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Abstract A parsing system returning analyses in the form of sets of grammatical relations
can obtain high precision if it hypothesises a particular grammatical relation only
when it is certain that the relation is correct. We operationalise this technique—
in a statistical parser using a manually-developed wide-coverage grammar of
English—by only returning relations that form part of all analyses licensed by
the grammar. We observe an increase in precision from 75% to over 90% (at the
cost of a reduction in recall) on a test corpus of naturally-occurring text.
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1. Introduction

Head-dependent grammatical relationships (possibly labelled with a relation
type) have been advocated as a useful level of representation for grammatical
structure in a number of different large-scale language-processing tasks. For
instance, in recent work on statistical treebank grammar parsing (e.g.?) high
levels of accuracy have been reached using lexicalised probabilistic models over
head-dependent relations.? create dependency treebanks semi-automatically
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in order to induce dependency-based statistical models for parse selection.?, ?
and others have evaluated the accuracy of both phrase structure and dependency
parsers by matching head-dependent relations against ‘gold standard’ relations,
rather than matching (labelled) phrase structure bracketings. Research on un-
supervised acquisition of lexical information from corpora, such as argument
structure of predicates (?; ?), word classes for disambiguation (?), and collo-
cations (?), has used grammatical or head-dependent relations. Such relations
also constitute a convenient intermediate representation in applications such as
information extraction (?; ?), and document retrieval on the Web (?).

A variety of different approaches have been taken for robust extraction of
relations from unrestricted text. Dependency parsing is a natural technique
to use, and there has been some work in that area on robust analysis and dis-
ambiguation (e.g.?; ?). Finite-state approaches (e.g.?; Aı̈t-Mokhtar, S. and
J-P. Chanod, 1997;?) have used hand-coded transducers to recognise linear
configurations of words and to assign labels to words associated with, for ex-
ample, subject/object-verb relationships. An intermediate step may be to mark
nominal, verbal etc. ‘chunks’ in the text and to identify the head word of each
of the chunks. Statistical finite-state approaches have also been used:? train a
cascade of hidden Markov models to tag words with their grammatical func-
tions. Approaches based on memory based learning have also used chunking as
a first stage, before assigning grammatical relation labels to heads of chunks (?;
?). ? assume a richer input representation consisting of labelled trees produced
by a treebank grammar parser, and use the treebank again to train a further pro-
cedure that assigns grammatical function tags to syntactic constituents in the
trees. Alternatively, a hand-written grammar can be used that produces similar
phrase structure analyses and perhaps partial analyses from which grammatical
relations are extracted (e.g.?; ?).

Recently,? have described an algorithm for computing expectedgover-
nor labelsfor terminal words in labelled headed parse trees produced by a
probabilistic context-free grammar. A governor label (implicitly) encodes a
grammatical relation type (such as subject or object) and a governing lexical
head. The labels areexpectedin the sense that each is weighted by the sum
of the probabilities of the trees giving rise to it, and are computed efficiently
by processing the entire parse forest rather than individual trees. The resulting
set of governing-head tuples will not typically constitute a globally coherent
analysis, but may be useful for interfacing to applications that primarily accu-
mulate fragments of grammatical information from text (such as for instance
information extraction, or systems that acquire lexical data from corpora). The
approach is not so suitable for applications that need to interpret complete
and consistent sentence structures (such as the analysis phase of transfer-based
machine translation). Schmid and Rooth have implemented the algorithm for
parsing with a lexicalised probabilistic context-free grammar of English and
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applied it in an open domain question answering system, but they do not give
any practical results or an evaluation.

In this paper we investigate empirically Schmid and Rooth’s proposals, using
a wide-coverage parsing system applied to a test corpus of naturally-occurring
text, extend it with various thresholding techniques, and observe the trade-off
between precision and recall in grammatical relations returned. Using the most
conservative threshold results in a parser that returns only grammatical relations
that form part of all analyses licensed by the grammar. In this case, precision
rises to over 90%, as compared with a baseline of 75%.

2. The Analysis System

We extended an existing statistical shallow parsing system for English (e.g.
?). Briefly, the system works as follows: input text is tokenised and then labelled
with part-of-speech (PoS) tags by a tagger, and these are parsed using a wide-
coverage unification-based grammar of English PoS tags and punctuation. For
disambiguation, the parser uses a probabilistic LR model derived from parse
tree structures in a treebank, augmented with a set of lexical entries for verbs,
acquired automatically from a 10 million word sample of the British National
Corpus (?), each entry containing subcategorisation frame information and an
associated probability. The parser is therefore ‘semi-lexicalised’ in that verbal
argument structure is disambiguated lexically, but the rest of the disambiguation
is purely structural.

The coverage of the grammar—the proportion of sentences for which at least
one complete spanning analysis is found—is around 80% when applied to the
susanne corpus (?). In addition, the system is able to perform parse failure
recovery, finding the highest scoring sequence of phrasal fragments (following
the approach of?), and the system has produced at least partial analyses for
over 98% of the sentences in the 90M word written part of the British National
Corpus.

The parsing system reads off grammatical relation tuples (GRs) from the
constituent structure tree that is returned from the disambiguation phase. Infor-
mation is used about which grammar rules introduce subjects, complements,
and modifiers, and which daughter(s) is/are the head(s), and which the depen-
dents. In the evaluation reported in?, the system achieves GR accuracy that
is comparable to published results for other systems: extraction of non-clausal
subject relations with 83% precision, compared with figure of 80% (?); and
overall F1-score1 of unlabelled head-dependent pairs of 80%, as opposed to
83% (?)2 and 84% (?—this with respect only to binary relations, and omitting
the analysis of control relationships).? report an F1-score of 87% for assigning
grammatical function tags to constituents, but the task, and therefore the scoring
method, is rather different.
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Figure 1.1. Grammatical relation hierarchy.

For the work reported in this paper we have extended the basic system,
implementing a version of Schmid and Rooth’s expected governor technique
(see section 1 above) but adapted for unification-based grammar and GR-based
analyses. Each sentence is analysed as a set of weighted GRs where the weight
associated with each grammatical relation is computed as the sum of the prob-
abilities of the parses that relation was derived from, divided by the sum of the
probabilities of all parses. So, if we assume that Schmid and Rooth’s exam-
ple sentencePeter reads every paper on markuphas 2 parses, one whereon
markupattaches to the preceding noun having overall probability0.007 and the
other where it has verbal attachment with probability0.003, then some of the
weighted GRs would be:

1.0 ncsubj(reads, Peter,)
0.7 ncmod(on, paper, markup)
0.3 ncmod(on, reads, markup)

The GR scheme is described in detail by?. Figure 1.1 gives the full set of named
relation types represented as a subsumption hierarchy. The most generic relation
between a head and a dependent isdependent. Where the relationship between
the two is known more precisely, relations further down the hierarchy can be
used, for examplemodifier orargument. Relationsmod, arg mod, aux, clausal,
and their descendants have slots filled by a type, a head, and its dependent;
arg modhas an additional fourth slot initialgr. Descendants ofsubj, and also
dobj have the three slots head, dependent, and initialgr. Relation conj has a
type slot and one or more head slots. Thenc, x andc prefixes to relation names
differentiate non-clausal, clausal and externally-controlled clausal dependents,
respectively. Figure 1.2 contains a more extended example of a weighted GR
analysis for a short sentence from thesusanne corpus.
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1.0 aux(, continue, will) 0.4490 iobj(on, place, tax-payers)
1.0 detmod(, burden, a) 0.3276 ncmod(on, burden, tax-payers)
1.0 dobj(do, this,) 0.2138 ncmod(on, place, tax-payers)
1.0 dobj(place, burden,) 0.0250 xmod(to, continue, place)
1.0 ncmod(, burden, disproportionate) 0.0242 ncmod(, Fulton, tax-payers)
1.0 ncsubj(continue, Failure,) 0.0086 obj2(place, tax-payers)
1.0 ncsubj(place, Failure,) 0.0086 ncmod(on, burden, Fulton)
1.0 xcomp(to, Failure, do) 0.0020 mod(, continue, place)

0.9730 clausal(continue, place) 0.0010 ncmod(on, continue, tax-payers)
0.9673 ncmod(, tax-payers, Fulton)

Figure 1.2. Weighted GRs for the sentenceFailure to do this will continue to place a dispro-
portionate burden on Fulton taxpayers.

3. Empirical Results

3.1 Weight Thresholding

Our first experiment compared the accuracy of the parser when extracting
GRs from the highest ranked analysis (the standard probabilistic parsing setup)
against extracting weighted GRs from all parses in the forest. To measure
accuracy we use the precision, recall and F1-score measures of parser GRs
against ‘gold standard’ GR annotations in a 10,000-word test corpus of in-
coverage sentences derived from thesusanne corpus and covering a range of
written genres3. GRs are, in general, compared using an equality test, except
that in a specific, limited number of cases the parser is allowed to returnmod,
subj and clausal relations rather than the more specific ones they subsume,
and to leave unspecified the filler for the type slot in themod, iobj andclausal
relations4. The head and dependent slot fillers are in all cases the base forms
of a single (head) word.

When a parser GR has a weight of less than one, we proportionally discount
its contribution to the precision and recall scores. Thus, given a setT of GRs
with associated weights produced by the parser, i.e.

T = {(wi, ti) |wi is the weight associated
with GR ti,where 0 < wi ≤ 1}

and a setS of gold-standard (unweighted) GRs, we compute the weighted match
betweenS and the elements ofT as

m =
∑

(wi,ti)∈T

wi δ(ti ∈ S)
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Table 1.1. GR accuracy comparing extraction from just the highest-ranked parse compared to
weighted GR extraction from all parses.

Precision (%) Recall (%) F1-score
Best parse 76.25 76.77 76.51
All parses 74.63 75.33 74.98

whereδ(x) = 1 if x is true and0 otherwise. The weighted precision and recall
are then

m∑
(wi,ti)∈T wi

and
m

|S|

respectively, expressed as percentages. We are not aware of any previous pub-
lished work using weighted precision and recall measures, although there is an
option for associating weights with complete parses in the distributed software
implementing theparseval scheme (?) for evaluating parser accuracy with
respect to phrase structure bracketings. The weighted measures make sense
for application tasks that can utilise potentially incomplete sets of potentially
mutually-inconsistent GRs.

In this initial experiment, precision and recall when extracting weighted GRs
from all parses were both one and a half percentage points lower than when
GRs were extracted from just the highest ranked analysis (see table 1.1)5. This
decrease in accuracy might be expected, though, given that a true positive GR
may be returned with weight less than one, and so will not receive full credit
from the weighted precision and recall measures.

However, these results only tell part of the story. An application might only
utilise GRs which the parser is fairly confident are correct. For instance, in un-
supervised acquisition of lexical information (such as subcategorisation frames
for verbs), the usual methodology is to (partially) analyse the text, retaining only
reliable hypotheses which are then filtered based on the amount of evidence for
them over the corpus as a whole. Thus,? only creates hypotheses on the basis
of instances of verb frames that are reliably and unambiguously cued by closed
class items (such as pronouns) so there can be no other attachment possibilities.
In recent work on unsupervised learning of prepositional phrase disambigua-
tion, ? derive training instances only from relevant data appearing in syntactic
contexts that are guaranteed to be unambiguous. In our system, the weights on
GRs indicate how certain the parser is of the associated relations being correct.
We therefore investigated whether more highly weighted GRs are in fact more
likely to be correct than ones with lower weights. We did this by setting a
thresholdon the output, such that any GR with weight lower than the threshold
is discarded.
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Figure 1.3. Weighted GR accuracy as the threshold is varied.

Figure 1.3 plots weighted recall and precision as the threshold is varied
between zero and one The results are intriguing. Precision increases mono-
tonically from 74.6% at a threshold of zero (the situation as in the previous
experiment where all GRs extracted from all parses in the forest are returned)
to 90.4% at a threshold of one. (The latter threshold has the effect of allowing
only those GRs that form part of every single analysis to be returned). The
influence of the threshold on recall is equally dramatic, although, since we have
not escaped the usual trade-off with precision, the results are somewhat less
positive. Recall decreases from 75.3% to 45.2%, initially rising slightly, then
falling at a gradually increasing rate. At about the same point, precision shows
a sharp rise, although smaller in magnitude. Table 1.2 shows in detail what is
happening in this region. Between thresholds 0.99 and 1.0 there is only a two
percentage point difference in precision, but recall differs by almost fourteen
percentage points6. Over the whole range, as the threshold is increased from
zero, precision rises faster than recall falls until the threshold reaches 0.65; here
the F1-score attains its overall maximum of 77%.

It turns out that the eventual figure of over 90% precision is not due to
‘easier’ GR types (such as the that between a determiner and a noun) being
returned and more difficult ones (for example, that between a verb and a clausal
complement) being ignored. Table 1.3 shows that the the majority of relation
types are produced with frequency consistent with the overall 45% recall figure.
Exceptions arearg mod (encoding the English passive ‘by-phrase’) andiobj
(indirect object), for which no GRs at all are produced. The reason for this is
that both types of relation originate from an occurrence of a prepositional phrase
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Table 1.2. Weighted GR accuracy as the threshold approaches 1.

GR Weight Precision Recall F1-score
Threshold (%) (%)

1.0 90.40 45.21 60.27
0.99999999 90.27 46.28 61.19
0.9999999 90.17 46.87 61.68
0.999999 90.08 47.64 62.32
0.99999 90.03 48.91 63.38
0.9999 89.68 51.15 65.15
0.999 89.11 54.06 67.29
0.99 88.43 59.13 70.87
0.9 86.39 66.27 75.00

...
...

...
...

0.0 74.63 75.33 74.98

Table 1.3. Total numbers of parser and test corpus GRs by type, using a threshold of 1.

Relation Parser Test Corpus
Type GRs GRs

mod 1915 2710
ncmod 979 2377
xmod 14 170
cmod 51 163
detmod 840 1124
arg mod 0 39
arg 1058 1941
subj 664 993

ncsubj 659 984
xsubj 0 5
csubj 2 4
subj or dobj 852 1339
comp 394 948
obj 205 559

dobj 188 396
obj2 17 19
iobj 0 144
clausal 189 389
xcomp 161 323
ccomp 26 66
aux 237 379
conj 60 164
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in contexts where it could be either a modifier or a complement of a predicate.
This pervasive ambiguity means that there will always be disagreement between
analyses over the relation type (but not necessarily over the identity of the head
and dependent themselves).

3.2 Parse Unpacking

Schmid and Rooth’s algorithm computes expected governors efficiently by
using dynamic programming and processing the entire parse forest rather than
individual trees. In contrast, we unpack the whole parse forest and then extract
weighted GRs from each tree individually. Our implementation is certainly
less elegant, but in practical terms for sentences where there are relatively small
numbers of parses the speed is still acceptable. However, throughput goes
down linearly with the number of parses, and when there are many thousands
of parses—and particularly also when the sentence is long and so each tree is
large—the system becomes unacceptably slow.

One possibility to improve the situation would be to extract GRs directly from
forests. At first glance this looks viable: although our parse forests are pro-
duced by a probabilistic LR parser using a unification-based grammar, they are
similar in content to those computed by a probabilistic context-free grammar,
as assumed by Schmid and Rooth’s algorithm. However, there are problems. If
the test for being able to pack local ambiguities in the unification grammar parse
forest is feature structure subsumption, unpacking a parse apparently encoded
in the forest can fail due to non-local inconsistency in feature values (?)7, so
every GR hypothesis would have to be checked to ensure that the parse it came
from was globally valid. It is likely that this verification step would cancel out
the efficiency gained from using an algorithm based on dynamic programming.
This problem could be side-stepped (but at the cost of less compact parse forests)
by instead testing for feature structure equivalence rather than subsumption. A
second, more serious problem is that some of our relation types encode more
information than is present in a single governing-head tuple (the non-clausal
subject relation, for instance, encoding whether the surface subject is the ‘deep’
object in a passive construction); this information can again be less local and
violate the conditions required for the dynamic programming approach.

Another possibility is to compute only then highest ranked parses and extract
weighted GRs from just those. The basic case wheren = 1 is equivalent to
the standard approach of computing GRs from the highest probability parse.
Table 1.4 shows the effect on accuracy asn is increased in stages to1000, using
a threshold for GR extraction of1; also shown is the previous setup (labelled
‘unlimited’) in which all parses in the forest are considered.8 (All differences
in precision in the table are significant to at least the 95% level, except between
1000 parses and an unlimited number). The results demonstrate that limiting
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Table 1.4. Weighted GR accuracy using a threshold of 1, with respect to the maximum number
of ranked parses considered.

Maximum Precision Recall F1-score
Parses (%) (%)

1 76.25 76.77 76.51
2 80.15 73.30 76.57
5 84.94 67.03 74.93

10 86.73 62.47 72.63
100 89.59 51.45 65.36

1000 90.24 46.08 61.00
unlimited 90.40 45.21 60.27

processing to a relatively small, fixed number of parses—even as low as 100—
comes within a small margin of the accuracy achieved using the full parse forest.
These results are striking, in view of the fact that the grammar assigns more
than300 parses to over a third of the sentences in the test corpus, and more
than1000 parses to a fifth of them. Another interesting observation is that the
relationship between precision and recall is very close to that seen when the
threshold is varied (as in the previous section); there appears to be no loss in
recall at a given level of precision. We therefore feel confident in unpacking
a limited number of parses from the forest and extracting weighted GRs from
them, rather than trying to process all parses. We have tentatively set the limit
to be1000, as a reasonable compromise in our system between throughput and
accuracy.

3.3 Parse Weighting

The way in which the GR weighting is carried out does not matter when the
weight threshold is equal to 1 (since then only GRs that are part of every analysis
are returned, each with a weight of 1). However, we wanted to see whether the
precise method for assigning weights to GRs has an effect on accuracy, and if
so, to what extent. We therefore tried an alternative approach where each GR
receives a contribution of 1 from every parse, no matter what the probability
of the parse is, normalising in this case by the number of parses considered.
This tends to increase the numbers of GRs returned for any given threshold, so
when comparing the two methods we found thresholds such that each method
obtained the same precision figure (of roughly 83.38%). We then compared the
recall figures (see table 1.5). The recall for the probabilistic weighting scheme
is 4% higher (statistically significant at the 99.95% level) as expected, given
the loss of information entailed by ignoring parse probabilities.
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Table 1.5. Accuracy at the same level of precision using different weighting methods, with a
1000-parse tree limit.

Weighting Precision Recall F1-score
Method (%) (%)

Probabilistic (at 88.38 59.19 70.90
threshold 0.99)

Equally (at 88.39 55.17 67.94
threshold 0.768)

It could be that an application has a preference for GRs that arise from less
ambiguous sentences. In this case the parser could re-weight GRs such that
the new weight is proportional to the inverse of the number of parses for the
sentence: for instance changing weightw to

(
1
|P |

)(w−1)2

where |P | is the number of parses. A weight of 1 would then be retained;
however with this formula most values end up being either within a small region
of 1, or extremely small. Using the absolute value ofw− 1 instead of(w− 1)2

seems to improve matters, but, in general, the best re-weighting method is likely
to be application-specific and can only be determined empirically.

3.4 Maximal Consistent Relation Sets

It is interesting to see what happens if we compute for each sentence the
maximal consistent set of weighted GRs. We might want to do this if we want
complete and coherent sentence analyses, interpreting the weights as confi-
dence measures over sub-analysis segments. We use a ‘greedy’ approximation
to compute consistent relation sets, taking GRs sorted in order of decreasing
weight and adding a GR to the set if and only if there is not already a GR in the
set with the same dependent. (But note that the correct analysis may in fact con-
tain more than one GR with the same dependent, such as thencsubj ... Failure
GRs in Figure 1.2, and in these cases this method will introduce errors). The
weighted precision, recall and F1-score at threshold zero are 79.31%, 73.56%
and 76.33 respectively. Precision and F1-score are significantly better (at the
95.95% level) than the baseline of all parses in table 1.1. Improvement in the
algorithm used to compute consistent sets of GRs should increase this margin.
This technique provides a way of building a complete analysis in terms of GRs
which do not necessarily derive from a single syntactic phrase structure tree.
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4. Conclusions and Further Work

We have extended a parsing system for English that returns analyses in the
form of sets of grammatical relations, reporting an investigation into the extrac-
tion of weightedrelations from probabilistic parses. We observed that setting
a threshold on the output, such that any relation with weight lower than the
threshold is discarded, allows a trade-off to be made between recall and preci-
sion. We found that by setting the threshold at 1 the precision of the system
was boosted dramatically – from a baseline of 75% to over 90%. With this
setting, the system returns only relations that form part of all analyses licensed
by the grammar: the system can have no greater certainty that these relations
are correct, given the knowledge that is available to it.

The technique is most appropriate for applications where a complete and
consistent analysis is not required. However, the preliminary experiment re-
ported in section 3.4 suggests that it can be extended to yield a high confidence
consistent set of relations drawn from the set ofn-best phrase structure analy-
ses. Although we believe this technique to be especially well suited to statistical
parsers, it could also potentially benefit any parsing system that can represent
ambiguity and return analyses that are composed of a collection of elementary
units. Such a system need not necessarily be statistical, since parse probabilities
are not required when checking that a given sub-analysis segment forms part of
all possible global analyses. Moreover, a statistical parsing system could use
the technique to construct a reliable partially-annotated corpus automatically,
which it could then be trained on.

One of our primary research goals is to explore unsupervised acquisition
of lexical knowledge. The parser we use in this work is ‘semi-lexicalised’,
using subcategorisation probabilities for verbs acquired automatically from
(unlexicalised) parses. In the future we intend to acquire other types of lexico-
statistical information (for example on PP attachment) which we will feed back
into the parser’s disambiguation procedure, bootstrapping successively more
accurate versions of the parsing system. There is still plenty of scope for
improvement in accuracy, since compared with the number of correct GRs in
top-ranked parses there are roughly a further 20% that are correct but present
only in lower-ranked parses. Table??gives the actual figures, broken down by
relation type. There appears to be less room for improvement with argument
relations (ncsubj, dobj etc.) than with modifier relations (ncmodand similar).
This indicates that our next efforts should be directed to collecting information
on modification.
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Relation In Parse Not in Parse Ranked 1
Type Ranked 1 but in Parses 2–1000

ncmod 1691 538
xmod 56 36
cmod 99 65
detmod 1026 31
arg mod 20 6
ncsubj 872 54
xsubj 4 1
csubj 1 1
dobj 337 31
obj2 16 1
iobj 109 34
xcomp 270 36
ccomp 65 6
aux 330 21
conj 114 24

total 5010 885

Table 1.6. Number of correct GRs in top-ranked parse, and number not in top-ranked parse but
in others.

GR/N36462/93 ‘Robust Accurate Statistical Parsing (RASP)’ and by EU FP5
project IST-2001-34460 ‘MEANING: Developing Multilingual Web-scale Lan-
guage Technologies’.

Notes

1. The F1-score is defined as2× precision× recall/(precision + recall).

2. Our calculation is based on table 2 of?.

3. The annotated test corpus is available from http://www.cogs.susx.ac.uk/lab/nlp/carroll/greval.html.

4. We are currently refining the implementation of the extraction of GRs from parse trees, and will soon
be able to remove these minor relaxations.

5. Ignoring the weights on GRs, standard (unweighted) evaluation results for all parses are: precision
36.65%, recall 89.42% and F1-score 51.99.

6. Roughly, each percentage point increase or decrease in precision and recall is statistically significant
at the 95% level. In this and all significance tests reported in this paper we use a one-tailed pairedt-test(with
499 degrees of freedom).

7. The forest therefore also ‘leaks’ probability mass since it contains derivations that are in fact not
legal.

8. At n = 1000 parses, the (unlabelled) weighted precision of head-dependent pairs is 91.0%.
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