
1

Linearity and nonlinearity in
distributed computation

Glynn Winskel
Cambridge University Computer Laboratory

Abstract

The copying of processes is limited in the context of distributed compu-
tation, either as a fact of life, often because remote networks are simply
too complicated to have control over, or deliberately, as in the design of
security protocols. Roughly, linearity is about how to manage without a
presumed ability to copy. The meaning and mathematical consequences
of linearity are studied for path-based models of processes which are also
models of affine-linear logic. This connection yields an affine-linear lan-
guage for processes in which processes are typed according to the kind
of computation paths they can perform. One consequence is that the
affine-linear language automatically respects open-map bisimulation. A
range of process operations (from CCS, CCS with process-passing, mo-
bile ambients, and dataflow) can be expressed within the affine-linear
language showing the ubiquity of linearity. Of course, process code can
be sent explicitly to be copied. Following the discipline of linear logic,
suitable nonlinear maps are obtained as linear maps whose domain is
under an exponential. Different ways to make assemblies of processes
lead to different choices of exponential; the nonlinear maps of only some
of which will respect bisimulation.

1.1 Introduction

In the film “Groundhog Day” the main character comes to relive and
remember the same day repeatedly, until finally he gets it right (and
the girl). Real life isn’t like that. The world moves on and we cannot
rehearse, repeat or reverse the effects of the more important decisions
we take.

1

2 Glynn Winskel

As computation becomes increasingly distributed and interactive the
more it resembles life in this respect, and the more difficult or impos-
sible it is for a state of computation to be frozen and copied, so that
interaction is most often conducted in a single irreversible run. Mathe-
matically, this amounts to a form of linearity, as it is understood within
models of linear logic.

Although it can be hard for processes to copy processes, it is generally
easy for processes to ignore other processes. For this reason distributed
computation often involves affine-linear maps.

To get an idea of the nature of affine-linear maps, imagine a network
of interacting processes with a single hole, into which a process, the
input process, may be plugged to form a complete process, the output
process. The network with the hole represents an affine-linear map;
given an input process, one obtains an output process.

The input process cannot be copied, but can be ignored. Conse-
quently, any computation path (or run) of the output process will have
depended on at most one computation path (or run) of the input. This
property of affine-linear maps rests on an understanding of the nature
of the computation paths of a process. The property can be simplified
provided we understand a computation path of the input processes to
also admit the empty computation path—a computation path obtained
even when the input process is ignored. Any output got while ignoring
the input process, results from the empty computation path as input.
An affine-linear map has the following property:

A computation path of the process arising from the application of an affine-
linear map to an input process has resulted from a single computation path,
possibly empty, of the input process.

As this suggests, an affine-linear map is determined by its action on
single, possibly empty, computation paths.

This article presents models of processes based on computation paths
and so can make precise the sense in which many operations on dis-
tributed systems are associated with affine-linear maps, investigates the
consequences of linearity and affine linearity for the important equiva-
lence of bisimulation, and delineates the boundaries of linearity with re-
spect to one, fairly broad, mathematical model, in which non-deterministic
processes are represented as presheaves.

Of course, sometimes code can be sent and copied, which can give rise
to maps which are not affine-linear. The presheaf model exposes how

Linearity and nonlinearity in distributed computation 3

different manners of copying lead to different kinds of nonlinear maps,
some respecting bisimulation, others not.

1.2 Path-based models of processes

Consider processes, like those of CCS [24] and CSP [16], which can per-
form simple atomic actions, among which might be actions of synchro-
nisations. An old idea is to represent the nondeterministic behaviour
of a such a process as a “collection” of the computation paths it can
perform. If we interpret this idea literally, and may assume that actions
occur one at a time, we arrive at one of the early models of processes as
sets of traces, where a trace is a finite sequence of actions that the pro-
cess can perform [16]. It was realised very quickly that a problem with
the trace model is that it is blind to deadlock; two processes may have
the same trace sets and yet one may deadlock while the other does not
(see for instance the discussion in [23], Ch.1). To detect possible dead-
lock, one way or another, one needs to keep track of nondeterministic
branching in the representation of processes. An early proposal on how
to do this is to represent a process as a tree, where branching stands for
nondeterministic choice (cf. the synchronisation trees of [23]). The tree
is still a sort of “collection” of the process’s computation paths but one
keeping track of where the paths overlap, through sharing a common
subpath as history. Now the model is too concrete; many different trees
represent what seems to be esentially the same behaviour, and this led
to equivalences such as bisimulation on trees and transition systems [24].

The trace and tree models of processes are based on different ideas
of what a “collection” of the computation paths means. A trace set
of a process simply expresses whether or not a path of a certain shape
is possible for the process. A tree expresses not only what paths are
present but also how paths are subpaths, or restrictions, of others. This
data, what paths are present and how they restrict to smaller paths, is
precisely that caught in a presheaf over a category, a category in which
the objects are path shapes and the maps express how one path shape
can extend to another. In the category of all such presheaves we can
view the tree as a colimit of its paths—another kind of “collection” of
its paths.

To illustrate the idea, suppose that actions are drawn from some al-
phabet L, and consider processes whose computation paths have the
shape of strings of actions, so members of L∗. A subpath will be associ-
ated with a substring. Regard L∗ as a partial order where s ≤ t iff s is

4 Glynn Winskel

a substring of t. (So L∗ is also a category where we view there as being
an arrow from s to t precisely when s ≤ t.)

A presheaf over L∗ is a functor from the opposite category (L∗)op,
where all the arrows are reversed, to the category of sets and functions
Set. Spelt out, a presheaf X over L∗ is a function which to each string
s gives a set X(s) and which to any pair of strings (s, t), with s ≤ t,
gives a function X(s, t) : X(t) → X(s) (note the reversal) in such a way
that identities and composition are respected: X(s, s) = 1X(s) for each
string s, and X(s, u) = X(s, t) ◦X(t, u) whenever s ≤ t ≤ u.

When thinking of a presheaf X as representing a process, for a string
s, the set X(s) is the set of computation paths of shape s that the process
can perform, and, when s ≤ t, the function X(s, t) : X(t) → X(s) tells
how paths of shape t restrict to subpaths of shape s. For example, a
tree whose branches consist of strings of actions in L is easily viewed as
a presheaf X over L∗. The set X(s) consists of all the branches of shape
s. The function X(s, t) : X(t) → X(s) restricts a branch of shape t to
its sub-branch of shape s. The presheaf is rooted in the sense that the
set X(ε) assigned to the empty string ε is a singleton—its only element
is the root of the tree. Conversely, it is easy to see that a rooted presheaf
over L∗ determines a tree.

Suppose that we replace the category of sets used in the definition
of presheaves by the simple subcategory 2, consisting of two distinct
elements, the empty set, ∅, and the singleton set, 1, with the only non-
identity map being ∅ ⊆ 1. A functor X from (L∗)op to 2 is the same as
a monotonic function from the reverse order (L∗)op to the order 2, so
that if s ≤ t then X(t) ≤ X(s). When thinking of X as representing a
process, X(s) = 1 means that the process can perform a path of shape
s while X(s) = ∅ means that it cannot. If X(t) = 1 and s ≤ t, then
X(s) = 1. The functor X is a characteristic function for a trace set.

So trees and trace sets arise as variants of a common idea, that of
representing a process as a (generalised) characteristic function, in the
form of a functor from path shapes to measures of the extent to which
the path shapes can be realised by the process.

In what follows, we want to broaden computation paths to have more
general shapes than sequences of atomic actions, to allow actions to
occur concurrently in a computation path, and for individual actions to
have a more complicated structure. Later on, processes will be allocated
types; the type of a process will specify the shapes of computation path
it might perform.

Linearity and nonlinearity in distributed computation 5

1.3 Processes as trace sets

To allow a broad understanding of the shape of computation paths, we
take a path order to be a partial order P in which the elements are path
shapes and the order p ≤ q means that p can be extended to q. We
obtain a form of nondeterministic domain by imitating the definition of
presheaf category, but replacing the use of the category of sets, Set, by
its much simpler subcategory, 2. The category 2 is essentially a very
simple partial order consisting of ∅ and 1 ordered by ∅ ⊆ 1. A partial
order P can always be regarded as a category by taking the homset
P(p, q) to be 1 if p ≤ q, and ∅ otherwise. Functors between partial
orders seen as categories correspond precisely to monotonic maps.

The functor category P̂ = [Pop,2] consists of objects the functors from
Pop to 2 and maps the natural transformations between them. A functor
from Pop to 2 is essentially a monotonic function from Pop to 2. It is not
hard to see that an object X of P̂ corresponds to a downwards-closed
set given by {p ∈ P | X(p) = 1}, and that a natural transformation
from X to Y in P̂ corresponds to the inclusion of {p ∈ P | X(p) = 1}
in {p ∈ P | Y (p) = 1}. So we can identify P̂ with the partial order of
downwards-closed subsets of P, ordered by inclusion; the order P̂ has
joins got simply via unions with the empty join being the least element
∅. The partial orders obtained in this way are precisely the infinitely-
distributive algebraic lattices (see e.g., [27, 28]) and these are just the
same as prime algebraic lattices [25], and free join completions of partial
orders.

We are thinking of P̂ as a nondeterministic domain [15, 14]. An object
in P̂ is thought of as a denotation of a nondeterministic process which
can realise path shapes in P. An object in P̂ is a trace set, like those
originally, in [16], but for general path shapes, standing for the set of
computation paths a process can perform. The join operation on P̂ is a
form of nondeterministic sum.

This suggests that we take maps between nondeterministic domains
to be join preserving functions, the choice dealt with in the next sec-
tion. We will however be forced a little beyond this first mathematically
obvious choice.

1.3.1 A linear category of domains

We mentioned that P̂ is a free join completion of a partial order P. We
spell this out. There is a monotonic map yP : P → P̂ which on p yields

6 Glynn Winskel

yP(p) = P(−, p); for p′ ∈ P,

yP(p)(p′) = 1 if p′ ≤ p, and ∅ otherwise.

The map yP satisfies the universal property that for any monotonic map
F : P → E , where E is a partial order with all joins, there is a unique
join-preserving map G : P̂ → E such that F = G ◦ yP:

P
yP //

F
&&LLLLLLLLLLLLL P̂

G

��

E

The proof of the universal property hinges on the fact that every object
of P̂ is the join of the “complete primes”, objects yP(p), below it. We
will use an “inner product” notation and describe G above as taking
X ∈ P̂ to F ·X.

We can, in particular, instantiate E to a nondeterministic domain Q̂,
which certainly has all joins. By the universal property, monotonic maps
F : P → Q̂ are in 1-1 correspondence with join-preserving maps G : P̂ →
Q̂. But monotonic maps F : P → Q̂ are just the same as monotonic
maps F : P → [Qop,2] and, uncurrying, these correspond to monotonic
maps H : P×Qop → 2 and so to objects of ̂Pop ×Q = [(Pop ×Q)op,2].

So, on mathematical grounds it is natural to consider taking maps
between nondeterministic domains as functions which preserve all joins.
Such functions (often known as additive functions) compose as usual,
have identities and give rise to a category rich in structure. Call this
category Lin2; it consists of objects partial orders P, Q, · · ·, with maps
G : P → Q the join-preserving functions from P̂ to Q̂.

As we have just seen, we can regard a map from P to Q in Lin2 in
several ways and, in particular, as an object of ̂Pop ×Q. Thus a map
in Lin2 corresponds to a downward-closed subset of Pop × Q and so
can be viewed as a relation between the partial orders P and Q, with
composition now given as the usual composition of relations.

This more symmetric, relational presentation exposes an involution
central in understanding Lin2 as a categorical model of classical lin-
ear logic. The involution of linear logic, yielding P⊥ on an object P, is
given by Pop; clearly downward-closed subsets of Pop ×Q correspond to
downward-closed subsets of (Qop)op×Pop, showing how maps F : P → Q
correspond to maps F⊥ : Qop → Pop in Lin2. The tensor product of P
and Q is given by the product of partial orders P×Q and the function

Linearity and nonlinearity in distributed computation 7

space from P to Q by Pop × Q. On objects P and Q, products and co-
products are both given by P + Q, the disjoint juxtaposition of P and
Q. One choice of interpretation of the exponential of linear logic is got
by taking !P, for a partial order P, to be the partial order obtained as
the restriction of P̂ to its finite (or isolated) elements. (An element of a
partial order is finite if whenever it is dominated by a directed join, it
is dominated by an element of the join.) The partial order P̂, with the
inclusion !P → P̂, is the free closure of !P under directed joins (the “ideal
completion” of !P.) Consequently, there is 1-1 correspondence between
linear maps from !P to Q in Lin2 and Scott continuous (i.e., directed-
join preserving) functions from P̂ to Q̂. In fact, !(−) extends straight-
forwardly to a comonad on Lin2 whose coKleisli category is isomorphic
to the category of Scott continuous functions between nondeterministic
domains.

Linear maps preserve joins. The join of the empty set is ∅, to be
thought of as a nil process, which is unable to perform any computation
path. So linear maps always send the nil process to the nil process.
Going back to the intuitions in the introduction, if a network context
gave rise to a linear map, then plugging a dead process into the network
would always be catastrophic, and lead to the whole network going dead.
We could extend to maps from !P to Q, for objects P and Q in Lin2, but
by the properties of the exponential, this would allow arbitrary copying
of the argument process. All we often need is to allow maps to ignore
their arguments and this can be got much more cheaply, by moving to
a model of affine linear logic.

1.3.2 An affine-linear category of domains

A common operation in process algebras is that of prefixing a process by
an action, so that a computation path of the prefixed process consists
of first performing the action and then resuming by following a compu-
tation path of the original process. To understand prefix operations, we
first need to lift path shapes by an initial action.

The operation of lifting on a partial order P produces a partial order
P⊥, got by adjoining a new element ⊥ below a copy of P. Denote by
bpc the copy in P⊥ of the original element p in P—each bpc is assumed
distinct from ⊥. The order of P⊥ is given by ⊥ ≤ bpc, for any p ∈ P,
with bpc ≤ bp′c iff p ≤ p′ initially in P.

Prefixing operations on processes make essential use of an operation

8 Glynn Winskel

associated with lifting. The operation is the function

b−c : P̂ → P̂⊥

such that bXc(⊥) = 1 and bXc(bpc) = X(p) for X ∈ P̂. The function
b−c is not a map from P to P⊥ in Lin2 as it clearly does not preserve
joins of the empty set. It does however preserve all nonempty joins (i.e.,
joins of nonempty sets). This provides a clue as to how to expand the
maps of Lin2.

To accommodate the functions b−c we move to a slightly broader
category, though fortunately one that inherits a good many properties
from Lin2. The category Aff2 has the same objects, partial orders, but
its maps from P to Q, written F : P → Q, are functions F : P̂ → Q̂
which need only preserve nonempty joins.

A map F : P → Q in Aff2 is really a nonempty-join preserving func-
tion from P̂ to Q̂, so takes a (denotation of a) nondeterministic process
with computation paths in P as input and yields a (denotation of a) non-
derministic process with computation paths in Q as output. Because the
map need only preserve nonempty joins it is at liberty to ignore the in-
put process in giving non-trivial output. Because the map preserves all
nonempty joins, if a computation path of the resulting output process
requires computation of the input process, then it only requires a single
computation path of the input process. The input process does not need
to be copied to explore the range of computation paths it might follow.

A map in Aff2 is determined by its action on computation paths
extended to include the empty path ⊥. There is an embedding jP :
P⊥ → P̂ which takes ⊥ to ∅ and any bpc to yP(p). The map jP satisfies
the universal property that for any monotonic map F : P⊥ → E , where
E is a partial order with all nonempty joins, there is a unique nonempty-
join preserving map F † : P̂ → E such that F = F † ◦ jP:

P⊥
jP //

F
&&MMMMMMMMMMMMM P̂

F †

��

E

The proof of the universal property rests on the fact that every X ∈ P̂ is
the nonempty join of the set consisting of all jP(p′), where p′ ∈ P⊥, that
X dominates—this set is nonempty because it contains jP(⊥) (= ∅).

By instantiating E to Q̂ where Q is a partial order, we see that maps

Linearity and nonlinearity in distributed computation 9

P → Q in Aff2 are in 1-1 correspondence with maps P⊥ → Q in Lin2,
and so to elements in ̂(P⊥)op ×Q.

There is a unique (and obvious) way to extend the lifting operation
(−)⊥ to a functor from Aff2 to Lin2 so that the correspondence

Aff2(P, Q) ∼= Lin2(P⊥, Q)

is natural in P ∈ Aff2 and Q ∈ Lin2. This exhibits the functor (−)⊥
as a left adjoint to the inclusion functor Lin2 ↪→ Aff2. Composing
the two adjoints, we obtain a comonad (−)⊥ on Lin2 whose coKliesli
category is isomorphic to Aff2. Clearly, a map in Aff2 also belongs to
the subcategory Lin2 iff it is strict in the sense of preserving ∅.

With the help of the comonad (−)⊥ we have turned the model of
linear logic Lin2 into a model Aff2 of affine linear logic (a model of
intuitionistic linear logic in which the structural rule of weakening is
satisfied through the unit of the tensor also being a terminal object—
[17]). Its operations are defined in terms of the corresponding operations
in Lin2. For example, its tensor ⊗ is defined so that

(P⊗Q)⊥ = P⊥ ×Q⊥ ,

a product, and so tensor in Lin2, of partial orders P⊥ and Q⊥. Its
function space is given by (P⊥)op ×Q. The category Aff2 has the same
products as Lin2. It does not have coproducts, though we will later see
a form of prefixed sum which is useful in giving semantics to process
languages.

1.4 Processes as presheaves

In order to take account of the branching structure of nondeterminis-
tic processes we move from a representation of a process as character-
istic function from computation-path shapes to ∅ or 1 in the partial
order 2, and explore the variation where we measure the presence of a
computation-path shape in a process by a set in the category Set of
sets.

It is useful for later to broaden our understanding of shapes of com-
putation paths to be objects in a small category P. In our applications,
the category P is thought of as a path category, consisting of shapes of
paths, where a map e : p → p′ expresses how the path p extends to the
path p′. Let P be a small category. The category of presheaves over P,
written P̂, is the category [Pop,Set] with objects the functors from Pop

10 Glynn Winskel

(the opposite category) to the category of sets, and maps the natural
transformations between them.

A presheaf X : Pop → Set specifies for a typical path p the set X(p) of
computation paths of shape p. The presheaf X acts on a map e : p → p′

in P to give a function X(e) saying how p′-paths in X restrict to p-
paths in X—several paths may restrict to the same path. In this way a
presheaf can model the nondeterministic branching of a process.

A presheaf category has all limits and colimits given pointwise, at
a particular object, by the corresponding limits or colimits of sets. In
particular, a presheaf category has all sums (coproducts) of presheaves;
the sum Σi∈IXi of presheaves Xi, i ∈ I, over P has a contribution
Σi∈IXi(p), the disjoint union of sets, at p an object of P. The empty
sum of presheaves is the presheaf ∅ with empty contribution at each p in
P. In process terms, a sum of presheaves represents a nondeterministic
sum of processes.

1.4.1 A linear category of presheaf models

A category of presheaves, P̂, is accompanied by the Yoneda embedding, a
functor yP : P → P̂, which fully and faithfully embeds P in the category
of presheaves. For every object p of P, the Yoneda embedding yields
yP(p) = P(−, p). Presheaves isomorphic to images of objects of P under
the Yoneda embedding are called representables.

Via the Yoneda embedding we can regard P essentially as a full subcat-
egory of P̂. Moreover P̂ is characterized (up to equivalence of categories)
as the free colimit completion of P. In other words, the Yoneda embed-
ding yP satisfies the universal property that for any functor F : P → E ,
where E is a category with all colimits, there is a colimit preserving func-
tor G : P̂ → E , determined to within isomorphism, such that F ∼= G◦yP:

P
yP //

F

∼=

&&LLLLLLLLLLLLL P̂
G

��

E

The proof rests on the fact that any presheaf is a colimit of representables—
see e.g., [22] P.43. We will describe G above as F · −.

In particular, we can take E to be a presheaf category Q̂. As the uni-
versal property suggests, colimit-preserving functors between presheaf
categories are useful. Define the category LinSet to consist of small cat-

Linearity and nonlinearity in distributed computation 11

egories P, Q, · · ·, with maps G : P → Q the colimit-preserving functors
from P̂ to Q̂.

By the universal property, colimit-preserving functors G : P̂ → Q̂
correspond to within isomorphism to functors F : P → Q̂, and such
functors are in 1-1 correspondence with profunctors F̄ : P → Q. Recall
that the category of profunctors from P to Q, written Prof(P, Q), is
the functor category [P × Qop,Set], which clearly equals the category
of presheaves ̂Pop ×Q, and is isomorphic to the functor category [P, Q̂].
We thus have the chain of equivalences:

LinSet(P, Q) ' [P, Q̂] ∼= Prof(P, Q) = ̂Pop ×Q .

Exactly analogously with the domain model Lin2 in Section 1.3.1,
one can build a model of linear logic out of LinSet, though there are
now subtleties, as what were previously functors must now be pseudo
functors (preserving composition only up to coherent isomorphism). In
particular, the involution of linear logic takes a map F : P → Q to a
map F⊥ : Qop → Pop in LinSet via

LinSet(P, Q) ' ̂Pop ×Q ∼= ̂(Qop)op × Pop ' LinSet(Qop, Pop) .

On objects, the tensor product of P and Q is given by the product of
categories P × Q and the function space from P to Q by Pop × Q. On
objects P and Q, products and coproducts are both given by P + Q, the
sum of categories P and Q. As for the exponential ! of linear logic, there
are many possible choices—see Section 1.8.2.

Just as in the domain case, maps in LinSet are most often too re-
strictive. Maps in LinSet preserve colimits and, in particular, sums and
the empty colimit ∅, a property which is only the case for rather special
operations on processes.

1.4.2 An affine-linear category of presheaf models

Many operations associated with process languages do not preserve sums,
so arbitrary colimits. Prefixing operations only preserve connected col-
imits (colimits of nonempty connected diagrams). Prefixing operations
derive from the functor b−c : P̂ → P̂⊥. The lifted category P⊥ com-
prises a copy of P—the copy in P⊥ of the original object p is written
bpc—to which a new initial object ⊥ has been adjoined. (This definition
extends to categories the earlier definition of lifting on partial orders,
Section 1.3.2.) The functor b−c : P̂ → P̂⊥ adjoins a “root” to a presheaf
X in P̂ in the sense that bXc(bpc) is X(p), for any p in P, while bXc(⊥)

12 Glynn Winskel

is the singleton set {∗}, the new root being ∗; the restriction maps are
extended so that restriction to ⊥ sends elements to ∗. A map from
X to Y in P̂ is sent to its obvious extension from bXc to bY c in P̂⊥.
Presheaves that to within isomorphism can be obtained as images under
b−c are called rooted [19].

Proposition 1.1 Any presheaf Y in P̂⊥ has a decomposition as a sum
of rooted presheaves

Y ∼= Σi∈Y (⊥)bYic ,

where, for i ∈ Y (⊥), the presheaf Yi in P̂ is the restriction of Y to the
elements which are sent under Y to the element i over ⊥, i.e., for p ∈ P,

Yi(p) = {x ∈ Y (bpc) | (Y ep)(x) = i}

where ep : ⊥ → bpc is the unique map from ⊥ to p in P.

Intuitively, thinking of presheaves as processes, the presheaves Yi, where
i ∈ Y (⊥), in the decomposition of Y a presheaf over P⊥, are those
processes that Y can become after performing the initial action ⊥.

The strict Yoneda embedding jP⊥ : P⊥ → P̂, sends ⊥ to ∅ and else-
where acts like yP. The presheaf category P̂, with the strict Yoneda em-
bedding jP is a free connected-colimit completion of P⊥. Together they
satisfy the universal property that for any functor F : P → E , where
E is a category with all connected colimits, there is a connected-colimit
preserving functor F † : P̂ → E , determined to within isomorphism, such
that F ∼= F † ◦ jP:

P⊥
jP //

F

∼=

&&MMMMMMMMMMMMM P̂

F †

��

E

The central observation on which the proof relies is that any presheaf is
a connected colimit of representables, jP(bpc) with p in P, together with
jP(⊥) = ∅, the empty presheaf.

The universal property suggests the importance of connected-colimit
preserving functors. Define AffSet to be the category consisting of ob-
jects small categories P, Q, · · ·, with maps G : P → Q the connected-
colimit preserving functors G : P̂ → Q̂ between the associated presheaf
categories, and composition the usual composition of functors. A func-
tor which preserves colimits certainly preserves connected colimits, so

Linearity and nonlinearity in distributed computation 13

LinSet is a subcategory of AffSet. The two categories, LinSet and
AffSet, share the same objects. We can easily characterise those maps
in AffSet which are in LinSet:

Proposition 1.2 Suppose F : P̂ → Q̂ is a functor which preserves
connected colimits. The following properties are equivalent:

(i) F preserves all colimits,
(ii) F preserves all coproducts (sums),
(iii) F is strict, i.e., F sends the empty presheaf to the empty presheaf.

Because P̂ is the free connected-colimit completion of P⊥, we obtain
the equivalence

AffSet(P, Q) ' [P⊥, Q̂] ,

and consequently the equivalence

AffSet(P, Q) ' LinSet(P⊥, Q) .

The equivalence is part of an adjunction between AffSet and LinSet

regarded as 2-categories, in which the 2-cells are natural transformations.
We can easily extend lifting to a 2-functor (−)⊥ : AffSet → LinSet; for
F : P → Q in AffSet, the functor F⊥ : P⊥ → Q⊥ in LinSet takes Y ∈ P̂⊥
with decomposition Σi∈Y (⊥)bYic to F⊥(Y) = Σi∈Y (⊥)bF (Yi)c. Lifting
restricts to a 2-comonad on LinSet with AffSet as its coKleisli category.

The comonad (−)⊥ has turned the model of linear logic LinSet into
a model AffSet of affine linear logic (where the tensor unit is terminal).

1.4.3 Bisimulation

Presheaves are being thought of as nondeterministic processes on which
equivalences such as bisimulation are important in abstracting away from
inessential differences of behaviour. Bisimulation between presheaves is
derived from notion of open map between presheaves [18, 19].

A morphism h : X → Y , between presheaves X and Y , is open iff for
all morphisms e : p → q in P⊥, any commuting square

jP(p) x //

jP(e)

��

X

h

��

jP(q)
y

// Y

14 Glynn Winskel

can be split into two commuting triangles

jP(p) x //

jP(e)

��

X

h

��

jP(q)
y

//

z

77

Y.

That the square commutes means that the path h ◦ x in Y can be ex-
tended via e to a path y in Y . That the two triangles commute means
that the path x can be extended via e to a path z in X which matches
y.

Open maps are a generalisation of functional bisimulations, or zig-zag
morphisms, known from transition systems [19]. Presheaves in P̂ are
bisimilar iff there is a span of open maps between them.†

The preservation of connected colimits by a functor between presheaf
categories is sufficient to ensure that it preserves open maps and bisim-
ulation.

Theorem 1.3 [11, 7] Let G : P̂ → Q̂ be any connected-colimit preserving
functor between presheaf categories. Then G preserves open maps and
open-map bisimulation.

1.5 Constructions

We now describe the constructions which form the basis of a denotational
semantics for a language for affine-linear processes. The types of the
language will be interpreted as objects (in fact, path orders) and the
terms, describing processes with free variables, as maps of an affine
category. The constructions can be read as being in both the category
of domains Aff2 and the category of presheaf models AffSet, sometimes
referring to their linear subcategories. By using the neutral language of
categories we can describe the operations in either set-up. Below Aff
can refer to either Aff2 or AffSet, and correspondingly Lin to either
Lin2 or LinSet. AffSet and LinSet are 2-categories in which maps
are related by natural transformations. There, and so in the general
discussion with Aff , we can only characterise constructions to within
isomorphism of maps. Of course, isomorphism of maps coincides with

† We have chosen here to develop the definition of open map from the strict Yoneda
embedding rather than the Yoneda embedding. Maps between presheaves are
open with respect to strict Yoneda iff they are surjective and open with respect
to Yoneda.

Linearity and nonlinearity in distributed computation 15

equality in the categorises of domains. Although the operations will
always be with respect to path orders they could all be extended easily
to small categories.

1.5.1 Sums and fixed points

Each object P is associated with (nondeterministic) sum operations, a
map Σ : &i∈I P → P in Aff taking a tuple {Xi | i ∈ I}, to the sum
(coproduct) Σi∈IXi in P̂. The empty sum yields ∅ ∈ P. Finite sums, of
size k, are typically written as X1 + · · ·+ Xk.

For objects P and Q, the category Aff(P, Q) of maps with natural
transformations, being equivalent to ̂(P⊥)op ×Q, has all colimits and
in particular all ω-colimits. Any operation G : Aff(P, Q) → Aff(P, Q)
which preserves connected colimits will have a fixed point fix G : P → Q,
a map in Aff . We will build up the denotation of fixed points out of
composition in Aff . The composition G ◦ F of maps F in Aff(P, Q)
and G in Aff(Q, R), being got as the application G(F (−)), preserves
connected colimits in the argument F , and colimits in G.†

1.5.2 Tensor

The tensor product P⊗Q of path orders P, Q is given by the set (P⊥ ×
Q⊥) \ {(⊥,⊥)}, ordered coordinatewise, in other words, as the product
of P⊥ and Q⊥ as partial orders but with the bottom element (⊥,⊥)
removed.

Let F : P → P′ and G : Q → Q′. We define F ⊗G : P⊗Q → P′ ⊗Q′

as the extension (cf. Sections 1.3.2 and 1.4.2) H† of a functor

H : (P⊗Q)⊥ → P̂′ ⊗Q′ .

Notice that (P ⊗ Q)⊥ is isomorphic to the product as partial orders
of P⊥ × Q⊥ in which the bottom element is then (⊥,⊥). With this
realisation of (P⊗Q)⊥ we can define H : P⊥ ×Q⊥ → P̂′ ⊗Q′ by taking

(H(p, q))(p′, q′) = bF (p)c(p′)× bG(q)c(q′)

for p ∈ P⊥, q ∈ Q⊥ and (p′, q′) ∈ P′ ⊗Q′—on the right we use the
product (in Set, or 2 where it amounts to the meet).

† The story specialises to the category of domains Aff2. In a domain, colimits
reduce to joins and connected colimits to nonempty joins. In particular, ω-colimits
amount to joins of ω-chains. An operation between domains preserves (connected)
colimits iff it preserves (nonempty) joins.

16 Glynn Winskel

The unit for tensor is the empty path order O.
Objects X ∈ P̂ correspond to maps X̃ : O → P sending ∅ to X. Given

X ∈ P̂ and Y ∈ Q̂ we define X ⊗ Y ∈ P̂⊗Q to be the element pointed
to by X̃ ⊗ Ỹ : O → P⊗Q.

1.5.3 Function space

The function space of path orders P (Q is given by the product of
partial orders (P⊥)op×Q. Thus the elements of P (Q are pairs, which
we write suggestively as (p 7→ q), with p ∈ P⊥, q ∈ Q, ordered by

(p′ 7→ q′) ≤ (p 7→ q) ⇐⇒ p ≤ p′ & q′ ≤ q

—note the switch in order on the left.
We have the following chain of isomorphisms between partial orders:

P⊗Q (R = (P⊗Q)⊥
op ×R ∼= P⊥op ×Q⊥

op ×R ∼= P ((Q (R) .

This gives an isomorphism between ̂P⊗Q (R and ̂P ((Q (R). Thus
there is a 1-1 correspondence curry from maps P ⊗ Q → R to maps
P → (Q (R) in Aff ; its inverse is called uncurry . We obtain linear
application, app : (P (Q)⊗ P → Q, as uncurry(1P(Q).

We shall write u t for the application of u of type P (Q to t of type
P. The ability to curry justifies the formation of terms λx.u of type
P (Q by lambda abstraction where u of type Q is a term with free
variable x of type P. Because of linearity constraints on the occurrence
of variables, we will have that an application (λx.u)t will be isomorphic
to a substitution u[t/x]—see Lemma 1.8.

1.5.4 Products

The product of path orders P&Q is given by the disjoint union of P
and Q. An object of P̂&Q can be identified with a pair (X, Y), with
X ∈ P̂ and Y ∈ Q̂, which provides the projections π1 : P&Q → P
and π2 : P&Q → Q. More general, not just binary, products &i∈I Pi

with projections πj , for j ∈ I, are defined similarly. From the universal
property of products, a collection of maps Fi : P → Pi, for i ∈ I, can be
tupled together to form a unique map 〈Fi〉i∈I : P → &i∈I Pi with the
property that πj ◦〈Fi〉i∈I = Fj for all j ∈ I. The empty product is given
by O and as the terminal object is associated with unique maps P → O,
constantly ∅, for any path order P. Finite products, of size k, are most
often written as P1& · · ·&Pk.

Linearity and nonlinearity in distributed computation 17

Because there are empty objects we can define maps in Lin from
products to tensors of path orders. For instance, in the binary case,
σ : P&Q → P⊗Q in Lin is specified by

(X, Y) 7→ (X ⊗ ∅) + (∅ ⊗ Y) .

The composition of such a map with the diagonal map of the product,
viz.

δP : P diag→ P&P σ→ P⊗ P

gives a weak form of diagonal map taking X to (X ⊗ ∅) + (∅ ⊗ X).
General weak diagonal maps

δPk : P → P⊗ · · · ⊗ P

in Lin, from P to k copies of P tensored together, are defined analogously.
They will play a role later in the semantics of a general affine linear
language; weak diagonal maps allow the same argument to be used in
several different, though incompatible, ways.

1.5.5 Prefixed sums

The category Aff does not have coproducts. However, we can build a
useful sum in Aff with the help of the coproduct of Lin and lifting.
Let Pα, for α ∈ A, be a family of path orders. As their prefixed sum,
Σα∈AαPα, we take the disjoint union of the path orders Σα∈APα⊥, over
the underlying set

⋃
α∈A{α} × (Pα)⊥; the latter path order forms a

coproduct in Lin with the obvious injections inβ : Pβ⊥ → Σα∈AαPα,
for β ∈ A. The injections β : Pβ → Σα∈AαPα in Aff , for β ∈ A, are
defined to be the composition β = inβ(b−c). This construction is not a
coproduct in Aff . However, it does satisfy a weaker property analogous
to the universal property of a coproduct. Suppose Fα : Pα → Q are
maps in Aff for all α ∈ A. Then, there is a mediating map

F : Σα∈AαPα → Q

in Lin determined to within isomorphism such that

F ◦ α ∼= Fα

for all α ∈ A.
Suppose that the family of maps Fα : Pα → Q, with α ∈ A, has the

property that each Fα is constantly ∅ whenever α ∈ A is different from

18 Glynn Winskel

β and that Fβ is H : Pβ → Q. Write H@β : Σα∈AαPα → Q for a choice
of mediating map in Lin. Then

H@β(βY) ∼= H(Y) , H@β(αZ) = ∅ if α 6= β ,H@β(Σi∈IXi) ∼= Σi∈IH@β(Xi) ,

where Y ∈ P̂β , Z ∈ P̂α and Xi ∈ ̂Σα∈AαPα for all i ∈ I. In particular,
for empty sums, H@β(∅) = ∅.

For a general family Fα : Pα → Q, with α ∈ A, we can describe
the action of the mediating morphism, to within isomorphism, on X ∈

̂Σα∈AαPα as F (X) = Σα∈A(Fα)@α(X).
If a term u of type Q with free variable x of type P denotes H : Pβ → Q

in Aff and t is of type Σα∈AαPα, then we shall write

[t > αx ⇒ u]

for H@β(t). This term [t > αx ⇒ u] tests or matches t denoting an
element of a prefixed sum against the pattern αx and passes the results
of successful matches for x on to u; the possibly multiple results of
successful matches are then summed together.

Because prefixed sum is not a coproduct we do not have that tensor
distributes over prefixed sum. However there is a map in Aff ,

dist : Q⊗ Σα∈AαPα → Σα∈Aα(Q⊗ Pα) ,

expressing a form of distributivity. The map dist is given as the exten-
sion H† of the functor

H : Q⊥ × (Σα∈AαPα)⊥ → Σα∈Aα(Q⊗ Pα)

where

H(q, (α, p)) = yΣα∈Aα(Q⊗Pα)(α, (q, p)) and H(q,⊥) = ∅ .

Unary prefixed sums in Aff , when the indexing set is a singleton, are
an important special case as they amount to lifting.

1.5.6 Recursive type definitions

Suppose that we wish to model a process language rather like CCS but
where processes are passed instead of discrete values, subject to the
linearity constraint that when a process is received it can be run at most
once. Assume the synchronised communication occurs along channels
forming the set A. The path orders can be expected to be the “least”
to satisfy the following equations:

P = τP + Σa∈Aa!C + Σa∈Aa?F , C = P⊗ P , F = (P (P) .

Linearity and nonlinearity in distributed computation 19

The three components of process paths P represent paths beginning
with a silent (τ) action, an output on a channel (a!), resuming as a
concretion path (in C), and an input from a channel (a?), resuming as
an abstraction path (in F). It is our choice of path for abstractions which
narrows us to an affine-linear process-passing language, one where the
input process can be run at most once to yield a single (computation)
path.

We can solve such recursive equations for path orders by several tech-
niques, ranging from sophisticated methods providing inductive and
coinductive characterisations [8], to simple methods essentially based on
inductive definitions. Paralleling techniques on information systems [20],
path orders under the order

P E Q ⇐⇒ P ⊆ Q & (∀p, p′ ∈ P. p ≤P p′ ⇐⇒ p ≤Q p′)

form a (large) complete partial order with respect to which all the con-
structions on path orders we have just seen can be made Scott con-
tinuous. Solutions to equations like those above are then obtained as
(simultaneous) least fixed points.

1.6 An affine-linear language for processes

Assume that path orders are presented using the constructions with the
following syntax:

T ::=O | T1 ⊗ T2 | T1 (T2 | Σα∈AαTα | T1&T2

| P | µjP1, · · · , Pk.(T1, · · · , Tk)

All the construction names have been met earlier with the exception
of the notation for recursively defined path orders. Above P is drawn
from a set of variables used in the recursive definition of path orders;
µjP1, · · · , Pk.(T1, · · · , Tk) stands for the j-component (so 1 ≤ j ≤ k) of
the least solution to the defining equations

P1 = T1, · · · , Pk = Tk ,

in which the expressions T1, · · · , Tk may contain P1, · · · , Pk. We shall
write µP1, · · · , Pk.(T1, · · · , Tk) as an abbreviation for

(µ1P1, · · · , Pk.(T1, · · · , Tk), · · · , µkP1, · · · , Pk.(T1, · · · , Tk)) .

In future we will often use vector notation and, for example, write µ
−→
P .
−→T

for the expression above, and confuse a closed expression for a path order
with the path order itself.

20 Glynn Winskel

The operations of Sections 1.3 and 1.5 form the basis of a syntax of
terms which will be subject to typing and linearity constraints:

t, u, v, · · · ::= x, y, z, · · · (Variables)
∅ | Σi∈Iti | (Sums)
rec x.t | (Recursive definitions)
λx.t | u v | (Abstraction, application)
αt | [t > αx ⇒ u] | (Injections and match)
(t, u) | [t > (x,−) ⇒ u] |

[t > (−, x) ⇒ u] | (Pairing and match)
t⊗ u | [t > x⊗ y ⇒ u] (Tensor and match)

The language, first introduced in [30], is similar to that in [1], being
based on a form of pattern matching. Accordingly, variables in the
pattern, like x in the pattern of [t > αx ⇒ u], are binding occurrences
and bind later occurrences of the variable in the body, u in this case.
We shall take for granted an understanding of free and bound variables,
and substitution on raw terms. In examples we will allow ourselves to
use + both in writing sums of terms and prefixed sums of path orders.

Let P1, · · · , Pk be closed expressions for path orders and assume that
the variables x1, · · · , xk are distinct. A syntactic judgement

x1 : P1, · · · , xk : Pk ` t : Q

stands for a map

[[x1 : P1, · · · , xk : Pk ` t : Q]] : P1 ⊗ · · · ⊗ Pk → Q

in Aff . We shall typically write Γ, or ∆, for an environment list x1 :
P1, · · · , xk : Pk. We shall most often abbreviate the denotation map to

P1 ⊗ · · · ⊗ Pk
t→ Q , or even Γ t→ Q .

Here k may be 0 so the environment list in the syntactic judgement is
empty and the corresponding tensor product the empty path order O.

An affine-linear language will restrict copying and so substitutions of
a common term into distinct variables. The counterpart in the models
is the absence of a suitable diagonal map from objects P to P ⊗ P. For
example the function X 7→ X ⊗ X from P̂ to P̂⊗ P is not in general a
map in Aff .† Consider a term t(x, y), with its free variables x and y

† To see this, for example in Aff2, assume that P is the discrete order on the set
{a, b}. Then the nonempty sum x = yP(a) + yP(b) is not sent to

(yP(a) ⊗ yP(a)) + (yP(b) ⊗ yP(b)) = yP⊗P(a, a) + yP⊗P(b, b)

Linearity and nonlinearity in distributed computation 21

shown explicitly, for which

x : P, y : P ` t(x, y) : Q ,

corresponding to a map P⊗P t(x,y)→ Q in Aff . This does not generally
entail that

x : P ` t(x, x) : Q

—there may not be a corresponding map in Aff , for example if t(x, y) =
x⊗ y. There is however a condition on how the variables x and y occur
in t which ensures that the judgement x : P ` t(x, x) : Q holds and that
it denotes the map in Aff obtained as the composition

P δ→ P⊗ P t(x,y)→ Q

—using the weak diagonal map seen earlier in Section 1.5.4. (For exam-
ple, in the term x + y, where x and y have the same type P, only com-
putation at one of the arguments x and y is possible, and it is legitimate
to diagonalise to x + x to obtain an affine-linear map.) Syntactically,
this is assured if the variables x and y are not crossed in t according to
the following definition:

Definition 1.4 Let t be a raw term. Say a set of variables V is crossed
in t iff there are subterms of t of the form

a tensor s⊗ u, an application (s u), or a match [v > u ⇒ s]

for which t has free occurrences of variables from V appearing in both
s and u.

For example, variables x and y are crossed in x ⊗ y, but variables x

and y are not crossed in (x + y) ⊗ z. Note that a set of variables V is
crossed in a term t if V contains variables x, y, not necessarily distinct,
so that {x, y} is crossed in t. We are mainly interested in when sets of
variables are not crossed in a term. A set of variables {x1, · · · , xk} not
being crossed in a term t ensures that computation paths at arguments
x1, · · · , xk are in conflict—at most one can contribute to the computation
path of t. Sets of variables of the same type which are not crossed in a
term will behave like single variables with regard to substitutions.

as would be needed to preserve non-empty sums, but instead to

x ⊗ x = yP⊗P(a, a) + yP⊗P(b, b) + yP⊗P(a, b) + yP⊗P(b, a)

with extra “cross terms.”

22 Glynn Winskel

The term-formation rules are listed below alongside their interpreta-
tions as constructors on morphisms, taking the morphisms denoted by
the premises to that denoted by the conclusion (along the lines of [2]).
We assume that the variables in any enviroment list which appears are
distinct.
Structural rules:

x : P ` x : P
, interpreted as

P 1P→ P
.

∆ ` t : P
Γ,∆ ` t : P

, interpreted as
∆ t→ P

Γ⊗∆ ∅⊗1∆→ O⊗∆ ∼= ∆ t→ P
.

Γ, x : P, y : Q,∆ ` t : R
Γ, y : Q, x : P,∆ ` t : R

, interpreted via s : Q⊗ P ∼= P⊗Q as

Γ⊗ P⊗Q⊗∆ t→ R
Γ⊗Q⊗ P⊗∆ 1Γ⊗s⊗1∆→ Γ⊗ P⊗Q⊗∆ t→ R

.

Recursive path orders:

Γ ` t : Tj [µ
−→
P .
−→T /

−→
P]

Γ ` t : µj
−→
P .
−→T

,
Γ ` t : µj

−→
P .
−→T

Γ ` t : Tj [µ
−→
P .
−→T /

−→
P]

.

where the premise and conclusion of each rule are interpreted as the
same map because µj

−→
P .
−→T and Tj [µ

−→
P .
−→T /

−→
P] denote equal path orders.

Sums of terms:

Γ ` ∅ : P
, interpreted as

Γ ∅→ P
, the constantly ∅ map.

Γ ` ti : P for all i ∈ I
Γ ` Σi∈Iti : P

, interpreted as
Γ ti→ P for all i ∈ I

Γ 〈ti〉i∈I→ &i∈I P Σ→ P
.

Recursive definitions:

Γ, x : P ` t : P {y, x} not crossed in t for all y in Γ
Γ ` rec x.t : P

,

interpreted as
Γ⊗ P t→ P
Γ fix F→ P

.

—see Section 1.5.1, where for g : Γ → P the map F (g) : Γ → P is the
composition

Γ δ→ Γ⊗ Γ 1Γ⊗g→ Γ⊗ P t→ P .

Abstraction:

Γ, x : P ` t : Q
Γ ` λx.t : P (Q

, interpreted as
Γ⊗ P t→ Q

Γ curry t→ (P (Q)
.

Linearity and nonlinearity in distributed computation 23

Application:

Γ ` u : P (Q ∆ ` v : P
Γ,∆ ` u v : Q

,

interpreted as
Γ u→ (P (Q) ∆ v→ P

Γ⊗∆ u⊗v→ (P (Q)⊗ P app→ Q
.

Injections and match for prefixed sums:

Γ ` t : Pβ , where β ∈ A

Γ ` βt : Σα∈AαPα
, interpreted as

Γ t→ Pβ , where β ∈ A

Γ t→ Pβ
β→ Σα∈AαPα

.

Γ, x : Pβ ` u : Q , where β ∈ A. ∆ ` t : Σα∈AαPα

Γ,∆ ` [t > βx ⇒ u] : Q
, interpreted as

Γ⊗ Pβ
u→ Q ∆ t→

∑
α∈A αPα

Γ⊗∆ 1Γ⊗t→ Γ⊗
∑

α∈A αPα
dist→ Σα∈Aα(Γ⊗ Pα) u@β→ Q

.

Pairing and matches for products:

Γ ` t : P Γ ` u : Q
Γ ` (t, u) : P&Q

, interpreted as
Γ t→ P Γ u→ Q

Γ 〈t,u〉→ P&Q
.

Γ, x : P ` u : R ∆ ` t : P&Q
Γ,∆ ` [t > (x,−) ⇒ u] : R

, interpreted as

Γ⊗ P u→ R ∆ t→ P&Q
Γ⊗∆ 1Γ⊗(π1◦t)→ Γ⊗ P u→ R

.

Γ, x : Q ` u : R ∆ ` t : P&Q
Γ,∆ ` [t > (−, x) ⇒ u] : R

, interpreted as

Γ⊗Q u→ R ∆ t→ P&Q
Γ⊗∆ 1Γ⊗(π2◦t)→ Γ⊗Q u→ R

.

Tensor operation and match for tensor:

Γ ` t : P ∆ ` u : Q
Γ,∆ ` t⊗ u : P⊗Q

, interpreted as
Γ t→ P ∆ u→ Q
Γ⊗∆ t⊗u→ P⊗Q

.

Γ, x : P, y : Q ` u : R ∆ ` t : P⊗Q
Γ,∆ ` [t > x⊗ y ⇒ u] : R

, interpreted as

Γ⊗ P⊗Q u→ R ∆ t→ P⊗Q
Γ⊗∆ 1Γ⊗t→ Γ⊗ P⊗Q u→ R

.

24 Glynn Winskel

By a straightforward induction on the derivation of the typing judge-
ment we obtain:

Proposition 1.5 Suppose Γ, x : P ` t : Q. The set {x} is not crossed
in t.

Exploiting the naturality of the various operations used in the seman-
tic definitions, we can prove a general substitution lemma. It involves
the weak diagonal maps δk : P → P⊗ · · · ⊗ P of Section 1.5.4.

Lemma 1.6 (Substitution Lemma) Suppose

Γ, x1 : P, · · · , xk : P ` t : Q

and that the set of variables {x1, · · · , xk} is not crossed in t. Suppose
∆ ` u : P where the variables of Γ and ∆ are disjoint. Then,

Γ,∆ ` t[u/x1, · · · , u/xk] : Q

and

[[Γ,∆ ` t[u/x1, · · · , u/xk] : Q]] ∼=
[[Γ, x1 : P, · · · , xk : P ` t : Q]] ◦ (1Γ ⊗ (δk ◦ [[∆ ` u : P]])) .

In particular, as singleton sets of variables are not crossed in well-formed
terms, we can specialise the Substitution Lemma to the following:

Corollary 1.7 If Γ, x : P ` t : Q and ∆ ` u : P, where the variables of
Γ and ∆ are disjoint, then Γ,∆ ` t[u/x] : Q and

[[Γ,∆ ` t[u/x] : Q]] ∼= [[Γ, x : P ` t : Q]] ◦ (1Γ ⊗ [[∆ ` u : P]]) .

As consequences of Corollary 1.7, linear application amounts to sub-
stitution, and recursions unfold in the expected way:

Lemma 1.8 Suppose Γ ` (λx.t) u : Q. Then, Γ ` t[u/x] : Q and

[[Γ ` (λx.t) u : Q]] ∼= [[Γ ` t[u/x] : Q]] .

Lemma 1.9 Suppose Γ ` rec x.t : P. Then Γ ` t[rec x.t/x] : P and

[[Γ ` rec x.t : P]] ∼= [[Γ ` t[rec x.t/x] : P]] .

Linearity and nonlinearity in distributed computation 25

The next lemma follows directly from the universal properties of pre-
fixed sum (the last property because the mediating map is in Lin, so
preserves sums):

Lemma 1.10 Properties of prefix match:

[[Γ ` [βt > βx ⇒ u] : Q]] ∼= [[Γ ` u[t/x] : Q]] ,

[[Γ ` [αt > βx ⇒ u] : Q]] = ∅ if α 6= β ,

[[Γ ` [Σi∈Iti > βx ⇒ u] : Q]] ∼= Σi∈I [[Γ ` [ti > βx ⇒ u] : Q]] .

General patterns

We can write terms more compactly by generalising the patterns in
matches. General patterns are built up according to

p ::= x | ∅ | αp | p⊗ q | (p,−) | (−, p) .

A match on a pattern [u > p ⇒ t] binds the free variables of the pattern
p to the resumptions after following the path specified by the pattern
in u; because the term t may contain these variables freely the resump-
tions may influence the computation of t. Such a match is understood
inductively as an abbreviation for a term in the metalanguage:

[u > x ⇒ t] ≡ (λx.t) u , [u > ∅ ⇒ t] ≡ t ,

[u > αp ⇒ t] ≡ [u > αx ⇒ [x > p ⇒ t]] for a fresh variable x,

[u > (p,−) ⇒ t] ≡ [u > (x,−) ⇒ [x > p ⇒ t]] for a fresh variable x,

[u > (−, p) ⇒ t] ≡ [u > (−, x) ⇒ [x > p ⇒ t]] for a fresh variable x,

[u > p⊗ q ⇒ t] ≡ [u > x⊗ y ⇒ [x > p ⇒ [y > q ⇒ t]]] for fresh x, y.

Let λx⊗ y.t stand for λw.[w > x⊗ y ⇒ t], where w is a fresh variable,
and write [u1 > p1, · · · , uk > pk ⇒ t] to abbreviate [u1 > p1 ⇒ [· · · [uk >

pk ⇒ t] · · ·].

1.7 Examples

The affine-linear language is remarkably expressive, as the following ex-
amples show. Through having denotations in AffSet, all operations
expressible in the language will automatically preserve open-map bisim-
ulation.

26 Glynn Winskel

1.7.1 CCS

As in CCS, assume a set of labels A, a complementation operation pro-
ducing ā from a label a, with ¯̄a = a, and a distinct label τ . In the
metalanguage we can specify the path order P as the solution to†

P = τP + Σa∈AaP + Σa∈AāP .

So P is given as µP.τP + Σa∈AaP + Σa∈AāP . There are injections from
P into its expression as a prefixed sum given as τt, at and āt for a ∈ A

and a term t of type P. The CCS parallel composition can be defined as
the following term of type P⊗ P (P in the metalanguage:

Par = rec P. λx⊗ y. Σα∈A∪{τ}[x > αx′ ⇒ α(P (x′ ⊗ y))]+

Σα∈A∪{τ}[y > αy′ ⇒ α(P (x⊗ y′))]+

Σa∈A[x > ax′, y > āy′ ⇒ τ(P (x′ ⊗ y′))] .

The other CCS operations are easy to encode, though recursive defi-
nitions in CCS have to be restricted to fit within the affine language.
Interpreted in Aff2 two CCS terms will have the same denotation iff
they have same traces (or execution sequences). By virtue of having
been written down in the metalanguage the operation of parallel compo-
sition will preserve open-map bisimulation when interpreted in AffSet;
for this specific P, open-map bisimulation coincides with strong bisimu-
lation. In AffSet we can recover the expansion law by the properties of
prefix match—Lemma 1.10. In detail, write X|Y for Par X ⊗ Y , where
X and Y are terms of type P. Suppose

X = Σα∈A∪{τ}Σi∈I(α)αXi , Y = Σα∈A∪{τ}Σj∈J(α)αYj .

Using Lemma 1.8, and then that the matches distribute over nondeter-
ministic sums,

X|Y ∼=Σα∈A∪{τ}[X > αx′ ⇒ α(x′|Y)] + Σα∈A∪{τ}[Y > αy′ ⇒ α(X|y′)]
+ Σa∈A[X > ax′, Y > āy′ ⇒ τ(x′|y′)]

∼=Σα∈A∪{τ}Σi∈I(α)α(Xi|Y) + Σα∈A∪{τ}Σj∈J(α)α(X|Yj)

+ Σa∈AΣi∈I(a),j∈J(ā)τ(Xi|Yj) .

In similar ways it is easy to express CSP in the affine-linear language
along the lines of [4], and any parallel composition given by a synchro-
nisation algebra [31].

† In examples, for readablility, we will generally write recursive definitions of types
and processes as equations.

Linearity and nonlinearity in distributed computation 27

1.7.2 A linear higher-order process language

Recall the path orders for processes, concretions and abstractions for
a higher-order language in Section 1.5.6. We are chiefly interested in
the parallel composition of processes, ParP,P of type P ⊗ P (P. But
parallel composition is really a family of mutually dependent operations
also including components such as ParF,C of type F ⊗ C (P to say
how abstractions compose in parallel with concretions etc. All these
components can be tupled together in a product using &, and parallel
composition defined as a simultaneous recursive definition whose com-
ponent at P⊗ P (P satisfies

P |Q =Σα[P > αx ⇒ α(x|Q)]+

Σα[Q > αy ⇒ α(P |y)]+

Σa[P > a?f, Q > a!(s⊗ r) ⇒ τ((f s)|r)]+
Σa[P > a!(s⊗ r), Q > a?f ⇒ τ(r|(f s))] ,

where we have chosen suggestive names for the injections and, for in-
stance, P |Q abbreviates ParP,P(P ⊗Q). In the summations a ∈ A and
α ranges over a!, a?, τ for a ∈ A.

1.7.3 Mobile ambients with public names

We can translate the Ambient Calculus with public names [6] into the
affine-linear language, following similar lines to the linear process-passing
language above. Assume a fixed set of ambient names n, m, · · · ∈ N . The
syntax of ambients is extended beyond just processes (P) to include con-
cretions (C) and abstractions (F), following [5]:

P ::=∅ | P |P | repP | n[P] | in n P | out n P | open n!P |
τ P | mvin n!C | mvout n!C | open n? P | mvin n? F | x

C ::=P ⊗ P

F ::=λx.P

The notation for actions departs a little from that of [5]. Here some
actions are marked with ! and others with ?—active (or inceptive) actions
are marked by ! and passive (or receptive) actions by ?. We say actions α

and β are complementary iff one has the form open n! or mvin n! while
the other is open n? or mvin n? respectively. Complementary actions
can synchronise together to form a τ -action. We adopt a slightly different
notation for concretions (P⊗R instead of 〈P 〉R) and abstractions (λx.P

28 Glynn Winskel

instead of (x)P) to make their translation into the affine-linear language
clear.

The usual conventions are adopted for variables. Terms are assumed
to be linear, in that a variable appears on at most one side of any parallel
compositions within the term, and subterms of the form repP have no
free variables. A replication repP is intended to behave as P | repP so
readily possesses a recursive definition in the affine-linear language.

Suitable path orders for ambients are given recursively by:

P = τP + Σn∈N in n P + Σn∈Nout n P + Σn∈Nopen n!P+

Σn∈Nmvin n!C + Σn∈Nmvout n!C + Σn∈Nopen n?P + Σn∈Nmvin n?F
C = P⊗ P
F = P (P

The eight components of the prefixed sum in the equation for P cor-
respond to eight forms of ambient actions: τ , in n, out n, open n!,
mvin n!, mvout n!, open n? and mvin n?. We obtain the prefixing op-
erations as injections into the appropriate component of P as a prefixed
sum.

Parallel composition is really a family of operations, one of which
is a binary operation between processes but where in addition there
are parallel compositions of abstractions with concretions, and even ab-
stractions with processes and concretions with processes. The family of
operations

(−|−) : F⊗ C (P, (−|−) : C⊗ F (P,

(−|−) : F⊗ P (F, (−|−) : P⊗ F (F,

(−|−) : C⊗ P (C, (−|−) : P⊗ C (C

are defined in a simultaneous recursive definition as follows:
Processes in parallel with processes:

P |Q =Σα[P > αx ⇒ α(x|Q)]+

Σα[Q > αy ⇒ α(P |y)]+

Σn[P > open n!x, Q > open n?y ⇒ τ(x|y)]+

Σn[P > open n?x, Q > open n!y ⇒ τ(x|y)]+

Σn[P > mvin n?f, Q > mvin n!(s⊗ r) ⇒ τ((f s)|r)]+
Σn[P > mvin n!(s⊗ r), Q > mvin n?f ⇒ τ(r|(f s))] .

Abstractions in parallel with concretions:

F |C = [C > s⊗ r ⇒ (F s)|r] .

Linearity and nonlinearity in distributed computation 29

Abstractions in parallel with processes:

F |P = λx.((F x)|P) .

Concretions in parallel with processes:

C|P = [C > s⊗ r ⇒ s⊗ (r|P)] .

The remaining cases are given symmetrically.
Presheaves X, Y over P will have decompositions into rooted compo-

nents:

X ∼= ΣαΣi∈X(α)αXi , Y ∼= ΣαΣj∈X(α)αYj

—here α ranges over ambient actions. By the properties of prefix-match
(Lemma 1.10), their parallel composition satisfies the expansion law

X|Y ∼= ΣαΣi∈X(α)α(Xi|Y) + ΣαΣj∈Y (α)α(X|Yj)+

ΣnΣi∈X(open n!),j∈Y (open n?)τ(Xi|Yj) + ΣnΣi∈X(open n?),j∈Y (open n!)τ(Xi|Yj)+

ΣnΣi∈X(mvin n!),j∈Y (mvin n?)τ(Xi|Yj) + ΣnΣi∈X(mvin n?),j∈Y (mvin n!)τ(Xi|Yj) .

Ambient creation can be defined recursively in the affine-linear lan-
guage:

m[P] =[P > τx ⇒ τm[x]] +

Σn[P > in n x ⇒ mvin n!(m[x]⊗ ∅)] +

Σn[P > out n x ⇒ mvout n!(m[x]⊗ ∅)]+
[P > mvout m!(s⊗ r) ⇒ τ(s|m[r])] +

open m?P + mvin m? λy.m[P |y] .

The denotations of ambients are determined by their capabilities: an
ambient m[P] can perform the internal (τ) actions of P , enter a parallel
ambient (mvin n!) if called upon to do so by an in n-action of P , exit an
ambient n (mvout n!) if P so requests through an out n-action, be exited
if P so requests through an mvout m!-action, be opened (open m?),or
be entered by an ambient (mvin m?); initial actions of other forms are
restricted away. Ambient creation is at least as complicated as parallel
composition. This should not be surprising given that ambient creation
corresponds intuitively to putting a process behind (so in parallel with) a
wall or membrane which if unopened mediates in the communications the
process can do, converting some actions to others and restricting some
others away. The tree-containment structure of ambients is captured in
the chain of open m?’s that they can perform.

30 Glynn Winskel

By the properties of prefix-match, there is an expansion theorem for
ambient creation. For X with decomposition

X = ΣαΣi∈X(α)αXi ,

where α ranges over atomic actions of ambients,

m[X] ∼=Σi∈X(τ)τ m[Xi]

ΣnΣj∈X(in n)mvin n!(m[Xj]⊗ ∅)+
ΣnΣk∈X(out n)mvout n!(m[Xk]⊗ ∅)
Σs∈X(mvout m!)[Xs > s⊗ r ⇒ τ(s|m[r])]+

open m?X + mvin m?(λy.m[X|y]) .

1.7.4 Nondeterministic dataflow

The affine linear language allows us to define processes of the kind en-
countered in treatments of nondeterministic dataflow.

Define P recursively so that

P = aP + bP .

P consists of finite streams (or sequences) of a’s and b’s.
The recursively defined process A : P (P selects and outputs a’s

from a stream of a’s and while ignoring all b’s:

A = λx. [x > ax′ ⇒ a(A x′)] + [x > bx′ ⇒ z1 ⊗ (A x′)]

The recursively defined process F : P⊗P produces two parallel streams
of a’s and b’s as output such that it outputs the same number of a’s and
b’s to both streams:

F = [F > z1 ⊗ z2 ⇒ (az1)⊗ (az2) + (bz1) ⊗ (bz2)]

The recursively defined process S : P ((P ⊗ P) separates a stream
of a’s and b’s into two streams, the first consisting solely of a’s and the
second solely of b’s:

S = λx. [x > ax′, (S x′) > z1 ⊗ z2 ⇒ (az1)⊗ z2]+
[x > bx′, (S x′) > z1 ⊗ z2 ⇒ z1 ⊗ (bz2)]

A subcategory of AffSet supports a “trace operation” to represent
processes with feedback loops (see [13]). The trace operation is, however,
not definable in the present affine-linear language. It can be shown by
induction on the typing derivation of a term that:

Linearity and nonlinearity in distributed computation 31

Proposition 1.11 Suppose Γ ` t : Q where Γ ≡ x1 : P1, · · · , xk : Pk.
Let p be path in (P1 ⊗ · · · ⊗ Pk)⊥ and q be a path in Q. The presheaf
denotation of a term Γ ` t : Q, applied to jP1⊗···⊗Pk

(p) as presheaf, has
a nonempty contribution at q iff the trace-set denotation of Γ ` t : Q,
applied to jP1⊗···⊗Pk

(p) as a trace-set, contains q.

Thus, supposing that the trace operation of [13] were definable in the
presheaf semantics, we would obtain a compositional relational seman-
tics of nondeterministic dataflow with feedback, shown impossible by
the Brock-Ackerman anomaly [3].

1.8 Nonlinearity

Of course code can be copied, and this may lead to maps which are not
linear. According to the discipline of linear logic, nonlinear maps from
P to Q are introduced as linear maps from !P to Q—the exponential !
applied to P allows arguments from P to be copied or discarded freely.

In the domain model of linear logic !P can be taken to be the finite-
join completion of P. Then, the nonlinear maps, maps !P → Q in Lin2,
correspond to Scott continuous functions P̂ → Q̂. A close analogue
for presheaf models is to interpret !P as the finite-colimit completion of
P. Note that now !P is a category, and no longer just a partial order.
With this understanding of !P, it can be shown that P̂ with the inclusion
functor !P → P̂ is the free filtered colimit completion of !P—see [21]. It
follows that maps !P → Q in LinSet correspond, to within isomorphism,
to continuous (i.e., filtered colimit preserving) functors P̂ → Q̂. But,
unfortunately, continuous functors from P̂ to Q̂ need not send open maps
to open maps. This raises the question of whether other choices of
exponential fit in better with bisimulation.

Bear in mind the intuition that objects of P correspond to the shapes
of computation path a process, represented as a presheaf in P̂, might
perform. An object of !P should represent a computation path of an
assembly of processes each with computation-path shapes in P—the as-
sembly of processes can then be the collection of copies of a process,
possibly at different states. If we take !P to be the finite colimit com-
pletion of P, an object of !P as a finite colimit would express how paths
coincide initially and then branch. One way to understand this object
as a computation path of an assembly of processes, is that the assembly
of processes is not fixed once and for all. Rather the assembly grows
as further copies are invoked, and that these copies can be made of a

32 Glynn Winskel

processes after they have run for a while. The copies can then them-
selves be run and the resulting processes copied. In this way, by keeping
track of the origins of copies, we can account for the identifications of
sub-paths.

This intuition suggests exploring other less liberal ways of copying,
without, for example, being able to copy after some initial run. We
will discover candidates for exponentials !P based on computation-path
shapes of simple assemblies of processes, ones built out of indexed fam-
ilies. We start with an example.

1.8.1 An example

First observe the hopeful sign that maps which are not linear may
still preserve bisimulation. For example, a functor yielding a presheaf
H(X, Y), for presheaves X and Y over P, which is “bilinear” or “affine
bilinear,” in the sense that it is linear (i.e., colimit preserving) or affine
linear (i.e., connected-colimit preserving) in each argument separately,
when diagonalised to the functor giving H(X, X) for X in P̂, will still
preserve open maps and bisimulation. A well-known example of a bi-
linear functor is the product operation on presheaves [18]; with one ar-
gument fixed, the product is left adjoint to the exponentiation in the
presheaf category, and so product preserves colimits, and thus open
maps, in each argument. On similar lines, it can be shown that the
tensor operations in LinSet and AffSet are bilinear and affine bilinear,
respectively. With this encouragement we look for alternative interpre-
tations of the exponential !, where the nonlinear maps !P → Q in LinSet

preserve open maps.
Because sum preserves open maps, by the remarks above, the functor

copy taking a presheaf X over P to the presheaf

copy(X) = 1 + X + X2 + X3 + · · ·+ Xk + · · ·

over

!P = 1+ P + P2 + P3 + · · ·+ Pk + · · ·

will preserve open maps. Here the superscripts abbreviate repeated ap-
plications of tensor in LinSet. So Pk is the product of k copies of the
partial order P, in which the objects are k-tuples of objects of P—in par-
ticular, 1 is the partial order consisting solely of the empty tuple called
1 above. The presheaf Xk comprises k copies of X tensored together,
so that Xk〈p1, · · · , pk〉 = X(p1)× · · · ×X(pk).

Linearity and nonlinearity in distributed computation 33

By supplying “coefficients” we can obtain various nonlinear maps. An
appropriate form of polynomial is given by a functor

F :!P → Q̂ ,

which splits up into a family of functors

Fk : Pk → Q̂ , for k ∈ ω .

We can extend F to a functor F [−] = F · copy(−) : P̂ → Q̂. For X ∈ P̂,

F [X] = F0 + F1 ·X + F2 ·X2 + F3 ·X3 + · · ·+ Fk ·Xk + · · ·

Because F ·− is colimit-preserving it preserves open maps. So does copy.
Hence F [−] preserves open maps.

Note, that the original polynomial F is not determined to within
isomorphism by the functor F [−] it induces. (We can only hope for
such uniqueness if we restrict to polynomials which are symmetric, i.e.,
such that Fk

∼= Fk ◦ π for all permutations π of the k arguments.)
We write Poly(P, Q) for the functor category [!P, Q̂] of polynomials

from P to Q. In order to compose polynomials, F ∈ Poly(P, Q) and
G ∈ Poly(Q, R), we first define F ! ∈ Poly(P, !Q) by taking

F !〈p1, · · · , pn〉〈q1, · · · , qk〉 = Σµ〈s1,···,sk〉=〈p1,···,pn〉Fs1q1 × · · · × Fskqk ,

when 〈p1, · · · , pn〉 ∈!P and 〈q1, · · · , qk〉 ∈!Q. The operation µ :!!P → P
flattens, by concatenation, a tuple 〈s1, · · · , sk〉 of tuples sr = 〈sr1, · · · , srmr

〉,
for 1 ≤ r ≤ k, down to a tuple

µ〈s1, · · · , sk〉 = 〈s11, · · · , s1m1 , s21, · · · sk1, · · · , skmk
〉 .

So, the sum is indexed by all ways to partition 〈p1, · · · , pn〉 into tuples
〈s1, · · · , sk〉. Now, we can define the composition of polynomials to be

G ◦ F = G · (F !−) ∈ Poly(P, R) .

At 〈p1, · · · , pn〉 in !P,

G ◦ F 〈p1, · · · , pn〉 = Σµ〈s1,···,sk〉=〈p1,···,pn〉Gk · Fs1 × · · · × Fsk ,

where Fs1 × · · ·Fsk, built using the tensor of Lin, is such that

Fs1 × · · ·Fsk〈q1, · · · , qk〉 = Fs1q1 × · · ·Fskqk

for 〈q1, · · · , qk〉 in !Q. The composition of polynomials is only defined
to within isomorphism; they form a bicategory Poly, rather than a
category.

Note that !O = 1. In the special case where F :!O → Q̂, so that F

34 Glynn Winskel

merely points to a presheaf X in Q̂, the composition G◦F of a polynomial
G :!Q → R̂ with the polynomial F is isomorphic to G[X]. So certainly
compositions of this form preserve open maps and bisimulation.

More generally, polynomials in Poly(P, Q) and Poly(Q, R) corre-
spond to presheaves in ̂(!P)op ×Q and ̂(!Q)op × R, respectively. So under
this correspondence polynomials are related by open maps and bisimu-
lation. It can be shown that the composition of polynomials in general
preserves open maps, so bisimulation, between polynomials.

However, the present interpretation of ! fails as a candidate for the
exponential of linear logic. This is because Poly is not cartesian-closed
in any reasonable sense. It easy to see that there is an isomorphism of
categories

Poly(R, P&Q) ∼= Poly(R, P)×Poly(R, Q) ,

natural in R in LinSet, showing the sense in which P&Q, given by jux-
taposition, remains a product in the bicategory of polynomials. There
is also clearly an isomorphism of functor categories

[!P×!Q, R̂] ∼= [!P, ̂((!Q)op × R)] .

But, in general, !(P&Q) and !P×!Q are not isomorphic, so that (!Q)op×R
is not a function space for the polynomials with respect to −&−. The
difficulty boils down to a lack of symmetry in the current definition of
!P, where tuples like 〈p1, · · · , pk〉 and its permutations 〈pπ(1), · · · , pπ(k)〉
are not necessarily related by any maps. Nor for that matter, are there
any maps from a tuple 〈p1, · · · , pk〉 to a larger tuple 〈p1, · · · , pk, · · · , pm〉,
even though intuitively the larger tuple would be a path of a larger
assembly of processes, so arguably an extension of the smaller tuple in
which further copies have been invoked.

To allow different kinds of polynomial, polynomials which can take
account of the symmetry there exists between different copies and also
permit further copies to be invoked as needed, we broaden the picture.

1.8.2 General polynomials

The example suggests that we take assemblies of processes to be families
where we can reindex copies, precisely how being prescribed in U, a
subcategory of sets in which the maps are the possible reindexings. A
U-family of a category A comprises 〈Ai〉i∈I where i ∈ I, with I an object
of U, index objects Ai in A. A map of families (f, e) : 〈Ai〉i∈I → 〈A′

j〉j∈J

consists of a reindexing function f : I → J in U and e = 〈ei〉i∈I , a family

Linearity and nonlinearity in distributed computation 35

of maps ei : Ai → A′
f(i) in A. With the obvious composition we obtain

FU(A), the category of U-families.
Imitating the example, we define the category of polynomials

PolyU(P, Q)

from P to Q, to be the functor category [FU(P), Q]. Under sufficient con-
ditions, that U is small, has a singleton and dependent sums (a functor
Σ : FU(U) → U collapsing any family of sets in U to a set in U), we can
compose polynomials in the manner of the coKleisli construction. For
this we need to turn FU into a functor on polynomials for which we need
a “distributive law” converting a family of presheaves into a presheaf
over families of paths. It can be shown that provided all the maps in
U (the possible reindexings) are injective, composition of polynomials
preserves open maps and bisimulation. Provided U contains the empty
set, we can specialise composition, as in the example, to obtain a functor
F [−] : P̂ → Q̂ from a polynomial F in PolyU(P, Q).

The example is now seen as the special case in which U consists of
subsets, possibly empty, of positive natural numbers {1, · · · , n} with
identities as the only maps. In the special case in which U is the full
subcategory of Set consisting of the empty set and a singleton, polyno-
mials amount to functors P⊥ → Q̂ so to maps in AffSet. If we take U to
be I (finite sets with injections) or B (finite sets with bijections), we can
repair an inadequacy in the example; then, FU(P&Q) and FU(P)×FU(Q)
are isomorphic, so that we obtain a function space for the polynomials
with respect to the product −&−. Both FI and FB are good candidates
for the exponential !—they also behave well with respect to bisimulation.

There is a fly in the ointment however. The complete mathematical
story, in which one would see the polynomials as maps in a coKleisli con-
struction, uses bicategories and at least pseudo (co)monads on biequiv-
alent 2-categories. At the time of writing (December 2001) the theory
of pseudo monads, even the definitions, is not sufficiently developed.

1.9 Related work

This article presents two domain theories for concurrent computation.
One uses domains of a traditional kind, though in a non-traditional
way through being based on computation paths (though the path-based
domain theory here was anticipated in Matthew Hennessy’s work on do-
main models of concurrency [14]). In the other domain theory, domains

36 Glynn Winskel

are understood as presheaf categories, accompanied by the bisimulation
equivalence got from open maps.

Just as there are alternatives to the domain theory of Dana Scott,
in particular, the stable domain theory of Gérard Berry, so are there
alternative denotational semantics of the affine-linear language. Mikkel
Nygaard and I have shown how to give an event-structure semantics to
the affine-linear language; both types and terms denote event structures.
(Event structures are a key “independence model” for computation, one
in which the concurrency of events is represented by their causal inde-
pendence.) The domain theory can be seen as analogous to the stable
domain theory of Berry. The presheaf semantics here and that based
on event structures differ at function spaces. In the fragment of the
affine-linear language without function spaces, the event-structure se-
mantics gives an informative representation of the definable presheaves;
elements of a definable presheaf correspond to finite configurations of an
event structure, with restriction in the presheaf matched by restriction
to a subconfiguration in the event structure. Tensor corresponds to a
simple parallel composition of event structures got by disjoint juxtapo-
sition. Unfortunately the event structures definable in the affine-linear
language can be shown too impoverished to coincide with those of the
event-structure semantics of CCS, given for example in [31].

Mikkel Nygaard and I are developing an operational semantics for the
affine linear language [26]. This work has also led us to an expressive
nonlinear language with a simple operational semantics; its denotational
semantics is based on a choice of exponential from Section 1.8. One aim
is to give an operational account of open-map bisimulation on higher-
order processes.

The semantics here does not cover name generation as in Milner’s
π-Calculus. Although one can give a presheaf semantics to the pi-
Calculus [9], we do not presently know how to extend this to also include
higher-order processes.

This article has demonstrated that linearity as formalised in linear
logic can play a central role in developing a domain theory suitable for
concurrent computation. At the same time, the mathematical neutrality
of the domain theories here begins to show how concurrency need not
remain the rather separate study it has become. There are unresolved
issues in extending the work of this article towards a fully-fledged domain
theory, one able to cope more completely with the range of models for
concurrency. Among them is the question of how to extend this work

Linearity and nonlinearity in distributed computation 37

to include name generation, its relation with operational semantics, and
the place of independence models such as event structures.

Acknowledgements

A good deal of the background for this work was developed with Gian
Luca Cattani for his PhD [7]. Discussions with Martin Hyland and John
Power have played a crucial role in the ongoing work on nonlinearity. I
am grateful for discussions with my PhD student Mikkel Nygaard.

References
[1] S. Abramsky. Computational interpretations of linear logic. Theoretical

Computer Science, 111, 1-2, 3–57, 1993.
[2] T. Braüner. An Axiomatic Approach to Adequacy. BRICS Dissertation

Series DS-96-4, 1996.
[3] J. Brock & W. Ackerman. Scenarios: A model of non-determinate

computation. In Proc. of Formalization of Programming Concepts,
LNCS 107, 1981.

[4] S.D. Brookes. On the relationship of CCS and CSP. In Proc. of
ICALP’83, LNCS 154, 1983.

[5] L. Cardelli & A. Gordon. A commitment relation for the ambient
calculus. Note ambient-commitment.pdf at
http://research.microsoft.com/ adg/Publications/, 2000.

[6] L. Cardelli & A. Gordon. Anytime, Anywhere. Modal logics for mobile
ambients. In Proc. of POPL’00, 2000.

[7] G. L. Cattani. PhD thesis, CS Dept., University of Aarhus,
BRICS-DS-99-1, 1999.

[8] G. L. Cattani, M. Fiore & G. Winskel. A Theory of Recursive Domains
with Applications to Concurrency. In Proc. of LICS ’98.

[9] G. L. Cattani, I. Stark, & G. Winskel. Presheaf Models for the
π-Calculus. In Proc. of CTCS ’97, LNCS 1290, 1997.

[10] G. L. Cattani & G. Winskel. Presheaf Models for Concurrency. In Proc.
of CSL’ 96, LNCS 1258, 1997.

[11] G. L. Cattani & G. Winskel. Profunctors, open maps and bisimulation.
Manuscript, 2000.

[12] G. L. Cattani, A. J. Power & G. Winskel. A categorical axiomatics for
bisimulation. In Proc. of CONCUR’98, LNCS 1466, 1998.

[13] T. Hildebrandt, P. Panangaden & G. Winskel. Relational semantics of
nondeterministic dataflow. In Proc. of CONCUR’98, LNCS 1466, 1998.

[14] M. Hennessy. A Fully Abstract Denotational Model for Higher-Order
Processes. Information and Computation, 112:55–95, 1994.

[15] M. Hennessy & G.D. Plotkin. Full abstraction for a simple parallel
programming language. In Proc. of MFCS’79, LNCS 74, 1979.

[16] C.A.R. Hoare. A model for communicating sequential processes. Tech.
Report PRG-22, University of Oxford Computing Lab., 1981.

[17] B. Jacobs. Semantics of weakening and contraction. Annals of Pure and
Applied Logic, 69:73–106, 1994.

38 Glynn Winskel

[18] A. Joyal & I. Moerdijk. A completeness theorem for open maps. Annals
of Pure and Applied Logic, 70:51–86, 1994.

[19] A. Joyal, M. Nielsen & G. Winskel. Bisimulation from open maps.
Information and Computation, 127:164–185, 1996.

[20] G.Winskel & K.Larsen. Using information systems to solve recursive
domain equations effectively. LNCS 173, 1984.

[21] G.M. Kelly. Basic concepts of enriched category theory. London Math.
Soc. Lecture Note Series 64, CUP, 1982.

[22] S. Mac Lane & I. Moerdijk. Sheaves in Geometry and Logic.
Springer-Verlag, 1992..

[23] R. Milner. A Calculus of Communicating Systems. LNCS 92, 1980.
[24] R. Milner. Communication and concurrency. Prentice Hall, 1989.
[25] M. Nielsen, G.D. Plotkin & G. Winskel. Petri nets, Event structures and

Domains, part 1. Theoretical Computer Science, vol. 13, 1981.
[26] M. Nygaard & G. Winskel. Linearity in distributed computation. In

Proc. of LICS ’02.
[27] G. Winskel. A representation of completely distributive algebraic

lattices. Report of the Computer Science Dept., Carnegie-Mellon
University, 1983.

[28] G. Winskel. An introduction to event structures. In Proc. of REX
summerschool in temporal logic, ’May 88, LNCS 354, 1988.

[29] G. Winskel. A presheaf semantics of value-passing processes. In
Proceedings of CONCUR’96, LNCS 1119, 1996.

[30] G. Winskel. A linear metalanguage for concurrency. In Proceedings of
AMAST’98, LNCS 1548, 1999.

[31] G. Winskel & M. Nielsen. Models for concurrency. In Handbook of Logic
in Computer Science, Vol.4, OUP, 1995.

