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Preface

These lecture notes introduce a theory of two-party games still under devel-
opment. A lot can be said for a general theory to unify all manner of games
found in the literature. But this has not been the original motivation. That has
been the development of a generalized domain theory, to lift the methodology
of domain theory and denotational semantics to address the highly interactive
nature of computation we find today. There are several arguments why the next
generation of domain theory should be an intensional theory, one which pays
careful attention to the ways in which output is computed from input. One
is that if the theory is to be able to reason about operational concerns it had
better address them, albeit abstractly. Another is that sometimes the demands
of compositionality force denotations to be more intensional than one would at
first expect; this occurs for example with nondeterministic dataflow—see the
Introduction. These notes take seriously the idea that intensional aspects be
described by strategies, and to fit computational needs adequately try to un-
derstand the concept of strategy very broadly.

This idea comes from game semantics where the domains and continuous
functions of traditional domain theory and denotational semantics are replaced
by games and strategies. Strategies supercede functions because they give a
much better account of interaction extended in time. (Functions, if you like,
have too clean a separation of interaction into input and output.) In traditional
denotational semantics a program phrase or process term denotes a continuous
function, whereas in game semantics a program phrase or process term denotes
a strategy. However, traditional game semantics is not always general enough,
for instance in accounting for nondeterministic or concurrent computation.

Rather than extending traditional game semantics with various bells and
whistles, these notes attempt to carve out a general theory of games within a
general model of nondeterministic, concurrent computation. The model cho-
sen is the partial-order model of event structures, and for technical reasons, its
enlargement to stable families. Event structures have the advantage of occupy-
ing a central position within models for concurrency, and the development here
should suggest analogous developments for other ‘partial-order’ models such as
Mazurkiewicz trace languages, Petri nets and asynchronous transition systems,
and even ‘interleaving’ models based on transition systems or sequences.
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Chapter 1

Introduction

Games and strategies are everywhere, in logic, philosophy, computer science,
economics, in leisure and in life.

Slogan for this course: Processes are nondeterministic concurrent strategies.

1.1 Motivation

We summarise some reasons for developing a theory of nondeterministic con-
current games and strategies.

1.1.1 What is a process?

In the earliest days of computer science it became accepted that a computation
was essentially an (effective) partial function f ∶ N → N between the natural
numbers. This view underpins the Church-Turing thesis on the universality of
computability.

As computer science matured it demanded increasingly sophisticated mathe-
matical representations of processes. The pioneering work of Strachey and Scott
in the denotational semantics of programs assumed a view of a process still as a
function f ∶D →D′, but now acting in a continuous fashion between datatypes
represented as special topological spaces, ‘domains’ D and D′; reflecting the
fact that computers can act on complicated, conceptually-infinite objects, but
only by virtue of their finite approximations.

In the 1960’s, around the time that Strachey started the programme of de-
notational semantics, Petri advocated his radical view of a process, expressed
in terms of its events and their effect on local states—a model which addressed
directly the potentially distributed nature of computation, but which, in com-
mon with many other current models, ignored the distinction between data and
process implicit in regarding a process as a function. Here it seems that an
adequate notion of process requires a marriage of Petri’s view of a process and
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6 CHAPTER 1. INTRODUCTION

the vision of Scott and Strachey. An early hint in this direction came in answer
to the following question.

What is the information order in domains? There are essentially two answers
in the literature, the ‘topological,’ the most well-known from Scott’s work, and
the ‘temporal,’ arising from the work of Berry:

● Topological: the basic units of information are propositions describing fi-
nite properties; more information corresponds to more propositions being true.
Functions are ordered pointwise.

● Temporal: the basic units of information are events; more information corre-
sponds to more events having occurred over time. Functions are restricted to
‘stable’ functions and ordered by the intensional ‘stable order,’ in which com-
mon output has to be produced for the same minimal input. Berry’s specialized
domains ‘dI-domains’ are represented by event structures.

In truth, Berry developed ‘stable domain theory’ by a careful study of how to
obtain a suitable category of domains with stable rather than all continuous
functions. He arrived at the axioms for his ‘dI-domains’ because he wanted
function spaces (so a cartesian-closed category). The realization that dI-domains
were precisely those domains which could be represented by event structures,
came a little later.

1.1.2 From models for concurrency

Causal models are alternatively described as: causal-dependence models; in-
dependence models; non-interleaving models; true-concurrency models; and
partial-order models. They include Petri nets, event structures, Mazurkiewicz
trace languages, transition systems with independence, multiset rewriting, and
many more. The models share the central feature that they represent processes
in terms of the events they can perform, and that they make explicit the causal
dependency and conflicts between events.

Causal models have arisen, and have sometimes been rediscovered as the
natural model, in many diverse and often unexpected areas of application:
Security protocols: for example, forms of event structure, strand spaces, sup-
port reasoning about secrecy and authentication through causal relations and
the freshness of names;
Systems biology: ideas from Petri nets and event structures are used in taming
the state-explosion in the stochastic simulation of biochemical processes and in
the analysis of biochemical pathways;
Hardware: in the design and analysis of asynchronous circuits;
Types and proof: event structures appear as representations of propositions as
types, and of proofs;
Nondeterministic dataflow: where numerous researchers have used or rediscov-
ered causal models in providing a compositional semantics to nondeterministic
dataflow;
Network diagnostics: in the patching together local of fault diagnoses of com-
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munication networks;
Logic of programs: in concurrent separation logic where artificialities in Brookes’
pioneering soundness proof are obviated through a Petri-net model;
Partial order model checking: following the seminal work of McMillan the un-
folding of Petri nets (described below) is exploited in recent automated analysis
of systems;
Distributed computation: event structures appear both classically,e.g. in early
work of Lamport, and recently in the Bayesian analysis of trust and modelling
multicore memory.

To illustrate the close relationship between Petri nets and the ‘partial-order
models’ of occurrence nets and event structures, we sketch how a (1-safe) Petri
net can be unfolded first to a net of occurrences and from there to an event
structure [1]. The unfolding construction is analogous to the well-known method
of unfolding a transition system to a tree, and is central to several analysis tools
in the applications above. In the figure, the net on top has loops. The net below
it is its occurrence-net unfolding. It consists of all the occurrences of conditions
and events of the original net, and is infinite because of the original repetitive
behaviour. The occurrences keep track of what enabled them. The simplest
form of event structure, the one we shall consider here, arises by abstracting
away the conditions in the occurrence net and capturing their role in relations
of causal dependency and conflict on event occurrences.

The relations between the different forms of causal models are well under-
stood [2]. Despite this and their often very successful, specialized applications,
causal models lack a comprehensive theory which would support their systematic
use in giving semantics to a broad range of programming and process languages,
in particular we lack an expressive form of ‘domain theory’ for causal models
with rich higher-order type constructions needed by mathematical semantics.

1.1.3 From semantics

Denotational semantics and domain theory of Scott and Strachey set the stan-
dard for semantics of computation. The theory provided a global mathematical
setting for sequential computation, and thereby placed programming languages
in connection with each other; connected with the mathematical worlds of alge-
bra, topology and logic; and inspired programming languages, type disciplines
and methods of reasoning. Despite the many striking successes it has become
very clear that many aspects of computation do not fit within the traditional
framework of denotational semantics and domain theory. In particular, classical
domain theory has not scaled up to the more intricate models used in interac-
tive/distributed computation. Nor has it been as operationally informative as
one could hope.

While, as Kahn was early to show, deterministic dataflow is a shining appli-
cation of simple domain theory, nondeterministic dataflow is beyond its scope.
The compositional semantics of nondeterministic dataflow needs a form of gen-
eralized relation which specifies the ways input-output pairs are realized.A com-



8 CHAPTER 1. INTRODUCTION

�' $�

6� � �6g g
g g
c cZZ} ���

��� ZZ}

6

6

�
��
�*

Q
QQk

g
gg

g g
ZZ} ��� 6

6

Q
QQk

6 6

�
��

�
��>

PP
PP

PPi

g
gg

g g
ZZ} ��� 6

6

Q
QQk

6 6

�
��

�
��>

PP
PP

PPi g
gg

g g
ZZ} ��� 6

6

Q
QQk

6 6

�
��

�
��>

PP
PP

PPi

PP
PP

PPi

�
��

�
��
���

���
��:

XXXy ��� �����
�1

PPPi ��� ������1

A Petri net and its occurrence-net unfolding
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pelling example comes from the early work of Brock and Ackerman who were
the first to emphasize the difficulties in giving a compositional semantics to non-
deterministic dataflow, though our example is based on simplifications in the
later work of Rabinovich and Trakhtenbrot, and Russell.

Nondeterministic dataflow—Brock-Ackerman anomaly

�
�-�


-
-

FAiC[Ai] =

There are two simple nondeterministic processes A1 and A2, which have the
same input-output relation, and yet behave differently in the common feedback
context C[−], illustrated above. The context consists of a fork process F (a
process that copies every input to two outputs), through which the output of
the automata Ai is fed back to the input channel, as shown in the figure. Process
A1 has a choice between two behaviours: either it outputs a token and stops, or
it outputs a token, waits for a token on input and then outputs another token.
Process A2 has a similar nondeterministic behaviour: Either it outputs a token
and stops, or it waits for an input token, then outputs two tokens. For both
automata, the input-output relation relates empty input to the eventual output
of one token, and non-empty input to one or two output tokens. But C[A1]
can output two tokens, whereas C[A2] can only output a single token. Notice
that A1 has two ways to realize the output of a single token from empty input,
while A2 only has one. It is this extra way, not caught in a simple input-output
relation, that gives A1 the richer behaviour in the feedback context.

Over the years there have been many solutions to giving a compositional
semantics to nondeterministic dataflow. But they all hinge on some form of
generalized relation, to distinguish the different ways in which output is pro-
duced from input. A compositional semantics can be given using stable spans
of event structures, an extension of Berry’s stable functions to include nonde-
terminism [3]—see Section 6.2.1.

How are we to extend the methodology of denotational semantics to the
much broader forms of computational processes we need to design, understand
and analyze today? How are we to maintain clean algebraic structure and
abstraction alongside the operational nature of computation?

Game semantics advanced the idea of replacing the traditional continuous
functions of domain theory and denotational semantics by strategies. The rea-
son for doing this was to obtain a representation of interaction in computation
that was more faithful to operational reality. It is not always convenient or
mathematically tractable to assume that the environment interacts with a com-
putation in the form of an input argument. It is built into the view of a process
as a strategy that the environment can direct the course of evolution of a pro-
cess throughout its duration. Game semantics has had many dramatic successes.
But it has developed from simple well-understood games, based on alternating
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sequences of player and opponent moves, to sometimes arcane extensions and
generalizations designed to fit the demands of a succession of additional pro-
gramming or process features. It is perhaps time to stand back and see how
games fit within a very general model of computation, to understand better
what current features of games in computer science are simply artefacts of the
particular history of their development.

1.1.4 From logic

An informal understanding of games and strategies goes back at least as far as
the ancient Greeks where truth was sought through debate using the dialectic
method; a contention being true if there was an argument for it that could
survive all counter-arguments. Formalizing this idea, logicians such as Lorenzen
and Blass investigated the meaning of a logical assertion through strategies in a
game built up from the assertion. These ideas were reinforced in game semantics
which can provide semantics to proofs as well as programs. The study of the
mathematics and computational nature of proof continues. There are several
strands of motivation for games in logic. Along with automata games constitute
one of the tools of logic and algorithmics. Games are used in verification and,
for example, the central equivalence of bisimulation on processes has a reading
in terms of strategies.



Chapter 2

Event structures

Event structures are a fundamental model of concurrent computation and, along
with their extension to stable families, provide a mathematical foundation for
the course.

2.1 Event structures

Event structures are a model of computational processes. They represent a
process, or system, as a set of event occurrences with relations to express how
events causally depend on others, or exclude other events from occurring. In
one of their simpler forms they consist of a set of events on which there is
a consistency relation expressing when events can occur together in a history
and a partial order of causal dependency—writing e′ ≤ e if the occurrence of e
depends on the previous occurrence of e′.

An event structure comprises (E,≤,Con), consisting of a set E, of events
which are partially ordered by ≤, the causal dependency relation, and a nonempty
consistency relation Con consisting of finite subsets of E, which satisfy

{e′ ∣ e′ ≤ e} is finite for all e ∈ E,

{e} ∈ Con for all e ∈ E,

Y ⊆X ∈ Con Ô⇒ Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈X Ô⇒ X ∪ {e} ∈ Con.

The events are to be thought of as event occurrences without significant dura-
tion; in any history an event is to appear at most once. We say that events e,
e′ are concurrent, and write e co e′ if {e, e′} ∈ Con & e /≤ e′ & e′ /≤ e. Concurrent
events can occur together, independently of each other. The relation of imme-
diate dependency e _ e′ means e and e′ are distinct with e ≤ e′ and no event in
between.

An event structure represents a process. A configuration is the set of all
events which may have occurred by some stage, or history, in the evolution of

11



12 CHAPTER 2. EVENT STRUCTURES

the process. According to our understanding of the consistency relation and
causal dependency relations a configuration should be consistent and such that
if an event appears in a configuration then so do all the events on which it
causally depends.

The configurations of an event structure E consist of those subsets x ⊆ E
which are

Consistent: ∀X ⊆ x. X is finite⇒X ∈ Con, and

Down-closed: ∀e, e′. e′ ≤ e ∈ x Ô⇒ e′ ∈ x.

We shall largely work with finite configurations, written C(E). Write C∞(E)
for the set of finite and infinite configurations of the event structure E.

The configurations of an event structure are ordered by inclusion, where
x ⊆ x′, i.e. x is a sub-configuration of x′, means that x is a sub-history of x′.
Note that an individual configuration inherits an order of causal dependency on
its events from the event structure so that the history of a process is captured
through a partial order of events. The finite configurations correspond to those
events which have occurred by some finite stage in the evolution of the process,
and so describe the possible (finite) states of the process.

For X ⊆ E we write [X] for {e ∈ E ∣ ∃e′ ∈X. e ≤ e′}, the down-closure of X.
The axioms on the consistency relation ensure that the down-closure of any finite
set in the consistency relation s a finite configuration, and that any event appears
in a configuration: given X ∈ Con its down-closure {e′ ∈ E ∣ ∃e ∈X. e′ ≤ e} is a
finite configuration; in particular, for an event e, the set [e] =def {e′ ∈ E ∣ e′ ≤ e}
is a configuration describing the whole causal history of the event e.

When the consistency relation is determined by the pairwise consistency
of events we can replace it by a binary relation or, as is more usual, by a
complementary binary conflict relation on events (written as # or ⌣).

Example 2.1. The diagram below illustrates an event structure representing
streams of 0s and 1s:

000 001 010 011 110 111

00

�\\f _LLR_LLR

01

_LLR : 88B

⋮ 11

: 88B_LLR

0

�\\f _LLR

1

: 88B

Above we have indicated conflict (or inconsistency) between events by . The
event structure representing pairs of 0/1-streams and a/b-streams is represented
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by the juxtaposition of two event structures:

000 001 010 011 110 111

00

�\\f _LLR_LLR

01

_LLR : 88B

⋮ 11

: 88B_LLR

0

�\\f _LLR

1

: 88B

aaa aab aba abb bba bbb

aa

�\\g _LLR_LLR

ab

_LLR : 88B

⋮ bb

: 88B_LLR

a

�\\g _LLR

b

: 88B

Exercise 2.2. Draw the event structure of the occurrence net unfolding in the
introduction. ◻

2.1.1 Maps of event structures

Let E and E′ be event structures. A (partial) map of event structures f ∶ E ⇀ E′

is a partial function on events f ∶ E ⇀ E′ such that for all x ∈ C(E) its direct
image fx ∈ C(E′) and

if e1, e2 ∈ x and f(e1) = f(e2) (with both defined), then e1 = e2.

The map expresses how the occurrence of an event e in E induces the coincident
occurrence of the event f(e) in E′ whenever it is defined. The map f respects
the instantaneous nature of events: two distinct event occurrences which are
consistent with each other cannot both coincide with the occurrence of a com-
mon event in the image. Partial maps of event structures compose as partial
functions, with identity maps given by identity functions.

For any event e a map of event structures f ∶ E ⇀ E′ must send the con-
figuration [e] to the configuration f[e]. Partial maps preserve the concurrency
relation, when defined.

We will say the map is total if the function f is total. Notice that for a total
map f the condition on maps now says it is locally injective, in the sense that
w.r.t. any configuration x of the domain the restriction of f to a function from x
is injective; the restriction of f to a function from x to fx is thus bijective. Say
a total map of event structures is rigid when it preserves causal dependency.

Definition 2.3. Write E for the category of event structures with (partial)
maps. Write Et for the category of event structures with total maps.
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Exercise 2.4. Show a map of event structures f ∶ E ⇀ E′ locally reflects causal
dependency: for all x ∈ C∞(E), for all e1, e2 ∈ x whenever f(e1) and f(e2) are
both defined with f(e1) ≤ f(e2), then e1 ≤ e2.

Exercise 2.5. Show a map f ∶ A⇀ B of E is mono iff the function C(A)→ C(B)
taking configuration x to its direct image fx is injective. [Recall a map f ∶ A→ B
is mono iff for all maps g, h ∶ C → A if fg = fh then g = h.] ◻

Proposition 2.6. Let E and E′ be event structures. Suppose

θx ∶ x ≅ θxx, indexed by x ∈ C(E),

is a family of bijections such that whenever θy ∶ y ≅ θyy is in the family then its
restriction θz ∶ z ≅ θzz is also in the family, whenever z ∈ C(E) and z ⊆ y. Then,
θ =def ⋃x∈C(E) θx is the unique total map of event structures from E to E′ such
that θ x = θxx for all x ∈ C(E).

Proof. The conditions ensure that θ =def ⋃x∈C(A) θx is a function θ ∶ A⇀ B such
that the image of any finite configuration x of A under θ is a configuration of
B and local injectivity holds. ◻

2.2 Products of event structures

The category of event structures has products, which essentially allow arbitrary
synchronizations between their components. For example, here is an illustration
of the product of two event structures a _ b and c, the later comprising just a
single event named c:

b (b,∗) (b,∗) (b, c)

× =

a

_LLR

c (a,∗)

_LLR 6 66@

(a, c)

_LLR

(∗, c)

The original event b has split into three events, one a synchronization with c,
another b occurring unsynchronized after an unsynchronized a, and the third b
occurring unsynchronized after a synchronizes with c. The splittings correspond
to the different histories of the event.

It can be awkward to describe operations such as products, pullbacks and
synchronized parallel compositions directly on the simple event structures here,
essentially because an event determines its whole causal history. One closely
related and more versatile, though perhaps less intuitive and familiar, model is
that of stable families. Stable families will play an important technical role in
establishing and reasoning about constructions on event structures.



Chapter 3

Stable families

Stable families, their basic properties and relations to event structures are de-
veloped.1

3.1 Stable families

The notion of stable family extends that of finite configurations of an event
structure to allow an event can occur in several incompatible ways.

Notation 3.1. Let F be a family of subsets. Let X ⊆ F . We write X ↑ for
∃y ∈ F . ∀x ∈ X.x ⊆ y and say X is compatible. When x, y ∈ F we write x ↑ y
for {x, y} ↑.

A stable family comprises F , a nonempty family of finite subsets, satisfying:
Completeness: ∀Z ⊆ F . Z ↑ Ô⇒ ⋃Z ∈ F ;
Stability: ∀Z ⊆ F . Z /= ∅ & Z ↑ Ô⇒ ⋂Z ∈ F ;
Coincidence-freeness: For all x ∈ F , e, e′ ∈ x with e /= e′,

∃y ∈ F . y ⊆ x & (e ∈ y ⇐⇒ e′ ∉ y) .

Proposition 3.2. A stable family comprises F , a family of finite subsets, for
which: ∅ ∈ F ; if x ↑ y in F , then x ∪ y and x ∩ y are in F ; coincidence-freeness
holds.

Proposition 3.3. The family of finite configurations of an event structure
forms a stable family.

On the other hand stable families are more general than finite configurations
of an event structure, as the following example shows.

1A useful reference for stable families is the report “Event structure semantics for CCS and
related languages,” a full version of the article [4], available from www.cl.cam.ac.uk/∼gw104,
though its terminology can differ from that here.

15
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Example 3.4. Let F be the stable family, with events E = {0,1,2},

{0,2} {0,1} {1,2}

{0}

⊂ ⊂

{1}

⊂⊂

∅

⊂⊂

or equivalently

{0,2} {0,1} {1,2}

{0}

?� - 

{1}

?�Q1

∅

, �R2

where −Ð⊂ is the covering relation representing an occurrence of one event.
The events 0 and 1 are concurrent, neither depends on the occurrence or non-
occurrence of the other to occur. The event 2 can occur in two incompatible
ways, either through event 0 having occurred or event 1 having occurred. This
possibility can make stable families more flexible to work with than event struc-
tures.

A (partial) map of stable families f ∶ F → G is a partial function f from the
events of F to the events of G such that for all x ∈ F ,

fx ∈ G & (∀e1, e2 ∈ x. f(e1) = f(e2) Ô⇒ e1 = e2) .

Maps of stable families compose as partial functions, with identity maps given
by identity functions.

Proposition 3.5. Let f ∶ F → G be a map of stable families. Let e, e′ ∈ x,
a configuration of F . If f(e) and f(e′) are defined and f(e) ≤fx f(e

′) then
e ≤x e

′.

Definition 3.6. Let F be a stable family. We use x−⊂y to mean y covers x in

F , i.e. x ⊂ y in F with nothing in between, and x
e

−Ð⊂ y to mean x ∪ {e} = y

for x, y ∈ F and event e ∉ x. We sometimes use x
e

−Ð⊂ , expressing that event e is

enabled at configuration x, when x
e

−Ð⊂ y for some y.

Exercise 3.7. Let F be a nonempty family of sets satisfying the Completeness
axiom in the definition of stable families. Show F is coincidence-free iff

∀x, y ∈ F . x ⊊ y Ô⇒ ∃x1, e1. x
e1
−Ð⊂x1 ⊆ y .

[Hint: For ‘only if’ use induction on the size of y ∖ x.] ◻
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3.1.1 Stable families and event structures

Finite configurations of an event structure form a stable family. Conversely, a
stable family determines an event structure:

Proposition 3.8. Let x be a configuration of a stable family F . For e, e′ ∈ x
define

e′ ≤x e iff ∀y ∈ F . y ⊆ x & e ∈ y Ô⇒ e′ ∈ y.

When e ∈ x define the prime configuration

[e]x =⋂{y ∈ F ∣ y ⊆ x & e ∈ y} .

Then ≤x is a partial order and [e]x is a configuration such that

[e]x = {e′ ∈ x ∣ e′ ≤x e}.

Moreover the configurations y ⊆ x are exactly the down-closed subsets of ≤x.

Proposition 3.9. Let F be a stable family. Then, Pr(F) =def (P,Con,≤) is an
event structure where:

P = {[e]x ∣ e ∈ x & x ∈ F} ,

Z ∈ Con iff Z ⊆ P & ⋃Z ∈ F and,

p ≤ p′ iff p, p′ ∈ P & p ⊆ p′ .

Exercise 3.10. Prove the two propositions 3.8 and 3.9. ◻

The operation Pr is right adjoint to the “inclusion” functor, taking an event
structure E to the stable family C(E). The unit of the adjunction E → Pr(C(E))
takes an event e to the prime configuration [e] =def {e′ ∈ E ∣ e′ ≤ e}. The counit
max ∶ C(Pr(F))→ F takes prime configuration [e]x to e.

Definition 3.11. Let F be a stable family. W.r.t. x ∈ F , write [e)x =def

{e′ ∈ E ∣ e′ ≤x e & e′ /= e}. The relation of immediate dependence of event struc-
tures generalizes: with respect to x ∈ F : the relation e _x e

′ means e ≤x e
′ with

e /= e′ and no event in between.

3.2 Infinite configurations

We can extend a stable family to include infinite configurations, by constructing
its “ideal completion.”

Definition 3.12. Let F be a stable family. Define F∞ to comprise all ⋃ I
where I ⊆ F is an ideal (i.e., I is a nonempty subset of F closed downwards
w.r.t. ⊆ in F and such that if x, y ∈ I then x ∪ y ∈ I).

Exercise 3.13. For an event structure E, show C∞(E) = C(E)∞. ◻
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Exercise 3.14. Let F be a stable family. Show F∞ satisfies:

Completeness: ∀Z ⊆ F∞. Z ↑ Ô⇒ ⋃Z ∈ F∞ ;
Stability: ∀Z ⊆ F∞. Z /= ∅ & Z ↑ Ô⇒ ⋂Z ∈ F∞;
Coincidence-freeness: For all x ∈ F∞, e, e′ ∈ x with e /= e′,

∃y ∈ F∞. y ⊆ x & (e ∈ y ⇐⇒ e′ ∉ y) ;

Finiteness: For all x ∈ F∞,

∀e ∈ x∃y ∈ F . e ∈ y & y ⊆ x & y is finite .

Show that F consists of precisely the finite sets in F∞. ◻

3.3 Process constructions

3.3.1 Products

Let A and B be stable families with events A and B, respectively. Their
product, the stable family A × B, has events comprising pairs in A ×∗ B =def

{(a,∗) ∣ a ∈ A} ∪ {(a, b) ∣ a ∈ A & b ∈ B} ∪ {(∗, b) ∣ b ∈ B}, the product of sets
with partial functions, with (partial) projections π1 and π2—treating ∗ as
‘undefined’—with configurations

x ∈ A × B iff

x is a finite subset of A ×∗ B such that π1x ∈ A & π2x ∈ B,

∀e, e′ ∈ x. π1(e) = π1(e
′) or π2(e) = π2(e

′)⇒ e = e′ ,&

∀e, e′ ∈ x. e /= e′ ⇒ ∃y ⊆ x. π1y ∈ A & π2y ∈ B &

(e ∈ y ⇐⇒ e′ ∉ y) .

Right adjoints preserve products. Consequently we obtain a product of event
structures A and B by first regarding them as stable families C(A) and C(B),
forming their product C(A)×C(B), π1, π2, and then constructing the event struc-
ture

A ×B =def Pr(C(A) × C(B))

and its projections as Π1 =def π1max and Π2 =def π2max .

Exercise 3.15. Let A be the event structure consisting of two distinct events
a1 ≤ a2 and B the event structure with a single event b. Following the method
above describe the product of event structures A ×B. ◻

Later we shall use the following properties of _ in a product of stable families
or event structures.

Lemma 3.16. Suppose e _x e
′ in a product of stable families A × B, π1, π2.

(i) If e = (a,∗) then e′ = (a′, b) or e′ = (a′,∗) with a _π1x a
′ in A.

(ii) If e′ = (a′,∗) then e = (a, b) or e = (a,∗) with a _π1x a
′ in A.

(iii) If e = (a, b) and e′ = (a′, b′) then a _π1x a
′ in A or b _π2x b

′ in B.
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3.3.2 Restriction

The restriction of F to a subset of events R is the stable family F ↾ R =def

{x ∈ F ∣ x ⊆ R} . Defining E ↾ R, the restriction of an event structure E to a
subset of events R, to have events E′ = {e ∈ E ∣ [e] ⊆ R} with causal dependency
and consistency induced by E, we obtain C(E ↾R) = C(E) ↾R .

Proposition 3.17. Let F be a stable family and R a subset of its events. Then,
Pr(F ↾R) = Pr(F)↾max−1R .

3.3.3 Synchronized compositions

Synchronized parallel compositions are obtained as restrictions of products to
those events which are allowed to synchronize or occur asynchronously. For
example, the synchronized composition of Milner’s CCS on stable families A and
B (with labelled events) is defined as A×B ↾R where R comprises events which
are pairs (a,∗), (∗, b) and (a, b), where in the latter case the events a of A and b
of B carry complementary labels. Similarly, synchronized compositions of event
structures A and B are obtained as restrictions A×B ↾R. By Proposition 3.17,
we can equivalently form a synchronized composition of event structures by
forming the synchronized composition of their stable families of configurations,
and then obtaining the resulting event structure—this has the advantage of
eliminating superfluous events earlier.

3.3.4 Pullbacks

The construction of pullbacks can be viewed as a special case of synchronized
composition. Once we have products of event structures pullbacks are obtained
by restricting products to the appropriate equalizing set. Pullbacks of even
structures can also be constructed via pullbacks of stable families, in a similar
manner to the way we have constructed products of event structures. We obtain
pullbacks of stable families as restrictions of products. Suppose f1 ∶ F1 → G and
f2 ∶ F2 → G are maps of stable families. Let E1, E2 and C be the sets of events
of F1, F2 and G, respectively. The set P =def {(e1, e2) ∣ f(e1) = f(e2)} with
projections π1, π2 to the left and right, forms the pullback, in the category of
sets, of the functions f1 ∶ E1 → C, f2 ∶ E2 → C. We obtain the pullback in
stable families of f1, f2 as the stable family P, consisting of those subsets of P
which are also configurations of the product F1 × F2—its associated maps are
the projections π1, π2 from the events of P.

3.3.5 Projection

Event structures support a simple form of hiding. Let (E,≤,Con) be an event
structure. Let V ⊆ E be a subset of ‘visible’ events. Define the projection of E
on V , to be E↓V =def (V,≤V ,ConV ), where v ≤V v′ iff v ≤ v′ & v, v′ ∈ V and
X ∈ ConV iff X ∈ Con & X ⊆ V .
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Consider a partial map of event structures f ∶ E → E′. Let

V =def {e ∈ E ∣ f(e) is defined} .

Then f clearly factors into the composition

E
f0 // E↓V

f1 // E′

of f0, a partial map of event structures taking e ∈ E to itself if e ∈ V and
undefined otherwise, and f1, a total map of event structures acting like f on V .

3.3.6 Prefixes and sums

The prefix of an event structure A, written ●.A, comprises the event structure
in which all the events of A are made to causally depend on an event ●. The
category of event structures has sums given as coproducts; a coproduct ∑i∈I Ei
is obtained as the disjoint juxtaposition of an indexed collection of event struc-
tures, making events in distinct components inconsistent. We shall use prefixed
sums ∑i∈I ●.Ai in games for modelling first-order logical quantifiers.



Chapter 4

Games and strategies

Very general nondeterministic concurrent games and strategies are presented.
The intention is to formalize distributed games in which both Player (or a
team of players) and Opponent (or a team of opponents) can interact in highly
distributed fashion, without, for instance, enforcing that their moves alter-
nate. Strategies, those nondeterministic plays which compose well with copy-cat
strategies, are characterized.1

4.1 Event structures with polarities

We shall represent both a game and a strategy in a game as an event structure
with polarity, comprising an event structure together with a polarity function
pol ∶ E → {+,−} ascribing a polarity + or − to its events E. The events corre-
spond to (occurrences of) moves. The two polarities +/− express the dichotomy:
Player/Opponent; Process/Environment; or Ally/Enemy. Maps of event struc-
tures with polarity are maps of event structures which preserve polarity.

4.2 Operations

4.2.1 Dual

The dual, E⊥, of an event structure with polarity E comprises a copy of the
event structure E but with a reversal of polarities. It obviously extends to a
functor. Write e ∈ E⊥ for the event complementary to e ∈ E and vice versa.

4.2.2 Simple parallel composition

This operation simply juxtaposes two event structures with polarity. Let (A,≤A
,ConA,polA) and (B,≤B ,ConB ,polB) be event structures with polarity. The
events of A∥B are ({1}×A)∪({2}×B), their polarities unchanged, with: the only

1This key chapter is the result of joint work with Silvain Rideau [5].

21
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relations of causal dependency given by (1, a) ≤ (1, a′) iff a ≤A a′ and (2, b) ≤
(2, b′) iff b ≤B b′; a subset of events C is consistent in A∥B iff {a ∣ (1, a) ∈ C} ∈
ConA and {b ∣ (2, b) ∈ C} ∈ ConB . The operation extends to a functor—put the
two maps in parallel. The empty event structure with polarity ∅ is the unit
w.r.t. ∥.

4.3 Pre-strategies

Let A be an event structure with polarity, thought of as a game; its events
stand for the possible occurrences of moves of Player and Opponent and its
causal dependency and consistency relations the constraints imposed by the
game. A pre-strategy in A is a total map σ ∶ S → A from an event structure with
polarity S. A pre-strategy represents a nondeterministic play of the game—
all its moves are moves allowed by the game and obey the constraints of the
game; the concept will later be refined to that of strategy (and winning strategy
in Section 7.1). We regard two pre-strategies σ ∶ S → A and σ′ ∶ S′ → A as
essentially the same when they are isomorphic, and write σ ≅ σ′, i.e. when there
is an isomorphism of event structures θ ∶ S ≅ S′ such that

S

σ
��

≅θ S′

σ′

��
A

commutes.
Let A and B be event structures with polarity. Following Joyal [6], a pre-

strategy from A to B is a pre-strategy in A⊥∥B, so a total map σ ∶ S → A⊥∥B.
It thus determines a span

S

σ1

~~

σ2

  
A⊥ B ,

of event structures with polarity where σ1, σ2 are partial maps. In fact, a pre-
strategy from A to B corresponds to such spans where for all s ∈ S either, but
not both, σ1(s) or σ2(s) is defined. Two pre-strategies will be essentially the
same when they are isomorphic as spans. Two pre-strategies σ and τ from A to
B are isomorphic, σ ≅ τ , when their spans are isomorphic, i.e.

S

σ1

��

≅

��
σ2

��

T

τ1~~ τ2 ��
A⊥ B
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commutes. We write σ ∶ A + //B to express that σ is a pre-strategy from A to B.
Note a pre-strategy in a game A coincides with a pre-strategy from the empty
game σ ∶ ∅ + //A.

4.3.1 Concurrent copy-cat

Identities on games are given by copy-cat strategies—strategies for Player based
on copying the latest moves made by Opponent.

Let A be an event structure with polarity. The copy-cat strategy from A to
A is an instance of a pre-strategy, so a total map γA ∶ CCA → A⊥∥A. It describes
a concurrent, or distributed, strategy based on the idea that Player moves, of
+ve polarity, always copy previous corresponding moves of Opponent, of −ve
polarity.

For c ∈ A⊥∥A we use c to mean the corresponding copy of c, of opposite
polarity, in the alternative component, i.e.

(1, a) = (2, a) and (2, a) = (1, a) .

Proposition 4.1. Let A be an event structure with polarity. There is an event
structure with polarity CCA having the same events, consistency and polarity
as A⊥∥A but with causal dependency ≤CCA given as the transitive closure of the
relation

≤A⊥∥A ∪ {(c, c) ∣ c ∈ A⊥∥A & polA⊥∥A(c) = +} .

Moreover,
(i) c _ c′ in CCA iff

c _ c′ in A⊥∥A or polA⊥∥A(c
′) = + & c = c′ ;

(ii) x ∈ C(CCA) iff

x ∈ C(A⊥∥A) & ∀c ∈ x. polA⊥∥A(c) = + Ô⇒ c ∈ x .

Proof. It can first be checked that defining

c ≤CCA c
′ iff (i) c ≤A⊥∥A c

′ or

(ii) ∃c0 ∈ A
⊥∥A. polA⊥∥A(c0) = + &

c ≤A⊥∥A c0 & c0 ≤A⊥∥A c
′ ,

yields a partial order. Note that

c ≤A⊥∥A d iff c ≤A⊥∥A d ,

used in verifying transitivity and antisymmetry. The relation ≤CCA is clearly
the transitive closure of ≤A⊥∥A together with all extra causal dependencies (c, c)
where polA⊥∥A(c) = +. The remaining properties required for CCA to be an event
structure follow routinely.
(i) From the above characterization of ≤CCA .
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(ii) From CCA and A⊥∥A sharing the same consistency relation and the extra
causal dependency adjoined to CCA. ◻

Based on Proposition 4.1, define the copy-cat pre-strategy from A to A to be
the pre-strategy γA ∶ CCA → A⊥∥A where CCA comprises the event structure with
polarity A⊥∥A together with extra causal dependencies c ≤CCA c for all events
c with polA⊥∥A(c) = +, and γA is the identity on the set of events common to
both CCA and A⊥∥A.

4.3.2 Composing pre-strategies

Consider two pre-strategies σ ∶ A + //B and τ ∶ B + //C as spans:

S
σ1

~~

σ2

��
A⊥ B

T
τ1

~~

τ2

  
B⊥ C .

We show how to define their composition τ⊙σ ∶ A + //C. If we ignore polarities
the partial maps of event structures σ2 and τ1 have a common codomain, the
underlying event structure of B and B⊥. The composition τ⊙σ will be con-
structed as a synchronized composition of S and T , in which output events of S
synchronize with input events of T , followed by an operation of hiding ‘internal’
synchronization events. Only those events s from S and t from T for which
σ2(s) = τ1(t) synchronize; note that then s and t must have opposite polarities
as this is so for their images σ2(s) in B and τ1(t) in B⊥. The event result-
ing from the synchronization of s and t has indeterminate polarity and will be
hidden in the composition τ⊙σ.

Formally, we use the construction of synchronized composition and projec-
tion of Section 3.3.3. Via projection we hide all those events with undefined
polarity.

We first define the composition of the families of configurations of S and T
as a synchronized composition of stable families. We form the product of stable
families C(S) × C(T ) with projections π1 and π2, and then form a restriction:

C(T )⊙C(S) =def C(S) × C(T ) ↾R

where

R = {(s,∗) ∣ s ∈ S & σ1(s) is defined}∪

{(s, t) ∣ s ∈ S & t ∈ T & σ2(s) = τ1(t) with both defined}∪

{(∗, t) ∣ t ∈ T & τ2(t) is defined} .

The stable family C(T )⊙ C(S) is the synchronized composition of the stable
families C(S) and C(T ) in which synchronizations are between events of S and
T which project, under σ2 and τ1 respectively, to complementary events in B
and B⊥. The stable family C(T )⊙C(S) represents all the configurations of the
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composition of pre-strategies, including internal events arising from synchro-
nizations. We obtain the synchronized composition as an event structure by
forming Pr( C(T )⊙ C(S)), in which events are the primes of C(T )⊙ C(S). This
synchronized composition still has internal events.

To obtain the composition of pre-strategies we hide the internal events due
to synchronizations. The event structure of the composition of pre-strategies is
defined to be

T⊙S =def Pr(C(T )⊙C(S)) ↓ V ,

the projection onto “visible” events,

V = {p ∈ Pr(C(T )⊙C(S)) ∣ ∃s ∈ S. max(p) = (s,∗)} ∪

{p ∈ Pr(C(T )⊙C(S)) ∣ ∃t ∈ T. max(p) = (∗, t)} .

Finally, the composition τ⊙σ is defined by the span

T⊙S
υ1

||

υ2

""
A⊥ C

where υ1 and υ2 are maps of event structures, which on events p of T⊙S act
so υ1(p) = σ1(s) when max(p) = (s,∗) and υ2(p) = τ2(t) when max(p) = (∗, t),
and are undefined elsewhere.

Proposition 4.2. Above, υ1 and υ2 are partial maps of event structures with
polarity, which together define a pre-strategy υ ∶ A + //C. For x ∈ C(T⊙S),

υ1x = σ1π1⋃x and υ2x = τ2π2⋃x .

Proof. Consider the two maps of event structures

u1 ∶Pr(C(T )⊙C(S))
Π1
Ð→S

σ1
Ð→A⊥ ,

u2 ∶Pr(C(T )⊙C(S))
Π2
Ð→T

τ2
Ð→C ,

where Π1,Π2 are (restrictions of) projections of the product of event structures.
E.g. for p ∈ Pr(C(T )⊙C(S)), Π1(p) = s precisely when max(p) = (s,∗), so σ1(s)
is defined, or when max(p) = (s, t), so σ1(s) is undefined. The partial functions
υ1 and υ2 are restrictions of the two maps u1 and u2 to the projection set V .
But V consists exactly of those events in Pr(C(T )⊙ C(S)) where u1 or u2 is
defined. It follows that υ1 and υ2 are maps of event structures.

Clearly one and only one of υ1, υ2 are defined on any event in T⊙S so they
form a pre-strategy. Their effect on x ∈ C(T⊙S) follows directly from their
definition. ◻

Proposition 4.3. Let σ ∶ A + //B, τ ∶ B + //C and υ ∶ C + //D be pre-strategies.
The two compositions υ⊙(τ⊙σ) and (υ⊙τ)⊙σ are isomorphic.

Proof. The natural isomorphism S × (T × U) ≅ (S × T ) × U , associated with
the product of event structures S,T,U , restricts to the required isomorphism of
spans as the synchronizations involved in successive compositions are disjoint.◻



26 CHAPTER 4. GAMES AND STRATEGIES

4.3.3 Composition via pullback

We can alternatively present the composition of pre-strategies via pullbacks.2

For this section assume that the correspondence a ↔ a between the events of
A and its dual A⊥ is the identity, so A and A⊥ share the same events, though
assign opposite polarities to them. Given two pre-strategies σ ∶ S → A⊥∥B and
τ ∶ T → B⊥∥C, ignoring polarities we can consider the maps on the underlying
event structures, viz. σ ∶ S → A∥B and τ ∶ T → B∥C. Viewed this way we can
form the pullback in E (or Et, as the maps along which we are pulling back are
total)

P

yy %%
S∥C

σ∥C $$

A∥T

A∥τzz
A∥B∥C .

There is an obvious partial map of event structures A∥B∥C → A∥C undefined
on B and acting as identity on A and C. The partial map from P to A∥C given
by following the diagram (either way round the pullback square)

P

zz $$
S∥C

σ∥C $$

A∥T

A∥τzz
A∥B∥C

��
A∥C

factors through the projection of P to V , those events at which the partial map
is defined:

P → P ↓ V → A∥C .

The resulting total map υ ∶ P ↓ V → A∥C gives us the composition τ⊙σ ∶ P ↓
V → A⊥∥C once we reinstate polarities.

2I’m grateful to Nathan Bowler for the observations of this section.
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4.3.4 Duality

A pre-strategy σ ∶ A + //B corresponds to a dual pre-strategy σ⊥ ∶ B⊥ + //A⊥.
This duality arises from the correspondence

S

σ1

~~

σ2

��
A⊥ B

←→ S

σ2

||

σ1

  
(B⊥)⊥ A⊥ .

It is easy to check that the dual of copy-cat, γ⊥A, is isomorphic, as a span, to
the copy-cat of the dual, γA⊥ , for A an event structure with polarity. It is also
straightforward, though more involved, to show that the dual of a composition
of pre-strategies (τ⊙σ)⊥ is isomorphic as a span to the composition σ⊥⊙τ⊥.
Duality, as usual, will save us work.

4.4 Strategies

This section is devoted to the main result of this chapter: that two conditions
on pre-strategies, receptivity and innocence, are necessary and sufficient in order
for copy-cat to behave as identity w.r.t. the composition of pre-strategies. It be-
comes compelling to define a (nondeterministic) concurrent strategy, in general,
as a pre-strategy which is receptive and innocent.

4.4.1 Necessity of receptivity and innocence

The properties of receptivity and innocence of a pre-strategy, described below,
will play a central role.

Receptivity. Say a pre-strategy σ ∶ S → A is receptive when σx
a

−Ð⊂ & polA(a) =

−⇒ ∃!s ∈ S. x
s

−Ð⊂ & σ(s) = a , for all x ∈ C(S), a ∈ A. Receptivity ensures that
no Opponent move which is possible is disallowed.
Innocence. Say a pre-strategy σ is innocent when it is both +-innocent and
−-innocent:
+-Innocence: If s _ s′ & pol(s) = + then σ(s) _ σ(s′).
−-Innocence: If s _ s′ & pol(s′) = − then σ(s) _ σ(s′).

The definition of a pre-strategy σ ∶ S → A ensures that the moves of Player
and Opponent respect the causal constraints of the game A. Innocence restricts
Player further. Locally, within a configuration, Player may only introduce new
relations of immediate causality of the form ⊖ _ ⊕ . Thus innocence gives Player
the freedom to await Opponent moves before making their move, but prevents
Player having any influence on the moves of Opponent beyond those stipulated
in the game A; more surprisingly, innocence also disallows any immediate causal-
ity of the form ⊕ _ ⊕, purely between Player moves, not already stipulated in
the game A.

Two important consequences of −-innocence:
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Lemma 4.4. Let σ ∶ S → A be a pre-strategy. Suppose, for s, s′ ∈ S, that

[s) ↑ [s′) & polS(s) = polS(s
′) = − & σ(s) = σ(s′) .

(i) If σ is −-innocent, then [s) = [s′).
(ii) If σ is receptive and −-innocent, then s = s′.
[x ↑ y expresses the compatibility of x, y ∈ C(S).]

Proof. (i) Assume the property above holds of s, s′ ∈ S. Assume σ is −-innocent.
Suppose s1 _ s. Then by −-innocence, σ(s1) _ σ(s). As σ(s′) = σ(s) and σ is
a map of event structures there is s2 < s′ such that σ(s2) = σ(s1). But s1, s2

both belong to the configuration [s)∪ [s′) so s1 = s2, as σ is a map, and s1 < s
′.

Symmetrically, if s1 _ s′ then s1 < s. It follows that [s) = [s′). (ii) Now both

[s)
s

−Ð⊂ and [s)
s′

−Ð⊂ with σ(s) = σ(s′) where both s, s′ have −ve polarity. If,
further, σ is receptive, s = s′. ◻

Let x and x′ be configurations of an event structure with polarity. Write
x ⊆− x′ to mean x ⊆ x′ and pol(x′∖x) ⊆ {−}, i.e. the configuration x′ extends the
configuration x solely by events of −ve polarity. In the presence of −-innocence,
receptivity strengthens to the following useful property:

Lemma 4.5. Let σ ∶ S → A be a −-innocent pre-strategy. The pre-strategy σ
is receptive iff whenever σx ⊆− y in C(A) there is a unique x′ ∈ C(S) so that
x ⊆ x′ & σx′ = y . Diagrammatically,

x_

σ

��

⊆ x′_

σ

��
σx ⊆− y .

[It will necessarily be the case that x ⊆− x′.]

Proof. “if”: Clear. “Only if”: Assuming σx ⊆− y we can form a covering chain

σx
a1
−Ð⊂ y1⋯

an
−Ð⊂ yn = y .

By repeated use of receptivity we obtain the existence of x′ where x ⊆ x′ and
σx′ = y. To show the uniqueness of x′ suppose x ⊆ z, z′ and σz = σz′ = y.
Suppose that z /= z′. Then, without loss of generality, suppose there is a ≤S-
minimal s′ ∈ z′ with s′ ∉ z. Then [s′) ⊆ z. Now σ(s′) ∈ y so there is s ∈ z for
which σ(s) = σ(s′). We have [s), [s′) ⊆ z so [s) ↑ [s′). By Lemma 4.4(ii) we
deduce s = s′ so s′ ∈ z, a contradiction. Hence, z = z′. ◻

It is useful to define innocence and receptivity on partial maps of event
structures with polarity.

Definition 4.6. Let f ∶ S → A be a partial map of event structures with
polarity. Say f is receptive when

f(x)
a

−Ð⊂ & polA(a) = − Ô⇒ ∃!s ∈ S. x
s

−Ð⊂ & f(s) = a
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for all x ∈ C(S), a ∈ A.
Say f is innocent when it is both +-innocent and −-innocent, i.e.

s _ s′ & pol(s) = + & f(s) is defined Ô⇒

f(s′) is defined & f(s) _ f(s′) ,

s _ s′ & pol(s′) = − & f(s′) is defined Ô⇒

f(s) is defined & f(s) _ f(s′) .

Proposition 4.7. A pre-strategy σ ∶ A + //B is receptive, respectively +/−-
innocent, iff both the partial maps σ1 and σ2 of its span are receptive, respectively
+/−-innocent.

Proposition 4.8. For σ ∶ A + //B a pre-strategy, σ1 is receptive, respectively
+/−-innocent, iff (σ⊥)2 is receptive, respectively +/−-innocent; σ is receptive and
innocent iff σ⊥ is receptive and innocent.

The next lemma will play a major role in importing receptivity and innocence
to compositions of pre-strategies.

Lemma 4.9. For pre-strategies σ ∶ A + //B and τ ∶ B + //C, if σ1 is receptive,
respectively +/−-innocent, then (τ⊙σ)1 is receptive, respectively +/−-innocent.

Proof. Abbreviate τ⊙σ to υ.
Receptivity: We show the receptivity of υ1 assuming that σ1 is receptive. Let

x ∈ C(T⊙S) such that υ1x
a

−Ð⊂ in C(A⊥) with polA⊥(a) = −. By Proposition 4.2,

σ1π1⋃x
a

−Ð⊂ with π1⋃x ∈ C(S). As σ1 is receptive there is a unique s ∈ S such

that π1⋃x
s

−Ð⊂ in S and σ1(s) = a. It follows that ⋃x
(s,∗)
−Ð⊂ z, for some z, in

C(T )⊙C(S). Defining p =def [(s,∗)]z we obtain x
p

−Ð⊂ and υ1(p) = a, with p the
unique such event.
Innocence: Assume that σ1 is innocent. To show the +-innocence of υ1 we first
establish a property of the _-relation in the event structure Pr(C(T )⊙C(S)),
the synchronized composition of event structures S and T , before projection to
V :

If e _ e′ in Pr(C(T )⊙C(S)) with e ∈ V , pol(e) = + and υ1(e) defined,
then e′ ∈ V and υ1(e

′) is defined.

Assume e _ e′ in Pr(C(T )⊙ C(S)), e ∈ V , pol(e) = + and υ1(e) is defined.
From the definition of Pr(C(T )⊙C(S)), the event e is a prime configuration
of C(T )⊙ C(S) where max(e) must have the form (s,∗), for some event s of
S where σ1(s) is defined. By Lemma 3.16, max(e′) has the form (s′,∗) or
(s′, t) with s _ s′ in S. Now, as s _ s′ and pol(s) = +, from the +-innocence
of σ1, we obtain σ1(s) _ σ1(s

′) in A⊥∥A. Whence σ1(s
′) is defined ensuring

max(e′) = (s′,∗). It follows that e′ ∈ V and υ1(e
′) is defined.

Now suppose e _ e′ in T⊙S. Then either
(i) e _ e′ in Pr(C(T )⊙C(S)), or
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(ii) e _ e1 < e
′ in Pr(C(T )⊙C(S)) for some ‘invisible’ event e1 ∉ V .

But the above argument shows that case (ii) cannot occur when pol(e) = +
and υ1(e) is defined. It follows that whenever e _ e′ in T⊙S with pol(e) = +
and υ1(e) defined, then υ1(e

′) is defined and υ1(e) _ υ1(e
′), as required.

The argument showing −-innocence of υ1 assuming that of σ1 is similar. ◻

Corollary 4.10. For pre-strategies σ ∶ A + //B and τ ∶ B + //C, if τ2 is re-
ceptive, respectively +/−-innocent, then (τ⊙σ)2 is receptive, respectively +/−-
innocent.

Proof. By duality using Lemma 4.9: if τ2 is receptive, respectively +/−-innocent,
then (τ⊥)1 is receptive, respectively +/−-innocent, and hence (σ⊥⊙τ⊥)1 = ((τ⊙σ)⊥)1 =
(τ⊙σ)2 is receptive, respectively +/−-innocent. ◻

Lemma 4.11. For an event structure with polarity A, the pre-strategy copy-cat
γA ∶ A + //A is receptive and innocent.

Proof. Receptive: Suppose x ∈ C(CCA) such that γAx
c

−Ð⊂ in C(A⊥∥A) where
polA⊥∥A(c) = −. Now γAx = x and x′ =def x∪ {c} ∈ C(A⊥∥A). Proposition 4.1(ii)
characterizes those configurations of A⊥∥A which are also configurations of CCA:
the characterization applies to x and to its extension x′ = x∪{c} because of the

−ve polarity of c. Hence x′ ∈ C(CCA) and x
c

−Ð⊂x′ in C(CCA), and clearly c is
unique so γA(c) = c.

−-Innocent: Suppose c _ c′ in CCA and pol(c′) = −. By Proposition 4.1(i),
c _ c′ in A⊥∥A. The argument for +-innocence is similar. ◻

Theorem 4.12. Let σ ∶ A + //B be a pre-strategy from A to B. If σ⊙γA ≅ σ
and γB⊙σ ≅ σ, then σ is receptive and innocent.

Let σ ∶ A + //B and τ ∶ B + //C be pre-strategies which are both receptive and
innocent. Then their composition τ⊙σ ∶ A + //C is receptive and innocent.

Proof. We know the copy-cat pre-strategies γA and γB are receptive and
innocent—Lemma 4.11. Assume σ⊙γA ≅ σ and γB⊙σ ≅ σ. By Lemma 4.9,
(σ⊙γA)1 is receptive and innocent so σ1 is receptive and innocent. From its
dual, Corollary 4.10, (γB⊙σ)2 so σ2 is receptive and innocent. Hence σ is
receptive and innocent.

Assume that σ ∶ A + //B and τ ∶ B + //C are receptive and innocent. The fact
that σ is receptive and innocent ensures that (τ⊙σ)1 is receptive and innocent,
that τ is receptive and innocent that (τ⊙σ)2 is too. Combining, we obtain that
τ⊙σ is receptive and innocent. ◻

In other words, if a pre-strategy is to compose well with copy-cat, in the
sense that copy-cat behaves as an identity w.r.t. composition, the pre-strategy
must be receptive and innocent. Copy-cat behaving as identity is a hallmark
of game-based semantics, so any sensible definition of concurrent strategy will
have to ensure receptivity and innocence.
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4.4.2 Sufficiency of receptivity and innocence

In fact, as we will now see, not only are the conditions of receptivity and inno-
cence on pre-strategies necessary to ensure that copy-cat acts as identity. They
are also sufficient.

Technically, this section establishes that for a pre-strategy σ ∶ A + //B which
is receptive and innocent both the compositions σ⊙γA and γB⊙σ are isomor-
phic to σ. We shall concentrate on the isomorphism from σ⊙γA to σ. The
isomorphism from γB⊙σ to σ follows by duality.

Recall, from Section 4.3.2, the construction of the pre-strategy σ⊙γA as
a total map S⊙CCA → A⊥∥B. The event structure S⊙CCA is built from the
synchronized composition of stable families C(S)⊙C(CCA), a restriction of the
product of stable families to events

{(c,∗) ∣ c ∈ CCA & γA1(c) is defined}∪

{(c, s) ∣ c ∈ CCA & s ∈ S & γA2(c) = σ1(s)}∪

{(∗, s) ∣ s ∈ S & σ2(t) is defined} ∶

C(S)⊙C(CCA)

π1ww
π2 &&

C(CCA)

γA1zz
γA2 ''

C(S)

σ1xx
σ2 ##

C(A⊥) C(A) C(A⊥) C(B)

Finally S⊙CCA is obtained from the prime configurations ofC(S)⊙C(CCA) whose
maximum events are defined under γA1π1 or σ2π2.

We will first present the putative isomorphism from σ⊙γA to σ as a total
map of event structures θ ∶ S⊙CCA → S. The definition of θ depends crucially
on the lemmas below. They involve special configurations of C(S)⊙C(CCA),
viz. those of the form ⋃x , where x is a configuration of S⊙CCA.

Lemma 4.13. For x ∈ C(S⊙CCA),

(c, s) ∈⋃x Ô⇒ (c,∗) ∈⋃x .

Proof. The case when pol(c) = + follows directly because then c _ c in CCA so
(c,∗) _⋃x (c, s).
Suppose the lemma fails in the case when pol(c) = −, so there is a ≤⋃x-maximal
(c, s) ∈ ⋃x such that

pol(c) = − & (c,∗) ∉⋃x . (†)

The event (c, s) cannot be maximal in ⋃x as its maximal events take the form
(c′,∗) or (∗, s′). There must be e ∈ ⋃x for which

(c, s) _⋃x e .
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Consider the possible forms of e:
Case e = (c′, s′): Then, by Lemma 3.16, either c _ c′ in CCA or s _ s′ in S.
However if s _ s′ then, as pol(s) = + by innocence, σ1(s) _ σ1(s

′) in A⊥, so
γA2(c) _ γA2(c

′) in A; but then c _ c′ in CCA. Either way, c _ c′ in CCA.
Suppose pol(c′) = +. Then,

(c, s) _⋃x (c,∗) _⋃x (c′,∗) _⋃x (c′, s′) .

But this contradicts (c, s) _⋃x (c′, s′).
Suppose pol(c′) = −. Because (c, s) is maximal such that (†), (c′,∗) ∈ ⋃x.

But (c,∗) _⋃x (c′,∗) whence (c,∗) ∈ ⋃x, contradicting (†).
Case e = (∗, s′): Now (c, s) _⋃x (∗, s′). By Lemma 3.16, s _ s′ in S with
pol(s) = +. By innocence, σ1(s) _ σ1(s

′) and in particular σ1(s
′) is defined,

which forbids (∗, s′) as an event of C(S)⊙C(CCA).
Case e = (c′,∗): Now (c, s) _⋃x (c′,∗). By Lemma 3.16, c _ c′ in CCA.
Because (c, s) and (c′,∗) are events of C(S)⊙C(CCA) we must have γ2(c) and
γ1(c

′) are defined—they are in different components of CCA. By Proposition 4.1,
c′ = c, contradicting (†).

In all cases we obtain a contradiction—hence the lemma. ◻

Lemma 4.14. For x ∈ C(S⊙CCA),

σ1π2⋃x ⊆− γA1π1⋃x .

Proof. As a direct corollary of Lemma 4.13, we obtain:

σ1π2⋃x ⊆ γA1π1⋃x .

The current lemma will follow provided all events of +ve polarity in γA1π1⋃x
are in σ1π2⋃x. However, (c, s) _⋃x (c,∗), for some s ∈ S, when pol(c) = +. ◻

Lemma 4.15. For x ∈ C(S⊙CCA),

σπ2⋃x ⊆− σ⊙γA x .

Proof.

σπ2⋃x = {1} × σ1π2⋃x ∪ {2} × σ2π2⋃x

⊆− {1} × γA1π1⋃x ∪ {2} × σ2π2⋃x , by Lemma 4.14

= σ⊙γA x , by Proposition 4.2.

◻

Lemma 4.15 is the key to defining a map θ ∶ S⊙CCA → S via the following
map-lifting property of receptive, −-innocent maps:

Lemma 4.16. Let σ ∶ S → C be a total map of event structures with polar-
ity which is receptive and −-innocent. Let p ∶ C(V ) → C(S) be a monotonic
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function, i.e. such that p(x) ⊆ p(y) whenever x ⊆ y in C(V ). Let υ ∶ V → C be
a total map of event structures with polarity such that

∀x ∈ C(V ). σp(x) ⊆− υ x .

Then, there is a unique total map θ ∶ V → S of event structures with polarity such
that ∀x ∈ C(V ). p(x) ⊆− θ x and υ = σθ ∶

V

θ

��

υ

⊆−

!!

p

⊆−

// S

σ

��
C .

[We use a broken arrow to signify that p is not a map of event structures.]

Proof. Let x ∈ C(V ). Then σp(x) ⊆− υ x. Define Θ(x) to be the unique
configuration of C(S), determined by the receptivity of σ—Lemma 4.5, such
that

p(x)
_

σ

��

⊆− Θ(x)
_

σ

��
σp(x) ⊆− υ x .

Define θx to be the composite bijection

θx ∶ x ≅ υx ≅ Θ(x)

where the bijection x ≅ υx is that determined locally by the total map of event
structures υ, and the bijection υx ≅ Θ(x) is the inverse of the bijection σ↾Θ(x) ∶
Θ(x) ≅ υ x determined locally by the total map σ.

Now, let y ∈ C(V ) with x ⊆ y. We claim that θx is the restriction of θy. This
will follow once we have shown that Θ(x) ⊆ Θ(y). Then, treating the inclusions
as inclusion maps, both squares in the diagram below will commute:

θy ∶ y ≅ υ y ≅ Θ(y)

θx ∶ x

⊆

≅ υ x

⊆

≅ Θ(x)

⊆

This will make the composite rectangle commute, i.e. make θx the restriction
of θy.

To show Θ(x) ⊆ Θ(y) we suppose otherwise. Then there is an event s ∈ Θ(x)
of minimum depth w.r.t. ≤S such that s ∉ Θ(y). Note that pol(s) = −, as
otherwise s ∈ p(x) ⊆ p(y) ⊆ Θ(y). As σ(s) ∈ υ x ⊆ υ y there is s′ ∈ Θ(y) such
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that σ(s′) = σ(s). From the minimality of s, both [s), [s′) ⊆ Θ(y) ensuring
the compatibility of [s) and [s′). By Lemma 4.4(ii), s = s′ and s ∈ Θ(y)—a
contradiction.

By Proposition 2.6, the family θx, x ∈ C(V ), determines the unique total map
θ ∶ V → S such that θ x = Θ(x). By construction, p(x) ⊆− θ x, for all x ∈ C(V ),
and υ = σθ. This property in itself ensures that θ x = Θ(x) so determines θ
uniquely. ◻

In Lemma 4.16, instantiate p ∶ C(S⊙CCA) → C(S) to the function p(x) =
π2⋃x for x ∈ C(S⊙CCA), the map σ to the pre-strategy σ ∶ S → A⊥∥B and υ to
the pre-strategy σ⊙γA. By Lemma 4.15, σπ2⋃x ⊆− σ⊙γA x, so the conditions
of Lemma 4.16 are met and we obtain a total map θ ∶ S⊙CCA → S such that
π2⋃x ⊆

− θ x, for all x ∈ C(S⊙CCA), and σθ = σ⊙γA:

S⊙CCA

θ

��

σ⊙γA

⊆−

%%

p

⊆−

// S

σ

��
A⊥∥B .

The next lemma is used in showing θ is an isomorphism.

Lemma 4.17. (i) Let z ∈ C(S)⊙C(CCA). If e ≤z e
′ and π2(e) and π2(e

′) are
defined, then π2(e) ≤S π2(e

′). (ii) The map π2 is surjective on configurations.

Proof. (i) It suffices to show when

e _z e1 _z ⋯ _z en−1 _z e
′

with π2(e) and π2(e
′) defined and all π2(ei), 1 ≤ i ≤ n − 1, undefined, that

π2(e) ≤S π2(e
′).

Case n = 1, so e _z e
′: Use Lemma 3.16. If either e or e′ has the form (∗, s)

then the other event must have the form (∗, s′) or (c′, s′) with s _ s′ in S. In
the remaining case e = (c, s) and e′ = (c′, s′) with either (1) c _ c′ in CCA, and
γA2(c) _ γA2(c

′) in A, or (2) s _ s′ in S. If (1), σ1(s) _ σ1(s
′) in A⊥ where

s, s′ ∈ π2z. By Proposition 3.5, s ≤S s
′. In either case (1) or (2), π2(e) ≤S π2(e

′).
Case n > 1: Each ei has the form (ci,∗), for 1 ≤ i ≤ n−1. By Lemma 3.16, events
e and e′ must have the form (c, s) and (c′, s′) with c _ c1 and cn−1 _ c′ in CCA.
As γA1(c) and γA2(c1) are defined, c1 = c and similarly cn−1 = c′. Again by
Lemma 3.16, ci _ ci+1 in CCA for 1 ≤ i ≤ i−2. Consequently γA2(c) ≤A γA2(c

′).
Now, s, s′ ∈ π2z with σ1(s) ≤A⊥ σ1(s

′). By Proposition 3.5, s ≤S s
′, as required.

(ii) Let y ∈ C(S). Then σ1y ∈ C(A⊥) and by the clear surjectivity of γA2 on
configurations there exists w ∈ C(CCA) such that γA2w = σ1y. Now let

z ={(c,∗) ∣ c ∈ w & γA1(c) is defined}

∪{(c, s) ∣ c ∈ w & s ∈ y & γA2(c) = σ1(s)}

∪{(∗, s) ∣ s ∈ y & σ2(s) is defined} .
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Then, from the definition of the product of stable families—3.3.1, it can be
checked that z ∈ C(S)⊙C(CCA). By construction, π2z = y. Hence π2 is surjective
on configurations. ◻

Theorem 4.18. θ ∶ σ⊙γA ≅ σ, an isomorphism of pre-strategies.

Proof. We show θ is an isomorphism of event structures by showing θ is rigid
and both surjective and injective on configurations (Lemma 3.3 of [7]). The rest
is routine.
Rigid: It suffices to show p _ p′ in S⊙CCA implies θ(p) ≤S θ(p′). Suppose
p _ p′ in S⊙CCA with max(p) = e and max(p′) = e′. Take x ∈ C(S⊙CCA)
containing p′ so p too. Then

e _⋃x e1 _⋃x ⋯ _⋃x en−1 _⋃x e
′

where e, e′ ∈ V0 and ei ∉ V0 for 1 ≤ i ≤ n−1. (V0 consists of ‘visible’ events of the
form (c,∗) with γA1(c) defined, or (∗, s), with σ2(s) defined.)
Case n = 1, so e _⋃x e

′: By Lemma 3.16, either (i) e = (∗, s) and e′ = (∗, s′)
with s _ s′ in S, or (ii) e = (c,∗) and e′ = (c′,∗) with c _ c′ in CCA.
If (i), we observe, via σθ = σ⊙γA, that s ∈ π2⋃x ⊆ θx and θ(p) ∈ θx with
σ(θ(p)) = σ(s), so θ(p) = s by the local injectivity of σ. Similarly, θ(p′) = s′, so
θ(p) ≤S θ(p

′).
If (ii), we obtain θ(p), θ(p′) ∈ θx with σ1θ(p) = γA1(c), σ1θ(p

′) = γA1(c
′) and

γA1(c) _ γA1(c
′) in A⊥. By Proposition 3.5, θ(p) ≤S θ(p

′).
Case n > 1: Note ei = (ci, si) for 1 ≤ i ≤ n − 1, and that s1 ≤S sn−1 by
Lemma 4.17(i). Consider the case in which e = (c,∗) and e′ = (c′,∗)—the
other cases are similar. By Lemma 3.16, c _ c1 and cn−1 _ c′ in CCA. But
γA1(c) and γA2(c1) are defined, so c1 = c, and similarly cn−1 = c′. We remark
that θ(p) = s1, by the local injectivity of σ, as both s1 ∈ π2⋃x ⊆ θx and θ(p) ∈ θx
with σ(θ(p)) = σ(s1). Similarly θ(p′) = sn−1 , whence θ(p) ≤S θ(p

′).
Surjective: Let y ∈ C(S). By Lemma 4.17(ii), there is z ∈ C(S)⊙C(CCA) such
that π2z = y. Let

z′ = z ∪ {(c,∗) ∣ pol(c) = + & ∃s ∈ S. (c, s) ∈ z} .

It is straightforward to check z′ ∈ C(S)⊙C(CCA). Now let

z′′ = z′ ∖ {(c,∗) ∣ pol(c) = − & ∀s ∈ S. (c, s) ∉ z′} .

Then z′′ ∈ C(S)⊙C(CCA) by the following argument. The set z′′ is certainly
consistent, so it suffices to show

pol(c) = − & (c,∗) ≤z′ e ∈ z
′′ Ô⇒ ∃s ∈ S. (c, s) ∈ z′ ,

for all c ∈ CCA and e ∈ z′′. This we do by induction on the number of events
between (c,∗) and e. Suppose

pol(c) = − & (c,∗) _z′ e1 ≤z′ e ∈ z
′ .
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In the case where e1 = (c1, s1), we deduce c _ c1 in CCA and as γA1(c) is
defined while γA2(c1) is defined, we must have c1 = c, as required. In the case
where e1 = (c1,∗) and pol(c1) = −, by induction, we obtain (c1, s1) ∈ z

′ for some
s1 ∈ S. Also c _ c1, so c _ c1 in CCA. As z′ is a configuration we must have
(c, s) ≤z′ (c1, s1), for some s ∈ S, so (c, s) ∈ z′. In the case where e1 = (c1,∗)
and pol(c1) = +, we have c _ c1 in CCA. Moreover, (c1, s) ∈ z

′, for some s ∈ S,
as z′ is a configuration and c1 _ c1 in CCA. Again, from the fact that z′ is a
configuration, there must be (c, s) ∈ z′ for some s ∈ S. We have exhausted all
cases and conclude z′′ ∈ C(S)⊙C(CCA) with θz′′ = π2z = y, as required to show
θ is surjective on configurations.
Injective: Abbreviate σ⊙γA to υ. Assume θx = θy, where x, y ∈ C(S⊙CCA). Via
the commutativity υ = σθ, we observe

υx = σθ x = σθ y = υy .

Recall by Proposition 4.2, that υ1x = γA1π1⋃x = π1⋃x. It follows that

(c,∗) ∈⋃x ⇐⇒ c ∈ υ1x ⇐⇒ c ∈ υ1y ⇐⇒ (c,∗) ∈⋃ y .

Observe
(∗, s) ∈⋃x ⇐⇒ σ2(s) is defined & s ∈ θx ∶

“⇒” by the local injectivity of σ2, as p =def [(∗, s)]⋃x yields θ(p) ∈ θx and
s ∈ π2⋃x ⊆ θx with σ2(θ(p)) = σ2(s), so θ(p) = s; “⇐” as σ2(s) defined and
s ∈ θx entails s = θ(p) for some p ∈ x, necessarily with max(p) = (∗, s). Hence

(∗, s) ∈⋃x ⇐⇒ σ2(s) is defined & s ∈ θx

⇐⇒ σ2(s) is defined & s ∈ θy

⇐⇒ (∗, s) ∈⋃ y .

Assuming (c, s) ∈ ⋃x we now show (c, s) ∈ ⋃ y. (The converse holds by
symmetry.) There is p ∈ x, such that (c, s) ∈ p. If max(p) = (∗, s′) (also in

⋃ y as it is visible) then as π2 is rigid, s ≤ s′ and we must have (c′, s) ∈ ⋃ y.
Otherwise, max(p) = (d,∗) and we can suppose (by taking p minimal) that
(c, s) ≤⋃x (d′, s′) _⋃x (d,∗). But then θ(p) = s′ ∈ θx = θy. Also s ≤S s

′, by the
rigidity of π2, and, as we have seen before, d′ = d with d′ −ve. Hence s′ is +ve
and as θy is a −ve extension of π2⋃ y we must have s′ ∈ π2⋃ y. Hence there is
(∗, s′) or (c′′, s′) in ⋃ y, and as s ≤S s

′ there is some (c′, s) ∈ ⋃ y. In both cases,

γA2(c
′) = σ1(s) = γA2(c), so c′ = c, and thus (c, s) ∈ ⋃ y.

We conclude ⋃x = ⋃ y, so x = y, as required for injectivity. ◻

4.5 Concurrent strategies

Define a strategy to be a pre-strategy which is receptive and innocent. We obtain
a bicategory, Games, in which the objects are event structures with polarity—
the games, the arrows from A to B are strategies σ ∶ A + //B and the 2-cells are
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maps of spans. The vertical composition of 2-cells is the usual composition of
maps of spans. Horizontal composition is given by the composition of strategies
⊙ (which extends to a functor on 2-cells via the functoriality of synchronized
composition). The isomorphisms expressing associativity and the identity of
copy-cat are those of Proposition 4.3 and Theorem 4.18 with its dual.

4.5.1 Alternative characterizations

Via saturation conditions

An alternative description of concurrent strategies exhibits the correspondence
between innocence and earlier “saturation conditions,” reflecting specific inde-
pendence, in [8, 9, 10]:

Proposition 4.19. A strategy S in a game A comprises a total map of event
structures with polarityσ ∶ S → A such that

(i) σx
a

−Ð⊂ & polA(a) = −⇒ ∃!s ∈ S. x
s

−Ð⊂ & σ(s) = a , for all x ∈ C(S), a ∈ A.

(ii)(+) If x
e

−Ð⊂x1
e′
−Ð⊂ & polS(e) = + in C(S) and σx

σ(e′)
−Ð⊂ in C(A), then x

e′
−Ð⊂

in C(S).

(ii)(−) If x
e

−Ð⊂x1
e′
−Ð⊂ & polS(e

′) = − in C(S) and σx
σ(e′)
−Ð⊂ in C(A), then x

e′
−Ð⊂

in C(S).

Proof. Note that if x
e

−Ð⊂x1
e′
−Ð⊂ then either e co e′ or e _ e′. Condition (ii) is

a contrapositive reformulation of innocence. ◻

Via lifting conditions

Let x and x′ be configurations of an event structure with polarity. Write x ⊆+ x′

to mean x ⊆ x′ and pol(x′ ∖ x) ⊆ {+}, i.e. the configuration x′ extends the
configuration x solely by events of +ve polarity. With this notation in place we
can give an attractive characterization of concurrent strategies:

Proposition 4.20. A strategy S in a game A comprises a total map of event
structures with polarityσ ∶ S → A such that

(i) whenever y ⊆+ σx in C(A) there is a (necessarily unique) x′ ∈ C(S) so that
x′ ⊆ x & σx′ = y , i.e.

x′_

σ

��

⊆ x_

σ

��
y ⊆+ σx ,

and
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(ii) whenever σx ⊆− y in C(A) there is a unique x′ ∈ C(S) so that x ⊆ x′ & σx′ =
y , i.e.

x_

σ

��

⊆ x′_

σ

��
σx ⊆− y .

Proof. Let σ ∶ S → A be a total map of event structures with polarity. It is
claimed that σ is a strategy iff (i) and (ii).

“Only if”: Lemma 4.5 directly implies (ii). To establish (i) it suffices to show
the seemingly weaker property (ii)′ that

y
a

−Ð⊂σx & pol(a) = + Ô⇒ ∃x′ ∈ C(S). x′−Ð⊂x & σx′ = y

for a ∈ A,x ∈ C(S), y ∈ C(A). Then (ii), with y ⊆+ σx, follows by considering a
covering chain y−Ð⊂⋯−Ð⊂σx. (The uniqueness of x is a direct consequence of

σ being a total map of event structures.) To show (ii)′, suppose y
a

−Ð⊂σx with a
+ve. Then σ(s) = a for some unique s ∈ x with s +ve. Supposing s were not ≤-
maximal in x, then s _ s′ for some s′ ∈ x. By +-innocence a = σ(s) _ σ(s′) ∈ σx

implying a is not ≤-maximal in σx. This contradicts y
a

−Ð⊂σx. Hence s is ≤-
maximal and x′ =def x ∖ {s} ∈ C(S) with x′−Ð⊂x and σx′ = y.

“If”: Assume σ satisfies (i) and (ii). Clearly σ is receptive by (ii). We establish
innocence via Proposition 4.19.

Suppose x
s

−Ð⊂x1
s′

−Ð⊂x′ and pol(s) = + with σx
σ(s′)
−Ð⊂ y2. Then y2

σ(s)
−Ð⊂σx′ with

pol(σ(s)) = +. From (i) we obtain a unique x2 ∈ C(S) such that x2 ⊆ x′ and

σx2 = y2. As σ is a total map of event structures, we obtain x2
s

−Ð⊂x′ and

subsequently x
s′

−Ð⊂x2, as required by Proposition 4.19(ii)+.

Suppose x
s

−Ð⊂x1
s′

−Ð⊂x′ and pol(s′) = − with σx
σ(s′)
−Ð⊂ y2. The case where

pol(s) = + is covered by the previous argument: we obtain x
s′

−Ð⊂x2, as required
by Proposition 4.19(ii)−. Suppose pol(s) = −. We have

σx
σ(s′)
−Ð⊂ y2

σ(s)
−Ð⊂σx′ .

As σ is already known to be receptive, we obtain

x
e′
−Ð⊂x2

e
−Ð⊂x′′ & σx2 = y2 & σx′′ = σx′ .

From the uniqueness part of (ii) we deduce x′′ = x′. As σ is a total map of event

structures, e = s and e′ = s′ ensuring x
s′

−Ð⊂ , as required by Proposition 4.19(ii)−.
◻
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As its proof makes clear, condition (i) in Proposition 4.20 can be replaced
by: for all a ∈ A,x ∈ C(S), y ∈ C(A),

y
+

−Ð⊂σx Ô⇒ ∃x′ ∈ C(S). x′−Ð⊂x & σx′ = y , i.e.

x′_

σ

��

−Ð⊂ x_

σ

��
y +−Ð⊂ σx ,

where the relation
+

−Ð⊂ signifies the covering relation induced by an event of
+ve polarity.

Via +-moves

A strategy is determined by its +-moves. More precisely, a strategy σ ∶ S → A
determines a monotone function d ∶ C(S+) → C(A) given by d(x) = σ[x]S for
x ∈C(S+). The event structure S+ is the projection of S to its purely +-ve moves.
Intuitively, d specifies the position in the game at which Player moves occur.
The function d determines the original strategy σ via the universal property
described in the proposition below.

Proposition 4.21. Let σ ∶ S → A be a receptive −-innocent pre-strategy. Define
q ∶ S → S+ be the partial map of event structures with polarity mapping S to
its projection S+ comprising only the +ve events of S, so q y = y+ for y ∈ C(S).
Define the function d ∶ C(S+) → C(A) to act as d(x) = σ[x]S for x ∈ C(S+).
Then, d(qy) ⊆− σy for all y ∈ C(S), i.e.

S

σ ⊆−

��

q // S+

d}}
A.

(1)

[The dotted line indicates that d is not a map of event structures.]
Suppose f ∶ U → A is a total map and g ∶ U → S+ a partial map of event
structures with polarity such that d(gy) ⊆− fy for all y ∈ C(U), i.e.

U

f ⊆−

��

g // S+

d}}
A.

(2)

Then, there is a unique total map of event structures with polarity θ ∶ U → S
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such that f = σθ and g = qθ,

U

f ,,

θ //

g

��
S

σ ⊆−

��

q
// S+

d}}
A.

(3)

Proof. We first check (1). Letting y ∈ C(S),

d(q y) = d(y+) = σ[y+]S ⊆− y .

Suppose (2). Define p ∶ C(U)→ C(S) by taking

p(z) =def [g z]S .

Clearly p is monotonic and

σp(z) = σ[g z]S = d(gz) ⊆− f z

for all z ∈ C(U). By Lemma 4.16, there is a unique total map of event structures
with polarity θ ∶ U → S such that

f = σθ and ∀z ∈ C(U). p(z) ⊆− θ z .

From the latter, [g z]S ⊆− θz from which g z = (g z)+ = (θ z)+, so g z = qθ z, for
all z ∈ C(U). Hence we have the commuting diagram (3). Noting

∀z ∈ C(U). g z = (θ z)+ ⇐⇒ [g z]S ⊆− θz ,

we see that θ is the unique map making (3) commute.

It follows that a strategy σ is determined up to isomorphism by its ‘position
function’ d specifying at what state of the game Player moves are made. The
position functions d which arise from strategies have been characterized by Alex
Katovsky and GW [11].



Chapter 5

Deterministic strategies

This chapter concentrates on the important special case of deterministic con-
current strategies and their properties. They are shown to coincide with Melliès
and Mimram’s receptive ingenuous strategies.

5.0.2 Definition

We say an event structure with polarityS is deterministic iff

∀X ⊆fin S. Neg[X] ∈ ConS Ô⇒ X ∈ ConS ,

where Neg[X] =def {s′ ∈ S ∣ pol(s′) = − & ∃s ∈X. s′ ≤ s}. In other words, S is
deterministic iff any finite set of moves is consistent when it causally depends
only on a consistent set of opponent moves. We say a strategy σ ∶ S → A is
deterministic if S is deterministic.

There is a simple, more local, characterisation of what it means to be deter-
ministic.

Lemma 5.1. An event structure with polarityS is deterministic iff

∀s, s′ ∈ S,x ∈ C(S). x
s

−Ð⊂ & x
s′

−Ð⊂ & pol(s) = + Ô⇒ x ∪ {s, s′} ∈ C(S) .

Proof. “Only if”: Assume S is deterministic, x
s

−Ð⊂ , x
s′

−Ð⊂ and pol(s) = +. Take
X =def x ∪ {s, s′}. Then Neg[X] ⊆ x ∪ {s′} so Neg[X] ∈ ConS . As S is deter-
ministic, X ∈ ConS and being down-closed X = x ∪ {s, s′} ∈ C(S).
“If”: Assume S satisfies the property stated above in the proposition. Let
X ⊆fin S with Neg[X] ∈ ConS . Then the down-closure [Neg[X]] ∈ C(S). Clearly
[Neg[X]] ⊆ [X] where all events in [X] ∖ [Neg[X]] are necessarily positive.
Suppose, to obtain a contradiction, that X ∉ ConS . Then there is a maximal
z ∈ C(S) such that

[Neg[X]] ⊆ z ⊆ [X]

41
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and some e ∈ [X] ∖ z, necessarily positive, for which [e) ⊆ z. Take a covering
chain

[e)
s1
−Ð⊂ z1

s2
−Ð⊂⋯

sk
−Ð⊂ zk = z .

As [e)
e

−Ð⊂ [e] with e positive, by repeated use of the property of the lemma—

illustrated below—we obtain z
e

−Ð⊂ z′ in C(S) with [Neg[X]] ⊆ z′ ⊆ [X] , which
contradicts the maximality of z.

[e] −Ð⊂
s1

z′1 −Ð⊂
s2

⋯ −Ð⊂
sk

z′k = z′

[e)
−Ð

⊂

e

−Ð⊂
s1

z1

−Ð
⊂

e

−Ð⊂
s2

⋯

⋯

−Ð⊂
sk

zk

−Ð
⊂

e

= z

So, above, an event structure with polarity can fail to be deterministic in
two ways, either with pol(s) = pol(s′) = + or with pol(s) = + & pol(s′) = −. In
general for an event structure with polarity A the copy-cat strategy can fail to
be deterministic in either way, illustrated in the examples below.

Example 5.2. (i) Take A to consist of two positive events and one negative
event, with any two but not all three events consistent. The construction of CCA
is pictured:

⊖ _ ⊕

A⊥ ⊖ _ ⊕ A

⊕ ^ ⊖

Here γA is not deterministic: take x to be the set of all three negative events in
CCA and s, s′ to be the two positive events in the A component.
(ii) Take A to consist of two events, one positive and one negative event, incon-
sistent with each other. The construction CCA:

A⊥ ⊖ _ ⊕ A

⊕ ^ ⊖

To see CCA is not deterministic, take x to be the singleton set consisting e.g.of
the negative event on the left and s, s′ to be the positive and negative events on
the right.

5.0.3 The bicategory of deterministic strategies

We first characterise those games for which copy-cat is deterministic; they are
“race-free” in that they only allow immediate conflict between events of the
same polarity.

Lemma 5.3. Let A be an event structure with polarity. The copy-cat strategy
γA is deterministic iff A satisfies

∀x ∈ C(A). x
a

−Ð⊂ & x
a′
−Ð⊂ & pol(a) = + & pol(a′) = − Ô⇒ x ∪ {a, a′} ∈ C(A) .

(Race − free)
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Proof. “Only if”: Suppose x ∈ C(A) with x
a

−Ð⊂ and x
a′
−Ð⊂ where pol(a) = +

and pol(a′) = −. Construct y =def {(1, b) ∣ b ∈ x} ∪ {(1, a)} ∪ {(2, b) ∣ b ∈ x}.

Then y ∈ C(CCA) with y
(2,a)
−Ð⊂ and y

(2,a′)
−Ð⊂ , by Proposition 4.1. Assuming CCA is

deterministic, we obtain y ∪ {(2, a), (2, a′)} ∈ C(CCA), so y ∪ {(2, a), (2, a′)} ∈
C(A⊥∥A). This entails x ∪ {a, a′} ∈ C(A), as required to show (Race − free).
“If”: Assume A satisfies (Race − free). It suffices to show for X ⊆fin CCA, with
X down-closed, that Neg[X] ∈ ConCCA implies X ∈ ConCCA . Recall Z ∈ ConCCA

iff Z ∈ ConA⊥∥A.
Let X ⊆fin CCA with X down-closed. Assume Neg[X] ∈ ConCCA . Observe

(i) {c ∣ c ∈X & pol(c) = −} ⊆ Neg[X] and

(ii) {c ∣ c ∈X & pol(c) = +} ⊆ Neg[X] as by Proposition 4.1, X being down-
closed must contain c if it contains c with pol(c) = +.

Consider X2 =def {a ∣ (2, a) ∈X}. Then X2 is a finite down-closed subset of A.
From (i),

X−
2 =def {a ∈X2 ∣ pol(a) = −} ∈ ConA .

From (ii),
X+

2 =def {a ∈X2 ∣ pol(a) = +} ∈ ConA .

We show (Race − free) implies X2 ∈ ConA.
Define z− =def [X−

2 ] and z+ =def [X+
2 ]. Being down-closures of consistent

sets, z−, z+ ∈ C(A). We show z− ↑ z+ in C(A). First note z− ∩ z+ ∈ C(A). If
a ∈ z− ∖ z− ∩ z+ then pol(a) = −; otherwise, if pol(a) = + then a ∈ z+ a well as
a ∈ z− making a ∈ z− ∩ z+, a contradiction. Similarly, if a ∈ z+ ∖ z− ∩ z+ then
pol(a) = +. We can form covering chains

z− ∩ z+
p1

−Ð⊂x1

p2

−Ð⊂⋯
pk
−Ð⊂xk = z

− and z− ∩ z+
n1
−Ð⊂ y1

n2
−Ð⊂⋯

nl
−Ð⊂ yl = z

+

where each pi is positive and each nj is negative.
Consequently, by repeated use of (Race − free), we obtain xk ∪ yl ∈ C(A),

i.e. z+ ∪ z− ∈ C(A), as is illustrated below. But X2 ⊆ z+ ∪ z−, so X2 ∈ ConA.
A similar argument shows X1 =def {a ∈ A⊥ ∣ (1, a) ∈X} ∈ ConA⊥ . It follows that
X ∈ ConA⊥∥A, so X ∈ ConCCA as required.

yl −Ð⊂
p1

x1 ∪ yl −Ð⊂
p2

x2 ∪ yl −Ð⊂
p3

⋯ −Ð⊂
pk

xk ∪ yl

⋮

−Ð
⊂nl

⋮

−Ð
⊂nl

⋮ ⋯

−Ð
⊂nl

⋯ ⋯ ⋮

−Ð
⊂nl

y1

−Ð
⊂n2

−Ð⊂
p1

x1 ∪ y1

−Ð
⊂n2

−Ð⊂
p2

x2 ∪ y1 −Ð⊂
p3

−Ð
⊂n2

⋯ −Ð⊂
pk

xk ∪ y1

−Ð
⊂n2

z− ∩ z+

−Ð
⊂n1

−Ð⊂
p1

x1

−Ð
⊂n1

−Ð⊂
p2

x2 −Ð⊂
p3

−Ð
⊂n1

⋯ −Ð⊂
pk

xk

−Ð
⊂n1
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Via the next lemma, when games satisfy (Race − free) we can simplify the
condition for a strategy to be deterministic.

Lemma 5.4. Let σ ∶ S → A be a strategy. Suppose x
s

−Ð⊂ y & x
s′

−Ð⊂ y′ & polS(s) =
− . Then, σy ↑ σy′ in C(A) Ô⇒ y ↑ y′ in C(S) .

Proof. Assume σy ↑ σy′ in C(A), so σy′
σ(s)
−Ð⊂σy∪σy′ in C(A). As σ(s) is −ve, by

receptivity, there is a unique s′′ ∈ S, necessarily negative, such that σ(s′′) = σ(s)

and y′
s′′
−Ð⊂x∪{s′, s′′} in C(S). In particular, x∪{s′, s′′} ∈ C(S). By −-innocence,

we cannot have s′ _ s′′, so x ∪ {s′′} ∈ C(S). But now x
s

−Ð⊂ and x
s′′
−Ð⊂ with

σ(s) = σ(s′′) and both s, s′′ negative and hence s′′ = s by the uniqueness part
of receptivity. We conclude that x ∪ {s′, s} ∈ C(S) so y ↑ y′.

Corollary 5.5. Assume A satisfies (Race − free) of Lemma 5.3. A strategy
σ ∶ S → A is deterministic iff for all positive events s, s′ ∈ S and configurations
x ∈ C(S),

x
s

−Ð⊂ & x
s′

−Ð⊂ Ô⇒ x ∪ {s, s′} ∈ C(S) .

Proof. “Only if”: clear. “If”: Let x
s

−Ð⊂ and x
s′

−Ð⊂ where polS(s) = +. For
S to be deterministic we require x ∪ {s, s′} ∈ C(S). The above assumption

ensures this when polS(s
′) = +. Otherwise polS(s

′) = − with σx
σ(s)
−Ð⊂ and σx

σ(s′)
−Ð⊂ .

As A satisfies (Race − free), σx ∪ σ(s), σ(s′) ∈ C(A). Now by Lemma 5.4,
x ∪ {s, s′} ∈ C(S).

Lemma 5.6. The composition τ⊙σ of deterministic strategies σ and τ is de-
terministic.

Proof. Let σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C be deterministic strategies. The
composition T⊙S is constructed as Pr(C(T )⊙ C(S)) ↓ V , a synchronised com-
position of event structures S and T projected to visible events e ∈ V where
max(e) has the form (s,∗) or (∗, t).

We first note a fact about the effect of internal, or “invisible,” events not in
V on configurations of C(T )⊙C(S). If

z
(s,t)
−Ð⊂w & z

(s′,t′)
−Ð⊂ w′ & w � w′ (1)

within C(T )⊙C(S), then either

π1z
s

−Ð⊂π1w & π1z
s′

−Ð⊂π1w
′ & π1w � π1w

′ , (2)

within C(S), or

π2z
t

−Ð⊂π2w & π2z
t′

−Ð⊂π2w
′ & π2w � π2w

′ , (3)

within C(T ). Assume (1). If t = t′ then σ(s) = τ(t) = τ(t′) = σ(s′) and we obtain
(2) as σ is a map of event structures. Similarly if s = s′ then (3). Supposing



45

s /= s′ and t /= t′ then if both (2) and (3) failed we could construct a configuration
z′ =def z ∪ {(s, t), (s′, t)} of C(T )⊙C(S), contradicting (1); it is easy to check
that z′ is a configuration of the product C(S) × C(T ) and its events are clearly
within the restriction used in defining the synchronised composition.

We now show the impossibility of (2) and (3), and so (1). Assume (2) (case
(3) is similar). One of s or s′ being positive would contradict S being determin-
istic. Suppose otherwise, that both s and s′ are negative. Then, because σ is a
strategy, by Lemma 5.4, we have

σ2π1w � σ2π1w
′

in C(B). Also, then both t and t′ are positive ensuring π2w ↑ π2w
′ in C(T ), as

T is deterministic. This entails

τ1π2w ↑ τ1π2w
′

in C(B⊥). But σ2π1w and τ1π2w, respectively σ2π1w
′ and τ1π2w

′, are the same
configurations on the common event structure underlying B and B⊥, of which
we have obtained contradictory statements of compatibility.

As (1) is impossible, it follows that

z
(s,t)
−Ð⊂w & z

(s′,t′)
−Ð⊂ w′ Ô⇒ w ↑ w′ (4)

within C(T )⊙C(S).

Finally, we can show that τ⊙σ is deterministic. Suppose x
p

−Ð⊂ y and x
p′
−Ð⊂ y′

in C(T⊙S) with pol(p) = +. Then,

⋃x
e1
−Ð⊂ z1

e2
−Ð⊂⋯

ek
−Ð⊂ zk =⋃ y and ⋃x

e′1
−Ð⊂ z′1

e′2
−Ð⊂⋯

e′l
−Ð⊂ z′l =⋃ y′

in C(T )⊙ C(S), where ek = max(p) and e′l = max(p′), and the events ei and
e′j otherwise have the form ei = (si, ti), when 1 ≤ i < k, and e′j = (s′j , t

′
j), when

1 ≤ j < l. By repeated use of (4) we obtain zk−1 ↑ z
′
l−1. (The argument is like

that ending the proof of Lemma 5.3, though with the minor difference that now

we may have ei = e
′
j .) We obtain w =def zk−1 ∪ z

′
l−1 ∈ C(T )⊙C(S) with w

ek
−Ð⊂

and w
e′l
−Ð⊂ and pol(ek) = +.

Now, w ∪ {ek, e
′
l} ∈ C(T )⊙C(S) provided w ∪ {ek, e

′
l} ∈ C(S) × C(T ). Inspect

the definition of configurations of the product of stable families in Section 3.3.1.
If ek and e′l have the form (s,∗) and (s′,∗) respectively, then determinacy of S
ensures that the projection π1w ∪ {s, s′} ∈ C(S) whence w ∪ {ek, e

′
l} meets the

conditions needed to be in C(S) × C(T ). Similarly, w ∪ {ek, e
′
l} ∈ C(S) × C(T )

if ek and e′l have the form (∗, t) and (∗, t′). Otherwise one of ek and e′l has the
form (s,∗) and the other (∗, t). In this case again an inspection of the definition
of configurations of the product yields w ∪ {ek, e

′
l} ∈ C(S) × C(T ). Forming the

set of primes of w ∪ {ek, e
′
l} in V we obtain x ∪ {p, p′} ∈ C(T⊙S).

This establishes that T⊙S is deterministic.
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We thus obtain a sub-bicategory DGames of Games; its objects are race-
free games—satisfying (Race−free) of Lemma 5.3—and its maps are determin-
istic strategies. The original duality of Games, where is σ ∶ A + //B corresponds
to a dual strategy σ⊥ ∶ B⊥ + //A⊥, is maintained in DGames.

5.0.4 A category of deterministic strategies

In fact, DGames is equivalent to an order-enriched category via the following
lemma. It says deterministic strategies in a game A are essentially certain
subfamilies of configurations C(A), for which we give a characterisation.

Lemma 5.7. A deterministic strategy is injective on configurations (i.e. is
mono as a map of event structures).

Proof. Let σ ∶ S → A be a deterministic strategy. We show

x ⊇ z−⊂y & σy ⊆ σx Ô⇒ y ⊆ x ,

for x, y, z ∈ C(S), by induction on ∣x ∖ z∣.

Suppose x ⊇ z
e

−Ð⊂ y and σy ⊆ σx. There are x1 and event e1 ∈ S such that

z
e1
−Ð⊂x1 ⊆ x. If σ(e1) = σ(e) then e1, e have the same polarity; if negative, e1 = e,

by receptivity; if positive, e1 = e, by determinacy with the local injectivity of σ.
Either way y ⊆ x. Suppose σ(e1) /= σ(e). We show in all cases y ∪ {e1} ⊆ x, so
y ⊆ x.

Case pol(e1) = + or pol(e) = +: As σ is deterministic, e1 and e are concurrent

giving x1
e

−Ð⊂ y ∪ {e1}. By induction we obtain y ∪ {e1} ⊆ x.

Case pol(e1) = pol(e) = − : From Lemma 5.4, we deduce that e1 and e are

concurrent yielding x1
e

−Ð⊂ y ∪ {e1}, and by induction y ∪ {e1} ⊆ x.

Another, simpler induction on ∣y ∖ z∣ now yields
x ⊇ z ⊆ y & σy ⊆ σx Ô⇒ y ⊆ x ,

for x, y, z ∈ C(S), from which the results follows (taking z to be, for instance, ∅
or x ∩ y). Injectivity of σ as a function on configurations is now obvious.

We can provide an alternative description of deterministic strategies in a
game A as certain subfamilies of C(A). A deterministic strategy σ ∶ S → A
determines, as the image of the configurations C(S), a subfamily F =def σC(S)
of configurations of C(A), which satisfies:

reachability: ∅ ∈ F and if x ∈ F there is a covering chain ∅
a1
−Ð⊂x1

a2
−Ð⊂⋯

ak
−Ð⊂xk = x

within F ;

determinacy: If x
a

−Ð⊂ and x
a′
−Ð⊂ in F with polA(a) = +, then x ∪ {a, a′} ∈ F ;

receptivity: If x ∈ F and x
a

−Ð⊂ in C(A) and polA(a) = −, then x ∪ {a} ∈ F ;

+-innocence: If x
a

−Ð⊂x1
a′
−Ð⊂ & polA(a) = + in F and x

a′
−Ð⊂ in C(A), then x

a′
−Ð⊂

in F (here receptivity implies −-innocence);
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y
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a

. �

e
� �y2

a

/ �

implies x1

e � �y1

b
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x
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a
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b
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a
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b
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z

x2 e
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. �

Theorem 5.8. A subfamily F ⊆ C(A) satisfies the axioms above iff there is a
deterministic strategy σ ∶ S → A s.t. F = σC(S), the image of C(S) under σ.

Proof. (Sketch) It is routine to check that F , the image σC(S) of a deterministic
strategy, satisfies the axioms. Conversely, suppose a subfamily F ⊆C(A) satisfies
the axioms. We show F is a stable family. First note that from the axioms of
determinacy and receptivity we can deduce:

if x
a

−Ð⊂ and x
a′
−Ð⊂ in F with x ∪ {a, a′} ∈ C(A), then x ∪ {a, a′} ∈ F .

By repeated use of this property, using their reachability, if x, y ∈ F and x ↑ y
in C(A) then x ∪ y ∈ F ; the proof also yields a covering chain from x to x ∪ y
and from y to x ∪ y. (In particular, if x ⊆ y in F , then there is a covering chain
from x to y —a fact we shall use shortly.) Thus, if x ↑ y in F then x∪y ∈ F . As
also ∅ ∈ F , we obtain Completeness, required of a stable family. Coincidence-
freeness is a direct consequence of reachability. Repeated use of the cube axiom
yields

Cube: In F , x1

⊆

e � �y1

⊆

x1 ∩ x2

⊆

⊆

x1 ∪ x2
e � �y1 ∪ y2

x2

⊆

e
� �y2

⊆

implies

x1 ∩ x2
e � � .

We use Cube to show stability. Assume v ↑ w in F . Let z ∈ F be maximal s.t.
z ⊆ v,w. We show z = v ∩w. Suppose not. Then, forming covering chains in F ,

z
c1
−Ð⊂ v1

c2
−Ð⊂⋯

ck
−Ð⊂ vk = v and z

d1
−Ð⊂w1

d2
−Ð⊂⋯

dl
−Ð⊂wl = w ,

there are ci and dj s.t. ci = dj , where we may assume ci is the earliest event to
be repeated as some dj . Write e =def ci = dj . Now, vi−1 ∩wj−1 = z. Also, being
bounded above vi−1 ∪ wj−1 ∈ F and vi ∪ wj ∈ F . We have an instance of Cube:

take x1 = vi−1, x2 = wj−1, y1 = vi and y2 = wj . Hence z
e

−Ð⊂ and z ∪ {e} ⊆ x, y—
contradicting the maximality of z. Therefore z = v ∩w, as required for stability.

Now we can form an event structure S =def Pr(F ). The inclusion F ⊆ C(A)
induces a total map σ ∶ S → A for which F = σC(S). Note that −-innocence (viz.

if x
a

−Ð⊂x1
a′
−Ð⊂ & polA(a

′) = − in F and x
a′
−Ð⊂ inC(A), then x

a′
−Ð⊂ in F ) is a direct

consequence of receptivity. That S is deterministic follows from determinacy,
that σ is a strategy from the axioms of receptivity and +-innocence.
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We can thus identify deterministic strategies from A to B with subfamilies
of C(A⊥∥B) satisfying the axioms above. Through this identification we obtain
an order-enriched category of deterministic strategies (presented as subfamilies)
equivalent to DGames; the order-enrichment is via the inclusion of subfamilies.
As the proof of Theorem 5.8 above makes clear, in the characterization of those
subfamilies F corresponding to deterministic families, the cube axiom can be
replaced by stability: if v ↑ w in F , then v ∩w ∈ F .



Chapter 6

Games people play

We briefly and incompletely examine special cases of nondeterministic concur-
rent games in the literature.

6.1 Categories for games

We remark that event structures with polarity appear to provide a rich environ-
ment in which to explore structural properties of games and strategies. There
are adjunctions

PAr � � //

��

⊺ PFr � � //⊺
oo

��

PEr � � //⊺
oo

PEt
oo

PA#
r �
� //⊺

?�

OO
⊢

PF#
r

oo ?�

OO
⊢

relating PEt, the category of event structures with polarity with total maps,
to subcategories PEr, with rigid maps, PFr of forest-like (or filiform) event
structures with rigid maps, and PAr, its full subcategory where polarities al-
ternate along a branch; in PF#

r and PA#
r distinct branches are inconsistent.

We shall mainly be considering games in PEt. Lamarche games and those of
sequential algorithms belong to PAr [12]. Conway games inhabit PF#

r , in fact
a coreflective subcategory of PEt as the inclusion is now full; Conway’s ‘sum’ is
obtained by applying the right adjoint to the ∥-composition of Conway games
in PEt. Further refinements are possible. The ‘simple games’ of [13, 14] belong
to PAr

−#, the coreflective subcategory of PA#
r comprising “polarized” games,

starting with moves of Opponent. The ‘tensor’ of simple games is recovered
by applying the right adjoint of PAr

−# ↪ PEt to their ∥-composition in PEt.
Generally, the right adjoints, got by composition, from PEt to the other cate-
gories fail to conserve immediate causal dependency. Such facts led Melliès et
al. to the insight that uses of pointers in game semantics can be an artifact of
working with models of games which do not take account of the independence
of moves [15, 10].
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6.2 Related work—early results

6.2.1 Stable spans, profunctors and stable functions

The sub-bicategory of Games where the events of games are purely +ve is equiv-
alent to the bicategory of stable spans [7]. In this case, strategies correspond to
stable spans:

S

σ1

~~

σ2

��
A⊥ B

←→ S+

σ−1

~~

σ+2

!!
A B ,

where S+ is the projection of S to its +ve events; σ+2 is the restriction of σ2 to
S+, necessarily a rigid map by innocence; σ−2 is a demand map taking x ∈ C(S+)
to σ−1 (x) = σ1[x] ; here [x] is the down-closure of x in S. Composition of stable
spans coincides with composition of their associated profunctors—see [3]. If we
further restrict strategies to be deterministic (and, strictly, event structures
to be countable) we obtain a bicategory equivalent to Berry’s dI-domains and
stable functions.

6.2.2 Ingenuous strategies

Via Theorem 5.8, deterministic concurrent strategies coincide with the receptive
ingenuous strategies of Melliès and Mimram [10].

6.2.3 Closure operators

In [16], deterministic strategies are presented as closure operators. A determin-
istic strategy σ ∶ S → A determines a closure operator ϕ on possibly infinite
configurations C∞(S): for x ∈ C∞(S),

ϕ(x) = x ∪ {s ∈ S ∣ pol(s) = + & Neg[{s}] ⊆ x} .

Clearly ϕ preserves intersections of configurations and is continuous. The closure
operator ϕ on C∞(S) induces a partial closure operator ϕp on C∞(A). This in
turn determines a closure operator ϕ⊺p on C∞(A)⊺, where configurations are
extended with a top ⊺, cf. [16]: take y ∈ C∞(A)⊺ to the least, fixed point of ϕp
above y, if such exists, and ⊺ otherwise.

6.2.4 Simple games

“Simple games” [13, 14] arise when we restrict Games to objects and determin-
istic strategies in PAr

−#, described in Section 6.1.

6.2.5 Extensions

Games, such as those of [17, 18], allowing copying are being systematized through
the use of monads and comonads [14], work now feasible on event structures with
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symmetry [7]. Nondeterministic strategies can potentially support probability
as probabilistic or stochastic event structures [19] to become probabilistic or
stochastic strategies.
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Chapter 7

Winning ways

What does it mean to win a nondeterministic concurrent game and what is a
winning strategy? This chapter extends the work on games and strategies to
games with winning conditions and winning strategies.

7.1 Winning strategies

A game with winning conditions comprises G = (A,W ) where A is an event
structure with polarity and W ⊆ C∞(A) consists of the winning configurations
for Player. We define the losing conditions to be L =def C

∞(A) ∖W . Clearly a
game with winning conditions is determined once we specify either its winning
or losing conditions, and we can define such a game by specifying its losing
conditions.

A strategy in G is a strategy in A. A strategy in G is regarded as winning if it
always prescribes Player moves to end up in a winning configuration, no matter
what the activity or inactivity of Opponent. Formally, a strategy σ ∶ S → A in G
is winning (for Player) if σx ∈W for all +-maximal configurations x ∈ C∞(S)—

a configuration x is +-maximal if whenever x
s

−Ð⊂ then the event s has −ve
polarity. Any achievable position z ∈ C∞(S) of the game can be extended to
a +-maximal, so winning, configuration (via Zorn’s Lemma). So a strategy
prescribes Player moves to reach a winning configuration whatever state of play
is achieved following the strategy. Note that for a game A, if winning conditions
W = C∞(A), i.e. every configuration is winning, then any strategy in A is a
winning strategy.

In the special case of a deterministic strategy σ ∶ S → A in G it is winning iff
σϕ(x) ∈W for all x ∈C∞(S), where ϕ is the closure operator ϕ ∶C∞(S)→C∞(S)
determined by σ or, equivalently, the images under σ of fixed points of ϕ lie
outside L. Recall from Section 6.2.3 that a deterministic strategy σ ∶ S → A
determines a closure operator ϕ on C∞(S): for x ∈ C∞(S),

ϕ(x) = x ∪ {s ∈ S ∣ pol(s) = + & Neg[{s}] ⊆ x} .
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Clearly, we can equivalently say a strategy σ ∶ S → A in G is winning if it
always prescribes Player moves to avoid ending up in a losing configuration, no
matter what the activity or inactivity of Opponent; a strategy σ ∶ S → A in G
is winning if σx ∉ L for all +-maximal configurations x ∈ C∞(S)

Informally, we can also understand a strategy as winning for Player if when
played against any counter-strategy of Opponent, the final result is a win for
Player. Suppose σ ∶ S → A is a strategy in a game (A,W ). A counter-strategy
is strategy of Opponent, so a strategy τ ∶ T → A⊥ in the dual game. We
can view σ as a strategy σ ∶ ∅ + //A and τ as a strategy τ ∶ A + //∅. Their
composition τ⊙σ ∶ ∅ + //∅ is not in itself so informative. Rather it is the status
of the configurations in C∞(A) their full interaction induces which decides which
of Player or Opponent wins. Ignoring polarities, we have total maps of event
structures σ ∶ S → A and τ ∶ T → A. Form their pullback,

P
Π1

~~

Π2

  
S

σ
  

T

τ
~~

A,

to obtain the event structure P resulting from the interaction of σ and τ . (Note
P ≅ Pr(C(T )⊙C(S)), in the terms of Chapter 4, by the remarks of Section 4.3.3.)
Because σ or τ may be nondeterministic there can be more than one maximal
configuration z in C∞(P ). A maximal configuration z in C∞(P ) images to a
configuration σΠ1z = τΠ2z in C∞(A). Define the set of results of the interaction
of σ and τ to be

⟨σ, τ⟩ =def {σΠ1z ∣ z is maximal in C∞(P )} .

We shall show the strategy σ is a winning for Player iff all the results of the inter-
action ⟨σ, τ⟩ lie within the winning configurations W , for any counter-strategy
τ ∶ T → A⊥ of Opponent.

It will be convenient later to have proved facts about +-maximality in the
broader context of the composition of arbitrary strategies.

Convention 7.1. Refer to the construction of the composition of pre-strategies
σ ∶ S → A⊥∥B and τ ∶ B⊥∥C in Chapter 4 We shall say a configuration x of either

C∞(S), C∞(T ) or (C(T )⊙C(S))∞ is +-maximal if whenever x
e

−Ð⊂ then the event
e has −ve polarity. In the case of (C(T )⊙C(S))∞ an event of −ve polarity is
deemed to be one of the form (s,∗), with s −ve in S, or (∗, t), with t −ve in T .
We shall say a configuration z of C∞(Pr(C(T )⊙C(S))) is +-maximal if whenever

z
p

−Ð⊂ then max(p) has −ve polarity.



7.1. WINNING STRATEGIES 55

Lemma 7.2. Let σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C be receptive pre-strategies.
Then,

z ∈ (C(T )⊙C(S))∞ is +-maximal iff

π1z ∈ C
∞(S) is +-maximal & π2z ∈ C

∞(T ) is +-maximal.

Proof. Let z ∈ (C(T )⊙C(S))∞. “Only if”: Assume z is +-maximal. Sup-

pose, for instance, π1z is not +-maximal. Then, π1z
s

−Ð⊂ for some +ve event
s ∈ S. Consider the two cases. Case σ1(s) is defined: Form the configura-
tion z ∪ {(s,∗)} ∈ (C(T )⊙C(S))∞, to contradict the +-maximality of z. Case
σ2(s) is defined: As s is +-ve by the receptivity of τ there is t ∈ T such that

τ1(t) = σ2(s). Form the configuration z∪{(s, t)} ∈ (C(T )⊙C(S))∞, to contradict
the +-maximality of z. The argument showing π2z is +-maximal is similar.

“If”: Assume both π1z and π2z are +-maximal. Suppose z were not +-maximal.
Then, either

• z
(s,∗)
−Ð⊂ or z

(s,t)
−Ð⊂ with s is a +ve event of S, or

• z
(∗,t)
−Ð⊂ or z

(s,t)
−Ð⊂ with t a +ve event of T .

But then either π1z
s

−Ð⊂ , contradicting the +-maximality of π1z, or π2z
t

−Ð⊂ ,
contradicting contradict the +-maximality of π2z.

Corollary 7.3. , Let σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C be receptive pre-
strategies. Then,

x ∈ C∞(Pr(C(T )⊙C(S))) is +-maximal iff

Π1x ∈ C
∞(S) is +-maximal & Π2x ∈ C

∞(T ) is +-maximal.

Proof. From Lemma 7.2, noting the order isomorphism C∞(Pr(C(T )⊙C(S))) ≅
(C(T )⊙C(S))∞ given by x↦ ⋃x and that Π1x = π1⋃x, Π2x = π2⋃x.

Lemma 7.4. Let σ ∶ S → A be a strategy in a game (A,W ). The strategy σ is
winning for Player iff ⟨σ, τ⟩ ⊆W for all (deterministic) strategies τ ∶ T → A⊥.

Proof. “Only if”: Suppose σ is winning, i.e. σx ∈ W for all +-maximal x ∈
C∞(S). Let τ ∶ T → A⊥ be a strategy. By Corollary 7.3,

x ∈ C∞(Pr(C(T )⊙C(S))) is +-maximal

iff

Π1x ∈ C
∞(S) is +-maximal & Π2x ∈ C

∞(T ) is +-maximal.

Letting x be maximal in C∞(Pr(C(T )⊙C(S))) it is certainly +-maximal, whence
Π1x is +-maximal in C∞(S). It follows that σΠ1x ∈W as σ is winning. Hence
⟨σ, τ⟩ ⊆W .
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“If”: Assume ⟨σ, τ⟩ ⊆W for all strategies τ ∶ T → A⊥. Suppose x is +-maximal
in C∞(S). Define T to be the event structure given as the restriction

T =def A
⊥ ↾ σx ∪ {a ∈ A⊥ ∣ polA⊥ = −} .

Let τ ∶ T → A⊥ be the inclusion map T ↪ A⊥. The pre-strategy τ can be checked
to be receptive and innocent, so a strategy. (In fact, τ is a deterministic strategy
as all its +ve events lie within the configuration σx.) One way to describe a
pullback of τ along σ is as the “inverse image” P =def S ↾ {s ∈ S ∣ σ(s) ∈ T}:

POo

��

σ↾P

��
S

σ
��

TO o

τ
��

A

From the definition of T and P we see x ∈ C∞(P ); and moreover that x is
maximal in C∞(P ) as x is +-maximal in C∞(S). Hence σx ∈ ⟨σ, τ⟩ ensuring
σx ∈W , as required.

The proof is unaffected if we restrict to deterministic counter-strategies τ ∶
T → A⊥.

Corollary 7.5. There are the following four equivalent ways to say that a strat-
egy σ ∶ S → A is winning in (A,W )—we write L for the losing configurations
C∞(A) ∖W :

1. σx ∈ W for all +-maximal configurations x ∈ C∞(S), i.e. the strategy
prescribes Player moves to reach a winning configuration, no matter what
the activity or inactivity of Opponent;

2. σx ∉ L for all +-maximal configurations x ∈ C∞(S), i.e. the strategy
prescribes Player moves to avoid ending up in a losing configuration, no
matter what the activity or inactivity of Opponent;

3. ⟨σ, τ⟩ ⊆ W for all strategies τ ∶ T → A⊥, i.e. all plays against counter-
strategies of the Opponent result in a win for Player;

4. ⟨σ, τ⟩ ⊆W for all deterministic strategies τ ∶ T → A⊥, i.e. all plays against
deterministic counter-strategies of the Opponent result in a win for Player.

Not all games with winning conditions have winning strategies. Consider
the game A consisting of one player move ⊕ and one opponent move ⊖ incon-
sistent with each other, with {{⊕}} as its winning conditions. This game has
no winning strategy; any strategy σ ∶ S → A, being receptive, will have an event
s ∈ S with σ(s) = ⊖, and so the losing {s} as a +-maximal configuration.
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7.2 Operations

7.2.1 Dual

There is an obvious dual of a game with winning conditions G = (A,WG):

G⊥ = (A⊥,WG⊥)

where, for x ∈ C∞(A),

x ∈WG⊥ iff x ∉WG .

We are using the notation a↔ a, giving the correspondence between events of A
and A⊥, extended to their configurations: x =def {a ∣ a ∈ x}, for x ∈ C∞(A). As
usual the dual reverses the roles of Player and Opponent and correspondingly
the roles of winning and losing conditions.

7.2.2 Parallel composition

The parallel composition of two games with winning conditions G = (A,WG),
H = (B,WH) is

G∥H =def (A∥B, WG∥C
∞(B) ∪ C∞(A)∥WH)

where X∥Y = {{1} × x ∪ {2} × y ∣ x ∈X & y ∈ Y } when X and Y are subsets of
configurations. In other words, for x ∈ C∞(A∥B),

x ∈WG∥H iff x1 ∈WG or x2 ∈WH ,

where x1 = {a ∣ (1, a) ∈ x} and x2 = {b ∣ (2, b) ∈ x}. To win in G∥H is to win in
either game. Its losing conditions are LA∥LB—to lose is to lose in both games
G and H.1 The unit of ∥ is (∅,∅). In order to disambiguate the various forms
of parallel composition, we shall sometimes use the linear-logic notation G`H
for the parallel composition G∥H of games with winning strategies.

7.2.3 Tensor

Defining G⊗H =def (G⊥∥H⊥)⊥ we obtain a game where to win is to win in both
games G and H—so to lose is to lose in either game. More explicitly,

(A,WA)⊗ (B,WB) =def (A∥B, WA∥WB) .

The unit of ⊗ is (∅,{∅}).

1I’m grateful to Nathan Bowler, Pierre Clairambault and Julian Gutierrez for guidance in
the definition of parallel composition of games with winning conditions.
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7.2.4 Function space

With G⊸H =def G
⊥∥H a win in G⊸H is a win in H conditional on a win in

G.

Proposition 7.6. Let G = (A,WG) and H = (B,WH) be games with winning
conditions. Write WG⊸H for the winning conditions of G ⊸ H, so G ⊸ H =
(A⊥∥B,WG⊸H). For x ∈ C∞(A⊥∥B),

x ∈WG⊸H iff x1 ∈WG Ô⇒ x2 ∈WH .

Proof. Letting x ∈ C∞(A⊥∥B),

x ∈WG⊸H iff x ∈WG⊥∥H

iff x1 ∈WG⊥ or x2 ∈WH

iff x1 ∉WG or x2 ∈WH

iff x1 ∈WG Ô⇒ x2 ∈WH .

7.3 The bicategory of winning strategies

We can again follow Joyal and define strategies between games now with winning
conditions: a (winning) strategy from G, a game with winning conditions, to
another H is a (winning) strategy in G ⊸ H = G⊥∥H. We compose strategies
as before. We first show that the composition of winning strategies is winning.

Lemma 7.7. Let σ be a winning strategy in G⊥∥H and τ be a winning strategy
in H⊥∥K. Their composition τ⊙σ is a winning strategy in G⊥∥K.

Proof. Let G = (A,WG), H = (B,WH) and K = (C,WK).
Suppose x ∈ C∞(T⊙S) is +-maximal. Then ⋃x ∈ (C(T )⊙C(S))∞. By Zorn’s

Lemma we can extend ⋃x to a maximal configuration z ⊇ ⋃x in (C(T )⊙C(S))∞

with the property that all events of z∖⋃x are synchronizations of the form (s, t)
for s ∈ S and t ∈ T . Then, z will be +-maximal in (C(T )⊙C(S))∞ with

σ1π1z = σ1π1⋃x & τ2π2z = τ2π2⋃x . (1)

By Lemma 7.2,

π1z is +-maximal in S & π2z is +-maximal in T .

As σ and τ are winning,

σπ1z ∈WG⊥∥H & τπ2z ∈WH⊥∥K .

Now σπ1z ∈WG⊥∥H expreses that

σ1π1z ∈WG Ô⇒ σ2π1z ∈WH (2)
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and τπ2z ∈WH⊥∥K that

τ1π2z ∈WH Ô⇒ τ2π2z ∈WK , (3)

by Proposition 7.6. But σ2π1z = τ1π2z, so (2) and (3) yield

σ1π1z ∈WG Ô⇒ τ2π2z ∈WK .

By (1)

σ1π1⋃x ∈WG Ô⇒ τ2π2⋃x ∈WK ,

i.e.by Proposition 4.2,

υ1x ∈WG Ô⇒ υ2x ∈WK

in the span of the composition τ⊙σ. Hence x ∈WG⊥∥K , as required.

For a general game with winning conditions (A,W ) the copy-cat strategy
need not be winning, as shown in the following example.

Example 7.8. Let A consist of two events, one +ve event ⊕ and one −ve event
⊖, inconsistent with each other. Take as winning conditions the set {{⊕}}. The
event structure CCA:

A⊥ ⊖ _ ⊕ A

⊕ ^ ⊖

To see CCA is not winning consider the configuration x consisting of the two
−ve events in CCA. Then x is +-maximal as any +ve event is inconsistent with
x. However, x1 ∈ W while x2 ∉ W , failing the winning condition of (A,W ) ⊸
(A,W ).

Each event structure with polarityA possesses a Scott order on its configu-
rations C∞(A):

x′ ⊑ x iff x′ ⊇− x ∩ x′ ⊆+ x .

Exercise 7.9. Prove that the Scott order is indeed a partial order. ◻

A necessary and sufficient for copy-cat to be winning w.r.t. a game (A,W ):

∀x,x′ ∈ C∞(A). if x′ ⊑ x & x′ is +-maximal & x is −-maximal,

then x ∈W Ô⇒ x′ ∈W .
(Cwins)

Lemma 7.10. Let (A,W ) be a game with winning conditions. The copy-cat
strategy γA ∶ CCA → A⊥∥A is winning iff (A,W ) satisfies (Cwins).

Proof. By Lemma ??,

z ∈ C∞(CCA) iff z = {1} × x ∪ {2} × x′ with x′ ⊑A x ,

for x,x′ ∈C∞(A). In this situation z is +-maximal iff both x is −-maximal and x′

is +-maximal. Thus (Cwins) expresses precisely that copy-cat is winning.
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A robust sufficient condition on an event structure with polarityA which
ensures that copy-cat is a winning strategy for all choices of winning conditions
is that A is race-free

∀x ∈ C(A). x
a

−Ð⊂ & x
a′
−Ð⊂ & pol(a) = + & pol(a′) = − Ô⇒ x ∪ {a, a′} ∈ C(A) .

(‡)
This property, which says immediate conflict respects polarity, is seen earlier in
Lemma 5.3 (characteriziing those A for which copy-cat is deterministic).

Proposition 7.11. Let A be an event structure with polarity. Copy-cat is a
winning strategy for all games (A,W ) with winning conditions W iff A is race-
free.

Proof. “If”: Assume (‡). Let W ⊆ C∞(A). We show (Cwins) holds for the
game with winning conditions (A,W ). For x,x′ ∈ C∞(A), assume

x′ ⊑ x & x′ is +-maximal & x is −-maximal.

Then, as x′ ⊇− x∩x′ ⊆+ x, there are covering chains associated with purely +ve
and −ve events from x ∩ x′ to x and x′, respectively:

x ∩ x′
+

−Ð⊂ ⋯
+

−Ð⊂ x ,

x ∩ x′
−

−Ð⊂ ⋯
−

−Ð⊂ x′ .

If one of the covering chains is of zero length then so must the other be—
otherwise we contradict one or other of the maximality assumptions. On the
other hand, if both are nonempty, by repeated use of (‡) we again contradict a
maximality assumption, e.g.

y1 −Ð⊂
+

x1 ∪ x
′
1 −Ð⊂

+
⋯ −Ð⊂

+
x ∪ x′1

x ∩ x′

−Ð
⊂−

−Ð⊂
+

x1

−Ð
⊂−

−Ð⊂
+

⋯ −Ð⊂
+

x

−Ð
⊂−

shows how a repeated use of (‡) contradicts the −-maximality of x. We conclude
x = x ∩ x′ = x′ so certainly x ∈W Ô⇒ x′ ∈W , as required to fulfil (Cwins).

“Only if”: Suppose A failed (‡), i.e. x
a

−Ð⊂x1 & x
a′
−Ð⊂x2 with x1 � x2 and

polA(a) = + and pol(a′) = − within the finite configurations of A. The set
{1} × x1 ∪ {2} × x2 is certainly a finite configuration of A⊥∥A and is easily
checked to also be a configuration of CCA. Define winning conditions by

W = {x ∈ C∞(A) ∣ a ∈ x} .

Let z ∈ C∞(CCA) be a +-maximal extension of {1} × x1 ∪ {2} × x2 (the max-
imal extension exists by Zorn’s Lemma). Take z1 = {a ∣ (1, a) ∈ z} and z2 =
{a ∣ (2, a) ∈ z}. Then z1 ⊇ x1 and z2 ⊇ x2. As a ∈ z1 we obtain z1 ∈W , whereas
z2 ∉W because z2 extends y which is inconsistent with a. Hence copy-cat is not
winning in (A,W )⊥∥(A,W ).
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We can now refine the bicategory of strategies Games to the bicategory
WGames with objects games with winning conditionsG,H,⋯ satisfying (Cwins)
and arrows winning strategiesG + //H; 2-cells, their vertical and horizontal com-
position is as before. Its restriction to deterministic strategies yields a bicategory
WDGames equivalent to a simpler order-enriched category.

7.4 Total strategies

As an application of winning conditions we apply them to pick out a subcategory
of “total strategies,” informally strategies in which Player can always answer a
move of Opponent.2

We restrict attention to ‘simple games’ (games and strategies are alternating
and begin with opponent moves—see Section 6.2.4). Here a strategy is total if
all its finite maximal sequences are even, so ending in a +ve move, i.e. a move
of Player. In general, the composition of total strategies need not be total—see
the Exercise below. However, as we will see, we can pick out a subcategory of
’simple games’ with suitable winning conditions. Within this full subcategory
of games with winning conditions winning strategies will be total and moreover
compose.

Exercise 7.12. Exhibit two total strategies whose composition is not total. ◻

As objects of the subcategory we choose simple games with winning strate-
gies,

(A,WA)

where A is a simple game and WA is a subset of possibly infinite sequences
s1s2⋯ satisfying

WA ∩ Finite(A) = Even(A) (Tot)

i.e. the finite sequences in WA are precisely those of even length. Note that
winning strategies in such a game will be total. (Below we use ‘sequence’ to
mean allowable finite or infinite sequences of the appropriate simple game.)

The function space (A,WA) ⊸ (B,WB), given as (A,WA)
⊥∥(B,WB), has

winning conditions W such that

s ∈W iff sA ∈WA Ô⇒ sB ∈WB .

We use sA for the projection of the sequence s to its subsequence in A and,
similarly, sB for its projection to B.

Lemma 7.13. For s a finite sequence of A⊥∥B, s is even iff sA is odd or sB is
even.

Proof. By parity, considering the final move of the sequence.
“Only if”: Assume s is even, i.e. its final event is +ve. If s ends in B, sB ends
in + so is even. If s ends in A, sA ends in − so is odd.

2This section is inspired by [23, 13].
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“If”: Assume sA is odd or sB is even. Suppose, to obtain a contradiction, that
s is not even, i.e. s is odd so ends in −. If s ends in B, sB ends in − so is odd
and consequently sA even (as the length of s is the sum of the lengths of sA and
sB). Similarly, if s ends in A, sA ends in + so sA is even and sB is odd. Either
case contradicts the initial assumption. Hence s is even.

It follows that W , the winning conditions of the function space, satisfies
(Tot): Let s be a finite sequence of a strategy in A⊥∥B. Then, for a finite
sequence s,

s ∈W iff sA ∈WA Ô⇒ sB ∈WB

iff sA ∉WA or sB ∈WB

iff sA is odd or sB is even

iff s is even.

All maps in the subcategory (which are winning strategies in its function
spaces (A,WA) ⊸ (B,WB)) compose (because winning strategies do) and are
total (because winning conditions of its function spaces satisfy (Tot)).

7.5 On determined games

A game with winning conditions G is said to be determined when either Player
or Opponent has a winning strategy, i.e. either there is a winning strategy in
G or in G⊥.3 Not all games are determined. Neither the game G consisting of
one player move ⊕ and one opponent move ⊖ inconsistent with each other, with
{{⊕}} as winning conditions, nor the game G⊥ have a winning strategy.

Notation 7.14. Let σ ∶ S → A be a strategy. We say y ∈ C∞(A) is σ-reachable
iff y = σx for some x ∈ C∞(S). Let y′ ⊆ y in C∞(A). Say y′ is −-maximal in y iff

y
−

−Ð⊂ y′′ implies y′′ /⊆ y. Similarly, say y′ is +-maximal in y iff y
+

−Ð⊂ y′′ implies
y′′ /⊆ y.

Lemma 7.15. Let (A,W ) be a game with winning conditions. Let y ∈ C(A).
Suppose

∀y′ ∈ C(A).

y′ ⊆ y & y′ is −-maximal in y & not +-maximal in y

Ô⇒

{y′′ ∈ C(A) ∣ y′ ⊆+ y′′ & (y′′ ∖ y′) ∩ y = ∅} ∩W = ∅ .

Then y is σ-reachable in all winning strategies σ.

Proof. Assume the property above of y ∈ C(A). Suppose, to obtain a contradic-
tion, that y is not σ-reachable in a winning strategy σ ∶ S → A.

As y is finite, there is a maximal y′ ∈ C(A) with y′ ⊊ y and y′ σ-reachable.

3This section is based on work with Julian Gutierrez.
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By receptivity of σ, the configuration y′ is −-maximal in y. As y′ ⊊ y, we

must therefore have y′
+

−Ð⊂ y0 ⊆ y in C(A), i.e. y′ is not +-maximal in y. From
the property assumed of y we deduce

y′ ∉W & ∀y′′ ∈W. y′ ⊆+ y′′ Ô⇒ (y′′ ∖ y′) ∩ y /= ∅ .

As y′ is σ-reachable, y′ = σx′ for some x′ ∈ C(S). As σ is winning, there is
+-maximal extension x′ ⊆+ x′′ in C(S) such that σx′′ ∈W . Hence

(σx′′ ∖ y′) ∩ y /= ∅ .

Taking a ≤A-minimal event a1 in the above set we obtain

y′
a1
−Ð⊂ y1 ⊆

+ σx′′ .

By Proposition 4.20, y1 = σx1 for some x1 ∈ C(S) with x′
+

−Ð⊂x1 ⊆ x
′′. But this

contradicts the choice of y′ as the maximal reachable sub-configuration of y.
Hence the original assumption that y is not σ-reachable must be false.

Recall the property of race-freedomof an event structure with polarityA,
first seen in Lemma 5.3, though here rephrased a little:

∀y, y1, y2 ∈ C(A). y
−

−Ð⊂ y1 & y
+

−Ð⊂ y2 Ô⇒ y1 ↑ y2 . (‡)

Corollary 7.16. If A, an event structure with polarity, fails to be race-free, then
there are winning conditions W , for which the game (A,W ) is not determined.

Proof. Suppose (‡) failed, that y
−

−Ð⊂ y1 and y
+

−Ð⊂ y2 and y1 � y2 in C(A). Assign
configurations C∞(A) to winning conditions W or its complement as follows:

(i) for y′′ with y1 ⊆
+ y′′, assign y′′ ∉W ;

(ii) for y′′ with y2 ⊆
− y′′, assign y′′ ∈W ;

(iii) for y′′ with y′ ⊆+ y′′ and (y′′ ∖ y′)∩ y = ∅, for some sub-configuration y′ of
y with y′ −-maximal and not +-maximal in y, assign y′′ ∉W ;

(iv) for y′′ with y′ ⊆− y′′ and (y′′ ∖ y′)∩ y = ∅, for some sub-configuration y′ of
y with y′ +-maximal and not −-maximal in y, assign y′′ ∈W ;

(v) assign arbitrarily in all other cases.

We should check the assignment is well-defined, that we do not assign a config-
uration both to W and its complement.

Clearly the first two cases (i) and (ii) are disjoint as y1 � y2.
The two cases (iii) and (iv) are also disjoint. Suppose otherwise, that both

(iii) and (iv) hold for y′′, viz.

y′1 ⊆
+ y′′ & (y′′ ∖ y′1) ∩ y = ∅ &

y′1 is −-maximal & not +-maximal in y , and

y′2 ⊆
− y′′ & (y′′ ∖ y′2) ∩ y = ∅ &

y′2 is +-maximal & not −-maximal in y .
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As
y′1 ⊆

+ y′′ ⊇− y′2

we deduce y′2
−
⊆ y′1, i.e. all the −ve events of y′2 are in y′1. Now let a ∈ y′2

+
. Then

a ∈ y as y′2 ⊆ y. Therefore a ∉ y′′ ∖ y′1, by assumption. But a ∈ y′′ as y′2 ⊆− y′′,
so a ∈ y′1. We conclude y′2 ⊆ y′1. A similar dual argument shows y′1 ⊆ y′2. Thus
y′1 = y

′
2. But this implies that y′1 is both −-maximal and not −maximal in y —a

contradiction.
Suppose both the conditions (i) and (iv) are met by y′′. From (vi), as y′ is

+-maximal & not −-maximal in y,

y′
a

−Ð⊂ y0 ⊆ y ,

for some event a with polA(a) = − and y0 ∈ C
∞(A). From (i), y ⊆ y′′, so

y′
a

−Ð⊂ y0 ⊆ y
′′ .

Therefore
a ∈ y′′ ∖ y′ & a ∈ y ,

which contradicts (iv). Similarly the cases (ii) and (iii) are disjoint.
We conclude that the assignment of winning conditions is well-defined.
Then y is reachable for both winning strategies in (A,W ) and winning strate-

gies in (A,W )⊥. Suppose σ is a winning strategy σ in (A,W ). By (iii) and
Lemma 7.15, y is σ-reachable. From receptivity y1 is σ-reachable, say y1 = σx1

for some x1 ∈ C(S). There is a +-maximal extension x′1 of x1 in C∞(S). By (i),
σx′1 cannot be a winning configuration. Hence there can be no winning strategy
in (A,W ). In a dual fashion, there can be no winning strategy in (A,W )⊥.

It is tempting to believe that a nondeterministic winning strategy always
has a winning (weakly-)deterministic sub-strategy. However, this is not so, as
the following examples show.

Example 7.17. A winning strategy need not have a winning deterministic sub-
strategy. Consider the game (A,W ) where A consists of two inconsistent events
⊖ and ⊕, of the indicated polarity, and W = {{⊖},{⊕}}. Consider the strategy
σ in A given by the identity map idA ∶ a → A. Then σ is a nondeterministic
winning strategy—all +-maximal configurations in A are winning. However
any sub-strategy must include ⊖ by receptivity and cannot include ⊕ if it is to
be deterministic, wherepon it has ∅ as a +-maximal configuration which is not
winning.

Example 7.18. Observe that the strategy σ of Example 7.17 is already weakly-
deterministic—cf. Corollary ??. A winning strategy need not have a winning
weakly-deterministic sub-strategy. Consider the game (A,W ) where A consists
of two −ve events 1,2 and one +ve event 3 all consistent with each other and

W = {∅,{1,3},{2,3},{1,2,3}}.
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Let S be the event structure
⊕ ⊕

⊖

_LLR

⊖

_LLR

and σ ∶ S → A the only possible total map of event structures with polarity:

⊕ ⊕ ⊕

⊖

_LLR

⊖

_LLR

σ // ⊖ ⊖

Then σ is a winning strategy for which there is no weakly-deterministic substrat-
egy.

7.6 Determinacy for well-founded games

Definition 7.19. A game A is well-founded if every configuration in C∞(A) is
finite.

It is shown that any well-founded, race-free concurrent game is determined.

7.6.1 Preliminaries

Proposition 7.20. Let Q be a family of finite partial orders closed under rigid
inclusions, i.e. if q ∈ Q and q′ ↪ q is a rigid inclusion (regarded as a map
of event structures) then q′ ∈ Q. The family Q determines an event structure
(P,≤,Con) as follows:

• the events P are the prime partial orders in Q, i.e. those finite partial
orders in Q with a top element;

• the causal dependency relation p′ ≤ p holds precisely when there is a rigid
inclusion from p′ ↪ p;

• a finite subset X ⊆ P is consistent, X ∈ Con, iff there is q ∈ Q and rigid
inclusions p↪ q for all p ∈X. If x ∈C(P ) then ⋃x, the union of the partial
orders in x, is in Q. The function x↦ ⋃x is an order-isomorphism from
C(P ), ordered by inclusion, to Q, ordered by rigid inclusions.

Call a family of finite partial orders closed under rigid inclusions a rigid
family. Observe:

Proposition 7.21. Any stable family F determines a rigid family: its config-
urations x possess a partial order ≤x such that whenever x ⊆ y in F there is a
rigid inclusion (x,≤x)↪ (y,≤y) between the corresponding partial orders.

Notation 7.22. We shall use Pr(Q) for the construction described in Proposi-
tion 7.20. The construction extends that on stable families with the same name.
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Lemma 7.23. Let σ ∶ S → A be a strategy. Letting x, y ∈ C(S),

x+ ⊆ y+ & σx ⊆ σy Ô⇒ x ⊆ y .

Proof. The proof relies on Proposition 4.20, characterising strategies. We first
prove two special cases of the lemma.

Special case σx ⊆− σy. By assumption x+ ⊆ y+. Supposing s ∈ y+ ∖ x+, via
the injectivity of σ on y, we obtain σy ∖ σx contains σ(s) a +ve event—a
contradiction. Hence x+ = y+.

From Proposition 4.20(ii), as σx ⊆− σy, we obtain (a unique) x′ ∈ C(S) such
that x ⊆ x′ and σx′ = σy:

x_

σ

��

⊆ x′_

σ

��
σx ⊆− σy .

Now [x+] ⊆− x, from which

[x+]
_

σ

��

⊆ x_

σ

��
σ[x+] ⊆− σx .

Combining the two diagrams:

[x+]
_

σ

��

⊆ x′_

σ

��
σ[x+] ⊆− σy .

As [y+] ⊆− y,

[y+]
_

σ

��

⊆ y_

σ

��
σ[y+] ⊆− σy .

where, by Proposition 4.20(ii), y is the unique such configuration of S. But
y+ = x+ so this same property is shared by x′. Hence x′ = y and x ⊆ y.

Thus

x+ ⊆ y+ & σx ⊆− σy Ô⇒ x ⊆ y . (1)

Note that, in particular,

x+ = y+ & σx = σy Ô⇒ x = y . (2)
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Special case σx ⊆+ σy. By Proposition 4.20(i), there is (a unique) y1 ∈ C(S)
with y1 ⊆ y such that σy1 = σx:

y1_
σ

��

⊆ y_
σ

��
σx ⊆+ σy ,

Now x+, y+1 ⊆ y and σ x+ = (σx)+ = σ y+1 . So by the local injectivity of σ we
obtain x+ = y+1 . By (2) above, x = y1, whence x ⊆ y. Thus

x+ ⊆ y+ & σx ⊆+ σy Ô⇒ x ⊆ y . (3)

Any inclusion σx ⊆ σy can be built as a composition of inclusions ⊆− and ⊆+,
so the lemma follows from the special cases (1) and (3).

Lemma 7.24. Let σ ∶ S → A be a strategy for which no +ve event of S appears
as a −ve event in A. Defining

Fσ =def {x+ ∪ (σx)− ∣ x ∈ C(S)}

yields a stable family for which

ασ(s) =

⎧⎪⎪
⎨
⎪⎪⎩

s if s is +ve,

σ(s) if s is −ve.

is a map of stable families ασ ∶ C(S)→ Fσ which induces an order-isomorphism

(C(S),⊆) ≅ (Fσ,⊆)

taking x ∈ C(S) to ασ x = x
+ ∪ (σx)−. Defining

fσ(e) =

⎧⎪⎪
⎨
⎪⎪⎩

σ(e) if e is +ve,

e if e is −ve

on events e of Fσ yields a map of stable families fσ ∶ Fy → C(A) such that

C(S)
ασ //

σ
##

Fσ

fσ

��
C(A)

commutes.

Proof. A configuration x ∈ C(S) has direct image

ασx = x
+ ∪ (σx)−
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under the function ασ. Direct image under ασ is clearly surjective and preserves
inclusions, and by Lemma 7.23 yields an order-isomorphism (C(S),⊆) ≅ (Fσ,⊆):
if ασx ⊆ ασy, for x, y ∈ C(S), then x+ ⊆ y+ and (σx)− ⊆ (σy)− by the disjointness
of S+ and A, whence σx ⊆ σy so x ⊆ y.

It is now routine to check that Fσ is a stable family and ασ is a map of
stable families. For instance to show the stability property required of Fσ,
assume ασx,ασy ⊆ ασz. Then x, y ⊆ z so σ x ∩ y = (σx) ∩ (σy) as σ is a map of
event structures, and consequently (σ x ∩ y)− = (σx)− ∩ (σy)−. Now reason

(ασx) ∩ (ασy) =(x
+ ∪ (σx)−) ∩ (y+ ∪ (σy)−)

=(x+ ∩ y+) ∪ ((σx)− ∩ (σy)−)

—by distributivity with the disjointness of S+ and A ,

=(x ∩ y)+ ∪ (σ x ∩ y)−

=(ασ x ∩ y) ∈ Fσ .

From the definitions of ασ and fσ it is clear that fσασ(s) = σ(s) for all events
of S. Any configuration of Fσ is sent under fσ to a configuration in C(A) in a
locally injective fashion, making fσ a map of stable families; this follows from
the matching properties of σ.

When we “glue” strategies together it can be helpful to assume that all the
initial −ve moves of the strategies are exactly the same:

Lemma 7.25. Let σ ∶ S → A be a strategy. Then σ ≅ σ′, a strategy σ′ ∶ S′ → A
for which

∀s′ ∈ S′. polS′[s
′]S = {−} Ô⇒ s′ = [σ(s′)]A .

Proof. Without loss of generality we may assume no +ve event of S appears as
a −ve event in A. Take fσ ∶ Fσ → C(A) given by Lemma 7.25 and construct σ′

as the composite map

Pr(Fσ)
Pr(σ)// Pr(C(A)) ≅max

A

—recall max takes a prime [a]A to a, where a ∈ A.

7.7 Determinacy proof

Definition 7.26. Let A be an event structure with polarity. Let W ⊆ C∞(A).
Let y ∈ C∞(A). Define A/y to be the event structure with polarity comprising
events

{a ∈ A ∖ y ∣ y ∪ [a]A ∈ C∞(A)} ,

also called A/y, with consistency relation

X ∈ ConA/y iff X ⊆fin A/y & y ∪ [X]A ∈ C∞(A) ,
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and causal dependency the restriction of that on A. Define W /y ⊆ C∞(A/y) by

z ∈W /y iff z ∈ C∞(A/y) & y ∪ z ∈W .

Finally, define (A,W )/y =def (A/y,W /y).

Proposition 7.27. Let A be an event structure with polarity and y ∈ C∞(A).
Then,

z ∈ C∞(A/y) iff z ⊆ A/y & y ∪ z ∈ C∞(A) .

Assume A is a well-founded event structure with polarity with winning con-
ditions W ⊆ C(A). Assume the property (‡) of A, i.e. that A is race-free:

∀y, y1, y2 ∈ C(A). y
−

−Ð⊂ y1 & y
+

−Ð⊂ y2 Ô⇒ y1 ↑ y2 . (‡)

Observe that by repeated use of (‡), if x, y ∈ C(A) with x∩y ⊆+ x and x∩y ⊆− y,
then x ∪ y ∈ C(A).

We show that the game (A,W ) is determined. Assuming Player has no
winning strategy we build a winning (counter) strategy for Opponent based on
the following lemma.

Lemma 7.28. Assume game A is well-founded and race-free. Let W ⊆ C(A).
Assume (A,W ) has no winning strategy (for Player). Then,

∀x ∈ C(A). ∅ ⊆+ x & x ∈W

Ô⇒

∃y ∈ C(A). x ⊆− y & y ∉W & (A,W )/y has no winning strategy.

Proof. Suppose otherwise, that under the assumption that (A,W ) has no win-
ning strategy, there is some x ∈ C(A) such that

∅ ⊆+ x & x ∈W

&

∀y ∈ C(A). x ⊆− y & y ∉W Ô⇒ (A,W )/y has a winning strategy.

We shall establish a contradiction by constructing a winning strategy for Player.
For each y ∈ C(A) with x ⊆− y and y ∉W , choose a winning strategy

σy ∶ Sy → A/y .

By Lemma 7.25, we can replace σy by a stable family Fy with all −ve events
in A and a map of stable families fy ∶ Fy → C(A). It is easy to arrange that,
within the collection of all such stable families, Fy1 and Fy2 are disjoint on +ve
events whenever y1 and y2 are distinct. We build a putative stable family as

F =def {y ∈ C(A) ∣ polA(y ∖ x) ⊆ {−}} ∪

{y ∪ v ∣ y ∈ C(A) & polA(y ∖ x) ⊆ {−} & x ∪ y ∉W &

v ∈ Fx∪y & + ∈ pol v & y ∪ fx∪yv ∈ C(A)} .
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[Note, in the second set-component, that x ∪ y is a configuration by (‡).]
We assign events of F the same polarities they have in A and the families Fy.

We check that F is indeed a stable family.
Clearly ∅ ∈ F . Assuming z1, z2 ⊆ z in F , we require z1 ∪ z2, z1 ∩ z2 ∈ F .
It is easily seen that if both z1 and z2 belong to the first set-component, so

do their union and intersection. Suppose otherwise, without loss of generality,
that z2 belongs to the second set-component. Then, necessarily, z is in the
second set-component of F and has the form z = y ∪ v described there.

Consider the case where z1 = y1 ∪ v1 and z2 = y2 ∪ v2, both belonging to the
second set-component of F . Then

x ∪ y1 = x ∪ y2 = x ∪ y ,

from the assumption that families Fy are disjoint on +ve events for distinct y,
and

v1, v2 ⊆ v in Fx∪y .

It follows that x ∪ (y1 ∪ y2) = x ∪ y ∉ W and v1 ∪ v2 ∈ Fx∪y = Fx∪(y1∪y2). As
z1, zz ⊆ z,

(y1 ∪ fx∪yv1), (y2 ∪ fx∪yv2) ⊆ (y ∪ fx∪yv)

so

(y1 ∪ y2) ∪ fx∪y(v1 ∪ v2) = (y1 ∪ fx∪yv1) ∪ (y2 ∪ fx∪yv2) ∈ C(A) .

This ensures z1 ∪ z2 = (y1 ∪ y2) ∪ (v1 ∪ v2) ∈ F . Similarly, x ∪ (y1 ∩ y2) =
(x ∪ y1) ∩ (x ∪ y2) = x ∪ y ∉W and v1 ∩ v2 ∈ Fx∪y = Fx∪(y1∩y2). Checking

(y1 ∩ y2) ∪ fx∪y(v1 ∩ v2) = (y1 ∪ fx∪yv1) ∩ (y2 ∪ fx∪yv2) ∈ C(A)

ensures z1 ∩ z2 = (y1 ∩ y2) ∪ (v1 ∩ v2) ∈ F .
Consider the case where z1 ∈ C(A) belongs to the first and z2 = y2 ∪ v2 to

the second set-component of F . As z1 ⊆ y ∪ v it has the form z1 = y1 ∪ v1 where
y1 ∈ C(A) with y1 ⊆ y and v1 ∈ Fx∪y with v1 ⊆ v; all the events of v1 = z1∖(x∪y)
have −ve polarity which ensures v1 ∈ Fx∪y by the receptivity of σy. Because v2

and v have +ve events in common,

x ∪ y2 = x ∪ y ,

while clearly

v1, v2 ⊆ v in Fx∪y .

We deduce x ∪ (y1 ∪ y2) = x ∪ y ∉W and v1 ∪ v2 ∈ Fx∪y = Fx∪(y1∪y2) whence
z1∪z2 = (y1∪y2)∪(v1∪v2) ∈ F after an easy check that (y1∪y2)∪fx∪y(v1∪v2) ∈
C(A). We have y2 ∪ fx∪yv2 ∈ C(A). But fx∪y is constant on −ve events so

z1 ∩ z2 = z1 ∩ (y2 ∪ v2) = z1 ∩ (y2 ∪ fx∪yv2) ∈ C(A) ,

and z1 ∩ z2 belongs to the first set-component of F .
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A routine check establishes that F is coincidence-free, and uses that each
family Fy is coincidence-free when considering configurations of the second set-
component.

Having established that F is a stable family, we define a total map of stable
families

f ∶ F → C(A)

by taking

f(e) =

⎧⎪⎪
⎨
⎪⎪⎩

e if e ∈ x or e is −ve,

fy(e) if e is a +ve event of Fy.

Defining σ to be the composite map of stable families

C(Pr(F))
max // F

f // C(A)

we also obtain a map of event structures

σ ∶ Pr(F)→ A

as the embedding of event structures in stable families is full and faithful. As-
cribe to events p of Pr(F) the same polarities as events max(p) of F . Clearly
σ preserves polarities as f does, so σ is a total map of event structures with
polarity. In fact, σ is a winning strategy for (A,W ).

To show receptivity of σ it suffices to show for all z ∈ F that fz
−

−Ð⊂ y′ in

C(A) implies z
z

−Ð⊂
′

with σz′ = z for some unique z′ ∈ F . If z belongs to the
first set-component of F this is obvious—take z′ = y′. Otherwise z belongs to
the second set-component, and takes the form y ∪ v, when receptivity follows
from the receptivity of σx∪y. No extra causal dependencies, over those of A,
are introduced into y in the first set-component of F . Considering y ∪ v in the
second set-component of F , the only extra causal dependencies introduced in
y ∪ v, above those inherited from its image y ∪ fx∪yv in A, are from v in Fx∪y
and those making a +ve event of v in y ∪ v depend on −ve events y ∖ x. For
these reasons σ is also innocent, and a strategy in A.

To show σ is a winning strategy for (A,W ) it suffices to show that fz ∈W
for every +-maximal configuration z ∈ F . Let z be a +-maximal configuration
of F .

Suppose that z belongs to the first set-component of F and, to obtain a
contradiction, that fz ∉ W . Then z = fz ∈ C(A) and pol z ∖ x ⊆ {−}. By race-
freedom, x ↑ y, so x ⊆ z from the +-maximality of z. As x ⊆− z and z ∉W the
strategy σz is winning in (A,W )/z. Because z is +-maximal in F we must have
∅ is +-maximal in Fz. It follows that ∅ ∈W /z, i.e. z ∈W—a contradiction.

Suppose that z belongs to the second set-component of F , so that z has the
form y ∪ v with y ∈ C(A) and v ∈ Fx∪y. By (‡), x ⊆ y, as z is +-maximal in F .
Hence v ∈ Fy and is necessarily +-maximal in Fy, again from the +-maximality
of z. As σy is winning, fyv ∈W /y. Therefore fz = y ∪ fyv ∈W .

Finally, we have constructed a winning strategy σ in (A,W )—the contra-
diction required to establish the lemma.
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Remark. In the proof above we could instead build the strategy for Player, on
which the proof by contradiction depends, out of a rigid family of finite partial
orders. Recall that stable families, including configurations of event structures,
are rigid families w.r.t. the order induced on configurations; finite configurations
x determine finite partial orders (x,≤x), which we call q(x) in the construction
below. Define

Q =def {q(y) ∣ y ∈ C(A) & polA(y ∖ x) ⊆ {−}} ∪

{q(y); q(v) ∣ y ∈ C(A) & polA(y ∖ x) ⊆ {−} & x ∪ y ∉W &

v ∈ Fx∪y & + ∈ pol v & y ∪ fx∪yv ∈ C(A)}

where above q(y); q(v) is the least partial order on y ∪ v in which events inherit
causal dependencies from q(v), from their images in q(y∪fx∪yv) and in addition
have the causal dependencies y− × v+. The family Q can be shown to be closed
under rigid inclusions, and so a rigid family. ◻

Theorem 7.29. Assume game A is well-founded, race-free and has winning
conditions W ⊆ C(A). If (A,W ) has no winning strategy for Player, then there
is a winning (counter) strategy for Opponent.

Proof. Assume (A,W ) has no winning strategy for Player.
We build a winning counter-strategy for Opponent out of a rigid family of

partial orders, themselves constructed from ‘alternating sequences’ of configu-
rations of A.

Define an alternating sequence to be a sequence

x1, y1, x2, y2,⋯, xi, yi,⋯, xk, yk, xk+1

of length k + 1 ≥ 1 of configurations of A such that

∅ ⊆+ x1 ⊆
− y1 ⊆

+ x2 ⊆
− y2 ⊆

− ⋯ ⊆+ xi ⊆
− yi ⊆

+ ⋯ ⊆+ xk ⊆
− yk ⊆

+ xk+1

with
xi ∈W & yi ∉W & (A,W )/yi has no winning strategy,

when 1 ≤ i ≤ k. It is important that xk+1, which may be ∅, need not be in W .
In particular, we allow the alternating singleton sequence x1 comprising a single
configuration of A with ∅ ⊆+ x1 without necessarily having x1 ∈W .

For each alternating sequence x1, y1,⋯, xk, yk, xk+1 define the partial order
Q(x1, y1,⋯, xk, yk, xk+1) to comprise the partial order on xk+1 inherited from A
together with additional causal dependencies given by the pairs in

x+i × (yi ∖ xi) , where 1 ≤ i ≤ k.

We define Q to be the rigid family comprising the set of all partial orders got
from alternating sequences, closed under rigid inclusions.

Form the event structure Pr(Q) as described in Proposition 7.20. Assign
the same polarity to an event in Pr(Q) as its top event in A. Recall from
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Proposition 7.20 the order-isomorphism C(Pr(Q)) ≅ Q given by x ↦ ⋃x for
x ∈ C(Pr(Q)). The map

τ ∶ Pr(Q)→ A

taking p ∈ Pr(Q) to its top event is a total map of event structures with polarity.
Writing T ∶ Q→C(A) for the function taking q ∈ Q to its set of underlying events,
τx = T (⋃x) for all x ∈ C(Pr(Q)), i.e. the diagram

C(Pr(Q))

τ
%%

≅ Q

T

��
C(A)

commutes. We shall reason about order-properties of τ via the function T .
We claim that τ is a winning counter-strategy, in other words a winning

strategy for Opponent, in which the roles of + and − are reversed.
Because the construction of the partial orders in Q only introduces extra

causal dependencies of −ve events on +ve events, τ is innocent (remember the
reversal of polarities). To check receptivity of τ it suffices to show that for q ∈ Q

assuming T (q)
a

−Ð⊂ z′ in C(A), where polA(a) = +, there is a unique q′ ∈ Q such
that q−Ð⊂ q′ and T (q′) = z′. Any such extension q′ must comprise the partial
order q extended by the event a. As a is +ve the events on which it immediately
depends in q′ will coincide with those on which a immediately depends in z′,
guaranteeing the uniqueness of q′. It remains to show the existence of q′.

By assumption, q rigidly embeds in Q(x1, y1,⋯, xk, yk, xk+1) for some alter-
nating sequence x1, y1,⋯, xk, yk, xk+1. In the case where q consists of purely
+ve events, take q′ =def Q(z′). Otherwise, consider the largest i for which
T (q) ∩ (yi ∖ xi) ≠ ∅. Then,

polA T (q) ∖ yi ⊆ {+} . (1)

From the construction of Q(x1, y1,⋯, xk, yk, xk+1) and the rigidity of the inclu-
sion of q in Q(x1, y1,⋯, xk, yk, xk+1) we obtain

x+i ⊆ T (q) . (2)

From (2), T (q) ⊆− T (q) ∪ yi and, by assumption, T (q)
a

−Ð⊂ z′ with polA(a) = +.
Using (‡), their union remains in C(A), and we can define

x′ =def T (q) ∪ yi ∪ {a} ∈ C(A) .

Note that
x1, y1,⋯, xi, yi, x

′

is an alternating sequence because yi ⊆
+ x′ by (1) and it is built from an al-

ternating sequence x1, y1,⋯, xk, yk, xk+1. Restricting Q(x1, y1,⋯, xi, yi, x
′) to

events z we obtain a partial order q′ for which q−Ð⊂ q′ in Q and T (q′) = z.
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We now show that τ is winning for Opponent. For this it suffices to show
that if q ∈ Q is −-maximal then T (q) ∉ W . Assume q ∈ Q is −-maximal in Q.
Necessarily q embeds rigidly in Q(x1, y1,⋯, xk, yk, xk+1) for some alternating
sequence x1, y1,⋯, xk, yk, xk+1.

In the case where q consists of purely +ve events

∅ ⊆+ T (q) in C(A) .

Suppose T (q) ∈W . By Lemma 7.28, for some y ∈ C(A),

T (q) ⊆− y & y ∉W .

But then there is a strict extension q ↪ Q(T (q), y,∅) of q by −ve events in Q,
and q is not −-maximal—a contradiction.

In the case where q has −ve events, we may take the largest i for which
T (q) ∩ (yi ∖ xi) ≠ ∅. As earlier,

(1) polA T (q) ∖ yi ⊆ {+} & (2) x+i ⊆ T (q) .

As q is −-maximal, yi ⊆ T (q), whence by (1),

yi ⊆
+ T (q) .

Suppose, to obtain a contradiction, that T (q) ∈ W . The game (A,W )/yi has
no winning strategy. By Lemma 7.28, given

∅ ⊆+ x =def T (q) ∖ yi

in C((A,W )/yi) there is y ∈ C((A,W )/yi) with

x ⊆− y & y ∉W /yi .

Let x′i+1 =def T (q) and y′i+1 =def yi ∪ y ∉W . Then,

x1, y1,⋯, xi, yi, x
′
i+1, y

′
i+1,∅

is an alternating sequence which strictly extends q by −ve events, contradicting
its −-maximality.

We conclude that τ is a winning strategy for Opponent.

Corollary 7.30. If a well-founded game A satisfies (‡) then (A,W ) is deter-
mined for any winning conditions W .

7.8 Satisfaction in the predicate calculus

The syntax for predicate calculus: formulae are given by

φ,ψ,⋯ ∶∶= R(x1,⋯, xk) ∣ φ ∧ ψ ∣ φ ∨ ψ ∣ ¬φ ∣ ∃x. φ ∣ ∀x. φ
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where R ranges over basic relation symbols of a fixed arity and x,x1, x2,⋯, xk
over variables.

A model M for the predicate calculus comprises a non-empty universe of
values VM and an interpretation for each of the relation symbols as a relation
of appropriate arity on VM . Following Tarski we can then define by structural
induction the truth of a formula of predicate logic w.r.t. an assignment of values
in VM to the variables of the formula. We write

ρ ⊧M φ

iff formula φ is true in M w.r.t. environment ρ; we take an environment to be
a function from variables to values.

W.r.t. a model M and an environment ρ, we can denote a formula φ by
JφKMρ, a concurrent game with winning conditions, so that ρ ⊧M φ iff the game
JφKMρ has a winning strategy.

The denotation as a game is defined by structural induction:

JR(x1,⋯, xk)KMρ =
⎧⎪⎪
⎨
⎪⎪⎩

(∅,{∅}) if ρ ⊧M R(x1,⋯, xk) ,

(∅,∅) otherwise.

Jφ ∧ ψKMρ = JφKMρ⊗ JψKMρ
Jφ ∨ ψKMρ = JφKMρ` JψKMρ
J¬φKMρ = (JφKMρ)⊥

J∃x. φKMρ = ⊕
v∈VM

JφKMρ[v/x]

J∀x. φKMρ = ⊖
v∈VM

JφKMρ[v/x] .

We use ρ[v/x] to mean the environment ρ updated to assign value v to variable
x. The game (∅,{∅}) the unit w.r.t. ⊗ is the game used to denote true and the
game (∅,{∅}) the unit w.r.t. ` to denote false. Denotations of conjunctions and
disjunctions are denoted by the operations of ⊗ and ` on games, while negations
denote dual games. Universal and existential quantifiers denote prefixed sums
of games, operations which we now describe.

The prefixed game ⊕.(A,W ) comprises the event structure with polarity ⊕.A
in which all the events of A are made to causally depend on a fresh +ve event ⊕.
Its winning conditions are those configurations x ∈ C∞(⊕.A) of the form {⊕}∪y
for some y ∈W . The game ⊕v∈V (Av,Wv) has underlying event structure with
polarity the sum (=coproduct) ∑v∈V ⊕.Av with a configuration winning iff it
is the image of a winning configuration in a component under the injection to
the sum. Note in particular that the empty configuration of ⊕v∈V Gv is not
winning—Player must make a move in order to win. The game ⊖v∈V Gv is
defined dually, as (⊕v∈V G

⊥
v)
⊥. In this game the empty configuration is winning

but Opponent gets to make the first move. More explicitly, the prefixed game
⊖.(A,W ) comprises the event structure with polarity ⊖.A in which all the events
of A are made to causally depend on the previous occurrence of an opponent
event ⊖, with winning configurations either the empty configuration or of the
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form {⊖} ∪ y where y ∈ W . Writing Gv = (Av,Wv), the underlying event
structure of ⊖v∈V Gv is the sum ∑v∈V ⊖.Av with a configuration winning iff it
is empty or the image under injection of a winning configuration in a prefixed
component.

It is easy to check by structural induction that:

Proposition 7.31. For any formula φ the game JφKMρ is well-founded and
race-free, so a determined game by the result of the last section.

The following facts are useful for building strategies.

Proposition 7.32.

(i) If σ ∶ S → A is a strategy in A and τ ∶ T → B is a strategy in B, then
σ∥τ ∶ S∥T → A∥B is a strategy in A∥B.

(ii) If σ ∶ S → T is a strategy in T and τ ∶ T → B is a strategy in B, then
their composition as maps of event structures with polarity τσ ∶ S → B is
a strategy in B.

Proof. It is easy to check that the properties of receptivity and innocence are
preserved by parallel composition and composition of maps.

There are ‘projection’ strategies from a tensor product of games to its com-
ponents:

Proposition 7.33. Let G = (A,WG) and H = (B,WH) be race-free games with
winning conditions. The map of event structures with polarity

idA⊥∥γB ∶ A⊥∥CCB → A⊥∥B⊥∥B

is a winning strategy pH ∶ G⊗H + //H. The map of event structures with polarity

idB⊥∥γA ∶ B⊥∥CCA → B⊥∥A⊥∥A ≅ A⊥∥B⊥∥A

is a winning strategy pG ∶ G⊗H + //G.

Proof. By Proposition 7.32, as idA⊥ is a strategy in A⊥ and γB is a strategy in
B⊥∥B the map pH = idA⊥∥γB is certainly a strategy in A⊥∥B⊥∥B.

We need to check that pH is a winning strategy in G⊗H ⊸H. Consider x,
a +-maximal configuration of A⊥∥CCB . As B is race-free, the copy-cat strategy
γB is winning in H ⊸H. Consequently if x images to a winning configuration in
G⊗H on the left of G⊗H ⊸H it will image to a winning configuration in H on
the right of G⊗H ⊸H. (Recall a winning configuration of G⊗H is essentially
the union of a winning configuration in G together with a winning configuration
in H.) Consequently, x images to a winning configuration in G⊗H ⊸H, as is
required for pH to be a winning strategy.

The strategy pG is defined analogously but for the isomorphism B⊥∥A⊥∥A ≅
A⊥∥B⊥∥A which does not disturb its winning nature.
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The following lemma is used to build and deconstruct strategies in prefixed
sums of games. The lemma concerns the more basic prefixed sums of event
structures. These are built as coproducts ∑i∈I ●.Bi of event structures ●.Bi in
which an event ● is prefixed to Bi, making all the events in Bi causally depend
on ●.

Lemma 7.34. Suppose f ∶ A → ∑i∈I ●.Bi is a total map of event structures,
with codomain a prefixed sum. Then, A is isomorphic to an prefixed sum, A ≅

∑j∈J ●.Aj, and there is a function r ∶ J → I and total maps of event structures
fj ∶ Aj → Br(j) for which

∑j∈J ●.Aj ≅

[●.fj]j∈J
��

A

f{{
∑i∈I ●.Bi

commutes.

Proof. Let J be the subset of events of A whose images are prefix events ● in

∑i∈I ●.Bi. As f is a map of event structures any distinct pairs of events in J
are inconsistent. Moreover, every event of A is ≤A-above a necessarily unique
event in J . It follows that the events of J are ≤A-minimal with A ≅ ∑j∈J ●.Aj ;
the event structure Aj is A/{j}, that part of the event structure strictly above
the event j. Each event j ∈ J is sent to a unique prefix event f(j) in ∑i∈I ●.Bi.
Thus f determines a function r ∶ J → I and maps fj ∶ Aj → Br(i) for all j ∈ J .
By construction the map f is reassembled, up to isomorphism, as the unique
mediating map [●.fj]j∈J for which

●.Aj

●.fj
��

inAj // ∑j∈J ●.Aj ≅

[●.fj]j∈J
��

A

f{{
●.Br(j)

inBr(j)

// ∑i∈I ●.Bi

commutes for all j ∈ J .

Lemma 7.35. Let G,H,Gv, where v ∈ V , be race-free games with winning
conditions. Then,

(i) G ⊗H has a winning strategy iff G has a winning strategy and H has a
winning strategy.

(ii) ⊕v∈V Gv has a winning strategy iff Gv has a winning strategy for some
v ∈ V .

(iii) ⊖v∈V Gv has a winning strategy iff Gv has a winning strategy for all v ∈ V .

If in addition G and H are determined,
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(iv) G ` H has a winning strategy iff G has a winning strategy or H has a
winning strategy.

Proof. Throughout write Gv = (Av,Wv), where v ∈ V .

(i) ‘Only if ’: If G⊗H has a winning strategy σ ∶ (∅,{∅}) + //G⊗H, then the
compositions pG⊙σ and pH⊙σ provide winning strategies in G and H, respec-
tively. ‘If ’: If G = (A,WG) and H = (B,WH) have winning strategies given as
maps of event structures with polarity σ ∶ S → A and τ ∶ T → B then the map
σ∥τ ∶ S∥T → A∥B is a winning strategy in G⊗H.

(ii) ‘Only if ’: Suppose σ ∶ S → ∑v∈V ⊕.Av is a winning strategy in ⊕v∈V Gv.
As ∅ is not winning in the game, S must be nonempty. By Lemma 7.34, S
decomposes into a prefixed sum necessarily nonempty and of the form ∑j∈J ⊕.Sj
with maps, now necessarily total maps of event structures with polarity, σj ∶
Sj → Av(j). Because σ is winning any such map will be a winning strategy in
Gv(j). ‘If ’: Suppose σv ∶ Sv → Av is a winning strategy in Gv. Prefixing we
obtain ⊕.σv ∶ ⊕.Sv → ⊕.Av, a winning strategy in ⊕.Gv. Composing with the
winning ‘injection’ strategy Inv ∶ ⊕.Gv + // ∑v∈V ⊕.Gv defined below we obtain a
winning strategy in ⊕v∈V Gv. The injection strategy is built from the injection
map of event structures with polarity

inv ∶ ⊕.Av → ∑
v∈V

⊕.Av .

as the composite map

Inv ∶ CC⊕.Av
γ⊕.Av // (⊕.Av)⊥∥⊕ .Av

id(⊕.Av)⊥∥ inv// (⊕.Av)⊥∥∑v∈V ⊕.Av .

Proposition 7.32 is used to show Inv is a strategy. It can be seen that inv is
both receptive and innocent so a strategy in ∑v∈V ⊕.Av. The map id(⊕.Av)⊥ is a
strategy. Hence id(⊕.Av)⊥∥ inv is a strategy. As the composition of two strategy
maps, Inv is a strategy in (⊕.Av)

⊥∥∑v∈V ⊕.Av. It is a winning strategy because,
as is easily seen from the explicit composite form of Inv, the image under Inv
of a +-maximal configuration in CC⊕.Av is winning.

(iii) ‘Only if ’: Defining Pv =def In⊥v, where Inv ∶ ⊕.G
⊥
v + // ⊕v∈V G

⊥
v is an instance

of an injection strategy defined above, we obtain by duality a winning strategy

Pv ∶ ⊖
v∈V

Gv + // ⊖ .Gv ,

for any v ∈ V . Let v ∈ V . By composition with Pv a winning strategy in

⊖v∈V Gv yields a winning strategy in the component ⊖.Gv. By Lemma 7.34 in
a strategy σ ∶ S → ⊖.Av the event structure S decomposes into a prefixed sum,
where the prefixing events are necessarily all −ve. As σ is receptive the sum
must be a unary prefixed sum of the form ⊖.S′. Lemma 7.34 provides a map
σ′ ∶ S′ → Av. From σ being winning the map σ′ will be a winning strategy in
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Gv. ‘If ’: Suppose σv ∶ Sv → Av is a winning strategy in Gv, for all v ∈ V . Pre-
fixing we obtain winning strategies ⊖.σv ∶ ⊖.Sv → ⊖.Av in ⊖.Gv. Forming the
sum ∑v∈V ⊖.σv ∶ ∑v∈V ⊖.Sv → ⊖.σv ∶ ∑v∈V ⊖.Av we obtain a strategy winning in

⊖v∈V Gv.

(iv) Now suppose G and H are determined. ‘If ’: The dual winning strategies
p⊥G⊥ ∶ G + //G ` H and p⊥H⊥ ∶ H + //G ` H compose with a winning strategy
(∅,{∅}) + //G, or respectively a winning strategy (∅,{∅}) + //H, to yield a
winning strategy (∅,{∅}) + //G`H. ‘Only if ’: Suppose G`H has a winning
strategy. Then G⊥ ⊗H⊥ = (G`H)⊥ has no winning strategy. Hence by (i), G⊥

has no winning strategy or H⊥ has no winning strategy. From determinacy, G
has a winning strategy or H has a winning strategy.

Theorem 7.36. For all predicate-calculus formulae φ and environments ρ, ρ ⊧M
φ iff the game JφKMρ has a winning strategy.

Proof. By Proposition 7.31 the games JφKMρ obtained from formulae φ are race-
free and determined. The proof is by structural induction on φ.

The base case where φ is R(x1,⋯, xk) is obvious; the game (∅,{∅}) has as
(unique) winning strategy the map ∅→ ∅, while (∅,∅) has no winning strategy.

For the case φ ∧ ψ, reason

ρ ⊧M φ ∧ ψ ⇐⇒ ρ ⊧M φ & ρ ⊧M ψ

⇐⇒ JφKMρ has a winning strategy & JψKMρ has a winning strategy, by induction,

⇐⇒ JφKMρ⊗ JψKMρ has a winning strategy, by Lemma 7.35(i),

⇐⇒ Jφ ∧ ψKMρ has a winning strategy.

In the case φ ∨ ψ,

ρ ⊧M φ ∨ ψ ⇐⇒ ρ ⊧M φ or ρ ⊧M ψ

⇐⇒ JφKMρ has a winning strategy or JψKMρ has a winning strategy, by induction,

⇐⇒ JφKMρ` JψKMρ has a winning strategy, by Lemma 7.35(iv),

⇐⇒ Jφ ∧ ψKMρ has a winning strategy.

In the case ¬φ,

ρ ⊧M ¬φ ⇐⇒ ρ /⊧M φ

⇐⇒ JφKMρ has no winning strategy, by induction,

⇐⇒ (JφKMρ)⊥ has a winning strategy, by determinacy.

In the case ∃x. φ,

ρ ⊧M ∃x.φ ⇐⇒ ρ[v/x] ⊧M φ for some v ∈ V

⇐⇒ JφKMρ[v/x] has a winning strategy, for some v ∈ V , by induction,

⇐⇒ ⊕
v∈V

JφKMρ[v/x] has a winning strategy, by Lemma 7.35(ii),

⇐⇒ J∃x.φKMρ has a winning strategy.
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In the case ∀x. φ,

ρ ⊧M ∀x.φ ⇐⇒ ρ[v/x] ⊧M φ for all v ∈ V

⇐⇒ JφKMρ[v/x] has a winning strategy, for all v ∈ V , by induction,

⇐⇒ ⊖
v∈V

JφKMρ[v/x] has a winning strategy, by Lemma 7.35(iii),

⇐⇒ J∀x.φKMρ has a winning strategy.



Chapter 8

Games with imperfect
information

8.1 Motivation

Consider the game “rock, scissors, paper” in which the two participants Player
and Opponent independently sign one of r (“rock”), s (“scissors”) or p (“pa-
per”). The participant with the dominant sign w.r.t. the relation

r beats s, s beats p and p beats r

wins. It seems sensible to represent this game by RSP , the event structure with
polarity

r1⊕ ⊖ r2

s1⊕ ⊕p1 s2⊖ ⊖p2

comprising the three mutually inconsistent possible signings of Player in parallel
with the three mutually inconsistent signings of Opponent. In the absence of
neutral configurations, a reasonable choice is to take the losing configurations
(for Player) to be

{s1, r2}, {p1, s2}, {r1, p2}

and all other configurations as winning for Player. In this case there is a winning
strategy for Player, viz. await the move of Opponent and then beat it with a
dominant move. Explicitly, the winning strategy σ ∶ S → RSP is given as the
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obvious map from S, the following event structure with polarity:

r1⊕

s1⊕ ⊕p1 ⊖ s2

�hho

p2⊖

�ggn

⊖ r2

�ggn

But this strategy cheats. In “rock, scissors, paper” participants are intended to
make their moves independently. The problem with the game RSP as it stands
is that it is a game of perfect information in the sense that all moves are visible to
both participants. This permits the winning strategy above with its unwanted
dependencies on moves which should be unseen by Player. To adequately model
“rock, scissors, paper” requires a game of imperfect information where some
moves are masked, or inaccessible, and strategies with dependencies on unseen
moves are ruled out.

8.2 Games with imperfect information

We extend concurrent games to games with imperfect information. To do so in
way that respects the operations of the bicategory of games we suppose a fixed
preorder of levels (Λ,⪯). The levels are to be thought of as levels of access, or
permission. Moves in games and strategies are to respect levels: moves will be
assigned levels in such a way that a move is only permitted to causally depend
on moves at equal or lower levels; it is as if from a level only moves of equal or
lower level can be seen.

An Λ-game (G, l) comprises a game G = (A,W,L) with winning/losing con-
ditions together with a level function l ∶ A→ Λ such that

a ≤A a
′ Ô⇒ l(a) ⪯ l(a′)

for all a, a′ ∈ A. A Λ-strategy in the Λ-game (G, l) is a strategy σ ∶ S → A for
which

s ≤S s
′ Ô⇒ lσ(s) ⪯ lσ(s′)

for all s, s′ ∈ S.
For example, for “rock, scissors, paper” we can take Λ to be the discrete

preorder consisting of levels 1 and 2 unrelated to each other under ⪯. To make
RSP into a suitable Λ-game the level function l takes +ve events in RSP to
level 1 and −ve events to level 2. The strategy above, where Player awaits
the move of Opponent then beats it with a dominant move, is now disallowed
because it is not a Λ-strategy—it introduces causal dependencies which do not
respect levels. If instead we took Λ to be the unique preorder on a single level
the Λ-strategies would coincide with all the strategies.
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8.2.1 The bicategory of Λ-games

The introduction of levels meshes smoothly with the bicategorical structure on
games.

For a Λ-game (G, lG), define its dual (G, lG)⊥ to be (G⊥, lG⊥) where lG⊥(a) =
lG(a), for a an event of G.

For Λ-games (G, lG) and (H, lH), define their parallel composition (G, lG)∥(H, lH)
to be (G∥H, lG∥H) where lG∥H((1, a)) = lG(a), for a an event ofG, and lG∥H((2, b)) =
lH(b), for b an event of H.

A strategy between Λ-games from (G, lG) to (H, lH) is a strategy in (G, lG)⊥∥(H, lH).

Proposition 8.1.
(i) Let (G, lG) be a Λ-game where G satisfies (Cwins). The copy-cat strategy
on G is a Λ-strategy.
(ii) The composition of Λ-strategies is a Λ-strategy.

Proof. (i) The additional causal links introduced in the construction of the copy-
cat strategy are between complementary events in G⊥ and G, at the same level
in Λ, and so respect ⪯.

(ii) Let (G, lG), (H, lH) and (K, lK) be Λ-games. Let σ ∶ G + //H and τ ∶
H + //K be Λ-strategies. We show their composition τ⊙σ is a Λ-strategy.

It suffices to show p _ p′ in T⊙S implies lG⊥∥Kτ⊙σ(p) ⪯ lG⊥∥Kτ⊙σ(p
′).

Suppose p _ p′ in T⊙S with max(p) = e and max(p′) = e′. Take x ∈ C(T⊙S)
containing p′ so p too. Then,

e _⋃x e1 _⋃x ⋯ _⋃x en−1 _⋃x e
′

where e, e′ ∈ V0 and ei ∉ V0 for 1 ≤ i ≤ n − 1. (V0 consists of ‘visible’ events
of the stable family, those of the form (s,∗) with σ1(s) defined, or (∗, t), with
τ2(t) defined.) The events ei have the form (si, ti) where σ2(si) = τ1(ti), for
1 ≤ i ≤ n − 1.

Any individual link in the chain above has one of the forms:

(s, t) _⋃x (s′, t′) , (s,∗) _⋃x (s′, t′) ,

(∗, t) _⋃x (s′, t′) , (s, t) _⋃x (s′,∗) , or (s, t) _⋃x (∗, t′) .

By Lemma 3.16, for any link either s _S s′ or t _T t′. As σ and τ are Λ-
strategies, this entails

lG⊥∥Hσ(s) ⪯ lG⊥∥Hσ(s
′) or lH⊥∥Kτ(t) ⪯ lH⊥∥Kτ(t

′)

for any link. Consequently ⪯ is respected across the chain and lG⊥∥Kτ⊙σ(p) ⪯
lG⊥∥Kτ⊙σ(p

′), as required.

W.r.t. a particular choice of access levels (Λ,⪯) we obtain a bicategory
WGamesΛ. Its objects are Λ-games (G, l) where G satisfies (Cwins) with ar-
rows the Λ-strategies and 2-cells maps of spans. It restricts to a sub-bicategory
of deterministic Λ-strategies, which as before is equivalent to an order-enriched
category.
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8.3 Hintikka’s IF logic

We present a variant of Hintikka’s Independence-Friendly (IF) logic and propose
a semantics in terms of concurrent games with imperfect information. Assume
a preorder (Λ,⪯). The syntax for IF logic is essentially that of the predicate
calculus, but with levels in Λ associated with quantifiers: formulae are given by

φ,ψ,⋯ ∶∶= R(x1,⋯, xk) ∣ φ ∧ ψ ∣ φ ∨ ψ ∣ ¬φ ∣ ∃λx. φ ∣ ∀λx. φ

where λ ∈ Λ, R ranges over basic relation symbols of a fixed arity and x,x1, x2,⋯
over variables.

Assume M , a non-empty universe of values VM and an interpretation for
each of the relation symbols as a relation of appropriate arity on VM ; so M is a
model for the predicate calculus in which the quantifier levels are stripped away.
Again, an environment ρ is a function from variables to values; again, ρ[v/x]
means the environment ρ updated to value v at variable x. W.r.t. a model
M and an environment ρ, we denote each closed formula φ of IF logic by a
Λ-game, following very closely the definitions in Section 7.8. The differences are
the assignment of levels to events and that the order on Λ has to be respected
by the (modified) prefixed sums which quantified formulae denote.

The prefixed game ⊕λ.(A,W, l) comprises the event structure with polar-
ity ⊕.A in which all the events of a ∈ A where λ ⪯ l(a) are made to causally
depend on a fresh +ve event ⊕, itself assigned level λ. Its winning conditions
are those configurations x ∈ C∞(⊕.A) of the form {⊕} ∪ y for some y ∈W . The
game ⊕λ

v∈V (Av,Wv, lv) has underlying event structure with polarity the sum

∑v∈V ⊕
λ.Av , maintains the same levels as its components, with a configuration

winning iff it is the image of a winning configuration in a component under the
injection to the sum. The game ⊖λ

v∈V Gv is defined dually, as (⊕λ
v∈V G

⊥
v)
⊥. In

this game the empty configuration is winning but Opponent gets to make the
first move.

True denotes the Λ-game the unit w.r.t. ⊗ and false denotes he unit w.r.t. `.
Denotations of conjunctions and disjunctions are given by the operations of ⊗
and ` on Λ-games, while negations denote dual games. W.r.t. an environment
ρ, universal and existential quantifiers denote the prefixed sums of games:

J∃λx. φKΛ

Mρ =
λ

⊕
v∈VM

JφKΛ

Mρ[v/x]

J∀λx. φKΛ

Mρ =
λ

⊖
v∈VM

JφKΛ

Mρ[v/x] .

As a definition, an IF formula φ is satisfied w.r.t. an environment ρ, written

ρ ⊧Λ
M φ ,

iff the Λ-game JφKΛ

Mρ has a winning strategy.



Chapter 9

Extensions

These notes are incomplete in several ways. They don’t account for games with
back-tracking, games where play can revisit previous positions. While a little
odd from the point of view of everyday games, this feature is very important
in game semantics, for instance in order to re-evaluate the argument to a func-
tion. The theory has recently been extended to allow back-tracking and copy-
ing via event structures with symmetry, which support a rich variety of pseudo
(co)monads to achieve this. The determinacy result has been extended to con-
current games with Borel winning conditions (provided the games are race-free
and bounded-concurrent). Concurrent strategies have recently been extended
to probabilistic and quantum concurrent strategies. The relevant papers can be
found at www.cl.cam.ac.uk/∼gw104.
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Appendix A

Exercises

On event structures and stable families

Exercise A.1. Let (A,≤A,ConA), (B,≤B ,ConB) be event structures. Let f ∶
A⇀ B. Show f is a map of event structures, f ∶ (A,≤A,ConA)→ (B,≤B ,ConB),
iff

(i) ∀a ∈ A, b ∈ B. b ≤B f(a) Ô⇒ ∃a′ ∈ A. a′ ≤A a & f(a′) = b , and

(ii) ∀X ∈ ConA. fX ∈ ConB & ∀a1, a2 ∈X. f(a1) = f(a2) Ô⇒ a1 = a2 .

◻

Exercise A.2. Show a map f ∶ A → B of event structures is mono iff the
function C(A)→ C(B) taking configuration x to its direct image fx is injective.
[Recall a map f ∶ A → B is mono iff for all maps g, h ∶ C → A if fg = fh then
g = h.] Taking B to be the event structure comprising two concurrent events,
can you find an event structure A and an example of a total map f ∶ A → B of
event structures which is both mono and where f is not injective as a function
on events? ◻

Exercise A.3. Verify that the finite configurations of an event structure form
a stable family. ◻

Exercise A.4. Say an event structure A is tree-like when its concurrency rela-
tion is empty (so two events are either causally related or inconsistent). Suppose
B is tree-like and f ∶ A → B is a total map of event structures. Show A must
also be tree-like, and moreover that the map f is rigid, i.e. preserves causal
dependency.

Exercise A.5. Let F be a nonempty family of finite sets satisfying the Com-
pleteness axiom in the definition of stable families. Show F is coincidence-free
iff

∀x, y ∈ F . x ⊊ y Ô⇒ ∃x1, e1. x
e1
−Ð⊂x1 ⊆ y .

1
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[Hint: For ‘only if’ use induction on the size of y ∖ x.] ◻

Exercise A.6. Prove Proposition 3.5: Let f ∶ F → G be a map of stable families.
Let e, e′ ∈ x, a configuration of F . Show if f(e) ≤fx f(e

′) (with both f(e) and
f(e′) defined) then e ≤x e

′.

Exercise A.7. Prove the two propositions 3.8 and 3.9. ◻

Exercise A.8. (From Section 3.2) For an event structure E, show C∞(E) =
C(E)∞. ◻

Exercise A.9. (From Section 3.2) Let F be a stable family. Show F∞ satisfies:

Completeness: ∀Z ⊆ F∞. Z ↑ Ô⇒ ⋃Z ∈ F∞ ;
Stability: ∀Z ⊆ F∞. Z /= ∅ & Z ↑ Ô⇒ ⋂Z ∈ F∞;
Coincidence-freeness: For all x ∈ F∞, e, e′ ∈ x with e /= e′,

∃y ∈ F∞. y ⊆ x & (e ∈ y ⇐⇒ e′ ∉ y) ;

Finiteness: For all x ∈ F∞,

∀e ∈ x∃y ∈ F . e ∈ y & y ⊆ x & y is finite .

Show that F consists of precisely the finite sets in F∞. ◻

Exercise A.10. Let A be the event structure consisting of two distinct events
a1 ≤ a2 and B the event structure with a single event b. Following the method
of Section 3.3.1 describe the product of event structures A ×B. ◻

Exercise A.11. Let f ∶ A→ B be a total map of event structures. Show

a _A a
′ Ô⇒ f(a) _B f(a

′) or f(a) coB f(a
′) .

◻
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On strategies

Exercise A.12. Consider the empty map of event structures with polarity∅→
A. Is it a strategy? Is it a deterministic strategy? Consider now the identity
map idA ∶ A→ A on an event structure with polarityA. Is it a strategy? Is it a
deterministic strategy? ◻

Exercise A.13. For each instance of total map σ of event structures with po-
larity below say whether σ is a strategy and whether it is deterministic. In each
case give a short justification for your answer. (Immediate causal dependency
within the event structures is represented by an arrow _ and inconsistency, or
conflict, by a wiggly line .)

(i) S

σ

��

⊖
� ,,2

_

��

⊕_

��
A ⊖ ⊕

(ii) S

σ

��

⊕
� ,,2

_

��

⊖_

��
A ⊕ ⊖

(iii) S

σ

��

⊕
� ,,2

_

��

⊕_

��
A ⊕ ⊕

(iv) S

σ

��

⊖
� ,,2

_

��

⊖_

��
A ⊖ ⊖

(v) S

σ

��

⊖_

��
A ⊖

� ,,2⊕

(vi) S

σ

��

⊕_

��
A ⊕

� ,,2⊕

(vi) S

σ

��

⊕_

��
A ⊕

� ,,2⊖
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(vii) S

σ

��

⊕_

��

⊕@

��
A ⊕

(viii) S

σ

��

⊖_

��

⊖@

��
A ⊖

(ix) ⊖-

((

� ,,2⊕ �

vv

S

σ

��

⊕

_LLR

_

��

⊖_

��

_LLR

�llr

A ⊕

_���

⊖

_���
⊖ ⊕

◻

Exercise A.14. Let idA ∶ A → A be the identity map of event structures,
sending an event to itself. Show the identity map forms a strategy in the game
A. Is it deterministic in general? ◻

Exercise A.15. Show any strategy σ ∶ A + //B has a dual strategy σ⊥ ∶ B⊥ + //A⊥.
In more detail, supposing σ ∶ S → A⊥∥B is a strategy show σ⊥ ∶ S → (B⊥)⊥∥A⊥

is a strategy where

σ⊥(s) =
⎧⎪⎪
⎨
⎪⎪⎩

(1, b) if σ(s) = (2, b)

(2, a) if σ(s) = (1, a) .

◻

Exercise A.16. Say an event structure is set-like if its causal dependency rela-
tion is the identity relation and all pairs of distinct events are inconsistent. Let
A and B be set-like event structures. In this case, can you see a simpler way to
describe strategies and deterministic strategies A + //B, and what composition
of strategies corresponds to? ◻

Exercise A.17. By considering the game A comprising two concurrent events,
one +ve and one −ve, show there is a nondeterministic pre-strategy σ ∶ S → A
such that s _ s′ in S without σ(s) _ σ(s′). Could you find such a counterex-
ample were σ deterministic? Explain. ◻



5

Exercise A.18. Let G =def (A,W ) be a game with winning conditions. Say a
pre-strategy σ ∶ S → A is winning iff σx ∈ W for all +-maximal configurations
x ∈ C∞(S). Show that if G has a winning receptive pre-strategy, then the dual
game G⊥ has no winning strategy (use Corollary 7.3.) Show that G may have a
winning pre-strategy (necessarily not receptive) while G⊥ has a winning strategy.

◻

Exercise A.19. (Section 7.3.) Each event structure with polarityA possesses
a “Scott order” on its configurations C∞(A):

x′ ⊑ x iff x′ ⊇− x ∩ x′ ⊆+ x .

Prove that the Scott order is indeed a partial order. ◻


