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Abstract. A lax functor from a bicategory of very general nondetermin-
istic concurrent strategies on concurrent games to the bicategory of pro-
functors is presented. The lax functor provides a fundamental connection
between two approaches to generalizations of domain theory to forms of
intensional domain theories, one based on game and strategies, and the
other on presheaf categories and profunctors. The lax functor becomes a
pseudo functor on the sub-bicategory of rigid strategies which includes
‘simple games’ (underlying AJM and HO games) and stable spans (spe-
cializing to Berry’s stable functions, in the deterministic case). In general,
the lax functor illustrates how composition of strategies is obtained from
that of profunctors by restricting to ‘reachable’ elements. The results
are based on a new characterization of concurrent strategies, which ex-
hibits concurrent strategies as certain discrete fibrations, or equivalently
presheaves, over configurations of the game. Finally, the characterization
suggests how to extend the definition of strategy to that of strategy on
and between categories with a factorization system, an idea that relates
to earlier work on bistructures and bidomains.

1 Introduction

A very general definition of nondeterministic concurrent strategy between games
represented by event structures, has recently been given—see [1] for further
background and examples. Building on this work and a new characterization
of strategies (Lemma 1) we exhibit a strategy in a game as a presheaf, and
a strategy between games as a profunctor. This exposes a lax functor from a
bicategory of games and strategies to the bicategory of profunctors. In several
well-known sub-bicategories of games the lax functor becomes a pseudo functor.

This somewhat technical result is significant because both strategies and pro-
functors have been central to generalizations of domain theory to forms of inten-
sional domain theories. Game semantics has been strikingly successful, following
the seminal work on game semantics and PCF [2, 3]. Profunctors themselves
provide a rich framework in which to generalize domain theory in a way that is
arguably closer to that initiated by Dana Scott than game semantics; we refer
the reader to Hyland’s case for such a generalization [4] and to the relevance of
presheaf categories and profunctors to concurrent computation [5]. The lax func-
tor from strategies to profunctors provides a fundamental connection between
the two approaches. Indeed it exhibits composition of strategies as essentially
composition of profunctors but restricted to those elements which are ‘reachable’;
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roughly, they are ‘reachable’ in the sense of satisfying the causal-dependency con-
straints of both components of the composition, whereas profunctor composition
allows elements merely when input matches output.

Arguably the concept of strategy is potentially as fundamental as that of
relation. But for this potential to be seen and realized the concept needs to be
developed in sufficient generality. This is one motivation for grounding strategies
in a general model for concurrent computation. Doing so has exposed unexpected
characteristics of strategies, which carry the concept of strategy into new terrain.

A surprise in developing this work has been the central role taken by the
reversal, or undoing, of (compound) moves of Opponent. The idea first appears
rather formally in Lemma 1 where, in a strategy, reversals of Opponent moves
satisfy the same property as moves of Player. It then takes on a key role in
characterizing a concurrent strategy in a game as a discrete fibration which
preserves Player moves and reversals of Opponent moves (Theorem 1). Pushing
the idea to completion we are led to work still under development, a very general
view of games as factorization systems in which ‘left’ maps stand for the reversal
of compound Opponent moves while ‘right’ maps stand for compound Player
moves. For the time being, Section 9 has to rest with a sketch of how concurrent
games and strategies essentially form a sub-bicategory within a bicategory of
strategies between games as rooted factorization systems.

2 Event structures and stable families

An event structure comprises (E,Con,≤), consisting of a set E, of events which
are partially ordered by ≤, the causal dependency relation, and a nonempty con-
sistency relation Con consisting of finite subsets of E, which satisfy

{e′ ∣ e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆X ∈ Con Ô⇒ Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈X Ô⇒ X ∪ {e} ∈ Con.

The configurations,C∞(E), of an event structure E consist of those subsets x ⊆ E
which are

Consistent: ∀X ⊆ x. X is finite⇒X ∈ Con , and
Down-closed: ∀e, e′. e′ ≤ e ∈ x Ô⇒ e′ ∈ x.

Often we shall be concerned with just the finite configurations of an event struc-
ture. We write C(E) for the set of finite configurations.

We say that events e, e′ are concurrent, and write eco e′ if {e, e′} ∈ Con & e /≤
e′ & e′ /≤ e. In games the relation of immediate dependency e _ e′, meaning e
and e′ are distinct with e ≤ e′ and no event in between, will play a very important
role. For X ⊆ E we write [X] for {e ∈ E ∣ ∃e′ ∈X. e ≤ e′}, the down-closure of
X; note if X ∈ Con, then [X] ∈ Con.
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Operations such as synchronized parallel composition are awkward to define
directly on the simple event structures above. It is useful to broaden event struc-
tures to stable families, where operations are often carried out more easily, and
then turned into event structures by the operation Pr below.

A stable family comprises F , a nonempty family of finite subsets, called con-
figurations, which satisfy:
Completeness: ∀Z ⊆ F . Z ↑ Ô⇒ ⋃Z ∈ F ;
Coincidence-freeness: For all x ∈ F , e, e′ ∈ x with e /= e′,

∃y ∈ F . y ⊆ x & (e ∈ y ⇐⇒ e′ ∉ y) ;

Stability: ∀x, y ∈ F . x ↑ y Ô⇒ x ∩ y ∈ F .
Above, Z ↑ means ∃x ∈ F∀z ∈ Z. z ⊆ x, and expresses the compatibility of Z in
F ; we use x ↑ y for {x, y} ↑. We call elements of ⋃F events of F .

Proposition 1. Let x be a configuration of a stable family F . For e, e′ ∈ x define

e′ ≤x e iff ∀y ∈ F . y ⊆ x & e ∈ y Ô⇒ e′ ∈ y.

When e ∈ x define the prime configuration

[e]x =⋂{y ∈ F ∣ y ⊆ x & e ∈ y} .

Then ≤x is a partial order and [e]x is a configuration such that

[e]x = {e′ ∈ x ∣ e′ ≤x e}.

Moreover the configurations y ⊆ x are exactly the down-closed subsets of ≤x.

Proposition 2. Let F be a stable family. Then, Pr(F) =def (P,Con,≤) is an
event structure where:

P = {[e]x ∣ e ∈ x & x ∈ F} ,
Z ∈ Con iff Z ⊆ P & ⋃Z ∈ F and,

p ≤ p′ iff p, p′ ∈ P & p ⊆ p′ .

A (partial) map of stable families f ∶ F → G is a partial function f from the
events of F to the events of G such that for all configurations x ∈ F ,

fx ∈ G & (∀e1, e2 ∈ x. f(e1) = f(e2) Ô⇒ e1 = e2) .

Maps of event structures are maps of their stable families of configurations. Maps
compose as functions. We say a map is total when it is total as a function.

Pr is the right adjoint of the “inclusion” functor, taking an event structure
E to the stable family C(E). The unit of the adjunction E → Pr(C(E)) takes
an event e to the prime configuration [e] =def {e′ ∈ E ∣ e′ ≤ e}. The counit max ∶
C(Pr(F))→ F takes prime configuration [e]x to its maximum event e; the image
of a configuration x ∈ C(Pr(F)) under the map max is ⋃x ∈ F .
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Definition 1. Let F be a stable family. We use x−⊂y to mean y covers x in

F , i.e. x ⊊ y in F with nothing in between, and x
e−Ð⊂ y to mean x ∪ {e} = y

for x, y ∈ F and event e ∉ x. We sometimes use x
e−Ð⊂ , expressing that event

e is enabled at configuration x, when x
e−Ð⊂ y for some y. W.r.t. x ∈ F , write

[e)x =def {e′ ∈ E ∣ e′ ≤x e & e′ /= e}, so, for example, [e)x
e−Ð⊂ [e]x. The relation

of immediate dependence of event structures generalizes: with respect to x ∈ F ,
the relation e _x e

′ means e ≤x e′ with e /= e′ and no event in between.

3 Process operations
Products Let A and B be stable families with events A and B, respectively.
Their product, the stable family A × B, has events comprising pairs in A ×∗
B =def {(a,∗) ∣ a ∈ A} ∪ {(a, b) ∣ a ∈ A & b ∈ B} ∪ {(∗, b) ∣ b ∈ B}, the product of
sets with partial functions, with (partial) projections π1 and π2—treating ∗ as
‘undefined’—with configurations x ∈ A × B iff

x is a finite subset of A ×∗ B s.t. π1x ∈ A & π2x ∈ B,
∀e, e′ ∈ x. π1(e) = π1(e′) or π2(e) = π2(e′)⇒ e = e′ ,&
∀e, e′ ∈ x. e /= e′ ⇒ ∃y ⊆ x. π1y ∈ A & π2y ∈ B & (e ∈ y ⇐⇒ e′ ∉ y) .

Right adjoints preserve products. Consequently we obtain a product of event
structures A and B by first regarding them as stable families C(A) and C(B),
forming their product C(A)×C(B), π1, π2, and then constructing the event struc-
ture

A ×B =def Pr(C(A) × C(B))
and its projections as Π1 =def π1max and Π2 =def π2max .

Restriction The restriction of F to a subset of events R is the stable family
F ↾R =def {x ∈ F ∣ x ⊆ R} . Defining E ↾R, the restriction of an event structure
E to a subset of events R, to have events E′ = {e ∈ E ∣ [e] ⊆ R} with causal
dependency and consistency induced by E, we obtain C(E ↾R) = C(E) ↾R .

Proposition 3. Let F be a stable family and R a subset of its events. Then,
Pr(F ↾R) = Pr(F)↾max−1R .

Synchronized compositions Synchronized parallel compositions are obtained
as restrictions of products to those events which are allowed to synchronize or
occur asynchronously according to the specific synchronized composition. For
example, the synchronized composition of Milner’s CCS on stable families A and
B (with labelled events) is defined as A×B ↾R where R comprises events which
are pairs (a,∗), (∗, b) and (a, b), where in the latter case the events a of A and b
of B carry complementary labels. Similarly, synchronized compositions of event
structures A and B are obtained as restrictions A×B ↾R. By Proposition 3, we
can equivalently form a synchronized composition of event structures by forming
the synchronized composition of their stable families of configurations, and then
obtaining the resulting event structure—this has the advantage of eliminating
superfluous events earlier.
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Projection Event structures support a simple form of hiding. Let (E,≤,Con) be
an event structure. Let V ⊆ E be a subset of ‘visible’ events. Define the projection
of E on V , to be E↓V =def (V,≤V ,ConV ), where v ≤V v′ iff v ≤ v′ & v, v′ ∈ V
and X ∈ ConV iff X ∈ Con & X ⊆ V .

4 Event structures with polarities

Both a game and a strategy in a game are to be represented by an event structure
with polarity, which comprises (E,pol) where E is an event structure with a
polarity function pol ∶ E → {+,−} ascribing a polarity + (Player) or − (Opponent)
to its events. The events correspond to (occurrences of) moves. Maps of event
structures with polarity are maps of event structures which preserve polarity.

Dual and parallel composition of games The dual, E⊥, of an event structure
with polarity E comprises a copy of the event structure E but with a reversal of
polarities. We write e ∈ E⊥ for the event complementary to e ∈ E and vice versa.
The operation A∥B—a simple parallel composition of games—simply forms the
disjoint juxtaposition of A,B, two event structures with polarity; a finite subset
of events is consistent if its intersection with each component is consistent.

5 Pre-strategies

Let A be an event structure with polarity, thought of as a game. A pre-strategy
in A represents a nondeterministic play of the game and is defined to be a total
map σ ∶ S → A from an event structure with polarity S. Two pre-strategies
σ ∶ S → A and τ ∶ T → A in A will be essentially the same when they are
isomorphic, i.e. there is an isomorphism θ ∶ S ≅ T such that σ = τθ; then we
write σ ≅ τ .

Let A and B be event structures with polarity. Following Joyal [6], a pre-
strategy from A to B is a pre-strategy in A⊥∥B, so a total map σ ∶ S → A⊥∥B.
It thus determines a span

A⊥ S
σ1oo σ2 // B ,

of event structures with polarity where σ1, σ2 are partial maps and for all s ∈ S
either, but not both, σ1(s) or σ2(s) is defined. We write σ ∶ A + //B to express
that σ is a pre-strategy from A to B. Note a pre-strategy σ in a game A coincides
with a pre-strategy from the empty game σ ∶ ∅ + //A.

5.1 Composing pre-strategies

Consider two pre-strategies σ ∶ A + //B and τ ∶ B + //C as spans:

A⊥ S
σ1oo σ2 // B B⊥ T

τ1oo τ2 // C .
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Their composition τ⊙σ ∶ A + //C is defined as a synchronized composition, fol-
lowed by projection to hide internal synchronization events. It is convenient to
build the synchronized composition from the product of stable families C(S) ×
C(T ), with projections π1 and π2, as

C(T )⊙C(T ) =def C(S) × C(T ) ↾R , where

R = {(s,∗) ∣ s ∈ S & σ1(s) is defined} ∪ {(∗, t) ∣ t ∈ T & τ2(t) is defined} ∪
{(s, t) ∣ s ∈ S & t ∈ T & σ2(s) = τ1(t) with both defined} .

Define T⊙S =def Pr(C(T )⊙C(S)) ↓ V , where

V = {p ∈ Pr(C(T )⊙C(S)) ∣ ∃s ∈ S. max(p) = (s,∗)} ∪
{p ∈ Pr(C(T )⊙C(S)) ∣ ∃t ∈ T. max(p) = (∗, t)} .

The span τ⊙σ comprises maps υ1 ∶ T⊙S → A⊥ and υ2 ∶ T⊙S → C, which on
events p of T⊙S act so υ1(p) = σ1(s) when max(p) = (s,∗) and υ2(p) = τ2(t)
when max(p) = (∗, t), and are undefined elsewhere.

5.2 Concurrent copy-cat

Let A be an event structure with polarity. The copy-cat strategy from A to A is
an instance of a pre-strategy, so a total map γA ∶ CCA → A⊥∥A, based on the idea
that Player moves, of +ve polarity, always copy previous corresponding moves of
Opponent, of −ve polarity. For c ∈ A⊥∥A we use c to mean the corresponding copy
of c, of opposite polarity, in the alternative component. Define CCA to comprise
the event structure with polarity A⊥∥A together with extra causal dependencies
c ≤CCA c for all events c with polA⊥∥A(c) = +.

Proposition 4. Let A be an event structure with polarity. Then CCA is an event
structure with polarity. Moreover,

x ∈ C(CCA) iff x ∈ C(A⊥∥A) & ∀c ∈ x. polA⊥∥A(c) = + Ô⇒ c ∈ x .

The copy-cat pre-strategy γA ∶ A + //A is defined to be the map γA ∶ CCA →
A⊥∥A where γA is the identity on the common set of events.

6 Strategies

The main result of [1] is that two conditions on pre-strategies, receptivity and in-
nocence, are necessary and sufficient for copy-cat to behave as identity w.r.t. the
composition of pre-strategies. Receptivity ensures an openness to all possible
moves of Opponent. A pre-strategy σ is receptive iff

σx
a−Ð⊂ & polA(a) = − implies ∃!s ∈ S. x s−Ð⊂ & σ(s) = a .

Innocence restricts the behaviour of Player; Player may only introduce new re-
lations of immediate causality of the form ⊖ _ ⊕ beyond those imposed by the
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game. A pre-strategy σ is innocent when
s _ s′ and pol(s) = + or pol(s′) = − implies σ(s) _ σ(s′).

Copy-cat behaves as identity w.r.t. composition, i.e. σ○γA ≅ σ and γB○σ ≅ σ,
for a pre-strategy σ ∶ A + //B, iff σ is receptive and innocent; copy-cat pre-
stategies γA ∶ A + //A are receptive and innocent [1].

This result motivates the definition of a strategy as a pre-strategy which is
receptive and innocent. We obtain a bicategory, Games, in which the objects are
event structures with polarity—the games, the arrows from A to B are strategies
σ ∶ A + //B and the 2-cells are maps of spans. The vertical composition of 2-cells
is the usual composition of maps of spans. Horizontal composition is given by
the composition of strategies ⊙ (which extends to a functor on 2-cells via the
functoriality of synchronized composition).

6.1 A new characterization of concurrent strategies

Let x and x′ be configurations of an event structure with polarity. Write x ⊆− x′
to mean x ⊆ x′ and pol(x′ ∖ x) ⊆ {−}, i.e. the configuration x′ extends the
configuration x solely by events of −ve polarity. Similarly, write x ⊆+ x′ to mean
x ⊆ x′ and pol(x′∖x) ⊆ {+}. With this notation in place we can give an attractive
characterization of concurrent strategies, key to this paper. (Its proof is in the
Appendix.)

Lemma 1. A strategy in a game A comprises σ ∶ S → A, a total map of event
structures with polarity, such that
(i) whenever y ⊆+ σx in C(A) there is a (necessarily unique) x′ ∈ C(S) so that
x′ ⊆ x & σx′ = y , i.e.

x′_
σ

��

⊆ x_

σ

��
y ⊆+ σx ,

and
(ii) whenever σx ⊆− y in C(A) there is a unique x′ ∈C(S) so that x ⊆ x′ & σx′ = y ,
i.e.

x_

σ

��

⊆ x′_
σ

��
σx ⊆− y .

7 Strategies as discrete fibrations

Condition (i) of Lemma 1, concerning the order ⊆+, is familiar from discrete
fibrations (cf. Definition 2 below) while condition (ii), concerning ⊆−, is dual—
the order ⊆− simply points in the wrong direction. This suggests building a new
relation ⊑ associated with an event structure with polarity out of compositions of
⊆+ with the reversed order ⊇−. In fact ⊑, the relation so obtained, is a partial order
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and instances of ⊑ always factor uniquely as an instance of ⊇−, associated with
the reversal or undoing of Opponent moves, followed by ⊆+, the performance of
Player moves (Section 7.1). We call the order ⊑ the Scott order because increasing
w.r.t. ⊑ is associated with more +ve events (think more output) and less −ve
events (think less input)—reminiscent of the pointwise order on functions in
domain theory.

The seemingly formal Scott order will be the key to a new understanding of
strategies as discrete fibrations (Theorem 1). Discrete fibrations are a reformula-
tion of presheaves so reveal strategies σ ∶ S → A in a game A as certain presheaves
over (C(A),⊑A) (Section 7.2). Through the fortuitous way in which the Scott or-
der interacts with the dual and parallel operations on games a strategy between
games σ ∶ A + //B turns into a presheaf over (C(A),⊑A)op × (C(B),⊑B), i.e. a
profunctor from (C(A),⊑A) to (C(B),⊑B) (Section 7.3).

7.1 The Scott order in games

Let A be an event structure with polarity. The ⊆-order on its configurations
decomposes into two more fundamental orders ⊆− and ⊆+. Define the Scott order,
between configurations x, y ∈ C(A), by

x ⊑A y ⇐⇒ x ⊇− x ∩ y ⊆+ y .

We use ⊇− as the converse order to ⊆−. The properties of the Scott order are
summarised in the next proposition. In particular,

x ⊑A y iff x ⊇− ⋅ ⊆+ ⋅ ⊇− ⋯ ⊇− ⋅ ⊆+ y .

Proposition 5. Let A be an event structure with polarity.
(i) If x ⊆+ w ⊇− y in C(A), then x ⊇− x ∩ y ⊆+ y in C(A).
(ii) The relation ⊑A is the transitive closure of the relation ⊇− ∪ ⊆+.
(iii) (C(A),⊑A) is a partial order for which whenever x ⊑A y there is a unique
z, viz.. x ∩ y, for which x ⊇− z ⊆+ y.

Proof. (i) Assume x ⊆+ w ⊇− y in C(A). Clearly x ⊇ x ∩ y. Suppose a ∈ x and
polA(a) = +. Then a ∈ w, and because only −ve events are lost from w in w ⊇− y
we obtain a ∈ y, so a ∈ x ∩ y. It follows that x ⊇− x ∩ y, as required. Similarly,
x ∩ y ⊆+ y. (ii) Directly from (i). (iii) Clearly ⊑ is reflexive. Supposing x ⊑ y,
i.e. x ⊇− x ∩ y ⊆+ y in C(A) we see that x ⊆+ y and y ⊆− x. Hence if x ⊑ y and
y ⊑ x in C(A) then x and y have the same +ve and −ve events and so are equal.
Transitivity follows by (ii). Unique-factorization follows from the fact that when
x ⊇− z ⊆+ y necessarily z = x ∩ y, as is easy to show. ◻

7.2 Strategies in games as presheaves

Let A be an event structure with polarity. We shall show how strategies in A
correspond to cerain fibrations, so presheaves, over the order (C(A),⊑A). We
concentrate on discrete fibrations over partial orders.
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Definition 2. A discrete fibration over a partial order (Y,⊑Y ) is a partial order
(X,⊑X) and an order-preserving function f ∶X → Y such that

∀x ∈X,y′ ∈ Y. y′ ⊑Y f(x) Ô⇒ ∃!x′ ⊑X x. f(x′) = y′ .

Via the Scott order we can recast strategies σ ∶ S → A as those discrete
fibrations F ∶ (C(S),⊑S) → (C(A),⊑A) which preserve ∅, ⊇− and ⊆+ in the
sense that F (∅) = ∅ while x ⊇− y implies F (x) ⊇− F (y), and x ⊆+ y implies
F (x) ⊆+ F (y), for x, y ∈ C(S):

Theorem 1. (i) Let σ ∶ S → A be a strategy in game A. The map σ“ taking a
finite configuration x ∈ C(S) to σx ∈ C(A) is a discrete fibration from (C(S),⊑S)
to (C(A),⊑A) which preserves ∅, ⊇− and ⊆+.
(ii) Suppose F ∶ (C(S),⊑S) → (C(A),⊑A) is a discrete fibration which preserves
∅, ⊇− and ⊆+. There is a unique strategy σ ∶ S → A such that F = σ“.

Proof. (i) That σ“ forms a discrete fibration is a direct corollary of Lemma 1. As
a map of event structures with polarity, σ“ automatically preserves ∅, ⊇− and
⊆+. (ii) Assume F is a discrete fibration preserving ∅, ⊇− and ⊆+. First observe a
consequence, that if x ⊆+ x′ in C(S) and F (x) ⊆+ y′′ ⊆ F (x′) in C(A), then there
is a unique x′′ ∈ C(S) such that x ⊆+ x′′ ⊆ x′ and F (x′′) = y′′. (An analogous

observation holds with + replaced by −.) Suppose now x
+−Ð⊂x′ in C(S)—where

we write x
+−Ð⊂x′ to abbreviate x

s−Ð⊂x′ for some +ve s ∈ S. As F preserves

⊆+, F (x) ⊆+ F (x′). The observation implies F (x) +−Ð⊂F (x′) in C(A). Similarly,

x
−−Ð⊂x′ implies F (x) −−Ð⊂F (x′).
Define the relation ≈ between prime intervals [x,x′], where x−⊂x′, as the

least equivalence relation such that [x,x′] ≈ [y, y′] if x−⊂y and x′−⊂y′. For con-

figurations of an event structure, [x,x′] ≈ [y, y′] iff x
e−Ð⊂x′ and y

e−Ð⊂ y′ for some
common event e. As F preserves coverings it preserves ≈. Consequently we ob-

tain a well-defined function σ ∶ S → A by taking s to a if an instance x
s−Ð⊂x′ is

sent to F (x) a−Ð⊂F (x′). Clearly σ preserves polarities.

By induction on the length of covering chains ∅ s1−Ð⊂x1
s2−Ð⊂⋯ sn−Ð⊂xn = x and

the fact that F preserves ∅ and coverings, ∅ = F (∅)
σ(s1)−Ð⊂ F (x1)

σ(s2)−Ð⊂⋯
σ(sn)−Ð⊂ F (xn) =

F (x) with σx = F (x) ∈ C(A). Moreover we cannot have σ(si) = σ(sj) for distinct
i, j without contradicting F preserving coverings. This establishes σ ∶ S → A as a
total map of event structures with polarity. The assumed properties of F directly
ensure that σ satisfies the two conditions of Lemma 1 required of strategy. ◻

As discrete fibrations correspond to presheaves, Theorem 1 entails that strate-
gies σ ∶ S → A correspond to (certain) presheaves over (C(A),⊑A)—the presheaf
for σ is a functor (C(A),⊑A)op → Set sending y to the fibre {x ∈ C(S) ∣ σx = y}.
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7.3 Strategies between games as profunctors

A strategy σ ∶ A + //B determines a discrete fibration σ“ over (C(A⊥∥B),⊑A⊥∥B).
But

(C(A⊥∥B),⊑A⊥∥B) ≅ (C(A⊥),⊑A⊥) × (C(B),⊑B) (1)
≅ (C(A),⊑A)op × (C(B),⊑B) . (2)

The first step (1) relies on the correspondence between a configuration of A⊥∥B
and a pair, with left component a configuration of A⊥ and right component a
configuration of B. In the last step (2) we are using the correspondence between
configurations of A⊥ and A induced by the correspondence a↔ a between their
events: a configuration x of A⊥ corresponds to a configuration x =def {a ∣ a ∈ x}
of A. Because A⊥ reverses the roles of + and − in A, the order x ⊑A⊥ y, i.e.
x ⊇− x ∩ y ⊆+ y in C(A⊥) , corresponds to the order y ⊑A x, i.e. y ⊇− x ∩ y ⊆+
x in C(A) , so x ⊑opA y.

It follows that a strategy σ ∶ S → A⊥∥B determines a discrete fibration

σ“ ∶ (C(S),⊑S)→ (C(A),⊑A)op × (C(B),⊑B)
where σ“(x) = (σ1x, σ2x), for x ∈ C(S). One way to define a profunctor from
(C(A),⊑A) to (C(B),⊑B) is as a discrete fibration over (C(A),⊑A)op × (C(B),⊑B).
Hence the strategy σ determines a profunctor1 σ“ ∶ (C(A),⊑A) + // (C(B),⊑B).

8 A lax functor from strategies to profunctors

We now study how the operation from strategies σ to profunctors σ“ preserves
identities and composition.

8.1 Identity

The operation (−)“ preserves identities:

Lemma 2. Let A be an event structure with polarity. For x ∈ C(A⊥∥A),

x ∈ C(CCA) iff x2 ⊑A x1 ,
where x1 ∈ C(A⊥) and x2 ∈ C(A) are the projections of x to its components.

Proof. From Proposition 4, we deduce: x ∈C(CCA) iff (i) x+1 ⊇ x+2 and (ii) x−1 ⊆
x−2 , where z+ = {a ∈ z ∣ polA(a) = +} and z− = {a ∈ z ∣ polA(a) = −} for z ∈ C(A).
It remains to argue that (i) and (ii) iff x2 ⊇− x1 ∩ x2 ⊆+ x1. ◻

Corollary 1. Let A be an event structure with polarity. The profunctor γA“ of
the copy-cat strategy γA is an identity profunctor on (C(A),⊑A).

Proof. The profunctor γA“ ∶ (C(A),⊑A) + // (C(A),⊑A) sends x ∈ C(CCA) to
(x1, x2) ∈ (C(A),⊑A)op × (C(A),⊑A) precisely when x2 ⊑A x1. It is thus an
identity on (C(A),⊑A). ◻
1 Most often a profunctor from (C(A),⊑A) to (C(B),⊑B) is defined as a functor
(C(A),⊑A) × (C(B),⊑B)

op
→ Set, i.e., as a presheaf over (C(A),⊑A)

op
×(C(B),⊑B),

and as such corresponds to a discrete fibration.
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8.2 Composition

We need to relate the composition of strategies to the standard composition of
profunctors. Let σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C be strategies, so σ ∶ A + //B
and τ ∶ B + //C. Abbreviating, for instance, (C(A),⊑A) to C(A), strategies σ
and τ give rise to profunctors σ“ ∶ C(A) + //C(B) and τ“ ∶ C(B) + //C(C). Their
composition is the profunctor τ“○σ“ ∶ C(A) + //C(C) built, as now described, as
a discrete fibration from the discrete fibrations σ“ ∶ C(S) → C(A)op × C(B) and
τ“ ∶ C(T )→ C(B)op × C(C).

First, we define the set of matching pairs,

M =def {(x, y) ∈ C(S) × C(T ) ∣ σ2x = τ1y} ,

on which we define ∼ as the least equivalence relation for which

(x, y) ∼ (x′, y′) if x ⊑S x′ & y′ ⊑T y & σ1x = σ1x′ & τ2y
′ = τ2y .

Define an order on equivalence classes M/ ∼ by:

m ⊑m′ iff m = {(x, y)}∼ & m′ = {(x′, y′)}∼ & x ⊑S x′ & y ⊑T y′ &

σ2x = σ2x′ & τ1y = τ1y′ ,

for some matching pairs (x, y), (x′, y′)—so then σ2x = σ2x′ = τ1y = τ1y′. The
relation ⊑ above is easily seen to be a partial order on M/ ∼. The profunctor
composition τ“ ○ σ“ is given as

τ“ ○ σ“ ∶ M/ ∼ → C(A)op × C(C) , acting so {(x, y)}∼ ↦ (σ1x, τ2y)

—it inherits from σ“ and τ“ the property of being a discrete fibration.
It is not the case that (τ⊙σ)“ and τ“ ○ σ“ coincide up to isomorphism. The

profunctor composition τ“ ○ σ“ will generally contain extra equivalence classes
{(x, y)}∼ for matching pairs (x, y) which are “unreachable.” Although σ2x = τ1y,
equals z say, automatically for a matching pair (x, y), the configurations x and
y may impose incompatible causal dependencies on their ‘interface’ z so never
be realized as a configuration in the synchronized composition C(T )⊙C(S) used
in building the composition of strategies τ⊙σ.

Example 1. Let A and C both be the empty event structure ∅. Let B be the
event structure consisting of the two concurrent events b1, assumed −ve, and b2,
assumed +ve in B . Let the strategy σ ∶ ∅ + //B comprise the event structure
s1 _ s2 with s1 −ve and s2 +ve, σ(s1) = b1 and σ(s2) = b2. In B⊥ the polarities
are reversed so there is a strategy τ ∶ B + //∅ comprising the event structure
t2 _ t1 with t2 −ve and t1 +ve yet with τ(t1) = b1 and τ(t2) = b2. The equivalence
class {(x, y)}∼, where x = {s1, s2} and y = {t1, t2}, would be present in the
profunctor composition τ“ ○ σ“, in addition to {(∅,∅)}∼, whereas τ⊙σ would
be the empty strategy and accordingly the profunctor (τ⊙σ)“ only has a single
element, ∅. ◻
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8.3 Laxness

This section establishes the exact relation between the two compositions (τ⊙σ)“
and τ“ ○ σ“. The proofs use that the equivalence relation ∼ between matching
pairs is generated by a single-step relation:

Lemma 3. On matching pairs, define

(x, y)↝1 (x′, y′) iff ∃s ∈ S, t ∈ T. x s−Ð⊂x′ & y
t−Ð⊂ y′ & σ2(s) = τ1(t) .

The smallest equivalence relation including ↝1 coincides with the relation ∼.

Now we make precise what it means for a matching pair to be reachable.

Definition 3. For (x, y) a matching pair, define

x ⋅ y =def{(s,∗) ∣ s ∈ x & σ1(s) is defined} ∪ {(∗, t) ∣ t ∈ y & τ2(t) is defined}∪
{(s, t) ∣ s ∈ x & t ∈ y & σ2(s) = τ1(t)} .

Say (x, y) is reachable if x ⋅ y ∈ C(T )⊙C(S), and unreachable otherwise.

For z ∈ C(T )⊙C(S) say a visible prime of z is a prime of the form [(s,∗)]z,
for (s,∗) ∈ z, or [(∗, t)]z, for (∗, t) ∈ z.

We can specify when a matching pair is reachable without invoking the com-
position of strategies, important for the generalization in Section 9:

Proposition 6. A matching pair (x, y) is reachable iff there is a sequence of
matching pairs (∅,∅) = (x0, y0),⋯, (xi, yi), (xi+1, yi+1),⋯, (xn, yn) = (x, y) such

that for all i, either (xi, yi)↝1 (xi+1, yi+1) or ∃s ∈ S. xi
s−Ð⊂xi+1 & yi = yi+1 & σ1(s) is defined

or ∃t ∈ T. yi
t−Ð⊂ yi+1 & xi = xi+1 & τ2(t) is defined. (The relation ↝1 is that in-

troduced in Lemma 3.)

Theorem 2 below provides the precise relation between (τ⊙σ)“ and τ“ ○ σ“.
Its proof requires that reachable matching pairs are ∼-equivalent iff they are
associated with the same configuration in T⊙S, the import of (ii) in the next
lemma.

Lemma 4. (i) If (x, y) is a reachable matching pair and (x, y) ∼ (x′, y′), then
(x′, y′) is a reachable matching pair. (ii) Whenever (x, y), (x′, y′) are reachable
matching pairs, (x, y) ∼ (x′, y′) iff x ⋅ y and x′ ⋅ y′ have the same visible primes.

Proof. We use Lemma 3 characterizing ∼ in terms of ↝1.

(i) Suppose (x, y)↝1 (x′, y′) or (x′, y′)↝1 (x, y). By inspection of the construc-
tion of the product of stable families in Section 3, if x ⋅ y ∈ C(T )⊙C(S) then
x′ ⋅ y′ ∈ C(T )⊙C(S).
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(ii) “If”: Suppose x ⋅ y and x′ ⋅ y′ have the same visible primes, forming the
set Q. Then z =def ⋃Q ∈ C(T )⊙C(S), being the union of a compatible set of
configurations in C(T )⊙C(S). Moreover, z ⊆ x ⋅ y, x′ ⋅ y′. Take a covering chain

z
e1−Ð⊂⋯zi

ei−Ð⊂ zi+1⋯
en−Ð⊂ x ⋅ y

in C(T )⊙C(S). Each (π1zi, π2zi) is a matching pair. Necessarily, ei = (si, ti) for

some si ∈ S, ti ∈ T , with σ2(si) = τ1(ti), again by the definition of C(T )⊙C(S).
Thus

(π1zi, π2zi)↝1 (π1zi+1, π2zi+1) .
Hence (π1z, π2z) ∼ (x, y), and similarly (π1z, π2z) ∼ (x′, y′), so (x, y) ∼ (x′, y′).
“Only if”: It suffices to observe that if (x, y)↝1 (x′, y′), then x ⋅y and x′ ⋅y′ have

the same visible primes. But if (x, y) ↝1 (x′, y′) then x ⋅ y
(s,t)
−Ð⊂ x′ ⋅ y′, for some

s ∈ S, t ∈ T , and no visible prime of x′ ⋅ y′ contains (s, t). ◻

Theorem 2. Let σ ∶ A + //B and τ ∶ B + //C be strategies. Defining

ϕσ,τ ∶ C(T⊙S)→M/ ∼ by ϕσ,τ(z) = {(Π1z,Π2z)}∼ ,

where Π1z = π1⋃ z and Π2z = π2⋃ z, yields an injective, order-preserving func-
tion from (C(T⊙S),⊑T⊙S) to (M/ ∼,⊑)—its range is precisely the equivalence
classes {(x, y)}∼ for reachable matching pairs (x, y). The diagram

(C(T⊙S),⊑T⊙S)

(τ⊙σ)“
��

ϕσ,τ // (M/ ∼, ⊑)

τ“○σ“uu
(C(A),⊑A)op × (C(C),⊑C)

commutes.

Proof. For z ∈ C(T⊙S), we obtain that ϕσ,τ(z) = (Π1z,Π2z) = (π1⋃ z, π2⋃ z)
is a matching pair, from the definition of C(T )⊙C(S); it is clearly reachable as
π1⋃ z ⋅ π2⋃ z = ⋃ z ∈ C(T )⊙C(S). For any reachable matching pair (x, y) let z
be the set of visible primes of x ⋅ y. Then, z ∈ C(T⊙S) and, by Lemma 4(ii),
(Π1z,Π2z) ∼ (x, y) so ϕσ,τ(z) = {(x, y)}∼. Injectivity of ϕσ,τ follows directly
from Lemma 4(ii).

To show that ϕσ,τ is order-preserving it suffices to show if z−⊏z′ in (C(T⊙S),⊑)
then ϕσ,τ(z) ⊑ ϕσ,τ(z′) in (M/ ∼,⊑). (The covering relation −⊏ is w.r.t. ⊑.) If

z−⊏z′ then either z
p

−Ð⊂ z′, with p +ve, or z′
p

−Ð⊂ z, with p −ve, for p a visible prime
of C(T )⊙C(S), i.e. with max(p) of the form (s,∗) or (∗, t). We concentrate on
the case where p is +ve (the proof when p is −ve is similar). In the case where
p is +ve,

Π1z ⋅Π2z =⋃ z ⊆⋃ z′ =Π1z
′ ⋅Π2z

′

in C(T )⊙C(S) and there is a covering chain

⋃ z = w0

(s1,t1−Ð⊂ w1⋯
(sn,tn)−Ð⊂ wn

max(p)
−Ð⊂ ⋃ z′
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in C(T )⊙C(S). Each wi, for 0 ≤ i ≤ m, is associated with a reachable matching
pair (π1wi, π2wi) where π1wi ⋅π2wi = wi. Also (π1wi, π2wi)↝1 (π1wi+1, π2wi+1),
for 0 ≤ i <m. Hence (Π1z,Π2z) ∼ (π1wn, π2wn), by Lemma 3. If max(p) = (s,∗)
then π1wn

s−Ð⊂Π1z
′, with s +ve, and π2wn = Π2z

′. If max(p) = (∗, t) then

π1wn = Π1z
′ and π2wn

t−Ð⊂Π2z
′, with t +ve. In either case π1wn ⊑S Π1z

′ and
π2wn ⊑T Π2z

′ with σ2π1wn = σ2Π1z
′ and τ1π2wn = τ1Π2z

′. Hence, from the
definition of ⊑ on M/ ∼,

ϕσ,τ(z) = {(Π1z,Π2z)}∼ = {(π1wn, π2wn)}∼ ⊑ {(Π1z
′,Π2z

′)}∼ = ϕσ,τ(z
′) .

It remains to show commutativity of the diagram. Let z ∈ C(T⊙S). Then,

(τ“ ○ σ“)(ϕσ,τ(z)) = (τ“ ○ σ“)({(Π1z,Π2z)}∼) = (σ1Π1z, τ2Π2z) = (τ⊙σ)“(z) ,

via the definition of τ⊙σ—as required. ◻
Because (−)“ does not preserve composition up to isomorphism but only up

to the transformation ϕ of Theorem 2:

Corollary 2. The operation (−)“ forms a lax functor from the bicategory of
strategies to that of profunctors; identities are preserved up to the isomorphism
of Corollary 1 while composition is preserved up to ϕ of Theorem 2.

Despite laxness, the relation between strategy composition and profunctor
composition is surprisingly straightforward: the composition of strategies, viewed
as a profunctor, is given by restricting the composition of profunctors to reachable
matching pairs.

In special cases composition is preserved up to isomorphism because all the
relevant matching pairs are reachable. Say a strategy σ is rigid when the com-
ponents σ1, σ2 preserve causal dependency when defined. In fact, rigid strategies
form a sub-bicategory of Games. For composable rigid strategies σ and τ we do
have (τ⊙σ)“ ≅ τ“ ○ σ“. Stable spans (including Berry’s stable functions), those
strategies between games where all moves are +ve [1], and simple games [7, 8]
lie within the bicategory of rigid strategies.

9 Games as factorization systems

The results of Section 7.1 show an event structure with polarity determines a
factorization system [9]; the ‘left’ maps are given by ⊇− and the ‘right’ maps
by ⊆+. More specifically they form an instance of a rooted factorization system
(X,→L,→R,0) where maps f ∶ x →L x′ are the ‘left’ maps and g ∶ x →R x′ the
‘right’ maps of a factorization system on a small category X, with distinguished
object 0, such that any object x of X is reachable by a chain of maps

0←L ⋅→R ⋯←L ⋅→R x .

Think of objects of X as configurations, the R-maps as standing for (compound)
Player moves and L-maps for the reverse, or undoing, of (compound) Opponent
moves in a game.
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The characterization of strategy, Lemma 1, exhibits a strategy as a discrete
fibration w.r.t. ⊑ whose functor preserves ∅, ⊇− and ⊆+. This generalizes. Define
a strategy in a rooted factorization system to be a functor from another rooted
factorization system preserving 0, L-maps, R-maps and forming a discrete fibra-
tion. To obtain strategies between rooted factorization systems we again follow
the methodology of Joyal [6], and take a strategy from X to Y to be a strat-
egy in the dual of X in parallel composition with Y. Now the dual operation
becomes the opposite construction on a factorization system, reversing the roles
and directions of the ‘left’ and ‘right’ maps. The parallel composition of fac-
torization systems is given by their product. Composition of strategies is given
essentially as that of profunctors, but restricting to reachable elements—the
definition of reachable element is a direct generalization of Proposition 6. The
bicategory of concurrent strategies is equivalent to the sub-bicategory in which
the objects and strategies are on rooted factorization systems of the form of
((C(A),⊑A),⊇−,⊆+,∅) for an event structure with polarityA. One pay-off of the
increased generality is that bistructures, a way to present Berry’s bidomains as
factorization systems [10], inherit a reading as games. The new view also allows
us to formalize strategies in some “physical” games, like some games of chase, in
which moves of Player (as hunter) and Opponent (as prey) may be translations
in space or changes in velocity.
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7. Hyland, M.: Game semantics. In Pitts, A., Dybjer, P., eds.: Semantics and Logics
of Computation. Publications of the Newton Institute (1997)

8. Harmer, R., Hyland, M., Melliès, P.A.: Categorical combinatorics for innocent
strategies. In: LICS ’07, IEEE Computer Society (2007)

9. Joyal, A.: Factorization systems. Joyal’s CatLab http://ncatlab.org/joyalscatlab/
(2012)

10. Curien, P.L., Plotkin, G.D., Winskel, G.: Bistructures, bidomains, and linear logic.
In: Proof, Language, and Interaction, essays in honour of Robin Milner, MIT Press
(2000) 21–54



16 From strategies to profunctors

Appendix: Additional proofs

Lemma 1. A strategy in a game A comprises σ ∶ S → A, a total map of event
structures with polarity, such that
(i) whenever y ⊆+ σx in C(A) there is a (necessarily unique) x′ ∈ C(S) so that
x′ ⊆ x & σx′ = y , i.e.

x′_
σ

��

⊆ x_

σ

��
y ⊆+ σx ,

and
(ii) whenever σx ⊆− y in C(A) there is a unique x′ ∈C(S) so that x ⊆ x′ & σx′ = y ,
i.e.

x_

σ

��

⊆ x′_
σ

��
σx ⊆− y .

Proof. Let σ ∶ S → A be a total map of event structures with polarity. We show
σ is a strategy iff (i) and (ii).
“Only if”: (i) It suffices to show the seemingly weaker property (i)′ that

y
a−Ð⊂σx & pol(a) = + Ô⇒ ∃x′ ∈ C(S). x′−Ð⊂x & σx′ = y

for a ∈ A,x ∈ C(S), y ∈ C(A). Then (i), with y ⊆+ σx, follows by considering a
covering chain y−Ð⊂⋯−Ð⊂σx. (The uniqueness of x is a direct consequence of σ

being a total map of event structures.) To show (i)′, suppose y
a−Ð⊂σx with a +ve.

Then σ(s) = a for some unique s ∈ x with s +ve. Supposing s were not ≤-maximal
in x, then s _ s′ for some s′ ∈ x. By +-innocence a = σ(s) _ σ(s′) ∈ σx implying

a is not ≤-maximal in σx. This contradicts y
a−Ð⊂σx. Hence s is ≤-maximal and

x′ =def x ∖ {s} ∈ C(S) with x′−Ð⊂x and σx′ = y.
(ii) Assuming σx ⊆− y we can form a covering chain

σx
a1−Ð⊂ y1⋯

an−Ð⊂ yn = y .

By repeated use of receptivity we obtain the existence of x′ where x ⊆ x′ and
σx′ = y. To show the uniqueness of x′ suppose x ⊆ z, z′ and σz = σz′ = y. Suppose
that z /= z′. Then, without loss of generality, suppose there is a ≤S-minimal s′ ∈ z′
with s′ ∉ z. Then [s′) ⊆ z, with s of −ve polarity. Now σ(s′) ∈ y so there is s ∈ z
for which σ(s) = σ(s′). We have [s), [s′) ⊆ z so [s) ↑ [s′). We show [s) = [s′).
Suppose s1 _ s. Then by −-innocence, σ(s1) _ σ(s). As σ(s′) = σ(s) and σ
is a map of event structures there is s2 < s′ such that σ(s2) = σ(s1). But s1,
s2 both belong to the configuration [s) ∪ [s′) so s1 = s2, as σ is a map, and
s1 < s′. Symmetrically, if s1 _ s′ then s1 < s. It follows that [s) = [s′). Now both

[s) s−Ð⊂ and [s) s′−Ð⊂ with σ(s) = σ(s′) where both s, s′ have −ve polarity. As σ is
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receptive, s = s′. This implies s′ ∈ z, a contradiction. Hence, z = z′ and we have
established uniqueness of x′.
“If”: Assume σ satisfies (i) and (ii). Clearly σ is receptive by (ii). We establish
innocence via an observation, that in any event structure E,

(∃x,x1 ∈ C(E). x s−Ð⊂x1
s′−Ð⊂ ) ⇐⇒ s _ s′ or s co s′ .

Suppose s _S s
′ and pol(s) = +. Then x

s−Ð⊂x1
s′−Ð⊂x′ for some x,x1, x

′ ∈ C(S).
Hence σx

s−Ð⊂σx1
s′−Ð⊂σx′. Either, as required, σ(s) _S σ(s′) or σ(s)coσ(s′). As-

sume the latter. Then σx
σ(s′)
−Ð⊂ y2

σ(s)
−Ð⊂σx′ where y2 = x∪ {σ(s′)}, with pol(σ(s)) =

+. From (i) we obtain a unique x2 ∈ C(S) such that x2 ⊆ x′ and σx2 = y2. As σ is

a total map of event structures, we obtain x2
s−Ð⊂x′ and subsequently x

s′−Ð⊂x2,
contradicting s _S s

′.
Suppose s _S s′ and pol(s′) = −. The case where pol(s) = + is covered

by the previous argument. Suppose pol(s) = −. Then x
s−Ð⊂x1

s′−Ð⊂x′ for some

x,x1, x
′ ∈ C(S). Again, σx

s−Ð⊂σx1
s′−Ð⊂σx′. Assume, to obtain a contradiction,

that σ(s)coσ(s′). Then σx
σ(s′)
−Ð⊂ y2

σ(s)
−Ð⊂σx′ , where y2 = x∪{σ(s′)}. As σ is already

known to be receptive, we obtain

x
e′−Ð⊂x2

e−Ð⊂x′′ & σx2 = y2 & σx′′ = σx′ .

From the uniqueness part of (ii) we deduce x′′ = x′. As σ is a total map of event

structures, e = s and e′ = s′. Thus x
s′−Ð⊂ , which contradicts s _S s′. Via the

observation we conclude that σ(s) _S σ(s′). ◻

Lemma 3. On matching pairs, define

(x, y)↝1 (x′, y′) iff ∃s ∈ S, t ∈ T. x s−Ð⊂x′ & y
t−Ð⊂ y′ & σ2(s) = τ1(t) .

The smallest equivalence relation including ↝1 coincides with the relation ∼.
Proof. From their definitions, ↝1 is included in ∼. To prove the converse, it
suffices to show that matching pairs (x, y), (x′, y′) satisfying

x ⊑S x′ & y′ ⊑T y & σ1x = σ1x′ & τ2y
′ = τ2y ,

—the clause used in the definition ∼ —are in the equivalence relation generated
by ↝1. Take a covering chain

x−⊏Sx1−⊏S⋯xm−⊏Sx′

in (C(S),⊑S). Here −⊏S is the covering relation w.r.t. the order ⊑s, so x−⊏Sx1
means x,x1 are distinct and x ⊑S x1 with nothing strictly in between. Via the
map σ we obtain

σ2x−⊏Bσ2x1−⊏B⋯σ2xm−⊏Bσ2x′
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in C(B) where σ2x = τ1y and σ2x
′ = τ1y′. Via the discrete fibration τ“ we obtain

a covering chain in the reverse direction,

y⊐−T y1⊐−T⋯ym⊐−T y′

in (C(T ),⊑T ), where each each (xi, yi), for 1 ≤ i ≤m, is a matching pair. More-
over, (xi, yi) ↝1 (xi+1, yi+1) or (xi+1, yi+1) ↝1 (xi, yi) at each i with 1 ≤ i ≤ m.
Hence (x, y) and (x′, y′) are in the equivalence relation generated by ↝1. ◻

Proposition 6. A matching pair (x, y) is reachable iff there is a sequence
of matching pairs (∅,∅) = (x0, y0),⋯, (xi, yi), (xi+1, yi+1),⋯, (xn, yn) = (x, y)
such that for all i, either (xi, yi) ↝1 (xi+1, yi+1) or ∃s ∈ S. xi

s−Ð⊂xi+1 & yi =
yi+1 & σ1(s) is defined or ∃t ∈ T. yi

t−Ð⊂ yi+1 & xi = xi+1 & τ2(t) is defined. (The
relation ↝1 is that introduced in Lemma 3.)

Proof. “Only if”: Assuming (x, y) is reachable, x ⋅ y ∈ C(T )⊙C(S), so there is a
covering chain

∅ = z0
e1−Ð⊂⋯zi

ei+1−Ð⊂ zi+1⋯
en−Ð⊂ zn = x ⋅ y

in C(T )⊙C(S). Each (xi, yi) =def (π1zi, π2zi) is a matching pair, from the defi-
nition of C(T )⊙C(S). Moreover ei+1 has one of the forms (s, t), (s,∗) or (∗, t)
for events s ∈ S, t ∈ T , which accord with the three cases in the proposition.
“If”: By induction along a sequence of matching pairs described above, each
xi ⋅ yi ∈ C(T )⊙C(S) from the definition of such configurations in Section 5.1. ◻


