Event Structure Spans for Nondeterministic Dataflow

Lucy Saunders-Evans ${ }^{1}$
University of Cambridge Computer Laboratory, England

Glynn Winskel ${ }^{2}$
University of Cambridge Computer Laboratory, England

Abstract

A compositional semantics for nondeterministic dataflow processes is described using spans of event structures; such a span describes a computation between datatypes, themselves represented by event structures, as itself an event structure. The spans of event structures represent certain profunctors (a generalisation of relations) used previously in a compositional semantics of nondeterministic dataflow and in the semantics of higher-order processes. Deterministic spans of event structures are shown to correspond to stable continuous functions and their semantics of dataflow to reduce to the usual least fixed-point semantics of Kahn.

Keywords: Event Structures, Spans, Nondeterministic Dataflow, Stable functions.

1 Introduction

A dataflow process is built as a network of more basic processes connected by channels. In particular processes may be connected to allow feedback loops from output to input.

In [6], Kahn demonstrated that a denotational semantics could be given to a dataflow network of deterministic processes as a least fixed point solution of a set of equations describing the components.

Brock and Ackerman showed in [2] that giving a semantics to nondeterministic dataflow processes was far from easy. In particular, input-output relations between sequences of values on input and output channels carry too little information about the behaviour of networks to support a compositional semantics. The following example is essentially that presented in [11]. Let A_{1} be the nondeterministic process that either outputs a token and stops, or outputs a token, waits for a token on input

[^0]This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs
and then outputs another token. Let A_{2} be the process that either outputs a token and stops, or waits for a token on input and then outputs two tokens. The inputoutput relations between strings of tokens of both A_{1} and A_{2} are the same:

$$
\{(\varepsilon, t),(t, t),(t, t t)\}
$$

where ε represents the empty string of tokens and the presence of a token is represented by the symbol t. Let F be the process that copies every input to two outputs through which the output of the process A_{i} is fed back to the input channel. Observe that the process A_{1} placed in this context produces a process which can output two tokens whereas the process A_{2} results in a process that can only output a single token.

This confirms that there is no denotational semantics of nondeterministic dataflow in terms of traditional input-output relations. For similar reasons traditional uses of powerdomains also fall short.

Although traditional relations are insufficient, it was however shown in [4,5] that a compositional form of relational semantics is possible, but at the cost of moving to generalised relations called profunctors. Here we provide a representation of the stable port profunctors used in $[4,5]$ as spans of event structures. The intention is to fit nondeterministic dataflow within a versatile theory of processes and types based on a general theory of spans of event structures $[14,12]$.

In more recent years feedback of the kind found in dataflow has reappeared in a variety of new contexts, which are condensed in a more abstract and general formulation of the properties a feedback operation, called trace, should satisfy. Let \mathcal{C} be a category with a symmetric monoidal structure, \otimes. A trace operation for \mathcal{C} is defined to be a family of operations, $\operatorname{Tr}_{A, B}^{C}: \mathcal{C}(A \otimes C, B \otimes C) \rightarrow \mathcal{C}(A, B)$. The intuition behind this operation is illustrated in the following diagram:

A trace operation must obey a number of axioms to ensure it behaves correctly. The reader is referred to $[4,5]$, which this paper supplements, for the detailed axioms and fuller set of references to this rich area.

2 Spans of Event Structures

Event structures model a process as a set of event occurrences with relations to express how events causally depend on others, or exclude other events from occurring.

Definition 2.1 An event structure is a tuple, $(E, \leq, \#)$, where:

- E is a set of events;
- \leq is a partial order on E. Define $[e]$ to be $\left\{e^{\prime} \mid e^{\prime} \leq e\right\}$. It must be the case that the set $[e]$ is finite for all $e \in E$;
- \# is a binary, irreflexive, symmetric relation such that $e_{1} \# e_{2}$ and $e_{2} \leq e_{3}$ implies that $e_{1} \# e_{3}$.

A configuration of an event structure is a downwards closed subset of events in which no two events are in conflict. Define $\mathcal{C}(E)$ to be the set of configurations of E.

The set of configurations of an event structure when ordered by inclusion form a prime algebraic domain [8]; the complete primes have the form $[e]$ for an event e.

Definition 2.2 A set of configurations X of an event structure E is compatible, written $X \uparrow$, iff there is a configuration y such that $\forall x \in X . x \subseteq y$; then $\bigcup X$ is itself a configuration. In the case where $X=\{w, z\}$ we usually write $w \uparrow z$ instead of $X \uparrow$.

Since their introduction in [8] it has been recognised that event structures can represent both processes and domains. At the time, in [8], this was remarked on as creating a 'curious mismatch'; in traditional denotational semantics, a process denotes only an element of a domain. The ambiguous double role of event structures can be resolved by working with spans of event structures. A span

represents a process computing from a type, represented by event structure A, to the type B, another event structure, as again itself an event structure E. The morphisms in and out specify how the event structure E inspects input and delivers output. There are many possible variations on spans as the morphisms in and out can have different natures. A systematic way to explore the range of possibilities via monads and distributive laws was suggested in [14] and is the subject of ongoing research [12]. For the purposes of this paper however we can restrict to very specific spans in which in is a 'demand' morphism and out is 'rigid.' Such spans first arose unexpectedly as representations of the profunctors used in a denotational semantics of higher-order processes [9].

A rigid morphism, $f: E_{1} \rightarrow E_{2}$, between event structures E_{1} and E_{2} consists of a function between the respective sets of events such that

- $[f(e)]=f[e]$, for all events e in E_{1}, and
- if $f(e)=f\left(e^{\prime}\right)$ or $f(e) \# f\left(e^{\prime}\right)$, then $e=e^{\prime}$ or $e \# e^{\prime}$, for all e and e^{\prime} in E_{1}.

Rigid morphisms compose as functions. In proofs we will use an alternative characterisation of rigid morphisms, and properties based on their effect on configurations.

Proposition 2.3 Let E_{1} and E_{2} be event structures. A function f from the set of
events E_{1} to the set of events E_{2} is a rigid morphism $f: E_{1} \rightarrow E_{2}$ iff it

- preserves causal dependency,

$$
\forall e, e^{\prime} \in E_{1} \cdot e \leq e^{\prime} \Rightarrow f(e) \leq f\left(e^{\prime}\right), \text { and }
$$

- preserves configurations,

$$
\forall x \in \mathcal{C}\left(E_{1}\right) . f x \in \mathcal{C}\left(E_{2}\right) \& \forall e, e^{\prime} \in x . f(e)=f\left(e^{\prime}\right) \Rightarrow e=e^{\prime}
$$

A rigid morphism $f: E_{1} \rightarrow E_{2}$ determines a stable function on configurations [1]:

$$
\forall x, y \in \mathcal{C}\left(E_{1}\right) . x \uparrow y \Rightarrow f(x \cap y)=(f x) \cap(f y)
$$

A demand morphism $d: E_{1} \rightarrow E_{2}$ is a function from the set of events E_{1} to the finite configurations of E_{2}. It must obey the following conditions:

- $e \leq e^{\prime}$ implies $d(e) \subseteq d\left(e^{\prime}\right)$, for all events $e, e^{\prime} \in E_{1}$;
- $d(e) \nmid d\left(e^{\prime}\right)$ implies $e \# e^{\prime}$, for all events $e, e^{\prime} \in E_{1}$.

A demand morphism can be extended to act on configurations as well as events.
Let $d: E_{1} \rightarrow E_{2}$ be a demand morphism between E_{1} and E_{2}. We can extend this to a function $d^{\dagger}: \mathcal{C}\left(E_{1}\right) \rightarrow \mathcal{C}\left(E_{2}\right)$ by

$$
d^{\dagger}(x) \stackrel{\text { def }}{=} \bigcup_{e \in x} d(e)
$$

for $x \in \mathcal{C}\left(E_{1}\right)$. The fact that $d^{\dagger}(x)$ is a configuration follows directly from x being a configuration and that $d\left(e_{1}\right) \chi / d\left(e_{2}\right)$ implies that $e_{1} \# e_{2}$. Clearly, if x is a finite configuration, then so is $d^{\dagger}(x)$, and the extension d^{\dagger} sends finite configurations to finite configurations. The composition of two demand morphisms $d_{2} \circ \mathrm{~d}_{1}$ is achieved by the composition of functions $d_{2}^{\dagger} \circ d_{1}$.

For this paper, we restrict attention to spans of a special kind:
Definition 2.4 A span of event structures comprises $A \stackrel{d}{\leftarrow} E \xrightarrow{\text { out }} B$ where E, A and B are event structures, d is a demand morphism and out is a rigid morphism. (Where there is no confusion, we refer to a span by its vertex, i.e., $A \stackrel{d}{\leftarrow} E \xrightarrow{\text { out }} B$ will be referred to as E.)

We can compose spans sequentially. Given two spans $A \stackrel{d_{1}}{\leftarrow} E_{1} \xrightarrow{\text { out }_{1}} B$ and $B \stackrel{d_{2}}{\leftarrow} E_{2} \xrightarrow{\text { out }_{2}} C$, their composition is the span $A \stackrel{d}{\leftarrow} E_{3} \xrightarrow{\text { out }} C$ where E_{3} comprises the event structure with

- Events $\left\{(x, e) \in \mathcal{C}\left(E_{1}\right) \times E_{2} \mid\right.$ out $\left._{1} x=d_{2}(e)\right\}$;
- Causal dependency $(x, e) \leq\left(x^{\prime} e^{\prime}\right)$ iff $x \subseteq x^{\prime}$ and $e \leq e^{\prime}$;
- Conflict $(x, e) \#\left(x^{\prime}, e^{\prime}\right)$ iff $x \bigvee x^{\prime}$ or $e \# e^{\prime}$.

The demand and output morphisms of the composition d and out are given by

$$
d(x, e) \stackrel{\text { def }}{=} d_{1}^{\dagger}(x) \text { and out }(x, e) \stackrel{\text { def }}{=} \text { out }_{2}(e)
$$

Because rigid morphisms can be identified with (certain kinds of) demand morphisms, this construction can be viewed as a pullback construction in the category of event structures with demand morphisms. (The spans here form a bicategory in the usual manner of spans [7].)

There is also a parallel composition of spans (which forms the symmetric monoidal structure, \otimes, referred to in Section 1).

Definition 2.5 Given two event structures, $\left(E_{1}, \leq_{1}, \#_{1}\right)$ and $\left(E_{2}, \leq_{2}, \#_{2}\right)$, their parallel composition $\left(E_{1}, \leq_{1}, \#_{1}\right) \otimes\left(E_{2}, \leq_{2}, \#_{2}\right)$ is the event structure with:

- Events $E_{1} \uplus E_{2}$, the disjoint union of events, $\left(\{1\} \times E_{1}\right) \cup\left(\{2\} \times E_{2}\right)$,
- Causal dependency $\left(i, e_{1}\right) \leq\left(j, e_{2}\right)$ iff $i=j$ and $e_{1} \leq_{i} e_{2}$, and
- Conflict $\left(i, e_{1}\right) \#\left(j, e_{2}\right)$ iff $i=j$ and $e_{1} \#{ }_{i} e_{2}$.

Once the event structures are made disjoint their parallel composition is given by the union of their events and relations of causality and conflict.

The parallel composition of $A \stackrel{d_{1}}{\leftarrow} E_{1} \xrightarrow{\text { out }} B$ and $C \stackrel{d_{2}}{\leftarrow} E_{2} \xrightarrow{\text { out }_{2}} D$ is

where $\left(d_{1} \otimes d_{2}\right)(i, e) \stackrel{\text { def }}{=}\{i\} \times d_{i}(e)$ and $\left(\right.$ out $_{1} \otimes$ out $\left._{2}\right)(i, e) \stackrel{\text { def }}{=}\left(i\right.$, out $\left._{i}(e)\right)$ for $i=1,2$.
From these constructions, it is possible to give a semantics to nondeterministic dataflow.

3 Stable Families

It is sometimes difficult to define constructions on event structures directly and it is often simpler to first define them in terms of stable families, from which an event structure can then be obtained from the prime configurations. Stable families will be used to define the trace construction.

Definition 3.1 A stable family, \mathcal{F}, is a set of sets with the following properties.

- Coherence $\forall X \subseteq \mathcal{F}$. $(\forall x, y \in X . x \uparrow y) \Rightarrow \bigcup X \in \mathcal{F}$.
- Stability $X \uparrow \Rightarrow \bigcap X \in \mathcal{F}$ for all non-empty $X \subseteq \mathcal{F}$.
- Coincidence-freeness

$$
\begin{aligned}
& \forall x \in \mathcal{F}, e_{1}, e_{2} \in x . e_{1} \neq e_{2} \Rightarrow \\
& \exists y \in \mathcal{F} . y \subseteq x \&\left(\left(e_{1} \in y\right) \&\left(e_{2} \notin y\right)\right) \text { or }\left(\left(e_{2} \in y\right) \&\left(e_{1} \notin y\right)\right)
\end{aligned}
$$

- Finiteness $\forall x \in \mathcal{F}, e \in x \exists y \in \mathcal{F} . y \subseteq x \& e \in y \&|y|<\infty$.

It can be deduced that a stable family, ordered by inclusion, forms a prime algebraic domain $[8,13]$. If x is a member of a stable family \mathcal{F} and $e \in x$ let

$$
[e]_{x} \stackrel{\text { def }}{=} \bigcap\{y \in \mathcal{F} \mid e \in y \& y \subseteq x\}
$$

Then $[e]_{x} \in \mathcal{F}$ and is called a prime configuration of \mathcal{F}. (It is a complete prime of (\mathcal{F}, \subseteq) in the sense of $[8]$.) Because of coincidence-freeness, taking $\max \left([e]_{x}\right) \stackrel{\text { def }}{=} e$ is well-defined.

4 Trace for Event Structures

This section is devoted to defining a trace operation $\operatorname{Tr}_{A, B}^{C}$ which takes a span from $A \otimes C$ to $B \otimes C$ to a span from A to B. Consider a span

We first build a stable family out of those configurations of E which are secure. Roughly a configuration x is secure if the demand of each event $e \in x$ is either met by the input in A, or by previous output to C, which we imagine is fed back as input. This idea is formalised below.

In defining the trace it is convenient to assume that both pairs of sets A, C, and B, C are disjoint, so that we can treat the parallel compositions $A \otimes C$ and $B \otimes C$ as given by union. We can now, for example, write $y \cap C$ for the 'projection' of a configuration $y \in \mathcal{C}(A \otimes C)$ to its component in the event structure C.

Definition 4.1 Let x be a configuration of E. A securing sequence in x consists of a sequence of events e_{1}, \cdots, e_{n} in x such that

$$
\left\{e_{1}, \cdots, e_{i}\right\} \in \mathcal{C}(E) \& d\left(e_{i}\right) \cap C \subseteq \operatorname{out}\left\{e_{1}, \cdots, e_{i-1}\right\}
$$

for all $i \leq n$. An event e is secured in x iff there is a securing sequence e_{1}, \cdots, e_{n} in x with $e_{n}=e$. Finally, the configuration x is secure if each of its events is secured in x.

The subset of $\mathcal{C}(E)$, consisting of all the secure configurations will be shown to be a stable family, from which we then obtain an event structure. Our proofs will make use of a relation \prec_{x} expressing the extra causal dependency on a configuration x of E which is introduced through feedback.

Definition 4.2 Let x be a configuration of E. For all events e_{1} and e_{2} in x, define

$$
\begin{aligned}
& e_{1} \rightarrow_{x} e_{2} \text { iff out }\left(e_{1}\right) \in d\left(e_{2}\right) \cap C, \text { and } \\
& e_{1} \prec_{x} e_{2} \text { iff } e_{1}<e_{2} \text { or } e_{1} \rightarrow_{x} e_{2} .
\end{aligned}
$$

We define $\{e\}_{x}$ to be the set $\left\{e^{\prime} \mid e^{\prime} \prec_{x}{ }^{\star} e\right\}$ for all $e \in x$. (Note that because $\{e\}_{x}$ must be a downwards closed subset of x with respect to causal dependency it is necessarily a configuration.)

Lemma 4.3 An event e is secured in configuration x iff
(i) \prec_{x} is well-founded on $\{e\}_{x}$, and
(ii) $\left(d^{\dagger}\left(\{e\}_{x}\right)\right) \cap C \subseteq$ out x.

Proof. if: Assume (i) and (ii). To prove that event e is secured in x, we require a securing sequence for e. First note that the set $\{e\}_{x}$ is finite as \prec_{x} is well-founded
and the set of \prec_{x}-predecessors of an event is also finite. Thus tentatively we may take the securing sequence to be a choice of order $\left\{e_{1}, \cdots, e_{n}\right\}$ of the set $\{e\}_{x}$ which respects \prec_{x}, i.e., for $0<i, j \leq n$,

$$
\left(e_{i} \prec_{x} e_{j} \Rightarrow i<j\right) \text { and } e_{n}=e .
$$

We now check that the chosen sequence is indeed securing. Observe that the set $\left\{e_{1}, \cdots, e_{i}\right\}$, with $i \leq n$, is a configuration of E because it is a downwards closed subset of x-this follows immediately from the definition of \prec_{x}. It remains to confirm that $d\left(e_{i}\right) \cap C \subseteq \operatorname{out}\left\{e_{1}, \cdots, e_{i-1}\right\}$, for all $i \leq n$. Consider an event $c \in d\left(e_{i}\right) \cap C$ for some $i \leq n$. As $d^{\dagger}\left(\{e\}_{x}\right) \cap C \subseteq$ out x, we have that $c=\operatorname{out}\left(e^{\prime}\right)$ for some $e^{\prime} \in x$. By definition, $e^{\prime} \rightarrow_{x} e_{i}$, so $e^{\prime} \prec_{x} e_{i}$. Thus $e^{\prime} \in\{e\}_{x}$ and, as the sequence respects \prec_{x}, we see that $e^{\prime}=e_{j}$ for some $j<i$. This confirms that $c \in \operatorname{out}\left\{e_{1}, \cdots, e_{i-1}\right\}$. Hence $\left\{e_{1}, \cdots, e_{n}\right\}$ is a securing sequence.
only if: Assume that $e_{1}, \cdots, e_{n}=e$ is a securing sequence in x.
We first show that for $i \leq n$
(†) $e^{\prime} \prec_{x} e_{i} \Rightarrow e^{\prime} \in\left\{e_{1}, \cdots, e_{i-1}\right\}$
and therefore that $e^{\prime}=e_{j}$ for some $j<i$.
By definition if $e^{\prime} \prec_{x} e_{i}$ then either $e^{\prime}<e_{i}$ or $e^{\prime} \rightarrow_{x} e_{i}$. As $\left\{e_{1}, \cdots, e_{i}\right\}$ is a configuration and therefore downwards closed with respect to $<$, if $e^{\prime}<e_{i}$ then $e^{\prime} \in\left\{e_{1}, \cdots, e_{i-1}\right\}$. If $e^{\prime} \rightarrow_{x} e_{i}$ then $\operatorname{out}\left(e^{\prime}\right) \in d\left(e_{i}\right) \cap C$. But $d\left(e_{i}\right) \cap C \subseteq$ $\operatorname{out}\left\{e_{1}, \cdots, e_{i-1}\right\}$ by the property of a securing sequence. So out $\left(e^{\prime}\right)=\operatorname{out}\left(e_{j}\right)$ where $e_{j} \in\left\{e_{1}, \cdots, e_{i-1}\right\}$. As both $e^{\prime}, e_{j} \in x$ and out is a rigid morphism $e^{\prime}=e_{j}$ so $e^{\prime} \in\left\{e_{1}, \cdots, e_{i-1}\right\}$.

Now we can show (i) and (ii).
(i) By (\dagger) a \prec_{x}-descending chain in $\{e\}_{x}$ induces a strictly descending chain of finite sets under inclusion-which is certainly well-founded. Hence \prec_{x} is well-founded on $\{e\}_{x}$.
(ii) It follows from (\dagger) that $\{e\}_{x} \subseteq\left\{e_{1}, \cdots, e_{n}\right\}$, so $d^{\dagger}\left(\{e\}_{x}\right) \subseteq d^{\dagger}\left(\left\{e_{1}, \cdots, e_{n}\right\}\right)$. Thus

$$
\begin{aligned}
\left(d^{\dagger}\left(\{e\}_{x}\right)\right) \cap C & \subseteq\left(d^{\dagger}\left(\left\{e_{1}, \cdots, e_{n}\right\}\right) \cap C\right. \\
& \subseteq\left(\bigcup_{i \leq n} d\left(e_{i}\right)\right) \cap C \\
& \subseteq \bigcup_{i \leq n}\left(d\left(e_{i}\right) \cap C\right) \\
& \subseteq \bigcup_{i \leq n} \text { out }\left\{e_{1}, \cdots, e_{i-1}\right\} \quad \text { as } e_{1}, \ldots, e_{n} \text { is a securing sequence }, \\
& \subseteq \text { out } x .
\end{aligned}
$$

Corollary 4.4 A configuration x is secure iff
(i) \prec_{x} is well-founded on x, and
(ii) $d^{\dagger}(x) \cap C \subseteq$ out x.

Proof. if: Assume that a configuration x satisfies (i) and (ii) above. Let $e \in x$. Then certainly \prec_{x} is well-founded on $\{e\}_{x}$ and $\left(d^{\dagger}\left(\{e\}_{x}\right)\right) \cap C \subseteq d^{\dagger}(x) \cap C \subseteq$ out x. Thus e is secured in x by Lemma 4.3. But e was an arbitrary event in x. Hence x is secure.
only if: Assume the configuration x is secure. By Lemma 4.3, \prec_{x} is well-founded on x, i.e. (i). To show (ii):

$$
\begin{aligned}
d^{\dagger}(x) \cap C & =\left(\bigcap_{e \in x} d^{\dagger}\left(\{e\}_{x}\right)\right) \cap C \\
& =\bigcap_{e \in x}\left(d^{\dagger}\left(\{e\}_{x}\right) \cap C\right) \subseteq \text { out } x, \quad \text { by Lemma } 4.3
\end{aligned}
$$

In proving that the family of secure configurations forms a stable family, we will make use of the following lemma.

Lemma 4.5 Suppose x and y are secure configurations of E with $x \uparrow y$. Let $e \in$ $x \cap y$. Then,
(i) $e^{\prime} \prec_{x} e$ iff $e^{\prime} \prec_{y} e$, for all events e^{\prime}, and
(ii) $\{e\}_{x}=\{e\}_{y}$.

If x is a secure configuration and $e \in x$, then $\{e\}_{x}$ is the least secure subconfiguration of x containing e.

Proof. (i) Assume $e \in x \cap y$ where $x \uparrow y$. Suppose $e^{\prime} \prec_{x} e$. Then either $e^{\prime}<e$ or $e^{\prime} \rightarrow_{x} e$. In the former case, $e \in y$ and $e^{\prime} \prec_{y} e$. In the latter case, out $\left(e^{\prime}\right) \in d(e) \cap C$ with $e^{\prime} \in x$. As y is secure,

$$
d(e) \cap C \subseteq\left(d^{\dagger}(y)\right) \cap C \subseteq \text { out } y
$$

Thus out $\left(e^{\prime}\right)=\operatorname{out}\left(e^{\prime \prime}\right)$ with $e^{\prime} \in x$ and some $e^{\prime \prime} \in y$. But $x \uparrow y$ and out is a rigid morphism, so $e^{\prime}=e^{\prime \prime}$ making $e^{\prime} \in y$. It follows that $e^{\prime} \rightarrow_{y} e$, and $e^{\prime} \prec_{y} e$. In either case, $e^{\prime} \prec_{x} e$ implies $e^{\prime} \prec_{y} e$. The same argument proves the converse implication, establishing (i).
(ii) Obvious from (i).

Assume $e \in x$ where x is a secure configuration. From Corollary 4.4, to establish that $\{e\}_{x}$ is secure it suffices to check (i) that $\prec_{\{e\}_{x}}$ is well-founded on $\{e\}_{x}$ and (ii) that $\left(d^{\dagger}\left(\{e\}_{x}\right)\right) \cap C \subseteq$ out $\{e\}_{x}$. Now (i) follows directly because \prec_{x}, which includes $\prec_{\{e\}_{x}}$, is well-founded on $\{e\}_{x}$ by Lemma 4.3. We now concentrate on showing (ii). By Lemma 4.3, as x is secure, we have that $\left(d^{\dagger}\left(\{e\}_{x}\right)\right) \cap C \subseteq$ out x. Thus any event of $\left(d^{\dagger}\left(\{e\}_{x}\right)\right) \cap C$ takes the form $\operatorname{out}\left(e^{\prime}\right)$ for some $e^{\prime} \in x$. But supposing $\operatorname{out}\left(e^{\prime}\right) \in\left(d^{\dagger}\left(\{e\}_{x}\right)\right) \cap C$, then out $\left(e^{\prime}\right) \in\left(d\left(e^{\prime \prime}\right)\right) \cap C$, i.e. $\quad e^{\prime} \rightarrow_{x} e^{\prime \prime}$, for some $e^{\prime \prime} \in\{e\}_{x}$. Consequently, $e^{\prime} \in\{e\}_{x}$. Hence $\left(d^{\dagger}\left(\{e\}_{x}\right)\right) \cap C \subseteq$ out $\{e\}_{x}$.

Suppose $e \in y \subseteq x$ where y is a secure configuration. Then certainly $x \uparrow y$, so $\{e\}_{x}=\{e\}_{y} \subseteq y$. Thus, $\{e\}_{x}$ is the least secure sub-configuration of x containing e.

Theorem 4.6 The family consisting of all secure configurations of E is a stable family. For any $e \in x$, a secure configuration, $[e]_{x}=\{e\}_{x}$.

Proof. Let $\mathcal{S}=\{x \in \mathcal{C}(E) \mid x$ is secure $\}$. We show \mathcal{S} is a stable family.
Coherence: $\forall X \subseteq \mathcal{S} .(\forall x, y \in X . x \uparrow y) \Rightarrow \bigcup X \in \mathcal{S}$.
Assume X is a pairwise compatible subset of \mathcal{S}. It is clear that $\bigcup X$ is a configuration of E. If $e \in \bigcup X$ then $e \in x$ for some x in X. As e is secured in x and $x \subseteq \bigcup X$, there is a securing sequence for e in $\bigcup X$.

Stability: $\forall X \subseteq \mathcal{S} . X \uparrow \Rightarrow \cap X \in \mathcal{S}$.
Suppose $X \subseteq \mathcal{S}$ and $X \uparrow$. Then, $\forall x \in X . x \subseteq y$ for some secure configuration y. Consider the set

$$
Y \stackrel{\text { def }}{=}\left\{\{e\}_{y} \mid e \in \bigcap X\right\} .
$$

It consists of secure configurations which are certainly pairwise compatible, with upper bound y. By coherence, $\bigcup Y$ is a secure configuration. Clearly, $\cap X \subseteq \bigcup Y$ as each $e \in \bigcap X$ is a member of $\{e\}_{y}$. For any $e \in \bigcap X$ and $x \in X$, then $\{e\}_{y}=\{e\}_{x} \subseteq x$, by Lemma 4.5. So we also have the reverse inclusion $\bigcup Y \subseteq \bigcap X$ ensuring the equality $\bigcap X=\bigcup Y$, and that $\bigcap X$ is a secure configuration.

Finiteness: $\forall x \in \mathcal{S} \forall e \in x \exists y \in \mathcal{S} . y \subseteq x$ \& $e \in y \&|y|<\infty$.
If x is secure then each event e in x must have a securing sequence. This determines a finite secure configuration in \mathcal{S} which contains e.

Coincidence-freeness: $\forall x \in \mathcal{S}, e_{1}, e_{2} \in x . e_{1} \neq e_{2} \Rightarrow$

$$
\exists y \in \mathcal{S} . y \subseteq x \&\left(\left(e_{1} \in y\right) \&\left(e_{2} \notin y\right)\right) \text { or }\left(\left(e_{2} \in y\right) \text { and }\left(e_{1} \notin y\right)\right) .
$$

Assume $e_{1}, e_{2} \in x \in \mathcal{S}$ and $e_{1} \neq e_{2}$. Consider the secure configurations $\left\{e_{1}\right\}_{x}$ and $\left\{e_{2}\right\}_{x}$. If e_{2} is a member of $\left\{e_{1}\right\}_{x}$ then $e_{2} \prec_{x}^{+} e_{1}$. As x is secure, it cannot be the case that $e_{1} \prec_{x}^{+} \quad e_{2}$-otherwise we would contradict the well-foundedness of \prec_{x}. Therefore $e_{1} \notin\left\{e_{2}\right\}_{x}$ if $e_{2} \in\left\{e_{1}\right\}_{x}$ and vice versa.

Finally, let $e \in x$, a secure configuration. Both $[e]_{x}$ (by definition) and $\{e\}_{x}$ (by Lemma 4.5) are the smallest secure sub-configurations of x which contain e, and hence equal.

We can now define the trace operation.
Definition 4.7 Define $\operatorname{Tr}(A \otimes C \stackrel{d}{\leftarrow} E \xrightarrow{\text { out }} B \otimes C)$ to be $A \stackrel{d^{\prime}}{\leftarrow} P \xrightarrow{\text { out }} B$ where P is the event structure comprising

- Events, the prime configurations p of \mathcal{S} for which $\operatorname{out}(\max (p)) \in B$, with
- Causal dependency, $p_{1} \leq p_{2}$ iff $p_{1} \subseteq p_{2}$, and
- Conflict, $p_{1} \# p_{2}$ iff $p_{1} \downarrow p_{2}$ in \mathcal{S},
and where, for $p \in P$, we define $d^{\prime}(p) \stackrel{\text { def }}{=} d^{\dagger}(p) \cap A$ and $o u t^{\prime}(p) \stackrel{\text { def }}{=} \operatorname{out}(\max (p))$.
We should check that the definition of trace does indeed yield a span. In order to show that out' is rigid we observe the following.

Lemma 4.8 For e_{1} and e_{2} in $x \in \mathcal{C}(E)$, if $e_{1} \prec_{x}{ }^{\star} e_{2}$ and $e_{1} \not \leq e_{2}$ then out $\left(e_{1}\right) \in C$.

Proof. By a simple induction on the length of chain $e_{1} \prec_{x} \cdots \prec_{x} e_{2}$.
Basis: Suppose that $e_{1} \prec_{x} e_{2}$. In this case $e_{1} \not \leq e_{2}$ implies that $e_{1} \rightarrow_{x} e_{2}$, so out $\left(e_{1}\right) \in C$.
Induction step: Suppose that the property holds for all chains of length less than or equal to k, i.e., assume that if $e_{1} \prec{ }_{x}{ }^{k} e_{2}$ and $e_{1} \not \leq e_{2}$ then $\operatorname{out}\left(e_{1}\right) \in C$. Suppose $e_{1} \prec_{x}{ }^{k+1} e_{2}$ and $e_{1} \not \leq e_{2}$. Then there exists an e^{\prime} with $e_{1} \prec_{x}{ }^{k} e^{\prime}$ and $e^{\prime} \prec_{x} e_{2}$. If $e_{1} \not \leq e^{\prime}$ then, by the induction hypothesis, out $\left(e_{1}\right) \in C$. If $e_{1} \leq e^{\prime}$ then, as $e_{1} \not \leq e_{2}$, we have $e^{\prime} \not \leq e_{2}$ and so $\operatorname{out}\left(e^{\prime}\right) \in C$. But then $\operatorname{out}\left(e_{1}\right) \in C$ as out is a rigid morphism.

Lemma 4.9 The map out ${ }^{\prime}$ is a rigid morphism:

Proof. We first show that out ${ }^{\prime}$ preserves causal dependency. Suppose $p^{\prime} \leq p$ in P. Write $\max \left(p^{\prime}\right)=e^{\prime}$ and $\max (p)=e$. Then, $e^{\prime} \prec_{p} e$ as $[e]_{p}=\{e\}_{p}$. Now, by Lemma 4.8, $e^{\prime} \leq e$ as out $\left(e^{\prime}\right) \in B$. Thus out $\left(e^{\prime}\right) \leq$ out (e), as out is rigid, which directly yields out ${ }^{\prime}\left(p^{\prime}\right) \leq$ out $^{\prime}(p)$.

Now let X be a configuration of P. First observe that

$$
\text { out }^{\prime} X=B \cap \text { out } \bigcup X
$$

Clearly we have the inclusion out ${ }^{\prime} X \subseteq B \cap$ out $\bigcup X$. To show the reverse inclusion, suppose $e \in \bigcup X$ and $\operatorname{out}(e) \in B$. Then, $e \in p$ for some $p \in X$. Write $p^{\prime} \stackrel{\text { def }}{=}[e]_{p}$. Because $p^{\prime} \leq p$ and X is downwards closed, $p^{\prime} \in X$, with out $t^{\prime}\left(p^{\prime}\right)=\operatorname{out}(e)$ as required.

It follows from the observation that out X is a configuration of B : because X is a set of pairwise compatible configurations of E so is their union $\bigcup X$, and therefore so is the image under the morphism out and 'projection' to B.

Suppose $p, p^{\prime} \in X$ and $o u t^{\prime}(p)=o u t^{\prime}\left(p^{\prime}\right)$. The union $\bigcup X$ is a secure configuration, compatible with both p and p^{\prime}. Thus $p=[e]_{\cup X}$ and $p^{\prime}=\left[e^{\prime}\right]_{\cup X}$ for some $e, e^{\prime} \in \bigcup X$. From the definition of out it follows that out $(e)=\operatorname{out}\left(e^{\prime}\right)$. Because out is a rigid morphism sending both $e, e^{\prime} \in \bigcup X$ to common event we must have $e=e^{\prime}$. Hence $p=p^{\prime}$.

Theorem 4.10 The trace $\operatorname{Tr}(A \otimes C \stackrel{d}{\leftarrow} E \xrightarrow{\text { out }} B \otimes C)$ is a span.

Proof. In the definition of the trace $\operatorname{Tr}(E)$ as the span $A \stackrel{d^{\prime}}{\leftarrow} P \xrightarrow{\text { out }^{\prime}} B$ it is easily seen that P is an event structure. Lemma 4.9 confirms that out' is indeed a rigid morphism. That d^{\prime} is a demand morphism follows directly from its definition.

Relying on previous work $[4,5]$, we can show that the operation Tr obeys the trace axioms up to isomorphism-see Appendix. In [4,5], a trace operation was given for stable port profunctors. Spans of event structures represent such profunctors. The representation respects both sequential and parallel composition as well as the trace operation.

5 Deterministic Dataflow

To connect with Kahn's classic treatment of deterministic dataflow we define the notion of a deterministic span. Such spans represent stable functions between domains of configurations, and can be used to model deterministic dataflow. The trace construction on event structures is shown to correspond to the least fixed point construction detailed in [6].

Definition 5.1 A span

is deterministic iff $d\left(e_{1}\right) \uparrow d\left(e_{2}\right) \Rightarrow \neg\left(e_{1} \# e_{2}\right)$.
The extra requirement of the demand morphism ensures that no two conflicting events of E can require consistent configurations of A. Such spans represent stable functions [1] between domains of configurations.

Definition 5.2 Let $A \stackrel{d}{\leftarrow} E \stackrel{\text { out }}{\rightarrow} B$ be a deterministic span. Define $\tilde{E}: \mathcal{C}(A) \rightarrow \mathcal{C}(B)$ by

$$
\widetilde{E}(y) \stackrel{\text { def }}{=} \text { out }\{e \in E \mid d(e) \subseteq y\}, \text { for all } y \in \mathcal{C}(A)
$$

Theorem 5.3 The function $\tilde{E}: \mathcal{C}(A) \rightarrow \mathcal{C}(B)$ is continuous, and stable, for all deterministic spans E. Moreover, any stable function from $\mathcal{C}(A)$ to $\mathcal{C}(B)$ can be represented in this way.

Proof. As the demand of an event is a finite configuration it follows straightforwardly that \tilde{E} is continuous. To see it is stable we observe that \tilde{E} factors into the composition out $\circ F$ where

$$
F(y)=\{e \in E \mid d(e) \subseteq y\}, \text { for } y \in \mathcal{C}(A)
$$

The function $F: \mathcal{C}(A) \rightarrow \mathcal{C}(E)$ preserves all intersections, so certainly stable, while out is a rigid morphism so a stable function on configurations, from $\mathcal{C}(E)$ to $\mathcal{C}(B)$. Their composition \tilde{E} is therefore stable.

To see that any stable function $f: \mathcal{C}(A) \rightarrow \mathcal{C}(B)$ can be represented by a deterministic span, define a corresponding event structure E as follows. Its events E are pairs (y, b) where y is a finite configuration of A and b is an event of B for which y a minimal configuration such that $b \in f(y)$-in other words $b \in f(y)$ and for no configuration $y^{\prime} \subset y$ do we have $b \in f\left(y^{\prime}\right)$. (Because f is stable, if $b \in f(w)$ then there is a unique, minimum $y \subseteq w$ with $(y, b) \in E$.) Define

$$
\begin{aligned}
& (y, b) \leq\left(y^{\prime}, b^{\prime}\right) \text { iff } y \subseteq y^{\prime} \& b \leq b^{\prime}, \text { and } \\
& (y, b) \#\left(y^{\prime}, b^{\prime}\right) \text { iff } y \searrow y^{\prime} \text { or } b \# b^{\prime}
\end{aligned}
$$

Define $d(y, b)=y$ and out $(y, b)=b$. It is routine to check that this defines an event structure E, a demand morphism $d: E \rightarrow A$ and rigid morphism out $: E \rightarrow B$, which together form a deterministic span such that $\tilde{E}=f$.

Theorem 5.3 and its proof provide two operations, one from deterministic spans to stable functions, and an inverse operation from stable functions to deterministic spans. These operations are part of an equivalence between the bicategory of deterministic spans and the order-enriched category of stable functions on coherent prime algebraic domains.

Proposition 5.4 The composition of two deterministic spans is deterministic.
Proof. Let $A \stackrel{d_{1}}{\leftarrow} E_{1} \xrightarrow{\text { out }_{1}} B$ and $B \stackrel{d_{2}}{\leftarrow} E_{2} \xrightarrow{\text { out }_{2}} C$ be deterministic spans with composition $A \stackrel{d}{\leftarrow} E_{3} \xrightarrow{\text { out }} C$, which we check is deterministic.

Let $\left(x_{1}, e_{2}\right)$ and $\left(x_{1}^{\prime}, e_{2}^{\prime}\right)$ be events in E_{3} and assume $d\left(x_{1}, e_{2}\right) \uparrow d\left(x_{1}^{\prime}, e_{2}^{\prime}\right)$. This is true iff $d_{1}^{\dagger}\left(x_{1}\right) \uparrow d_{1}^{\dagger}\left(x_{1}^{\prime}\right)$. As the span E_{1} is deterministic, $x_{1} \uparrow x_{1}^{\prime}$. Consequently, $d_{2}\left(e_{2}\right) \uparrow d_{2}\left(e_{2}^{\prime}\right)$, because by the definition of composition $d_{2}\left(e_{2}\right)=$ out $_{1} x_{1}$ and $d_{2}\left(e_{2}^{\prime}\right)=$ out $_{1} x_{1}^{\prime}$ and out preserves compatibility. This implies that $\neg\left(e_{2} \# e_{2}^{\prime}\right)$, as the span E_{2} is deterministic. As $x_{1} \uparrow x_{1}^{\prime}$ and $\neg\left(e_{2} \# e_{2}^{\prime}\right)$ it follows that $\neg\left(\left(x_{1}, e_{2}\right) \#\left(x_{1}^{\prime}, e_{2}^{\prime}\right)\right)$.

For the remainder of this section, let

$$
A \otimes C \stackrel{d}{\leftarrow} E \xrightarrow{\text { out }} B \otimes C
$$

be a deterministic span. We explore the properties of its trace. For notational simplicity we assume that $A \cap C=\emptyset$ and $B \cap C=\emptyset$ and take the parallel compositions $A \otimes C$ and $B \otimes C$ to be unions.

Lemma 5.5 Let $y \in \mathcal{C}(A)$. For $s \subseteq E$ define

$$
\varphi(s)=\{e \in E \mid d(e) \subseteq y \cup(C \cap \text { out } s)\}
$$

This determines a continuous function $\varphi: \mathcal{C}(E) \rightarrow \mathcal{C}(E)$ such that $\operatorname{Sec}(y) \stackrel{\text { def }}{=}$ $\mu s . \varphi(s)$, the least fixed point of φ, is a secure configuration of E.

Moreover, $\operatorname{Sec}(y)$ is the maximum secure configuration x of E such that

$$
d^{\dagger}(x) \cap A \subseteq y
$$

Proof. That φ is a function between configurations follows from determinism, while continuity follows from finiteness of demands, as in the proof of Theorem 5.3.

Then $\mu s . \varphi(s)=\bigcup_{i \in \omega} s_{i}$, a union of an \subseteq-increasing chain of configurations of E given inductively by

$$
\begin{aligned}
s_{0} & =\emptyset \\
s_{i+1} & =\varphi\left(s_{i}\right) .
\end{aligned}
$$

Observe that, as φ is a function from configuration to configuration, $s_{i} \in \mathcal{C}(E)$ for all $i \in \omega$.

We show by induction that s_{i} secure for all $i \in \omega$.
Base case: The property trivially holds for s_{0}.
Inductive step: Assume that s_{k} is secure. Each event in s_{k} is secured and therefore has a securing sequence within s_{k}. Any additional events e in s_{k+1} have $d(e) \cap C \subseteq$ out s_{k}. We can therefore give a securing sequence for e by combining the securing sequences of the events upon which it depends according to $\prec_{s_{k+1}}$. Therefore s_{k+1} is
secure. This shows that $\operatorname{Sec}(y)$ is secure for all $y \in \mathcal{C}$ and it is clear that $d^{\dagger}(\operatorname{Sec}(y)) \cap$ $A \subseteq y$.

Suppose $x \in \mathcal{C}(E)$ is secure and $d^{\dagger}(x) \cap A \subseteq y$. By Corollary 4.4, \prec_{x} is wellfounded. We show by well-founded induction on \prec_{x} that

$$
\forall e \in x . e \in \operatorname{Sec}(y) .
$$

Suppose $e^{\prime} \in \operatorname{Sec}(y)$ for all $e^{\prime} \prec_{x} e$. Then $d(e) \cap C \subseteq$ out $\operatorname{Sec}(y)$ as x is secure and by assumption $d(e) \cap A \subseteq y$; because x is secure $d(e) \cap C \subseteq$ out x (Corollary 4.4) and if $\operatorname{out}\left(e^{\prime}\right) \in d(e) \cap C$ then $e^{\prime} \rightarrow_{x} e$, so $e^{\prime} \in \operatorname{Sec}(y)$ inductively. Hence $d(e) \subseteq$ $y \cup(C \cap \operatorname{out} \operatorname{Sec}(y))$ and therefore $e \in \varphi(\operatorname{Sec}(y))=\operatorname{Sec}(y)$.

Corollary 5.6 The trace $\operatorname{Tr}(E)$, of the (arbitrary) deterministic span E, is deterministic.

Proof. Suppose $p_{1}, p_{2} \in \operatorname{Tr}(E)$ have compatible demands $d^{\prime}\left(p_{1}\right)$ and $d^{\prime}\left(p_{2}\right)$, i.e., there is a configuration y of A such that

$$
d^{\dagger}\left(p_{1}\right) \cap A \subseteq y \text { and } d^{\dagger}\left(p_{2}\right) \cap A \subseteq y .
$$

But $\operatorname{Sec}(y)$ is the maximum secure configuration x of E such that

$$
d^{\dagger}(x) \cap A \subseteq y
$$

-Lemma 5.5. Both p_{1} and p_{2} are secure configurations. Hence both $p_{1} \subseteq \operatorname{Sec}(y)$ and $p_{2} \subseteq \operatorname{Sec}(y)$, so p_{1} and p_{2} are compatible as secure configurations, and hence not in conflict as events of the trace.

Lemma 5.7 For all $y \in \mathcal{C}(A)$,

$$
\operatorname{Tr} \tilde{(E)}(y)=B \cap(\text { out } \operatorname{Sec}(y)) .
$$

Proof. By definition

$$
\operatorname{Tr} \tilde{(E)}(y)=\text { out }^{\prime}\left\{p \in \operatorname{Tr}(E) \mid d^{\dagger}(p) \cap A \subseteq y\right\}
$$

where $\operatorname{out}^{\prime}(p)=\operatorname{out}(\max (p)) \in B$ for $p \in \operatorname{Tr}(E)$. If $d^{\dagger}(p) \cap A \subseteq y$ with $p \in \operatorname{Tr}(E)$ then p is secure, so $p \subseteq \operatorname{Sec}(y)$ by the maximum property of $\operatorname{Sec}(y)$-Lemma 5.5. It follows that $\operatorname{Tr} \tilde{(E)}(y) \subseteq B \cap($ out $\operatorname{Sec}(y))$. To see the reverse inclusion, note that for any $e \in \operatorname{Sec}(y)$ with $\operatorname{out}(e) \in B$ we have $[e]_{\operatorname{Sec}(y)} \in \operatorname{Tr}(E)$.

In conclusion we can understand the trace of the deterministic span in terms of the least fixed point of its associated function; the trace of deterministic event structures reduces to the trace known to Kahn [6].

Theorem 5.8 For all $w \in \mathcal{C}(A)$,

$$
\tilde{\operatorname{Tr}(E)}(w)=B \cap \mu z \in \mathcal{C}(B \otimes C) . \tilde{E}(w \cup(C \cap \text { out } z)) .
$$

Proof. By Lemma 5.7,

$$
\operatorname{Tr}(E)(w)=B \cap \operatorname{out}(\mu x \cdot \varphi(x))
$$

where $\varphi: \mathcal{C}(E) \rightarrow \mathcal{C}(E)$ is the continuous function given by

$$
\varphi(x)=\{e \in E \mid d(e) \subseteq w \cup(C \cap \text { out } x)\}
$$

for $x \in \mathcal{C}(E)$.
Define the continuous function $\psi: \mathcal{C}(B \otimes C) \rightarrow \mathcal{C}(B \otimes C)$ by taking

$$
\psi(u)=\widetilde{E}(w \cup(C \cap u))
$$

for $u \in \mathcal{C}(B \otimes C)$.
It is easy to see that out : $\mathcal{C}(E) \rightarrow \mathcal{C}(B \otimes C)$ induces a strict continuous function between the domains of configurations. Directly from their definition we see that

$$
\text { out } \varphi(x)=\psi(\text { out } x)
$$

for $x \in \mathcal{C}(E)$; both expressions equal

$$
\operatorname{out}\{e \in E \mid d(e) \subseteq w \cup(C \cap \text { out } x)\} .
$$

By a well-known property of least fixed points we now know that $\mu u . \psi(u)=$ out $(\mu x . \varphi(x))$, which gives the result directly.

6 Concluding Remarks

Spans of event structures provide an intuitive semantics for both deterministic and nondeterministic dataflow. The semantics provides a good example of the way in which event structures can be used to represent both types and processes acting between types.

The spans of event structures used here were first discovered in joint work with Mikkel Nygaard [9]. There they provided an informative, more operational representation of the profunctors which appeared as denotations of affine-HOPLA-an affine language for higher-order processes. (There is a function space construction for spans to accompany the parallel composition \otimes.) It was realised later that the same spans also represented the profunctors used in an earlier 'relational' model of nondeterministic dataflow $[4,5]$.

Such spans are part of a much more general picture, the beginnings of which are sketched in $[14,12]$. But we hope that our treatment of nondeterministic dataflow can stand alone, and in itself make a convincing case for the usefulness of spans of event structures.

References

[1] Berry, G., "Modèles complement adéquats et stables des λ-calculs typés, Thèse de Doctorat d'Etat," Ph.D. thesis, Universit. Paris VII (1979).
[2] Brock, J. and W. Ackerman, Scenarios: A model of non-determinate computation, Formalization of programming concepts 107 (1981).
[3] Cattani, G. L. and G. Winskel, Profunctors, open maps and bisimulation (2004), as yet unpublished.
[4] Hildebrandt, T., P. Panangaden and G. Winskel, Relational semantics of nondeterministic dataflow (1998).
[5] Hildebrandt, T. T., P. Panangaden and G. Winskel, A relational model of nondeterministic dataflow, MSCS (2003).
[6] Kahn, G., The semantics of a simple language for parallel programming, Information Processing 74 (1974), pp. 471-475.
[7] MacLane, S., "Categories for the Working Mathematician," Graduate Texts in Mathematics 5, Springer, 1998, second edition.
[8] Nielson, M., G. D. Plotkin and G. Winskel, Petri nets, event structures and domains, Theoretical Computer Science 13(1) (1981), pp. 85-108.
[9] Nygaard, M., "Domain Theory for Concurrency," Ph.D. thesis, University of Aarhus (2003).
[10] Rabinovich, A. and B. A. Trakhtenbrot, Communication among relations, in: M. Paterson, editor, Proceedings of the 6th ICALP, LNCS 443 (1990), pp. 294-307.
[11] Russell, J. R., Full abstraction for nondeterministic dataflow networks, in: FOCS, 1989, pp. 170-175.
[12] Winskel, G., Event structures with symmetry, to appear in the Festschrift for Gordon Plotkin, ENTCS, 2007.
[13] Winskel, G., Event structure semantics for CCS and related languages, in: ICALP '82, 1982.
[14] Winskel, G., Relations in concurrency (invited talk), LICS'05 (2005), full version available at www.cl.cam.ac.uk/users/gw104/.

A Appendix: spans and rooted profunctors

We show how spans of event structures correspond to certain profunctors and that the trace we have defined on spans coincides with the trace defined on stable profunctors in $[4,5]$. The profunctors are between partial orders of finite configurations (regarded as categories). We shall write $\mathcal{C}^{o}(E)$ for the partial order of finite configurations of an event structure E under inclusion.

In describing the profunctor determined by a span it is helpful to have a further characterisation of rigid morphisms between event structures:

Proposition A. 1 Let E_{1} and E_{2} be event structures. A function f from the set of events E_{1} to the set of events E_{2} is a rigid morphism $f: E_{1} \rightarrow E_{2}$ iff it

$$
\begin{aligned}
& \forall x \in \mathcal{C}\left(E_{1}\right) . f x \in \mathcal{C}\left(E_{2}\right) \& \forall e, e^{\prime} \in x . f(e)=f\left(e^{\prime}\right) \Rightarrow e=e^{\prime}, \text { and } \\
& \forall x^{\prime} \in \mathcal{C}\left(E_{1}\right), y \in \mathcal{C}\left(E_{2}\right) . y \subseteq f x^{\prime} \Rightarrow \exists x \in \mathcal{C}\left(E_{1}\right) . x \subseteq x^{\prime} \& f x=y \\
& \text { (x is necessarily unique and given by } \left.x=\left\{e \in x^{\prime} \mid \text { out }(e) \in y\right\} .\right)
\end{aligned}
$$

Consider a span $A \stackrel{d}{\leftarrow} E \stackrel{\text { out }}{\rightarrow} B$ between a event structures A and B. Let y be a finite configuration of A and z a finite configuration of B-so y is some particular finite input and z some particular finite output. Define the set

$$
\bar{E}(y, z)=\left\{x \in \mathcal{C}^{o}(E) \mid d^{\dagger}(x) \subseteq y \& \text { out } x=z\right\}
$$

The set $\bar{E}(y, z)$ consists of all the configurations of E, necessarily finite, which for input y yield output z. The set $\bar{E}(y, z)$ is functorial in $y \in \mathcal{C}^{o}(A)$ and $z \in$ $\mathcal{C}^{o}(B)^{\text {op }}$; it respects the inclusion order on configurations covariantly for input and contravariantly for output. Suppose $y \subseteq y^{\prime}$ in $\mathcal{C}^{o}(A)$. Then, $\bar{E}(y, z) \subseteq \bar{E}\left(y^{\prime}, z\right)-$ simply because any configuration x of E with demand $d^{\dagger}(x) \subseteq y$ will make $d^{\dagger}(x) \subseteq$ y^{\prime}. So, an inclusion $i: y \subseteq y^{\prime}$ in $\mathcal{C}^{o}(A)$ determines an inclusion map

$$
\bar{E}(i, z): \bar{E}(y, z) \hookrightarrow \bar{E}\left(y^{\prime}, z\right) .
$$

An inclusion $j: z \subseteq z^{\prime}$ in $\mathcal{C}^{o}(B)$ determines a map

$$
\bar{E}(y, j): \bar{E}\left(y, z^{\prime}\right) \rightarrow \bar{E}(y, z) .
$$

It takes x^{\prime}, for which out $x^{\prime}=z^{\prime}$, to the unique sub-configuration $x \subseteq x^{\prime}$ of E for which out $x=z$; this exists because out is a rigid map of event structuresProposition A.1. It is easy to see that these associations of maps with inclusions respect identities and composition, so we have a functor to the category of sets

$$
\bar{E}: \mathcal{C}^{o}(A) \times \mathcal{C}^{o}(B)^{\mathrm{op}} \rightarrow \text { Set }
$$

i.e., a profunctor from $\mathcal{C}^{o}(A)$ to $\mathcal{C}^{o}(B)$.

By the properties of rigid maps it is easy to see that $\bar{E}(y, \emptyset)=\{\emptyset\}$, so a singleton, for any $y \in \mathcal{C}^{o}(A)$-the profunctor is rooted. Via 'currying' the profunctor corresponds to a functor from $\mathcal{C}^{\circ}(A)$ to the functor category $\left[\mathcal{C}^{\circ}(B)^{\text {op }}, \mathbf{S e t}\right]$ of presheaves over $\mathcal{C}^{\circ}(B)$. It can be shown that the functor so obtained preserves pullbacks. Consequently, the profunctor \bar{E} is stable in the sense of [4,5]. It follows that the composition of spans is sent to the composition of (stable) profunctors. In addition, a morphism between two spans $A \stackrel{d}{\leftarrow} E \stackrel{\text { out }}{\longrightarrow} B$ and $A \stackrel{d^{\prime}}{\leftarrow} E^{\prime} \xrightarrow{o \text { out }} B$ is a rigid morphism of event structures $f: E \rightarrow E^{\prime}$ such that the two triangles commute in

-recall we regard rigid morphisms and demand morphisms as maps on configurations in making sense of their composition. Such a morphism of spans induce cartesian natural transformations between the associated functors from $\mathcal{C}^{\circ}(A)$ to the functor category $\left[\mathcal{C}^{\circ}(B)^{\mathrm{op}}, \mathbf{S e t}\right]$.

The paper [4,5] studies a trace construction on rooted profunctors for nondeterministic dataflow. In loc. cit. the tensor operation is also given by simple parallel composition. We now sketch why the trace construction there coincides with that on event structures, that

$$
\overline{\operatorname{Tr}(E)} \cong \operatorname{Tr}(\bar{E})
$$

for any span $A \otimes C \stackrel{d}{\leftarrow} E \xrightarrow{\text { out }} B \otimes C$. In particular, we inherit the properties of the trace proved in the earlier work.

The definition of trace on stable profunctors (Definition 18 in [4]) is based on the usual coend operation on profunctors (see e.g., [3]) but restricted to elements which are secure - where an element being secure is expressed without the benefit of concepts from event structures. We can as well give the definitions with respect to \bar{E} for a particular span of event structures $A \otimes C \stackrel{d}{\leftarrow} E \xrightarrow{\text { out }} B \otimes C$, assumed from now on. As usual, we will assume that the event structures A and C, and the event structures are disjoint so that the parallel compositions $A \otimes C$ and $B \otimes C$ are given by unions. By definition, an element of the profunctor \bar{E} consists of a triple ($y, z ; x$) where $x \in \bar{E}(y, z)$. Elements of \bar{E} can be thought of as states in the computation between A and B. The definition of trace on stable profunctors hinges on three basic relations between elements of the profunctor.
Definition A. 2 Let $(y, z ; x)$ and $\left(y^{\prime}, z^{\prime} ; x^{\prime}\right)$ be elements of \bar{E}. Define

$$
\begin{aligned}
& (y, z ; x) \xrightarrow{A}\left(y^{\prime}, z^{\prime} ; x^{\prime}\right) \text { iff } z=z^{\prime} \& x=x^{\prime} \& \exists a \in A . y \cup\{a\}=y^{\prime}, \text { and } \\
& (y, z ; x) \xrightarrow{B}\left(y^{\prime}, z^{\prime} ; x^{\prime}\right) \text { iff } y=y^{\prime} \& \exists b \in B . z \cup\{b\}=z^{\prime} \& x=\left\{e \in x^{\prime} \mid \text { out }(e) \in z\right\} .
\end{aligned}
$$

Define $(y, z ; x) \rightsquigarrow\left(y^{\prime}, z^{\prime} ; x^{\prime}\right)$ iff $\left(y, z^{\prime} ; x^{\prime}\right)$ is an element with

$$
\begin{aligned}
& y \subseteq y^{\prime} \& z \subseteq z^{\prime} \& \\
& y \cap A=y^{\prime} \cap A \& z \cap B=z^{\prime} \cap B \& \\
& y \cap C=z \cap C \& y^{\prime} \cap C=z^{\prime} \cap C \& \\
& x=\left\{e \in x^{\prime} \mid \text { out }(e) \in z\right\} .
\end{aligned}
$$

The relation $\xrightarrow[\rightarrow]{A}$ concerns the change of element associated with input in A, the relation \xrightarrow{A} with output in B. The relation \rightsquigarrow concerns input in C which is matched by prior output on C and plays a key role in those elements allowed in the definition of trace of a stable profunctor.

We use the following fact several times.
Proposition A. 3 A finite configuration of E is secure iff there is a securing sequence e_{1}, \cdots, e_{n} such that $x=\left\{e_{1}, \cdots, e_{n}\right\}$.

Proof. If: Directly from the definition of securing sequence. Only if: Assuming that x is a secure configuration, the relation \prec_{x} is well-founded and $d^{\dagger}(x) \cap C \subseteq$ out x. When x is finite we can order its events, say as e_{1}, \cdots, e_{n}, in a way that respects \prec_{x}, i.e. so $e_{i} \prec_{x} e_{j}$ implies $i<j$. This yields a securing sequence such that $x=\left\{e_{1}, \cdots, e_{n}\right\}$.

The notion of secure element of a stable profunctor derived from these relations (and used in $[4,5]$) corresponds to that of secure configuration:

Lemma A. 4 Let $(y, z ; x)$ be an element of \bar{E}. Then, $(\emptyset, \emptyset ; \emptyset)(\xrightarrow{A} \cup \xrightarrow{B} \cup \rightsquigarrow)^{\star}(y, z ; x)$ (i.e., the element is secure $[4,5]$) iff the configuration x is secure.

Proof. Only if: Consider the following property of an element $(y, z ; x)$ of \bar{E} :

$$
Q(y, z ; x) \text { iff } x \text { is secure and } y \cap C \subseteq \text { out } x .
$$

Clearly $Q(\emptyset, \emptyset ; \emptyset)$. It suffices to show in the cases $(i)(y, z ; x) \xrightarrow{A}\left(y^{\prime}, z^{\prime} ; x^{\prime}\right)$, (ii) $(y, z ; x) \xrightarrow{B}\left(y^{\prime}, z^{\prime} ; x^{\prime}\right)$ or (iii) $(y, z ; x) \rightsquigarrow\left(y^{\prime}, z^{\prime} ; x^{\prime}\right)$, that if $Q(y, z ; x)$ then $Q\left(y^{\prime}, z^{\prime} ; x^{\prime}\right)$.
(i) If $(y, z ; x) \xrightarrow{A}\left(y^{\prime}, z^{\prime} ; x^{\prime}\right)$, then $x^{\prime}=x$ and $y^{\prime} \cap C=y \cap C$. So clearly $Q(y, z ; x)$ implies $Q\left(y^{\prime}, z^{\prime} ; x^{\prime}\right)$.
(ii) Suppose $(y, z ; x) \xrightarrow{B}\left(y^{\prime}, z^{\prime} ; x^{\prime}\right)$ and that x is secure and $y \cap C \subseteq$ out x. Then $y^{\prime}=$ y and $x^{\prime}=x \cup\left\{e^{\prime}\right\}$ for some $e^{\prime} \notin x$ with out $\left(e^{\prime}\right) \in B$. Because x is finite and secure we can construct a securing sequence e_{1}, \cdots, e_{n} such that $x=\left\{e_{1}, \cdots, e_{n}\right\}$. The extended sequence $e_{1}, \cdots, e_{n}, e^{\prime}$ is also a securing sequence; the extra requirement that $d\left(e^{\prime}\right) \cap C \subseteq$ out $\left\{e_{1}, \cdots, e_{n}\right\}$ follows by

$$
d\left(e^{\prime}\right) \cap C \subseteq d^{\dagger}\left(x^{\prime}\right) \cap C \subseteq y^{\prime} \cap C=y \cap C \subseteq \text { out } x
$$

Hence x^{\prime} is secure, and clearly $y^{\prime} \cap C \subseteq$ out x^{\prime}.
(iii) Suppose $(y, z ; x) \rightsquigarrow\left(y^{\prime}, z^{\prime} ; x^{\prime}\right)$ and that x is secure and $y \cap C \subseteq$ out x. As in $(i i)$, take a securing sequence e_{1}, \cdots, e_{n} such that $x=\left\{e_{1}, \cdots, e_{n}\right\}$. Because $x \subseteq x^{\prime}$, with x^{\prime} a finite configuration, we can choose a sequence of events $e_{1}^{\prime}, \cdots, e_{m}^{\prime}$ such that $x \cup\left\{e_{1}^{\prime}, \cdots, e_{i}^{\prime}\right\}$ is a configuration of E for all $0<i \leq m$ with $x^{\prime}=x \cup\left\{e_{1}^{\prime}, \cdots, e_{m}^{\prime}\right\}$. We claim that the concatenated sequence

$$
e_{1}, \cdots, e_{n}, e_{1}^{\prime}, \cdots, e_{m}^{\prime}
$$

is a securing sequence: from the definition of \rightsquigarrow it follows that $d^{\dagger}\left(x^{\prime}\right) \subseteq y$, and hence that

$$
d\left(e_{i}^{\prime}\right) \cap C \subseteq y \cap C \subseteq \text { out } x \subseteq\left\{e_{1}, \cdots, e_{n}, e_{1}^{\prime}, \cdots, e_{i-1}^{\prime}\right\}
$$

the extra condition required to be securing. Thus x^{\prime} is secure. From the definition of \rightsquigarrow, we have $y^{\prime} \cap C=z^{\prime} \cap C$, and $z^{\prime} \cap C=\left(\right.$ out $\left.x^{\prime}\right) \cap C$ as $\left(y^{\prime}, z^{\prime} ; x^{\prime}\right)$ is an element of \bar{E}. So certainly $y^{\prime} \cap C \subseteq$ out x^{\prime}.
If: Write $x \xrightarrow{e} x^{\prime}$ iff x and x^{\prime} are secure configurations of E such that $e \notin x$ and $x^{\prime}=x \cup\{e\}$.

We first show: if $x \xrightarrow{e} x^{\prime}$ and $(y, z ; x)$ is an element of \bar{E} with $z \cap C \subseteq y$, then $(y, z ; x)(\xrightarrow{A} \cup \xrightarrow{B} \cup \rightsquigarrow)^{\star}\left(y^{\prime}, z^{\prime} ; x^{\prime}\right)$ for some element $\left(y^{\prime}, z^{\prime} ; x^{\prime}\right)$ with $z^{\prime} \cap C \subseteq y^{\prime}$.

Assume $x \xrightarrow{e} x^{\prime}$ and $(y, z ; x)$ is an element with $z \cap C \subseteq y$. First note that as x^{\prime} is secure, $d(e) \cap C \subseteq$ out x; for a securing sequence $e_{1}, \cdots, e_{n}=e$ for e in x^{\prime} we must have $d(e) \cap C \subseteq\left\{e_{1}, \cdots, e_{n-1}\right\} \subseteq x$. There are two cases, when out $(e) \in B$ and out $(e) \in C$.

Suppose out $(e) \in B$. Then

$$
(y, z ; x) \xrightarrow{A}^{*}(y \cup d(e), z ; x) \xrightarrow{B}\left(y \cup d(e), z \cup\{\operatorname{out}(e)\} ; x^{\prime}\right)
$$

where we have made use of the fact that $d(e) \backslash y \subseteq A$. This follows because

$$
d(e) \cap C \subseteq(\text { out } x) \cap C=z \cap C \subseteq y
$$

Also,

$$
(z \cup\{\text { out }(e)\}) \cap C=z \cap C \subseteq y \subseteq y \cup d(e)
$$

Suppose out $(e) \in C$. Then

$$
(y, z ; x) \xrightarrow{A}^{*}(y \cup d(e), z ; x) \rightsquigarrow\left(y \cup d(e) \cup\{\text { out }(e)\}, z \cup\{\text { out }(e)\} ; x^{\prime}\right) .
$$

Again we have used the fact that $d(e) \backslash y \subseteq A$. Also,

$$
(z \cup\{\text { out }(e)\}) \cap C=(z \cap C) \cup\{\text { out }(e)\} \subseteq y \cup d(e) \cup\{\text { out }(e)\} .
$$

Now, assume x is a finite, secure configuration of E. We can choose a securing sequence e_{1}, \cdots, e_{n} such that $\left\{e_{1}, \cdots, e_{n}\right\}=x$. Write $x_{i}=\left\{e_{1}, \cdots, e_{i}\right\}$, where $0 \leq i \leq n$. Then each x_{i} is secure and

$$
\emptyset=x_{0} \xrightarrow{e_{1}} x_{1} \xrightarrow{e_{2}} \cdots \xrightarrow{e_{n}} x_{n}=x .
$$

By the above we can inductively, left-to-right, produce a chain

$$
(\emptyset, \emptyset ; \emptyset)(\xrightarrow{A} \cup \xrightarrow{B} \cup \rightsquigarrow)^{\star}(y, z ; x)
$$

to an element $(y, z ; x)$ of \bar{E}.
Now we define the trace of the stable profunctor \bar{E} from [4,5]. For those familiar with coends, the definition mimics the construction of a coend in the category of sets, but in this case restricted to secured elements. It rests on an equivalence relation \sim between secured elements (the relation coincides with the usual equivalence associated with the coend in sets).
Definition A. 5 The relation \sim, between secure elements of \bar{E}, is defined to be the symmetric, transitive closure of \rightsquigarrow.

Following [4,5], the trace of \bar{E} is defined to be the (stable) profunctor

$$
\operatorname{Tr}(\bar{E}): \mathcal{C}^{o}(A) \times \mathcal{C}^{o}(B)^{\mathrm{op}} \rightarrow \text { Set }
$$

given as follows. For $y_{0} \in \mathcal{C}^{o}(A)$ and $z_{0} \in \mathcal{C}^{o}(B)$,
$\operatorname{Tr}(\bar{E})\left(y_{0}, z_{0}\right)=\left\{\{y, z ; x\}_{\sim} \mid(y, z ; x)\right.$ is a secure element $\left.\& y \cap A=y_{0} \& z \cap B=z_{0}\right\}$.
An inclusion $i: y_{0} \subseteq y_{0}^{\prime}$ in $\mathcal{C}^{\circ}(A)$ determines a map

$$
\operatorname{Tr}(\bar{E})\left(i, z_{0}\right): \operatorname{Tr}(\bar{E})\left(y_{0}, z_{0}\right) \rightarrow \operatorname{Tr}(\bar{E})\left(y_{0}^{\prime}, z_{0}\right),
$$

which takes $\{y, z ; x\}_{\sim}$ to $\left\{y \cup y_{0}^{\prime}, z ; x\right\}_{\sim}$. An inclusion $j: z_{0} \subseteq z_{0}^{\prime}$ in $\mathcal{C}^{o}(B)$ determines a map

$$
\operatorname{Tr}(\bar{E})\left(y_{0}, j\right): \operatorname{Tr}(\bar{E})\left(y_{0}, z_{0}^{\prime}\right) \rightarrow \operatorname{Tr}(\bar{E})\left(y_{0}, z_{0}\right) ;
$$

it takes $\left\{y^{\prime}, z^{\prime} ; x^{\prime}\right\}_{\sim}$ to $\left\{y^{\prime}, z^{\prime} \cap z_{0} ;\left\{e \in x^{\prime} \mid \text { out }(e) \in z^{\prime} \cap z_{0}\right\}\right\}_{\sim}$. (It follows from the functoriality of \bar{E} that the functions $\operatorname{Tr}(\bar{E})\left(i, z_{0}\right)$ and $\operatorname{Tr}(\bar{E})\left(y_{0}, j\right)$ are well-defined, as does the functoriality of $\operatorname{Tr}(\bar{E})$.)

Definition A. 6 Let x be a secure configuration of E. Define

$$
\min (x) \stackrel{\text { def }}{=} \bigcap\{s \subseteq x \mid s \in \mathcal{C}(E) \& s \text { secure \& out }(s) \cap B=\operatorname{out}(x) \cap B\}
$$

(Because the secure configuration of E form a stable family, $\min (x)$ is the minimum secure sub-configuration of x that outputs the same B events as x.)

Lemma A. 7 For secure elements, $(y, z ; x) \sim\left(y^{\prime}, z^{\prime} ; x^{\prime}\right)$ iff

$$
y \cap A=y^{\prime} \cap A \& z \cap B=z^{\prime} \cap B \& \min (x)=\min \left(x^{\prime}\right) .
$$

Proof. If: Assume $y \cap A=y^{\prime} \cap A$ and $z \cap B=z^{\prime} \cap B$ and $\min (x)=\min \left(x^{\prime}\right)$. Define $x_{0}=\min (x), y_{0}=d^{\dagger}\left(x_{0}\right) \cup(y \cap A)$ and $z_{0}=$ out x_{0}. Then $\left(y_{0}, z_{0} ; x_{0}\right) \rightsquigarrow(y, z ; x)$ from the definition of \rightsquigarrow. Similarly, $\left(y_{0}, z_{0} ; x_{0}\right) \rightsquigarrow\left(y^{\prime}, z^{\prime} ; x^{\prime}\right)$. Hence $(y, z ; x) \sim\left(y^{\prime}, z^{\prime} ; x^{\prime}\right)$. Only if: Assume $(y, z ; x) \rightsquigarrow\left(y^{\prime}, z^{\prime} ; x^{\prime}\right)$. Then, $y \cap A=y^{\prime} \cap A$ and $z \cap B=z^{\prime} \cap B$ directly from the definition of \rightsquigarrow. Clearly, $x \subseteq x^{\prime}$. From its definition, $\min (x)$ is the least, secure configuration $s \subseteq x$ such that (out s) $\cap B=z \cap B$. Hence it is also the least, secure configuration $s \subseteq x^{\prime}$ such that (out s) $\cap B=z^{\prime} \cap B$, so equal to $\min \left(x^{\prime}\right)$.

Theorem A. 8 There is a natural isomorphism

$$
\theta: \operatorname{Tr}(\bar{E}) \cong \overline{\operatorname{Tr}(E)}
$$

with components $\theta_{y_{0}, z_{0}}: \operatorname{Tr}(\bar{E})\left(y_{0}, z_{0}\right) \rightarrow \overline{\operatorname{Tr}(E)}\left(y_{0}, z_{0}\right)$, for $y_{0} \in \mathcal{C}^{o}(A)$ and $z_{0} \in$ $\mathcal{C}^{o}(B)$, given by $\theta_{y_{0}, z_{0}}\left(\{y, z ; x\}_{\sim}\right)=\{p \in \operatorname{Tr}(E) \mid p \subseteq x\}$.

Proof. Observe that for a secure configuration x of E that

$$
\min (x)=\bigcup\{p \in \operatorname{Tr}(E) \mid p \subseteq x\}
$$

In particular, $\theta_{y_{0}, z_{0}}$ is a well-defined function because $\theta_{y_{0}, z_{0}}\left(\{y, z ; x\}_{\sim}\right)$ consists of those $p \in \operatorname{Tr}(E)$ for which $p \subseteq \min (x)$. Tentatively, define an inverse to $\theta_{y_{0}, z_{0}}$,

$$
\varphi_{y_{0}, z_{0}}: \overline{\operatorname{Tr}(E)}\left(y_{0}, z_{0}\right) \rightarrow \operatorname{Tr}(\bar{E})\left(y_{0}, z_{0}\right)
$$

by taking $\varphi_{y_{0}, z_{0}}(X)=\{y, z ; x\}_{\sim}$ where $x=\bigcup X, y=d^{\dagger}(x) \cup y_{0}$ and $z=$ out x. Then,

$$
\begin{aligned}
\varphi_{y_{0}, z_{0}} \theta_{y_{0}, z_{0}}\left(\{y, z ; x\}_{\sim}\right) & =\varphi_{y_{0}, z_{0}}(\{p \in \operatorname{Tr}(E) \mid p \subseteq x\}) \\
& =\left\{d^{\dagger}(\min (x)) \cup y_{0}, \text { out } \min (x) ; \min (x)\right\}_{\sim}=\{y, z ; x\}_{\sim},
\end{aligned}
$$

by the observation, and

$$
\theta_{y_{0}, z_{0}} \varphi_{y_{0}, z_{0}}(X)=\{p \in \operatorname{Tr}(E) \mid p \subseteq \bigcup X\}=X,
$$

from the properties of primes as X is downwards closed. We omit the fairly routine verification of naturality.

[^0]: 1 Email: ls275@cam.ac.uk
 2 Email: gw104@cam.ac.uk

