
Relations in Concurrency
Invited talk (corrected version)

Glynn Winskel, University of Cambridge Computer Laboratory, England

Abstract

The theme of this paper is profunctors, and their cen-
trality and ubiquity in understanding concurrent computa-
tion. Profunctors (a.k.a. distributors, or bimodules) are a
generalisation of relations to categories. Here they are first
presented and motivated via spans of event structures, and
the semantics of nondeterministic dataflow. Profunctors are
shown to play a key role in relating models for concurrency
and to support an interpretation as higher-order processes
(where input and output may be processes). Two recent di-
rections of research are described. One is concerned with a
language and computational interpretation for profunctors.
This addresses the duality between input and output in pro-
functors. The other is to investigate general spans of event
structures (the spans can be viewed as special profunctors)
to give causal semantics to higher-order processes. For this
it is useful to generalise event structures to allow events
which “persist.”

1. Introduction

Standard relations between setsP andQ specify for a
pair (p, q) in the productP × Q whether or not the pair is
included in the relation. We can generalise the idea, and in-
stead for each pair assign asetof ways in which the pair
are related; assigning the empty set would mean not related
at all. Profunctorsarise by taking this idea one step fur-
ther. Assume the sets have the structure of categoriesP and
Q (perhaps very special categories such as partial orders).
To respect the arrows, a profunctor assigns sets to pairs of
objects(p, q) so that the assignment determines a covari-
ant functor inp and a contravariant functor inq. (A con-
crete motivation and definition of profunctors is given in
Section 3.)

Profunctors are “relations” between categories. (Pro-
functors are also known as distributors or bimodules [1, 15,
3].) As we’ll see, profunctors recur in concurrency. They
appear as appropriate “relations” for giving compositional
semantics to nondeterministic dataflow. They express “re-

lations” between categories of models for concurrency; for
instance, both the inclusion of the category of synchroni-
sation trees in the category of event structures and the op-
eration serializing an event structure to a tree are given by
profunctors. They stand for higher-order processes in a do-
main theory for concurrency.

We start with the model of event structures and their
use in the semantics of nondeterministic dataflow. There
are well-known difficulties in giving a compositional se-
mantics to nondeterministic dataflow using standard rela-
tions between input and output. The problem is that stan-
dard relations take inadequate account of the causal rela-
tion between input and output. A compositional semantics
can however be given with the nonstandard relations of pro-
functors. The profunctors are explained in terms ofspans
of event structures, representing the process of computation
from input to output. We’ll be led to the view of a nonde-
terministic process as a presheaf, a form of characteristic
function for categories, where sets are taken as truth values.
From there we’ll see profunctors as “relations” between do-
mains of processes.

The unity provided by profunctors suggests new lan-
guages and methods. I’ll take advantage of this being an in-
vited talk to present some recent, incomplete lines of work.
One line is that of a process language based on profunctors.
I’ll outline a particular language developed with Patrick
Baillot. Another line, in joint work with Lucy Saunders-
Evans, concerns spans of event structures in the semantics
of higher-order processes. This leads to a generalisation of
event structures.

I’ve tried to be light and gradual in my use of category
theory (occasional reference to the early parts of MacLane’s
book [16] may be helpful).

2. Event structures

Event structures [18, 23, 25, 26] are a model of computa-
tional processes. They represent a process as a set of event
occurrences with relations to express how events causally
depend on others, or exclude other events from occurring.
In one of their simpler forms they consist of a set of events

on which there is a consistency relation expressing when
events can occur together in a history and a partial order of
causal dependency—writinge′ ≤ e if the occurrence ofe
depends on the previous occurrence ofe′.

In detail, anevent structurecomprises(E,Con,≤), con-
sisting of a setE, of eventswhich are partially ordered by
≤, thecausal dependency relation, and aconsistency rela-
tion Con consisting of finite subsets ofE, which satisfy

{e′ | e′ ≤ e} is finite for alle ∈ E,

{e} ∈ Con for all e ∈ E,

Y ⊆ X ∈ Con ⇒ Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈ X ⇒ X ∪ {e} ∈ Con.

Our understanding of the consistency predicate and the
enabling relation are expressed in the notion of configu-
ration (or state) we adopt for event structures. The events
are to be thought of as event occurrences; in any history an
event is to appear at most once. A configuration is a set of
events which have occurred by some stage in a process. Ac-
cording to our understanding of the consistency predicate
and causal dependency relations a configuration should be
consistent and such that if an event appears in a configura-
tion then so do all the events on which it causally depends.
Here we restrict attention to finite configurations.

The(finite) configurations, C(E), of an event structureE
consist of those finite subsetsx ⊆ E which are

Consistent:x ∈ Con and

Down-closed:∀e, e′. e′ ≤ e ∈ x ⇒ e′ ∈ x.

The configurations of an event structure are ordered by in-
clusion, wherex ⊆ x′, i.e. x is a sub-configuration ofx′,
means thatx is a sub-history ofx′. Note that an individ-
ual configuration inherits an order of causal dependency on
its events from the event structure so that the history of a
process is captured through a partial order of events. For an
evente the set{e′ ∈ E | e′ ≤ e} is a configuration describ-
ing the whole causal history of the evente.

When the consistency relation is determined by the pair-
wise consistency of events we can replace it by a binary re-
lation or, as is more usual, by a complementary binary con-
flict relation on events. It can be awkward to describe oper-
ations such as certain parallel compositions directly on the
simple event structures here, because an event determines
its whole causal history. One closely related and more ver-
satile model is that of stable families, described in the ad-
dendum.

Let E andE′ be event structures. Amapof event struc-
turesf : E → E′ is a partial function on eventsf : E ⇀ E′

such that for all configurationsx of E its direct imagefx is
a configuration ofE′ for which

if e1, e2 ∈ x andf(e1) = f(e2) ∈ E′, thene1 = e2.

The map expresses how the occurrence of an evente in E
induces the coincident occurrence of the eventf(e) when-
ever it is defined. The partial functionf respects the in-
stantaneous nature of events: two distinct event occurrences
which are consistent with each other cannot both coincide
with the occurrence of a common event in the image. Maps
of event structures compose as partial functions.

We’ll say the map istotal iff the functionf is total, and
rigid iff it is total and for all configurationsx of E andy of
E′

y ⊆ f(x) ⇒ ∃z ∈ C(E). z ⊆ x andfz = y .

(The configurationz is necessarily unique.)
A rigid map of event structures preserves the causal de-

pendency relation “rigidly,” so that the causal dependency
relation on the imagefx is a copy of that on a configura-
tion x of E; this is not so for general maps wherex may be
augmented with extra causal dependency over that onfx.
(Recently with Lucy Saunders-Evans we have come to re-
alize the primary nature of rigid maps in the sense that the
other kinds of maps of event structures may be derived from
them by a Kleisli construction—see Section 6.)

3. Nondeterministic dataflow

For dataflow networks built from onlydeterministic
nodes, Kahn [14] observed that their behaviour can be cap-
tureddenotationallyas the least fixed point of a set of equa-
tions describing the components. Brock and Ackerman [4]
were the first to point out that fornondeterministicdataflow
achieving a compositional semantics was far from easy. In
particular,input-outputrelations between sequences of val-
ues on input and output channels carry too little information
about the behaviour of networks to support a compositional
semantics.

We present two simple examples of automataA1 andA2,
which have the same input-output relation, and yet behave
differently in common contextC[−]. The context consists
of a fork processF (a process that copies every input to two
outputs), through which the output of the automataAi is fed
back to the input channel, as shown in Fig. 1. Automaton
A1 has a choice between two behaviours: Either it outputs
a token and stops,or it outputs a token, waits for a token on
input and then outputs another token. AutomatonA2 has a
similar nondeterministic behaviour: Either it outputs a token
and stops,or it waits for an input token, then outputs two
tokens. For both automata, the input-output relation relates
empty input to the eventual output of one token, and non-
empty input to one or two output tokens. ButC[A1] can
output two tokens, whereasC[A2] can only output a single
token, choosing the first behaviour ofA2.

So there is no denotational semantics of nondeterministic
dataflow in terms of traditional input-output relations. Any

�
�-�

-
-

FAiC[Ai] =

Figure 1. A context distinguishing A1 and A2

compositional semantics must take better account of the
subtle causal dependency between input and output. There
are several ways to do this, though they all fall outside the
methods ofclassicaldomain theory, using powerdomains to
adjoin nondeterminism. (Dataflow has a rich history which
can’t be done justice here—see [11] for a discussion and
references.)

One solution is to give a semantics in terms ofspansof
event structures. Such a span comprises

E
dem

��~~
~~

~~
~

out

@@

@@
@@

@

A B

whereA, B andE are event structuresout : E → B is a
rigid map, anddem : E → C(A) satisfies

e ≤ e′ ⇒ dem(e) ⊆ dem(e′) , and

X ∈ Con ⇒
⋃

e∈X

dem(e) ∈ C(A) .

The idea is that the occurrence of an evente in E demands
the minimum inputdem(e) and is visible as the output event
out(e).

Such spans can be composed one after the other (essen-
tially by a pullback construction, as both the demand and
output maps extend to functions between configurations).
They also have a nondeterministic sum, and compose in par-
allel. For example, spans

E1

f1

~~||
||

||
|| g1

 B
BB

BB
BB

B

A1 B1

E2

f2

~~||
||

||
|| g2

 B
BB

BB
BB

B

A2 B2

compose in parallel to give the span

E1 ‖ E2

f1‖f2

yyssssssssss
g1‖g2

%%KKKKKKKKKK

A1 ‖ A2 B1 ‖ B2

where the parallel compositionE1 ‖ E2 of event structures,
and maps, is given by their disjoint juxtaposition. With re-
spect to‖ there is even a function space, discovered in joint
work with Mikkel Nygaard [19]. And importantly spans

also support the feedback loops of the problematic kind
we’ve just seen.

Given a span

E

dem

||yyyyyyyy
out

""E
EEEEEEE

A ‖ C B ‖ C

representing a process

-

--

-A

C

B

C

there is a span, itstrace,

trace(E)
dem′

{{vvvvvvvvv
out′

##H
HHHHHHHH

A B

representing the process with a feedback loop:

-�
 	�
- -A B

The construction of the trace involves an intermediate con-
struction on stable families, described in the addendum. (If
the original span consists of event structures in which con-
sistency/conflict is determined in a binary fashion, the feed-
back construction yields an event structure in which this is
also the case.)

The central point here is that we can view spans of event
structures as a form ofgeneralisedrelation between input
and output. Consider a span:

E
dem

��~~
~~

~~
~

out

@@

@@
@@

@

A B

Let p be a configuration ofA andq a configuration ofB—
sop is some particular input andq some particular output.
Define the set

Ẽ(p, q) = {x ∈ C(E) | dem x ⊆ p & out x = q} .

The setẼ(p, q) consists of all the ways that inputp can
yield outputq. Instead of simply specifying whether or not
an input-output pair(p, q) obtains, as in a usual relation,
Ẽ(p, q) gives the set of ways that(p, q) can be realized. In
this sense the usual truth values, which apply in specifying

standard mathematical relations, have been replaced by a
sets.

In fact Ẽ(p, q) is functorial in configurationsp ∈ C(A)
andq ∈ C(B). It respects the inclusion order on configura-
tions (though, as we’ll see, covariantly for input and con-
travariantly for output). Supposep ⊆ p′ in C(A). Then,
Ẽ(p, q) ⊆ Ẽ(p′, q)—simply because any configurationx
of E with demanddem x ⊆ p will make dem x ⊆ p′. So,
an inclusioni : p ⊆ p′ determines an inclusion map

Ẽ(i, q) : Ẽ(p, q) ↪→ Ẽ(p′, q) .

Supposeq ⊆ q′ in C(B). This time the inclusionj : q ⊆ q′

determines a map

Ẽ(p, j) : Ẽ(p, q′) → Ẽ(p, q) .

It takes x′, for which outx′ = q′, to the unique sub-
configurationx ⊆ x′ of E for which outx = q; this exists
becauseout is a rigid map of event structures. It is easy to
see that these associations of maps with inclusions respect
identities and composition, so thatẼ(p, q) is functorial, co-
variantly inp and contravariantly inq.

In summary, we have a functor

Ẽ : C(A)× C(B)op → Set

from the product of the orderC(A) with C(B)op, the oppo-
site order, to the category of sets. We have seen that it is a
kind of generalised relation, where truth values are taken to
be sets.

We can regard orders as categories, so more generally we
can consider a “relation” between small categoriesP andQ
to be a functor

F : P×Qop → Set ,

a functor from a product of categoriesP and the opposite
categoryQop. Such a functor is called aprofunctorfrom P
to Q and is written as

F : P + //Q .

The significance of profunctors was first highlighted by
Bénabou and Lawvere [1, 15]. As is to be expected we can
compose profunctorsF : P + //Q and G : Q + //R, be-
tween small categoriesP, Q andR, to obtain a profunctor
G ◦ F : P + //R. We postpone the definition of composi-
tion to Section 4.2. With suchgeneralisedrelations we are
able to give a compositional semantics of nondeterministic
dataflow [11]. The work can alternatively be carried out
with spans of event structures.

4. Processes as presheaves

As motivation, consider a special span of event structures
of the form

E
dem

����
��

��
�� out

��
@@

@@
@@

@

∅ B

where∅ is the unique event structure with no events and
the demand function is such thatdem(e) = ∅, the empty
input configuration, for all eventse of E. No input is needed
in producing output. Such a degenerate span determines a
functor

X = Ẽ(∅,−) : C(B)op → Set .

Such a functorX is called a presheafover the order
C(B). The presheafX represents a nondeterministic pro-
cess whose computation paths have the shape of configu-
rations ofB (with causal order inherited fromB). Given
a configurationq of B, the setX(q) describes all the dif-
ferent computation paths ofX of shapeq. BecauseX is
a contravariant functor the orderj : q ⊆ q′ determines a
function X(j) : X(q′) → X(q) saying how computation
paths of shapeq′ restrict to computation paths of shapeq.
The presheafX is a form ofcharacteristic function, where
the truth values are sets.

We can broaden our understanding of shapes of compu-
tation paths to be objects in a small categoryQ. The cate-
goryQ is thought of as consisting of shapes of paths, where
a mapj : q → q′ in Q expresses how theq extends toq′. A
presheafX : Qop → Set specifies forq in Q the setX(q)
of computation paths of shapeq. The presheafX acts on a
mapj : q → q′ in Q to give a functionX(j) saying how
q′-paths inX restrict toq-paths inX—several paths may
restrict to the same path. In this way a presheaf can model
the nondeterministic branching of a process.

A presheafX over Q models a nondeterministic pro-
cess of which the computation paths have shapes inQ.
The categoryQ represents atype of the process. We can
gather all the processes of typeQ together. The category
of presheaves overQ, written Q̂, is the functor category
[Qop,Set], with objects the functors fromQop to the cate-
gory of sets, and maps the natural transformations between
them.

Example 4.1 Consider the order of nonempty stringsL+

over a set of actionsL, ordered by extension, so for in-
stanceab ≤ abbc. The presheaf categorŷL+ is isomorphic
to the category of synchronisation trees, with arc labels in
L; the maps are simulations,i.e. functions on nodes respect-
ing roots, arcs and labels.

Example 4.2 This example shows how categories of event
structures arise as presheaf categories. Apomset[22] is a
labelled event structure in which all finite subsets of events
are consistent. The category of finite pomsetsPomL can be
presented as a subcategory of the category of event struc-
tures where events are labelled inL, with total maps that
respect labels. The categoryPomL consists of path shapes
in the form partial orders of labelled events. The category of
labelled event structures embeds fully and faithfully in pre-
sheaf categorŷPomL, which in this sense consists of gen-
eralised event structures [13].

4.1. Bisimulation

Presheaves are being thought of as nondeterministic pro-
cesses on which equivalences such as bisimulation are im-
portant in abstracting away from inessential differences of
behaviour. A sweeping definition of bisimulation between
presheaves is derived from the notion of open map [13].

The category of presheaves is accompanied by the
Yoneda embedding, a functoryQ : Q → Q̂, which fully
and faithfully embedsQ in the category of presheaves. For
every objectq of Q, the Yoneda embedding yieldsyQ(q) =
Q(−, q).

A map h : X → Y , between presheavesX andY , is
open iff for all maps j : q → q′ in Q, any commuting
square

yQ(q) x //

yQ(j)

��

X

h

��

yQ(q′)
y

// Y

can be split into two commuting triangles

yQ(q) x //

yQ(j)

��

X

h

��

yQ(q′)
y

//

z

77ppppppp
Y.

That the square commutes means that the pathh◦x in Y can
be extended viaj to a pathy in Y . That the two triangles
commute means that the pathx can be extended viaj to a
pathz in X which matchesy.

Open maps are a generalisation of functional bisimula-
tions, known from transition systems. Presheaves inQ̂ are
bisimilar iff there is a span of surjective open maps between
them. Open-map bisimulation often coincides with known
definitions of bisimulation. Open-map bisimulation in the
presheaf categorŷL+ of Example 4.1 is strong bisimulation
of Milner and Park. An operational understanding of open-
map bisimulation on profunctors fromP to Q (regarded as
presheaves overPop ×Q) is something of an enigma (it re-
spects the input-output duality of profunctors,cf.Section 5).

Open maps also support a general theory of weak bisimula-
tion [9].

4.2. Relating presheaf categories

Intuitively a presheaf over a small categoryP consists
of a collection of paths with shapes inP glued together at
sub-paths—so a presheaf resembles a computation tree but
in which the branches have shapes inP. Technically this
amounts to a presheaf being expressible as a colimit of its
paths.

A presheaf category has all limits and colimits given
pointwise, at a particular object, by the corresponding limits
and colimits of sets. In particular, a presheaf category has all
sums (coproducts) of presheaves. In process terms, a sum of
presheaves represents a nondeterministic sum of processes.

A category of presheaves,P̂, is characterized as the free
colimit completion ofP. The Yoneda embeddingyP : P →
P̂ satisfies the universal property that for any functorF :
P → C, whereC is a category with all colimits, there is a
colimit-preserving functorG : P̂ → C, determined to within
natural isomorphism, such thatF ∼= G ◦ yP:

P
yP //

F

∼=

&&LLLLLLLLLLLLL P̂
G

��

C

Any presheaf categorŷQ has all colimits. So, in particu-
lar, for any functorF : P → Q̂, there is a colimit-preserving
functorG : P̂ → Q̂, determined to within natural isomor-
phism, such thatF ∼= G ◦ yP:

P
yP //

F

∼=

%%LLLLLLLLLLLLL P̂

G

��

Q̂

By this universal property, colimit-preserving functors
G : P̂ → Q̂ correspond to within natural isomorphism
to functorsF : P → Q̂, and such functors are in 1-1
correspondence with profunctors̄F : P + //Q. A functor
F : P → Q̂ is a functor

F : P → [Qop,Set] ,

so by “uncurrying” in correspondence with a functor

F̄ : P×Qop → Set ,

viz.a profunctorF̄ : P + //Q.
So profunctors arise in relating presheaf categories. We

can now describe how to compose them. Given profunctors

F : P + //Q andG : Q + //R, by “currying” we obtain func-
tors

F̄ : P → Q̂ andḠ : Q → R̂ .

From the universal property we obtain a colimit-preserving
functorḠ† : Q̂ → R̂ so now we can form the composition
of functors

Ḡ† ◦ F : P → R̂ .

This functor corresponds to a profunctor, which we take to
be the composition of profunctors

G ◦ F : P + //R .

Presheaves overQ correspond to special profunctors

X : 1 + //Q

from the category1 comprising just a single object and
its identity map. Profunctor composition specializes to the
application of a profunctor to a presheaf. A profunctor
G : Q + //R applied toX is given byG†(X), whereG† :
Q̂ → R̂ is the colimit-preserving functor determined byG.
Application preserves open-map bisimulation because:

Theorem 4.3 [6] Let H : Q̂ → R̂ be a colimit-preserving
functor between presheaf categories. ThenH preserves sur-
jective open maps and open-map bisimulation.

Example 4.4 We refer to Examples 4.1 and 4.2. Recall that
L̂+ is the category of synchronisation trees and that̂PomL

consists of generalised labelled event structures. There is an
obvious functorI : L+ → PomL which regards a string
over actionsL as a pomset. By composition we obtain a
functor yPomL

◦ I : L+ → P̂omL, which extends by the
universal property ofyL+ to a colimit-preserving functor
I! : L̂+ → P̂omL. The functorI! coincides with the inclu-
sion of synchronisation trees in event structures. For general
reasons, the functorI! has a right adjointI∗ : P̂omL → L̂+

given byI∗(E) = P̂omL(yPomL
◦ I(−), E). The functor

I∗ coincides with the operation of serializing or interleav-
ing an event structure to a tree. The functorsI! andI∗ relate
an interleaving model and a noninterleaving model of con-
currency. Both functors are colimit-preserving and so cor-
respond to profunctors. Consequently bothI! and I∗ pre-
serve bisimulation—in̂L+ it is strong bisimulation, while
in P̂omL open-map bisimulation turns out to be hereditary
history-preserving bisimulation of Bednarczyk. This illus-
trates how profunctors play a fundamental role in relating
categories of models for concurrency.

5. A language for profunctors

We now take a broader view. We regard small categories,
P, Q, R, . . . , as types of processes. Processes of a particular

type P are represented by objects in the presheaf category
P̂. Processes of different types, sayP and Q, are related
by profunctorsF : P + //Q, or equivalently by the colimit-
preserving functorsF † : P̂ → Q̂ they correspond to. With
this broader picture we have a form of domain theory for
concurrency [21] and we can ask how to construct types,
and what terms denote profunctors. Our answers are guided
by linear logic [10].

A tensor product ofP and Q is given by the product
of categoriesP × Q. There is an associated function space
P (Q given byPop × Q—it is easy to see that profunc-
tors fromP to Q are exactly presheaves overPop × Q. The
involution of linear negation is represented by the opera-
tion which takes a profunctorF : P + //Q to the profunctor
F⊥ : Qop + //Pop, given by

F⊥(q, p) = F (p, q) ,

got by switching around the roles of input and output. A
family of objectsPα, for α ∈ A, has sums (i.e. coproducts)
and products given in the same way on objects by their dis-
joint juxtapositionΣα∈APα. As for the exponential! of lin-
ear logic, there are many possible choices—see [20, 6].

We pause to consider the meaning of linearity. For a pro-
functor F : P + //Q the functor(F̄)† : P̂ → Q̂ is deter-
mined by its action on single computation paths of the input
process. Consequently application of a profunctor satisfies
a linear property: a computation path of the output results
from a single computation path of the input process. Be-
cause application of a profunctor preserves colimits, it pre-
serves nondeterministic sums, and the empty sum represent-
ing the nil process. The linear property only holds for very
special operations on processes, and for example would fail
to hold for most operations of parallel composition, or of
prefixing a process by an action. If we are to address the
concerns of concurrency we must go beyond purely linear
maps, and linear logic provides the means. The facility to
copy or ignore an input process is introduced by an expo-
nential ! and nonlinear maps are obtained as linear maps
from a type!P. In fact, a lot can be achieved by just al-
lowing the input process to be ignored, without having the
facility to copy—the nonlinear maps that result are called
affine. We allow input to be ignored throughlifting of the
input type. The operation oflifting, P⊥, introduces a new
initial object⊥, which can be thought of as the empty path,
below a small categoryP.

The constructions of tensorP × Q, sumΣα∈APα, types
Pop and lifting P⊥ are used in forming the types of a lan-
guage for profunctors developed with Patrick Baillot. To fa-
cilitate the duality that exists between input an output on
profunctors, its typing judgements of termst take the form

x1 : P1, · · · , xm : Pm ` t a y1 : Q1, · · · , yn : Qn ,

where all the variables are distinct, interpreted as a profunc-

tor fromP1 × · · · × Pm to Q1 × · · · ×Qn. We can think of
the termt as a box with input and output wires for the typed
variables:

-

--

-P1

Pm

Q1

Qn

...
...

The duality of input and output is caught by the rules:

Γ, x : P ` t a ∆
Γ ` t a x : Pop,∆

Γ ` t a x : P,∆
Γ, x : Pop ` t a ∆

Composition of profunctors is described in the rule

Γ ` t a ∆ ∆ ` u a H
Γ ` ∃∆. t× u a H

which joins the input wires of one process to output of the
other. (The “existential quantifier” can be interpreted di-
rectly as a coend and× as the product of sets.)

We can form the nondeterministic sum of processes of
the same type:

Γ ` ti a ∆ i ∈ I

Γ `
∑

i∈I ti a ∆

The sum denotes the coproduct of profunctors; we can re-
gard profunctors as presheaves and form their coproduct in
a pointwise fashion, using the disjoint union of sets.

The rule for lifting

Γ ` t a ∆, y : R
Γ ` lift y to y′ in t a ∆, y′ : R⊥

is associated with the operation extending a profunctor

F : P1 × · · · × Pm + //Q1 × · · · ×Qn × R

to a profunctor

F ′ : P1 × · · · × Pm + //Q1 × · · · ×Qn × R⊥ ,

which on the additional arguments acts so that

F ′(p1, · · · , pm, q1, · · · , qn,⊥) = {∗}, a singleton.

The hom-set rule

Γ ` p′ : P ∆ ` p : P
Γ ` p ≤P p′ a ∆

introduces a term standing for the hom-setP(p, p′). It relies
on path terms, notation for paths involving free variables,
and their typings; a typing judgement for a path termp

x1 : P1, · · · , xm : Pm ` p : Q

denotes a functor fromP1 × · · · × Pm to Q. One rule for
such judgements is

Γ ` p : Q
Γop ` p : Qop

whereΓop is x1 : Pop
1 , · · · , xm : Pop

m . For the typeP⊥, there
are path terms!, standing for the path⊥, and!p, wherep is
a path term of typeP. For a sumΣα∈APα there are path
termsβp whereβ ∈ A andp is a path term of typePβ .
Other instances of path term typings arex : P, y : Q `
x × y : P × Q andz : P × Q ` z : P × Q from which via
the hom-set rule we obtain

x : P, y : Q ` z ≤P×Q x× y a z : P×Q ,

which joins two inputs to a common output of tensor type.
A great deal is achieved through basic manipulation of the
input and output “wiring” afforded by the hom-set rules and
input-output duality.

A pathis a path term with no free variables. The notation
for paths enables a further useful construction on types. For
its description we take advantage of the fact that for this
language types will always be orders. Ifp is a path ofP,
then theresumptiontype, P/p, is the order obtained from
those paths strictly abovep; it is the type a process of type
P arrives at after having done the pathp.

This describes the core of the language. Once extended
by recursive terms and recursive types, it becomes highly
expressive, and, for example, can straightforwardly encode
the higher-order process language affine-HOPLA in away
that is faithful to its presheaf semantics [20, 21]. A deriva-
tion in affine-HOPLA of a judgement

x1 : P1, . . . , xn : Pn ` M : Q

is translated into a derivation of

x1 : (P̃1)⊥, . . . , xn : (P̃n)⊥ ` M̃ a y : Q̃ .

The affine function space of affine-HOPLA is translated by
the operation(P⊥)op × Q on typesP andQ, and its affine
tensor by(P⊥ × Q⊥)/(!×!). Prefixing by an action makes
use of lifting and sum. Of course the language for profunc-
tors has restrictions that moving fromP⊥ to a full expo-
nential !P should address. The language does not yet have
an operational semantics, which would likely throw light on
open-map bisimulation for higher-order processes.

6. General spans of event structures

In Section 3 we saw that a span of event structures

E
dem

��~~
~~

~~
~

out

@@

@@
@@

@

A B

determines a profunctor̃E : C(A) + //C(B). Not all pro-
functors from the orderC(A) to the orderC(B) are obtained

in this way however. In particular the corresponding functor

from C(A) to Ĉ(B) preserves pullbacks. This is why com-
position of the associated profunctors can be described by a
simple pullback construction on spans. Maps between spans
are reasonably taken to be rigid mapsf as shown

E
dem

~~}}
}}

}}
}} out

AA

AA
AA

AA

f

��
�
�
�

A E′
dem′
oo

out′
// B

where both triangles commute as maps on configurations.
They inducecartesiannatural transformations (i.e. where
the naturality squares are pullbacks) between the corre-
sponding functors. The spans are akin to stable functions
in stable domain theory [2].

Such spans of event structures can be used to give a
semantics to affine-HOPLA, as explained in Mikkel Ny-
gaard’s thesis [19]. In fact the spans were discovered in de-
riving an operational semantics from the presheaf seman-
tics of affine-HOPLA. The guiding principle in designing
the operational semantics was that derivations of transitions
of a closed term should correspond to elements (realizers)
in its presheaf denotation, at least at first order [20]. We dis-
covered that the profunctors definable in affine-HOPLA at
first-order can be represented by spans of event structures.
This shed light on the affine tensor—at first-order it is the
simple parallel composition‖ of Section 3—and explained
a form of entanglement as due to consistency/conflict of
events. The event-structure semantics extends to all types,
though diverges from the presheaf semantics at higher types
(just as the function space of stable domain theory differs
from the pointwise function space of classical domain the-
ory).

Despite event structures appearing out of the presheaf
semantics of affine-HOPLA that language can be proved to
not support the traditional event-structure semantics of pro-
cess calculi like CCS (as given for example in [24, 27]). Nor
do the spans of Section 3 appear to be sufficient. This is one
motivation for very recent work with Lucy Saunders-Evans
where we have been looking to more general spans of event
structures.

The exploration has been helped by the gradual realiza-
tion that all the maps on event structures seen here, whether
they be total, partial, or even the demand maps on the left of
spans of event structures, can be obtained in a uniform way
from rigid maps. For example, total maps of event struc-
tures can be obtained as rigid maps fromE to T (E′) for
a monadT on the category of event structures with rigid
maps. A similar Kleisli construction yields, the other kinds
of maps too, though at a slight cost. Event structures must be
extended to allow a “persistent” events. An event structure
with persistence(E,P) is an event structureE paired with a

distinguished subset of persistent eventsP . Configurations
are defined just as before. Mapsf : (E,P) → (E′, P ′)
of event structures with persistence are partial functions on
eventsf : E ⇀ E′ such thatfP ⊆ P ′ and for all config-
urationsx of E its direct imagefx is a configuration ofE′

for which now

if e1, e2 ∈ x andf(e1) = f(e2) ∈ (E′\P ′), thene1 = e2.

The maps compose as partial functions. A map on event
structures with persistence isrigid iff it comprises a total
function which preserves the order of causal dependency.
This amounts to the same definition as before when no
events are persistent.

Let E be the category of event structures with persis-
tence and rigid maps. It has all pullbacks and a terminal ob-
ject (and so products). We can form the bicategory of spans
SpanE . Its objects are event structures with persistence. Its
mapsSpanE(A,B), from A to B, are spans

E
f

��~~
~~

~~
~

g

@@

@@
@@

@

A B

composed using pullbacks:

G
f ′
1

��

g′
2

��

E
f1

��~~
~~

~~
~

g1

@@

@@
@@

@ F
f2

��~~
~~

~~
~

g2

��
@@

@@
@@

@

A B C

(Its 2-cells, maps inSpanE(A,B), are the maps between
the vertices of two spans making the obvious triangles com-
mute.)SpanE has a tensor and function space given by the
product ofE .

Other bicategories of spans are obtained by Kleisli con-
structions onSpanE—see [5]. A monad onE that respects
pullbacks induces both a (pseudo) monad and (pseudo)
comonad onSpanE . In particular the demand-output spans
of Section 3 arise as spans

E
f

}}zz
zz

zz
zz g

��
@@

@@
@@

@@

T (A) B.

in a Kleisli construction on spans, stemming fromT , the
monad onE associated with demand maps. But there are
other largely unexplored variations in which one or both
legs of the span are modified by monads. Several yield
both function spaces and interesting parallel compositions
of event structures.

7. Concluding remarks

Profunctors and presheaves have much wider applica-
tions beyond concurrency, in logic [17], in combinatorics
via species [12] and generalised species [8] (where lan-
guages for profunctors again appear naturally and have a
process reading), in algebraic topology [7], as well as in the
broader world of mathematics. Here I’ve glossed over the
details of bicategories and pseudo monads and comonads.
Work with Marcelo Fiore, Nicola Gambino and Martin Hy-
land, is designed to make these notions more precise and
workable. Name generation has been ignored here. Adding
name generation to the domain theory arising from profunc-
tors raises the issue of the existence of function spaces. The
paper [28], of this volume, addresses this question for a sim-
plification of profunctors where the role of sets as truth val-
ues is replaced by0 < 1.

Acknowledgements

I am grateful for discussions with Patrick Baillot, Marcelo
Fiore, Thomas Hildebrandt, Martin Hyland, Mikkel Ny-
gaard and Lucy Saunders-Evans.

Addendum: Stable families and trace

The use of stable families facilitates definitions on event
structures. Here we’ll use stable families to define the trace
operation of Section 3.

Definition A stable familycomprises(E,F) whereE is a
set ofeventsandF is a family of finite subsets ofE, called
configurations, satisfying:
Completeness:Z ⊆ F & Z ↑ ⇒

⋃
Z ∈ F ;

Coincidence-freeness:For allx ∈ F , e, e′ ∈ x with e 6= e′,

(∃y ∈ F . y ⊆ x & (e ∈ y ⇐⇒ e′ /∈ y)) ;

Stability:∀Z ⊆ F . Z 6= ∅ & Z ↑ ⇒
⋂

Z ∈ F .

ForZ ⊆ F , we writeZ ↑ to mean compatibility,i.e.

∃x ∈ F∀z ∈ Z. z ⊆ x .

Configurations of stable families each have their own
local order of causal dependency, so their own prime
sub-configurations generated by their events. We can build
an event structure by taking the events of the event structure
to comprise the set of all prime sub-configurations of the
stable family. The details follow.

Definition and Proposition Let x be a configuration of a
stable familyF . Fore, e′ ∈ x define

e′ ≤x e iff ∀y ∈ F . y ⊆ x & e ∈ y ⇒ e′ ∈ y.

Whene ∈ x define

deex =
⋂

{y ∈ F | y ⊆ x & e ∈ y} .

Then≤x is a partial order anddeex is a configuration such
that

deex = {e′ ∈ x | e′ ≤x e}.

Moreover the configurationsy ⊆ x are exactly the down-
closed subsets of≤x.

Proposition Let (E,F) be a stable family. Then,
(P,Con,≤) is an event structure where:

P = {deex | e ∈ x & x ∈ F} ,

Z ∈ Con iff Z ⊆ P &
⋃

Z ∈ F and,

p ≤ p′ iff p, p′ ∈ P & p ⊆ p′ .

This proposition furnishes a way to construct an event
structure with events the prime configurations of a stable
family. In fact we can equip the class of stable families with
maps (the definitions are the same as those for event struc-
tures). The configurations of an event structure form a sta-
ble family, so in this sense event structures are included in
stable families. With respect to any of the maps (rigid, to-
tal or partial), the “inclusion” functor from the category of
event structures to the category of stable families has a right
adjoint, which on objects is the construction we have just
given, producing an event structure from a stable family.
The product w.r.t. partial maps is particularly useful in giv-
ing semantics to the parallel composition of synchronising
processes, as in CCS and CSP. The product is hard to define
directly on the event structures of this article. It is however
straightforward to define the product of stable families [24].
Right adjoints preserve limits, and so products in particular.
Consequently we obtain the product of event structures by
first regarding them as stable families, and then producing
the event structure from the product of the stable families.

We construct the trace of a span of event structures

E

dem

||yyyyyyyy
out

""E
EEEEEEE

A ‖ C B ‖ C

of Section 3.
Let x ∈ C(E). Saye is secured inx iff

∃e1, · · · , en ∈ x. en = e &
∀i ≤ n. {e1, · · · , ei−1} ∈ C(E) &

dem(ei) ∩ C ⊆ out{e1, · · · , ei−1} .

Sayx is secureiff all its events are secured inx.

It can be shown that(E,F), in which F consists of
all the secure configurations ofE, is a stable family. De-
fine trace(E) to be the event structure(E′,Con′,≤′) with
eventsE′ consisting of the prime configurationsdeex of F
for whichout(e) ∈ B, where consistencyCon′ is given by
compatibility inF and causal dependency is given by inclu-
sion. The original demand functiondem induces a function
dem′ from E′ toC(A): takedem′(e′) =

⋃
e∈e′ dem(e)∩A.

The original output functionout induces a functionout′

from E′ to B: takeout′(e′) = out(e) whene′ has the form
deex. Together these determine a span of maps

trace(E)
dem′

{{vvvvvvvvv
out′

##H
HHHHHHHH

A B

—the trace of Section 3, and a representation of the trace on
profunctors used in [11].

References

[1] Bénabou, J., Les distributeurs. Rapportn◦ 33. Seminaires de
Mathématiques Pure, Institut de Mathématiques, Université
Catholique de Louvain, 1973.

[2] Berry, G., Modèles compl̀etement ad́equats et stable des
lambda-calculus tyṕes. PhD thesis, L’universit́e Paris VII,
1979.

[3] Borceux, F.,Handbook of categorical logic, volume 1. Cam-
bridge University Press, 1994.

[4] Brock, J. and Ackerman, W., Scenarios: A model of non-
determinate computation. In Diaz, J. and Ramos, I., edi-
tors,Formalization of Programming Concepts, volume 107
of LNCS. Springer, 1981.

[5] Burroni, A., T-cat́egories.Cahiers de topologie et géoḿetrie
diff érentielle, XII 3, 1971.

[6] Cattani, G.L., and Winskel, G., Profunctors, open maps and
bisimulation. In press, MSCS, 2005.

[7] Fahrenberg, U., Bisimulation for higher-dimensional au-
tomata. A geometric interpretation. Aalborg Univ Dept of
Mathematical Sciences, Research Report R-2005-01, 2005.

[8] Fiore, M., Mathematical models of computational and com-
binatorial structures. Invited address, FOSSACS’05, 2005.

[9] Fiore, M., Cattani, G.L., and Winskel, G., Weak bisimulation
and open maps. Proc. of LICS’99. 1999.

[10] Girard, J.-Y., Linear logic.Theoretical Computer Science,
50(1):1–102, 1987.

[11] Hildebrandt, T., Panangaden, P., and Winskel, G. A rela-
tional model of non-deterministic dataflow.Mathematical
Structures in Computer Science, 2004.

[12] Joyal, A., Foncteurs analytiques et especes de structures.
In Proceedings of a Colloquium on Enumerative Combi-
natorics, Springer Lecture Notes in Mathematics, vol.1234,
1985.

[13] Joyal, A., Nielsen, M., and Winskel, G., Bisimulation from
open maps.LICS ’93 special issue of Information and Com-
putation, 127(2):164–185, 1996. Available as BRICS report,
RS-94-7.

[14] Kahn, G., The semantics of a simple language for parallel
programming. InInformation Processing, volume 74, pages
471–475, 1974.

[15] Lawvere, F.W., Metric spaces, generalized logic and closed
categories.Rend. Sem. Mat. Fis. Milano, 43:135–166, 1973.

[16] Mac Lane, S. Categories for the Working Mathematician.
Springer, 1971.

[17] Mac Lane, S. and Moerdijk, I. ,Sheaves in Geometry and
Logic: A First Introduction to Topos Theory, Springer, 1992.

[18] Nielsen, M., Plotkin, G.D., and Winskel, G., Petri nets,
event structures and domains.Theoretical Computer Sci-
ence, 13(1):85–108, 1981.

[19] Nygaard, M., Domain theory for concurrency. PhD Thesis,
University of Aarhus, 2003.

[20] Nygaard, M., and Winskel, G., Linearity in Process Lan-
guages. In Proceedings of 17th Annual IEEE Symposium on
Logic in Computer Science (LICS’02), 2002.

[21] Nygaard, M., and Winskel, G., Domain theory for concur-
rency.Theoretical Computer Science316: 153–190, 2004.

[22] Pratt, V., Modelling concurrency with partial orders.Inter-
national Journal of Parallel Programming, 15,1, 1986.

[23] Winskel, G.,Events in Computation. PhD thesis, University
of Edinburgh, available as a Comp. Sc. report, 1980.

[24] Winskel, G., Event structure semantics of CCS and related
languages. Springer–Verlag Lecture Notes in Comp. Sc. 140
ICALP 82, 1982. An extended version is available from
http://www.cl.cam.ac.uk/ gw104.

[25] Winskel, G., Event structures. Invited lectures for the Ad-
vanced Course on Petri nets, September 1986. Springer Lec-
ture Notes in C.S., vol.255, 1987.

[26] Winskel, G., An introduction to event structures. In the lec-
ture notes for the REX summerschool in temporal logic, May
88, in Springer Lecture Notes in C.S., vol.354, 1988.

[27] Winskel, G. and Nielsen, M.,Handbook of Logic in Com-
puter Science, volume IV, chapter Models for concurrency,
pages 1–148. OUP, 1995.

[28] Winskel, G., Name generation and linearity. In Proceedings
of 20th Annual IEEE Symposium on Logic in Computer Sci-
ence (LICS’05), this volume, 2005.

