take the statement of the theorem as inductive hj-pothesis and prove the theorem by induction 

on the length of the chain Mo —P • • • —PC from the initial marking Mo to a reachable marking C. From 

the definition of morphism we immediately have that Mi = (3Mq and V&i 6 Mi3!6o £ Mo.60^1 • Thus the 

inductive hypothesis holds for the base case when the length of the chain is zero. 

To show the inductive step: 

Suppose G is a reachable marking and that C —► C" in No. Then by induction hypothesis j3C is 

a reachable marking of JVi. We require that 0G —> J3G' in 7V"i—of course it then follows that /3Cf is a 

reachable marking—and also that V61 £ /3C3!&o £ C 
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Suppose e £ A and that e(e) is defined. Then e has concession at C so *e C C. However by the previous 

lemma *c(e) = /?"e C /3C. Thus each event in tA has concession at pC because N\ is assumed contact-free. 

Suppose e(e) and e(e') are defined for e, e' G A. Then *e, *ef C C. Suppose c(e) and c(e') are in conflict at 

PC i.e. because iVi is contact-free, e(e) 7^ e(e') and *e(e) D *e(e') 7^ 0. By the previous lemma *e fl V 7^ 0. 

As e is a partial function, e 7^ e' so e and e' are in conflict at C. This is a contradiction. Consequently e(e) 

and e(e') are not in conflict at PC for e, e' 6 A. 

To complete the proof that pC -M pC in Nt we show that pC = Q3C \ *{eA)) U (eA)*. Clearly 

= (0(C\-A))U(P(A-)). 

Now )9op restricted to /3C forms a (total) function, / say, such that 

It is easily shown that 

/ 

for such a function / and sets X and Y in the codomain of /. It follows that 

P[C \ -A) = f-l(C \ 'A) = (rlC) \ (ruA) = {PC) \ (/?' 

By the above lemma we have P*A = *(eA) and PA* = [eA)*. Thus 

as required. Therefore PC —► PC and consequently PC is a reachable marking. 

Finally, to complete the inductive step we require that 

V64 G pC3\bQ e Cboph. 

Clearly it is sufficient to prove 

V6O,6O e CboPh & 60/36! =4 60 = 60. 

We establish a contradiction by supposing otherwise i.e. that there are 60,60 E C with bo j£ tf0 & boPbi & 

b0Ph. 

Because of the induction hypothesis on C this could only occur if either 6o,6o G A* or 60 E (C? \ *A) & 

6q G A*—or essentially the same case with 60 and 60 interchanged. Fortunately the first case can be reduced 

to the second: Take e E A such that 60 G e* and C+ = (C \ "e) U e* and A+ = A \ {e}; clearly then 

&0E(C+\M+)&60GA+". 

Thus we need only consider the case 60 G (C\*A) & 60 G A*. Then eo-Fo&'o ^or some eo G A. Consequently 

for some event e\ G ^1 we have eoeei & eii^fti. We show there is contact at (HC. We have 61 0 *e\ as 

60 ^ #e0. Also #e! C jSC and bx G /3C. Thus #e! C PC and pC\e* ̂  0 so there is contact at /?C—a 

contradiction as N± is contact free. Therefore 

V&i G pC3\b0 G C'. 

as required to complete the induction. H 
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The next example shows that the restriction, that Ni be contact-free, is necessary in theorem 2.5. 

2.6 Example. Let (e,/3) : No -* Ni be a morphism between nets with initial markings as shown: 

I--- — --
It is easily checked that (e, f3) is a morphism. However because there is contact in N\ the image of an event 

in No with concession does not have concession in N\. 

2.7 Definition. Let N£ = (flt-,#t-,FtJ Mt) be Petri nets for i = 0,1,2. Let (eo,A)) : No ^ Ni and 

(ei,/3j) : Ni —> JV2 be morphisms. Define their composition (ei,/?i) o (eo,/3o) to be (ei o eoj/^i ° Po)—where 

€i o eo and /9i o /?0 are the compositions of relations given above. 

2.8 Proposition. Contact-free Petri nets with morphisms and composition as above form a category, i.e. 

each net N = (B,E,F, M) has an identity morphism (ljg, 1#) with respect to composition and composition 

is associative. When morphisms are restricted to being synchronous or foldings we obtain respective 

subcategories. 

2.9 Definition. Define Net to be the category of contact-free nets with morphisms on nets as defined 

above. Define Netayn to be the subcategory with synchronous morphisms on nets. Define Net/Oj to be the 

subcategory with morphisms which are foldings. 

In the next section we explore further the consequences of our definition of morphism. 

3. Categorical constructions* 

In this section we shall see that our choice of morphism throws out several interesting and useful 

categorical constructions. One important consequence of the constructions being categorical is that each 

comes accompanied by a characterisation to within isomorphism. Such characterisations are useful when 

reasoning about processes modelled by nets built-up from the constructions. It is not just a hope that that 

the constructions will eventually be found a use. The product is related to many forms of parallel composition 

defined on nets (see for example the work of Lauer and Shields ....[ ]). The synchronous product (in the 

category with synchronous morphisms), itself a somewhat stricter form of parallel composition, provides a 

natural interleaving, or serialising operator, on nets, by setting them in synchronous product with a "clock 

process", while the coproduct construction connects well with "sum" operations used by for example Robin 

Milner et al [ ]. 

The categorical constructions we shall introduce will depend on the properties of two more basic 

categories. One is well-known; it is the category of sets with partial functions. It corresponds to that 

part of morphisms on nets which act between sets of events. The other is new, at least to me; it is called 

the category of marked sets and corresponds to that part of morphisms on nebs which act between sets of 

conditions while respecting the initial marking. 

3.1 Lemma. Product and coproduct for the category of sets with partial functions. 

Let Set* be the category of sets and partial functions given in definition 2.1. Set*lias products and 

coproducts of the following form: 

11 



Let Eq and Ei be sets. 

Their product, to within isomorphism, is E$ X* E\ with projections ttq, iti where 

Eo X. Ex = {(e0,*) | e0 G #o} U {(*,ei) | ct G #1 } U {(eo^) j e0 G #0 & et G Ex }, 

and 7ro(a;, j/) = x, ir^x, y) = y. 

Their coproduct, to within isomorphism, is Eq + Ei =def {0} X Eq I) {1} X Ei with injections 

»«o(eo) = (0,eo) and wii(ei) = (l,ei) for e0 G l?o an<^ ei G El-

Proof. The proof is left to the reader. THese facts are well known see e.g. [Mac] or [Arb] but note our sets 

are not their pointed sets. | 

3.2 Lemma. Product and coproduct of marked sets. 

Define a marked set to be a pair of sets (B, M) where MCB, Define a morphism of marked sets from 

(Bo, Mo) to [Bi, Mi) to be a relation R C Bo X Bi such that RMq = Mi and ■ 

V60, &o £ MoWh e M^boRbi & b'0Rbi =4 60 = 6'0. 

Define composition to be the usual composition of relations given in 2.1. Then marked sets with the 

morphisms above form a category with identity morphisms the identity relations. It has products and 

coproducts of the following form: 

Let (Bo, Mo) and (Bi, Mi) be marked sets. 

Their product, to within isomorphism, is (Bq + B\, Mq + Mi) with projections the relations po and pi 

given by [b,O)pob for b G Bo and (6, l)pi& for b G Bi.(The projection relations pi are the opposite relations 

to the injection functions from the set Bi into the disjoint union Bq + B\.) 

Their coproduct, to within isomorphism, is (B, M) with injections to and i\ where 

B = {(60,*) I 60 G Bo \ Mo } U {(*,&i) I 61 G Bi \ Mi } U {(&oA) I &o e Bo & 61 G Bt }, 

M = Mo X Mu 

bOLOb <=> 36i G Bi U { * }.b = (b0,61), 

> 36O G Bo U { * }.6 = (60,6i). 

(Thus the mjection relations are opposite to the obvious partial functions taking a condition in B to its first 

or second component.) 

Proof. The product in marked sets. We verify that the construction above does indeed give a product. 

Firstly it is easily checked that the relations po and pi above are morphisms of marked sets po : (#0 + 

Bi,M0 + Mi) -> (Bo, Mo) and Pi : (Bo + Bi,M0 + Mi) -♦ (B1(Mi). Let Ro : {B}M) -*■ {BOtMo) and 

Ri : (B,M) —*■ (Bi,Mi) be morphisms of marked sets from a marked set (B,M). We require that there 

exists a unique morphism R : (B, M) —*■ (Bq + Bi} Mq + Mi) making the following diagram commute: 

^7 

ft. 
We take # = {(6,(O,6O)) | bRQbo } U {(6,(1,61)) | bRibi}. Clearly RM = M0 + Mi and supposing 

bRc & b'Rc implies c has the form (0,6o) or (1, &i)- Without loss of generality assume c = (0,60) for some 

60 G Bo. Then from the definition of R we know bRobo and b'Robo. As i?o is a morphism we obtain b = 6'. 

Thus R is a morphism of marked sets. 

From the definition of R it follows directly that the diagram commutes. Suppose S : (B, M) —*■ (Bo + 

■Si, Mo + Mi) is a morphism making the diagram commute. Then as pjS = Rj for j = 0,1 we get 

12 



bS(j, bj) <=* bRjbj <=* bR(j, bj) which makes S = R. Thus R is the unique morphism such that the diagram 

commutes. Therefore the construction really is the product in marked sets as required. 

The coproduct in marked sets. We verify that the construction above does indeed give a coproduct. 

Firstly it is easily checked that that the relations to and H above are morphisms of marked sets to : 

{B0,M0) - {B,M) and n : (£1,^) -+ (£,M). Let Ro : {B0)M0) -> {P,G) and Rx : [B^Mi] -> [P,C) 

be morphisms of marked sets for a marked set (P, C). We require that there exists a unique morphism of 

marked sets R : (B, Mq X Mi) -+ (P} C) making the following diagram commute: 

CB<0 
Define 

R = {((60, *),p) I b0 G Bo \ Mo & boRop} 

U {((•, *i), p) I h G £1 \ Mi & &!#!? } 

U {((60,60,p) I 60 G Mo & 6i G Mi & boRop & 

Clearly as Rq and i2i are morphisms 

RM = {p j 60 G Mo & 6oi?op & &! G Mx & biRtp} 

= iJoMo U RiMi = C U C = G. 

Also, suppose 6,6' G M and 6i2p and 6'i?p. Then for some 6q,60 G Bq and 61,6^ G Bi we have 

6 = (60,61) & boRop & 6ii«4p and 

But, as i?0 and R\ are morphisms 60 = &{, and 61 = 6^ so 6 = 6'. Thus i? : (B, M) -+ (P, C) 3s a morphism 

of marked sets. 

Now we show R makes the aboye diagram commute i.e. Rq = Rlq and Ri = JRti. (Recall our 

composition of relations follows the same order as the usual one for functions!) Clearly directly from the 

definition of R we obtain Riq C Rq and Ri\ C R\. Now suppose 6o-RoP- Either 60 £ Mq or 60 G Mq. If 

60 £ Mo this gives (60, *)Rp. Otherwise, 60 G Mo making p(= C = RqMo- But then there is some 61 G Mi 

so that b\R\p. This gives (6o>6i)jRp. In either case this yields 6o(i2to)p- Thus Rq C Riq which combined 

with the converse inclusion proved earlier gives Rq = Riq. Similarly R± = Ri\. Thus R does make the 

above diagram commute. 

In addition we need that R is the unique morphism making the diagram commute. Suppose S : [B, M) —*■ 

(P, C) made the above diagram commute i.e. Siq = Rq and Si\ = Ry. Considering the three different kinds 

of element of B we have: 

(60, *)Sp <=> bQRop} for 60 G Bq \ Mo, 

(*, 6i)Sp & hRxp, for &! G #1 \ Mx, 

(60,6x)5p ** boRop & hRxp, . for 60 G Mo & 61 G Mx. 

Thus 5 = R. 

And so finally we have proved that the construction above is a coproduct. | 

Now we give a construction of the product of two nets. In view of the two lemmas on the more basic 

categories above it will follow that the construction really is a categorical product in Net. 
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3.3 Definition. The product of nets. 

Let No = (BotEo^QfMo) and Ni = {Bi,Ei,Fi,Mi) be contact-free nets. 

Let tcq : Eo X* Ei —* Eq and tti : Eq X# E\ —> E\ be the projections from the product of sets in 

Set*given in 3.1. Let p0 : [Bo + Bu Mo + Mi) -* {BQ, Mo) and px : (Bo + Bi, Afa + Mi) -* [Bu Mx) be the 

projections from the product of marked sets given in 3.2. 

Define the product of the nets, NOXNU to be the net [B, E, F, M) where B = B0+Bi, M — M0+Mi, 

E = E0 X* Ei and 

eFb <=»■ (3e0 E Eu> b0 G i?0.e7r0eo & bpobo & eoFobo) 

or (3ei 6 J£i,&i E -

«=* (3e0 e Eo>boe 

or (3et G Elt 6i G 

Define projection morphisms of nets: 

X 

&, bpobo & 

& 6pi6i & 

The product construction can be summarised in a simple picture. Disjoint copies of the two nets No 

and JVi are juxtaposed and extTa events of synchronisation of the form (eo, ei) are adjoined, for eo an event 

of No and ei an event of TVi; an extra event (eo, ei) has as preconditions those of its components *eo U *ei 

and similarly postconditions eo* Uej 

The product on nets is closely related to various forms of parallel composition which have been defined 

on nets to model synchronised communication—see[ ]. For the moment imagine that the events of nets 

are labelled in order to specify how they can or cannot synchronise with events in the environment—the 

synchronisation algebras of [W2, W3] are a way of formalising this idea. Then the parallel composition 

of two labelled nets will be modelled as a restriction of the product to those synchronised events—of the 

form (eo, ei)—and those unsynchronised events—of the form (eo, *) and (*, ei)—allowed by the discipline of 

sy n ch r onisation. 

3.4 Theorem. The above construction No X Ni, Uq, IIi is a product in Net, the category of nets. 

Proof. It follows straightforwardly from the definitions that ITo = 

of nets. 

and IIi = {iri,pi) are morphisms 

We need that the construction No X Ni gives an object in Netand so that No X N\ is contact-free. 

Suppose there is contact at a reachable marking of the product i.e. there is a reachable marking C} a 

condition 6 and an event e of No X JVi such that *e C G and b G (e* \ *e) D C. Either 6 = (0,60) for 

some 60 G Bo or b = (1,61) for some bL G B^. Without loss of generality suppose b = (0,&o) f°r some 

bQ G BQ. Then 7To(e) = e0 for some e0 G Eo. Thus *eo C t*qC and 60 G (eo* \ *e0) (1 ttqG. However as NQ is 

contact-free, by theorem 2.5, kqC is a reachable marking of No at which eo has concession—a contradiction. 

Therefore Nq X Ni is contact-free. 

Now suppose there are morphisms 4>o = (co>Aj) : N' -* No and $1 = (ci,/?i) : N' -*■ Ni from a 

contact-free net Nf = [Bf, E', F'} M'). 
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As eo : E' -* Eq and ei : E' —* E\ are morphisrns in Set*and E, no, tti is a product in Set*there is a 

unique partial function e : E' -*■ E such that the following diagram commutes in Set*: 

Similarly, as j3o : [Bf, Mr) -» (Bo, Mo) and /?i : (B', M') -* (Bi, M\) are morphisms of marked sets and 

(£, M), po, pi is a product in the category of marked sets—by lemma 3.2—there is a unique relation /? so 

that the following diagram commutes in the category of marked sets: 

Define 4> = (e,/?). Clearly provided $ is a morphism of nets $ : W —► AT it will be the unique morphism 

of nets such that the following diagram commutes: 

So finally we check that $ : TV' —♦ N is indeed a morphism of nets. Because of the properties of marked 

sets $ behaves well on initial markings. 

Suppose e'ee & eFb for ef e E', e £ E and 6 6 5. Either bpobo for some 60 6 5o or 6pi&i for some 

b e Bi. Without loss of generality assume 6po&o f°r some 60 € Bo. Then evroeo and eo.Fo&o for some Co G #o 

as n0 is a morphism. Because e0 = woe we get eeoeo. As $o is a morphism, there is some unique bf such that 

y/30b0 and e'F'V. Then because (30 = po/3, the condition b' is unique so that b'fib and e'F'6', as required. 

The proof that e'ce & bFe implies there is a unique bf such that 6'/?6 and fi'F'e' is virtually the same. 

Suppose &'/?& & 6'F'e' for 1/ e B\ b G B and e' € E'. Without loss of generality assume bpobQ, By 

commutativity 6'j90^o- As VF'e' there is some eo such that e'eoeo & fyj^oeo- But then as IIo is a morphism 

there is an event e € E such that ewoeo and bFe. As" e is a partial function making eo = not we must have 

e'ee as well as bFe, that which was required. The remaining case is virtually the same. 

Thus we conclude that $ is the unique morphism making the diagram commute. Consequently the 

above construction really is a product. 1 

Of course the token game tells us how we can view a net as giving rise to a transition system in which 

the arrows between states are associated with sets of events imagined to occur concurrently. Let us see how 

the product construction looks from this point of view. 

3.5 Theorem. Let No X Ni, TI0 = {^o,Po) andlli = (tt^pi) be a product of nets. Then M 'is a reachable 
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marking of No X ATA and M -A M' iff 
PqM is a reachable marking of No and 

poM —5 pqM' and 

Ve, e' €E A\feo E Eo.eitoeo & e;7Toeo => e = er and 

p\M is a reachable marking of N% and 

PlM -^APxM' and 
Ve, e' £ vlVei 6 Si.evriCi & e'7rici => e = e'. 

Proof. Omitted. B 

3.6 Definition. Synchronous product. Let No — (BotE0,F0,Mo) and JV"i = (BijjB^jPi, Afi) be 

contact-free nets. Define their synchronous product Nq 0 Ni to be the restriction Nq X ̂ [(Eq X E\) with 

synchronous projections IIq = (ir0>po) and IIj_ = {^'i,Pi) where ̂ (ecei) = eg and 7Ti(eo,ei) = ci. 

3.7 Theorem. The above construction No 0 AT1; Il'o^ n;t is a product in Netfl2/n, the category of nets with 

synchronous morphisms. 

Proof. Use the previous result that No X Ni, ITo, IIi is the product in Net and just check that this time 

the mediating morphism stays inside the category Nebaj,n. Q 

Again we can view this new construction as an operation on transition systems. 

3.8 Theorem. Let N0(^Nlf U'Q = (*•{,, p0) an<* Hi — i^vPi) oe tne synchronous product of nets. Then 

M is a reachable marking of Nq 0 Ni and M —-*■ M' iff 

PqM is a reachable marking of No and 

p0M -^4o.M' and 
Ve, e' £ A\feo € Eo.en0eo & eVoeo =4 e = ef and 

p\M is a reachable marking of Ni and 

PlM -^i^M' and 
Ve, e' 6 AVei.G ̂ l.eTrie,! & eV^i =4 e = ef. 

Proof. Omitted. | 

3.9 Example. One can represent a ticking clock as the following simple net, call it 0: 

Given an arbitrary contact-free net N it is a simple matter to serialise, or interleave, its event occur 

rences; just synchronise them one at a time with the ticks of the clock. This amounts to forming the 

synchronous product N 0 ft of N with ft, in a picture: 

I 

I" 
Of course one would like to check, in a formal way, that this construction really does interleave event 

occurrences. The techniques for doing this are presented in section 5 on occurrence nets. 
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Now we give the form of coproducts in Net and Netayn. 

3.10 Definition. The coproduct of netB. 

Let No = [Bo, Eq, Fo, Mo) and JVi = (Sj, EL, Fi} Mi) be contact-free nets. 

Let mo : Eq -* Eo + Ei and ini : 2?i —*■ Eq + Ei be the injections into the coproduct of sets in Set*given 

in 3.2. Let iq : (Bo, Mo) -*■ (B,M) and i\ : (J3i,JWi) -» (B,M) be the injections into the coproduct of 

marked sets given in 3.3. 

Define the coproduct of the nets, Nq + Ni, to be the net (B, E} F, M) where 

(B, M) is the coproduct of marked sets 

E ̂  Eq 4" Ei 

eFb <=* (3e0 G Eo, bQ G Bo.eoinoe & bOLOb & e0F060) 

or (3ei G Eitbi G Bi-eoinie & &iti& & ei.F'i&i) 

bFe ̂  (3&o G •je?o>0o G J3g.eotfio^ & oo^o^ «• 

or (3ej[ G ̂ 1,61 G Bi.eoWie & 61^16 & 

Define injection morphisms of nets: 

/o = (in0, to): No-* Nq+Ni 

/t = (im, ti): JV*i -+ Nq + Ni. 

The coproduct construction can be summarised in a simple picture. The two nets Nq and Ni are laid 

side by side and then a little surgery is performed on their initial markings. For each pair of conditions 6q 

in the initial marking of No and 61 in the initial marking of Ni a new condition (bo, 61) is created and made 

to have the same pre and post events as 6q an^ 61 together. The conditions in the original initial markings 

are removed and replaced by a new initial marking consisting of these newly created conditions. Here is the 

picture: 

3.11 Theorem. The above construction Nq 4- Ni, Iq, I\ is a coproduct in the categories Net and Netsl/n. 

Proof. Omitted. | 

Again the construction translates over to a natural construction on transition systems. 

3.12 Theorem. Let iV0 4 Nl} Jo = (itiQ, to) and h = (inULi) be the coproduct of nets. Then 

M is a reachable marking of Nq 4- Ni and M 

iff 

Mf 

Mo ̂ P M'o & A = in0A0 & M = t0M0 & M' = t0MJ, 
or 

3MltAuM'v 

M1Mm\&A= in^Ai & M = tjMi & M1 = 

Proof. Omitted. 
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Equalisers do not exist for arbitrary nets because they do not exist for sets with relations as morphisms. 

I do not yet know whether or not coequalisers exist. 

4. The subnet ordering, restriction and a "cpo" of nets. 

We consider two natural partial orders on nets. One is the relation of one net being a subnet of another. 

The other is that of net inclusion induced by componentwise inclusion of nets. Both will have least upper 

bounds of w-chains but only net inclusion has a least element making it a complete partial order (cpo) for 

the purposes of giving and solving recursive definitions of nets—of course nets form a class and not a set 

so solely for this reason, it is not strictly speaking a cpo. Our operations on nets will be continuous with 

respect to both orders so we shall be able to define nets recursively following now standard lines—see e.g. 

[S]—by taking least fixed-points in the cpo. Recall the definition of subnet. 

4.1 Lemma. Let No = {Bo> Eo, Fo, Mo) and Ni = [Bu EUFU Mx) be nets. Then No is a subnet of Nt iff 

Bo C Bi, Eo C Eu Mo = Mi and 

Ve0 G E0Vb G Bi.e0Fi& <=> eoFob, 

Ve0 € #oV6 € Bx.bFxeo ** bFoeo. 

Proof. Directly from the definition of subnet, fl 

4.2 Definition. Restriction. Let N = [B,E,F,M) be a net. Let E' C E. Define the restriction of N to 

E', written N\E', to be [B, E1, Fr, M) where F' = Fn{{BX Ef) U [E' X B)). 

In other words the restriction of a net to a subset of events is just the net with all the events not in the 

subset deleted. Obviously the restriction of a net is a subnet. 

4.3 Proposition. The restriction of a net N, in Net, to a. subset of events E' gives a subnet N\E' which 

is contact-free and so in Net. 

4.4 Example. Obviously the synchronous product of two nets is a restriction of the product of two nets. 

Clearly < is a partial order on nets. Another obvious partial order is induced by coordinatewise 

inclusion of nets. 

4.5 Definition. Let No = {Bo,Eo}FO) Mo) and Nt = [BuElt FL,Mi) be nets. Write Aro<iVi iff No is a 

subnet of Nt. Write No C Ni iff Bo C Bu Eo C Eu Fo C Ft and Mo C Mx. 

This inclusion order makes a complete partial order of nets, apart from the the fact that nets form a 

class and not a set. All the operations we have and shall introduce on nets will be continuous with respect 

to 
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this cpo structure. Unfortunately the subnet order <, though it does have lubs of w-chains, does not have 

a least net so it is not a cpo—this may indicate that my choice of morphism on nets could usefully be made 

a little more general. 

4.8 Proposition, (i) The null net, (0, emptyset, empty set, empty set) is the C-ieast net i.e. for all nets N, 

(0, 0, 0, 0) C N. Let N0Nv-'Nn C • • • be an oj-chain of nets of the form Nn == (J5n, En, Fn, Mn). Then it 

has a least upper bound\JneuNn = {VnEwBn>{Jn€uEn>Un€wFn,\JneuMn). Similarly if NQ<Nv~Nn< •• 

is an u)-chain of nets it has a least upper bound \Jnew Nn. 

4.7 Definition. Say a unary operation operation op on nets is <-[C.-)continuous iff it preserves least upper 

bounds of w-chains of nets ordered by < (C). If op is an n-ary operation on nets, say it is <-(C)confcinuous 

iff it is continuous in each argument separately. 

4.8 Theorem. The constructions X, (§) and + and restriction are continuous operations on nets ordered 

by C and the subnet ordering <. 

Proof. Omitted. | I 

Thus each of the operations X, (§) and + and restriction can be used to define nets recursively because 

they are all continuous with respect to the cpo of nets. 

5* The semantics of Petri nets. 

Nets are rather complex objects with an intricate behaviour. Clearly we would like to know when two 

nets have essentially the same behaviour. In this section we put forward the view that the behaviour of a 

net is captured naturally by its unfolding to a net of occurrences, an operation very like that of unfolding a 

transition system to a tree [W4] or Dana Scott's operation of unravelling a flow diagram to a possibly infinite 

element in his lattice of flow diagrams [SI]. Naturally we would like the operations we perform on nets to 

"commute"with the represention of their behaviour. 

Here we show how an occurrence net, in which conditions and events stand for occurrences, can be 

associated with a contact-free net. The occurrence net we associate with a contact-free net will be built 

up essentially by unfolding the net to its occurrences. This unfolding is a canonical representative of the 

behaviour of the original net. Of course we assume the behaviour of isomorphic nets is the same. Occurrence 

nets and the operation of unfolding a net to an occurrence net were first introduced in [NPW1, 2 and W]. 

hi general because of the presence of forwards and backwards conflict that part of a net "caused by" or 

"causing" an event or condition need not be unique. In an occurrence net we wish the elements, to represent 

occurrences (as is the case with Petri's causal nets). From this point of view backwards conflict is undesirable. 

For instance in 4 

e.Q c, 

the condition 6 can be caused to hold in two different ways, either through the occurrence of eo or e\. 

In occurrence nets we choose to allow only forwards conflict arising through events sharing a common 

precondition. This explains axioms (i) and (iv). 

Because we do not want repeated occurrences represented by an occurrence net we ban nets like 
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by insisting there be no loops in the F+ relation. This explains half of axiom (iv). 

We identify the initial marking with those conditions b for which *b = 0—axiom (ii). Because we 

imagine the process to have a definite start, to have not gone on forever in the past, we assume that there 

are no infinitely descending F-chains—axiom (iii). 

For occurrence nets there is an especially simple definition of a concurrency relation and conflict relation 

which was previously only defined with respect to a marking. 

5.1 Definition. An occurrence net is a net [B,E,F, M) for which the following restrictions are satisfied: 

(i) V6€B.|-6|^i 

(ii) b £ M <=> *b = 0, 

(iii) F+ is irreflexive and Vsc £ B U E.{ z \ zF*x }is finite, 

(iv) # is irreflexive where 

e#ie; &def e 6 E & J e E & me f"l V ̂ 0 and 

x#xl &def 3c, e' G #.e#ie; & eF*x & e'F*xr. 

Suppose N = (B, E, F, M) is an occurrence net. We call the relation #i defined above the immediate conflict 

relation and # the conflict relation. We define the concurrency relation, co, between pairs x} y £ B U E by: 

x coy &def ~>{xF+y or yF+x or x#y). 

5.2 Definition. Write Occ for the category of occurrence nets with net morphisms. Write Occsyn 

for the subcategory of occurrence nets with synchronous morphisms. Write Occ/O/ for the subcategory of 

occurrence nets with foldings as morphisms. 

There is a natural idea of depth of an element of an occurrence net, useful to prove properties of 

occurrence nets by induction. 

5.3 Definition. Let N = [BtE,F,M) be an occurrence net. Inductively define the depth of an element 

x£ B\JE as follows: 

For b € M take depth{b) = 0; 

For e G E take depth(e) = max{ depth(b) \bFe} + l; 

For b £ B\M take depth(b) = depth(e) for that unique e such that eFb. 

As expected every condition and event of an occurrence net can occur in a play of the token game of 

1.6. We show that the concurrency and conflict relations on occurrence nets agree with the earlier notions. 

By insisting that events and conditions in an occurrence net correspond to occurrences we do not need to 

specify at which marking we assume its conditions to hold and its events to have concession. 

5.4 Proposition. Let N = [B,E,F,M) be an occurrence net. Then every event of N has concession at 

some reachable marking and every condition of N holds at some reachable marking. 

Let e, e; be two events of N. Let b, br be two conditions of N. 

The relations #i C E2 and # C (B U E)2 are binary, symmetric, irreflexive relations. The relation 

of immediate conflict e#ie' holds iff there is a reachabie marking of N at which the events e and ef are in 

conflict. 

The relation co is a binary, symmetric, reflexive relation between conditions and events of N. We have 

b co b' iff there is a reachable marking of N at which b and b' both hold. We have e co e' iff there is a 

reachable marking at which e and e' can occur concurrently. 
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Let (e,/3): Nq -+ N\ be a morphism between occurrence nets. Then eoeei & e^cei =4 eo = e'o or eo#e{). 

& 6^6! =4 60 = 6'0 or 

Proof. Omitted. D 

5.5 Proposition. An occurrence net N = (B, E, F, M) is the lub of its subnets N^ of depth n i.e. DeGne 

A/1") =def [BW,Eln\Fln\M) where 

B(n\={bEB\ deptk(b)<n} 

E{n) = {eee\depth{e)<n} 

y *4 s, y e B(n) U #(n) & xFy. 

Then N^<N and N = [jn€ut NK 

Proof. Left to the reader. 3 

5.6 Proposition. Let N = (B,E,FfM) be a contact-free net. There is a <-least occurrence net No 

(Bo,Eo,Fo, Mo) with a folding f = (eotPo) '• No -* N which satisfies: 

Bo = {{0,b)\beM}\j{{{eo},b)\eQeEo & be B & 

Eo = {{S,e) I S C Bo &e£E&poS = #e & V60,6f> 6 S.bQ co b'o}, 

> 3tu, 2t.y = (iy, z) & x G ̂ , 

and 

*=* 35 C Bo-eo = {S, e), 

b£M &bo=(0,b)or 3e0 G 

Proof. We define No as a lub of subnets, so No = Vnew ̂ ro an{^ / == (Un€w £n» Unew ̂W)» ̂ or an 
chain of subnets No and foldings fn = (en,j3n): No -+ N for n G w. 

For n6w, take the occurrence net unfolding of N to depth n to be No = (B0,E0)Fo,M0) ,and the 

folding to depth n to be fn = (en, /?") : TVq —► iV where both No and /n are defined inductively as follows: 

For the base case take . 

E% = 0, 

B°O = {0}XM, 

and 

£° = 0, 

For the n + 1st case take 
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./T = 'e & (V60,&(> G 5.60 con 6'0) & e0 == {S,c), 

or 3e0 € £S+1.en+1(e0) = e & eW & fe0 = 

where 

x#ny & ae> e' g S.e ̂  c; & "c n V ̂ 0 & eFn*x & ̂ n 

x con y «=> neither xFn+y nor yFn+x nor x#ny, 

and 

eoen+1e <=> 35 C B^.c0 = (5, e), 

It is easy to check, by induction, that each Nq is an occurrence net, each fn : Nq -+ iV is a 

folding and that N^N^1 for n 6 w. Thus taking N"o = {B0>Eo,Fo,M0) = Un€w ̂ o and / = 

(Unew £n» U»ew Pn) ensures No is an occurrence net and that / is a folding. As each event occurrence 

depends on only a finite set of occurrences of conditions and each condition occurrence depends on only 

one event occurrence, the sets satisfy the recursive conditions stated above. That the unfolding is the least 

follows from the construction. B 

5.7 Definition. Let N be a contact-free net. Define its occurrence net unfolding, UN, to be the unique 

net and the folding morphism that folding satisfying the requirements of the proposition above. 

5.8 Example. This example illustrates a contact-free net together with its occurrence net unfolding. 
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5.$ Example. This example illustrates a contact-free net together with its occurrence net unfolding. 

\ / 
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A few minutes thought should convince the reader that the unfolding construction is quite natural, 

at least provided it is accepted that occurrence nets do capture the essence of net behaviour. Still the 

construction alone would be quite unwieldy when used as a method for comparing the behaviours of nets. 

Fortunately there is an abstract characterisation of the occurrence net unfolding of a contact-free net. In 

a sense it was there all the time, because the unfolding operation acts on nets as the right adjoint to the 

inclusion functor Occ —► Net so it was determined by the categorical set-up. Another way to say the same 

thing is to say the occurrence net unfolding UN of a net together with the folding morphism / : UN —*■ N 

is cofree over N. And another way is to say that Occ is a coreflcctive subcategory of Net. (See [Mac] for 

further details.) The latter terminology is apt because as we shall see the subcategory Occ of occurrence 

nets, which can be thought of as the meanings of nets, really does reflect the category Net. The proof of the 

cofreeness of the occurrence net unfolding is long. But the theorem enables us to sweep all the unpleasant 

details of the construction under the carpet; they're there if you want to look but you don't have to, just 

use the theorem. 

5.9 Theorem. Let N be a contact-/ree Petri net. Tien the occurrence net unfolding UN and folding f 

are cofree over N i.e. for any morphism g : N\ -* N with Ni an occurrence net there is a unique morphism 

h : Ni —> UN such that the following diagram commutes: 

Proof. Assume N = (B, E, F, M) is a contact-free net which has an occurrence net unfolding UN = 

{Bo,Eo,Fo,Mo) and folding / = (eo>A)) : UN -* N. Assume Ni is an occurrence net of the form Ni = 

{Bi,Ei,Fi, Mi) and that g = (ei,/?i): JV*i -»■ N is a morphism. 

It is convenient to first establish necessary and sufficient conditions for there to be a morphism making 

the above diagram commute, and then later to construct a pair of relations which is clearly unique so the 

conditions are satisfied. 

Let h = (e, /?) be a pair of relations e C Ei X Eo and /? C B\ X B<> We show that h is a morphism, 

so h : Ni —*■ UN, such that g = / o h iff the following two conditions are satisfied: 

(i) eice0 & 3e G E.eo = (/?*ei, e) & 

(ii) 6i/?60 <=* 36 e B.b0 = {e'bu b) & 

Firstly suppose h is a morphism such that g = f oh. We show that the conditions (i) and (ii) must then 

be satisfied. 

"(i)^." Let eieeo- Then because g = fhvte have eie±e for some e and S such that eo = {S, e). However 

because h is a morphism we must have S = /3*ei, as required. 

"(i)<=." Suppose eo = (/?"ei,e) and t\t^t for some e£ £. We first show e© G Eq. Because A is a 

morphism /3mei is a pairwise co set of conditions. Also as g = fh and g is a morphism, we have /3o/?*ei = 

/?i*ei = *e. Thus eo = (/?*ei,e) € Eo so eo£oe« Take 61 £ *e\. As h is a morphism &i/36o for some &o^Oeo« 

But then, again as h is a morphism, we obtain some e0 such that eiee0 and b^Fo^Q. By the commutativity 

g = fh we get eo(eo) = £i(ci) = e. Because h is a morphism *e0 = f3*ei. Thus e{, = (/?*ei,e) = eo, so 

as required. 
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"(ii)=>." Suppose bi@b0. Then by the commutativity, 6i/?i6 and 60 = [At b) for some be B where either 

A = 0 or A = { e0 } for some e0 6 Eo. Assume A = 0. In this case *60 = 0- Now if *&i 7^ 0 then as ft 

is a morphism '69 7^ 0. Thus *b\ — 0 so b0 = [e'b1}b) as required. 

"(ii)<=." Suppose 60 = (c#6u6) and 6i/?t6 for some b G B. Either 61 G Mi or *&i 7^ 0. Assume 

fci 6 Mi. Then 60 = (0,6) G Mo- As ft is a morphism there is some 6^ G Mi such that &i/?&o- As g is a 

morphism 61 = b\ so 6i/9f>o as required. Now assume the other case, that *6i 7^ 0 and let ei be the unique 

event such that eiJF'i&i. As g is a morphism ei(ei) 7^ * and ei(ei)Fb. By the commutativity e(ei) 7^ *. Thus 

60 = ({ e(ei) }, b) so e^^jFb&o- As ft is a morphism there is some 61 so that b^fibo and eiFii/v Therefore by 

the commutativity b'xp\b. Thus 

and 

But g is a morphism so 3!&i.(&ij0i& & eiF^i), making 61 = 6^. Therefore b^bo as required. 

Thus we have shown that if ft : Ni -* UN is a morphism such that g = /ft then the conditions (i) and 

(ii) are satisfied. Now we show the converse, that the conditions (i) and (ii) ensure that ft is a morphism such 

that g = /ft. 

Suppose the conditions (i) and (ii) are satisfied. First we show ft is a morphism ft : Ni ~> UN. 

Clearly 

h <= Mi =* 60 = (0, 

Also 

Mi & 

=4 6i/9i6 & 6^16 where 60 = 

^ 61 = 6i. 

Suppose eice0 & e0F06o- Then by (i), e0 = ()3#ei, e) & eieie for some eGi From the definition of the 

unfolding, eFb & b0 = ({e0 },6) for some b £ B. As g is a morphism 3!&i 6 .Bi.eiFi&i & 61^16. Therefore 

61 is the unique condition such that &i/3&o & ei-^i^i, as required. 

Suppose 6i/360 & ei.Fi&i. Then by (ii), 60 = ({e(ei)},6) & 6i/?i6 for some 6 G B. As g is a morphism 

eFb for some e so e^) = (/^'e^ e) 7^ *. Take e0 = e(ei). Then exceQ & eQFobot as required. 

Suppose eiee0 & io^oeo- Then, by (i) e0 = (/?*ei,e) & e^ie for some e£ E. By the properties of the 

folding morphism, b0 G ̂ *ex. Thus bi(3b0 & biF^i for some 6j G -Si- We also need the uniqueness of 61. 

Let./?O(M = b. Assume b\l3b0 & b\Fiei for some b\ G J3i. Then by (ii) &i/3i&, which combined with 

implies 6j = 61 as p is a morphism. So, as required 61 is unique so that 

Suppose &i/360 & hFiei for ex G Ex. Then by (ii), 60 = (e*&i>*>) & &i^i6 for some b e B. As <? is a 

morphism bFe & e^ie for some e G -E. Take e0 = (/5*ei, e). Then eiee0 & 60^oeo, as required. 

We require that g — /oft i.e. [eu /3i) = (eo,j9o)o(e,/?). Clearly it follows from (i) and (ii) that eo°e Q £i 

and Po ° P Q Pi- H remains to prove the converse inclusions: 

Suppose eicie. Take e0 = ((3*elte). Then by "(i)<=" e0 G JE'o and so eoeoe. Therefore ei(e0 o e)e as 

needed. 

Suppose fc1/?16. Take 60 = {t'bltb). Then by "(ii)<=" 60 € J30 and so bopob. Therefore h(p0op)b, as 

needed to complete the proof that g = / 0 ft. 
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Thus we have completed that part of the proof showing that h : Ni —*■ UN is a morphism and g = fh 

iff h satisfies (i) and (ii). Of course it remains to show that such a morphism h exists and moreover is unique. 

Now we show the existence of such an h. Define h = (e,/?) = (Unew €"» U«ew ̂ ") wnere £" £= Ei x EQ 

and /9n C J3X X Bq are given inductively as follows: 

For the basis of the construction take 

6i/3060 * 36 

For the inductive step in the construction take 

* Be G i?.e<) = (/?n*ei> e) & 

* 36 G J3.6O = (en+1*6i,6) & 6i/?i6. 

This inductive definition provides an h = (e, /?) which satisfies (i) and (ii). (We leave the verification of this 

to the reader; note the inductive definition has closure ordinal u because we assume an event has only a 

finite number of preconditions.) Thus by our previous work h : N\ —*■ UN is a morphism for which g = fh. 

The ultimate step in the proof is to show that the h defined inductively above is the unique morphism 

h : Ni -*■ UN for which g = fh. Suppose hr = (e',/?') were another morphism such that g = fh'. Then it 

too would satisfy (i) and (ii). Consequently by induction on n, e C e' and /? C /?'. The converse inclusions 

are established by induction on the depth of the conditions and events of Ni: 

Zero Depth. Clearly if 61 G Mi and 61/?'&o then, as ft' satisfies (ii), &i/?60 too. 

Nonzero Depth. Assume eie'eo where depth(ei) = n+ 1. As e' satisfies (i) we have eo = (/?'*ei,e) and 

eieie for some e G E. Each condition in J3'*ei has strictly less depth than n+ 1. Thus /3'*ei = /?*ei so as e 

satisfies (i) we obtain 

Assume 6i/?'6o where depth(bi) == n + L As ft satisfies (ii), 60 = (e'*6i,6) and 61^6. Here the unique 

event ei such that eii^i has depth n-f- 1. By the argument just given eie'e0 «=* eiee0. Because e satisfies 

(ii) we obtain 6i/3&o-

This induction shows that e' C e and /?' C /? which together with the previously shown converse 

inclusions yields h = h'. We have established the existence and uniqueness of a morphism h : Ni —> UN 

making g = fh. 

Finally we conclude that UN, f is cofree over N, completing the proof of the theorem. | 

5.10 Corollary. The unfolding operation on contact-free nets preserves limits; in particular it preserves 

products. Thus the unfolding of the product (in Net) of two nets U[N0 X Ni) is isomorphic to the product 

(in Occ ) of the unfoldings [UNq) Xocc (^Ni)- To within isomorphism, the product of two occurrence nets 

Nq Xocc Ni in Occ is the net U(N0 X Ni). 

Proof. See [Arb] or [Mac] for the proof that right adjoints preserve limits. To prove the result characterising 

product in Occ note that the unfolding of an occurrence net yields an occurrence net isomorphic to the 

original. | 

In the same way the occurrence net unfolding UN and folding / are also cofree over N in the category 

n—just check that the mediating morphism h in theorem 5.6 is synchronous provided g is. It follows 
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that the (synchronous) product in Occflyn is just the unfolding of the synchronous product in Net. Let 

us look again at example 3.9 and prove our claim that forming the synchronous product of a net with 

the "clock" fi serialises or interleaves its event occurrences, i.e.no two distinct event occurrences can occur 

concurrently (be in the co-relation). 

5.8 Proposition. Let N be a contact-free net and f) the "clock" of example 3.9. If e, er are events of 

U{N <g) fi) then eF*e' or e'F*e or e#e'. 

Proof. Clearly ft unfolds to the net: 

co o ct i c^ ct 

where for simplicity we name the tick occurrences 0,1,2, • • • and their preceding conditions 

Let II = (e, /3) : U{N ® ft) = {UN 0OCC UQ) -* UQ be the projection morphism in Occayn , taking an 

event occurrence synchronised with a tick (occurrence) to that tick. To avoid clutter we shall overload the 

symbol F allowing it to represent the flow relation in several nets. 

Let e, ef be event occurrences of JV 017, so they are events of U{N 0 fl). As II is synchronous there 

are ticks t and tf so that e(e) = t and e(e') = tf. Without loss of generality assume t'F t. 

Because II is a morphism and ctFt there is a condition bFe in U(N ® ft) such that bfUct. Because 

U(N <$£) Q) is an occurrence net, either b is in the initial marking (so ct is) or there is some unique event 

so eFb. Thus continuing inductively we obtain a chain e0F.. .FbFe where £(eo) = t'. If eo = e' then 

e'F e. Otherwise, because II is a morphism between occurrence nets eo#e' so e#e', as required to prove the 

proposition. | 

Now we consider coproducts. 

5.0 Proposition. The categories Occ and Occavn have coproducts which coincide with those in Net. 

The next example shows that the unfolding need not preserve coproducts however. 

5.8 Example. This example is essentially the same as that given in [W3] for a category of transition 

systems where unfolding yields a tree. The unfolding of the net l^J is of course itself. 

The unfolding of the net G)^ EU 

is 

The coproduct of their unfoldings in Occ and the unfolding of their coproduct in Netare: 
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Of course we can restrict to subcategories ol nets so that unfolding does preserve coproducts. A 

subcategory for which this is true is that for which nets satisfy: every condition in the initial marking 

has no pre-events. 

We have proposed one subcategory of nets, Occ the category of occurrence nets, as that category which 

captures the idea of net behaviour. There may be larger subcategories which capture a more refined notion 

of net behaviour while still capturing a suitably abstract idea of net behaviour. There may well for example 

be some way of unfolding nets to the subcategory of nets in which conditions can hold once and only once in a 

play of the token game. (Is there a right adjoint to the inclusion functor associated with this subcatcgory? If 

so it should correspond to some form of unfolding.) Certainly there are cruder subclasses of nets which reflect 

certain aspects of net behaviour while forgetting others, and some of them are used all the time. For example 

trees can be regarded as special kinds of nets and they are basic to so much work on concurrency in which 

concurrency is simulated by non-deterministic interleaving. Inside Netthere is a subcategory naturally 

equivalent to the category of trees introduced in [W3] and that is inside a slightly larger subcategory of 

transition systems, where events occur one at a time. And then the category of event structures sits inside 

Net as a subcategory. All these subcategories have right adjoints to the associated inclusion functors, so 

there are analogues of the unfolding operation taking a net to a canonical representative in each of these 

classes. Moreover these representatives are natural in themselves; for example the product in the subcategory 

of trees is closely related to parallel compositions that have been defined on labelled trees by Milner [M]. 

6. Conclusion. 

Petri nets are a very natural model of of concurrent computation. However they have two major 

drawbacks. For one , they often describe a computation in too much detail; they are not abstract enough. 

For another, they are generally presented in an unstructured way making it difficult to reason about their 

behaviour; net descriptions often get too big, out of hand and out of mind. It was for these reasons that Petri 

introduced morphisms on nets—see [Br] for the definition. It was intended that the resulting category would 

provide a formal framework for operations on nets. In my view, Petri's choice of definition falls far short of 

its goal and this is because, in general, his definition fails to respect the dynamic behaviour of nets. This 

paper gives a new definition of morphism on nets, significantly different from Petri's, which, while probably 

not the final story, has several points in.its favour: 

• The new morphisms preserve the dynamic behaviour of nets; there is a forgetful functor from the new 

category of nets to a category of transition systems where states correspond to markings and transitions to 

concurrently firing sets of events. 

• The new category of nets gives useful categorical constructions, accompanied by abstract characterisa 

tions. For example the product is closely related to many parallel compositions that have been defined on 

nets and the coproduct is an operation "which "ftises" nets together at their initial markings. There is a 

systematic way of labelling events (using the synchronisation algebras of [Wl-4]) to give net semantics to 

parallel programming languages like CCS and CSP. 

• The category has a pleasant relation with subcategories based on familiar objects such as trees, 

transition systems (both the many-events-to-a-transition and the one-event-to-a-transition variety), event 

structures and occurrence nets (unfolded or unravelled nets). Jn each case the inclusion functor has a right 

adjoint; for trees it is an interleaving operation and for occurrence nets it is an unfolding operation which 

can be viewed as associating with a net a canonical representative of its behaviour. So the category of nets 

is reflected in the subcategories (and for example the results of [W3] follow). 
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My hope is that the highly structured view of Petri nets presented here will not only make nets more 

managable but also be a great help in giving net semantics to concurrent programs and proving their 

properties. I hope to demonstrate this in the future and provide proof rules to accompany the constructions; 

there should be proof rules for constructions like product, relating properties in the product to properties in 

the components, and a form of induction rule associated with the operation of unfolding. 
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