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Abstract
Quantization of images containing low texture regions, such

as sky, water or skin, can produce banding artifacts. As the bit-
depth of each color channel is decreased, smooth image gradi-
ents are transformed into perceivable, wide, discrete bands. Com-
monly used quality metrics cannot reliably measure the visibility
of such artifacts. In this paper we introduce a visual model for
predicting the visibility of both luminance and chrominance band-
ing artifacts in image gradients spanning between two arbitrary
points in a color space. The model analyzes the error introduced
by quantization in the Fourier space, and employs a purpose-built
spatio-chromatic contrast sensitivity function to predict its visibil-
ity. The output of the model is a detection probability, which can
be then used to compute the minimum bit-depth for which banding
artifacts are just-noticeable. We demonstrate that the model can
accurately predict the results of our psychophysical experiments.

Introduction
Novel display technologies, such as HDR monitors and VR

headsets, require the design of new color spaces that can accom-
modate larger dynamic ranges and wider color gamuts. It is a
significant challenge to ensure that these newly-designed color
spaces interact well with image and video compression.

To fit within a discrete, digital representation, color signals
are quantized to a target bit-depth using some color space and
electro-optical transfer function. Quantization of this sort can in-
troduce banding artifacts, also known as quantization artifacts or
false contours. These banding artifacts are most prominent in im-
ages containing smooth, low texture regions, such as skin, or the
sky and water in Figure 1. With insufficient bit-depth, smooth
gradients in luminance and chrominance are perceived as wide,
discrete bands.

One particularly desirable property of a color space intended
for compression is perceptual uniformity; i.e. when quantized
to a certain bit-depth, perceivable banding artifacts are equally
likely to occur in all parts of the color space. A visual model
that can predict banding artifacts robustly could aid to assess the
uniformity of existing and new color spaces.

Commonly used visual difference predictors (VDP, HDR-
VDP) operate on luminance information only, therefore cannot
measure chromatic artifacts. Other quality metrics, including
PSNR and SSIM, do not model the perceptual phenomena that
are responsible for the visibility of banding.

In this paper we introduce a visual model for predicting the
visibility of banding artifacts for both luminance and chrominance
gradients. The model analyzes the error signal from quantizing
gradients in the target color space, comparing it with the con-
trast sensitivity function of the human eye. The output of the
model is a detection probability that can be then used to com-
pute the minimum bit-depth for which the contouring artifacts are
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Figure 1. Increasing severity of banding artifacts when quantized to a

range of bit-depths in different color spaces (YCbCr, ITP). Consistently with

our results, ITP results in less severe banding artifacts at the same bit-depth.

just-noticeable. We conducted multiple experiments and found
that the model could well predict the collected data. Additionally,
when analyzing the bit depth predictions of our model, we found
a similarity to DeltaE 2000 color differences and MacAdam El-
lipses. To emphasize the applicability to novel display techniques,
we performed all experiments using a virtual reality headset.

In the next section we review the existing literature related to
banding artifacts and quantization, give some background on the
topic of contrast sensitivity, then we describe the details of our
model, the experiments and the parameter fitting.

Related work
A number of published works address the visibility and sub-

sequent correction of banding artifacts [1, 4, 2, 3].



Some authors consider the problem from an image process-
ing points of view [1] without a perceptual calibration. Wang
et al. [4] demonstrate that such image processing methods can
be fine-tuned to better correlate with subjective (mean opinion
score) measurements, however, existing works take no account
of the complex structure of visual perception, and are unlikely to
generalize well to a color space agnostic setup.

Daly et al. [2, 3] present a technique for achieving bit-depth
extension via spatio-temporal dithering. Their proposed tech-
nique utilizes the contrast sensitivity limitations of the human vi-
sual system to evaluate and recommend perceptually-ideal dither-
ing patterns. In particular, [3] analyzes the error arising from the
quantization of a smooth gradient (Figure 2) in both the spatial
and the frequency domains. Our visual model builds on this anal-
ysis and extends it for chromaticity.

Previous studies have highlighted the importance of
quantization-related banding artifacts when considering novel en-
coding schemes [5, 6]. Boitard et al. [7] conducted extensive ex-
periments to establish the minimum bit-depths in different color
spaces. However, these studies do not provide a visual model for
predicting the visibility of banding artifacts.

Our visual model is inspired by perceptually-motivated vi-
sual difference predictors, such as VDP and HDR-VDP [8, 9]. As
described in the following section, we similarly rely on the con-
trast sensitivity function, and employ probability summation to
aggregate different frequency bands. However, the existing mod-
els do not account for chromatic differences and are therefore not
suited to predict banding artifacts in color images.

Background
When considering monochrome signal detection, the thresh-

old of human visual system (HVS) in known to change with the
average background luminance, the contrast, and the spatial fre-
quency of the signal among other factors. Contrast in this context
is commonly defined as ∆L/L, i.e. the luminance difference be-
tween the signal and the background divided by the background
luminance. The contrast threshold is the smallest amount of lu-
minance difference that can be detected by human visual system
given an average background luminance. The contrast threshold
(or inversely the contrast sensitivity) is dependent on the back-
ground luminance, and is non-uniform across spatial frequencies.
A number of authors have measured the contrast sensitivity func-
tion (CSF) for a variety of visual conditions as a function of spa-
tial frequency . In this paper we rely on Barten’s parametric model
[10] to describe the achromatic CSF (CSFA).

Existing chromatic contrast sensitivity functions do not ac-
count for changes in sensitivity with luminance, which are essen-
tial for our modelling. For that reason, we fitted a custom chro-
matic contrast sensitivity function to the data from [11] using our
custom cone contrast definition for CR and CY .

Model for monochromatic banding
Banding artifacts are the most visible when quantizing

smooth gradients. Therefore, to simplify the problem formula-
tion, we devise a model that targets this the worst-case scenario of
smooth gradients. Initially we will consider the monochromatic
case using the achromatic CSFA, then generalize to the chromatic
model in the following section.

Our predictor models the detection of banding based on the
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Figure 2. Illustration of the error signal (purple) between the original (blue)

and the quantized (red) signals. The error signal approximates a saw-tooth

function.
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Figure 3. Analytical model of the error signal. With a known width (w) and

height (h) we can find the frequency components of the signal.

CSF with probability summation in a manner similar to VDP
and HDR-VDP. Our model does not include the effect of con-
trast masking, which could further elevate the detection threshold.
Masking was excluded, as our goal was to predict the worst-case
scenario for any kind of content.

The predictor consists of the following steps: (1) we first
determine a set of spatial frequencies that are present in the con-
touring signal, (2) then we use those frequencies and CSFA to de-
termine how sensitive the eye is to each spatial frequency com-
ponent. (3) We use a psychophysical function to convert such
sensitivities into probabilities of detection. (4) Finally, we pool
probabilities across spatial frequency components using probabil-
ity summation. In the following paragraphs we explain the above
steps in more detail.

To determine spatial frequencies of the contours, we analyze
the Fourier transform of the difference signal between the smooth
and contoured gradients. We observe that banding artifacts over
a smooth gradient can be approximated with a saw-tooth pattern
(see purple line in Figure 2). The Fourier transform of a saw-tooth
pattern can be expressed analytically as:

f (x) =
1
2
− 1

π

∞

∑
k=1

h
k

sin
(

kπx
w

)
, (1)

where w is the width (period) and h is the amplitude as in Figure 3.
The amplitude of the frequency components is then:

αk =−
h

kπ
for k = 1,2, ... (2)



and the frequency of each component is:

ωk =−
kρ

w
, (3)

where ρ denotes the angular resolution of the device in pixels per
visual degree and w is the width of the saw-tooth in pixels. We
found that Fourier components for k > 16 were insignificant and
did not improve the model’s accuracy.

To compute the probability of detecting each Fourier com-
ponent of the contour, we first determine the sensitivity to that
component from Barten’s CSF:

S =
Lb

∆Ldet
=CSFA(ω,Lb), (4)

where ω is the spatial frequency, Lb is background luminance, and
∆Ldet is the detectable amplitude of that frequency component.
Then, we normalize the contrast of the contouring pattern (ak/Lb)
by multiplying by the sensitivity so that the normalized values are
equal to 1 when the k-th frequency component is just detectable.
The normalized contrast is given by:

ck =
ak

Lb
CSFA(ωk,Lb). (5)

Next, we transform the normalized contrast into probabilities us-
ing a psychometric function:

Pk = 1− exp(ln(0.5)cβ

k ), (6)

where β is the slope of the psychometric function. We found that
with our model, β = 2 produced more uniform results than the
typical estimate of β = 3.5.

Finally, we pool the probabilities Pk across all Fourier com-
ponents using probability summation

P = 1−∏
k
(1−Pk) (7)

To determine the minimum bit-depth that does not result in con-
touring artifacts, we perform binary-search for a bit-depth that
would result in P = 0.5.

Model for chromatic banding
The model, as described above, accounts only for banding

due to changes in luminance. While changes in luminance can be
a large contributor to the visibility of banding, changes in chro-
maticity can also have an impact. Here we extend the model to
account for this using a chromatic contrast sensitivity function,
and probability summation across all visual channels. Our chro-
matic color discrimination model takes a color gradient, specified
in the CIE XYZ (1931) color space, and predicts the probabil-
ity of observing a banding artifact when the smooth gradient is
quantized to a given bit-depth.

First, we convert both colors from XY Z into LMS space (as-
suming CIE 1931 color matching functions). Each channel of
this tri-stimulus space is proportional to the response of the long,
medium and short cones of the retina. It should be noted that
there is no standard way to scale the absolute response of each
cone type and the response values are only relative. To convert

CIE XY Z trichromatic values into LMS responses we use the fol-
lowing linear transform:L

M
S

=

 0.15514 0.54312 −0.03286
−0.15514 0.45684 0.03286

0 0 −0.00801

×
X

Y
Z

 . (8)

The cone responses are further transformed into opponent
responses of color vision mechanism: one achromatic (black-
to-white) and two chromatic: red-to-green and yellow-green-to-
violet. The exact tuning color directions of those mechanisms are
unknown, but such knowledge is not relevant for our considera-
tions. We use one of the simplest formulae commonly used to
compute color opponency:A

R
Y

=

L+M
L−M

S

 , (9)

where A is achromatic (luminance) response, R is the red-to-green
response and Y is the yellow-green-to-violet response.

Given two colors to be discriminated, we need to compute
contrast between them. Since there is no single way to represent
color contrast, we experimented with a number of expressions to
find the most suitable for our model:

CA =
|A2−A1|

A1
,CR =

|R2−R1|
α|R1|+(1−α)A1

,CY =
|Y2−Y1|

α|Y1|+(1−α)A1
,

(10)

where α is a free variable to be optimized for the experiment
data. Given the color contrast components CA,CR,CY , we fol-
low the same steps as for the prediction of luminance banding:
(1) we multiply each color contrast by the corresponding contrast
sensitivity function from [11] and the Fourier coefficients of the
saw-tooth pattern, ak, (2) transform normalized contrast to detec-
tion probability, (3) then apply probability summation across all
frequencies and the A,R,Y color channels.
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Figure 4. Chromatic contrast sensitivity function based on [11]. Dashed

and solid lines show the sensitivity to red-green and blue-yellow change re-

spectively at different background luminance levels.



Transfer
function

Quantization
Inverse 
transfer 
function

Inverse
display
model

Original gradient
linear color space

Quantized gradient
on headset

Linear RGB Linear RGB

Figure 5. Stimulus generation pipeline for the experiments. Smooth gradient images with varying contrast levels are generated in linear space, then transferred

to any arbitrary color space using a transfer function before quantization. After quantization, the inverse of the transfer function is applied. The inverse display

model (GOG) is used to compensate for the display characteristics before submitting to the device.
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Figure 6. Results of the monochromatic quantization experiment. Each label on the x axis denotes a stimulus as [encoding]@[mean luminance]. E.g. pq@0.50

indicates a gradient with a mean luminance of 0.5 cd/m2 quantized after PQ encoding. The color of the error bars indicate the chroma of the stimulus. The

number of required bits decreases with increased luminance. Our model (red crosses) predicts the values accurately regardless of the color of the stimuli.

Experiment 1: monochromatic quantization
The exact shape of CSFA depends on a number of free vari-

ables in Barten’s model [10] including the luminance of the adapt-
ing field, the angular size of an object, the background lumi-
nance and the viewing angle besides other factors. We ensured
that our contrast sensitivity function matches our application sce-
nario’s viewing conditions by conducting a psychophysical exper-
iment. As we target novel display technologies, we used a Huawei
Mate Pro 9 with a DayDream VR headset (peak luminance of
44 cd/m2). We used a spectroradiometer to measure the display
properties, then fitted a gamma-offset-gain model [12]. The ex-
periment was performed in a dark room to minimize the effect of
external light sources.

Stimuli
We used a number of monochrome smooth-gradient images; an
example of which is shown on the left of Figure 5. Each image
consisted of rows of gradients, where contrast varied from 0 (top)
to 1 (bottom). Given the mean luminance level L, the luminance
of all pixels in the top row were equal L, and the pixels in the
bottom row varied in luminance from 0 to 2L on a linear scale.
We measured the effect of luminance quantization at 7 chromatic-
ities: the white point, close to the three primary colors (red, green
and blue), as well as their opponent colors (cyan, magenta and
yellow). The exact color co-ordinates are listed in Table 1. The
stimuli were created following the processing steps shown in Fig-

Table 1: Chromaticity co-ordinates of the monochromatic
smooth gradient images in CIE L’UV.

Color u v
Gray 0.1950 0.4581
Red 0.4242 0.5186

Green 0.1044 0.5642
Blue 0.1768 0.1651
Cyan 0.1240 0.4281

Magenta 0.2827 0.3168
Yellow 0.1969 0.5529

ure 5. First, each linear gradient image was converted to the 0-
1 range using one of the two transfer functions: PQ or sRGB.
Then, the values were quantized to the sample bit-depth and con-
verted back to linear space. Quantization levels beyond the maxi-
mum bit-depth of the display were achieved with spatio-temporal
dithering. Three mean luminance levels were sampled for each
chromaticity spanning the available dynamic range. The size of
each square with the gradient was 20 visual degrees. The back-
ground wall had in the virtual environment had the same color as
the mean value of the gradient stimulus.



Procedure
Each observer was shown four squares with smooth gradients,
from which only one was quantized. For each trial, the position
of the quantized gradient was randomized. The observer’s task
was to indicate the quantized gradient using a remote controller.
The QUEST procedure [13, 14] was used with 30 trials to se-
lect consecutive bit-depths and to compute the final threshold. To
minimize the effect of dark adaptation, the luminance levels were
shown from darkest to brightest. Observers were given 2 minutes
before the experiment to adapt to the conditions. Each observer
was allowed to take any amount of time before making a decision.
They could freely move their head in the VR environment. The
experiment involved 9 paid participants, aged 19-45, with normal
or corrected to normal color vision.

Results
The results in Figure 6 indicate that lower mean luminance levels
require higher bit-depths. As expected, PQ offers better unifor-
mity than sRGB; i.e. the deviation in bit-depth requirement for
different luminance levels is smaller.

Model fitting
We formulated the CSFA as a simplified parametric Barten model
with five free variables including a relative scaling factor:

S(u) = p2
5200e−0.0016u2

(1+100/L)0.08√(
1+ 144

p2
1
+ p4u2

)(
p5

Lp3 + 1
1−e−0.02u2

) , (11)

where u is the spatial frequency, L is the mean luminance and
p1..5 denotes the five free parameters. We optimized p1..5
such that the error (the weighted sum of squared deviations
from the mean) between our model’s prediction and the ob-
served data is minimized. We found the optimum at p =
(39.9565,0.1722,0.4864,120.3724,0.8699). The crosses in Fig-
ure 6 show that the model can closely approximate the observed
data, with the predictions always lying within the error bars. An
interesting observation to make is that luminance gradients with
different chromaticities can be well predicted by this luminance-
only detection model. Attempts to optimize PSNR for the same
dataset yielded errors an order of magnitude greater than our
model.

Experiment 2: chroma quantization
The second experiment measured the maximum amount of

chroma quantization that does not result in detectable differences.
We investigated the effect of chroma quantization using two col-
orspaces: Y ′CbCr and ICtCp [15]. Both of these aim to decorrelate
luminance from chrominance, and although Lu et al. [15] claim
ICtCp offers better luminance-chrominance decorrelation and a
more perceptually uniform chroma encoding, the former is more
widely adopted at the time of writing.

Our setup and experimental procedure were identical to the
first experiment. The stimuli consisted of equiluminant smooth
image gradients at three fixed luminance levels in the CIE L′u′v′

color space. Two line segments were selected in the u′v′ plane
(Figure 8). The line segments were parallel to the chroma axis,
bound by the device’s color gamut, and intersected at the white
point. For both line segments, the smooth gradient stimuli were
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Figure 7. Fitted achromatic contrast sensitivity function compared with the

standard observer.

generated in a similar manner to the achromatic gradient used in
Experiment 1. Color saturation was zero at the top of the image,
and increased linearly down the image, where it was maximal at
the bottom (see rows 3-6 in Figure 1).

Figure 8. Visualization of the color lines (u: horizontal, v: vertical) for Exper-

iment 2. Both lines cross the white-point of the display, and are orthogonal

to the chroma dimensions of CIE L’u’v’.

Results
The results in Figure 9 indicate that both color spaces are approx-
imately perceptually uniform, as the number of required bits does
not change with luminance levels or across color channels. How-
ever, ICtCp requires consistently fewer bits than Y ′CbCr.

Model fitting
The only free parameter of the chromatic model was the α vari-
able determining the exact cone-contrast formula. We found that
α ≈ 2/3 provided the best fit. The crosses in Figure 9 show that
the model can closely approximate the observed data, with the
predictions always lying within the error bars.
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Figure 9. Results of the chromatic quantization experiment for

two color line segments: u (left) and v (right). Labels denote

[color space]@[mean luminance]. E.g. ITP@2 is quantization in the ICtCp

color space for a stimulus with a mean luminance of 2 cd/m2. Y ′CbCr requires

more bits than ICtCp. Our model predictions (red crosses) are within the error

bars (95% confidence) of the observed data.

Model predictions
The model can be trivially extended to take a starting color

and a color direction vector as input (instead of the smooth im-
age gradient). Binary search can then establish the color along
the color direction vector for which the probability of detectable
banding artifacts is equal to 0.5. We use such extension of the
model to establish a detection threshold and to plot color unifor-
mity ellipses akin to MacAdam ellipses. Figure 10 compares the
predictions of our model to CIE DeltaE 2000 difference and to
the original MacAdam ellipses. Note that our model is meant to
provide better predictions for banding rather than predicting tradi-
tional color patch difference; hence it is an interesting observation
that the resulting shapes are comparable.

Conclusion
We presented a visual model to predict the visibility of band-

ing artifacts for arbitrary color spaces taking both luminance
and chrominance into account. The model parameters were ad-
justed for the results of a subjective user experiment containing
monochrome and color gradients. Our model provided a good
fit for the observed data. We also used quantization artifacts as
a proxy for color space uniformity and found a close match to
MacAdam ellipses. One of the main limitations of this current
model is that it only considers the limited dynamic range of the
test device. We wish to address this in the future, then utilize the
model to design a more uniform, efficient color space.
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