
NEW-HOPLA

a higher-order process language with name generation

Glynn Winskel
Computer Laboratory, University of Cambridge, UK

Francesco Zappa Nardelli
INRIA & Computer Laboratory, University of Cambridge, UK

Abstract This paper introduces new-HOPLA, a concise but powerful language for higher-
order nondeterministic processes with name generation. Its origins as a meta-
language for domain theory are sketched but for the most part the paper con-
centrates on its operational semantics. The language is typed, the type of a
process describing the shape of the computation paths it can perform. Its tran-
sition semantics, bisimulation, congruence properties and expressive power are
explored. Encodings are given of well-known process algebras, includingπ-cal-
culus, Higher-Orderπ-calculus and Mobile Ambients.

1 The origins of new-HOPLA
This work is part of a general programme (reported in [8]), to develop a domain

theory which scales up to the intricate languages, models and reasoning techniques
used in distributed computation. This ambition led to a concentration on path based
models, and initially on presheaf models because they can even encompass causal de-
pendency models like event structures; so ‘domains’ is being understood more broadly
than usual, to include presheaf categories.

The general methodology has been to develop domain theories with a rich enough
life of their own to suggest powerful metalanguages. The point to emphasise is that in
this way informative domain theories can have a pro-active role; they can yield new
metalanguages, by their nature very expressive, accompanied by novel ways to decon-
struct existing notions into more primitive ones, as well as new analysis techniques. A
feature of presheaf models has been very useful: in key cases there is often a strong
correspondence between elements of the presheaf denotation and derivations in an op-
erational semantics. In the cases of HOPLA and new-HOPLA the presheaf models
have led not only the core operations of the language, and a suitable syntax, but also
to their operational semantics.

This paper reports on new-HOPLA, a compact but expressive language for higher-
order nondeterministic processes with name generation. It extends the language HO-
PLA of Nygaard and Winskel [7] with name generation, and like its predecessor has
its origins in a domain theory for concurrency. Specifically it arose out of the metalan-

guage implicitly being used in giving a presheaf semantics to theπ-calculus [2]. But
a sketch of its mathematical origins and denotational semantics does not require that
heavy an investment, and can be based on path sets rather than presheaves.1

The key features of new-HOPLA hinge on its types and these can be understood
independently of their origin as objects, and constructions on objects, in a category of
domains—to be sketched shortly within the simple domain theory of path sets. A type
P specifies the computations possible with respect to a given current set of names; if
a process has typeP, then any computation path it performs with the current set of
namess will be an element ofP(s).

A central type constructor is that of prefix type!P; at a current set of namess, a
process of this type!P, if it is to do anything, is constrained to first doing a prototypical
action! before resuming as a process of typeP. (Actions within sum or tensor types
will come to be tagged by injections and so of a less anonymous character.)

In the category of domains, domains can be tensored together, a special case of
which gives us types of the formN ⊗ P, a kind of dynamic sum which at current
namess comprises paths ofP(s) tagged by a current name which serves as an injection
function. There is also a more standard sumΣi∈IPi of an indexed family of typesPi

wherei ∈ I; this time paths are tagged by indices from the fixed setI rather than the
dynamic set of names.

The remaining type constructions are the formation of recursive types, and three
forms of function space. One is a ‘linear function space’N → P, the type of processes
which given a name return a process of typeP. Another is a ‘continuous function
space’P → Q, the type of processes which given a process of typeP return a process
of typeQ. There is also a typeδP associated directly with new-name generation. A
process of typeδP takes any new name (i.e. a name not in the current set of names) as
input and returns a process of typeP. Name generation is represented by new name
abstraction, to be thought of as picking a new name (any new name will do as well as
any other), and resuming as a process in which that new name is current.

This summarises the rather economical core of new-HOPLA. Very little in the way
of standard process algebra operations are built in—nothing beyond a prefix opera-
tion and nondeterministic sum. By being based on more fundamental primitives than
usual, the language of new-HOPLA is remarkably expressive. As additional motiva-
tion we now turn to how these primitives arise from a mathematical model refining the
intuitions we have just presented.

A domain theory If for the moment we ignore name generation, a suitable cate-
gory of domains is that ofLin. Its objects,path orders, are preordersP consisting of
computation paths with the orderp ≤ p′ expressing how a pathp extends to a pathp′.
A path orderP determines a domain̂P, that of itspath sets, left-closed sets w.r.t.≤P,
ordered by inclusion. (Such a domain is a prime-algebraic complete lattice, in which
the complete primes are precisely those path sets generated by individual paths.) The
arrows ofLin, linear maps, fromP to Q are join-preserving functions from̂P to Q̂.

1Path sets arise by ‘flattening’ presheaves, which can be viewed as characteristic functions to truth values
given in the category of sets, as sets of realisers, to simpler characteristic functions based on truth values
0 ≤ 1 [8].

The categoryLin is monoidal-closed with a tensor given by the productP × Q of
path orders and a corresponding function space byPop ×Q—it is easy to see that join-
preserving functions from̂P to Q̂ correspond to path sets ofPop × Q. In factLin has
enough structure to form a model of Girard’s classical linear logic [4]. To exhibit its
exponential! we first define the categoryCts to consist, likeLin, of path orders as
objects but now with arrows the Scott-continuous functions between the domains of
path sets. The inclusion functorLin ↪→ Cts has a left adjoint! : Cts → Lin which
takes a path orderP to a path order consisting of finite subsets ofP with order

P ≤!P P ′ iff ∀p ∈ P ∃p′ ∈ P ′. p ≤P p′

—so !P can be thought of as consisting of compound paths associated with several
runs.

The higher-order process language HOPLA is built around constructions in the
categoryLin. Types of HOPLA, which may be recursively defined, denote objects
of Lin, path orders circumscribing the computation paths possible. As such all types
support operations of nondeterministic sum and recursive definitions, both given by
unions. Sum types are provided by coproducts, and products, ofLin, both given by the
disjoint juxtaposition of path orders; they provide injection and projection operations.
There is a type of functions fromP to Q given by (!P)

op × Q, the function space
of Cts; this gives the operation of application and lambda abstraction. To this the
adjunction yields a primitive prefix operation, a continuous mapP → !P, given by the
unit atP; it is accompanied by a destructor, a prefix-match operation, obtained from
the adjunction’s natural isomorphism. For further details, encodings of traditional
process calculi in HOPLA and a full abstraction result, the reader is referred to [7, 9].

A domain theory for name generation We are interested in extending HOPLA
to allow name generation. We get our inspiration from the domain theory. As usual
a domain theory for name generation is obtained by moving to a category in which
standard domains are indexed functorially by the current set of names. The category
I consists of finite sets of names related by injective functions. The functor category
LinI has as objects functorsP : I → Lin, so path ordersP(s), indexed by finite sets
of namess, standing for the computation paths possible with that current set of names;
its arrows are natural transformationsα = 〈αs〉s∈I : P → Q, with components in
Lin. One important object inLinI is the object of namesN providing the current
set of names, soN(s) = s regarded as a discrete order, at name sets. Types of
new-HOPLA will denote objects ofLinI .

The category has coproducts and products, both given by disjoint juxtaposition at
each component. These provide asum typeΣi∈IPi from a family of types(Pi)i∈I . It
hasinjectionsproducing a termi:t of typeΣi∈IPi from a termt of typePi, for i ∈ I.
Projectionsproduce a termπit of typePi from a termt of the sum type.

There is a tensor got pointwise from the tensor ofLin. GivenP andQ in LinI we
defineP⊗Q in LinI so that(P⊗Q)(s) = P(s)×Q(s) ats ∈ I. We will only use a
special case of this construction to form tensor typesN⊗P, so(N⊗P)(s) = s×P(s) at
s ∈ I. These are a form of ‘dynamic sum’, referred to earlier, in which the components
and the corresponding injections grow with the availability of new names. There are
term constructors producing a termn · t of typeN ⊗ P from a termt of typeP and a

namen. There are projectionsπnt forming a term of typeP from a termt of tensor
type.

At any stages, the current set of names, a new name can be generated and used in
a term in place of a variable over names. This leads to the central idea of new-name
abstractions of typeδP whereδP(s) = P(s

.
∪ {?}) at name sets. As observed by

Stark [14] the constructionδP can be viewed as a space of functions fromN to P
but with the proviso that the input name is fresh. A new-name abstraction is written
newα.t and has typeδP, wheret is a term of typeP. New-name application is written
t[n], wheret has typeδP, and requires that the namen is fresh w.r.t. the names oft.

The adjunctionLin � � ⊥ // Cts
!oo

induces an adjunctionLinI � � ⊥ // CtsI
!oo

where
the left adjoint is got by extending the original functor! : Cts → Lin in a pointwise
fashion. The unit of the adjunction provides a family of maps fromP to !P in CtsI .
As with HOPLA, these yield a prefix operation!t of type !P for a termt of typeP. A
type of the form!P is called a prefix type; its computation paths at any current name
set first involve performing a prototypical action, also called ‘!’.

To support higher-order processes we need function spacesP (Q such that

LinI(R, P (Q) ∼= LinI(R⊗ P, Q)

natural inR andQ. Such function spaces do not exist in general—the difficulty is in
getting a path orderP (Q(s) at each name sets. However a function spaceP (Q
does exist in the case wherePf preserves complete primes andQf preserves non-
empty meets for each mapf : s → s′ in I. This suggests limiting the syntax of types
to special function spacesN (Q and !P (Q, the function space inCtsI . The
function spaces are associated with operations of application and lambda abstraction.

Related work and contribution The above domain theoretic constructions pro-
vide the basis of new-HOPLA. It resembles, and indeed has been inspired by, the
metalanguages for domain theories with name generation used implicitly in earlier
work [3, 14, 2], as well as the language of FreshML [11]. The language new-HOPLA
is distinguished through the path-based domain theories to which it is fitted and, as we
will see, in itself forming a process language with an operational semantics. For lack
of space, in this extended abstract we omit the proofs of the theorems; these can be
found in [16].

2 The language
Types The type of names is denoted byN. The types of processes are defined by
the grammar below.

P ::= 0
∣∣ N⊗P

∣∣ !P
∣∣ δP

∣∣ N → P
∣∣ P → Q

∣∣ Σi∈IPi

∣∣ µjP1 . . . Pk.(P1 . . . Pk)
∣∣ P

The sum typeΣi∈IPi whenI is a finite set, is most often writteni1:P+ · · ·+ik:P. The
symbolP is drawn from a set of type variables used in defining recursive types; closed
type expressions are interpreted as path orders. The typeµjP1 . . . Pk.(P1 . . . Pk) is
interpreted as thej-component, for1 ≤ j ≤ k, of the ‘least’ solution to the defining
equationsP1 = P1, . . . , Pk = Pk, where the expressionsP1 . . . Pk may contain the
Pj ’s.

t, u, v ::= 0
˛̨

!t inactive process and prototypical action˛̨
n · t

˛̨
πnt tensor and projection˛̨

λx.t
˛̨

tu process abstraction and application˛̨
λα.t

˛̨
tn name abstraction and application˛̨

newα.t
˛̨

t[n] new-name abstraction and application˛̨
recx.t

˛̨
x recursive definition and process variables˛̨

i:t
˛̨

πit injection and projection˛̨
Σi∈Iti

˛̨
Σα∈Nt sum and sum over names˛̨

[t > p(x) ⇒ u] pattern matching

Table 1. new-HOPLA: syntax of terms

Terms and actions We assume a countably infinite set ofname constants, ranged
over bya, b, . . . and a countably infinite set ofname variables, ranged over byα, β, . . .
Names, either constants or variables, are ranged over bym,n, We assume an
infinite, countable, set ofprocess variables, ranged over byx, y, . . .

Every type is associated with actions processes of that type may do. Theactions
are defined by the grammar below:

p, q, r ::= x
∣∣ !p

∣∣ n · p
∣∣ i:p

∣∣ newα.p
∣∣ n 7→ p

∣∣ u 7→ p
∣∣ p[n] .

As we will see shortly, well-typed actions are constructed so that they involve exactly
one prototypical action! and exactly one ‘resumption variable’x. Whenever a term
performs the action, the variable of the action matches the resumption of the term: the
typings of an action thus relates the type of a term with the type of its resumption.
According to the transition rules a process of prefix type!P may do actions of the
form !p, while a process of tensor or sum type may do actions of the formn · p or i:p
respectively. A process of typeδP does actions of the formnewα.p meaning that at
the generation of a new name,a say, as input the actionp[a/α] is performed. Actions
of function typen 7→ p or u 7→ p express the dependency of the action on the input of
a namen or processu respectively. The final clause is necessary in building up actions
because we sometimes need to apply a resumption variable to a new name.

Thetermsare defined by the grammar reported in Table 1.
In new-HOPLA actions are used as patterns in terms[t > p(x) ⇒ u] where we

explicitly note the resumption variablex. If the termt can perform the actionp the
resumption oft is passed on tou via the variablex.

We assume an understanding of thefree name variables(the binders of name vari-
ables areλα.−, newα.−, andΣα∈N−) and of thefree process variables(the binders
of process variables areλx.−, and[t > p(x) ⇒ −]) of a term, and of substitutions.
Thesupportof a closed term, denotedn(t), is the set of its name constants. We say
that a namen is freshfor a closed termt if n 6∈ n(t).

Transition rules The behaviour of terms is defined by a transition relation of the
form

s ` t
p (x)
−−−−−→ t′

wheres is a finite set of name constants such thatn(t) ⊆ s. The transition above
should be read as ‘with current namess the termt can perform the actionp and re-
sume ast′’. We generally note the action’s resumption variable in the transitions;

!P; s ` !t
!x (x)
−−−−−→ t

P; s ` ti

p (x)
−−−−−→ t′

P; s ` Σi∈Iti

p (x)
−−−−−→ t′

P; s ` t[a/α]
p (x)
−−−−−→ u a ∈ s

P; s ` Σα∈Nt
p (x)
−−−−−→ u

P; s ` t
p (x)
−−−−−→ t′ a ∈ s

N⊗ P; s ` a · t
a·p (x)
−−−−−−→ t′

N⊗ P; s ` t
a·p (x)
−−−−−−→ t′

P; s ` πat
p (x)
−−−−−→ t′

P; s ` t[recy.t/y]
p (x)
−−−−−→ u

P; s ` recy.t
p (x)
−−−−−→ u

Pi; s ` t
p (x)
−−−−−→ t′

Σi∈IPi; s ` i:t
i:p (x)
−−−−−−→ t′

Σi∈IPi; s ` t
i:p (x)
−−−−−−→ t′

Pi; s ` πit
p (x)
−−−−−→ t′

Q; s ` t[u/x]
p (x)
−−−−−→ v s ` u : P

P → Q; s ` λx.t
u 7→p (x)
−−−−−−−→ v

P → Q; s ` t
u 7→p (x)
−−−−−−−→ v

Q; s ` tu
p (x)
−−−−−→ v

P; s ` t[a/α]
p (x)
−−−−−→ v a ∈ s

N → P; s ` λα.t
a7→p (x)
−−−−−−−→ v

N → P; s ` t
a7→p (x)
−−−−−−−→ v

P; s ` ta
p (x)
−−−−−→ v

P; s
.
∪ {a} ` t[a/α]

p[a/α] (x)
−−−−−−−−→ u[a/α]

δP; s ` newα.t
newα.p[x′[α]/x] (x′)
−−−−−−−−−−−−−−−−→ newα.u

δP; s ` t
newα.p[x′[α]/x] (x′)
−−−−−−−−−−−−−−−−→ u

P; s
.
∪ {a} ` t[a]

p[a/α] (x)
−−−−−−−−→ u[a]

P; s ` t
p (x)
−−−−−→ t′ Q; s ` u[t′/x]

q (x′)
−−−−−→ v

Q; s ` [t > p(x) ⇒ u]
q (x′)
−−−−−→ v

In the rule for new name abstraction, the conditionsa 6∈ n(p) anda 6∈ n(u) must hold.
Table 2. new-HOPLA: transition rules

this simplifies the transition rules in which the resumption variable must be explicitly
manipulated.

So the transition relation is given at stages indexed by the set of current namess.
The body of an abstraction over namesλα.t can only be instantiated with a name ins,
and an abstraction over processesλx.t can only be instantiated with a process whose
support is contained ins. As the transition relation is indexed by the current set of
names, it is possible to generate new names at run-time. Indeed, the transition rule
for new-name abstractionnewα.t extends the sets of current names with a new name
a 6∈ s; this namea is then passed tot via the variableα. The transition rules must
respect the typings of actions and terms given in the next section. Formally:

Definition 1 (Transition relation) For closed termst such thats ` t : P and path
patterns such thats; ; x:Q p : P the rules reported in Table 2 define a relation

P; s ` t
p (x)
−−−−−→ u, called thetransition relation.

Typing judgements Consider a termt = t′[α]. As we have discussed in the pre-
vious section, this denotes a new-name application: any name instantiatingα should
be fresh for the termt′. Consider now the contextC[−] = λα.−. In the term
C[t] = λα.(t′[α]), the variableα is abstracted via a lambda abstraction, and may
be instantiated with any current name. In particular it may be instantiated with names
that belong to the support oft′, thus breaking the hypothesis thatt′ has been applied
to a fresh name. The same problem arises with contexts of the formC[−] = Σα∈N−.

Moreover, if the process variablex is free in t, a context likeC[−] = λx.− might
replacex with an arbitrary termu. As the name instantiatingα might belong to the
support ofu, nothing ensures it is still fresh for the termt[u/x].

The type system must sometimes ensure that name variables are instantiated by
fresh names. To impose this restriction, the typing context contains not only typing
assumptions about name and process variables, such asα:N andx:P, but alsofreshness
assumptionsabout them, written(α, β) or (α, x). The intended meaning of(α, β)
is that the names instantiating the variablesα andβ must bedistinct. A freshness
assumption like(α, x), wherex is a process variable, records that in any environment
the name instantiatingα must be fresh for the term instantiatingx.

Using this auxiliary information, the type system assumes that it is safe to abstract
a variable, using lambda abstraction or sum over names, only if no freshness assump-
tions have been made on it.

The type system of new-HOPLA terms can be specified using judgements of the
form:

A; Γ; d ` t : P

where

A ≡ α1:N, . . . , αk:N is a collection of name variables;

Γ ≡ x1:P1, . . . , xk:Pk is a partial function from process variables to types;

d is a set of pairs(α, x) ∈ A × Γ, and(α, β) ∈ A × A, keeping track of the
freshness assumptions.

Notation: We write d \ α for the set of freshness assumptions obtained fromd by
deleting all pairs containingα. The order in which variables appear in a distinction
is irrelevant; we will write(α, β) ∈ d as a shorthand for(α, β) ∈ d or (β, α) ∈ d.
When we writeΓ ∪ Γ′ we allow the environments to overlap; the variables need not
be disjoint provided the environments are consistent.

Actions are typed along the same lines, even if type judgements explicitly report
the resumption variable:

A; Γ; d; ; x:R p : P .

The meaning of the environmentA; Γ; d is exactly the same as above. The variablex
is the resumption variable of the patternp, and its type isR.

The type system of new-HOPLA is reported in Table 3 and Table 4.
The rule responsible for generating freshness assumptions is the rule for new-name

application. If the termt has been typed in the environmentA; Γ; d andα is a new-
name variable (that is,α 6∈ A), then the termt[α] is well-typed under the hypothesis
that any name instantiating the variableα is distinct from all the names in terms instan-
tiating the variables that can appear int. This is achieved adding the set of freshness
assumptions{α}×(Γ∪A) tod (when convenient, as here, we will confuse an environ-
ment with its domain). The rule for pattern matching also modifies the freshness as-
sumptions. The operational rule of pattern matching substitutes a subterm oft, whose
names are contained inA′, for x. Accordingly, the typing rule initially checks that no
name inA′ belongs to the set of the variables supposed fresh forx. Our attention is
then drawn to the termu[t′/x], wheret′ is a subterm oft. A name variableα ∈ A

A; Γ; d; ; x:R !x : !R
A; Γ; d; ; x:R p : P

A; Γ; d; ; x:R α · p : N⊗ P
α ∈ A

α:N, A; Γ; d; ; x:R p : P
A; Γ; (d \ α); ; x′:δR newα.p[x′[α]/x] : δP

A; Γ; d; ; x:R p : P
A; Γ; d; ; x:R α 7→ p : P

α ∈ A

A; Γ; d ` u : Q A; Γ; d; ; x:R p : P
A; Γ; d; ; x:R u 7→ p : Q → P

A; Γ; d; ; x:R p : Pj j ∈ I

A; Γ; d; ; x:R (j:p) : Σi∈IPi

A; Γ; d; ; x:R t : Pj [µ~P .~P/~P]

A; Γ; d; ; x:R t : µjP : ~P
A; Γ; d; ; x:R p : P

A′; Γ′; d′; ; x:R p : P

A ⊆ A′

Γ ⊆ Γ′

d ⊆ d′

Table 3. new-HOPLA: typing rules for actions

A; Γ; d ` ∅ : P A; x:P, Γ; d ` x : P
A; Γ; d ` t : P

A′; Γ′; d′ ` t : P

A ⊆ A′

Γ ⊆ Γ′

d ⊆ d′

A; Γ; d ` t : P
A; Γ; d ` !t : !P

α:N, A; Γ; d ` t : P
A; Γ; d ` Σα∈Nt : P

α 6∈ d
α:N, A; Γ; d ` t : P

A; Γ; d ` λα.t : N → P
α 6∈ d

A; x:Q, Γ; d ` t : P
A; Γ; d ` λx.t : Q → P

x 6∈ d

α:N, A; Γ; d ` t : P
A; Γ; (d \ α) ` newα.t : δP

A; Γ; d ` t : δP
α:N, A; Γ; d ∪ ({α} × (Γ ∪A)) ` t[α] : P

A; Γ; d ` t : N → P
A; Γ; d ` tα : P

α ∈ A
A; Γ; d ` t : P → Q A; Γ; d ` u : P

A; Γ; d ` tu : Q
A; Γ; d ` t : Pi

A; Γ; d ` i:t : Σi∈IPi

A; Γ; d ` t : Σi∈IPi

A; Γ; d ` πit : Pi

A; x:P, Γ; d ` t : P
A; Γ; d ` recx.t : P

x 6∈ d
A; Γ; d ` ti : P ∀i ∈ I

A; Γ; d ` Σi∈Iti : P

A; Γ; d ` t : P
A; Γ; d ` α · t : N⊗ P

α ∈ A
A; Γ; d ` t : N⊗ P
A; Γ; d ` παt : P

α ∈ A
A; Γ; d ` t : Pj [µ~P .~P/~P]

A; Γ; d ` t : µjP : ~P

A′; Γ′; d′ ` t : P A′; Γ′; d′; ; x:R p : P A; x:R, Γ; d ` u : Q
A ∪A′; Γ ∪ Γ′; d ` [t > p(x) ⇒ u] : Q

A′ ∩ {α | (α, x) ∈ d} = ∅

whered = (d \ x) ∪ d′ ∪ {{α} × (A′ ∪ Γ′) | (α, x) ∈ d}

Table 4. new-HOPLA: typing rules for processes

supposed fresh fromx when typingu, must now be supposed fresh from all the free
variables oft′. This justifies the freshness assumptions{{α}×(A′∪Γ′) | (α, x) ∈ d}.

The rest of the type system follows along the lines of type systems for the simply
typedλ-calculus.

The type system assumes that terms do not contain name constants. This is to avoid
the complications in a type system coping with both name variables and constants at
the same time. We writes ` t : P when there is a judgementA; ∅; d ` σt′ : P
and a substitutionσ for A respecting the freshness assumptionsd such thatt is σt′.
Similarly for patterns.

Proposition 1 The judgements ` t : P holds iff there is a canonical judgement
A; ∅; {(α, β) | α 6= β} ` t′ : P, in which the substitutionσ is a bijection between
name variables and names andt is σt′.

We can now prove that the operational rules are type correct.

Lemma 2 (Substitution Lemma) If A′; Γ′; d′ ` t : Q and A;x:Q,Γ; d ` u : P,
whereΓ ∪ Γ′ is consistent andA′ ∩ {α | (α, x) ∈ d} = ∅, thenA ∪ A′; Γ ∪ Γ′; d `
u[t/x] : P whered = (d \ x) ∪ d′ ∪ {{α} × (A′ ∪ Γ′) | (α, x) ∈ d}.
Theorem 3 (Transitions preserve types) If s ` t : P and s; ; x:R p : P and

P; s ` t
p (x)
−−−−−→ t′, thens ` t′ : R.

3 Equivalences
After introducing some notations regarding relations, we explore the bisimulation

equivalence that arises from the transition semantics. A relationR between typing
judgements is said to respect types if, wheneverR relatesE1 ` t1 : P1 andE2 ` t2 :
P2, we haveE1 ≡ E2 andP1 ≡ P2. We are mostly interested in relations between
closed terms, and we writes ` t R u : P to denote(s ` t : P, s ` q : P) ∈ R.

Definition 4 (Bisimilarity) A symmetric type-respecting relation on closed terms,R,

is a bisimulationif whenevers ` t R u : P andP; s′ ` t
p(x)
−−−−→ t′ for s′ ⊇ s, there

exists a termu′ such thatP; s′ ` u
p(x)
−−−−→ u′ and s′ ` t′ R u′ : R; whereR is

the type of the resumption variablex in p. Let bisimilarity, denoted∼, be the largest
bisimulation.

We say that two closed termst andq are bisimilar ifs ` t ∼ q : P for somes andP.
In the definition of bisimulation, the universal quantification on sets of namess′

is required, otherwise we would relate{a} ` λα.[α!0 > a!x ⇒ !0] : N → !0 and
{a} ` λα.!0 : N → !0 while these two terms behave differently in a world wherea is
not the only current name.

Using an extension of Howe’s method [6] as adapted by Gordon and Pitts to a typed
setting [5, 10], we show that bisimilarity is preserved by well typed contexts.

Theorem 5 Bisimilarity∼ is an equivalence relation and a congruence.

Proposition 2 For closed, well-formed, terms the equations reported in Table 5 hold.

Proposition 3 Bisimilarity validatesβ-reduction on new-name abstraction:

s
.
∪ {a} ` (newα.t)[a] ∼ t[a/α] : P .

4 Examples
In this section, we illustrate how new-HOPLA can be used to give semantics to

well-known process algebras.

We introduce an useful product typeP & Q, which is not primitive in new-HOPLA.
It is definable as1:P+2:Q. The projections are given byfst(t) = π1(t) andsnd(t) =
π2(t), while pairing is defined as(t, u) = 1:t+2:u. For actions(p,−) = 1:p, (−, q) =
2:q. It is then easy to verify thats ` fst(t, u) ∼ t : P, thats ` snd(t, u) ∼ u : Q, and
thats ` (fst(t, u), snd(t, u)) ∼ (t, u) : P & Q, for all s ⊇ n(t) ∪ n(u).

s ` (λx.t)u ∼ t[u/x] : P s ` (λα.t)a ∼ t[a/α] : P
s ` λx.(tx) ∼ t : P → Q s ` λα.(tα) ∼ t : N → P

s ` λx.(Σi∈Iti) ∼ Σi∈I(λx.ti) : P → Q s ` λα.(Σi∈Iti) ∼ Σi∈I(λα.ti) : N → P
s ` (Σi∈Iti)u ∼ Σi∈I(tiu) : P s ` (Σi∈Iti)a ∼ Σi∈I(tia) : P
s ` πβ(β · t) ∼ t : P s ` πβ(α · t) ∼ 0 : P

s ` β · (Σi∈Iti) ∼ Σi∈Iβ · ti : P s ` πβ(Σi∈Iti) ∼ Σi∈Iπβti : P
s ` t ∼ Σα∈Nα · (παt) : N⊗ P s ` [!u > !x ⇒ t] ∼ t[u/x] : P

s ` [Σi∈Iui > !x ⇒ t] ∼ Σi∈I [ui > !x ⇒ t] : P

Table 5. Proposition 2: equations

π-calculus We denotename constantswith a, b, . . ., andname variableswith α, β, . . .;
the lettersn, m, . . . range over both name constants and name variables. The terms of
the language are constructed according the following grammar:

P, Q ::= 0
˛̨

P | Q
˛̨

(να)P
˛̨

nm.P
˛̨

n(α).P .

The late labelled transition system (denoted
α−−→l) and the definition of strong late

bisimulation (denoted∼l) are standard [13].2

We can specify a typeP as

P = τ :!P + out:N⊗ N⊗ !P + bout:N⊗ !(δP) + inp:N⊗ !(N → P) .

The terms ofπ-calculus can be expressed in new-HOPLA as the following terms of
typeP:

J0K = 0 Jnm.P K = out:n ·m · !JP K Jn(β).P K = inp:n · !(λβ.JP K)

J(να)P K = Res (newα.JP K) JP | QK = JP K || JQK

Here,Res : δP → P and|| : P&P → P (we use infix notation for convenience) and
are abbrevations for the recursively defined processes reported in Table 6.

Informally, the restriction mapRes : δP → P pushes restrictions inside processes
as far as possible. The five summands correspond to the five equations below:

(να)τ.P ∼l τ.(να)P

(να)mn.P ∼l mn.(να)P if α 6= m, n (να)mα.P ∼l m(α).P if α 6= m

(να)m(β).P ∼l m(β).(να)P if α 6= m (να)mβ.P ∼l mβ.(να)P if α 6= m

wherem(α) is an abbreviation to express bound-output, that is,(να)mα. The map
Res implicitly also ensures that(να)P ∼l 0 if none of the above cases applies. The
parallel composition map|| captures the(late) expansion lawof π-calculus. There is a
strong correspondence between actions performed by a closedπ-calculus process and
the actions of its encoding.

Theorem 6 Let P a closedπ-calculus process. IfP
τ−−→l P ′ is derivable inπ-cal-

culus, thenn(JP K) ` JP K
τ :!−−−→ t for somet, andn(t) ` t ∼ JP ′K : P. Conversely, if

2To avoid complicating proofs, we ignore replication; that can be encoded asJ!P K = rec x.(JP K || x).

Res t = [t > newα.τ :!(x[α])) ⇒ τ :!Res x]

+ Σβ∈NΣγ∈N[t > newα.out:β · γ · !(x[α]) ⇒ out:β · γ · !Res x]

+ Σβ∈N[t > newα.out:β · α · !(x[α]) ⇒ bout:β · !x]

+ Σβ∈N[t > newα.bout:β · !(x[α]) ⇒ bout:β · !newγ · Res (newη.x[η][γ])]

+ Σβ∈N[t > newα.inp:β · !(x[α]) ⇒ inp:β · !λγ.Res (newη.x[η](γ))]

t || u = [t > τ :!x ⇒ τ :!(x || u)]

+ Σβ∈NΣγ∈N[t > out:(β · γ · !x) ⇒ [u > inp:(β · !y) ⇒ τ :!(x || yγ)]]

+ Σβ∈N[t > bout:(β · !x) ⇒ [u > inp:(β · !y) ⇒ τ :!Res (newη.(x[η] || yη))]]

+ Σβ∈NΣγ∈N[t > out:β · γ · !x ⇒ out:β · γ · !(x || u)]

+ Σβ∈N[t > bout:β · !x ⇒ bout:β · !newη.(x[η] || u)]

+ Σβ∈N[t > inp:β · !x ⇒ inp:β · !λη.(x(η) || u)] + symmetric cases

whereη is chosen to avoid clashes with the free name variables ofu.
Table 6. Restriction and parallel composition forπ-calculus

n(JP K) ` JP K
τ :!−−−→ t in new-HOPLA, thenP

τ−−→l P ′ for someP ′, andn(t) ` t ∼
JP ′K : P.

The encoding also preserves and reflects late strong bisimulation.

Theorem 7 LetP andQ be two closedπ-calculus processes. IfP ∼l Q thenn(P)∪
n(Q) ` JP K ∼ JQK : P. Conversely, ifn(JP K) ∪ n(JQK) ` JP K ∼ JQK : P, then
P ∼l Q.

Along the same lines, new-HOPLA can encode the early semantics ofπ-calculus.
The type of the input action assigned toπ-calculus terms captures the difference be-
tween the two semantics. In the late semantics a process performing an input action
has typeinp:N ⊗ !(N → P): the type of the continuation (N → P) ensures that the
continuation is actually anabstractionthat will be instantiated with the received name
when interaction takes place. In the early semantics, the type of a process performing
an input action is changed intoinp:N ⊗ N → !P. Performing an input action now
involves picking up a name before executing the prototypical action, and in the con-
tinuation (whose type isP) the formal variable has been instantiated with the received
name. Details can be found in [16].

Higher-Order π-calculus The language we consider can be found in [13]. Rather
than introducing a unit value, we allow processes in addition to abstractions to be
communicated. For brevity, we gloss over typing issues. The syntax of terms and
values is defined below.

P ::= V • V
˛̨

n(x).P
˛̨

n(V).P
˛̨

P | P
˛̨

x
˛̨

(να)P
˛̨

0 V ::= P
˛̨

(x).P

The reduction semantics for the language is standard [13]; we only recall the axioms
that define the reduction relation:

(x).P • V _ P [V/x] n(V).P | n(x).Q _ P | Q[V/x] .

Types for HOπ are given recursively by

P = τ :!P+out:N⊗!C+inp:N⊗!(F → P) C = 0:F&P+1:δC F = 2:P+3:F → P .

Concretions of the form(να̃)〈V 〉P correspond to terms of typeC; recursion on types
is used to encode the tuple of restricted namesα̃. The functionsJ−Kv andJ−K translate
respectively values into the terms of typeF, and processes into terms of typeP:

JP Kv = 2:JP K J(x).P Kv = 3:λx.JP K JV •W K = τ :!(π3JV Kv)(π2JW Kv + π3JW Kv)

JP | QK = JP K || JQK J(να)P K = Res newα.JP K JxK = x J0K = 0

Jn(x).P K = inp:n · !(λx.JP K) Jn(V)K = out:n · !(JV Kv, JP K) .

The restriction mapRes : δP → P filters the actions that a process emits, blocking
actions that refer to the name that is being restricted. Output actions cause names to
be extruded: the third summand records these names in the appropriate concretion.

Res t = [t > newα.τ :!x[α] ⇒ τ :!Res x]

+ Σβ∈N[t > newα.inp:(β · !x[α]) ⇒ inp:(β · !λy.Res (newγ.x[γ](y)))]

+ Σβ∈N[t > newα.out:(β · !x[α]) ⇒ out:(β · !3:x)]

Parallel composition is a family of mutually dependent operations also including com-
ponents such as||i of type C&F → P to say how values compose in parallel with
concretions etc. All these components can be tupled together in a product and parallel
composition defined as a simultaneous recursive definition:

— Processes in parallel with processes:

t || u = Σβ∈N[t > out:β · !x ⇒ [u > inp:β · !y ⇒ τ :!(x ||i y)]]

+ Σβ∈N[u > inp:β · !y ⇒ inp:β · !(t ||a y)]

+ Σβ∈N[u > out:β · !y ⇒ out:β · !(t ||c y)]

+ [u > τ :!y ⇒ τ :!(t || y)] + symmetric cases

— Concretions in parallel with values

c ||i f = snd(π0c) || ((π3f)(π2(fst(π0c)) + π3(fst(π0c)))

+ Res (newα.(((π1c)[α]) ||i f)))

— Concretions in parallel with processes

c ||c t = 0:(fst(π0c), snd(π0c) || t) + 1:(newα.((π1c)[α] ||c t))

— Values in parallel with processes

f ||a t = λx.(((π3f)x) || u)

The remaining cases are given symmetrically. The proposed encoding agrees with the
reduction semantics of HOπ. The resulting bisimulation is analogous to the so called
higher-order bisimulation[1, 15], and as such it is strictly finer than observational
equivalence. It is an open problem whether it is possible to provide an encoding of
HOπ that preserves and reflects the natural observational equivalence given in [12].

Polyadic π-calculus A natural and convenient extension toπ-calculus is to admit
processes that pass tuples of names: polyadicity is a good testing ground for the ex-
pressivity of our language. We can specify a type for polyadicπ-calculus processes
as:

P = τ :!P+out:N⊗C+ inp:N⊗ !F C = 0:N⊗C+1:δC+2:!P F = 3:N → F+4:P

Recursive types are used to encode tuples of (possibly new) names in concretions,
and sequences of name abstractions in abstractions.

Just as with theπ-calculus, it is possible to write a restriction mapRes : δP → P
that pushes restrictions inside processes as far as possible, and a parallel map that
captures the expansion law. The resulting semantics coincides with the standard late
semantics of polyadicπ-calculus. Details can be found in [16].

Mobile Ambients We sketch an encoding of the mobility core of the Ambient
Calculus, extending the encoding of Mobile Ambients with public names into HOPLA
given in [7]. Details can be found in [16].

Types reflect the actions that ambient processes can perform, and are given recur-
sively by:

P = τ :!P + in:N⊗ !P + out:N⊗ !P + open:N⊗ !P + mvin:N⊗ !C
+ mvout:N⊗ !C + open:N⊗ !P + mvın:N⊗ !F

C = 0:P&P + 1:δC F = P → P
The injectionsin, out, and open correspond to the basic capabilities a process can

exercise, while their action on the enclosing ambients is registered by the components
mvin andmvout. The injectionsopen andmvın record the receptive interactions that an
ambient can (implicitly) have with the environment. Again, recursive types are used
in concretions to record the sequence of names that must be extruded. Terms are then
translated as:

Jin n.P K = in n · !JP K Jout n.P K = out n · !JP K Jopen n.P K = open n · !JP K

J0K = 0 Jn[P]K = Amb(n, JP K) JP | QK = JP K || JQK J(να)P K = Res (newα.JP K)

The restriction mapRes : δP → P filters the actions that a process emit, and blocks
actions that refer to the name that is restricted. In fact, in Mobile Ambients, the only
scope extrusions are caused by mobility, and not by pre-actions.

Res t = · · ·+ Σβ∈N[t > newα.in:(β · !x[α]) ⇒ in:(β · !Res x)] + · · ·

Parallel composition is a family of operations, one of which is a binary operation be-
tween processes,||P&P: P&P → P. The most interesting cases are when two processes
interact:

t || u = Σβ∈N[t > open: β · !x ⇒ [u > open: β · !y ⇒ τ :·!(x ||c y)]]

+ Σβ∈N[t > mvın: β · !f ⇒ [u > mvin: β · !c ⇒ τ :·!(c ||i f)]] + · · ·

Interaction between concretions, abstractions, and processes is analogous to that in the
HOπ encoding. Finally, ambient creation can be defined recursively in new-HOPLA
as an operationAmb : N&P → P:

Amb(m, t) = [t > τ :!x ⇒ τ :!Amb(m, x)]

+ Σβ∈N[t > in:β · !x ⇒ mvin:β · !(Amb(m, x), 0)

+ Σβ∈N[t > out:β · !x ⇒ mvout:β · !(Amb(m, x), 0)

+ [t > mvout:m · !c ⇒ τ :!Extr(m, c)]

+ open:m · !t + mvın:m · !λy.Amb(m, t || y)

where the mapExtr : N&C → P extrudes names across ambient’s boundary after a
mvout action:

Extr(m, c) = fst(π0c) || Amb(m, snd(π0c)) + Res (newα.(Extr(m, (π1c)[α]))) .

5 Conclusion
This paper has concentrated on the operational semantics of new-HOPLA, which

despite its economy has been shown to be remarkably expressive. This is in part
because only two of the usual process-algebra operations appear as primitives in new-
HOPLA: a basic prefix operation and nondeterministic sum. The denotational seman-
tics of new-HOPLA and the domain theories on which they rest will be explained more
fully elsewhere. The path-set semantics sketched in the introduction suggests an anal-
ysis of adequacy and full abstraction, based on the basic observation of!-transitions,
along the lines of [8, 9]. The more detailed presheaf semantics supports bisimulation,
though at higher-order we do not understand how open-map bisimulation, intrinsic to
presheaf models, relates to the bisimulation we have defined—in the case of theπ-
calculus the two bisimulations agree by [2]. Closer to the concerns of this paper are
questions of exploiting the rich types of new-HOPLA to give ‘fully-abstract’ encod-
ings of higher-order process calculi.

References
[1] G. Boudol. Towards a lambda calculus for concurrent and communicating systems. In

Proc. TAPSOFT ’89, volume 351 ofLNCS, pages 149–161. Springer Verlag, 1989.
[2] G. L. Cattani, I. Stark, and G. Winskel. Presheaf models for theπ-calculus. InProc.

CTCS’97, volume 1290 ofLNCS. Springer Verlag, 1997.
[3] M. Fiore, E. Moggi, and D. Sangiorgi. A fully-abstract model for theπ-calculus. InProc.

11th LICS. IEEE Computer Society Press, 1996.
[4] J.Y. Girard. Linear logic.Theoretical Computer Science, 50:1–102, 1987.
[5] A. D. Gordon. Bisimilarity as a theory of functional programming: mini-course. Notes

Series BRICS-NS-95-3, BRICS, Department of CS, University of Aarhus, July 1995.
[6] D. J. Howe. Proving congruence of bisimulation in functional programming languages.

Information and Computation, 124(2):103–112, 1996.
[7] M. Nygaard and G. Winskel. Hopla—a higher-order process language. InProc. CON-

CUR’02, volume 2421 ofLNCS. Springer Verlag, 2002.
[8] M. Nygaard and G. Winskel. Domain theory for concurrency. To appear inTheoretical

Computer Science, special issue on domain theory, accepted 2003.
[9] M. Nygaard and G. Winskel. Full abstraction for HOPLA. InProc. CONCUR’03, LNCS.

Springer Verlag, 2003.
[10] A. M. Pitts. Operationally-based theories of program equivalence. In P. Dybjer and A. M.

Pitts, editors,Semantics and Logics of Computation, Publications of the Newton Institute,
pages 241–298. Cambridge University Press, 1997.

[11] A. M. Pitts and M. J. Gabbay. A metalanguage for programming with bound names
modulo renaming. InProc. MPC 2000, volume 1837 ofLNCS. Springer Verlag, 2000.

[12] D. Sangiorgi. Bisimulation in higher-order calculi. InProc. IFIP PROCOMET’94, pages
207–224. North-Holland, 1994.

[13] D. Sangiorgi and D. Walker.Theπ-calculus: a Theory of Mobile Processes. Cambridge
University Press, 2001.

[14] I. Stark. A fully-abstract domain model for theπ-calculus. InProc. 11th LICS. IEEE
Computer Society Press, 1996.

[15] B. Thomsen.Calculi for Higher Order Communicating Systems. PhD thesis, Department
of Computing, Imperial College, 1990.

[16] F. Zappa Nardelli.De la sémantique des processus d’ordre supérieur. PhD thesis, Uni-
versité de Paris 7, 2003. Available in English fromhttp://www.di.ens.fr/∼zappa.

