Security APIs for Online Applications

Jonathan Anderson
Computer Laboratory
University of Cambridge
jonathan.anderson @ieee.org

I. INTRODUCTION

Online social networks, in their current form, require users
to place a vast amount of trust in the operators of both the core
network and the third-party applications they use. Since both
of these actors have shown themselves to be untrustworthy in
the past [1], [2], [3], [4], [5], we have proposed a model for
social networks in which client software runs on the user’s
computer, encrypted blocks are stored on a “dumb” server and
third-party applications are sandboxed to avoid the leakage of
personal information [6].

In this scheme, the interface between applications and the
core client software resembles a system call API in which
a kernel offers applications the means to perform privileged
operations. We have begun exploring this API to determine
its functional requirements and desired security properties,
but we welcome comments from and engagement with the
security API community in order to provide the users of social
networks with meaningful promises of personal privacy.

II. FUNCTIONAL REQUIREMENTS

An API for social applications must allow users to adapt the
technology to their own needs [7]; we cannot predict what
applications users will find compelling. We must, however,
build this API so that it can support the functionality that we
already know users will expect. This functionality includes
finding other users, especially real-life friends, communicat-
ing and sharing personal information with them and adding
value to other users’ content by tagging and commenting on
1t.

A. Finding Friends

In order to establish connections, a member of a social
network must advertise themselves to other users. By default,
users of a site should be invisible to all other users. They
should be able to advertise themselves in three ways:

1) By making some personal information (e.g. name,
photo) available on the Web;

2) By sending social network information via existing
communication channels (e.g. IM, e-mail);

3) Via social relationships in the network itself.

The first method requires that applications be able to retrieve
or at least parse Web content, the second requires interoper-
ating with arbitrary communications protocols and the third
requires some sharing of personal information with other
users.

Joseph Bonneau
Computer Laboratory
University of Cambridge
joseph.bonneau@cl.cam.ac.uk

Frank Stajano
Computer Laboratory
University of Cambridge
frank.stajano@cl.cam.ac.uk

B. Identity Verification

Another feature which privacy-preserving social network
should provide — and which current social networks do not —
is a means for users to verify the online identities of their real-
world friends. Today’s social networks are already used to
impersonate important politicians for comedic purposes [8],
but the potential to use social networks for highly targeted
phishing attacks is tremendous. Users should therefore be pro-
vided with an easy-to-use yet cryptographically strong means
of verifying identity using limited out-of-band signalling (in
person, over the phone, etc.).

C. Messaging

Users must be able to send each other messages, either
in real-time (a la IM or Twitter) or a delay-tolerant fashion
(a la e-mail or Facebook messages). Applications should be
able to send such messages and cause them to be signed in
desired.

D. Storage

Some applications — e.g. photo sharing applications — will
require long-term storage within a pseudo-filesystem. Posting
personal content in existing models is as straightforward as
putting the content on the server and not restricting other
users’ access to it. In a client-centric system, however, access
control must be done by client software.

Our system should provide applications with a general-
purpose filesystem, and applications could share content,
where permitted, by passing capabilities via the kernel.

E. Joint Content

One of the most interesting cases in the debate over online
privacy is the case of joint content: content that was created
and posted by one person, but which involves another person’s
name, likeness, opinions or comments. For instance, if a user
is “tagged” in a Facebook photograph, they have the right to
remove the tag — which recognises the stake that they hold in
the content — but tagging another user’s photo also requires
the permission of the person who posted the photo.

We must provide the ability for applications to generate and
share such content, and the joint content must be carefully
tied by the kernel to its original context.

III. PRIVACY MECHANISMS

Our application API must provide privileged operations
that applications can execute, but its primary purpose is to
safeguard the privacy of users’ personal information. The



API, then, must hide personal information from applications
unless it is truly required and user-authorised. The API should
provide applications with the means to operate successfully
without private information and, should they truly need it,
privileged but limited operations which they can perform.

A. Access Control

Access control in existing social APIs is extraordinarily
simplistic and permissive. In the case of Facebook, applica-
tions have some access to the personal information of almost
all users, even those those who do use the application in
question [9]. Access to other users’ personal information
depends on whether or not users have declared themselves to
be “friends”, which we have argued is an incorrect approach
for a system that is concerned with privacy [10]. We propose
that a privacy-preserving social network should not share
information because users are in a list of friends, but that
access control should be inferred from the normal course of
user action [11], and that if friend lists exist, they should be
derived from sharing policy, not the other way around.

In some cases, privacy policy should be simple: many
applications will need either personal information or external
interaction, but not both. Other applications, however, will
have more sophisticated requirements, and our system must
be capable of servicing their requests.

Application behaviour will be governed by a kernel-
maintained policy. That policy should be restrictive by default
but make it easy for capabilities to be granted by the course
of normal user actions [11], i.e. without “security prompts”
that distract users from their purposes for the network [12].

B. Placeholders

In many instances, applications do not actually require
social information, it is placing them in a social context
that adds value. Application code could use placeholders
and pseudonyms in user interaction which the kernel could
replace with actual social information, as suggested by Felt
and Evans’ privacy-by-proxy concept [13].

For instance, a chess application does not need to know
my name or my opponent’s, but it could generate messages
such as “${opponent_name} has offered to resign” or tell the
UI to “place the opponent’s profile picture in the rectangle
[50,0,100,100]” without seeing bitmap data.

C. Privileges

In our implementation, applications will run as plugins
to a Java-based framework with no permission to perform
system operations such as open network sockets. All external
or inter-application interaction, then, must be accomplished
via privileged operations provided by our API.

The atomic operations which it provides should be per-
formed in such a way that their combination does not intro-
duce unforeseen vulnerabilities.

Java’s security policy does not allow us to restrict access
to the current system time; if it did, we might even shut
down covert schannels of information flow among malicious
applications [14]. However, changing the flow of private

information from unrestricted to covert-channel-only would
be a significant improvement over current practice.

IV. RELATED WORK

While Felt and Evans’ concept of placeholders for so-
cial information [13] could be very useful, the utility of
anonymized social networks is suspect given the ease with
which these networks can be de-anonymised [15].

May, Gunter and Lee have previously proposed Privacy
APIs [16], by which they mean the formalisation and analysis
of legal policies in which access control requirements are
supplemented by notification and logging requirements.

V. CONCLUSION

By recognising social application APIs as security APIs,
we could provide users with a much safer social networking
experience, giving them control over and visibility of what
applications do with their personal information. We welcome
the security API community’s feedback on and involvement
with these efforts.

REFERENCES

[1] J. Bonneau, J. Anderson, R. Anderson, and F. Stajano, “Eight Friends
Are Enough: Social Graph Approximation via Public Listings,” in
Proceedings of the Second ACM EuroSys Workshop on Social Network
Systems (SNS ’09), 2009.

[2] J. C. Perez, “Facebook’s Beacon More Intrusive Than Previ-
ously Thought.” http://www.pcworld.com/printable/article/id, 140182/
printable.html, Nov 2007. PCWorld.

[3] B. Stone, “Facebook Aims to Extend Its Reach Across the Web,” The
New York Times, vol. 12, no. 1, 2008.

[4] T. S. Schmidt, “Inside the Backlash Against Facebook.” http://www.
time.com/time/nation/article/0,8599,1532225,00.html, 2006. Time
Magazine.

[5] E. Mills, “Facebook suspends app that permitted peephole.” http://news.
cnet.com/8301-10784_3-9977762-7.html, 2008. CNET News.

[6] J. Anderson, C. Diaz, J. Bonneau, and F. Stajano, “Privacy Preserving
Social Networking Using Untrusted Servers,” in Proceedings of the
Second ACM SIGCOMM Workshop on Online Social Networks (WOSN
’09), 2009.

[71 D. M. Boyd, Taken Out of Context — American Teen Sociality in
Networked Publics. PhD thesis, University of California, Berkeley,
2008.

[8] B. McGonigle, “Some profiles on MySpace.com not what they seem.”
http://www.boston.com/news/nation/washington/articles/2006/10/16/
some_profiles_on_myspacecom_not_what_they_seem/, 2006. The
Boston Globe.

[9] J. Bonneau, J. Anderson, and G. Danezis, “Prying Data Out of a Social

Network,” in Proceedings of the 2009 International Conference on

Advances in Social Network Analysis and Mining, 2009.

J. Anderson and F. Stajano, “Not That Kind of Friend: Misleading

Divergences Between Online Social Networks and Real-World Social

Protocols,” in Proceedings of the Seventeenth International Workshop

on Security Protocols (SPW ’09), 2009.

K.-P. Yee, “Aligning security and usability,” IEEE Security and Privacy

Magazine, vol. 2, no. 5, pp. 48 — 55, 2004.

A. Whitten, Making Security Usable. PhD thesis, Carnegie Mellon

University, 2004.

A. Felt and D. Evans, “Privacy Protection for Social Networking

Platforms,” in Proceedings of Web 2.0 Security and Privacy 2008, 2008.

B. W. Lampson, “A Note on the Confinement Problem,” Communica-

tions of the ACM, vol. 16, no. 10, pp. 613 — 615, 1973.

L. Backstrom, C. Dwork, and J. Kleinberg, “Wherefore art thou

r3579x?: anonymized social networks, hidden patterns and structural

steganography,” in Proceedings of the 16th International Conference

on the World Wide Web (WWW ’07), pp. 181-190, 2007.

M. J. May, C. A. Gunter, and I. Lee, “Privacy APIs: Access Control

Techniques to Analyze and Verify Legal Privacy Policies,” Computer

Security Foundations Workshop, 2006.

[10]

(11]
[12]
[13]
[14]

[15]

[16]



