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Abstract

A functor G : C — D is said to preserve limits of a diagram: T — C if it sends any
limiting cone fromz to D to a limiting cone from&(x) to G o D. WhenG preserves limits

of a diagramD this entails directly that there is an isomorphiéfflim D) = lim (G o D)
between objects. In general, such an isomorphism alone is not sufficient to ensure that
preserves limits. This paper shows how, with minor side conditions, the existence of an
isomorphismmaturalin the diagramD does ensure that limits are preserved. In particular,
naturality in the diagram alone is sufficient to yield the preservation of connected limits.
At the other extreme, once terminal objects are preserved, naturality in the diagram is
sufficient to give the preservation of products. General limits, which factor into a product
of connected limits, are treated by combining these results. In particular, it is shown that a
functorG : C — D between complete categories is continuous if there is an isomorphism
G(lim D) = lim (G o D) natural inD € [I,C], for any small category. It is indicated

how a little calculus of ends, in which the judgements are natural isomorphisms between
functors, is useful in establishing continuity properties of functors.
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1 Introduction

It is often useful to establish that a functor preserves limits or colimits of a certain
kind. This can be to show a construction stays within a category, or because of
some useful property such (co)limit preserving functors possess. According to its
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definition, for a functoiG : A — B to preserve limits of diagramb : I — A itis
not enough for there just to be an isomorphism

G(lim D) 2 lim (G o D)

—expressing that the limit object of the diagrdmis sent to a limit object of the
diagramG o D. RatherG must send a limiting cone ab to a limiting cone.
Whereas this can be a matter of no great difficulty, it does involve taking care of
detail of the kind all too familiar in category theory (detail which it is tempting
to ‘handwave’ away). In practice, one commonly has the feeling that once the
isomorphism above for limit objects is established the bulk of the work is done.
This paper provides the mathematical excuse for that feeling. It is shown that,
under minimal side conditions, provided the isomorphism is natural in the diagram
D then preservation of limits follows automatically. This is done by first showing
such a result for connected diagrams, then products, and finally combining these
results to treat diagrams in general.

With a suitable stock of natural isomorphisms, limit preservation now often be-
comes a routine consequence of an ‘equational’ style of reasoning but based on
judgements of natural isomorphism instead of equations. One motivation for this
work has come from recent work in extending domain theory and denotational se-
mantics to a situation where ‘domains’ are now categories and continuous functions
are replaced by functors preserving certain colimits. In particular when ‘domains’
are presheaf categories knowing that a functor preserves connected colimits ensures
that it preserves surjective open maps, so open map bisimuld{ion [

We start by giving the necessary background on limits and limit preservation.

1.1 Limiting Cones

Let I be a small category andan object in a categor§. The diagonal functor
Ac:T — C takes all objects of 1 to ¢ and all arrows of to the identityid...

A cone frome € C to a functorD :T — C, often called the diagram, is a natural
transformation fromAc to D. A limit for D, or a limiting cone, is a universal cone,
i.e. a cones : Ac = D such that for any other cor#¢ : A¢’ = D there exists a
unique mediating arrow:: ¢’ — ¢ for which the diagram

A
Acd == Ac

commutesi.e.

commutes for all objectsin I.
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When a coneé\c to D is limiting we call ¢ the limit object. Clearly the limit
objects of limiting cones are only determined to within isomorphism:

Proposition 1.1 Let D : I — C be a diagram. Suppose: Ac = D and¢’ :
Acd = D are both limiting cones. Then= ¢’. Conversely, given a limiting cone

f
e : Ac = D and anisomorphism = ¢, thenso Af : Ad = D is alimiting cone.

1.2 Limit functors

Suppose that a categafyhas alll-limits, i.e. limits of all diagrams in the functor
category[l,C|. It is often convenient to assume a fixed choice of limit for each
diagram in[I,C].® Then for any diagranD : T — C there is a choice of limit
el Alim (D) = D, in which we have called the limit objetitn (D).

We can turnim into a functorlim : [I,C] — C. Supposer : D = D' where
the diagramsD and 1’ are associated with the limiting cones Alim D = D
ande’ : Alim D" = D’. The composition of natural transformations yields a
cone from!iLnH(D) to D’. By the universality ot’ there is a unique arrow

lim « : lim. D — lim D'
—1I —1I —I

in C for which the diagram

. Alim o .
Alim D “—L Alim_D’
(_\LH TH
D 3 D’

commutes.

Sometimes we are interested in a subcategory of diagkamgl, C] for which
limits exist inC. Just as above we can define a fun@rﬂ :K — C. (And, as later,
talk about a functor preservirig-limits or beingkC-continuous.)

We shall make use of an alternative way to present limits via representability.
Let D : T — C be a diagram. A choice of limit foD corresponds to a representa-
tion, i.e. a natural isomorphism

0 :C(-,lim D) = [I,C](A-, D) .

The limiting cone is obtained as the counit of the representation defined to be the
image,f};,,, p(idyiyy, p). Of the identity map under the component
«—I «—I

C(lim D,lim D) = [I,C](Alim D, D) .

Olim b :
<——1I

3 In general this requires the axiom of choice, though often in practice it turns out that a particular
choice is determined once a standard way of contructing limits in sets is settled on.

3
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Notice the important fact that the isomorphigns also natural inD ranging over
the subcategory of diagramis C [I, C| for which limits exist. In fac:t,liin]I is the
unique functor extending the choice of limit objects for which this naturality holds.

1.3 Preservation of Limits

LetG:C — D be afunctor. The functak preserves limits for a diagram:1 — C
if whenevers : Ac = D is a limit then the con&'x : AG(c) = G o D, got by
composition withG, is also a limit. Clearly, if composition withr sends one limit
for a diagramD : I — C to a limit for G o D then it sends any other limit fab to
a limit for G o D. Most often we talk of the functa® preservingl-limits, or being
I-continuous; this means th@tpreserves limits of all diagrams [i, C].

Suppose there is a fixed choiceleimits in C andD with respect to which we
have limit functordim :[I, C] — C andlim :[I, D] — D.

LetG:C — D be a functor. Given a cone : Alim D = D for a diagram
D:1 — C the natural transformatio&y : AG(lim D) = G o D obtained by
composition is a cone as well. Thus, given alimiting cenelim GoD = GoD
there is a unique mediating arrow: G:(lim D) — d such that the diagram

AG(lim D) -2m Alim G o D
—1I «—1

o |

GoD

commutes. Requiring th&t preserves limits oD is equivalent to insisting that the
mediating arrow defined by is an isomorphism; in fact some authors use this as
the definition of preservation of limits.

In order to prove that a functa¥ :C — D preserves limits of a diagram : I —
C itis not enough to exhibit an isomorphism

G(lim D) = lim G o D.

Indeed, the action afr over arrows may result in a family that is not universal. As
an example consider the categ@@ypunt of countably infinite sets and functions.
Clearly the objects ofount are all isomorphic. There is a functor-1:Count —
Count that acts over sets by adding a new element: gi¥ea CountthenX +1 =

X U{X} and given a functiorf : X — Y/, the functionf + 1 sends: € X to f(a)
and{X} to {Y'}. There is an isomorphism

(X xY)+12Z(X+1)x(Y+1),

but this functor does not preserve products; the arrew1: (X xY)+1 — X +1
is not a projection.
If the categorie€ andD have enough limits the expressions
G(lim D) and lim (G o D)
4
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are both functorial inD. For everyD there is a mediating arrowt, defined byGe
wheree is the universal cone associatecﬂ(ii;(nHD. The family (mp)p is natural,
this follows directly from the universality of the mediating arrows. Thué&ifs
IC-continuous there is a canonical isomorphism

G(lim D) = lim (G o D)

natural inD € K.

An isomorphismG(lim D) = lim (G o D) natural inD is not always unique.
Consider, for instance, the categdryith one object, say, and the identity arrow.
The functor categoryl, 1] has only one object: the “constant” functax. The
limit for this functor is the object itself where the limiting cone is the identity. We
can extend with an extra arrow

idC* Lty idC*Qf

where f is also an isomorphism.,e. f o f = id. The inclusion functor clearly
preserves the limit of the diagrafx. The mediating arrow is given by the identity
on x which is an isomorphism and trivially natural. The arrgwhowever, gives
another isomorphism

t(lim, Ax) = lim ¢ o (Ax)
—naturality here is trivial as well.

Often checking the isomorphism between the limiting objects follows from a
fairly direct calculation, while proving that a functor preserves a limiting cone can
involve a fair amount of bookkeeping. We wish to determine under which condi-
tions having an isomorphism

G(lim D) & lim (G o D)

Is enough to ensure thét preserves limits oD.

We shall first investigate two extreme cases, one when diagrams are connected
and the other when they are discrete. We later combine the results for general
limits.

2 Connected Diagrams

We first consider a special case: preservation of connected lingtslimits of
connected diagrams. A categdfyis connectedf it is nonempty and for any pair
of objectsa, b € £ there is a chain of arrows

a— e« €y — ... e, b

Observe that iff is connected the@ has limits for allJ-indexed constant dia-
grams.
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Lemma 2.1 LetJ be a connected small category afic category.

A conel : Ac = Ad for a constant diagrand\d:J — Cis limiting iff 5 = Af
for some isomorphisri : ¢ = d.

For a limiting coney : Ac = D of adiagramD:J — C the arrowlim -y is an
iIsomorphism.

Proof By virtue of J being connected it is clear that any isomorphismec = d
yields a limiting con@\ f : Ac = Ad, and moreover that any limiting cone for the
constant diagramhd must have this form.

For a general diagran® : J] — C, by definition llnﬂ is the unique arrow
making the square

. Alim v, ..
Alim Ac “—L Alim D
—1J —1J
N
Ac 5 D
commute, wherg andx are the chosen limiting cones fdwc and D respectively.

f
As J is connected there is an isomorphiﬁﬂnHAc = csuch thats = Af. As~y
andx are limiting cones by Propositiadh1there is an isomorphism: ¢ = @JD
such thaty = k o Ag. Hence,

moA(gof):/{oAgoAfzyoAfzvoﬁ:moAliﬂljv.

Sincex is limiting,

lim vy =gof.
As f andg are isomorphismsk(jinﬂ is an isomorphism as well. O

The following main theorem of this section, establishes that a natural isomor-
phism is enough to ensure preservation of limitsa@finectedliagrams.

Theorem 2.2 Let ] be a small connected category. L&t C — D be a functor
between categories, D with all J-limits. The functoiG preserveg-limits if and
only if there is an isomorphism

G(lim D) = lim (G o D)

natural in D € [J,C].

Proof The*only-if” part from the general fact that limit preservation implies that
the mediating arrows are isomorphisms. To show'iftie part, let] be a connected
small category and assume there is an isomorphism

0p
G(im D) 2 lim (G o D)

natural inD. Given a diagranD : J — C and a limiting coney : Ac = D, we
show that the con&y : AG(c) = G o D is limiting.

6
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The limiting coney : Ac = D induces the naturality square
G(!iLnJAc) %@J(G o Ac)
alim,» Jlim
G(liLnJD) L@J(G oD).
Since]J is connected by Lemma.1 the arrowpinﬂ is an isomorphism and
SO G(@ﬂ) is an isomorphism as well. From the naturality square above we can

concludeIEJGy is an isomorphism.
By definition @JGW is the unique arrow making the diagram

A@J(G o Ac) A@J(G o D)
. :
G o Ac G GoD

commute. By Lemma&.1, asJ is connected, the chosen limiting cone for the
constant diagrand’ o Ac = AG(c) is necessarily of the formhh with  an iso-
morphism. The chosen limiting cone f6ro D is . Hence, the unique mediating
arrow between the con@y and the limiting cone is the isomorphism

(lim Gr) o h™",

which ensures that the cordey is itself limiting. ThusG preserves the limits of
D. O

It is important to stress that the statement of TheoBePabove refers to any
natural isomorphism and not necessarily to the canonical natural transformation
defined from the limit. The theorem establishes that if there exists such a natural
isomorphism then the canonical natural transformation is indeed a natural isomor-
phism as well.

We can relax the conditions of this theorem to consider the case where not all
J-limits exist. Take instead a full subcategd€yC |[J, C] of diagrams whose limits
exist inC and such thak’ includes all constant diagrams.

Corollary 2.3 LetJ be a connected small category akicbe a full subcategory of
[J, C] including all constant diagrams and such thais K-complete. Theud: is
IC-continuous if and only if

(i) foreveryD € K, the diagramG o D has a limit inD, and
(i) there exists an isomorphislim (G o D) = G(lim D) natural inD € K.
—1J —J

Proof We use the proof of Theoregh2 within the subcategoriC. Notice that the
expressiorl(iLnJD is functorial in D but the domain isC instead of{J, C]. As the

indexing category is connected the limits for constant diagrams exigt.in O
7
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Connectivity is a significant constraint on diagrams. There are, however, many
applications where connected limits (and colimits) are central and then the result
above (and its dual) can be usefid)3,4].

Theorem2.2 does not necessarily hold when the indexing category is not con-
nected. For example, consider the functor cated®@ry| were2 is the two-objects
discrete category. This functor category has a unique object: the constant diagram
Ax. Now consider the functafr : 1 — Setselecting a countable infinite set, say
the natural numbem®l. Asx x x = % in 1, where the projections are given by the
identity, we have

G(*x x %) = G(x) x G(%)
natural inx sinceN = N x N. The pair(idy, idn ), however, is not a product.

3 Products

Clearly, Theoren.2 cannot be applied to products; then the index category is
discrete, an extreme example of lack of connectivity.

Given a discrete categof§ a diagramD : K — C can be regarded as a tuple
of objects(xy)rex in C wherex,, = D(k). A cone for this functor is any family
of arrows (called projections)fy. : * — zx)rex fOor some object:. Notice that
as the index category is discrete there is no commutativity to check and naturality
comes for free. We say that a famify, : © — xx)rex IS @aK-product (or often
just product) when it is a limiting cone. Because with a discrete index category
naturality is automatic, we can strengthen Proposifidh we retain a product
when objects in the diagram vary to within isomorphism.

Proposition 3.1 Let f;, : + — z, and f, : 2’ — z}, for k € K, whereK is a
discrete category. Suppose there are isomorphisms’ = z, ands;, : x}, = xy
indexed byt € K, such that

-

4

Ty —5> Tk
commutes for alk € K. Then(fy : = — zx)rex is a product inC iff (f, : 2’ —
z) Y kek 1S @ product inC.

We now study the conditions for a functor to preserve products. In the next
section we see how these same conditions are enough to ensure preservation of
limits in the general case. In a category with terminal objeete usel:c — T to
denote the unique arrow fromto T. We will use the following simple fact about
products with a terminal object.

Proposition 3.2 LetC be a category with a terminal objedt. A pair
(f:a! -zl = T)

is a product ifff is an isomorphism.
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As special limits,K-products extend to functors once a choicekeproduct
(mD [Lrex ©x — r)rex is made for each diagram = () ,cx. AS is traditional
we have written the chosen limit object for a diagréam),cx as][,.x zx, and
write z x y when the diagram iz, y).

Theorem 3.3 LetC, D be categories with finite products. The functerC — D
preserves binary products if

(i) G preserves terminal objects and
(if) there is anisomorphism

Gz xy) = G(x) x G(y)

natural inz,y € C.

Proof Assume that preserves terminal objects and that the isomorphism

Sz,y

Gz xy) = G(z) x G(y)

is natural inz, y. Let T be a terminal object af. There is a unique arrolvy — T
in C. This arrow determines the commuting naturality square in the diagram

Gz x y)—LG(x) x G(y)

T,y Gz,G
() G(idf x1) G(idzixGN

G(w)mﬁf(z X T) =25 G(z) x G(T)NGTETG(x) .

The left triangle commutes since it is obtained by applyihngo the commuting
triangle
T Xy
T,y

" iidzx!

xﬁl’ X T
T

—a consequence of products being special limit functors. By Propoditibthe
arrowr? " is an isomorphism and s8(7¥" ") is an isomorphism as well. The right
triangle commutes as products are special limit functors. By assum@tionis a
terminal object and so from Propositi8r2 the arrowr“" is an isomorphism.

Thus the composition
si=m" o5, oGy
forms an isomorphism such that

Gz x y) LG (x) x G(y)
aoi ) Jsgecs
G(r) —2—=G(2)
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commutes.
We can follow the same argument wighnstead ofr. Then by Propositio3.1
the pair
(G(mY), G(my"))
is a product. (Notice that the mediating arrow defined®yr;"Y), G(75")) is an
isomorphism but does not necessarily coincide with.) O

We generalise the last theoremeproducts where the naturality of the iso-
morphism is required within a subcategd€yC [K, C] of product diagrams.

Theorem 3.4 Let K be a discrete category anél D be categories with terminal
object. Letk C [K, C] be the full subcategory of diagrams for which products exist
in C. The functorG:C — D preserveX-products of tuples irC if

(i) wheneverz;), € K then a product ofG(zy,)), € K exists inD,
(i) G preserves terminal objects, and
(iif) there is an isomorphism

G (e 7) = 2% [ G )
natural in (x;), € K.

Proof This generalises the proof of Theoreh8 above toK-products of tuples
within . It follows by fixing one component at a time and mapping all other
components to the terminal object O

4 General Limits

A small categoryl can be decomposed into its connected components. We write
I =3 ,cx I for this decomposition wherg,’s are the connected components of
I—this assumes th& is a discrete category. A connected comporigns a full
subcategory of and there is an inclusion functoy: I, — I. This functor defines

by pre-composition th&estriction” functor

— o[, C] — [, C].
If the categoryl is connected then we have
[I,C](Ac, Ad) = C(c,d)

and the diagonal functor is full and faithful.

Proposition 4.1 Letl = >, . I, be a small category witfi,, wherek € K, its
connected components. There is an isomorphism

ILCI(H, F) = [ [, CI(H o tr, F o 1)

keK

10
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natural in H, F' € [I, C] wherey :I;, — T is the inclusion functor.

Proof The isomorphism takes a natural transformation H = F and splits it

into the natural transformations., : H o ¢, = F o ;. Conversely a collection of
natural transformation§3,, : H o 1, = F o 1)kex gives a natural transformation

G : H = F. This construction is clearly a bijection and it is preserved through pre-
and post-composition and thus is natural in both variables. O

A limit can be decomposed into a product of connected limits provided these
exist:

Proposition 4.2 Letl =}, . I, be a small category witfi,, wherek € K, its
connected components. LBt — C be a functor. Assume a limiting cong with
limit objectlim_ (D o 1) for eachk € K and a producf [, lim (D o ;) With

projectionsmy. Then fork € K and: € I, the arrows

erKhm (DOLk)*)hm (Dobk) k > D(i)

form the components of a limiting cone b

Proof From Propositiont.1there is an isomorphism

[I,C](Ac, D) = [k, C](Ac, D o 1y,)

keK

natural inc. Hence,

[I,C](Ac, D) = [, Cl(Ac, D o 1y,)

keK
o H C(e, lim_ (Do u;)) the limit as a representation,
keK
~ C(e, H liinﬂk(D o)) since hom-functor preserves limits,

kek

all isomorphisms being natural in This provides the limit ofD as a representa-
tion. The limiting cone is obtained as its counit:

id—— <7T1c>k:6K'—> <’)/k o Aﬂ—k>keK .
d

The task now is to combine the results on products (The@&ejrand on con-
nected diagrams (Theorer?) to treat preservation of more general limits. In order
to do so we use two embeddings of functor categories. Assuéimas terminal
objectT, the first embedding is the right adjoint.ofo ¢

1,C] L [ C]. )

11
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Given H : I, — C, the functorZ™ : I — C is such that it acts a&/ over the
componentl, and as the constant funct&yT otherwise. The unit of the adjunc-
tion (1)above is defined fob € [I,C] as

( ) B idD(i) if i €l
i , the unique arrow fronD(:) to T, otherwise,

which is clearly universal.

Proposition 4.3 Let I, be a connected componentlofAssume categorigs and
D with terminal objects and a functdr:C — D that preserves terminal objects.

(i) there is an isomorphistim H* = lim_H, and
—1 P

(i) there is an isomorphistim G o H* = lim_G o H.
«—I — 1

In both cases we mean that if one side of the isomorphism exists then so does the
other. The isomorphisms are natural ih € K for a subcategoryC C [I, C] such
thatC is K-complete.

Proof For (i) consider the chain of isomorphisms

Cle,lim HY) = [I1,C] (Ac, H") the limit as a representation,
= (I, C]((Ac) o u,, H) by the adjunctionX),
= [I.C](Ac, H)
= C(c, liinﬂkH) the limit as a representation,

all natural incandH € K. As the Yoneda embedding is full and faithful it follows
that there is an isomorphism

lim H™ 2 lim. H
«—I — 1

natural inH € K.

For (ii) observe that sincé’ preserves the terminal objects it is possible to
define an adjunction ag)with D as codomain wheré o H* = (G o H)". Thus
we have

D(d,lim Go H*) = [, D](Ad,Go H") the limit as a representation,
«—I
o~ [ , ( G o H )
>~ [, D] ((Ad) ou,Go H) by the adjunction),
= [I;, D} (Ad,G o H)
= D(d, lﬂlﬂkG oH) the limit as a representation,

all natural ind and H.. It follows that there is an isomorphism
lim GoH" =21lim Go H
12
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natural inH . O

There is a less obvious embeddig [K,C] — [I,C] whereK is the discrete
category whose objects are identified with the connected componehtsofen
a tuple(x;)rex, the functorA(z,) ke : I — C acts as the constadtz,, over the
objects and arrows ilfy,.

Proposition 4.4 LetG:C — D be afunctorand = ), _, I, be a small category
with I, wherek € K, its connected components:

() thereis an isomorphis@nHA<xk>k€K = ek @, and
(ii) there is an isomorphisfim G o A(wy)rex = [[ex G(1)-

In both cases it is meant that if one side of the isomorphism exists then so does the
other. The isomorphisms are natural{n,).cx € K for a subcategory aK-tuples
K C [K,C] such thatC is K-complete.

Proof For (i),

Cle, lim A{zy)per) = [, CJ(Ac, Aw)pex) the limit as a representation,
o H[]Ik, Cl(Aco g, Alxy)kex 0 11) by Propositiord. 1,
keK
= [ Cl(Ac, Ar ) by definition ofA,
kek
= [K,CJ(Ac, (z1)kex)
=~ (e, h;nK(kaﬂeK) the limit as a representation,

all natural inc and (zy)rex. Thuslim A{zy)iex is isomorphic to] [, xx =
liLnK<xk’>keK with naturality following from Yoneda. In a similar way, using the
identity

G o Azx = AG(x) ,
we can prove (ii). O

Now we can reduce the preservation of general limits to naturality.

Theorem 4.5 Let C, D be complete categories. A funct@r: C — D is contin-
uous,i.e. preserves all limits, if and only if for any small categdryhere is an
iIsomorphism

G(lim D) = lim (G o D) (2)
natural in D € [I,C].
Proof The “only-if” part follows as usual. For th&f” part first observe that
G trivially preserves terminal objects: takeo be the empty category. Lét=
> rex I be a non-empty small category wih, wherek € K, its connected

components. By Propositioh2, a diagramD : 1T — C has a limiting cone with
components

. - Eo
[Tkex limy (Do w) Teslim, (D o w) > D(i)

13
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with projectionsr;, and wherey* is the limiting cone associated wiliim]I (Doug).
k
So, itis enough to verify that the cone with components

G(37) o G(m)

is limiting. For this it suffices to show thdtz(7;)) ek is a product and that for
everyk the coneG+* is limiting.
However,

G(H xr) = G(lim A(zy)r) by Propositiord.4,
keK

= lim (G o A(zk)r) by assumptiond),

= H G(xy) by Propositior4.4,

kek

all natural in(zx), € [K,C]. SoG preservesK-products by Theoren3.4 and
(G (7)) rex @bove is a product.
Similarly,

. ~ . + .y
G(@HkH) = G(lim H™) by Propositiord.3,
=lim (Go H") by assumption3),
=lim (GoH") by Propositior4.3,

all natural inH € [I;,C]. ThusG preserved,-limits by Theoren2.2 and G(~*)
above is a limit forG(D o ¢,). O

The proof of the theorem above can be carried out under more liberal assump-
tions, to cover the preservation Bfimits, for a particular small categoiy

Theorem 4.6 Letl be a small category. Suppose categofi@dD are categories
with terminal objects and all-limits. A functorGG:C — D preserved-limits if

(i) G preserves terminal objects, and
(ii) there is an isomorphisif¥(lim D) = lim (G o D), natural in D € [, C].
Proof Letl =}, . I with I, for k£ € K, being its connected components. Hav-

ing I-limits implies havingl,.-limits for £ € K (Propositior4.3), andK-products
(Propositior4.4). Whereupon the proof can be conducted as for Thegr&m O

4.1 Preservation of colimits

Of course, we have dual results concerning the preservation of colimits. The main
theorems are:

Theorem 4.7 Suppose the categofyis small and connected. Suppose categories
C, D have alll-colimits.

14



CACCAMO, WINSKEL

A functorG : C — D preserved-colimits iff there is an isomorphism
G(lim, D) = lim (G 0 D) ,
natural in D € [I,C].

Theorem 4.8 Suppose the categoflyis small. Suppose categori€sD have all
I-colimits. Suppose thdt preserves initial objects.
A functorG : C — D preserved-colimits iff there is an isomorphism

G(lim, D) = lim (G o D),
natural in D € [I,C].

Theorem 4.9 Suppose categorig€s D are cocomplete.
A functorG : C — D preserves all colimits iff for all small categoriéshere is
an isomorphism
G(h_r>nHD) = thH(GOD> )
natural in D € [I,C].

5 Examples

The point of this section is to indicate the practicality of the theorems proved here
in establishing limit and colimit preservation. But for this we need a rich reper-
toire of methods to construct natural isomorphisms, and these in turn demand an
expressive language for functors. To this purpose the language of ends and coends
is highly suitable. So, ends justify the means. We refer the reader to the literature
(e.0.[6,2]) for an introduction to ends and coends (a summary may also be found
in the appendix of4]).

Ends subsume limits and we can write/ (i) instead of the limit objedim D

whenF : 1 — D is a functor; we can Writq“i F(7) for the (choice of) colimit of
F : 1 — D. The set of natural transformations between functors : T — D can
be expressed as an end§at, the category of sets:

[, DI(F,G) = [; D(F (1), G(7))

5.1 Right adjoints preserve limits

As an indication of how to combine facts about naturality to deduce limit preserva-
tion in a fairly mechanical way we show the well-known fact that the right adjoint
preserves limits. Suppose there is an adjunction and diagkams

C_L p<tL-1.

a
15
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We first show a chain of natural isomorphisms:

C(c,G(lim H)) = D(F(c),lim H) by the adjunction,

[, D](F(c)H) the limit as a representation,
>~ [D(F(c),H(i)) the end formula for nat. trans.,
>~ [[C(c,Go H(i)) by the adjunction,

>~ [I,C](Ac,Go H) the end formula for nat. trans.,
>~ C(c, lim (G o H)) the limit as a representation,

I

all natural inc and H. So we have deduced the existence of an isomorphism
C(e, G(@HH)) >~ C(c, lim (G o H))

between representables, naturaHn But now because the Yoneda embedding is
full and faithful we deduce

G(lim H) = lim (G o H) ,

natural inH. It follows by Theoremd.5that the right adjoinG: preserves limits.

This illustrates an equational style of reasoning based on judgements of natural
isomorphism to derive results on (co)limit preservation, with the Yoneda lemma
providing an extensionality principle.

5.2 Fubini and colimit preservation

In the manipulation of ends and coends the interchange of ‘integrals’ is essential
and justified by the ‘Fubini theorem’, stated here for coends. (The Fubini theorem
Is usually stated in greater generality to allow for the categomgot having all
colimits.)

Fubini theorem: Given a functorF’ : I°? x I x J°°? x J — D, whereD is a
cocomplete category,

J' [ FGaG.5) = [ i g,g).
The isomorphisms are natural in

From the Fubini theorem for coends we see a sense in which the operation of
formation of coends preserves colimits. More precisely, supposecocomplete.
For any functorF : J°* x J — D we can form the coend” F(j, j), and this
operation is functorial irf". Call this resulting functotz—we might alternatively
describe the functo® using lambda notation as. [ F'(j, 7). Now, G preserves
colimits. In other words,(’ F(j, j) preserves colimits in the parametér By
Theoremd.9, it is sufficient to observe the following chain of isomorphisms are all
natural inD : T — [J°? x J, DJ:

16
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G([' D)= [ (' D). )
=~ [7([* D()(j,7)) as coends are computed pointwise,
=~ ['(J° D()(j.4)) by Fubini,
~ [ G(D(7)) .

5.3 Composition of profunctors

Profunctors (or distributors or bimodules) are a categorical generalisation of rela-
tions [1,5]. They appear in many contexts and, in particular, in modelling nonde-
terministic processedl]. A profunctor F' : P—=(Q between small categori@sand

Qis afunctorF : P x Q°° — Set to the category of sets. The composition of
profunctorsF' : P—+Q andG : Q—R is given by the coend

fq q) x G(q,r) .

The coend is functorial ip andr. We have the following chain of isomorphisms,
all natural in a diagran¥” : T — [P x @OP Set]:

G(['F@) = xp.r. ["(['F(0)) xG@)
> p,r. [4( f F(i)(p,q G(q,r) —the colimit of ' is got pointwise,
~p,r. [? fi(F(i)(p, ) G(q,r)) asSet-product is a left adjoint,
=~ \p,r. [*[1(F(i)(p G(g,r)) by the Fubini theorem,
>~ [* /\p,rfq (F(i)(p, q) x G(q, r)) —the colimit is got pointwise,
>~ [Y(GF(i

Hence, by Theorem.9, the composition of profunctor&§'F' preserves colimits
regarded as a functor ifi (and similarly as a functor itr). This result is important

in work modelling nondeterministic processes as presheaves (which are essentially
profunctors froml the one object, one arrow category). The result ensures that
horizontal composition of 2-cells in the bicategory of profunctors preserves open
maps and open-map bisimulation. A central theorem here is that connected colimit
preserving functors between presheaf categories preserve surjective open maps and
open-map bisimulation; so Theoref/ also plays a useful role. Much more can

be found in f].
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