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Abstract

A prime algebraic lattice can be characterised as isomorphic to
the downwards-closed subsets, ordered by inclusion, of its complete
primes. It is easily seen that the downwards-closed subsets of a par-
tial order form a completely distributive algebraic lattice when ordered
by inclusion. The converse also holds; any completely distributive al-
gebraic lattice is isomorphic to such a set of downwards-closed subsets
of a partial order. The partial order can be recovered from the lattice
as the order of the lattice restricted to its complete primes. Conse-
quently prime algebraic lattices are precisely the completely distribu-
tive algebraic lattices. The result extends to Scott domains. Several
consequences are explored briefly: the representation of Berry’s dI-
domains by event structures; a simplified form of information systems
for completely distributive Scott domains; and a simple domain theory
for concurrency.

Introduction

It is 30 years since Mogens Nielsen, Gordon Plotkin and I introduced prime
algebraic lattices, and the more general prime algebraic domains, as an inter-
mediary in relating Petri nets and Scott domains [19]. The recognition that
prime algebraic lattices were well-known in another guise, that of completely
distributive algebraic lattices, came a little later, partly while I was a postdoc
visiting Mogens in Aarhus, with the final pieces falling into place early after
my move to CMU in 1982. The first part of this article is essentially based
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on a CMU research report [25] from my time there.1

Since their introduction prime algebraic domains have come to play a
significant role in several other areas and have broader relevance today. I
would particularly like to draw attention to their part in: stable domain
theory; a recent domain theory for concurrency; and a potential pedagogic
role through providing a simplified form of information system with which
to represent domains. These uses are summarised in section 3.

1 Prime algebraic lattices

1.1 Basic definitions

The following definitions are well-known, see e.g. [11, 8, 14].
For a partial order L = (L,v), the covering relation −⊂ is defined by

x −⊂ y ⇐⇒ x v y & x 6= y & (∀z. x v z v y ⇒ x = z or z = y)

for x, y ∈ L.
Recall a directed set of a partial order (L,v) is a non-null subset S ⊆ L

such that ∀s, t ∈ S∃u ∈ S. s v u & t v u.
A complete lattice is a partial order L = (L,v) which has joins

⊔
X and

meets X of arbitrary subsets X of L. We write x t y for
⊔
{x, y}, and

x u y for {x, y}.
An isolated (i.e. finite or compact) element of a complete lattice L =

(L,v) is an element x ∈ L such that for any directed subset S ⊆ L when
x v

⊔
S there is s ∈ S such that x v s. (In a computational framework the

isolated elements are that information which a computation can realise—use
or produce—in finite time—see [21].)

When there are enough isolated elements to form a basis, a complete
lattice is said to be algebraic i.e. an algebraic lattice is a complete lattice
L = (L,v) for which x =

⊔
{e v x | e is isolated} for all x ∈ L.

Let L = (L,v) be a complete lattice. We are interested in these distribu-
tivity laws:

i∈I

⊔
j∈J(i)xi,j =

⊔
f∈K i∈Ixi,f(i) (1)

1I am grateful to a reviewer for pointing out that the results of the CMU report are
implicit in the earlier works of R-E. Hoffmann [13] and of J.D. Lawson [16], the latter of
which has come to be known as the “Lawson duality for continuous posets”.
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where K is the set of functions f : I →
⋃

i∈I J(i) such that f(i) ∈ J(i); when
L satisfies (1) it is said to be completely distributive.

(
⊔
X) u y =

⊔
{x u y | x ∈ X} (2)

where X ⊆ L and y ∈ L; condition (2) is associated with L being a complete
Heyting algebra.

( X) t y = {x t y | x ∈ X} (3)

where X ⊆ L and y ∈ L.

(x t y) u z = (x u z) t (y u z) (4)

where x, y, z ∈ L. This finite distributive law is equivalent to its dual in a
complete lattice—see [11]. Note that simple arguments by induction show
that (4) implies finite versions of (1)—in which the indexing sets are restricted
to be finite—and (2) and (3)—in which the set X is restricted to be finite.

Clearly if a complete lattice is completely distributive, i.e. satisfies (1),
then it also satisfies (2), (3) and (4).

The following definitions are perhaps less standard. Given a partial or-
der P, we shall order the set of downwards-closed subsets of P by inclusion.
The points of P can be recovered as the complete primes in this order of
downwards-closed subsets. (At the time of [19] we were thinking of struc-
tures like P, and accompanying structures of downwards-closed subsets, as
associated with sets of events ordered by a causal dependency relation—
see [19, 23, 24, 7]. Their application is broader nowadays.)

Definition: Let P = (P,≤) be a partial order. A subsetX of P is downwards-
closed iff

p′ ≤ p ∈ X ⇒ p′ ∈ X
for p, p′ ∈ P .

Let X be a subset of P . Define the downwards-closure of X to be

↓X =def {p′ ∈ P | ∃p ∈ X. p′ ≤ p}.

By convention we write ↓p for ↓{p} = {p′ ∈ P | p′ ≤ p} when p ∈ P .

Definition: Let L = (L,v) be a complete lattice. A complete prime of L is
an element p ∈ L such that

p v
⊔
X ⇒ ∃x ∈ X. p v x .

The lattice L is prime algebraic iff x =
⊔
{p v x | p is a complete prime}, for

all x ∈ L.
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The definition of prime algebraic was introduced in [19]. However, it
turns out that the concept was already familiar in another guise; for complete
lattices it is equivalent to algebraicity with complete distributivity.

1.2 Characterisations

Firstly we recall a theorem from [19]. A prime algebraic complete lattice
can always be represented, to within isomorphism, as the lattice, ordered by
inclusion, of the downwards-closed subsets of its complete primes.

Theorem 1 (i) Let P = (P,≤) be a partial order. Its downwards-closed sub-
sets ordered by inclusion, (L(P),⊆), form a prime algebraic complete lattice;
the complete primes of (L(P),⊆) have the form ↓p for p ∈ P . The partial
order P is isomorphic to ({↓p | p ∈ P},⊆), the restriction of the ordering on
downwards-closed subsets to the complete primes, with isomorphism given by
the map p 7→ ↓p, for p ∈ P .

(ii) Let L = (L,v) be a prime algebraic complete lattice. Let P = (P,≤)
be the partial order consisting of the complete primes of L ordered by the
restriction ≤=v�P of v to P . Then θ : (L(P),⊆) ∼= L where θ(X) =

⊔
X

for X ∈ L(P), with inverse φ given by φ(x) = {p ∈ P | p v x} for x ∈ L.

Proof: (i) Let P = (P,≤) be a partial order. It is easy to see that L(P) is a
complete lattice in which joins are unions and meets are intersections.

Suppose x is a complete prime of (L(P),⊆). Then obviously

x =
⋃
{↓p | p ∈ x}

which implies x = ↓p for some p ∈ P . To see the converse, consider an
element of the form ↓p, for p ∈ P . If ↓p ⊆

⋃
X for X ⊆ L(P) then p ∈ x for

some x ∈ X. But x is downwards-closed so ↓p ⊆ x. Thus ↓p is a complete
prime.

It is easy to see that the map p 7→ ↓p, for p ∈ P , is an order isomorphism
between P and ({↓p | p ∈ P},⊆).

(ii) Let L = (L,v) be a prime algebraic complete lattice. Let P = (P,≤)
be the complete primes of L ordered by the restriction of v.

Obviously the maps θ and φ are monotonic i.e. order preserving. We
show they are mutual inverses and so give the required isomorphism.
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Firstly we show θ ◦ φ = 1. Thus we require x =
⊔
{p ∈ P | p v x} for all

x ∈ L. But this is just the condition of prime algebraicity.
Now we show φ ◦ θ = 1. Let X ∈ L(P,≤). We require X = φ ◦ θ(X)

i.e. X = {p ∈ P | p v
⊔
X}. Clearly X ⊆ {p ∈ P | p v

⊔
X}. Conversely if

p v
⊔
X, where p is a complete prime, then certainly p v q for some q ∈ X.

However X is downwards-closed so p ∈ X, showing the converse inclusion.
Thus we have established the required isomorphism. 2

Corollary 2 A prime algebraic complete lattice is completely distributive
(and so satisfies the distributive laws (2), (3) and (4), as well as (1)).

Proof: The distributive laws clearly hold for downwards-closed subsets or-
dered by inclusion and these represent all the prime algebraic complete lat-
tices to within isomorphism. 2

The next step is to show the prime algebraic complete lattices are the
completely distributive algebraic lattices. A key idea is that algebraicity
implies a form of discreteness; any distinct comparable pair of elements of an
algebraic lattice are separated by a covering interval. The proof uses Zorn’s
lemma.

Lemma 3 Let L = (L,v) be an algebraic lattice. Then

∀x, y ∈ L. x v y & x 6= y ⇒ ∃z, z′ ∈ L. x v z −⊂ z′ v y.

Proof: Suppose x, y are distinct elements of L such that x v y. Because L
is algebraic there is an isolated element b such that b 6v x & b v y. By Zorn’s
lemma there is a maximal chain C of elements above x and strictly below
xt b. If

⊔
C = xt b, then as C is directed we would have c w b, so c = xt b,

for some c ∈ C—a contradiction. Hence
⊔
C @ xt b, and by the maximality

of C we must have
⊔
C −⊂ x t b yielding x v

⊔
C −⊂ x t b v y. 2

In proving the next theorem we use such coverings to construct complete
primes of a lattice. The distributive laws (2) and (3)—implied of course by
(1)—make it possible to find v– minimum coverings which correspond to
complete primes. Algebraicity ensures there are enough covering intervals,
and so complete primes, for the lattice to be prime algebraic.

Theorem 4 Let L be a complete lattice. Then L is prime algebraic iff it is
algebraic and satisfies the distributive laws (2) and (3).
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Proof: “only if”: Let L be a prime algebraic complete lattice. Let P be the
ordering of L restricted to its complete primes. By the previous theorem
we know L ∼= L(P) so it is sufficient to prove properties for L(P). We have
already seen the distributivity laws follow from the corresponding laws for
sets.

The isolated elements of L(P) are easily shown to be precisely the downwards-
closures of finite subsets of P . Suppose x ∈ L(P) is isolated. Obviously
x =

⋃
{↓X | X ⊆fin x}. But the set {↓X | X ⊆fin x} is clearly directed so,

because x is isolated, x = ↓X for some finite set X ⊆ P . Conversely, it
is clear that an element of the form ↓X, for a finite X ⊆ P , is necessarily
isolated; if ↓X ⊆

⋃
S for a directed subset S of L(P) then X, and so ↓X,

is included in the union of a finite subset of S, and so in an element of S.
Clearly now every element of L(P) is the least upper bound of the isolated
elements below it, making L(P) algebraic.

Thus L is an algebraic lattice satisfying the distributive laws (1), (2), (3)
and (4).

“if”: Let L = (L,v) be an algebraic lattice satisfying the distributive
laws (2) and (3).

Let x −⊂ x′ in L. Define

pr[x, x′] = {y ∈ L | x′ ≤ x t y}.

We show p = pr[x, x′] is a complete prime of L. Note first that

x t p = {x t y | x′ v x t y} = x′

by distributive law (3). Now suppose p v
⊔
Z for some Z ⊆ L. Then

p = (
⊔
Z) u p =

⊔
{z u p | z ∈ Z}

by the distributive law (2). Write Z ′ = {z u p | z ∈ Z}, so p =
⊔
Z ′. Then

x′ = x t p = x t (
⊔
Z ′) =

⊔
{x t z′ | z′ ∈ Z ′}.

Clearly x v x t z′ v x′ for all z ∈ Z ′. As x −⊂ x′ we must have x′ = x t z′
for some z′ ∈ Z ′; otherwise x = xt z′ for all z′ ∈ Z ′ giving the contradiction
x =

⊔
{x t z′ | z′ ∈ Z ′} = x′. But then p v z′ from the definition of p.

However z′ = z u p for some z ∈ Z. Therefore p v z for some z ∈ Z. Thus p
is a complete prime of L.
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That L is prime algebraic follows provided for z ∈ L, we have

z =
⊔
{pr[x, x′] | x −⊂ x′ v z}.

Let z ∈ L. Write
w =

⊔
{pr[x, x′] | x −⊂ x′ v z}.

Clearly w v z. Suppose w 6= z. Then, by the lemma,

w v x −⊂ x′ v z

for some x, x′ ∈ L. Write p = pr[x, x′]. Then p v w making x t p = x, a
contradiction as xt p = x′. Thus each element of L is the least upper bound
of the complete primes below it, as required.

Thus we have established the required equivalence between prime alge-
braic complete lattices and algebraic lattices satisfying (2) and (3). 2

Corollary 5 Let L be a complete lattice. The following are equivalent:
(i) L is prime algebraic,

(ii) L is isomorphic to (L(P),⊆) for some partial order P,
(iii) L is algebraic and completely distributive,
(iv) L is algebraic and satisfies the distributive laws (2) and (3).

Proof: Combining previous results. 2

1.3 The finitary case

In the special case when the algebraic lattice satisfies a finiteness restriction
we can obtain a similar representation of algebraic lattices mentioning just
the finite distributive law (4). The finiteness restriction says every isolated
element dominates only a finite number of elements. The corresponding
axiom has been called axiom F, sometimes axiom I, in [15, 4, 23]. (This
restriction arises naturally for computations. When a partial order models
the events and causal dependency relation of a computation it is generally
true that an event is causally dependent on only a finite set of events. The
associated downwards-closed subsets then satisfy the finiteness restriction.)

Definition: An algebraic lattice L = (L,v) is said to satisfy axiom F when
{y ∈ L | y v x} is finite for all isolated elements x ∈ L.
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Theorem 6 Let L be an algebraic lattice which satifies axiom F. Then L is
prime algebraic iff L satisfies the finite distributive law (4).

Proof: The “only if” part follows from theorem 4. The converse, “if” part,
follows from theorem 4 provided we can show that, in the presence of axiom
F, the finite distributive law (4) implies the infinite distributive laws (2) and
(3).

Let L be an an algebraic lattice which satifies axiom F and the finite
distributive law (4).

We show that L satisfies the infinite distributive law (2). Let X ⊆ L
and y ∈ L. Clearly

⊔
{x u y | x ∈ X} v (

⊔
X) u y. To show the converse

inequality, suppose b is isolated and b v (
⊔
X) u y. Then as b v

⊔
X and b

is isolated, for some finite X ′ ⊆fin X we have b v
⊔
X ′. Thus

b v (
⊔
X) u y ⇒ b v (

⊔
X ′) u y

⇒ b v
⊔
{x u y | x ∈ X ′} (by the finite distributive law (4))

⇒ b v
⊔
{x u y | x ∈ X}.

Therefore, because L is algebraic, we have the converse inequality. Combin-
ing the inequalities we obtain (2),

⊔
{x u y | x ∈ X} = (

⊔
X) u y.

Now we show L satisfies the infinite distributive law (3). Let X ⊆ L and
y ∈ L. Clearly

( X) t y v {x t y | x ∈ X}.
We require the converse inequality. Suppose b is isolated and

b v {x t y | x ∈ X}.

Then

b = ( {x t y | x ∈ X}) u b = {(x t y) u b | x ∈ X}
= {(x u b) t (y u b) | x ∈ X}.

Now b dominates only a finite number of elements. Thus there is some finite
subset X ′ ⊆fin X for which

{x u b | x ∈ X ′} = {x u b | x ∈ X}.

So in addition,

b = {(x u b) t (y u b) | x ∈ X} = {(x u b) t (y u b) | x ∈ X ′}.
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Now by the finite distributive law (4),

b =( {x u b | x ∈ X ′}) t (y u b)
=( {x u b | x ∈ X}) t (y u b)
=( X u b) t (y u b) v ( X) t y.

By algebraicity we obtain

{x t y | x ∈ X} v ( X) t y.

Combining the inequalities we obtain (3). 2

2 Prime algebraic domains

2.1 Basic Definitions

Let D = (D,v) be a partial order.
Say a set X ⊆ D is compatible iff it has an upper bound. Say a set X ⊆ D

is finitely compatible iff if every finite Y ⊆ X is compatible. In particular, a
directed set is finitely compatible.

Say D is consistently complete iff every finitely compatible subset X ⊆ D
has a least upper bound

⊔
X. Note a consistent complete partial order has

a least element, viz. ⊥ =
⊔
∅, though it may not have a greatest. Note any

consistent complete partial order has greatest lower bounds of any nonempty
subsets: for X nonempty, X =

⊔
{d | ∀x ∈ X. d v x}.

As before, when D = (D,v) is consistently complete, an isolated element
is an element x ∈ D such that for any directed subset S ⊆ D when x v

⊔
S

there is s ∈ S such that x v s.
D is a Scott domain (or simply a domain) iff it is consistently complete

and algebraic in the sense that x =
⊔
{e v x | e is isolated} for all x ∈ D.

In the case where D = (D,v) is a consistently complete partial order, not
all subsets have joins so we need to modify the statement of the distributivity
laws:

i∈I

⊔
j∈J(i)xi,j =

⊔
f∈K i∈Ixi,f(i) (1′)

where K is the set of functions f : I →
⋃

i∈I J(i) such that f(i) ∈ J(i), pro-
vided the sets {xi,j | j ∈ J(i)} are compatible for all i ∈ I; when D satisfies

9



(1′) it is said to be completely distributive.

(
⊔
X) u y =

⊔
{x u y | x ∈ X} (2′)

provided X is a compatible subset of D and y ∈ D.

( X) t y = {x t y | x ∈ X} (3′)

where X ⊆ D and y ∈ D, provided {x, y} is compatible for all x ∈ X.

(x t y) u z = (x u z) t (y u z) (4′)

where x, y, z ∈ D, provided {x, y} is compatible. Now, this finite distributive
law implies its ‘dual’ while the converse implication does not hold.

Let D = (D,v) be a consistently complete partial order. A complete
prime of D is an element p ∈ D such that for any compatible X ⊆ D

p v
⊔
X ⇒ ∃x ∈ X. p v x .

The partial order D is a prime algebraic domain iff

x =
⊔
{p v x | p is a complete prime} ,

for all x ∈ D.
Complete primes now inherit a consistency relation as well as a partial

order from their ambient prime algebraic domain. This suggests a representa-
tion of prime algebraic domains in terms of partial orders with a consistency
relation. It is useful to relax the definition to a preorder with consistency.

2.1.1 Preorders with consistency

A preorder with consistency comprises P = (P,.P,ConP) where (P,.P) is a
preorder and ConP is a family of finite subsets of P such that

{p} ∈ ConP ,

Y ⊆ X ∈ ConP ⇒ Y ∈ ConP , and

X ∈ ConP & p′.Pp ∈ X ⇒ X ∪ {p′} ∈ ConP

for all p ∈ P and finite X, Y ⊆ P . We say the preorder with consistency is
finitary iff each set {p′ ∈ P | p′.Pp} is finite for p ∈ P . A partial order with
consistency meets the additional requirement that the preorder is a partial
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order. We can identify a preorder (partial order) with the preorder (partial
order) with consistency comprising all finite subsets.

Let P = (P,.P,ConP) be a preorder with consistency. The preorder
determines an equivalence relation 'P on P , given by p 'P p

′ iff p.Pp
′ and

p′.Pp. Quotiented by 'P, the preorder with consistency P yields a partial
order with consistency P/'P= (P/'P,.P/'P,Con), where

Y ∈ Con iff ∃X ∈ ConP. Y = X/'P .

An equivalence of preorders with consistency P = (P,.P,ConP) and Q =
(Q,.Q,ConQ) is a function f : P → Q such that

∀p, p′ ∈ P. p.Pp
′ ⇐⇒ f(p).Qf(p′) ,

∀X ⊆ P. X ∈ ConP ⇐⇒ fX ∈ ConQ , and

∀q ∈ Q∃p ∈ P. f(p) 'Q q .

When such a map exists we say P is equivalent to Q. If P is equivalent to Q,
then Q is equivalent to P, via any function g : Q→ P for which g(q) = p for
some choice of p with f(p) 'Q q. A preorder with consistency is equivalent
to its quotient, a partial order with consistency.

Let P = (P,.P,ConP) be a preorder with consistency. As before we say
x ⊆ A is downwards-closed iff

p′.Pp ∈ x ⇒ p′ ∈ x

for all p, p′ ∈ P . In addition, we say x is consistent iff for all finite subsets
X ⊆ x we have X ∈ ConP. Write L(P) for the collection of all downwards-
closed, consistent sets of P. As earlier, we adopt the notation ↓X for the
downwards-closure w.r.t. .P of X ⊆ A and ↓p for the downwards-closure of
a singleton {p} in P . A simple argument shows that if X ∈ ConP then ↓X
is consistent, so ↓X ∈ L(P).

Equivalent preorders with consistency represent isomorphic prime alge-
braic domains (the converse follows from theorem 8 below):

Proposition 7 Let P = (P,.P,ConP) and Q = (Q,.Q,ConQ) be equivalent
preorders with consistency, with equivalence f : P → Q. Their downwards-
closed consistent sets (L(P),⊆) and (L(Q),⊆) are isomorphic, under x 7→
↓(fx). In particular, (L(P),⊆) is isomorphic to (L(P/'),⊆), under x 7→
x/'.
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2.2 Characterisations

Our first characterisation of prime algebraic domains appears in [19] for the
case of binary conflict/consistency. (The slightly more general case below was
considered in [23].) A prime algebraic domain can always be represented as
the downwards-closed consistent subsets of a partial order with consistency
obtained from its complete primes.

Theorem 8 (i) Let P = (P,.,Con) be a preorder with consistency. Its
consistent downwards-closed subsets ordered by inclusion, (L(P),⊆), form a
prime algebraic domain; the complete primes of (L(P),⊆) have the form ↓p
for p ∈ P . The preorder with consistency P is equivalent to ({↓p | p ∈ P},⊆
, ↑), where ↑ is the relation of compatibility in L(P), restricted to the complete
primes; the equivalence given by the function p 7→ ↓p, for p ∈ P .

(ii) Let D = (D,v) be a prime algebraic domain. Let P = (P,≤,Con)
comprise the partial order with consistency consisting of the complete primes
of D ordered by the restriction ≤ of v to P and consistency Con given by
compatibility in D. Then θ : (L(P),⊆) ∼= D where θ(X) =

⊔
X for X ∈ L(P),

with inverse φ given by φ(x) = {p ∈ P | p v x} for x ∈ D.

Proof: The proof follows closely that of theorem 1 with the additional con-
sideration of consistency. 2

We can adapt theorems 4 and 6 for lattices to domains via the following
proposition.

Proposition 9 Let D = (D,v) be a consistently complete partial order sat-
isfying the distributive law (2′). For d ∈ D, define Ld to be the partial order
of D restricted to {x ∈ D | x v d}. Then,
(i) D is algebraic iff Ld is an algebraic lattice for all d ∈ D.
(ii) D is prime algebraic iff Ld is a prime algebraic lattice for all d ∈ D.

Proof: (i) The key point is that the isolated elements of each Ld are precisely
those isolated elements of D below or equal to d. Clearly any such element
of D is automatically isolated in Ld. Conversely, if e is isolated in Ld and
e v

⊔
S for directed S ⊆ D, then by distributivity (2′) we obtain e v⊔

{s u d | s ∈ S}, a directed join in Ld. Hence e v s u d, so e v s, for some
s ∈ S. Now (i) follows.
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(ii) By an argument echoing that we have just seen but this time using
compatible subsets in place of directed sets, we can show that the complete
primes of Ld are precisely those complete primes of D below or equal to d.
Now (ii) follows. 2

Theorem 10 Let D = (D,v) be a consistently complete partial order. Then,
D is prime algebraic iff it is a Scott domain and satisfies the distributive laws
(2′) and (3′).

Proof: “only if”: Straightforwardly from the representation given by theo-
rem 8(ii). “if”: Assume that D is algebraic and satisfies the distributive laws
(2′) and (3′). For d ∈ D, define Ld to be the partial order of D restricted to
{x ∈ D | x v d}. By (i) of proposition 9, Ld is an algebraic lattice satisfying
the distributive laws (2) and (3). By theorem 4, each Ld is a prime algebraic
lattice. By (ii) of proposition 9, D is prime algebraic. 2

Combining previous results:

Corollary 11 Let D be a consistently complete partial order. The following
are equivalent:

(i) D is a prime algebraic domain,
(ii) D is isomorphic to (L(P),⊆) for some partial order with consistency P,

(iii) D is isomorphic to (L(P),⊆) for some preorder with consistency P,
(iv) D is a completely distributive Scott domain,
(v) D is a Scott domain and satisfies the distributive laws (2) and (3).

2.3 The finitary case

Definition: A Scott domain D = (D,v) is said to satisfy axiom F when
{y ∈ D | y v x} is finite for all isolated elements x ∈ D.

Theorem 12 Let D be a Scott domain which satifies axiom F. Then D is
prime algebraic iff D satisfies the finite distributive law (4′).

Proof: The “only if” part follows from theorem 10. The converse, “if” part,
follows by considering the lattices Ld got by restricting D to {x ∈ D | x v d},
for d ∈ D. By (i) of proposition 9, each lattice Ld is algebraic. Each Ld

satisfies axiom F and the distributive law (4). By theorem 6, each Ld is
prime algebraic. By (ii) of proposition 9, the domain D is prime algebraic.

2
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In an prime algebraic domain, axiom F clearly implies that a complete
prime only dominates finitely many complete primes; the converse also holds
as any isolated element is easily shown to be a join of finitely many complete
primes. Thus prime algebraic domains satisfying axiom F are represented
by finitary partial orders (or indeed preorders) with consistency. Gathering
facts together we obtain the following corollary.

Corollary 13 Let D be a consistently complete partial order. The following
are equivalent:

(i) D is a prime algebraic domain satisfying axiom F,
(ii) D is isomorphic to (L(P),⊆) for some finitary partial order with consistency P,

(iii) D is isomorphic to (L(P),⊆) for some finitary preorder with consistency P,
(iv) D is a distributive Scott domain satisfying axiom F.

3 Some consequences

3.1 dI-domains and event structures

In the late 1970’s Gérard Berry uncovered dI-domains as those domains which
supported a rich stable domain theory, based on the stable ordering between
stable continuous functions [2, 3]. dI-domains are Scott domains which are
distributive and satisfy axiom I (i.e. axiom F). Berry’s aim was to move
to a domain theory that caught operational aspects such as sequentiality
of functions more accurately. Recognising that capturing sequentiality at
higher-order required radically new machinery, he settled initially on the
more modest goal of a domain theory based on stable functions.2 Berry pro-
ceeded axiomatically, narrowing down to the axioms on dI-domains from var-
ious mathematical requirements, chief being that he end up with a cartesian-
closed category.

His work coincided with the earliest work on event structures [18], and
it took a while to realise that his dI-domains were precisely those domains
represented by simple event structures. Now we can see this directly from
corollary 13, once we recognise that finitary partial orders with consistency
are just (prime) event structures [27]. (More general ‘stable’ event structures
provide a more workable representation of the constructions of stable domain

2A function f : D→ D′ between dI-domains is stable iff it is continuous and f(xu y) =
f(x) u f(y) for all compatible x, y ∈ D.
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theory, in particular stable function space [27].) According to the event-
structure representation, the order on Berry’s dI-domains is revealed as a
temporal order, with more information corresponding to the occurrence of
more events.

Stable domain theory was rediscovered in the work of Jean-Yves Gi-
rard [9, 10], though for more restricted qualitative domains (where in the
representation by partial orders with consistency, the partial order is just
the identity relation); the subcategory in which consistency is determined in
a binary fashion (by a coherence) played a key role in suggesting the structure
of classical linear logic. Girard’s use of qualitative domains in the semantics
of polymorphism extends to dI-domains [6].

3.2 Simple information systems

Preorders with consistency can play the role of simplified information sys-
tems [22, 26], that is, provided one is content to restrict to completely dis-
tributive Scott domains. The advantage comes from the simplified form of
entailment as just given by a preorder between ‘tokens’. Such representations
have been shown helpful in solving recursive domain equations and in proofs
of adequacy and full abstraction—see [28, 20] for example.

Given preorders with consistency P = (P,.P,ConP) and Q = (Q,.Q,ConQ),
define

P � Q iff P ⊆ Q and

∀p, p′ ∈ P. p.Pp
′ ⇐⇒ p.Qp

′ and

∀X ⊆ P. X ∈ ConP ⇐⇒ X ∈ ConQ .

The empty preorder with consistency is the �-least element and ω-chains of
preorders with consistency have joins given by unions. In this sense preorders
with consistency form a ‘large complete partial order’ when ordered by the
substructure relation �. The � relation gives a very concrete representation
of embedding-projection pairs between domains. With a little care type
operations become �-continuous so that solving a recursive domain equation
becomes simply a matter of finding the least fixed point of a continuous
operation. The relaxation to preorders with consistency can be necessary to
ensure the monotonicity of some constructions w.r.t. �.

As examples, we look at the function spaces of join-preserving and con-
tinuous functions afforded by the representation of prime algebraic domains.
Let P = (P,.P,ConP) and Q = (Q,.Q,ConQ) be preorders with consistency.
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Join-preserving functions from P to Q are in 1-1 correspondence with certain
relations between P and Q. Such relations, R⊆ P ×Q, satisfy

p.Pp
′ & p R q & q.Qq

′ ⇒ p′ R q′ and

p1 R q1 & · · · & pk R qk & {p1, · · · , pk} ∈ ConP ⇒ {q1, · · · , qk} ∈ ConQ .

The relations can be presented as elements of L(P ( Q), where P ( Q, a
preorder with consistency, is the function space of join-preserving functions,
given as follows. It comprises P( Q =def (P ×Q,.,Con) where

(p′, q′) . (p, q) iff p.P p
′ & q′.Q q , and

{(p1, q1), · · · , (pn, qn)} ∈ Con iff

∀I ⊆ {1, · · · , n}. {pi | i ∈ I} ∈ ConP ⇒ {qi | i ∈ I} ∈ ConQ .

The operation ( is �-continuous in both arguments.
We can build the function space of all continuous functions from that

for join-preserving functions using an operation ! which on P produces !P =
(ConP,.!P,Con!P), where

X.!PY iff ∀p ∈ X∃p′ ∈ Y. p.Pp
′ , and

X ∈ Con!P iff
⋃

X ∈ ConP .

The preorder with consistency !P is equivalent to that which would be ob-
tained by restricting the subset order and compatibility of L(P) to its isolated
elements. (As it is defined the operation ! is �-continuous, whereas the alter-
native definition based on isolated elements would not even be �-monotonic.)
Now define (P→ Q) =def (!P( Q). The elements of L(!P( Q) correspond
to continuous functions from L(P) to L(Q).

The notation of linear logic is no accident. The category of preorders
with consistency and join-preserving functions between their domains is part
of a model of linear logic (in the sense of [1]), one where ! plays the role of a
linear-logic exponential.

3.3 A domain theory for concurrency

Prime algebraic lattices have appeared in domain theories for concurrency.
The potentially complicated structure of computation paths of processes has
suggested building domain theories for concurrency directly on computation
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paths. This line has been followed in what seemed originally to be two differ-
ent approaches. One is Matthew Hennessy’s semantics for CCS with process
passing [12], in which a process denotes the set of its computation paths.
The other is that of categories of presheaf models [5] in which processes de-
note mappings from computation paths to sets of “realisers” saying how each
computation path may be realised. This extra structure allows the incorpo-
ration of branching information, and the corresponding notion of process
equivalence is a form of bisimulation. The two approaches are variations on
a common idea: that a process denotes a form of characteristic function in
which the truth values are sets of realisers. A path set may be viewed as a
special presheaf that yields at most one realiser for each path. (Here we are
seeing prime algebraic lattices as degenerate forms of presheaf category.)

In the path semantics, processes are intuitively represented as collections
of their computation paths. Paths are elements of preorders P, Q, . . . called
path orders which function as process types, each describing the set of pos-
sible paths for processes of that type together with their sub-path ordering.
A process of type P then denotes a downwards-closed subset of paths in P,
called a path set. Path sets ordered by inclusion form the elements of the
prime algebraic domain L(P), the domain of processes of type P.

Linear maps from path order P to path order Q are join-preserving func-
tions from L(P) to L(Q). The ensuing category has enough structure to form
a model of Girard’s (classical) linear logic [1, 17, 29, 20]. As usual, one moves
to more liberal maps through the use of a suitable comonad (an exponential
of linear logic generally written !). Here, !P can be taken to be the finite
subsets of path order P = (P,.P) ordered by

X.!PY iff ∀p ∈ X∃p′ ∈ Y. p.Pp
′ .

The path order !P should be thought of as consisting of compound paths,
associated with several runs of a (replicated) process. As a preorder !P is
equivalent to the partial order of isolated elements in L(P). Linear maps
from !P to Q correspond to continuous functions from L(P) to L(Q).

This categorical situation yields a rich higher-order process languages,
HOPLA and affine-HOPLA. The semantics of recursive types is given essen-
tially as in the previous section. The representation of domains by preorders
plays an important role in proofs of adequacy and full-abstraction [20].
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Thèse de Doctorat d’Etat, Université de Paris VII (1979).
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