
Models for Concurrency and Games
Glynn Winskel

The notion of deterministic/nondeterministic strategy is potentially as
fundamental as the notion of function/relation.
A broad enough notion of strategy must be planted firmly within a general model
of concurrent/distributed/interactive computation.

The two ingredients of this course

Models for concurrency: Petri nets, event structures, Mazurkiewicz trace
languages, transition systems, ... (we concentrate on event structures)

Games: 2-party nondeterministic concurrent games between Player (team of
players) and Opponent (team of opponents)

ACS Advanced Topics in Concurrency February 2014



This first lecture should give an idea of

• partial-order models, a form of model becoming important in a range of
areas from security, systems, model checking, systems biology, to proof theory

• why I believe such models will become central in semantics of computation and
can combine the two approaches, operational and denotational semantics
through the medium of games

1



Games informally

A game G provides constraints on the moves Opponent and Player can make,
and often specifies winning conditions.

A strategy for Player prescribes moves for Player in answer to moves of Opponent.

Two important operations on games: parallel composition of games G‖H ;
dual of a game G⊥ (reversing the roles of Player and Opponent)

Joyal after Conway: A strategy from a game G to a game H, G + // H, is
a strategy in G⊥‖H; strategies compose with identities given by copy-cat. A
strategy in G corresponds to a strategy from the empty game ∅ to G. So

∅ + // G + // H composes to give ∅ + // H ,

so a strategy in G gives rise to a strategy in H when G + // H.

2



Games in a model for concurrency

Lead to

• Generalised domain theory (via Joyal-Conway)

• Operations, including higher-order operations, on models for concurrency

• Techniques for Logic (via proofs as concurrent strategies) and (possibly)
verification and algorithmics

3



Causal/partial-order models

their range and applications ...

4



A (safe) Petri net

5



Unfolding a (safe) Petri net:

6



7



8



9



10



11



12



13



14



15



16



An event structure

17



Applications of partial-order models

Security protocols, as strand spaces [Guttman et al];
Systems biology, analysis of chemical pathways [Danos-Feret-Fontana-Krivine];
Hardware, in the design of asynchronous circuits [Yakovlev];
Types and proof, domain theory [Berry, Curien-Faggian, Girard];
Nondeterministic dataflow [Jonsson];
Network diagnostics [Benveniste et al];
Logic of programs, in concurrent separation logic;
Partial order model checking [McMillan];
Distributed computation, classically [Lamport] and recently in analysis of
trust [Nielsen-Krukow-Sassone].

18



Domain theory and denotational semantics

Its history and limitations ...

19



What is a computational process?
Pre 1930’s: An algorithm (informal)

Post 1930’s: An effective partial function f : N→ N (mathematical)

Mid 1960’s : Christopher Strachey founded denotational semantics to
understand stored programs, loops, recursive programs on advanced datatypes,
often with infinite objects (at least conceptually): infinite lists, infinite sets,
functions, functions on functions on functions, ...
A program denotes a term within the λ-calculus, a calculus of functions
(but is it?): t ::= x | λx.t | (t t′)

Late 1960’s: Dana Scott: Computable functions acting on infinite objects can
only do so via approximations (topology!). A computational process is an
(effective) continuous function f : D → E between special topological
spaces, ‘domains.’ Recursive definitions as least fixed points.

20



Basic domain theory

A domain is a complete partial order (D,v): any infinite chain

d0 v d1 v · · · v dn v · · ·

has a least upper bound
⊔
n∈ω dn.

A function f : D → E is continuous if f preserves v and for all chains
f(
⊔
n∈ω dn) =

⊔
n∈ω f(dn).

If D has a least element ⊥ and f : D → D is continuous, then f has a least fixed
point

⊔
n∈ω f

n(⊥). (Recursive definitions)

Scott (1969): A nontrivial solution to D ∼= [D → D] (a recursively defined
domain), so providing a model of the λ-calculus, and, by the same techniques,
the semantics of recursive types.

21



Deterministic dataflow—Kahn networks

%
$

-�
�

-

-z
g

y
f

x

A process built from basic processes connected by channels at which they input
and output.

Simple semantics: Associate channels with streams x, y, z.
Provided f and g are continuous functions on streams there is a least fixed point

(x, y, z) = (g(z)2, g(z)1, f(x)) .

22



Nondeterministic dataflow—the Brock-Ackerman anomaly

%
$

-�
�

-

-

ForkAiC[Ai] =

Both nondeterministic processes

A1 = O +OIO and A2 = O + IOO

have the same I/O relation, comprising

(ε,O), (I,O), (I,OO) .

But
C[A1] = O +OO and C[A2] = O .

23



A solution: generalize relations
A process with input A and output B:

E
dem

��

out

  

A B

where A, B and E are event structures,

out : E → B is a map expressing the different ways output is produced,

dem : E → A is a map expressing the requirement on input for events to occur.

Such ‘stable spans’ first appeared in semantics of higher-order processes, where
in special cases the ‘ways’ of computing input from output corresponded to
derivations in an operational semantics. They will reappear as a special kinds of
strategies.

24



Game semantics

Traditional game semantics of programming languages, starting with the seminal
work of Abramsky-Jagadeesan-Malacaria and Hyland-Ong, showed for sequential
programs it was very fruitful to regard types as games and programs as strategies.
AJM games and HO games are different though both sequential with Player and
Opponent moves alternating.

In particular they both achieved intensional full-abstraction for the language PCF
(the “intensional” is important and often forgotten).

Many subsequent successes ...

25



Game semantics—a simple example

Type with a single value, the game: ⊕

	

_LLR

Type with a pair of values, the game: ⊕ ⊕

	

_LLR

	

_LLR

Type of ‘algorithms’ from pairs to value, the game: 	 	 ⊕

⊕

_LLR

⊕

_LLR

	

_LLR

26



Game semantics—a simple example

Type with a single value, the game: ⊕

	

_LLR

Type with a pair of values, the game: ⊕ ⊕

	

_LLR

	

_LLR

Type of ‘algorithms’ from pairs to value, the game: 	

� ��%

	 � ,,2 ⊕

⊕

_LLR

⊕

_LLR

	

_LLR

�aai

E.g. “after left then right input yield output”

27



Logic

The well-known Curry-Howard correspondence:

Propositions as types, proofs as programs

Through the denotation of types as games and programs/processes as strategies
we obtain the correspondence:

Propositions as games, proofs as strategies

Games and strategies are becoming the denotational semantics of proof. But
there are big gaps. Partly because games and strategies as known are not general
enough. And there are still conceptual problems in giving a process reading to
classical proof.

Other strands: games as a technique in logic, and in the definition of equivalences

28



Ch 2. EVENT STRUCTURES

29



Representations of domains

What is the information order? What are the ‘units’ of information?

(‘Topological’) [Scott]: Propositions about finite properties;
more information corresponds to more propositions being true.
Functions are ordered pointwise.
Can represent domains via logical theories. (‘Logic of domains’)

(‘Temporal’) [Berry]: Events (atomic actions);
more information corresponds to more events having occurred.
Intensional ‘stable order’ on ‘stable’ functions. (‘Stable domain theory’)
Can represent Berry’s domains as event structures.

30



Event structures

An event structure comprises (E,≤,Con), consisting of

- a set E, of events

- partially ordered by ≤, the causal dependency relation, and

- a nonempty family Con of finite subsets of E, the consistency relation,

which satisfy
{e′ | e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆ X ∈ Con⇒ Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈ X ⇒ X ∪ {e} ∈ Con.

Say e, e′ are concurrent if {e, e′} ∈ Con & e 6≤ e′ & e′ 6≤ e.

31



Configurations of an event structure

The configurations, C∞(E), of an event structure E consist of those subsets
x ⊆ E which are

Consistent: ∀X ⊆fin x. X ∈ Con and

Down-closed: ∀e, e′. e′ ≤ e ∈ x⇒ e′ ∈ x.

For an event e the set [e] =def {e′ ∈ E | e′ ≤ e} is a configuration describing
the whole causal history of the event e.

x ⊆ x′, i.e. x is a sub-configuration of x′, means that x is a sub-history of x′.

If E is countable, (C∞(E),⊆) is a Berry domain (and all such so obtained).
Finite configurations: C(E).

32



Example: Streams as event structures

000 001 010 011 110 111

00

cc OOOO

01

OO ;;

... 11

;;OO

0

cc OO

1

;;

conflict (inconsistency) // causal dependency ≤

33



Simple parallel composition

000 001 010 011 110 111

00

cc OOOO

01

OO ;;

... 11

;;OO

0

cc OO

1

;;

aaa aab aba abb bba bbb

aa

cc OOOO

ab

OO <<

... bb

<<OO

a

bb OO

b

<<

34



Maps of event structures

• Semantics of synchronising processes [Hoare, Milner] can be expressed in terms
of universal constructions on event structures, and other models.

• Relations between models via adjunctions.

In this context, a simulation map of event structures f : E → E′

is a partial function on events f : E ⇀ E′ such that for all x ∈ C(E)

fx ∈ C(E′) and

if e1, e2 ∈ x and f(e1) = f(e2), then e1 = e2. (‘event linearity’)

Idea: the occurrence of an event e in E induces the coincident occurrence of the
event f(e) in E′ whenever it is defined.

35



Process constructions on event structures
“Partial synchronous” product: A×B with projections Π1 and Π2,
cf. CCS synchronized composition where all events of A can synchronize with all
events of B. (Hard to construct directly so use e.g. stable families.)

Restriction: E �R, the restriction of an event structure E to a subset of events
R, has events E′ = {e ∈ E | [e] ⊆ R} with causal dependency and consistency
restricted from E.

Synchronized compositions: restrictions of products A × B � R, where R
specifies the allowed synchronized and unsynchronized events.

Projection: Let E be an event structure. Let V be a subset of ‘visible’ events.
The projection of E on V , E↓V , has events V with causal dependency and
consistency restricted from E.

[Event structures as types and processes? Spans ]

36



Product—an example

b (b, ∗) (b, ∗) (b, c)

× =

a

_LLR

c (a, ∗)

_LLR 5 66?

(a, c)

_LLR

(∗, c)

37



Ch 3. STABLE FAMILIES

38



Stable families—the secret weapon

A stable family comprises F , a nonempty family of finite subsets, called
configurations, satisfying:

Completeness: ∀Z ⊆ F . Z ↑ ⇒
⋃
Z ∈ F ;

Stability: ∀Z ⊆ F . Z 6= ∅ & Z ↑ ⇒
⋂
Z ∈ F ;

Coincidence-freeness: For all x ∈ F , e, e′ ∈ x with e 6= e′,

∃y ∈ F . y ⊆ x & (e ∈ y ⇐⇒ e′ /∈ y) .

(Z ↑ means ∃x ∈ F∀z ∈ Z. z ⊆ x, and expresses the compatibility of Z.)
We call elements of

⋃
F events of F .

39



Proposition Let x be a configuration of a stable family F . For e, e′ ∈ x define

e′ ≤x e iff ∀y ∈ F . y ⊆ x & e ∈ y ⇒ e′ ∈ y.

When e ∈ x define the prime configuration

[e]x =
⋂
{y ∈ F | y ⊆ x & e ∈ y} .

Then ≤x is a partial order and [e]x is a configuration such that

[e]x = {e′ ∈ x | e′ ≤x e}.

Moreover the configurations y ⊆ x are exactly the down-closed subsets of ≤x.

40



Proposition Let F be a stable family. Then, Pr(F) =def (P,Con,≤) is an event
structure where:

P = { [e]x | e ∈ x & x ∈ F} ,

Z ∈ Con iff Z ⊆ P &
⋃
Z ∈ F and,

p ≤ p′ iff p, p′ ∈ P & p ⊆ p′ .

41



Categories of stable families and event structures

A (partial) map of stable families f : F → G is a partial function f from the
events of F to the events of G such that for all configurations x ∈ F ,

fx ∈ G & (∀e1, e2 ∈ x. f(e1) = f(e2)⇒ e1 = e2) .

Pr is the right adjoint of the “inclusion” functor, taking an event structure E
to the stable family C(E). The unit of the adjunction E → Pr(C(E)) takes
and event e to the prime configuration [e] =def {e′ ∈ E | e′ ≤ e}. The counit
max : C(Pr(F))→ F takes prime configuration [e]x to e.

42



Product of stable families

Let A and B be stable families with events A and B, respectively. Their product,
the stable family A× B, has events comprising pairs in
A×∗ B =def {(a, ∗) | a ∈ A} ∪ {(a, b) | a ∈ A & b ∈ B} ∪ {(∗, b) | b ∈ B} ,
the product of sets with partial functions, with (partial) projections π1 and
π2—treating ∗ as ‘undefined’—with configurations

x ∈ A× B iff

x is a finite subset of A×∗ B s.t. π1x ∈ A & π2x ∈ B,
∀e, e′ ∈ x. π1(e) = π1(e′) or π2(e) = π2(e′)⇒ e = e′ ,&

∀e, e′ ∈ x. e 6= e′ ⇒ ∃y ⊆ x. π1y ∈ A & π2y ∈ B &

(e ∈ y ⇐⇒ e′ /∈ y) .

43



Product of event structures

Right adjoints preserve products. Consequently we obtain a product of event
structures A and B as

A×B =def Pr(C(A)× C(B))

and its projections as Π1 =def π1max and Π2 =def π2max .

Hence Π1x = π1

⋃
x and Π2x = π2

⋃
x, for x ∈ C∞(A×B).

44



Ch 4. CONCURRENT GAMES

45



Concurrent games

Basics

Games and strategies are represented by event structures with polarity.

The two polarities + and − express the dichotomy:
player/opponent; process/environment; ally/enemy.

An event structure with polarity is one in which all events carry a polarity +/−,
respected by maps.

Dual, E⊥, of an event structure with polarity E is a copy of the event structure
E with a reversal of polarities; e ∈ E⊥ is complement of e ∈ E, and vice versa.

A (nondeterministic) concurrent pre-strategy in game A is a total map σ : S → A
of event structures with polarity.

46



Pre-strategies between games

A pre-strategy σ : A + // B is a total map of event structures with polarity

σ : S → A⊥ ‖ B .

It determines a span of event structures with polarity

S
σ1

~~

σ2

��

A⊥ B

where σ1, σ2 are partial maps of event structures with polarity; one and only one
of σ1, σ2 is defined on each event of S.

47



Concurrent copy-cat

Identities on games A are given by copy-cat strategies γA : CCA → A⊥ ‖ A
—strategies for player based on copying the latest moves made by opponent.

CCA has the same events and polarity as A⊥ ‖ A but with causal dependency
≤CCA given as the transitive closure of the relation

≤A⊥‖A ∪ {(c, c) | c ∈ A⊥ ‖ A & polA⊥‖A(c) = +}

where c↔ c is the natural correspondence between A⊥ and A. A finite subset is
consistent iff its down-closure in consistent in A⊥‖A. The map γA is the identity
on the common underlying set of events. Then,

x ∈ C(CCA) iff x ∈ C(A⊥ ‖ A) & ∀c ∈ x. polA⊥‖A(c) = + ⇒ c ∈ x .

48



Copy-cat—an example

CCA

A⊥ A

a2 	 � ,,2 ⊕ a2

a1 ⊕

_LLR

	

_LLR

�llr a1

49



Composing pre-strategies

Two pre-strategies σ : A + // B and τ : B + // C as spans:

S
σ1

~~

σ2

��

A⊥ B

T
τ1

}}

τ2

  

B⊥ C .

Their composition

T�S
(τ�σ)1

{{

(τ�σ)2

""

A⊥ C

where T�S =def (S × T � Syn) ↓ Vis where ...

50



S × T
Π1

vv

Π2

))
S

σ1

~~

σ2

��

T
τ1

}}

τ2

��

A⊥ B B⊥ C

Their composition: T�S =def (S × T � Syn) ↓ Vis where

Syn = {p ∈ S × T | σ1Π1(p) is defined & Π2(p) is undefined} ∪

{p ∈ S × T | σ2Π1(p) = τ1Π2(p) with both defined} ∪
{p ∈ S × T | τ2Π2(p) is defined & Π1(p) is undefined} ,

Vis = {p ∈ S × T � Syn | σ1Π1(p) is defined} ∪
{p ∈ S × T � Syn | τ2Π2(p) is defined} .

51



Theorem characterizing concurrent strategies
Receptivity σ : S → A⊥ ‖ B is receptive when σ(x)−⊂−y implies there is a

unique x′ ∈ C(S) such that x−⊂x′ & σ(x′) = y . x −⊂
_

��

x′
_

��

σ(x) −⊂− y

Innocence σ : S → A⊥ ‖ B is innocent when it is

+-Innocence: If s _ s′ & pol(s) = + then σ(s) _ σ(s′) and

−-Innocence: If s _ s′ & pol(s ′) = − then σ(s) _ σ(s′).

[_ stands for immediate causal dependency]

Theorem Receptivity and innocence are necessary and sufficient for copy-cat to
act as identity w.r.t. composition: σ�γA ∼= σ and γB�σ ∼= σ for all σ : A + // B.

52



Idea of the proof

Necessity Copy-cats γA are receptive and innocent. If σ ∼= γB�σ�γA then
σ : A + // B inherits receptivity and innocence from that of copy-cat.

Sufficiency A key lemma for constructing θ : σ�γA ∼= σ where σ : A + // B:
For σ total, receptive and −-innocent, p : C(V )→ C(S) monotone,

V

υ

⊆−

  

p
// S

σ

��

C .

implies ∃!θ s.t. V

θ

��

υ

⊆−

  

p

⊆
−

// S

σ

��

C

& σθ = υ.

53



Idea of the proof (cont)

Instantiating p : C(S�CCA)→ C(S) to the function p(x) = Π2[x] ,
where [x] is the down-closure in the synchronized composition before projection:

S�CCA

θ

��

σ�γA

⊆−

$$

p

⊆
−

// S

σ

��

A⊥‖B

54



The bicategory of concurrent games

Definition A strategy is a receptive, innocent pre-strategy.

; A bicategory, Games, whose

objects are event structures with polarity—the games,

arrows are strategies σ : A + // B

2-cells are maps of spans.

The vertical composition of 2-cells is the usual composition of maps of spans.
Horizontal composition is given by the composition of strategies � (which extends
to a functor on 2-cells via the functoriality of synchronized composition).

55



Duality

A (pre-)strategy σ : A + // B corresponds to a dual (pre-)strategy σ⊥ :

B⊥ + // A⊥:

S
σ1

~~

σ2

��

A⊥ B

←→ S
σ2

{{

σ1

  

(B⊥)⊥ A⊥

In fact, the bicategory of concurrent games is compact-closed, in particular
(A‖B)⊥ ∼= A⊥‖B⊥ and it has a trace or feedback operation.

With the addition of the extra features of winning conditions or pay-off,
compact closure will weaken to ∗-autonomy.

56



Strategies—alternative description 1

A strategy S in a game A comprises a total map of event structures with
polarityσ : S → A such that

(i) σx
a
−−⊂ & polA(a) = − ⇒ ∃!s ∈ S . x

s
−−⊂ & σ(s) = a , for all x ∈ C(S),

a ∈ A.

(ii)(+) If x
e
−−⊂x1

e′

−−⊂ & polS(e) = + in C(S) and σx
σ(e′)
−−⊂ in C(A), then x

e′

−−⊂
in C(S).

(ii)(−) If x
e
−−⊂x1

e′

−−⊂ & polS(e ′) = − in C(S) and σx
σ(e′)
−−⊂ in C(A), then x

e′

−−⊂
in C(S).

Notation x
e
−−⊂y iff x ∪ {e} = y & e /∈ x , for configurations x, y, event e.

x
e
−−⊂ iff ∃y. x

e
−−⊂y.

57



Strategies—alternative description 2

A strategy S in a game A comprises a total map of event structures with
polarityσ : S → A such that
(i) whenever σx ⊆− y in C(A) there is a unique x′ ∈ C(S) so that

x ⊆ x′ & σx′ = y , i.e. x
_

σ
��

⊆ x′
_

σ
��

σx ⊆− y ,

and
(ii) whenever y ⊆+ σx in C(A) there is a (necessarily unique) x′ ∈ C(S) so that

x′ ⊆ x & σx′ = y , i.e. x′
_

σ
��

⊆ x
_

σ
��

y ⊆+ σx .

58



Strategies—alternative description 3

Defining a partial order — the Scott order — on configurations of A

x vA y iff x ⊇− · ⊆+ · ⊇− · · · ⊇− · ⊆+ y

we obtain a factorization system ((C(A),vA),⊇−,⊆+), i.e.

y

∃!z. x

v

⊇− z .

⊆
+

Proposition z ∈ C(CCA) iff z2 vA z1.

Theorem Strategies σ : S → A correspond to discrete fibrations

σ“ : (C(S),vS)→ (C(A),vA) , i .e. ∃!x′. x′
_

σ“
��

vS x
_

σ“��

y vA σ“(x) ,which preserve ⊇−, ⊆+ and ∅.

59



Strategies—alternative description 4, via just +-moves

A strategy σ : S → A determines S

σ ⊆−

��

q
// S+

d
~~

A

where q is projection and

d : C(S)→ C(A) s.t. d(x) = σ[x]. Universal property showing d determines σ:

U

f ⊆−

��

g
// S+

d
~~

A

⇒ ∃!θ s.t. U

f
��

θ
//

g

$$

S

σ ⊆−

��

q
// S+

d
~~

A

& σθ = f & qθ = g.

60



Ch 5. DETERMINISTIC STRATEGIES

61



Deterministic strategies

Say an event structures with polarityS is deterministic iff

∀X ⊆fin S. Neg [X] ∈ ConS ⇒ X ∈ ConS ,

where Neg [X] =def {s′ ∈ S | ∃s ∈ X. polS(s ′) = − & s ′ ≤ s}.
Say a strategy σ : S → A is deterministic if S is deterministic.

Proposition An event structure with polarityS is deterministic iff

x
s
−−⊂ & x

s′

−−⊂ & polS(s) = + implies x ∪ {s, s′} ∈ C(S), for all x ∈ C(S).

Notation x
e
−−⊂y iff x ∪ {e} = y & e /∈ x , for configurations x, y, event e.

x
e
−−⊂ iff ∃y. x

e
−−⊂y.

62



Example: a tree-like game

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

	

`` OOOO

	

OO >>

	 	

>>OO

⊕

`` OO

⊕

OO >>

	

`` >>

conflict (inconsistency) // immediate causal dependency

⊕ Player move 	 Opponent move

63



Nondeterministic copy-cats

(i) Take A to consist of two +ve events and one −ve event, with any two but
not all three events consistent. The construction of CCA:

	 _ ⊕

A
⊥ 	 _ ⊕ A

⊕ ^ 	

(ii) Take A to consist of two events, one +ve and one −ve event, inconsistent
with each other. The construction CCA:

A
⊥ 	 _ ⊕ A

⊕ ^ 	

64



Lemma Let A be an event structure with polarity. The copy-cat strategy γA is
deterministic iff A satisfies

∀x ∈ C(A). x
a
−−⊂ & x

a′

−−⊂ & polA(a) = + & polA(a ′) = −
⇒ x ∪ {a, a′} ∈ C(A) . (Race-free)

Lemma The composition τ�σ of two deterministic strategies σ and τ is
deterministic.

Lemma A deterministic strategy σ : S → A is injective on configurations
(equivalently, σ : S � A ).

; sub-bicategory of race-free games and deterministic strategies, equivalent to
an order-enriched category.

65



Theorem A subfamily F ⊆ C(A) has the form σC(S) for a deterministic strategy
σ : S → A, iff

reachability: ∅ ∈ F and if x ∈ F , ∅
a1
−−⊂x1

a2
−−⊂ · · ·

ak
−−⊂xk = x within F ;

determinacy: If x
a
−−⊂ and x

a′

−−⊂ in F with polA(a) = +, then x∪ {a, a′} ∈ F ;

receptivity: If x ∈ F and x
a
−−⊂ in C(A) and polA(a) = −, then x ∪ {a} ∈ F ;

+-innocence: If x
a
−−⊂x1

a′

−−⊂ & polA(a) = + in F & x
a′

−−⊂ in C(A), then

x
a′

−−⊂ in F (receptivity implies −-innocence);

1-stable: If x1

a
−−⊂x and x2

b
−−⊂x in F , then x1 ∩ x2 ∈ F .

66



Ch 6. Games people play

67



Stable spans, profunctors and stable functions The sub-bicategory of Games
where the events of games are purely +ve is equivalent to the bicategory of stable
spans:

S
σ1

~~

σ2

��

A⊥ B

←→ S+
σ−1

~~

σ+
2

!!

A B ,

where S+ is the projection of S to its +ve events; σ+
2 is the restriction of σ2 to

S+ is rigid; σ−2 is a demand map taking x ∈ C(S+) to σ−1 (x) = σ1[x].

Composition of stable spans coincides with composition of their associated
profunctors. The feedback operation of nondeterministic dataflow is obtained as
a special case of the trace on concurrent games.

When deterministic (and event structures are countable) we obtain a sub-
bicategory equivalent to Berry’s dI-domains and stable functions.

68



Ingenuous strategies Deterministic concurrent strategies coincide with the
receptive ingenuous strategies of and Melliès and Mimram.

Closure operators A deterministic strategy σ : S → A determines a closure
operator ϕ on C∞(S): for x ∈ C∞(S),

ϕ(x) = x ∪ {s ∈ S | pol(s) = + & Neg [{s}] ⊆ x} .

The closure operator ϕ on C∞(S) induces a partial closure operator ϕp on C∞(A)
and in turn a closure operator ϕ>p on C∞(A)> of Abramsky and Melliès.

Simple games “Simple games” of game semantics arise when we restrict Games
to objects and deterministic strategies which are ‘tree-like’—alternating polarities,
with conflicting branches, beginning with opponent moves.

Conway games tree-like, but where only strategies need alternate and begin with
opponent moves.

69



Ch 7. WINNING WAYS

70



Winning conditions

A game with winning conditions comprises

G = (A,W )

where A is an event structure with polarity and W ⊆ C∞(A) consists of the
winning configurations for Player.

Define the losing conditions to be L =def C∞(A) \W .

71



Winning strategies

Let G = (A,W ) be a game with winning conditions.

A strategy in G is a strategy in A.

A strategy σ : S → A in G is winning (for Player) if σx ∈W , i.e. σx /∈ L, for all
+-maximal configurations x ∈ C∞(S).

[A configuration x is +-maximal if whenever x
s
−−⊂ then the event s has −ve

polarity.]

A winning strategy prescribes moves for Player to avoid ending in a losing
configuration, no matter what the activity or inactivity of Opponent.

72



Characterization via counter-strategies

Informally, a strategy is winning for Player if any play against a counter-
strategy of Opponent results in a win for Player.

A counter-strategy, i.e. a strategy of Opponent, in a game A is a strategy in the
dual game, so τ : T → A⊥.

What are the results 〈σ, τ〉 of playing strategy σ against counter-strategy τ?

Note σ : ∅ + // A and τ : A + // ∅ ...

73



Composition of pre-strategies without hiding

S × T � Syn
Π1

uu

Π2

**
S

σ1

~~

σ2

��

T
τ1

}}

τ2

��

A⊥ B B⊥ C
where

Syn = {p ∈ S × T | σ1Π1(p) is defined & Π2(p) is undefined} ∪

{p ∈ S × T | σ2Π1(p) = τ1Π2(p) with both defined} ∪
{p ∈ S × T | τ2Π2(p) is defined & Π1(p) is undefined} .

74



Special case

S × T � Syn
Π1

uu

Π2

**
S

��

σ

��

T
τ
~~

��

∅ A A⊥ ∅
where

Syn = {p ∈ S × T | σΠ1(p) = τΠ2(p) with both defined} .

Define results, 〈σ, τ〉 =def {σΠ1z | z is maximal in C∞(S × T � Syn)} .

75



Characterization of winning strategies

Lemma Let σ : S → A be a strategy in a game (A,W ). The strategy σ is
winning for Player iff 〈σ, τ〉 ⊆W for all (deterministic) strategies τ : T → A⊥.

Its proof uses a key lemma:

Lemma Let σ : S → A⊥‖B and τ : B⊥‖C be receptive pre-strategies. Then,

z ∈ C∞(S × T � Syn) is +-maximal iff

Π1z ∈ C∞(S) is +-maximal & Π2z ∈ C∞(T ) is +-maximal.

76



Ex.1. 	 ⊕ has a winning strategy only if W comprises all configurations.

Ex.2. 	 ⊕

⊕

�ZZe _LLR
the empty strategy is winning if ∅ ∈W .

Ex.3. 	 	 ⊕ , with x ∈W iff pol x ∩ {−} 6= ∅ ⇒ pol x ∩ {+} 6= ∅,
has a winning nondeterministic strategy, but no winning deterministic strategy.

Ex.4. 	 ⊕ � ,,2 ⊕ � ,,2 · · · � ,,2 ⊕ � ,,2 · · · with x ∈W iff (	 ∈ x⇔ x finite)

has no winning strategy or counterstrategy.

Ex.5. ⊕ ⊕ · · · ⊕ · · ·

	 ⊕ � ,,2 ⊕ � ,,2 · · · � ,,2 ⊕ � ,,2 · · ·
with x ∈W iff (	 ∈ x⇔ x finite) has a winning strategy.

77



Operations on games with winning conditions

Dual G⊥ = (A⊥,WG⊥) where, for x ∈ C∞(A),

x ∈WG⊥ iff x /∈WG .

Parallel composition For G = (A,WG), H = (B,WH),

G‖H =def (A‖B, WG‖C∞(B) ∪ C∞(A)‖WH)

where X‖Y = {{1} × x ∪ {2} × y | x ∈ X & y ∈ Y } when X and Y are
subsets of configurations. To win is to win in either game. Unit of ‖ is (∅, ∅).

78



Derived operations

Tensor Defining G ⊗H =def (G⊥‖H⊥)⊥ we obtain a game where to win is to
win in both games G and H—so to lose is to lose in either game. More explicitly,

(A,WA)⊗ (B,WB) =def (A‖B, WA‖WB) .

The unit of ⊗ is (∅, {∅}).

Function space With G ( H =def G
⊥‖H a win in G ( H is a win in H

conditional on a win in G:

Proposition Let G = (A,WG) and H = (B,WH) be games with winning
conditions. Write WG(H for the winning conditions of G ( H. For x ∈
C∞(A⊥‖B),

x ∈WG(H iff x1 ∈WG ⇒ x2 ∈WH .

79



The bicategory of winning strategies

Lemma Let σ be a winning strategy in G⊥‖H and τ be a winning strategy in
H⊥‖K. Their composition τ�σ is a winning strategy in G⊥‖K.

But copy-cat need not be winning: Let A consist of ⊕ 	 . The event

structure CCA:

A⊥ 	 � ,,2 ⊕ A

⊕ 	�llr

Taking x = {	,	}, x1 ∈W while x2 /∈W .

A robust sufficient condition for copy-cat to be winning: the game is race-free.
The notes give a necessary and sufficient condition.
; bicategory of games with winning strategies.

80



Applications

Total strategies: To pick out a subcategory of total strategies (where Player
can always answer Opponent) within simple games.

Determinacy of concurrent games: A necessary and sufficient condition on
a well-founded game A for (A,W ) to be determined for all winning conditions:
that A is race-free. (A game A is well-founded if all its configurations are finite)

A concurrent-game semantics for PC: W.r.t. a model, a closed formula of
Predicate Calculus denotes a concurrent game which has a winning strategy iff
the formula is true.

There are a growing number—see Ch. 9.

81



Ch 8, 9. APPLICATIONS AND EXTENSIONS

82



Predicate Calculus

The syntax for predicate calculus: formulae are given by

φ, ψ, · · · ::= R(x1, · · · , xk) | φ ∧ ψ | φ ∨ ψ | ¬φ | ∃x. φ | ∀x. φ

where R ranges over basic relation symbols of a fixed arity and x, x1, x2, · · · , xk
over variables.

A model M for the predicate calculus comprises a non-empty universe of values VM
and an interpretation for each of the relation symbols as a relation of appropriate
arity on VM . Write

ρ |=M φ

iff formula φ is true in M w.r.t. environment ρ; we take an environment to be a
function from variables to values.

83



As concurrent games
The denotation as a game is defined by structural induction:

JR(x1, · · · , xk)KMρ =

{
(∅, {∅}) if ρ |=M R(x1, · · · , xk) ,
(∅, ∅) otherwise.

Jφ ∧ ψKMρ = JφKMρ⊗ JψKMρ

Jφ ∨ ψKMρ = JφKMρ‖JψKMρ

J¬φKMρ = (JφKMρ)⊥

J∃x. φKMρ =
⊕
v∈VM

JφKMρ[v/x]

J∀x. φKMρ =
⊙
−−

v∈VM
JφKMρ[v/x] .

84



Prefixed sums

The prefixed game ⊕.(A,W ) comprises the event structure with polarity ⊕.A in
which all the events of A are made to causally depend on a fresh +ve event ⊕.
Its winning conditions are those configurations x ∈ C∞(⊕.A) of the form {⊕}∪ y
for some y ∈W .

The game
⊕

v∈V (Av,Wv) has underlying event structure with polarity the sum
(=coproduct)

∑
v∈V ⊕.Av with a configuration winning iff it is the image of a

winning configuration in a component under the injection to the sum. The game⊙
−v∈VGv is defined dually.

Theorem For all predicate-calculus formulae φ and environments ρ, ρ |=M φ iff
the game JφKMρ has a winning strategy.

85



Games with imperfect information

The game “rock, scissors, paper”:

r1⊕ 	 r2

s1⊕ ⊕ p1 s2	 	 p2

The losing configurations (for Player):

{s1, r2}, {p1, s2}, {r1, p2}

86



A cheating strategy

r1⊕

s1⊕ ⊕ p1 	 s2

�hho

p2	

�ggn

	 r2

�hho

87



Games with imperfect information

A fixed preorder of access levels (Λ,�).

An Λ-game (G, l) comprises a game G = (A,W,L) with winning/losing conditions
together with a level function l : A→ Λ such that

a ≤A a′ ⇒ l(a) � l(a′)

for all a, a′ ∈ A. A Λ-strategy in the Λ-game (G, l) is a strategy σ : S → A for
which

s ≤S s′ ⇒ lσ(s) � lσ(s′)

for all s, s′ ∈ S.

88



The bicategory of Λ-games

For a Λ-game (G, lG), define its dual (G, lG)⊥ to be (G⊥, lG⊥) where lG⊥(a) =
lG(a), for a an event of G.

For Λ-games (G, lG) and (H, lH), define their parallel composition (G, lG)‖(H, lH)
to be (G‖H, lG‖H) where lG‖H((1, a)) = lG(a), for a an event of G, and
lG‖H((2, b)) = lH(b), for b an event of H.

A strategy between Λ-games from (G, lG) to (H, lH) is a strategy in
(G, lG)⊥‖(H, lH).

Proposition (i) Let (G, lG) be a Λ-game where G satisfies (Cwins). The
copy-cat strategy on G is a Λ-strategy. (ii) The composition of Λ-strategies is a
Λ-strategy.

Application: Hintikka’s IF Logic

89



Strategies on categories

A rooted factorization system (C,L,R, 0) comprises a small category C on which
there is a factorization system (C,L,R) with an object 0 s.t.

0←L · →R · · · ←L · →R c

for all objects c in C, and ...

Example: ((C(A),v),⊇−,⊆+, ∅)

90



Strategies

A strategy on a rooted factorization system (C,L,R, 0) is a fibration from another
rooted factorization system which preserves L, R maps and 0.

Example: The map ((C(S),vS),⊇−,⊆+, ∅)→ ((C(A),vA),⊇−,⊆+, ∅) induced
by a strategy σ : S → A.

Operations

(C,L,R, 0)⊥ =def (Cop,Rop,Lop, 0)

(B,LB,RB, 0B)‖(C,L,CRC, 0C) =def (B× C,LB × LC,RB ×RC, (0B, 0C))

Composition: ‘reachable part of’ profunctor composition.

91



Extensions

Borel determinacy of race-free, bounded-concurrent games

Games with pay-off

Games with back-tracking, via games with symmetry

Probabilistic and quantum games

A language for strategies, regarded as concurrent processes

See www.cl.cam.ac.uk/∼gw104 .

92


