
Nominal Domain Theory for Concurrency

David Turner and Glynn Winskel

University of Cambridge Computer Laboratory

Abstract. This paper investigates a methodology of using FM (Fraenkel-
Mostowski) sets, and the ideas of nominal set theory, to adjoin name
generation to a semantic theory. By developing a domain theory for con-
currency within FM sets the domain theory inherits types and operations
for name generation, essentially without disturbing its original higher-
order features. The original domain theory had a metalanguage HOPLA
(Higher Order Process Language) and accordingly this expands to a met-
alanguage, Nominal HOPLA, with name generation (closely related to
an earlier language new-HOPLA). Nominal HOPLA possesses an oper-
ational and denotational semantics which are related via soundness and
adequacy results, again carried out within FM sets.

Introduction

Fraenkel-Mostowski (FM) set theory provided an early example of a set the-
ory violating the Axiom of Choice (AC). It did this by building a set theory
around a basic set of finitely permutable atoms A. Functions had to respect the
permutability of atoms, which was sufficient to disallow functions required to
fulfill AC. Atoms share the same properties as names in computer science. Most
often the precise nature of names is unimportant; what matters is their ability
to identify and their distinctness. For this reason FM set theory has begun to
play a foundational role in computer science, especially in syntax, making formal
previously informal and often inaccurate assumptions about, for example, the
freshness of variables in substitution[2, 3]. This paper turns FM set theory to
the problem of adjoining names and name generation to a semantic theory, a
domain theory for concurrency.

At heart what makes FM set theory important for treating names are adjunc-
tions associated with new-name abstraction. The simplest and best-known ad-
junction, implicit in [3], is for the category of nominal sets (those FM sets which
remain invariant under all finite permutations of names). Its right adjoint δ con-
structs a form of function space consisting of ‘new-name abstractions’. Closely
related though less well-known are the adjunctions in FM sets on which this
paper hinges. Here the associated functors can only be defined locally w.r.t. the
sets of names involved.

Importantly, aside from these name features, FM set theory behaves much
like more familiar set theories such as ZF, which is invaluable in transferring
developments in a name-free setting into FM sets. For us it will mean that a

2 David Turner and Glynn Winskel

path-based domain theory for concurrency can be systematically extended with
name generation by working within FM set theory.

In the domain theory a process denotes a set of paths in a path order, spec-
ifying the type of computations it can do. Path sets provide a fully-abstract
denotational semantics for the higher order process language HOPLA[4]. HO-
PLA was extended with name generation to a language new-HOPLA, able to
express for example the pi-Calculus, Higher-Order pi-Calculus and mobile ambi-
ents[8]. But providing a denotational semantics was problematic. With the then
standard way to adjoin name generation to a category of domains, by moving to
a functor category, indexing both processes and their types by the current set of
names, it became difficult to show that enough function spaces existed (there is
an error in [6]). These problems are obviated by working within FM set theory.
The way is open to developing more complicated semantics, such as that based
on presheaves over path categories, within FM sets.1

1 FM Sets

We provide a brief introduction to Fraenkel-Mostowski (FM) sets[2, 3].
Fix an infinite set of names (or ‘atoms’) written A. A finite permutation of

A is a permutation σ of A such that σa 6= a for only finitely many a ∈ A. The
collection of all finite permutations of A forms a group. The group is generated
by all transpositions (ab) which swap a name a and a name b.

Imagine building a hierarchy of sets as in ZF, but starting from A rather
than the empty set. The permutation action on the collection of atoms induces
a permutation action · on the hierarchy of elements by ∈-recursion, giving rise
to a notion of support. A set s ⊆ A supports the element x if for any finite
permutation σ such that σa = a for all a ∈ s it is also the case that σ · x = x.
If x has a finite support then it has a smallest finite support, written supp(x).
The FM sets are defined to be those elements with hereditarily finite support.

The collection of all FM sets and finitely-supported functions forms a cat-
egory FMSet which has subcategories FMSets comprising sets and functions
all of whose supports are contained in the finite set of names s. The subcategory
NSet (= FMSet∅) of nominal sets consists of those FM sets and functions with
empty support.

FM sets allow the usual operations of set theory, though with the proviso
that elements must always have finite support. In addition there are important
operations associated with names. The binary predicate x # y expresses that
two FM sets x and y have disjoint supports. If f : A→ X is a finitely-supported
function and X is a FM set then fresh a in fa denotes the unique x ∈ X such
that fa = x for any a ∈ A such that a # 〈f, fa〉 as long as such an a ∈ A
exists. When X = {>,⊥} then f : A→ X is a predicate on A and fresh a in fa
coincides with Na.fa where Nis the ‘new’ quantifier of Pitts and Gabbay. This

1 This paper summarises Turner’s PhD thesis[5], where all proofs and a fuller set of
references can be found; we apologise for the paucity of references forced here.

Nominal Domain Theory for Concurrency 3

permits the definition of the α-equivalence relation ∼α between pairs 〈x, a〉 where
x is an FM set and a is a name, by setting

〈x1, a1〉 ∼α 〈x2, a2〉 iff Nb. (a1b) · x1 = (a2b) · x2.

The α-equivalence class {〈a, x〉}∼α is an FM set written [a].x. Note that supp([a].x) =
supp(x) \ {a} so that a is ‘bound’ in [a].x. The operation of concretion acts so
([a].x)@b =def (ab) · x provided [a].x # b. We write Abs(A) for the class of
α-equivalence classes.

1.1 Name Generation in Nominal Sets

Defining
X ⊗ Y =def {〈x, y〉 | x # y}

gives a tensor ⊗ on NSet. Provided X is a nominal set, α-equivalence ∼α re-
stricts to an equivalence relation on X×A. The quotient (X×A)/∼α is written
δX. For example,

δA = {fresh b in [b].a | a ∈ A} ∪̇ {fresh a in [a].a} ∼= A ∪̇ {∗}.

The operation δ is the object part of a right adjoint to (−)⊗A; the counit is
given by concretion @. The right adjoint δ constructs a form of function space:
for a nominal set X, the nominal set δX consists of ‘new-name abstractions’ x′

which applied to a fresh name a yield x′@a in X. New-name abstractions in δX
capture the effect of new-name generation, albeit in a rather subtle way.

1.2 Name Generation in FM Sets

Unfortunately (−)⊗ A is no longer a functor on the larger category FMSet. If
names are to appear explicitly in our syntax, in operations and types (the case
for Nominal HOPLA—though not new-HOPLA2) we are led outside NSet, and
name generation requires an alternative to the adjunction (−)⊗ A a δ.

Turner[5] exhibits a suitable adjunction in FM sets given by the situation

(−)#a : FMSets � FMSets∪̇{a} : δa

now local to a finite set of names s with a ∈ A \ s. The left adjoint (−)#a is
defined on objects by X#a =def {x ∈ X | a # x} and on arrows by restriction.
The right adjoint δa can be described as a subset of α-equivalence classes x′: on
objects

δaX =def {x′ ∈ Abs(A) | Nb. x′@b ∈ (ab) ·X},

and if f : X → Y is an arrow of FMSets∪̇{a} and x′ ∈ δaX then δaf(x′) =def

fresh b in [b].
(
((ab) · f)(x′@b)

)
. The unit has components ξX : x 7→ fresh b in [b].x

2 A parallel to this paper showing how nominal sets NSet are sufficient to produce
an adequate denotational semantics for new-HOPLA is underway.

4 David Turner and Glynn Winskel

and the counit, ζX : x′ 7→ x′@a. Notice that if X has empty support then
X is a nominal set and δaX = δX. In particular δaA = δA ∼= A ∪̇ {∗}.
Also if s′ ⊆ s it follows that s′ and A \ s′ are both objects of FMSets. In
this case δas′ = {fresh b in [b].c | c ∈ s′} ∼= s′ via the isomorphism above, and
δa(A \ s′) = {fresh b in [b].c | c ∈ A \ s′} ∪̇ {fresh b in [b].b} ∼= (A \ s′) ∪̇ {∗}.

1.3 Name Generation in FM Preorders

We will see that the adjunction for name generation can be imported into other
structures, of which preorders are the simplest. An FM-preorder is defined,
as usual, to comprise 〈P,≤P〉 where P and ≤P are both FM sets such that ≤P
is a reflexive and transitive binary relation on P. The ∈-recursive nature of
the permutation action on FM sets gives rise to a permutation action on FM-
preorders, where σ · P = {σ · p | p ∈ P} and p ≤P p′ if and only if σ · p ≤σ·P
σ · p′. Functions in FMSet must be finitely-supported so we define the category
FMPre to consist of FM-preorders and finitely-supported monotone functions
(again the standard definition). For s a finite set of names, FMPres is the
subcategory of FMPre consisting of only those objects and arrows which are
supported by s.

FM-preorders inherit mechanisms for name generation directly from those
in FM sets. Let s be a finite set of names and a /∈ s. For 〈P,≤P〉 an object of
FMPres, define

〈P,≤P〉#a = 〈P#a,≤P#a〉

ordered by ≤#a
P the restriction of ≤P. For 〈P,≤P〉 an object of FMPres∪̇{a},

define δa〈P,≤P〉 = 〈δaP,≤δaP〉 where for p′1 and p′2 elements of δaP

p′1 ≤δaP p
′
2 ⇔def Nb. p′1@b ≤(ab)·P p

′
2@b.

Taking their action on maps to be that of the corresponding functors on FMSet,
we obtain a functor (−)#a : FMPres → FMPres∪̇{a} and its right adjoint δa.
The adjunction shares the same unit ξ and counit ζ as those for FM-sets.

2 A Linear Category of FM Domains

The development of the domain theory in FM-sets here is substantially the
same as an earlier domain theory developed in traditional set theory [4]. The
one extra constraint here is that all sets (so subsets and functions) must be
finitely-supported.

The objects of the linear category FMLin are FM-preorders P, thought of as
consisting of computation paths with the preorder p ≤ p′ expressing how a path p
extends to a path p′. A path order P determines a domain P̂, that of its path sets,
finitely-supported down-closed sets w.r.t. ≤P, ordered by inclusion. The arrows
of FMLin, linear maps, from P to Q are finitely-supported functions from P̂
to Q̂ which preserve joins of finitely-supported subsets. The category FMLin
is monoidal-closed with a tensor given by the product P × Q of FM-preorders

Nominal Domain Theory for Concurrency 5

and a corresponding function space by Pop×Q. The category has all biproducts
(where the objects are given by disjoint juxtaposition of preorders) which serve
as both products and coproducts.

In fact, the category FMLin will have enough structure to form a model
of Girard’s (classical) linear logic[1]. As usual, one can move to more liberal
maps through the use of a suitable comonad (an exponential of linear logic often
written !). Here, !P, for an FM-preorder P, will (essentially) consist of the isolated
elements of the domain P̂ under inclusion—!P can be thought of as consisting of
compound paths, associated with several runs. The coKleisli category of ! consists
of FM-preorders which consist of continuous functions between the domains of
path sets. However, in the regime of FM sets, we will have to exercise some care
in choosing what ‘continuous’, and also ‘isolated’, are to mean if fundamental
operations of name generation are to be continuous.

2.1 Name Generation in FMLin

FMLin inherits name generation from FMPre. Let s ⊆fin A and a ∈ A \ s.
There is a name-generation adjunction

(−)#a+ a δ+
a : FMLins � FMLins∪̇{a}.

Here FMLins is the subcategory of FMLin whose objects and arrows are all
supported by s. The key laws are isomorphisms

φP : P̂#a ∼= P̂#a and θQ : δaQ̂ ∼= δ̂aQ

natural in P in FMPres and Q in FMPres∪̇{a}. The isomorphisms and inverses
are given concretely as follows:

φP(x) =def {p ∈ x | a # p} and φ−1
P (x) =def x ∪

⋃
b#x,P(ab) · x

θ
(a)
Q (y′) =def {q′ | Nb. q′@b ∈ y′@b} and θ−1

Q (y) =def fresh b in [b].{q | [b].q ∈ y}.

Define the functor (−)#a+ : FMLins → FMLins∪̇{a} to act as (−)#a on objects
and take f : P→

L
Q to φQ ◦ f#a ◦ φ−1

P : P#a → Q#a, and δ+
a similarly.

In [5] it is shown that these functors are well-defined, and that the composite
bijection

FMLins∪̇{a}(P#a,Q) ∼= FMPres∪̇{a}(P#a, Q̂) ∼= FMPres(P, δaQ̂) ∼=

FMPres(P, δ̂aQ) ∼= FMLins(P, δaQ),

got via the isomorphism θQ, extends to an adjunction with unit ξ̂ and counit ζ̂.

3 Continuity in FM Domains

Linear maps are too restrictive to give a semantics for concurrent processes. In[4]
the solution was to turn from linear to continuous maps, which preserve only
directed joins, via a suitable comonad on FMLin. But this is not appropriate in
the FM setting: the desired semantics for name generation is not directed-join
continuous!

6 David Turner and Glynn Winskel

3.1 Continuity and name generation

To see this, we consider a term construction new a.t inspired by new-HOPLA[8].
Imagine that t denotes a process whose actions lie within the set of names A;
so its denotation [[t]] is an element of Â. By definition the term new a.t denotes
an element of δ̂A; its denotation [[new a.t]] is given as θA([a].[[t]]), where θA :
δa(Â) ∼= δ̂aA is the isomorphism described in the previous section. The term
new a.t denotes a process with actions of the form [b].c and [c].c from δaA.

Consider now an open term new a.(−). Substitution into new a.(−) replaces
a with a name a′ fresh w.r.t. the argument being substituted, if necessary.
Consequently, the substitution of A, with empty support, results in denota-
tion θA([a].A) which can be shown to contain [a].a. Whereas, the substitution of
s ⊆fin A, results in denotation θA([a′].s), with a′ /∈ s, a denotation which cannot
contain [a].a. As A =

⋃
s⊆finA s is a directed join, this shows that new a.(−) does

not yield a directed-join continuous function.

3.2 FM-Continuity

It makes little difference to classical domain theory whether one uses increasing
(ordinal-indexed) sequences or directed sets, because the Axiom of Choice (AC)
can be used to move between the two. However, AC does not hold in the theory
of FM sets, and this equivalence breaks down. A particular difference is that
in any sequence in FM set theory with support s each element of the sequence
must also have support s; this ‘uniformity’ of support does not hold for directed
sets in general.

Definition 1. An FM set X has uniform support s if every element x ∈ X
is supported by s. An FM-directed set is a directed set with uniform support.
If P, Q are FM-preorders, say that a function f : P̂→ Q̂ is FM-continuous if
it is finitely-supported and preserves joins of FM-directed sets. (Note FM-linear
maps are FM-continuous.)

If X has uniform support then it can be wellordered within FM set the-
ory: AC gives an (external) wellordering and the uniformity ensures that this
wellordering is itself finitely-supported. Approximation by FM-directed sets and
approximation by (ordinal-indexed) sequences are equivalent in FM set theory.

Returning to the example of new a.(−), notice that the directed set {s | s ⊆fin

A} does not have a uniform support. LetX ⊆ Â be directed with uniform support
s. Then every x ∈ X is either a subset of s or a superset of A \ s, so X is finite.
Since X is also directed it contains a maximum element. As a direct consequence,
new a.(−) is FM-continuous.

3.3 FM-Isolated elements

We investigate the structure of isolated elements of domains P̂, for P an FM-
preorder, with respect to FM-directed sets.

Nominal Domain Theory for Concurrency 7

Definition 2. An element P ∈ P̂ is FM-isolated (or simply isolated) iff for
all FM-directed sets X ⊆ P̂, if P ⊆

⋃
X then there exists x ∈ X such that

P ⊆ x.

For example, every element of Â is isolated, because any FM-directed subset
of Â contains a maximum element (see above). More generally,

Definition 3. For P a FM-preorder, F a finite subset of P and s a finite set
of names containing supp(P), define 〈F 〉s =def

⋃
σ#s σ · F ; write 〈F 〉s↓ for the

down-closure of 〈F 〉s.

Every x ∈ Â is of this form: either x is finite and hence x = 〈x〉supp(x) or else
x is cofinite and hence x = 〈{a}〉supp(x) for any a ∈ x. In general:

Lemma 1. If F ⊆fin P and s is a finite set of names that supports P then 〈F 〉s↓
is isolated in P̂. Conversely, if P ∈ P̂ is isolated and supp(P,P) ⊆ s then there
exists F ⊆fin P such that P = 〈F 〉s↓.

3.4 The Category FMCts

Let FMCts be the category with objects FM-preorders and arrows from P to
Q the FM-continuous functions from P̂ to Q̂.

We can characterise FM-continuous maps in terms of FM-linear maps whose
source is under an exponential !. It is sensible to define !P as comprising the FM-
isolated elements of P̂ ordered by inclusion. However, with an eye to defining
recursive types, we instead define !P to be the equivalent FM-preorder with
elements 〈F 〉s where F ⊆fin P and s supports P; its order is given by taking
P ≤!P P

′ whenever ∀p ∈ P∃p′ ∈ P ′. p ≤P p
′.

Each P̂ is the free FM-directed-join completion of !P. (The order P̂ is algebraic
with respect to approximation by FM-directed sets.) It follows that ! extends
to functor making an adjunction FMLin(!P,Q) ∼= FMCts(P,Q), where the
inclusion is right adjoint to the !. Its unit ηP : P →

C
!P is given concretely by

ηPX = {P ∈ !P | P ⊆ X}. The adjunction satisfies the conditions Benton et al
proposed for a model of linear logic[1].

3.5 Name Generation in FMCts

We inherit adjunctions

(−)#a++ a δ++
a : FMCtss � FMCtss∪̇{a}

supporting name generation in FMCts from the adjunctions (−)#a+ a δ+
a on

the linear categories. Here s ⊆fin A and a ∈ A\s and FMCtss is the subcategory
of FMCts supported by s. In detail, (−)#a++ and δ++

a act respectively as (−)#a

and δa on objects. The arrow f : P →
C

Q of FMCtss is taken to the composite

f#a++ =def φQ ◦ f#a ◦φ−1
P and the arrow g : P→

C
Q of FMCtss∪̇{a} is taken to

8 David Turner and Glynn Winskel

δ++
a g =def θQ ◦ δag ◦ θ−1

P . These definitions coincide with those of (−)#a+ and
δ+
a on linear arrows.

Via an isomorphism !((−)#a) ∼= (!(−))#a, analogous to φ−1 of section 2.1,
we obtain as a composite the bijection

FMCtss∪̇{a}(P#a,Q) ∼= FMLins∪̇{a}(!(P#a),Q) ∼= FMLins∪̇{a}((!P)#a,Q)
∼= FMLins(!P, δaQ) ∼= FMCtss(P, δaQ),

of the adjunction (−)#a++ a δ++
a , with unit ξ̂ and counit ζ̂ —see [5].

The machinery of freshness, the functors (−)#a and the isomorphisms φP :
P̂#a → P̂#a, can be extended to model freshness with respect to a finite set
of names s. This is used to capture ‘freshness assumptions’ in the type system:
a variable of type P#s insists that it receives input that is fresh for s, and a
term of type P#s avoids the names in s in its evaluation. Concretely, P#s =
{p ∈ P | p # s} with order given by the restriction of the order on P, while
φ

(s)
P x = {p ∈ x | p # s}, for x ∈ P̂#s.

4 Nominal HOPLA

Nominal HOPLA is an expressive calculus for higher-order processes with non-
determinism and name-binding. It can be seen as a straightforward extension of
HOPLA with terms of the form new a.t and t[a] which arise directly from the
adjunction (−)#a++ a δ++

a . Its syntax is defined in FM sets.

4.1 Syntax

Fix a set of term variables x, y, . . . and a set of type variables P, . . ., each invariant
under the permutation action. Types are given by the grammar

P,Q ::= P | !P | Q→P | δP |
⊕

`∈LP` | µjP . P ,

where P is a type variable, P is a list of type variables, and µjP . P binds P ,
and a nominal set L is used to index components of a sum type (a biproduct in
FMLin).

A closed type is a type with no free variables, and in the following, closed
types are normally simply called ‘types’.

Terms and actions are given by mutually recursive grammars. Terms are
given by the following grammar, where x ranges over variables, a ranges over
names, s over finite sets of names, p over actions, ` over labels and P over types.

t, u ::= x | rec x.t |
∑
i∈Iti | !t | [u > p(x:P # s) => t] |

λ x.t | t(u:P) | new a.t | t[a] | `:t | π`t | abs t | rep t

The forms rec x.t, [u > p(x:P # s) => t] and λ x.t all bind x in t, and the set of
free variables of t is defined in the usual way. The form new a.t binds the name
a in t. In a nondeterministic sum the mapping i 7→ ti is a finitely supported
function from a nominal set I. Write nil for the empty sum.

Nominal Domain Theory for Concurrency 9

Actions play a central role in the operational semantics of Nominal HOPLA—
section 4.3. The grammar of actions, labelling the transitions in the operational
semantics, is given as follows where t ranges over closed terms, a ranges over
names and ` over labels.

p ::= ! | `:p | t 7→ p | abs p | new a. p

The form new a. p binds the name a in p.
Actions and terms form nominal sets where the permutation actions are given

by the obvious structural recursion.

Substitution Substitution t[v/y] of term v for variable y in a term t is defined
as usual. The substitution is capture-avoiding in both variables and names, in the
sense that for substitution into a term of the forms rec x.t, [u > p(x:P # s) => t]
and λ x.t the variable x is assumed not to be free in v, and for substitution into
a term of the form new a.t the name a is chosen to be fresh for v.

4.2 Typing Rules

For Terms An environment Γ = x1 : P1
#s1 , . . ., xn : Pn#sn where x1, · · · , xn

are distinct variables, P1, · · · ,Pn are types and s1, · · · , sn are finite sets of names.
The intended meaning of x : P#s is that the variable x takes values of type P
that are assumed to be fresh for s.

Terms of Nominal HOPLA are typed with judgements of the form Γ `s t : P,
where Γ is an environment, s is a finite set of names, t is a term and P is a type.
The type P describes the actions that the term may perform. The environment
Γ records types and freshness assumptions for the variables of t. The set s
represents the ‘current’ set of names.

Structural rules. Weakening: the environment may be extended with extra vari-
ables. Exchange: two variables in the environment may be exchanged. Contrac-
tion: a pair of variables (with equal types) may be replaced by a single variable.
In addition to these standard rules are two rules associated with names:

Fresh-Weakening. It is possible to impose extra freshness assumptions on a
variable.

Γ, x : Q#s′′ `s t : P
Γ, x : Q#s′ `s t : P

(s′′ ⊆ s′ ⊆ s)

Support-Weakening. It is possible to extend the ‘current’ set s of names.

Γ `s′ t : P
Γ `s t : P (s′ ⊆ s)

Variable. A bare variable is typed by the environment in the obvious fashion.

−
x : P#∅ `∅ x : P

10 David Turner and Glynn Winskel

Prefix. The term constructor ! takes a term t to a term !t that intuitively
may perform an anonymous action ! and resume as t. The possible action ! is
recorded in the type.

Γ `s t : P
Γ `s !t : !P

Match. A term of the form [u > q(x:Q′ # s′) => t] intuitively matches the
output of u against the action q and feeds the resumption of u into the variable
x in t. If x has some freshness assumptions imposed on it then u and q must
satisfy those assumptions. The side condition that s′′ ⊆ s \ s′ is assumed.

Γ, x : Q′#s
′
`s t : P Λ `s′′ u : Q `s′′ Q : q : Q′

Γ,Λ#s′ `s [u > q(x:Q′ # s′) => t] : P

Recursion. A term of the form rec x.t intuitively acts as its unfolding t[rec x.t/x],
so that x must be of the same type as t.

Γ, x : P#∅ `s t : P
Γ `s rec x.t : P

Function Abstraction and Application. A term t of type P may be abstracted
with respect to the free variable x of type Q to leave a term λ x.t of type Q→P
that can in turn be applied to a term of type Q in the usual fashion.

Γ, x : Q#∅ `s t : P
Γ `s λ x.t : Q→P

Γ `s t : Q→P Λ `s u : Q
Γ,Λ `s t(u:Q) : P

Labelling and Label Projection. The actions of a term t may be ‘tagged’ with
a label `0 by forming the term `0:t. The effect of the term former π`0 is that
terms of the form π`0t can perform only the actions of t that are tagged by the
label `0. In both of these rules the support of `0 must be contained in s.

Γ `s t : P`0
Γ `s `0:t :

⊕
`∈LP`

Γ `s t :
⊕

`∈LP`
Γ `s π`0t : P`0

Nondeterministic Sum. A term
∑
i∈Iti makes a nondeterministic choice amongst

its components and behaves as the chosen component. The mapping i 7→ Γ `si
ti : P must be supported by s.

Γ `si ti : P each i ∈ I
Γ `s

∑
i∈Iti : P

Recursive Type Folding and Unfolding. As the recursively-defined type µjP . P
is isomorphic (and not equal) to its unfolding Pj [µP . P/P] it is necessary to
record any uses of the isomorphism abs = rep−1 in the syntax of the term.

Γ `s t : Pj [µP . P/P]
Γ `s abs t : µjP . P

Γ `s t : µjP . P
Γ `s rep t : Pj [µP . P/P]

Nominal Domain Theory for Concurrency 11

Name Abstraction and Application. The only alteration to the syntax of terms
over that of conventional HOPLA is the following pair of term formers. Intu-
itively the term new a.t can perform the same actions as t with the name a
bound, whereas the term t[a] takes the outputs of t, which contain a bound
name since t is of type δP, and instantiates that name as a. In both cases the
side-condition a /∈ s is assumed.

Γ#a `s∪̇{a} t : P
Γ `s new a.t : δP

Γ `s t : δP
Γ#a `s∪̇{a} t[a] : P

For Actions Actions are typed by judgements of the form `s P : p : P′ where
s is a finite set of names and P and P′ are types. Intuitively, a term of type P
may perform an action p and resume as a term of type P′.

`s′ P : p : P′

`s P : p : P′
(s′ ⊆ s) −

`∅ !P : ! : P
`s P : p : P′ `s u : Q
`s Q→P : u 7→ p : P′

`s P`0 : p : P′

`s
⊕

`∈LP` : `0:p : P′
`s Pj [µP . P/P] : p : P′

`s µjP . P : abs p : P′
`s∪̇{a} P : p : P′

`s δP : new a. p : δP′

Substitution respects the type system of Nominal HOPLA, as long as fresh-
ness assumptions are themselves respected.

Lemma 2 (Syntactic Substitution Lemma). Suppose that t and v satisfy
Γ, y : R#r `s t : P and ∆ `s1 v : R where s1 ∩ r = ∅ and the variables in Γ are
distinct from those in ∆. Then Γ,∆#r `s∪s1 t[v/y] : P.

4.3 Operational Semantics

Nominal HOPLA is given an operational semantics in the style of a labelled
transition system. That a term t such that ` t : P may perform an action p

such that ` P : p : P′ and resume as the term t′ is written P : t
p−→ t′. The

operational semantics of closed, well-typed terms are defined below.

P : t[rec x.t/x]
p−→ t′

P : rec x.t
p−→ t′

P : ti0
p−→ t′

P :
∑
i∈Iti

p−→ t′

−
!P : !t !−→ t

P : t[u′/x]
p−→ t′ Q : u

q−→ u′ ` Q : q : Q′

P : [u > q(x:Q′ # s′) => t]
p−→ t′

P : t
p−→ t′

δP : new a.t
new a. p−→ new a.t′

δP : t
new a. p−→ new a.t′

P : t[a]
p−→ t′

P : t[u/x]
p−→ t′

Q→P : λ x.t
u7→p−→ t′

Q→P : t
u7→p−→ t′

P : t(u:Q)
p−→ t′

12 David Turner and Glynn Winskel

P`0 : t
p−→ t′⊕

`∈LP` : `0:t
`0:p−→ t′

⊕
`∈LP` : t

`0:p−→ t′

P`0 : π`0t
p−→ t′

Pj [µP . P/P] : t
p−→ t′

µjP . P : abs t
abs p−→ t′

µjP . P : t
abs p−→ t′

Pj [µP . P/P] : rep t
p−→ t′

The following lemma demonstrates that the operational semantics given above
interacts well with the type system described above.

Lemma 3. If P : t
p−→ t′ then ` t : P and there exists a unique P′ such that

the judgement ` P : p : P′ holds; furthermore ` t′ : P′.

4.4 Denotational Semantics

Types and Environments A closed type denotes a nominal preorder (an FM-
preorder with empty support). We will specify the preorder inductively by rules
saying what paths belong to types (judgements p : P) and what the preorder is
on them (judgements p ≤P p

′). (The method is inspired by [7].) The language of
paths is given by

p ::= Q | Q 7→ p | `:p | abs p | new a. p,

where Q is a set of paths of the form 〈{p1, . . . , pn}〉s, ` is a label and a is a name.

p1 : P . . . pn : P
〈{p1, . . . , pn}〉s : !P

Q : !Q p : P
Q 7→ p : Q→P

p : P`0
`0:p :

⊕
`∈LP`

(`0 ∈ L)
p : Pj [µP . P/P]
abs p : µjP . P

p : P
new a. p : δP

where the ordering ≤P of paths of type P is given recursively as follows.

P �P P
′

P ≤!P P
′

Q′ ≤!Q Q p ≤P p
′

Q 7→ p ≤Q→ P Q
′ 7→ p′

p ≤P`0 p
′

`0:p ≤⊕
`∈LP`

`0:p′
p ≤Pj [µP . P/P] p

′

abs p ≤µjP . P abs p′
p ≤P p

′

new a. p ≤δP new a. p′

Here, P �P P ′ means that for all p ∈ P there exists p′ ∈ P ′ such that p ≤P
p′. It is straightforward to show that these definitions construct path orders
that are nominal preorders and hence objects of FMPre∅. As in HOPLA, in a
recursively-defined type µjP . P each path is of the form abs p which means there
is an isomorphism rep : µjP . P ∼= Pj [µP . P/P] : abs, where abs(p) =def abs p
and rep(abs p) =def p.

An environment x1 : P1
#s1 , . . ., xn : Pn#sn (with freshness constraints con-

tained in s0) denotes an object P#s1
1 & · · ·& P#sn

n . Notice that such an object is

isomorphic to P̂1

#s1 × · · · × P̂n
#sn

via the isomorphisms φ(s) and m, and it will
be convenient to use a ‘tuple’ notation for environments in the following.

Nominal Domain Theory for Concurrency 13

Terms and Actions Typing judgements Γ `s t : P denote arrows

[[Γ `s t : P]] : [[Γ]]→
C

P

in FMCtss. The denotation of a typing judgement is built by recursion on
the derivation of the typing judgement, making use of the various universal
constructions available in FM domains. Typing judgements `s P : p : P′ denote
arrows

[[`s P : p : P′]] : P→
C

!P′

in FMCtss by recursion on the structure of p as shown below. Intuitively the
arrow [[`s P : p : P′]] matches its input against the action p and returns a
collection of possible resumptions after performing p. When the types are clear
we abbreviate [[Γ `s t : P]] and [[`s P : p : P′]] to [[t]] and [[p]].

Prefixing and Matching The adjunction FMLin(!P,Q) ∼= FMCts(P,Q) gives
the semantics for an anonymous prefix action, written !. The unit η acts as a
constructor for this action, taking a term t to the prefixed term !t as follows.

Definition 4. Suppose that Γ `s !t : !P is derived from Γ `s t : P. Let γ ∈ [̂[Γ]]
and P ∈ !P. Then P ∈ [[Γ `s !t : !P]]〈γ〉 iff P ⊆ [[Γ `s t : P]]〈γ〉.

The denotation of the judgement `∅ !P : ! : P is simply the identity map.
The counit ε acts as a destructor for the ! action, intuitively ‘matching’ a !
action in the output of a term u and passing the resumption after performing
the ! to a term t.

Definition 5. Suppose that γ ∈ [̂[Γ]] and λ ∈ [̂[Λ#s′]] and p ∈ P. Then p ∈
[[Γ,Λ#s′ `s [u > q(x:Q′ # s′) => t] : P]]〈γ, λ〉 iff there exists Q ∈ !Q′ such that
p ∈ [[t]]〈γ,Q〉, Q ∈

(
[[q]] ◦ [[u]]

)
〈λ〉 and Q # s′.

Names and Binding The adjunction (−)#a++ a δ++
a gives rise to the denota-

tional semantics for terms of the form new a.t and t[a]. Concrete definitions of
these operations are given here.

Definition 6. Suppose Γ `s new a.t : δP is derived from Γ#a `s∪̇{a} t : P where
a /∈ s. Let γ ∈ [̂[Γ]], let b be a fresh name and let p ∈ P. Then, new b. p ∈ [[Γ `s
new a.t : δP]]〈γ〉 iff (ab) · p ∈ [[Γ#a `s∪̇{a} t : P]]〈γ〉.

Definition 7. Suppose Γ#a `s∪̇{a} t[a] : P derives from Γ `s t : δP where
a /∈ s. Let γ ∈ [̂[Γ#a]] and let p ∈ P. Then, new a. p ∈ [[Γ `s t : δP]]〈γ〉 iff
p ∈ [[Γ#a `s∪̇{a} t[a] : P]]〈γ〉.

The structural rules simply adjust the types of the denotations without sub-
stantially altering their semantics. They make use of the cartesian structure of
each FMCtss; weakening corresponds to projection, for example. The semantics

14 David Turner and Glynn Winskel

of the first new structural rule (fresh-weakening) comes from the obvious inclu-
sion (−)#a ⇒ (−) combined with the isomorphism φ, and the second new struc-
tural rule (support-weakening) from the inclusion FMCtss′ ↪→ FMCtss. The
denotational semantics of the remaining constructs follows that of HOPLA in [4]
very closely. The semantics of higher-order processes arises from the cartesian-
closed structure of FMCtss. The semantics of labelled processes is based on
the biproducts in the linear category; injection into the biproduct corresponds
to tagging the outputs of a process with a particular label, and projection to
matching against a label. Via cartesian closure a hom-set of FMCtss inherits
a partial order by inclusion, which in particular has all joins of ω-chains. This
provides a standard semantics to recursion in the language. The semantics of
nondeterministic sums is given by union.

Substitution amounts to composition of denotations. However, care must be
taken to ensure that all the relevant freshness assumptions are satisfied.

Lemma 4 (Semantic Substitution Lemma). Suppose that Γ, y : R#r `s t :
P and ∆ `s1 v : R where s1 ∩ r = ∅ and the variables in Γ are distinct from
those in ∆. Then

[[Γ,∆#r `s∪s1 t[v/y] : P]] = [[Γ, y : R#r `s t : P]] ◦
(
1Γ &[[∆ `s1 v : R]]#r++

)
.

5 Soundness and Adequacy

The possibility of observing an action p of a process f is caught by a judgement
P : t

p−→ t′. In fact the match operator reduces these general observations to
observations of just ! actions, because to observe the action p in the term t is
the same as to observe a ! action in the term [t > p(x:P # s) => !nil].

Lemma 5 (Soundness). If !P : t !−→ t′ and s is a finite set of names such
that supp(t, t′) ⊆ s then [[`s !t′ : !P]] ⊆ [[`s t : !P]].

Define a logical relation X EP t between subsets X ⊆ P and terms such that
` t : P by way of an auxiliary relation p ∈P t between paths p ∈ P and terms

such that ` t : P as shown in 5. The intuition behind the statement that p ∈P t
is that p is a computation path of type P that the process t may perform. Its
definition is by recursion on the structure of paths.

X EP t⇐⇒ ∀p ∈ X. p ∈P t

P ∈!P t⇐⇒ ∃t′. !P : t !−→ t′ and P EP t
′

Q 7→ p ∈Q→ P t⇐⇒ ∀u. (Q EQ u⇒ p ∈P t(u:Q))
new a. p ∈δP t⇐⇒ Na. p ∈P t[a]

`0 : p ∈⊕
`∈LP`

t⇐⇒ p ∈P`0 π`0t

abs p ∈µjP . P t⇐⇒ p ∈Pj [µP . P/P] rep t

This relation can be used to demonstrate that if a path p appears — seman-
tically — in the denotation [[t]] then the term t can — operationally — perform
the path p.

Nominal Domain Theory for Concurrency 15

Lemma 6. Suppose Γ `s t : P where Γ = x1 : P1
#s1 , . . ., xn : Pn#sn . For each

i ∈ {1, . . . , n} let γi ∈ P̂i
#si

and let vi be a closed term such that `s\si vi : Pi
and γi EPi vi. Then

[[Γ `s t : P]]〈γ1, . . . , γn〉Γ EP t[v]

where t[v] is the term obtained by simultaneously substituting each xi with vi.

Lemma 7. If `s P : p : P′ and X EP t and P ∈ [[p]]X then there exists t′ such
that P : t

p−→ t′ and P EP′ t′.

We obtain the main theorem of this paper, namely the adequacy of the
denotational semantics of Nominal HOPLA with respect to observations of !
actions.

Theorem 1 (Adequacy). [[` t : !P]] 6= ∅ if and only if there exists t′ such
that !P : t !−→ t′.

Nominal HOPLA subsumes new-HOPLA and inherits its expressiveness.
What of full abstraction? Names introduce new subtleties. The obstacle to full
abstraction and a tentative proposal to achieve it are described in [5].

References

1. N. Benton, G. Bierman, V. de Paiva, and M. Hyland. Linear lambda-calculus and
categorical models revisited. In E. Borgër, G. Jagër, K. H. Bun̈ıng, S. Martini, and
M. Richter, (Eds.), Proceedings of the Sixth Workshop on Computer Science Logic,
pages 61–84. Springer Lecture Notes in Computer Science, vol. 702, 1993.

2. M. J. Gabbay. A Theory of Inductive Definitions with Alpha-Equivalence. PhD
thesis, Cambridge University, 2001.

3. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing, 13:341–363, 2001.

4. M. Nygaard and G. Winskel. Domain theory for concurrency. Theor. Comput. Sci.,
316(1-3):153–190, 2004.

5. D. C. Turner. Nominal Domain Theory for Concurrency. PhD thesis,
Cambridge University, Submitted 2008. Submitted version available from
http://www.cl.cam.ac.uk/~dct25/

6. G. Winskel. Name generation and linearity. In LICS ’05: Proceedings of the
20th Annual IEEE Symposium on Logic in Computer Science, pages 301–310,
Washington, DC, USA, 2005. IEEE Computer Society.

7. G. Winskel and K. G. Larsen. Using information systems to solve recursive domain
equations effectively. Extended abstract: Springer Lecture Notes in Computer
Science, vol. 173. Full version: Technical Report UCAM-CL-TR-51, University of
Cambridge, Computer Laboratory, 1984.

8. G. Winskel and F. Zappa Nardelli. new-HOPLA: a higher-order process language
with name generation. In Proc. of 3rd IFIP TCS, pages 521–534, 2004.

