
Distributed Games and Strategies
Glynn Winskel

The notion of deterministic/nondeterministic strategy is potentially as
fundamental as the notion of function/relation.
A broad enough notion of strategy must be planted firmly within a general model
of concurrent/distributed/interactive computation.

The two ingredients of this course

A model for distributed computation: Event structures, central within models
for concurrency, Petri nets, Mazurkiewicz trace languages, transition systems, ...

Games: 2-party nondeterministic distributed games between Player (team of
players) and Opponent (team of opponents)

ACS Distributed Games and Strategies February 2017

Motivation

Originally as foundation for semantics of computation. So as a successor to
Domain Theory, the mathematical foundations of Denotational Semantics.
In the course we will see game semantics for non-deterministic dataflow,
probability with nondeterminism and higher types - all bugbears of traditional
domain theory.

A structural game theory in which one can program games and (optimal)
strategies.

More distantly, there is a hope that the generality of distributed games can help
bridge the big divide in CS between Algorithmics and Semantics. At the very
least they go some way to providing a common vocabulary.

1

On the course

• Course notes

• Regular hand-ins and, for evaluation, a final take-away exam.

• Although you will be expected to carry out proofs and show competence in
several techniques you will not be expected to reproduce, or even necessarily read,
some of the hard proofs of the notes. However you will be expected to understand
the theorems. The slides will delimit what is examinable.

This course is a bridge between Andy Pitts’ Category Theory and Peter
Sewell’s Multicore Semantics and Programming in ACS. Simon Castellan will
guest lecture on weak memory models via event structures.

Related Part II courses: Denotational Semantics; Topics in Concurrency.

2

This first lecture should give an idea of

• partial-order models, a form of model becoming important in a range of
areas from security, systems, weak memory models, model checking, systems
biology, to proof theory;

• why such models are becoming important in semantics of computation and
can combine the two approaches, operational and denotational semantics
through the medium of games;

• the underlying mathematics of event structures and distributed games;

• the range of distributed games.

3

Causal/partial-order models

their range and applications ...

4

A (safe) Petri net

5

Unfolding a (safe) Petri net:

6

7

8

9

10

11

12

13

14

15

16

An event structure

17

Applications of partial-order models

Security protocols, as strand spaces, event strs [Guttman et al, Basin, Constable];
Systems biology, analysis of chemical pathways [Danos-Feret-Fontana-Krivine];
Hardware, in the design of asynchronous circuits [Yakovlev];
Relaxed/weak memory, event structures [Jeffrey, Pichon, Castellan];
Types and proof, domain theory [Berry, Curien-Faggian, Girard];
Nondeterministic dataflow [Jonsson];
Network diagnostics [Benveniste et al];
Logic of programs, in concurrent separation logic;
Partial order model checking [McMillan];
Distributed computation, classically [Lamport] and recently in e.g. analysis of
trust [Nielsen-Krukow-Sassone].

18

Domain theory and denotational semantics

Its history and limitations ...

19

What is a computational process?
Pre 1930’s: An algorithm (informal)

Post 1930’s: An effective partial function f : N→ N (mathematical)

Mid 1960’s : Christopher Strachey founded denotational semantics to
understand stored programs, loops, recursive programs on advanced datatypes,
often with infinite objects (at least conceptually): infinite lists, infinite sets,
functions, functions on functions on functions, ...
A program denotes a term within the λ-calculus, a calculus of functions
(but is it?): t ::= x | λx.t | (t t′)

Late 1960’s: Dana Scott: Computable functions acting on infinite objects can
only do so via approximations (topology!). A computational process is an
(effective) continuous function f : D → E between special topological
spaces, ‘domains.’ Recursive definitions as least fixed points.

20

Basic domain theory

A domain is a complete partial order (D,v): any infinite chain

d0 v d1 v · · · v dn v · · ·

has a least upper bound
⊔
n∈ω dn.

A function f : D → E is continuous if f preserves v and for all chains
f(
⊔
n∈ω dn) =

⊔
n∈ω f(dn).

If D has a least element ⊥ and f : D → D is continuous, then f has a least fixed
point

⊔
n∈ω f

n(⊥). (Recursive definitions)

Scott (1969): A nontrivial solution to D ∼= [D → D] (a recursively defined
domain), so providing a model of the λ-calculus, and, by the same techniques,
the semantics of recursive types.

21

But ...

Although denotational semantics and its mathematical foundation, domain theory,
have had tremendous successes, amongst them functional programming, it suffers
from certain anomalies:

• Nondeterministic dataflow;

• Although it can address probabilistic computation to some extent, it has
difficulties with computation which combines probability with nondeterminism or
higher types;

• Concurrent/distributed computation is often captured too crudely;

• Issues of full-abstraction.

In summary, traditional domain theory has abstracted too early from
operational concerns.

22

Deterministic dataflow—Kahn networks

%
$

-�
�

-

-z
g

y
f

x

A process built from basic processes connected by channels at which they input
and output.

Simple semantics: Associate channels with streams x, y, z.
Provided f and g are continuous functions on streams there is a least fixed point

(x, y, z) = (g(z)2, g(z)1, f(x)) .

23

Nondeterministic dataflow—the Brock-Ackerman anomaly

%
$

-�
�

-

-

ForkAiC[Ai] =

Both nondeterministic processes

A1 = O +OIO and A2 = O + IOO

have the same I/O relation, comprising

(ε,O), (I,O), (I,OO) .

But
C[A1] = O +OO and C[A2] = O .

24

A solution: generalize relations

A process with input A and output B:

E
dem

��

out

A B

where A, B and E are event structures,

out : E → B is a map expressing the different ways output is produced,

dem : E → A is a map expressing the requirement on input for events to occur.

Such ‘stable spans’ will reappear as a special kinds of distributed strategies.

25

Traditional game semantics

Arose in the 90’s as a partial answer to the quest for a more operational “domain
theory.”

26

Why games - informally and generally

A game G provides constraints on the moves Opponent and Player can make,
and often specifies winning conditions. E.g. simultaneous chess.

A strategy for Player prescribes moves for Player in answer to moves of Opponent.

Two important operations on games: parallel composition of games G‖H ;
dual of a game G⊥ (reversing the roles of Player and Opponent)

Joyal after Conway: A strategy from a game G to a game H, G + // H, is
a strategy in G⊥‖H; strategies compose with identities given by copy-cat. A
strategy in H corresponds to a strategy from the empty game ∅ to H. So

∅ + // G + // H composes to give ∅ + // H ,

so a strategy in G gives rise to a strategy in H when G + // H.

27

Game semantics of sequential programs

Traditional game semantics of programming languages, starting with the seminal
work of Abramsky-Jagadeesan-Malacaria and Hyland-Ong, showed for sequential
programs it was very fruitful to regard types as games and programs as strategies.
AJM games and HO games are different though both sequential with Player and
Opponent moves alternating.

In particular they both achieved intensional full-abstraction for the language PCF
(the “intensional” is important and often forgotten).

Many subsequent successes ...

28

Game semantics—a simple example

Type with a single value, the game: ⊕

	

_LLR

Type with a pair of values, the game: ⊕ ⊕

	

_LLR

	

_LLR

Type of ‘algorithms’ from pairs to value, the game: 	 	 ⊕

⊕

_LLR

⊕

_LLR

	

_LLR

29

Game semantics—a simple example

Type with a single value, the game: ⊕

	

_LLR

Type with a pair of values, the game: ⊕ ⊕

	

_LLR

	

_LLR

Type of ‘algorithms’ from pairs to value, the game: 	

� ��%

	 � ,,2 ⊕

⊕

_LLR

⊕

_LLR

	

_LLR

�aai

E.g. “after left then right input yield output”

30

Game semantics of logic

The well-known Curry-Howard correspondence:

Propositions as types, proofs as programs

Through the denotation of types as games and programs/processes as strategies
we obtain the correspondence:

Propositions as games, proofs as strategies

Games and strategies are becoming the denotational semantics of proof. But
there are gaps. E.g. there are conceptual problems in giving a process reading to
classical proof. Partly because traditional games and strategies are not general
enough. In the course we shall see an interpretation of classical proofs as
winning distributed strategies.

Other strands: games as a technique in logic, and in the definition of equivalences

31

In the course you will see:

• event structures, their techniques and constructions;

• games with winning conditions and payoff;

• games of imperfect information;

• how to put probability on event structures;

• probabilistic (and possibly quantum) strategies;

• the issue of parallel causes;

• language(s) for distributed strategies;

• applications from: weak memory models; classical proofs as strategies; ...

32

Ch 2. EVENT STRUCTURES

Event structures are the concurrent analogue of trees in which ‘branches’ are
partial orders of event occurrences. Just as a transition system unfolds to a
tree, so a Petri net unfolds to an occurrence net and from this to an event
structure.

33

Representations of domains

What is the information order? What are the ‘units’ of information?

(‘Topological’) [Scott]: Propositions about finite properties;
more information corresponds to more propositions being true.
Functions are ordered pointwise.
Can represent domains via logical theories. (‘Logic of domains’)

(‘Temporal’) [Berry]: Events (atomic actions);
more information corresponds to more events having occurred.
Intensional ‘stable order’ on ‘stable’ functions. (‘Stable domain theory’)
Can represent Berry’s dI domains as event structures.

34

Event structures

An (prime) event structure comprises (E,≤,Con), consisting of

- a set E, of events

- partially ordered by ≤, the causal dependency relation, and

- a nonempty family Con of finite subsets of E, the consistency relation,

which satisfy
{e′ | e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆ X ∈ Con⇒ Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈ X ⇒ X ∪ {e} ∈ Con.

Say e, e′ are concurrent if {e, e′} ∈ Con & e 6≤ e′ & e′ 6≤ e.

35

Configurations of an event structure

The configurations, C∞(E), of an event structure E consist of those subsets
x ⊆ E which are

Consistent: ∀X ⊆fin x. X ∈ Con and

Down-closed: ∀e, e′. e′ ≤ e ∈ x⇒ e′ ∈ x.

For an event e the set [e] =def {e′ ∈ E | e′ ≤ e} is a configuration describing
the whole causal history of the event e.

x ⊆ x′, i.e. x is a sub-configuration of x′, means that x is a sub-history of x′.

If E is countable, (C∞(E),⊆) is a Berry dI domain (and all such so obtained).
Finite configurations: C(E).

36

Example: Streams as event structures

000 001 010 011 110 111

00

cc OOOO

01

OO ;;

... 11

;;OO

0

cc OO

1

;;

conflict (inconsistency) // causal dependency ≤

37

Simple parallel composition

000 001 010 011 110 111

00

cc OOOO

01

OO ;;

... 11

;;OO

0

cc OO

1

;;

aaa aab aba abb bba bbb

aa

cc OOOO

ab

OO <<

... bb

<<OO

a

bb OO

b

<<

38

Maps of event structures
• Semantics of synchronising processes [Hoare, Milner] can be expressed in terms

of universal constructions on event structures, and other models.
• Relations between models via adjunctions.

In this context, a map of event structures f : E → E′

is a partial function on events f : E ⇀ E′ such that for all x ∈ C(E)

fx ∈ C(E′) and

if e1, e2 ∈ x and f(e1) = f(e2), then e1 = e2. (local injectivity)

The map f is rigid if total and preserves ≤.
Maps preserve concurrency, and locally reflect causal dependency i.e.

e1, e2 ∈ x & f(e1) ≤ f(e2)⇒ e1 ≤ e2 .

39

Process constructions on event structures

“Partial synchronous” product: A×B with projections Π1 and Π2,
cf. CCS synchronized composition where all events of A can synchronize with all
events of B. (Hard to construct directly so use e.g. stable families.)

Restriction: E �R, the restriction of an event structure E to a subset of events
R, has events E′ = {e ∈ E | [e] ⊆ R} with causal dependency and consistency
restricted from E.

Synchronized compositions: restrictions of products A × B � R, where R
specifies the allowed synchronized and unsynchronized events.

Pullback: Given f : A → C and g : B → C their pullback is obtained as the
restriction of the product A×B to events

{e | if fΠ1(e) & gΠ2(e) defined, fΠ1(e) = gΠ2(e)} .

40

Product—an example

b (b, ∗) (b, ∗) (b, c)

× =

a

_LLR

c (a, ∗)

_LLR 5 66?

(a, c)

_LLR

(∗, c)

The duplication of events with common images under the projections, as in
the two events carrying (b, ∗) can be troublesome!

41

Recursively-defined event structures

An approximation order � on event structures:

(E′,≤′,Con′) � (E,≤,Con) ⇐⇒ E′ ⊆ E &

∀e′ ∈ E′. [e′]′ = [e′] &

∀X ′ ⊆ E′. X ′ ∈ Con′ ⇐⇒ X ∈ Con .

The order � forms a ‘large cpo,’ with bottom the empty event structure, and
lubs of an ω-chains given by unions.

Constructions on event structures can be ensured to be continuous w.r.t. � ;
it suffices to check that they are �-monotonic and continuous on event sets,
i.e. A�B ⇒ Op(A) �Op(B) and
a ∈ Op(

⋃
i∈ωAi)⇒ a ∈

⋃
i∈ωOp(Ai) on ω-chains.

; recursive definition via least fixed points.

42

Hiding - via a factorization system
A partial map

f : E → E′

of event structures has partial-total factorization as a composition

E
p−→E ↓V t−→E′

where V =def {e ∈ E | f(e) is defined} is the domain of definition of f ;

the projection E↓V =def (V,≤V ,ConV), where

v ≤V v′ iff v ≤ v′ & v, v′ ∈ V and X ∈ ConV iff X ∈ Con & X ⊆ V ;

the partial map p : E → E ↓V acts as identity on V and is undefined otherwise;

and the total map t : E ↓V → E′, called the defined part of f , acts as f .

43

Ch 3. STABLE FAMILIES

A technique for working with event structures. They generalise the
configurations of an event structure to allow the same event to occur is several
incompatible ways. Nevertheless they determine event structures.

44

Stable families

A stable family comprises F , a nonempty family of finite subsets, called
configurations, satisfying:

Completeness: ∀Z ⊆ F . Z ↑ ⇒
⋃
Z ∈ F ;

Stability: ∀Z ⊆ F . Z 6= ∅ & Z ↑ ⇒
⋂
Z ∈ F ;

Coincidence-freeness: For all x ∈ F , e, e′ ∈ x with e 6= e′,

∃y ∈ F . y ⊆ x & (e ∈ y ⇐⇒ e′ /∈ y) .

(Z ↑ means ∃x ∈ F∀z ∈ Z. z ⊆ x, and expresses the compatibility of Z.)
We call elements of

⋃
F events of F .

45

Stable families - alternative characterisation

A stable family comprises F , a family of finite subsets, satisfying:

Completeness: ∅ ∈ F & ∀x, y ∈ F . x ↑ y ⇒ x ∪ y ∈ F ;

Stability: ∀x, y ∈ F . x ↑ y ⇒ x ∩ y ∈ F ;

Coincidence-freeness: For all x ∈ F , e, e′ ∈ x with e 6= e′,

∃y ∈ F . y ⊆ x & (e ∈ y ⇐⇒ e′ /∈ y) .

46

Proposition Let x be a configuration of a stable family F . For e, e′ ∈ x define

e′ ≤x e iff ∀y ∈ F . y ⊆ x & e ∈ y ⇒ e′ ∈ y.

When e ∈ x define the prime configuration

[e]x =
⋂
{y ∈ F | y ⊆ x & e ∈ y} .

Then ≤x is a partial order and [e]x is a configuration such that

[e]x = {e′ ∈ x | e′ ≤x e}.

Moreover the configurations y ⊆ x are exactly the down-closed subsets of ≤x.

47

Proposition Let F be a stable family. Then, Pr(F) =def (P,Con,≤) is an event
structure where:

P = { [e]x | e ∈ x & x ∈ F} ,

Z ∈ Con iff Z ⊆ P &
⋃
Z ∈ F and,

p ≤ p′ iff p, p′ ∈ P & p ⊆ p′ .

48

Categories of stable families and event structures

A (partial) map of stable families f : F → G is a partial function f from the
events of F to the events of G such that for all configurations x ∈ F ,

fx ∈ G & (∀e1, e2 ∈ x. f(e1) = f(e2)⇒ e1 = e2) .

Pr is the right adjoint of the “inclusion” functor, taking an event structure E to
the stable family C(E).

The unit of the adjunction E → Pr(C(E)) takes an event e to the prime
configuration [e] =def {e′ ∈ E | e′ ≤ e} — it is an isomorphism.

The counit top : C(Pr(F))→ F takes [e]x to e;
it induces an order-isomorphism between (C(Pr(F)),⊆) and (F ,⊆)
given by y 7→ top y =

⋃
y . Details on the next slide.

49

top : C(Pr(F))→ F with [e]x 7→ e induces an order iso:
θ(y) = top y =

⋃
y with mutual inverse φ(x) = {[e]x | e ∈ x}.

Clearly, both θ and φ preserve ⊆.

θφ(x) =
⋃
{[e]x | e ∈ x} = x .

φθ(y) = {[e]⋃ y | e ∈
⋃
y}. To show rhs = y use

[e]x ⊆ z ⇐⇒ [e]x = [e]z, whenever e ∈ x and z in F :
From e ∈ [e]x ⊆ z we get [e]z ⊆ [e]x. Hence e ∈ [e]z ⊆ x ensuring the converse
inclusion [e]x ⊆ [e]z, so [e]x = [e]z.

“y ⊆ rhs”: [e]x ∈ y ⇒ [e]x ⊆
⋃
y ⇒ [e]x = [e]⋃ y ∈ rhs.

“rhs ⊆ y: Assume p ∈ rhs. Then p = [e]⋃ y with e ∈
⋃
y. We have e ∈ [e′]x ∈ y

for some e′, x with e′ ∈ x. So [e]x ⊆ [e′]x ∈ y ensuring [e]x ∈ y. As [e]x ⊆
⋃
y

we obtain p = [e]⋃ y = [e]x, so p ∈ y.

50

Product of stable families

Let A and B be stable families with events A and B, respectively. Their product,
the stable family A× B, has events comprising pairs in
A×∗ B =def {(a, ∗) | a ∈ A} ∪ {(a, b) | a ∈ A & b ∈ B} ∪ {(∗, b) | b ∈ B} ,
the product of sets with partial functions, with (partial) projections π1 and
π2—treating ∗ as ‘undefined’—with configurations

x ∈ A× B iff

x is a finite subset of A×∗ B s.t. π1x ∈ A & π2x ∈ B,
∀e, e′ ∈ x. π1(e) = π1(e′) or π2(e) = π2(e′)⇒ e = e′ ,&

∀e, e′ ∈ x. e 6= e′ ⇒ ∃y ⊆ x. π1y ∈ A & π2y ∈ B &

(e ∈ y ⇐⇒ e′ /∈ y) .

51

Product of event structures

Right adjoints preserve products. Consequently we obtain a product of event
structures A and B as

A×B =def Pr(C(A)× C(B))

and its projections as Π1 =def π1top and Π2 =def π2top.

Hence Π1x = π1

⋃
x and Π2x = π2

⋃
x, for x ∈ C(A×B).

52

Pullbacks of stable families with total maps

Let f : A → C and g : B → C be total maps of stable families. Assume A and B
have underlying sets A and B. Define D =def {(a, b) ∈ A×B | f(a) = g(b)}
with projections π1 and π2 to the left and right components. Define a family of
configurations of the pullback to consist of

x ∈ D iff

x is a finite subset of D such that π1x ∈ A & π2x ∈ B,
∀e, e′ ∈ x. e 6= e′ ⇒ ∃y ⊆ x. π1y ∈ A & π2y ∈ B &

(e ∈ y ⇐⇒ e′ /∈ y) .

(Local injectivity of π1, π2 follows automatically.)

53

Pullbacks of stable families with total maps - a
characterisation

Proposition Finite configurations of D correspond to the composite bijections

θ : x ∼= fx = gy ∼= y

between configurations x ∈ A and y ∈ B s.t. fx = gy for which the transitive
relation generated on θ by

(a, b) ≤θ (a′, b′) if a ≤x a′ or b ≤y b′

is a partial order.

Consequently finite configurations of the pullback of event structures
correspond to “secure bijections” as above.

54

Other adjunctions between models for concurrency

Many models for concurrency naturally form categories, related by adjunctions:

• The ‘inclusion’ of Event Structures in Stable Families has a right adjoint, Pr ;

•The inclusion of (the category of) Trees in Event Structures has a right adjoint,
serialising an event structure to a tree;

•The ‘inclusion’ functor from Trees to Transition Systems has a right adjoint,
that of unfolding a transition sytem to a tree;

•The inclusion of Occurrence Nets in (1-Safe) Petri Nets has a right adjoint,
unfolding a net to its occurrence net;

•The forgetful functor from Occurrence Nets to Event Structures has a left
adjoint.

......

55

Ch 4. DISTRIBUTED GAMES

In which games and strategies are represented by event structures.

56

Structural maps of event structures - recap

A map of event structures f : E → E′ is a partial function f : E ⇀ E′ such that
for all x ∈ C(E)

fx ∈ C(E′) and e1, e2 ∈ x & f(e1) = f(e2)⇒ e1 = e2 .

Note that when f is total it restricts to a bijection x ∼= fx, for any x ∈ C(E).
A total map is rigid when it preserves causal dependency.

Maps preserve concurrency, and locally reflect causal dependency:

e1, e2 ∈ x & f(e1) ≤ f(e2) (both defined) ⇒ e1 ≤ e2 .

57

Pullbacks of total maps of event structures (For composition)
Total maps f : A → C and g : B → C have pullbacks in the category of event
structures:

P
π1

}}

π2

!!

A

f
!!

B

g}}

C .

Finite configurations of P correspond to the composite bijections

θ : x ∼= fx = gy ∼= y

between configurations x ∈ C(A) and y ∈ C(B) s.t. fx = gy for which the
transitive relation generated on θ by (a, b) ≤ (a′, b′) if a ≤A a′ or b ≤B b′
is a partial order.

58

Defined part of a map (For hiding)

A partial map
f : E → E′

of event structures has partial-total factorization as a composition

E
p−→E ↓V t−→E′

where V =def {e ∈ E | f(e) is defined} is the domain of definition of f ;

the projection E↓V =def (V,≤V ,ConV), where

v ≤V v′ iff v ≤ v′ & v, v′ ∈ V and X ∈ ConV iff X ∈ Con & X ⊆ V ;

the partial map p : E → E ↓V acts as identity on V and is undefined otherwise;

and the total map t : E ↓V → E′, called the defined part of f , acts as f .

59

Distributed games

Games and strategies are represented by event structures with polarity, an event
structure (E,≤,Con) where events E carry a polarity +/− (Player/Opponent),
respected by maps.

(Simple) Parallel composition: A‖B , by juxtaposition.

Dual, B⊥, of an event structure with polarity B is a copy of the event structure
B with a reversal of polarities; this switches the roles of Player and Opponent.

60

Distributed plays and strategies

A nondeterministic play, or pre-strategy, in a game A is a total map

S

σ
��

A
preserving polarity; S is the event structure with polarity describing the moves
played.

A strategy in a game A is a (special) nondeterministic play σ : S → A .

A strategy from A to B is a strategy in A⊥ ‖ B, so σ : S → A⊥ ‖ B .
[Conway, Joyal]

NB: A strategy in a game A is a strategy for Player;
a strategy for Opponent - a counter-strategy - is a strategy in A⊥.

61

When are two nd plays/strategies the same?

A map between nd plays:

S

σ ��

f
// S′.

σ′
��

A

which commutes.

When f is an isomorphism we regard the two nd plays/strategies as essentially
the same.

62

Example of a strategy: copy-cat strategy from A to A

CCA

A⊥ A

a2 	 � ,,2 ⊕ a2

a1 ⊕

_LLR

	

_LLR

�llr a1

63

Copy-cat in general

Identities on games A are given by copy-cat strategies γA : CCA → A⊥ ‖ A
—strategies for player based on copying the latest moves made by opponent.

CCA has the same events and polarity as A⊥ ‖ A but with causal dependency
≤CCA given as the transitive closure of the relation

≤A⊥‖A ∪ {(c, c) | c ∈ A⊥ ‖ A & polA⊥‖A(c) = +}

where c↔ c is the natural correspondence between A⊥ and A. A finite subset is
consistent iff its down-closure is consistent in A⊥‖A. The map γA is the identity
on the common underlying set of events. Then,

x ∈ C(CCA) iff x ∈ C(A⊥ ‖ A) & ∀c ∈ x. polA⊥‖A(c) = + ⇒ c ∈ x .

64

Composition of strategies σ : S → A⊥‖B, τ : T → B⊥‖C
Via pullback. Ignoring polarities, the composite partial map

T ∗ S
Π1

yy

Π2

%%

S‖C

σ‖C %%

A‖T

A‖τyy

A‖B‖C

��

A‖C

has defined part, yielding T�S
τ�σ

// A⊥‖C once reinstate polarities.

65

For copy-cat to be identity w.r.t. composition
Receptivity σ : S → A⊥ ‖ B is receptive when σ(x) ⊆− y implies there is a

unique x′ ∈ C(S) such that x ⊆ x′ & σ(x′) = y . x ⊆
_

��

x′
_

��

σ(x) ⊆− y

Innocence σ : S → A⊥ ‖ B is innocent when it is

+-Innocent: If s _ s′ & pol(s) = + then σ(s) _ σ(s′) and

−-Innocent: If s _ s′ & pol(s ′) = − then σ(s) _ σ(s′).

[_ stands for immediate causal dependency]

Theorem Receptivity and innocence are necessary and sufficient for copy-cat to
act as identity w.r.t. composition: σ�γA ∼= σ and γB�σ ∼= σ for all σ : A + // B.

66

Strategies—alternative description 1

A strategy S in a game A comprises a total map of event structures with
polarityσ : S → A such that
(i) whenever σx ⊆− y in C(A) there is a unique x′ ∈ C(S) so that

x ⊆ x′ & σx′ = y , i.e. x
_

σ
��

⊆ x′
_

σ
��

σx ⊆− y ,

and
(ii) whenever y ⊆+ σx in C(A) there is a (necessarily unique) x′ ∈ C(S) so that

x′ ⊆ x & σx′ = y , i.e. x′
_

σ
��

⊆ x
_

σ
��

y ⊆+ σx .

67

Strategies—alternative description 2

Defining a partial order — the Scott order — on configurations of A

y vA x iff y ⊇− · ⊆+ · ⊇− · · · ⊇− · ⊆+ x

we obtain a factorization system ((C(A),vA),⊇−,⊆+), i.e.

x

∃!z. y

v

⊇− z .

⊆
+

Proposition z ∈ C(CCA) iff z2 vA z1.

Theorem Strategies σ : S → A correspond to discrete fibrations

σ“ : (C(S),vS)→ (C(A),vA) , i .e. ∃!x′. x′
_

σ“
��

vS x
_

σ“
��

y vA σ“(x) ,which preserve ⊇−, ⊆+ and ∅.

; A lax functor from strategies to profunctors ...

68

Strategies—informal alternative description 3

Given a strategy σ : S → A it can be shown (Lemma 8.23) that

{x+ ∪ σx− | x ∈ C(S)}

is a stable family order-isomorphic to (C(S),⊆) under x 7→ x+ ∪ σx−.

This implies a strategy σ : S → A is got from the game A by adding

• conflicting copies of +-events with

• “causal wiring” required of the game and respecting receptivity and innocence.

69

A bicategory of games
Objects are event structures with polarity—the games, A, B, ... ;
Arrows σ : A + // B are strategies σ : S → A⊥‖B;

2-Cells A
+

σ′

77

+
σ

''

⇓ f B are maps f : S → S′ such that S

σ

=

""

f
// S′.

σ′��

A⊥‖B
The vertical composition of 2-cells is the usual composition of maps. Horizontal
composition is given by � (which extends to a functor via the universality of pb
and partial-total factorisation).
Duality: σ : A + // B corresponds to σ⊥ : B⊥ + // A⊥, as A⊥‖B ∼= (B⊥)⊥‖A⊥.
The bicategory of strategies is compact-closed (so has a trace, a feedback
operation extending that of nondeterministic dataflow)—though with extra
features of winning conditions or pay-off, this will weaken to ∗-autonomy.

70

Ch 5. DETERMINISTIC STRATEGIES

71

Deterministic strategies

Say an event structures with polarityS is deterministic iff

∀X ⊆fin S. Neg [X] ∈ ConS ⇒ X ∈ ConS ,

where Neg [X] =def {s′ ∈ S | ∃s ∈ X. polS(s ′) = − & s ′ ≤ s}.
Say a strategy σ : S → A is deterministic if S is deterministic.

Proposition An event structure with polarityS is deterministic iff

x
s
−−⊂ & x

s′

−−⊂ & polS(s) = + implies x ∪ {s, s′} ∈ C(S), for all x ∈ C(S).

Notation x
e
−−⊂y iff x ∪ {e} = y & e /∈ x , for configurations x, y, event e.

x
e
−−⊂ iff ∃y. x

e
−−⊂y.

72

Nondeterministic copy-cats

Take A to consist of two events, one +ve and one −ve event, inconsistent with
each other ⊕ 	 . The construction CCA:

A⊥ 	 � ,,2 ⊕ A

⊕ 	�llr

To see CCA is not deterministic, take x to be the singleton set consisting e.g. of
the −ve event on the left and s, s′ to be the +ve and −ve events on the right.

73

Lemma Let A be an event structure with polarity. The copy-cat strategy γA is
deterministic iff A satisfies

∀x ∈ C(A). x
a
−−⊂ & x

a′

−−⊂ & polA(a) = + & polA(a ′) = −
⇒ x ∪ {a, a′} ∈ C(A) . (Race-free)

Lemma The composition τ�σ of two deterministic strategies σ and τ is
deterministic.

Lemma A deterministic strategy σ : S → A is injective on configurations
(so, σ : S � A).

; sub-bicategory of race-free games and deterministic strategies, equivalent to
an order-enriched category.

74

Theorem A subfamily F ⊆ C(A) has the form σC(S) for a deterministic strategy
σ : S → A, iff

reachability: ∅ ∈ F and if x ∈ F , ∅
a1
−−⊂x1

a2
−−⊂ · · ·

ak
−−⊂xk = x within F ;

determinacy: If x
a
−−⊂ and x

a′

−−⊂ in F with polA(a) = +, then x∪ {a, a′} ∈ F ;

receptivity: If x ∈ F and x
a
−−⊂ in C(A) and polA(a) = −, then x ∪ {a} ∈ F ;

+-innocence: If x
a
−−⊂x1

a′

−−⊂ & polA(a) = + in F & x
a′

−−⊂ in C(A), then

x
a′

−−⊂ in F (receptivity implies −-innocence);

1-stable: If x1

a
−−⊂x and x2

b
−−⊂x in F , then x1 ∩ x2 ∈ F .

75

Example: a tree-like game

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

	

`` OOOO

	

OO >>

	 	

>>OO

⊕

`` OO

⊕

OO >>

	

`` >>

conflict (inconsistency) // immediate causal dependency

⊕ Player move 	 Opponent move

76

Ch 6. Games people play

77

Stable spans, profunctors and stable functions The sub-bicategory of Games
where the events of games are purely +ve is equivalent to the bicategory of stable
spans: a strategy σ : S → A⊥‖B corresponds to

S+
σ−1

~~

σ+
2

!!

A B ,

where S+ is the projection of S to its +ve events; σ+
2 is the restriction of σ2 to

S+ is rigid; σ−2 is a demand map taking x ∈ C(S+) to σ−1 (x) = σ1[x].

Composition of stable spans coincides with composition of their associated
profunctors. The feedback operation of nondeterministic dataflow is obtained as
a special case of the trace on concurrent games.

When deterministic (and event structures are countable) we obtain a sub-
bicategory equivalent to Berry’s dI-domains and stable functions.

78

Ingenuous strategies Deterministic concurrent strategies coincide with the
receptive ingenuous strategies of and Melliès and Mimram.

Closure operators A deterministic strategy σ : S → A determines a closure
operator ϕ on C∞(S): for x ∈ C∞(S),

ϕ(x) = x ∪ {s ∈ S | pol(s) = + & Neg [{s}] ⊆ x} .

The closure operator ϕ on C∞(S) induces a partial closure operator ϕp on C∞(A)
and in turn a closure operator ϕ>p on C∞(A)> of Abramsky and Melliès.

Simple games “Simple games” of game semantics arise when we restrict Games
to objects and deterministic strategies which are ‘tree-like’—alternating polarities,
with conflicting branches, beginning with opponent moves.

Conway games tree-like, but where only strategies need alternate and begin with
opponent moves.

79

Ch 8. WINNING WAYS

80

Winning conditions

A game with winning conditions comprises

G = (A,W)

where A is an event structure with polarity and W ⊆ C∞(A) consists of the
winning configurations for Player.

Define the losing conditions to be L =def C∞(A) \W .

81

Winning strategies

Let G = (A,W) be a game with winning conditions.

A strategy in G is a strategy in A.

A strategy σ : S → A in G is winning (for Player) if σx ∈W , i.e. σx /∈ L, for all
+-maximal configurations x ∈ C∞(S).

[A configuration x is +-maximal if whenever x
s
−−⊂ then the event s has −ve

polarity.]

A winning strategy prescribes moves for Player to avoid ending in a losing
configuration, no matter what the activity or inactivity of Opponent.

82

Characterization via counter-strategies

Informally, a strategy is winning for Player if any play against a counter-
strategy of Opponent results in a win for Player.

A counter-strategy, i.e. a strategy of Opponent, in a game A is a strategy in the
dual game, so τ : T → A⊥.

What are the results 〈σ, τ〉 of playing strategy σ against counter-strategy τ?

Note σ : ∅ + // A and τ : A + // ∅ ...

83

Composition of strategies without hiding

Let σ : S → A⊥‖B and τ : T → B⊥‖C be strategies. Their composition before
hiding:

T ∗ S
Π1

yy

Π2

%%

S‖C

σ‖C %%

A‖T

A‖τyy

A‖B‖C

84

Special case

Let σ be a strategy in B and τ a counterstrategy, a strategy in B⊥. Their
composition before hiding:

T ∗ S
Π1

{{

Π2

##

S

σ ##

T

τ{{

B

Define results, 〈σ, τ〉 =def {σΠ1z | z is maximal in C∞(T ∗ S)} .

85

Characterization of winning strategies

Lemma Let σ : S → A be a strategy in a game (A,W). The strategy σ is
winning for Player iff 〈σ, τ〉 ⊆W for all (deterministic) strategies τ : T → A⊥.

Its proof uses a key lemma:

Lemma Let σ : S → A⊥‖B and τ : B⊥‖C be strategies. Then,

z ∈ C∞(T ∗ S) is +-maximal iff

Π1z ∈ C∞(S) is +-maximal & Π2z ∈ C∞(T) is +-maximal.

[Also holds for receptive pre-strategies.]

86

Ex.1. 	 ⊕ has a winning strategy only if {	} ∈W .

Ex.2. 	 ⊕

⊕

�ZZe _LLR
the empty strategy is winning if ∅ ∈W .

Ex.3. 	 	 ⊕ , with x ∈W iff pol x ∩ {−} 6= ∅ ⇐⇒ pol x ∩ {+} 6= ∅,
has a winning nondeterministic strategy, but no winning deterministic strategy.

Ex.4. 	 ⊕ � ,,2 ⊕ � ,,2 · · · � ,,2 ⊕ � ,,2 · · · with x ∈W iff (∈ x⇔ x finite)

has no winning strategy or counterstrategy.

87

Operations on games with winning conditions

Dual G⊥ = (A⊥,WG⊥) where, for x ∈ C∞(A),

x ∈WG⊥ iff x /∈WG .

Parallel composition For G = (A,WG), H = (B,WH),

G‖H =def (A‖B, WG‖C∞(B) ∪ C∞(A)‖WH)

where X‖Y = {{1} × x ∪ {2} × y | x ∈ X & y ∈ Y } when X and Y are
subsets of configurations. To win is to win in either game. Unit of ‖ is (∅, ∅).

88

Derived operations

Tensor Defining G ⊗H =def (G⊥‖H⊥)⊥ we obtain a game where to win is to
win in both games G and H—so to lose is to lose in either game. More explicitly,

(A,WA)⊗ (B,WB) =def (A‖B, WA‖WB) .

The unit of ⊗ is (∅, {∅}).

Function space With G (H =def G
⊥‖H a win in G (H is a win in H

conditional on a win in G:

Proposition Let G = (A,WG) and H = (B,WH) be games with winning
conditions. Write WG(H for the winning conditions of G (H. For x ∈
C∞(A⊥‖B),

x ∈WG(H iff x1 ∈WG ⇒ x2 ∈WH .

89

The bicategory of winning strategies

Lemma Let σ be a winning strategy in G⊥‖H and τ be a winning strategy in
H⊥‖K. Their composition τ�σ is a winning strategy in G⊥‖K.

But copy-cat need not be winning: Let A consist of ⊕ 	 . The event

structure CCA:

A⊥ 	 � ,,2 ⊕ A

⊕ 	�llr

With W = {{⊕}}. Taking +-maximal x = {	,	}, x1 ∈W while x2 /∈W .

A robust sufficient condition for copy-cat to be winning: the game is race-free.
The notes give a necessary and sufficient condition.
; bicategory of games with winning strategies.

90

Ch 8, 9,10. SOME APPLICATIONS AND EXTENSIONS

In the notes ...

91

Total strategies: To pick out a subcategory of total strategies (where Player
can always answer Opponent) within simple games.
Determinacy: A necessary and sufficient condition on a well-founded game A for
(A,W) to be determined for all winning conditions: that A is race-free. (A game
A is well-founded if all its configurations are finite). A necessary and sufficient
condition on a game for it to be determined w.r.t. Borel winning conditions is that
it is race-free and bounded concurrent (in no configuration is an event concurrent
with infinitely many events of opposing polarity).
A game semantics for Predicate Calculus: W.r.t. a model, a closed formula of
Predicate Calculus denotes a concurrent game which has a winning strategy iff the
formula is true. Via games with imperfect information, semantics of Hintikka’s
IF logic.
Strategies as concurrent processes (not in notes): their ‘may-and-must’
behaviour via “stopping configurations” (to refine +-maximal configurations)
gives an accurate analysis of ‘must win’ and ‘may win.’

92

Predicate Calculus

The syntax for predicate calculus: formulae are given by

φ, ψ, · · · ::= R(x1, · · · , xk) | φ ∧ ψ | φ ∨ ψ | ¬φ | ∃x. φ | ∀x. φ

where R ranges over basic relation symbols of a fixed arity and x, x1, x2, · · · , xk
over variables.

A model M for the predicate calculus comprises a non-empty universe of values VM
and an interpretation for each of the relation symbols as a relation of appropriate
arity on VM . Write

ρ |=M φ

iff formula φ is true in M w.r.t. environment ρ; we take an environment to be a
function from variables to values.

93

As concurrent games
The denotation as a game is defined by structural induction:

JR(x1, · · · , xk)KMρ =

{
(∅, {∅}) if ρ |=M R(x1, · · · , xk) ,
(∅, ∅) otherwise.

Jφ ∧ ψKMρ = JφKMρ⊗ JψKMρ

Jφ ∨ ψKMρ = JφKMρ‖JψKMρ

J¬φKMρ = (JφKMρ)⊥

J∃x. φKMρ =
⊕
v∈VM

JφKMρ[v/x]

J∀x. φKMρ =
⊙
−−

v∈VM
JφKMρ[v/x] .

94

Prefixed sums

The prefixed game ⊕.(A,W) comprises the event structure with polarity ⊕.A in
which all the events of A are made to causally depend on a fresh +ve event ⊕.
Its winning conditions are those configurations x ∈ C∞(⊕.A) of the form {⊕}∪ y
for some y ∈W .

The game
⊕

v∈V (Av,Wv) has underlying event structure with polarity the sum
(=coproduct)

∑
v∈V ⊕.Av with a configuration winning iff it is the image of a

winning configuration in a component under the injection to the sum. The game⊙
−v∈VGv is defined dually.

Theorem For all predicate-calculus formulae φ and environments ρ, ρ |=M φ iff
the game JφKMρ has a winning strategy.

95

Games with imperfect information

The game “rock, scissors, paper”:

r1⊕ 	 r2

s1⊕ ⊕ p1 s2	 	 p2

The losing configurations (for Player):

{s1, r2}, {p1, s2}, {r1, p2}

96

A cheating strategy

r1⊕

s1⊕ ⊕ p1 	 s2

�hho

p2	

�ggn

	 r2

�hho

97

Games with imperfect information

A fixed preorder of access levels (Λ,�).

An Λ-game (G, l) comprises a game G = (A,W,L) with winning/losing conditions
together with a level function l : A→ Λ such that

a ≤A a′ ⇒ l(a) � l(a′)

for all a, a′ ∈ A. A Λ-strategy in the Λ-game (G, l) is a strategy σ : S → A for
which

s ≤S s′ ⇒ lσ(s) � lσ(s′)

for all s, s′ ∈ S.

98

The bicategory of Λ-games

For a Λ-game (G, lG), define its dual (G, lG)⊥ to be (G⊥, lG⊥) where lG⊥(a) =
lG(a), for a an event of G.

For Λ-games (G, lG) and (H, lH), define their parallel composition (G, lG)‖(H, lH)
to be (G‖H, lG‖H) where lG‖H((1, a)) = lG(a), for a an event of G, and
lG‖H((2, b)) = lH(b), for b an event of H.

A strategy between Λ-games from (G, lG) to (H, lH) is a strategy in
(G, lG)⊥‖(H, lH).

Proposition (i) Let (G, lG) be a Λ-game where G satisfies (Cwins). The
copy-cat strategy on G is a Λ-strategy. (ii) The composition of Λ-strategies is a
Λ-strategy.

Application: Hintikka’s IF Logic

99

PROBABILISTIC EVENT STRUCTURES & STRATEGIES

100

Ch 11. From strategies to probabilistic strategies

S

σ
��

A

Aim

(1) To endow S with probability, while

(2) taking account of the fact that in a strategy Player can’t be aware of the
probabilities assigned by Opponent. (E.g. in ‘Matching pennies’)

Causal independence between Player and Opponent moves will entail their
probabilistic independence. Equivalently, probabilistic dependence of Player
on Opponent moves will presuppose their causal dependence.

101

Probabilistic event structures

A probabilistic event structure comprises an event structure E = (E,≤,Con)
together with a (normalized) continuous valuation, i.e. a function w from the
Scott open subsets of configurations C∞(E) to [0, 1] which is

(normalized) w(C∞(E)) = 1 (strict) w(∅) = 0

(monotone) U ⊆ V ⇒ w(U) ≤ w(V)

(modular) w(U ∪ V) + w(U ∩ V) = w(U) + w(V)

(continuous) w(
⋃
i∈I Ui) = supi∈Iw(Ui) for directed unions

⋃
i∈I Ui.

Intuition: w(U) is the probability of the result being in U .
A cts valuation extends to a probability measure on Borel sets of configurations.

102

A workable characterization: A probabilistic event structure comprises an
event str. E with a configuration-valuation v : C(E)→ [0, 1] which satisfies

(normalized) v(∅) = 1 and

(non−ve drop) d
(n)
v [y;x1, · · · , xn] ≥ 0, for all n ∈ ω, and y ⊆ x1, · · · , xn in

C(E).

For y ⊆ x1, · · · , xn in C(E),

d(n)
v [y;x1, · · · , xn] =def v(y)−

∑
I

(−1)|I|+1v(
⋃
i∈I

xi)

—the index I ranges over ∅ 6= I ⊆ {1, · · · , n} s.t. {xi | i ∈ I} is compatible.
(Sufficient to check the ‘drop condition’ for y−−⊂x1, · · · , xn)

Theorem. Continuous valuations restrict to configuration-valuations.
A configuration-valuation extends to a unique continuous valuation on open sets,
and that to a unique probabilistic measure on Borel subsets of configurations.
(The result holds in greater generality, for Scott domains)

103

Example Two concurrent events a and b, with configuration-valn and probability:

1/4

1/4

{a, b}

1/4 1/2 {a}

-

{b}

Q1

1/4 0

∅

- Q1

1

1/2

104

Probabilistic event structure with polarities

Let E be an event structure in which (not necessarily all) events carry +/−.
Write x ⊆p y if x ⊆ y and no event in y \ x has polarity −.

Now, a configuration-valuation is a function v : C(E)→ [0, 1] for which

v(∅) = 1, x ⊆− y ⇒ v(x) = v(y) , for all x, y ∈ C(E),

and the “drop condition”

d(n)
v [y;x1, · · · , xn] ≥ 0

for all n ∈ ω and y ⊆p x1, · · · , xn in C(E).
(Sufficient to check the ‘drop condition’ for y−−⊂px1, · · · , xn)

A probabilistic event structure with polarity comprises E an event structure
with polarity together with a configuration-valuation vE : C(E)→ [0, 1].

105

Probabilistic strategies
Assume games are race-free, i.e. there is no immediate conflict between events
of opposite polarity.

A probabilistic strategy in A comprises S, vS, a probabilistic event structure
with polarity, and a strategy σ : S → A.

A race-free game A has a probabilistic copy-cat by taking vCCA constantly 1
—this is a configuration-valuation as CCA is deterministic for race-free A.

For the composition τ�σ endow the pb T ∗ S with configuration-valuation
v(x) = vS(ΠS

1x) × vT (ΠT
2 x). This forms a configuration-valuation because

assuming ΠS
1 y−⊂+ΠS

1xi for 1 ≤ i ≤ m and ΠT
2 y−⊂+ΠT

2 xi for m+ 1 ≤ i ≤ n,

d(n)
v [y;x1, · · · , xn] = d(m)

v [ΠS
1 y; ΠS

1x1, · · · ,ΠS
1xm]×d(n−m)

v [ΠT
2 y; ΠT

2 xm+1, · · · ,ΠT
2 xn] .

; a bicategory of probabilistic strategies on race-free games—2-cells?

106

A special case of composition without hiding: play-off
Given a probabilistic strategy vS, σ : S → A and counter-strategy vT , τ : T → A⊥

we obtain
T ∗ S

Π1

{{

Π2

##

S

σ ##

T

τ{{

A

with valuation vSΠ1 × vTΠ2 on the pullback T ∗ S — a probabilistic event
structure, making A a probabilistic event str. too, with probabilty measure µ.

Adding pay-off as a random variable X from C∞(A) get expected pay-off as
the Lebesgue integral ∫

X(x) dµ(x) .

107

Maps between probabilistic strategies (2-cells?)

The push-forward of a configuration-valuation across a map:

Given a map of strategies S

σ ��

f
// S′

σ′
��

A

and a configuration-valuation v of S,

cannot in general push it forwards to a configuration-valuation fv of S′.

However, if f is rigid, defining

(fv)(y) =def

∑
{v(x) | fx = y} ,

for y ∈ C(S′), yields a configuration-valuation fv of S′ —the push-forward of v.

108

The rigid image of a probabilistic strategy

A strategy σ : S → A has a rigid image comprising S

σ

f0
// // S0

σ0
��

A

where

f0 is rigid epi and σ0 is a strategy with universal property: S

f0

�� ��

σ ��

f
// // S′

σ′
��

// S0

σ0~~

A

A probabilistic strategy σ : S → A with configuration-valuation v of S has rigid
image the probabilistic strategy σ0 : S0 → A with configuration-valuation the
push-forward f0v.
Remark: Rigid images are not preserved by composition of strategies.

109

A bicategory of games and probabilistic strategies
Objects are race-free games A, B, C, ... ;

Arrows σ : A + // B are probabilistic strategies σ : S → A⊥‖B with configuration
valuation v : C(S)→ [0, 1];

2-Cells A
+

σ′,v′

77

+
σ,v

''

⇓ f B are rigid maps f : S → S′ making S

σ ""

f
// S′

σ′��

A⊥‖B
commute and fv ≤ v′.

2-cells include rigid embeddings preserving the value assigned by configuration
valuations and the approximation order � on event structures. Taking rigid
images (they’re 2-cells) yields a functor to an order-enriched category.

110

Constructions on (probabilistic) strategies

Composition σ�τ : A‖C, if σ : A‖B and τ : B⊥‖C.

Simple parallel composition σ‖τ : A‖B, if σ : A and τ : B.

Pullback f∗σ : A, if σ : B and f : A → B reflects +-consistency (subsumes
prefixing 	.σ and ⊕.σ).

Conjunction σ1 ∧ σ2, if σ1 : A and σ2 : A, conjoined via their pullback.

Relabelling fσ : B, if σ : A and f : A→ B is a strategy.

Probabilistic sum
∑
i∈I piσi : A, if σi : A for all i ∈ I, where I is countable

with sub-probability distribution 〈pi〉i∈I.

Lambda-abstraction λx : A.σ : A⊥‖B.

Recursion on types and processes. [Is a profunctor-based metalanguage]

111

Extensions in the notes

• Payoff and value theorems: endow games with a measurable payoff function
on configurations. Optimal strategies, Nash equilibria and a value theorem.

• Imperfect information: where games also carry a preorder of access levels
to restrict the causal dependencies of strategies. (Optimal strategies and value
theorems?)

• Simple Quantum games: Interpret moves of a game as projection and
unitary operators on a Hilbert space s.t. concurrent moves are associated
with commuting operators. The play-off of a probabilistic strategy against a
probabilistic counterstrategy results in a probabilistic quantum experiment, where,
assuming the game has an initial quantum state, each particular experiment
determines a probability distribution over end positions of the game.

112

Recent advances

• Intensional full-abstraction results.

• Probabilistic strategies with parallel causes.

• A compositional proof of Herbrand’s theorem via an interpretation of
classical proofs as concurrent strategies.

• Truly Quantum strategies.

Thanks to the ERC, Aurore Alcolei, Nathan Bowler, Simon Castellan, Pierre
Clairambault, Julian Gutierrez, Jonathan Hayman, Martin Hyland, Alex Katovsky,
Tamas Kispeter, Marc Lasson, Hugo Paquet, Silvain Rideau, Frank Roumen,
Marc de Visme.

113

