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Abstract

A functor G : C → D is said to preserve limits of a diagramD : I → C if it sends any
limiting cone fromx to D to a limiting cone fromG(x) to G◦D. WhenG preserves limits
of a diagramD this entails directly that there is an isomorphismG(lim←−ID) ∼= lim←−I(G ◦D)
between objects. In general, such an isomorphism alone is not sufficient to ensure thatG
preserves limits. This paper shows how, with minor side conditions, the existence of an
isomorphismnatural in the diagramD does ensure that limits are preserved. In particular,
naturality in the diagram alone is sufficient to yield the preservation of connected limits.
At the other extreme, once terminal objects are preserved, naturality in the diagram is
sufficient to give the preservation of products. General limits, which factor into a product
of connected limits, are treated by combining these results. In particular, it is shown that a
functorG : C → D between complete categories is continuous if there is an isomorphism
G(lim←−ID) ∼= lim←−I(G ◦ D) natural inD ∈ [I, C], for any small categoryI. It is indicated
how a little calculus of ends, in which the judgements are natural isomorphisms between
functors, is useful in establishing continuity properties of functors.
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1 Introduction

It is often useful to establish that a functor preserves limits or colimits of a certain
kind. This can be to show a construction stays within a category, or because of
some useful property such (co)limit preserving functors possess. According to its
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definition, for a functorG : A → B to preserve limits of diagramsD : I→ A it is
not enough for there just to be an isomorphism

G(lim←−ID) ∼= lim←−I(G ◦D)

—expressing that the limit object of the diagramD is sent to a limit object of the
diagramG ◦ D. RatherG must send a limiting cone ofD to a limiting cone.
Whereas this can be a matter of no great difficulty, it does involve taking care of
detail of the kind all too familiar in category theory (detail which it is tempting
to ‘handwave’ away). In practice, one commonly has the feeling that once the
isomorphism above for limit objects is established the bulk of the work is done.
This paper provides the mathematical excuse for that feeling. It is shown that,
under minimal side conditions, provided the isomorphism is natural in the diagram
D then preservation of limits follows automatically. This is done by first showing
such a result for connected diagrams, then products, and finally combining these
results to treat diagrams in general.

With a suitable stock of natural isomorphisms, limit preservation now often be-
comes a routine consequence of an ‘equational’ style of reasoning but based on
judgements of natural isomorphism instead of equations. One motivation for this
work has come from recent work in extending domain theory and denotational se-
mantics to a situation where ‘domains’ are now categories and continuous functions
are replaced by functors preserving certain colimits. In particular when ‘domains’
are presheaf categories knowing that a functor preserves connected colimits ensures
that it preserves surjective open maps, so open map bisimulation [4].

We start by giving the necessary background on limits and limit preservation.

1.1 Limiting Cones

Let I be a small category andc an object in a categoryC. The diagonal functor
∆c :I→ C takes all objectsi of I to c and all arrows ofI to the identityidc.

A cone fromc ∈ C to a functorD :I→ C, often called the diagram, is a natural
transformation from∆c to D. A limit for D, or a limiting cone, is a universal cone,
i.e. a coneε : ∆c ⇒ D such that for any other coneε′ : ∆c′ ⇒ D there exists a
unique mediating arrowm :c′ → c for which the diagram

∆c′
∆m //

ε′ ""EE
EE

EE
EE

∆c

ε

��
D

commutes,i.e.
c′

m //

ε′i !!CC
CC

CC
CC

c

εi

��
D(i)

commutes for all objectsi in I.
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When a cone∆c to D is limiting we call c the limit object. Clearly the limit
objects of limiting cones are only determined to within isomorphism:

Proposition 1.1 Let D : I → C be a diagram. Supposeε : ∆c ⇒ D and ε′ :
∆c′ ⇒ D are both limiting cones. Thenc ∼= c′. Conversely, given a limiting cone

ε : ∆c⇒ D and an isomorphismc′
f∼= c, thenε◦∆f : ∆c′ ⇒ D is a limiting cone.

1.2 Limit functors

Suppose that a categoryC has allI-limits, i.e. limits of all diagrams in the functor
category[I, C]. It is often convenient to assume a fixed choice of limit for each
diagram in[I, C]. 3 Then for any diagramD : I → C there is a choice of limit
εD : ∆lim←−I(D)⇒ D, in which we have called the limit objectlim←−I(D).

We can turnlim←−I into a functorlim←−I : [I, C] → C. Supposeα : D ⇒ D′ where
the diagramsD andD′ are associated with the limiting conesε : ∆lim←−ID ⇒ D
andε′ : ∆lim←−ID

′ ⇒ D′. The composition of natural transformationsεα yields a
cone fromlim←−I(D) to D′. By the universality ofε′ there is a unique arrow

lim←−Iα : lim←−ID → lim←−ID
′

in C for which the diagram

∆lim←−ID

ε

��

∆lim←−I
α
// ∆lim←−ID

′

ε′

��
D α

// D′

commutes.
Sometimes we are interested in a subcategory of diagramsK ⊆ [I, C] for which

limits exist inC. Just as above we can define a functorlim←−I :K → C. (And, as later,
talk about a functor preservingK-limits or beingK-continuous.)

We shall make use of an alternative way to present limits via representability.
Let D : I → C be a diagram. A choice of limit forD corresponds to a representa-
tion, i.e. a natural isomorphism

θ : C( , lim←−ID) ∼= [I, C]
(
∆ , D

)
.

The limiting cone is obtained as the counit of the representation defined to be the
image,θlim←−I

D
(idlim←−I

D
), of the identity map under the component

θlim←−I
D

: C(lim←−ID, lim←−ID) ∼= [I, C]
(
∆lim←−ID, D

)
.

3 In general this requires the axiom of choice, though often in practice it turns out that a particular
choice is determined once a standard way of contructing limits in sets is settled on.
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Notice the important fact that the isomorphismθ is also natural inD ranging over
the subcategory of diagramsK ⊆ [I, C] for which limits exist. In fact,lim←−I is the
unique functor extending the choice of limit objects for which this naturality holds.

1.3 Preservation of Limits

Let G :C → D be a functor. The functorG preserves limits for a diagramD :I→ C
if wheneverκ : ∆c ⇒ D is a limit then the coneGκ : ∆G(c) ⇒ G ◦ D, got by
composition withG, is also a limit. Clearly, if composition withG sends one limit
for a diagramD : I → C to a limit for G ◦D then it sends any other limit forD to
a limit for G ◦D. Most often we talk of the functorG preservingI-limits, or being
I-continuous; this means thatG preserves limits of all diagrams in[I, C].

Suppose there is a fixed choice ofI-limits in C andD with respect to which we
have limit functorslim←−I : [I, C]→ C andlim←−I : [I,D]→ D.

Let G : C → D be a functor. Given a coneγ : ∆lim←−ID ⇒ D for a diagram
D : I → C the natural transformationGγ : ∆G(lim←−ID) ⇒ G ◦ D obtained by
composition is a cone as well. Thus, given a limiting coneε : ∆lim←−IG◦D ⇒ G◦D
there is a unique mediating arrowm :G(lim←−ID)→ d such that the diagram

∆G(lim←−ID)

Gγ
((QQQQQQQQQQQQ

∆m // ∆lim←−IG ◦D

ε

��
G ◦D

commutes. Requiring thatG preserves limits ofD is equivalent to insisting that the
mediating arrow defined byGγ is an isomorphism; in fact some authors use this as
the definition of preservation of limits.

In order to prove that a functorG :C → D preserves limits of a diagramD :I→
C it is not enough to exhibit an isomorphism

G(lim←−ID) ∼= lim←−IG ◦D.

Indeed, the action ofG over arrows may result in a family that is not universal. As
an example consider the categoryCount of countably infinite sets and functions.
Clearly the objects ofCount are all isomorphic. There is a functor+1:Count→
Count that acts over sets by adding a new element: givenX ∈ Count thenX+1 =
X ∪ {X} and given a functionf :X → Y , the functionf + 1 sendsa ∈ X to f(a)
and{X} to {Y }. There is an isomorphism

(X × Y ) + 1 ∼= (X + 1)× (Y + 1),

but this functor does not preserve products; the arrowπX +1:(X×Y )+1→ X+1
is not a projection.

If the categoriesC andD have enough limits the expressions

G(lim←−ID) and lim←−I(G ◦D)

4
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are both functorial inD. For everyD there is a mediating arrowmD defined byGε
whereε is the universal cone associated tolim←−ID. The family 〈mD〉D is natural,
this follows directly from the universality of the mediating arrows. Thus ifG is
K-continuous there is a canonical isomorphism

G(lim←−ID) ∼= lim←−I(G ◦D)

natural inD ∈ K.
An isomorphismG(lim←−ID) ∼= lim←−I(G ◦ D) natural inD is not always unique.

Consider, for instance, the category1 with one object, say?, and the identity arrow.
The functor category[1,1] has only one object: the “constant” functor∆?. The
limit for this functor is the object? itself where the limiting cone is the identity. We
can extend1 with an extra arrow

?id ;;
� � ι // ?id ;; fcc

wheref is also an isomorphism,i.e. f ◦ f = id. The inclusion functorι clearly
preserves the limit of the diagram∆?. The mediating arrow is given by the identity
on ? which is an isomorphism and trivially natural. The arrowf , however, gives
another isomorphism

ι(lim←−1
∆?) ∼= lim←−1

ι ◦
(
∆ ?

)
—naturality here is trivial as well.

Often checking the isomorphism between the limiting objects follows from a
fairly direct calculation, while proving that a functor preserves a limiting cone can
involve a fair amount of bookkeeping. We wish to determine under which condi-
tions having an isomorphism

G(lim←−ID) ∼= lim←−I(G ◦D)

is enough to ensure thatG preserves limits ofD.
We shall first investigate two extreme cases, one when diagrams are connected

and the other when they are discrete. We later combine the results for general
limits.

2 Connected Diagrams

We first consider a special case: preservation of connected limits,i.e. limits of
connected diagrams. A categoryE is connectedif it is nonempty and for any pair
of objectsa, b ∈ E there is a chain of arrows

a→ e1 ← e2 → . . .→ en ← b.

Observe that ifJ is connected thenC has limits for allJ-indexed constant dia-
grams.

5
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Lemma 2.1 LetJ be a connected small category andC a category.
A coneβ : ∆c⇒ ∆d for a constant diagram∆d :J→ C is limiting iff β = ∆f

for some isomorphismf : c ∼= d.
For a limiting coneγ : ∆c⇒ D of a diagramD :J→ C the arrowlim←−Jγ is an

isomorphism.

Proof By virtue of J being connected it is clear that any isomorphismf : c ∼= d
yields a limiting cone∆f : ∆c⇒ ∆d, and moreover that any limiting cone for the
constant diagram∆d must have this form.

For a general diagramD : J → C, by definition lim←−Jγ is the unique arrow
making the square

∆lim←−J∆c

β

��

∆lim←−J
γ
// ∆lim←−JD

κ

��
∆c γ

// D

commute, whereβ andκ are the chosen limiting cones for∆c andD respectively.

As J is connected there is an isomorphismlim←−I∆c
f∼= c such thatβ = ∆f . As γ

andκ are limiting cones by Proposition1.1there is an isomorphismg : c ∼= lim←−JD

such thatγ = κ ◦∆g. Hence,

κ ◦∆(g ◦ f) = κ ◦∆g ◦∆f = γ ◦∆f = γ ◦ β = κ ◦∆lim←−Jγ.

Sinceκ is limiting,
lim←−Jγ = g ◦ f.

As f andg are isomorphisms,lim←−Jγ is an isomorphism as well. 2

The following main theorem of this section, establishes that a natural isomor-
phism is enough to ensure preservation of limits ofconnecteddiagrams.

Theorem 2.2 Let J be a small connected category. LetG : C → D be a functor
between categoriesC, D with all J-limits. The functorG preservesJ-limits if and
only if there is an isomorphism

G(lim←−JD) ∼= lim←−J(G ◦D)

natural inD ∈ [J, C].

Proof The“only-if” part from the general fact that limit preservation implies that
the mediating arrows are isomorphisms. To show the“if ” part, letJ be a connected
small category and assume there is an isomorphism

G(lim←−JD)
θD∼= lim←−J(G ◦D)

natural inD. Given a diagramD : J → C and a limiting coneγ : ∆c ⇒ D, we
show that the coneGγ : ∆G(c)⇒ G ◦D is limiting.

6
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The limiting coneγ : ∆c⇒ D induces the naturality square

G
(
lim←−J∆c

)
θ∆c //∼=

G(lim←−J
γ)

��

lim←−J(G ◦∆c)

lim←−J
Gγ

��
G(lim←−JD) θD //∼= lim←−J(G ◦D).

SinceJ is connected by Lemma2.1 the arrowlim←−Jγ is an isomorphism and

soG(lim←−Jγ) is an isomorphism as well. From the naturality square above we can
concludelim←−JGγ is an isomorphism.

By definitionlim←−JGγ is the unique arrow making the diagram

∆lim←−J(G ◦∆c)

∆h

��

∆lim←−J
Gγ

// ∆lim←−J(G ◦D)

ε

��
G ◦∆c Gγ

// G ◦D

commute. By Lemma2.1, as J is connected, the chosen limiting cone for the
constant diagramG ◦ ∆c = ∆G(c) is necessarily of the form∆h with h an iso-
morphism. The chosen limiting cone forG ◦D is ε. Hence, the unique mediating
arrow between the coneGγ and the limiting coneε is the isomorphism

(lim←−JGγ) ◦ h−1 ,

which ensures that the coneGγ is itself limiting. ThusG preserves the limits of
D. 2

It is important to stress that the statement of Theorem2.2 above refers to any
natural isomorphism and not necessarily to the canonical natural transformation
defined from the limit. The theorem establishes that if there exists such a natural
isomorphism then the canonical natural transformation is indeed a natural isomor-
phism as well.

We can relax the conditions of this theorem to consider the case where not all
J-limits exist. Take instead a full subcategoryK ⊆ [J, C] of diagrams whose limits
exist inC and such thatK includes all constant diagrams.

Corollary 2.3 LetJ be a connected small category andK be a full subcategory of
[J, C] including all constant diagrams and such thatC is K-complete. ThenG is
K-continuous if and only if

(i) for everyD ∈ K, the diagramG ◦D has a limit inD, and

(ii) there exists an isomorphismlim←−J(G ◦D) ∼= G(lim←−JD) natural inD ∈ K.

Proof We use the proof of Theorem2.2within the subcategoryK. Notice that the
expressionlim←−JD is functorial inD but the domain isK instead of[J, C]. As the
indexing categoryJ is connected the limits for constant diagrams exist inC. 2

7
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Connectivity is a significant constraint on diagrams. There are, however, many
applications where connected limits (and colimits) are central and then the result
above (and its dual) can be useful [7,3,4].

Theorem2.2does not necessarily hold when the indexing category is not con-
nected. For example, consider the functor category[2,1] were2 is the two-objects
discrete category. This functor category has a unique object: the constant diagram
∆?. Now consider the functorG : 1 → Setselecting a countable infinite set, say
the natural numbersN. As ? × ? = ? in 1, where the projections are given by the
identity, we have

G(?× ?) ∼= G(?)×G(?)

natural in? sinceN ∼= N× N. The pair(idN, idN), however, is not a product.

3 Products

Clearly, Theorem2.2 cannot be applied to products; then the index category is
discrete, an extreme example of lack of connectivity.

Given a discrete categoryK a diagramD : K → C can be regarded as a tuple
of objects〈xk〉k∈K in C wherexk = D(k). A cone for this functor is any family
of arrows (called projections)〈fk : x → xk〉k∈K for some objectx. Notice that
as the index category is discrete there is no commutativity to check and naturality
comes for free. We say that a family〈fk : x → xk〉k∈K is a K-product (or often
just product) when it is a limiting cone. Because with a discrete index category
naturality is automatic, we can strengthen Proposition1.1; we retain a product
when objects in the diagram vary to within isomorphism.

Proposition 3.1 Let fk : x → xk and f ′k : x′ → x′k, for k ∈ K, whereK is a
discrete category. Suppose there are isomorphismss : x′ ∼= x, andsk : x′k

∼= xk

indexed byk ∈ K, such that
x′

f ′k
��

s //∼= x

fk

��
x′k sk

//∼= xk

commutes for allk ∈ K. Then〈fk : x → xk〉k∈K is a product inC iff 〈f ′k : x′ →
x′k〉k∈K is a product inC.

We now study the conditions for a functor to preserve products. In the next
section we see how these same conditions are enough to ensure preservation of
limits in the general case. In a category with terminal object> we use! :c→ > to
denote the unique arrow fromc to>. We will use the following simple fact about
products with a terminal object.

Proposition 3.2 LetC be a category with a terminal object>. A pair

〈f :x′ → x, ! :x′ → >〉

is a product ifff is an isomorphism.

8
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As special limits,K-products extend to functors once a choice ofK-product
〈πD

k :
∏

k∈K xk → xk〉k∈K is made for each diagramD = 〈xk〉k∈K. As is traditional
we have written the chosen limit object for a diagram〈xk〉k∈K as

∏
k∈K xk, and

write x× y when the diagram is〈x, y〉.

Theorem 3.3 Let C, D be categories with finite products. The functorG : C → D
preserves binary products if

(i) G preserves terminal objects and

(ii) there is an isomorphism

G(x× y) ∼= G(x)×G(y)

natural inx, y ∈ C.

Proof Assume thatG preserves terminal objects and that the isomorphism

G(x× y)
sx,y∼= G(x)×G(y)

is natural inx, y. Let> be a terminal object ofC. There is a unique arrow! :y → >
in C. This arrow determines the commuting naturality square in the diagram

G(x× y)
sx,y //∼=

G(idx×!)
��

G(πx,y
1 )

yyssssssssss
G(x)×G(y)

G(idx)×G(!)
��

πGx,Gy
1

''NNNNNNNNNNN

G(x) G(x×>)
G(πx,>

1 )

oo sx,>//∼= G(x)×G(>)
πGx,G>
1

// G(x) .

The left triangle commutes since it is obtained by applyingG to the commuting
triangle

x× y

idx×!
��

πx,y
1

{{xxxxxxxxx

x x×>
πx,>
1

oo

—a consequence of products being special limit functors. By Proposition3.2 the
arrowπx,>

1 is an isomorphism and soG(πx,>
1 ) is an isomorphism as well. The right

triangle commutes as products are special limit functors. By assumptionG(>) is a
terminal object and so from Proposition3.2the arrowπGx,G>

1 is an isomorphism.
Thus the composition

s1 = πGx,G>
1 ◦ sx,> ◦G(πx,>

1 )−1

forms an isomorphism such that

G(x× y)
sx,y //∼=

G(πx,y
1 )

��

G(x)×G(y)

πGx,Gy
1

��
G(x) ∼=

s1 // G(x)

9
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commutes.
We can follow the same argument withy instead ofx. Then by Proposition3.1

the pair
〈G(πx,y

1 ), G(πx,y
2 )〉

is a product. (Notice that the mediating arrow defined by〈G(πx,y
1 ), G(πx,y

2 )〉 is an
isomorphism but does not necessarily coincide withsx,y.) 2

We generalise the last theorem toK-products where the naturality of the iso-
morphism is required within a subcategoryK ⊆ [K, C] of product diagrams.

Theorem 3.4 Let K be a discrete category andC, D be categories with terminal
object. LetK ⊆ [K, C] be the full subcategory of diagrams for which products exist
in C. The functorG :C → D preservesK-products of tuples inK if

(i) whenever〈xk〉k ∈ K then a product of〈G(xk)〉k ∈ K exists inD,

(ii) G preserves terminal objects, and

(iii) there is an isomorphism

G(
∏

k∈K xk)
s〈xk〉k //∼=

∏
k∈K G(xk)

natural in 〈xk〉k ∈ K.

Proof This generalises the proof of Theorem3.3 above toK-products of tuples
within K. It follows by fixing one component at a time and mapping all other
components to the terminal object>. 2

4 General Limits

A small categoryI can be decomposed into its connected components. We write
I =

∑
k∈K Ik for this decomposition whereIk’s are the connected components of

I—this assumes thatK is a discrete category. A connected componentIk is a full
subcategory ofI and there is an inclusion functorιk : Ik → I. This functor defines
by pre-composition the“restriction” functor

◦ ιk : [I, C]→ [Ik, C].

If the categoryI is connected then we have

[I, C](∆c, ∆d) ∼= C(c, d)

and the diagonal functor is full and faithful.

Proposition 4.1 Let I =
∑

k∈K Ik be a small category withIk, wherek ∈ K, its
connected components. There is an isomorphism

[I, C]
(
H, F

) ∼= ∏
k∈K

[Ik, C]
(
H ◦ ιk, F ◦ ιk

)
10
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natural inH, F ∈ [I, C] whereιk :Ik → I is the inclusion functor.

Proof The isomorphism takes a natural transformationα : H ⇒ F and splits it
into the natural transformationsα ιk : H ◦ ιk ⇒ F ◦ ιk. Conversely a collection of
natural transformations〈βk : H ◦ ιk ⇒ F ◦ ιk〉k∈K gives a natural transformation
β : H ⇒ F . This construction is clearly a bijection and it is preserved through pre-
and post-composition and thus is natural in both variables. 2

A limit can be decomposed into a product of connected limits provided these
exist:

Proposition 4.2 Let I =
∑

k∈K Ik be a small category withIk, wherek ∈ K, its
connected components. LetD :I→ C be a functor. Assume a limiting coneγk with
limit object lim←−Ik

(D ◦ ιk) for eachk ∈ K and a product
∏

k∈K lim←−Ik
(D ◦ ιk) with

projectionsπk. Then, fork ∈ K andi ∈ Ik, the arrows∏
k∈K lim←−Ik

(D ◦ ιk)
πk // lim←−Ik

(D ◦ ιk)
γk

i // D(i)

form the components of a limiting cone forD.

Proof From Proposition4.1there is an isomorphism

[I, C]
(
∆c, D

) ∼= ∏
k∈K

[Ik, C]
(
∆c, D ◦ ιk

)
natural inc. Hence,

[I, C]
(
∆c, D

) ∼= ∏
k∈K

[Ik, C]
(
∆c, D ◦ ιk

)
∼=

∏
k∈K

C
(
c, lim←−Ik

(D ◦ ιk)
)

the limit as a representation,

∼= C
(
c,

∏
k∈K

lim←−Ik
(D ◦ ιk)

)
since hom-functor preserves limits,

all isomorphisms being natural inc. This provides the limit ofD as a representa-
tion. The limiting cone is obtained as its counit:

id � // 〈πk〉k∈K
� // 〈γk ◦∆πk〉k∈K .

2

The task now is to combine the results on products (Theorem3.4) and on con-
nected diagrams (Theorem2.2) to treat preservation of more general limits. In order
to do so we use two embeddings of functor categories. AssumingC has terminal
object>, the first embedding is the right adjoint of◦ ιk:

[I, C]
◦ιk //
⊥ [Ik, C]

+
oo . (1)
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Given H : Ik → C, the functorH+ : I → C is such that it acts asH over the
componentIk and as the constant functor∆> otherwise. The unit of the adjunc-
tion (1)above is defined forD ∈ [I, C] as

(ηD)i =

{
idD(i) if i ∈ Ik

! , the unique arrow fromD(i) to>, otherwise,

which is clearly universal.

Proposition 4.3 Let Ik be a connected component ofI. Assume categoriesC and
D with terminal objects and a functorG :C → D that preserves terminal objects.

(i) there is an isomorphismlim←−IH
+ ∼= lim←−Ik

H, and

(ii) there is an isomorphismlim←−IG ◦H+ ∼= lim←−Ik
G ◦H.

In both cases we mean that if one side of the isomorphism exists then so does the
other. The isomorphisms are natural inH ∈ K for a subcategoryK ⊆ [Ik, C] such
thatC isK-complete.

Proof For (i) consider the chain of isomorphisms

C(c, lim←−IH
+) ∼= [I, C]

(
∆c, H+

)
the limit as a representation,

∼= [Ik, C]
(
(∆c) ◦ ιk, H

)
by the adjunction (1),

= [Ik, C]
(
∆c, H

)
∼= C(c, lim←−Ik

H) the limit as a representation,

all natural inc andH ∈ K. As the Yoneda embedding is full and faithful it follows
that there is an isomorphism

lim←−IH
+ ∼= lim←−Ik

H

natural inH ∈ K.
For (ii) observe that sinceG preserves the terminal objects it is possible to

define an adjunction as (1) with D as codomain whereG ◦H+ ∼= (G ◦H)+. Thus
we have

D(d, lim←−IG ◦H+) ∼= [I,D]
(
∆d,G ◦H+

)
the limit as a representation,

∼= [I,D]
(
∆d, (G ◦H)+

)
∼= [Ik,D]

(
(∆d) ◦ ιk, G ◦H

)
by the adjunction (1),

= [Ik,D]
(
∆d,G ◦H

)
∼= D(d, lim←−Ik

G ◦H) the limit as a representation,

all natural ind andH. It follows that there is an isomorphism

lim←−IG ◦H+ ∼= lim←−Ik
G ◦H

12
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natural inH. 2

There is a less obvious embedding∆∆∆ : [K, C] → [I, C] whereK is the discrete
category whose objects are identified with the connected components ofI. Given
a tuple〈xk〉k∈K, the functor∆∆∆〈xk〉k∈K : I → C acts as the constant∆xk over the
objects and arrows inIk.

Proposition 4.4 LetG :C → D be a functor andI =
∑

k∈K Ik be a small category
with Ik, wherek ∈ K, its connected components:

(i) there is an isomorphismlim←−I∆∆∆〈xk〉k∈K ∼=
∏

k∈K xk, and

(ii) there is an isomorphismlim←−IG ◦∆∆∆〈xk〉k∈K ∼=
∏

k∈K G(xk).

In both cases it is meant that if one side of the isomorphism exists then so does the
other. The isomorphisms are natural in〈xk〉k∈K ∈ K for a subcategory ofK-tuples
K ⊆ [K, C] such thatC isK-complete.

Proof For (i),

C(c, lim←−I∆∆∆〈xk〉k∈K) ∼= [I, C]
(
∆c,∆∆∆〈xk〉k∈K

)
the limit as a representation,

∼=
∏
k∈K

[Ik, C]
(
∆c ◦ ιk,∆∆∆〈xk〉k∈K ◦ ιk

)
by Proposition4.1,

=
∏
k∈K

[Ik, C]
(
∆c, ∆Ik

xk

)
by definition of∆∆∆,

= [K, C]
(
∆c, 〈xk〉k∈K

)
∼= C(c, lim←−K〈xk〉k∈K) the limit as a representation,

all natural inc and 〈xk〉k∈K. Thus lim←−I∆∆∆〈xk〉k∈K is isomorphic to
∏

k∈K xk =
lim←−K〈xk〉k∈K with naturality following from Yoneda. In a similar way, using the
identity

G ◦∆x = ∆G(x) ,

we can prove (ii). 2

Now we can reduce the preservation of general limits to naturality.

Theorem 4.5 Let C, D be complete categories. A functorG : C → D is contin-
uous,i.e. preserves all limits, if and only if for any small categoryI there is an
isomorphism

G(lim←−ID) ∼= lim←−I(G ◦D) (2)
natural inD ∈ [I, C].

Proof The “only-if” part follows as usual. For the“if ” part first observe that
G trivially preserves terminal objects: takeI to be the empty category. LetI =∑

k∈K Ik be a non-empty small category withIk, wherek ∈ K, its connected
components. By Proposition4.2, a diagramD : I → C has a limiting cone with
components ∏

k∈K lim←−Ik
(D ◦ ιk)

πk // lim←−Ik
(D ◦ ιk)

γk
i // D(i)

13
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with projectionsπk and whereγk is the limiting cone associated withlim←−Ik
(D◦ ιk).

So, it is enough to verify that the cone with components

G(γk
i ) ◦G(πk)

is limiting. For this it suffices to show that〈G(πk)〉k∈K is a product and that for
everyk the coneGγk is limiting.

However,

G(
∏
k∈K

xk) ∼= G(lim←−I∆∆∆〈xk〉k) by Proposition4.4,

∼= lim←−I(G ◦∆∆∆〈xk〉k) by assumption (2),

∼=
∏
k∈K

G(xk) by Proposition4.4,

all natural in〈xk〉k ∈ [K, C]. So G preservesK-products by Theorem3.4 and
〈G(πk)〉k∈K above is a product.

Similarly,

G(lim←−Ik
H) ∼= G(lim←−IH

+) by Proposition4.3,
∼= lim←−I(G ◦H+) by assumption (2),
∼= lim←−I(G ◦H+) by Proposition4.3,

all natural inH ∈ [Ik, C]. ThusG preservesIk-limits by Theorem2.2 andG(γk)
above is a limit forG(D ◦ ιk). 2

The proof of the theorem above can be carried out under more liberal assump-
tions, to cover the preservation ofI-limits, for a particular small categoryI.

Theorem 4.6 LetI be a small category. Suppose categoriesC andD are categories
with terminal objects and allI-limits. A functorG :C → D preservesI-limits if

(i) G preserves terminal objects, and

(ii) there is an isomorphismG(lim←−ID) ∼= lim←−I(G ◦D), natural inD ∈ [I, C].

Proof Let I =
∑

k∈K Ik with Ik, for k ∈ K, being its connected components. Hav-
ing I-limits implies havingIk-limits for k ∈ K (Proposition4.3), andK-products
(Proposition4.4). Whereupon the proof can be conducted as for Theorem4.5. 2

4.1 Preservation of colimits

Of course, we have dual results concerning the preservation of colimits. The main
theorems are:

Theorem 4.7 Suppose the categoryI is small and connected. Suppose categories
C,D have allI-colimits.

14
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A functorG : C → D preservesI-colimits iff there is an isomorphism

G(lim−→ID) ∼= lim−→I(G ◦D) ,

natural inD ∈ [I, C].

Theorem 4.8 Suppose the categoryI is small. Suppose categoriesC,D have all
I-colimits. Suppose thatG preserves initial objects.

A functorG : C → D preservesI-colimits iff there is an isomorphism

G(lim−→ID) ∼= lim−→I(G ◦D) ,

natural inD ∈ [I, C].

Theorem 4.9 Suppose categoriesC,D are cocomplete.
A functorG : C → D preserves all colimits iff for all small categoriesI there is

an isomorphism
G(lim−→ID) ∼= lim−→I(G ◦D) ,

natural inD ∈ [I, C].

5 Examples

The point of this section is to indicate the practicality of the theorems proved here
in establishing limit and colimit preservation. But for this we need a rich reper-
toire of methods to construct natural isomorphisms, and these in turn demand an
expressive language for functors. To this purpose the language of ends and coends
is highly suitable. So, ends justify the means. We refer the reader to the literature
(e.g.[6,2]) for an introduction to ends and coends (a summary may also be found
in the appendix of [4]).

Ends subsume limits and we can write
∫

i
F (i) instead of the limit objectlim←−ID

whenF : I → D is a functor; we can write
∫ i

F (i) for the (choice of) colimit of
F : I→ D. The set of natural transformations between functorsF, G : I→ D can
be expressed as an end inSet, the category of sets:

[I,D](F, G) =
∫

i
D(F (i), G(i)) .

5.1 Right adjoints preserve limits

As an indication of how to combine facts about naturality to deduce limit preserva-
tion in a fairly mechanical way we show the well-known fact that the right adjoint
preserves limits. Suppose there is an adjunction and diagramsH:

C
F //
⊥ D
G

oo I.Hoo

15
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We first show a chain of natural isomorphisms:

C
(
c, G(lim←−IH)

) ∼= D(
F (c), lim←−IH

)
by the adjunction,

∼= [I,D](F (c)H) the limit as a representation,
∼=

∫
i
D

(
F (c), H(i)

)
the end formula for nat. trans.,

∼=
∫

i
C
(
c, G ◦H(i)

)
by the adjunction,

∼= [I, C]
(
∆c, G ◦H

)
the end formula for nat. trans.,

∼= C
(
c, lim←−I(G ◦H)

)
the limit as a representation,

all natural inc andH. So we have deduced the existence of an isomorphism

C
(
c, G(lim←−IH)

) ∼= C(c, lim←−I(G ◦H)
)

between representables, natural inH. But now because the Yoneda embedding is
full and faithful we deduce

G(lim←−IH) ∼= lim←−I(G ◦H) ,

natural inH. It follows by Theorem4.5that the right adjointG preserves limits.
This illustrates an equational style of reasoning based on judgements of natural

isomorphism to derive results on (co)limit preservation, with the Yoneda lemma
providing an extensionality principle.

5.2 Fubini and colimit preservation

In the manipulation of ends and coends the interchange of ‘integrals’ is essential
and justified by the ‘Fubini theorem’, stated here for coends. (The Fubini theorem
is usually stated in greater generality to allow for the categoryD not having all
colimits.)

Fubini theorem: Given a functorF : Iop × I × Jop × J → D, whereD is a
cocomplete category,∫ i∫ j

F (i, i, j, j) ∼=
∫ j ∫ i

F (i, i, j, j) .

The isomorphisms are natural inF .

From the Fubini theorem for coends we see a sense in which the operation of
formation of coends preserves colimits. More precisely, supposeD is cocomplete.
For any functorF : Jop × J → D we can form the coend

∫ j
F (j, j), and this

operation is functorial inF . Call this resulting functorG—we might alternatively
describe the functorG using lambda notation asλF.

∫ j
F (j, j). Now, G preserves

colimits. In other words,
∫ j

F (j, j) preserves colimits in the parameterF . By
Theorem4.9, it is sufficient to observe the following chain of isomorphisms are all
natural inD : I→ [Jop × J,D]:

16
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G(
∫ i

D(i))∼=
∫ j

(
∫ i

D(i))(j, j)

∼=
∫ j

(
∫ i

D(i)(j, j)) as coends are computed pointwise,
∼=

∫ i
(
∫ j

D(i)(j, j)) by Fubini,
∼=

∫ i
G(D(i)) .

5.3 Composition of profunctors

Profunctors (or distributors or bimodules) are a categorical generalisation of rela-
tions [1,5]. They appear in many contexts and, in particular, in modelling nonde-
terministic processes [4]. A profunctorF : P + //Q between small categoriesP and
Q is a functorF : P × Qop → Set to the category of sets. The composition of
profunctorsF : P + //Q andG : Q + //R is given by the coend

GF (p, r) =
∫ q

F (p, q)×G(q, r) .

The coend is functorial inp andr. We have the following chain of isomorphisms,
all natural in a diagramF : I→ [P×Qop,Set]:

G(
∫ i

F (i))∼= λp, r.
∫ q

(
∫ i

F (i))(p, q)×G(q, r)

∼= λp, r.
∫ q

(
∫ i

F (i)(p, q))×G(q, r) —the colimit ofF is got pointwise,
∼= λp, r.

∫ q ∫ i
(F (i)(p, q)×G(q, r)) asSet-product is a left adjoint,

∼= λp, r.
∫ i∫ q

(F (i)(p, q)×G(q, r)) by the Fubini theorem,
∼=

∫ i
λp, r.

∫ q
(F (i)(p, q)×G(q, r)) —the colimit is got pointwise,

∼=
∫ i

(GF (i)) .

Hence, by Theorem4.9, the composition of profunctorsGF preserves colimits
regarded as a functor inF (and similarly as a functor inG). This result is important
in work modelling nondeterministic processes as presheaves (which are essentially
profunctors from1 the one object, one arrow category). The result ensures that
horizontal composition of 2-cells in the bicategory of profunctors preserves open
maps and open-map bisimulation. A central theorem here is that connected colimit
preserving functors between presheaf categories preserve surjective open maps and
open-map bisimulation; so Theorem4.7 also plays a useful role. Much more can
be found in [4].
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